1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #include <linux/kernel.h> 249 #include <linux/module.h> 250 #include <linux/types.h> 251 #include <linux/fcntl.h> 252 #include <linux/poll.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/bootmem.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/crypto.h> 267 268 #include <net/icmp.h> 269 #include <net/tcp.h> 270 #include <net/xfrm.h> 271 #include <net/ip.h> 272 #include <net/netdma.h> 273 #include <net/sock.h> 274 275 #include <asm/uaccess.h> 276 #include <asm/ioctls.h> 277 278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 279 280 struct percpu_counter tcp_orphan_count; 281 EXPORT_SYMBOL_GPL(tcp_orphan_count); 282 283 int sysctl_tcp_mem[3] __read_mostly; 284 int sysctl_tcp_wmem[3] __read_mostly; 285 int sysctl_tcp_rmem[3] __read_mostly; 286 287 EXPORT_SYMBOL(sysctl_tcp_mem); 288 EXPORT_SYMBOL(sysctl_tcp_rmem); 289 EXPORT_SYMBOL(sysctl_tcp_wmem); 290 291 atomic_t tcp_memory_allocated; /* Current allocated memory. */ 292 EXPORT_SYMBOL(tcp_memory_allocated); 293 294 /* 295 * Current number of TCP sockets. 296 */ 297 struct percpu_counter tcp_sockets_allocated; 298 EXPORT_SYMBOL(tcp_sockets_allocated); 299 300 /* 301 * TCP splice context 302 */ 303 struct tcp_splice_state { 304 struct pipe_inode_info *pipe; 305 size_t len; 306 unsigned int flags; 307 }; 308 309 /* 310 * Pressure flag: try to collapse. 311 * Technical note: it is used by multiple contexts non atomically. 312 * All the __sk_mem_schedule() is of this nature: accounting 313 * is strict, actions are advisory and have some latency. 314 */ 315 int tcp_memory_pressure __read_mostly; 316 317 EXPORT_SYMBOL(tcp_memory_pressure); 318 319 void tcp_enter_memory_pressure(struct sock *sk) 320 { 321 if (!tcp_memory_pressure) { 322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 323 tcp_memory_pressure = 1; 324 } 325 } 326 327 EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329 /* 330 * Wait for a TCP event. 331 * 332 * Note that we don't need to lock the socket, as the upper poll layers 333 * take care of normal races (between the test and the event) and we don't 334 * go look at any of the socket buffers directly. 335 */ 336 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 337 { 338 unsigned int mask; 339 struct sock *sk = sock->sk; 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 poll_wait(file, sk->sk_sleep, wait); 343 if (sk->sk_state == TCP_LISTEN) 344 return inet_csk_listen_poll(sk); 345 346 /* Socket is not locked. We are protected from async events 347 * by poll logic and correct handling of state changes 348 * made by other threads is impossible in any case. 349 */ 350 351 mask = 0; 352 if (sk->sk_err) 353 mask = POLLERR; 354 355 /* 356 * POLLHUP is certainly not done right. But poll() doesn't 357 * have a notion of HUP in just one direction, and for a 358 * socket the read side is more interesting. 359 * 360 * Some poll() documentation says that POLLHUP is incompatible 361 * with the POLLOUT/POLLWR flags, so somebody should check this 362 * all. But careful, it tends to be safer to return too many 363 * bits than too few, and you can easily break real applications 364 * if you don't tell them that something has hung up! 365 * 366 * Check-me. 367 * 368 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 369 * our fs/select.c). It means that after we received EOF, 370 * poll always returns immediately, making impossible poll() on write() 371 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 372 * if and only if shutdown has been made in both directions. 373 * Actually, it is interesting to look how Solaris and DUX 374 * solve this dilemma. I would prefer, if POLLHUP were maskable, 375 * then we could set it on SND_SHUTDOWN. BTW examples given 376 * in Stevens' books assume exactly this behaviour, it explains 377 * why POLLHUP is incompatible with POLLOUT. --ANK 378 * 379 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 380 * blocking on fresh not-connected or disconnected socket. --ANK 381 */ 382 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 383 mask |= POLLHUP; 384 if (sk->sk_shutdown & RCV_SHUTDOWN) 385 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 386 387 /* Connected? */ 388 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 389 int target = sock_rcvlowat(sk, 0, INT_MAX); 390 391 if (tp->urg_seq == tp->copied_seq && 392 !sock_flag(sk, SOCK_URGINLINE) && 393 tp->urg_data) 394 target--; 395 396 /* Potential race condition. If read of tp below will 397 * escape above sk->sk_state, we can be illegally awaken 398 * in SYN_* states. */ 399 if (tp->rcv_nxt - tp->copied_seq >= target) 400 mask |= POLLIN | POLLRDNORM; 401 402 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 403 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 404 mask |= POLLOUT | POLLWRNORM; 405 } else { /* send SIGIO later */ 406 set_bit(SOCK_ASYNC_NOSPACE, 407 &sk->sk_socket->flags); 408 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 409 410 /* Race breaker. If space is freed after 411 * wspace test but before the flags are set, 412 * IO signal will be lost. 413 */ 414 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 415 mask |= POLLOUT | POLLWRNORM; 416 } 417 } 418 419 if (tp->urg_data & TCP_URG_VALID) 420 mask |= POLLPRI; 421 } 422 return mask; 423 } 424 425 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 426 { 427 struct tcp_sock *tp = tcp_sk(sk); 428 int answ; 429 430 switch (cmd) { 431 case SIOCINQ: 432 if (sk->sk_state == TCP_LISTEN) 433 return -EINVAL; 434 435 lock_sock(sk); 436 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 437 answ = 0; 438 else if (sock_flag(sk, SOCK_URGINLINE) || 439 !tp->urg_data || 440 before(tp->urg_seq, tp->copied_seq) || 441 !before(tp->urg_seq, tp->rcv_nxt)) { 442 answ = tp->rcv_nxt - tp->copied_seq; 443 444 /* Subtract 1, if FIN is in queue. */ 445 if (answ && !skb_queue_empty(&sk->sk_receive_queue)) 446 answ -= 447 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin; 448 } else 449 answ = tp->urg_seq - tp->copied_seq; 450 release_sock(sk); 451 break; 452 case SIOCATMARK: 453 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 454 break; 455 case SIOCOUTQ: 456 if (sk->sk_state == TCP_LISTEN) 457 return -EINVAL; 458 459 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 460 answ = 0; 461 else 462 answ = tp->write_seq - tp->snd_una; 463 break; 464 default: 465 return -ENOIOCTLCMD; 466 } 467 468 return put_user(answ, (int __user *)arg); 469 } 470 471 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 472 { 473 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 474 tp->pushed_seq = tp->write_seq; 475 } 476 477 static inline int forced_push(struct tcp_sock *tp) 478 { 479 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 480 } 481 482 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 483 { 484 struct tcp_sock *tp = tcp_sk(sk); 485 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 486 487 skb->csum = 0; 488 tcb->seq = tcb->end_seq = tp->write_seq; 489 tcb->flags = TCPCB_FLAG_ACK; 490 tcb->sacked = 0; 491 skb_header_release(skb); 492 tcp_add_write_queue_tail(sk, skb); 493 sk->sk_wmem_queued += skb->truesize; 494 sk_mem_charge(sk, skb->truesize); 495 if (tp->nonagle & TCP_NAGLE_PUSH) 496 tp->nonagle &= ~TCP_NAGLE_PUSH; 497 } 498 499 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags, 500 struct sk_buff *skb) 501 { 502 if (flags & MSG_OOB) 503 tp->snd_up = tp->write_seq; 504 } 505 506 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 507 int nonagle) 508 { 509 struct tcp_sock *tp = tcp_sk(sk); 510 511 if (tcp_send_head(sk)) { 512 struct sk_buff *skb = tcp_write_queue_tail(sk); 513 if (!(flags & MSG_MORE) || forced_push(tp)) 514 tcp_mark_push(tp, skb); 515 tcp_mark_urg(tp, flags, skb); 516 __tcp_push_pending_frames(sk, mss_now, 517 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 518 } 519 } 520 521 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 522 unsigned int offset, size_t len) 523 { 524 struct tcp_splice_state *tss = rd_desc->arg.data; 525 int ret; 526 527 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 528 tss->flags); 529 if (ret > 0) 530 rd_desc->count -= ret; 531 return ret; 532 } 533 534 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 535 { 536 /* Store TCP splice context information in read_descriptor_t. */ 537 read_descriptor_t rd_desc = { 538 .arg.data = tss, 539 .count = tss->len, 540 }; 541 542 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 543 } 544 545 /** 546 * tcp_splice_read - splice data from TCP socket to a pipe 547 * @sock: socket to splice from 548 * @ppos: position (not valid) 549 * @pipe: pipe to splice to 550 * @len: number of bytes to splice 551 * @flags: splice modifier flags 552 * 553 * Description: 554 * Will read pages from given socket and fill them into a pipe. 555 * 556 **/ 557 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 558 struct pipe_inode_info *pipe, size_t len, 559 unsigned int flags) 560 { 561 struct sock *sk = sock->sk; 562 struct tcp_splice_state tss = { 563 .pipe = pipe, 564 .len = len, 565 .flags = flags, 566 }; 567 long timeo; 568 ssize_t spliced; 569 int ret; 570 571 /* 572 * We can't seek on a socket input 573 */ 574 if (unlikely(*ppos)) 575 return -ESPIPE; 576 577 ret = spliced = 0; 578 579 lock_sock(sk); 580 581 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK); 582 while (tss.len) { 583 ret = __tcp_splice_read(sk, &tss); 584 if (ret < 0) 585 break; 586 else if (!ret) { 587 if (spliced) 588 break; 589 if (sock_flag(sk, SOCK_DONE)) 590 break; 591 if (sk->sk_err) { 592 ret = sock_error(sk); 593 break; 594 } 595 if (sk->sk_shutdown & RCV_SHUTDOWN) 596 break; 597 if (sk->sk_state == TCP_CLOSE) { 598 /* 599 * This occurs when user tries to read 600 * from never connected socket. 601 */ 602 if (!sock_flag(sk, SOCK_DONE)) 603 ret = -ENOTCONN; 604 break; 605 } 606 if (!timeo) { 607 ret = -EAGAIN; 608 break; 609 } 610 sk_wait_data(sk, &timeo); 611 if (signal_pending(current)) { 612 ret = sock_intr_errno(timeo); 613 break; 614 } 615 continue; 616 } 617 tss.len -= ret; 618 spliced += ret; 619 620 if (!timeo) 621 break; 622 release_sock(sk); 623 lock_sock(sk); 624 625 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 626 (sk->sk_shutdown & RCV_SHUTDOWN) || 627 signal_pending(current)) 628 break; 629 } 630 631 release_sock(sk); 632 633 if (spliced) 634 return spliced; 635 636 return ret; 637 } 638 639 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 640 { 641 struct sk_buff *skb; 642 643 /* The TCP header must be at least 32-bit aligned. */ 644 size = ALIGN(size, 4); 645 646 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 647 if (skb) { 648 if (sk_wmem_schedule(sk, skb->truesize)) { 649 /* 650 * Make sure that we have exactly size bytes 651 * available to the caller, no more, no less. 652 */ 653 skb_reserve(skb, skb_tailroom(skb) - size); 654 return skb; 655 } 656 __kfree_skb(skb); 657 } else { 658 sk->sk_prot->enter_memory_pressure(sk); 659 sk_stream_moderate_sndbuf(sk); 660 } 661 return NULL; 662 } 663 664 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 665 int large_allowed) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 u32 xmit_size_goal, old_size_goal; 669 670 xmit_size_goal = mss_now; 671 672 if (large_allowed && sk_can_gso(sk)) { 673 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 674 inet_csk(sk)->icsk_af_ops->net_header_len - 675 inet_csk(sk)->icsk_ext_hdr_len - 676 tp->tcp_header_len); 677 678 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 679 680 /* We try hard to avoid divides here */ 681 old_size_goal = tp->xmit_size_goal_segs * mss_now; 682 683 if (likely(old_size_goal <= xmit_size_goal && 684 old_size_goal + mss_now > xmit_size_goal)) { 685 xmit_size_goal = old_size_goal; 686 } else { 687 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 688 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 689 } 690 } 691 692 return max(xmit_size_goal, mss_now); 693 } 694 695 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 696 { 697 int mss_now; 698 699 mss_now = tcp_current_mss(sk); 700 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 701 702 return mss_now; 703 } 704 705 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 706 size_t psize, int flags) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 int mss_now, size_goal; 710 int err; 711 ssize_t copied; 712 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 713 714 /* Wait for a connection to finish. */ 715 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 716 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 717 goto out_err; 718 719 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 720 721 mss_now = tcp_send_mss(sk, &size_goal, flags); 722 copied = 0; 723 724 err = -EPIPE; 725 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 726 goto out_err; 727 728 while (psize > 0) { 729 struct sk_buff *skb = tcp_write_queue_tail(sk); 730 struct page *page = pages[poffset / PAGE_SIZE]; 731 int copy, i, can_coalesce; 732 int offset = poffset % PAGE_SIZE; 733 int size = min_t(size_t, psize, PAGE_SIZE - offset); 734 735 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 736 new_segment: 737 if (!sk_stream_memory_free(sk)) 738 goto wait_for_sndbuf; 739 740 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 741 if (!skb) 742 goto wait_for_memory; 743 744 skb_entail(sk, skb); 745 copy = size_goal; 746 } 747 748 if (copy > size) 749 copy = size; 750 751 i = skb_shinfo(skb)->nr_frags; 752 can_coalesce = skb_can_coalesce(skb, i, page, offset); 753 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 754 tcp_mark_push(tp, skb); 755 goto new_segment; 756 } 757 if (!sk_wmem_schedule(sk, copy)) 758 goto wait_for_memory; 759 760 if (can_coalesce) { 761 skb_shinfo(skb)->frags[i - 1].size += copy; 762 } else { 763 get_page(page); 764 skb_fill_page_desc(skb, i, page, offset, copy); 765 } 766 767 skb->len += copy; 768 skb->data_len += copy; 769 skb->truesize += copy; 770 sk->sk_wmem_queued += copy; 771 sk_mem_charge(sk, copy); 772 skb->ip_summed = CHECKSUM_PARTIAL; 773 tp->write_seq += copy; 774 TCP_SKB_CB(skb)->end_seq += copy; 775 skb_shinfo(skb)->gso_segs = 0; 776 777 if (!copied) 778 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 779 780 copied += copy; 781 poffset += copy; 782 if (!(psize -= copy)) 783 goto out; 784 785 if (skb->len < size_goal || (flags & MSG_OOB)) 786 continue; 787 788 if (forced_push(tp)) { 789 tcp_mark_push(tp, skb); 790 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 791 } else if (skb == tcp_send_head(sk)) 792 tcp_push_one(sk, mss_now); 793 continue; 794 795 wait_for_sndbuf: 796 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 797 wait_for_memory: 798 if (copied) 799 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 800 801 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 802 goto do_error; 803 804 mss_now = tcp_send_mss(sk, &size_goal, flags); 805 } 806 807 out: 808 if (copied) 809 tcp_push(sk, flags, mss_now, tp->nonagle); 810 return copied; 811 812 do_error: 813 if (copied) 814 goto out; 815 out_err: 816 return sk_stream_error(sk, flags, err); 817 } 818 819 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, 820 size_t size, int flags) 821 { 822 ssize_t res; 823 struct sock *sk = sock->sk; 824 825 if (!(sk->sk_route_caps & NETIF_F_SG) || 826 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 827 return sock_no_sendpage(sock, page, offset, size, flags); 828 829 lock_sock(sk); 830 TCP_CHECK_TIMER(sk); 831 res = do_tcp_sendpages(sk, &page, offset, size, flags); 832 TCP_CHECK_TIMER(sk); 833 release_sock(sk); 834 return res; 835 } 836 837 #define TCP_PAGE(sk) (sk->sk_sndmsg_page) 838 #define TCP_OFF(sk) (sk->sk_sndmsg_off) 839 840 static inline int select_size(struct sock *sk) 841 { 842 struct tcp_sock *tp = tcp_sk(sk); 843 int tmp = tp->mss_cache; 844 845 if (sk->sk_route_caps & NETIF_F_SG) { 846 if (sk_can_gso(sk)) 847 tmp = 0; 848 else { 849 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 850 851 if (tmp >= pgbreak && 852 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 853 tmp = pgbreak; 854 } 855 } 856 857 return tmp; 858 } 859 860 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, 861 size_t size) 862 { 863 struct sock *sk = sock->sk; 864 struct iovec *iov; 865 struct tcp_sock *tp = tcp_sk(sk); 866 struct sk_buff *skb; 867 int iovlen, flags; 868 int mss_now, size_goal; 869 int err, copied; 870 long timeo; 871 872 lock_sock(sk); 873 TCP_CHECK_TIMER(sk); 874 875 flags = msg->msg_flags; 876 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 877 878 /* Wait for a connection to finish. */ 879 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 880 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 881 goto out_err; 882 883 /* This should be in poll */ 884 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 885 886 mss_now = tcp_send_mss(sk, &size_goal, flags); 887 888 /* Ok commence sending. */ 889 iovlen = msg->msg_iovlen; 890 iov = msg->msg_iov; 891 copied = 0; 892 893 err = -EPIPE; 894 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 895 goto out_err; 896 897 while (--iovlen >= 0) { 898 int seglen = iov->iov_len; 899 unsigned char __user *from = iov->iov_base; 900 901 iov++; 902 903 while (seglen > 0) { 904 int copy; 905 906 skb = tcp_write_queue_tail(sk); 907 908 if (!tcp_send_head(sk) || 909 (copy = size_goal - skb->len) <= 0) { 910 911 new_segment: 912 /* Allocate new segment. If the interface is SG, 913 * allocate skb fitting to single page. 914 */ 915 if (!sk_stream_memory_free(sk)) 916 goto wait_for_sndbuf; 917 918 skb = sk_stream_alloc_skb(sk, select_size(sk), 919 sk->sk_allocation); 920 if (!skb) 921 goto wait_for_memory; 922 923 /* 924 * Check whether we can use HW checksum. 925 */ 926 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 927 skb->ip_summed = CHECKSUM_PARTIAL; 928 929 skb_entail(sk, skb); 930 copy = size_goal; 931 } 932 933 /* Try to append data to the end of skb. */ 934 if (copy > seglen) 935 copy = seglen; 936 937 /* Where to copy to? */ 938 if (skb_tailroom(skb) > 0) { 939 /* We have some space in skb head. Superb! */ 940 if (copy > skb_tailroom(skb)) 941 copy = skb_tailroom(skb); 942 if ((err = skb_add_data(skb, from, copy)) != 0) 943 goto do_fault; 944 } else { 945 int merge = 0; 946 int i = skb_shinfo(skb)->nr_frags; 947 struct page *page = TCP_PAGE(sk); 948 int off = TCP_OFF(sk); 949 950 if (skb_can_coalesce(skb, i, page, off) && 951 off != PAGE_SIZE) { 952 /* We can extend the last page 953 * fragment. */ 954 merge = 1; 955 } else if (i == MAX_SKB_FRAGS || 956 (!i && 957 !(sk->sk_route_caps & NETIF_F_SG))) { 958 /* Need to add new fragment and cannot 959 * do this because interface is non-SG, 960 * or because all the page slots are 961 * busy. */ 962 tcp_mark_push(tp, skb); 963 goto new_segment; 964 } else if (page) { 965 if (off == PAGE_SIZE) { 966 put_page(page); 967 TCP_PAGE(sk) = page = NULL; 968 off = 0; 969 } 970 } else 971 off = 0; 972 973 if (copy > PAGE_SIZE - off) 974 copy = PAGE_SIZE - off; 975 976 if (!sk_wmem_schedule(sk, copy)) 977 goto wait_for_memory; 978 979 if (!page) { 980 /* Allocate new cache page. */ 981 if (!(page = sk_stream_alloc_page(sk))) 982 goto wait_for_memory; 983 } 984 985 /* Time to copy data. We are close to 986 * the end! */ 987 err = skb_copy_to_page(sk, from, skb, page, 988 off, copy); 989 if (err) { 990 /* If this page was new, give it to the 991 * socket so it does not get leaked. 992 */ 993 if (!TCP_PAGE(sk)) { 994 TCP_PAGE(sk) = page; 995 TCP_OFF(sk) = 0; 996 } 997 goto do_error; 998 } 999 1000 /* Update the skb. */ 1001 if (merge) { 1002 skb_shinfo(skb)->frags[i - 1].size += 1003 copy; 1004 } else { 1005 skb_fill_page_desc(skb, i, page, off, copy); 1006 if (TCP_PAGE(sk)) { 1007 get_page(page); 1008 } else if (off + copy < PAGE_SIZE) { 1009 get_page(page); 1010 TCP_PAGE(sk) = page; 1011 } 1012 } 1013 1014 TCP_OFF(sk) = off + copy; 1015 } 1016 1017 if (!copied) 1018 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH; 1019 1020 tp->write_seq += copy; 1021 TCP_SKB_CB(skb)->end_seq += copy; 1022 skb_shinfo(skb)->gso_segs = 0; 1023 1024 from += copy; 1025 copied += copy; 1026 if ((seglen -= copy) == 0 && iovlen == 0) 1027 goto out; 1028 1029 if (skb->len < size_goal || (flags & MSG_OOB)) 1030 continue; 1031 1032 if (forced_push(tp)) { 1033 tcp_mark_push(tp, skb); 1034 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1035 } else if (skb == tcp_send_head(sk)) 1036 tcp_push_one(sk, mss_now); 1037 continue; 1038 1039 wait_for_sndbuf: 1040 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1041 wait_for_memory: 1042 if (copied) 1043 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1044 1045 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1046 goto do_error; 1047 1048 mss_now = tcp_send_mss(sk, &size_goal, flags); 1049 } 1050 } 1051 1052 out: 1053 if (copied) 1054 tcp_push(sk, flags, mss_now, tp->nonagle); 1055 TCP_CHECK_TIMER(sk); 1056 release_sock(sk); 1057 return copied; 1058 1059 do_fault: 1060 if (!skb->len) { 1061 tcp_unlink_write_queue(skb, sk); 1062 /* It is the one place in all of TCP, except connection 1063 * reset, where we can be unlinking the send_head. 1064 */ 1065 tcp_check_send_head(sk, skb); 1066 sk_wmem_free_skb(sk, skb); 1067 } 1068 1069 do_error: 1070 if (copied) 1071 goto out; 1072 out_err: 1073 err = sk_stream_error(sk, flags, err); 1074 TCP_CHECK_TIMER(sk); 1075 release_sock(sk); 1076 return err; 1077 } 1078 1079 /* 1080 * Handle reading urgent data. BSD has very simple semantics for 1081 * this, no blocking and very strange errors 8) 1082 */ 1083 1084 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1085 { 1086 struct tcp_sock *tp = tcp_sk(sk); 1087 1088 /* No URG data to read. */ 1089 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1090 tp->urg_data == TCP_URG_READ) 1091 return -EINVAL; /* Yes this is right ! */ 1092 1093 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1094 return -ENOTCONN; 1095 1096 if (tp->urg_data & TCP_URG_VALID) { 1097 int err = 0; 1098 char c = tp->urg_data; 1099 1100 if (!(flags & MSG_PEEK)) 1101 tp->urg_data = TCP_URG_READ; 1102 1103 /* Read urgent data. */ 1104 msg->msg_flags |= MSG_OOB; 1105 1106 if (len > 0) { 1107 if (!(flags & MSG_TRUNC)) 1108 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1109 len = 1; 1110 } else 1111 msg->msg_flags |= MSG_TRUNC; 1112 1113 return err ? -EFAULT : len; 1114 } 1115 1116 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1117 return 0; 1118 1119 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1120 * the available implementations agree in this case: 1121 * this call should never block, independent of the 1122 * blocking state of the socket. 1123 * Mike <pall@rz.uni-karlsruhe.de> 1124 */ 1125 return -EAGAIN; 1126 } 1127 1128 /* Clean up the receive buffer for full frames taken by the user, 1129 * then send an ACK if necessary. COPIED is the number of bytes 1130 * tcp_recvmsg has given to the user so far, it speeds up the 1131 * calculation of whether or not we must ACK for the sake of 1132 * a window update. 1133 */ 1134 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1135 { 1136 struct tcp_sock *tp = tcp_sk(sk); 1137 int time_to_ack = 0; 1138 1139 #if TCP_DEBUG 1140 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1141 1142 WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)); 1143 #endif 1144 1145 if (inet_csk_ack_scheduled(sk)) { 1146 const struct inet_connection_sock *icsk = inet_csk(sk); 1147 /* Delayed ACKs frequently hit locked sockets during bulk 1148 * receive. */ 1149 if (icsk->icsk_ack.blocked || 1150 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1151 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1152 /* 1153 * If this read emptied read buffer, we send ACK, if 1154 * connection is not bidirectional, user drained 1155 * receive buffer and there was a small segment 1156 * in queue. 1157 */ 1158 (copied > 0 && 1159 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1160 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1161 !icsk->icsk_ack.pingpong)) && 1162 !atomic_read(&sk->sk_rmem_alloc))) 1163 time_to_ack = 1; 1164 } 1165 1166 /* We send an ACK if we can now advertise a non-zero window 1167 * which has been raised "significantly". 1168 * 1169 * Even if window raised up to infinity, do not send window open ACK 1170 * in states, where we will not receive more. It is useless. 1171 */ 1172 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1173 __u32 rcv_window_now = tcp_receive_window(tp); 1174 1175 /* Optimize, __tcp_select_window() is not cheap. */ 1176 if (2*rcv_window_now <= tp->window_clamp) { 1177 __u32 new_window = __tcp_select_window(sk); 1178 1179 /* Send ACK now, if this read freed lots of space 1180 * in our buffer. Certainly, new_window is new window. 1181 * We can advertise it now, if it is not less than current one. 1182 * "Lots" means "at least twice" here. 1183 */ 1184 if (new_window && new_window >= 2 * rcv_window_now) 1185 time_to_ack = 1; 1186 } 1187 } 1188 if (time_to_ack) 1189 tcp_send_ack(sk); 1190 } 1191 1192 static void tcp_prequeue_process(struct sock *sk) 1193 { 1194 struct sk_buff *skb; 1195 struct tcp_sock *tp = tcp_sk(sk); 1196 1197 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1198 1199 /* RX process wants to run with disabled BHs, though it is not 1200 * necessary */ 1201 local_bh_disable(); 1202 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1203 sk_backlog_rcv(sk, skb); 1204 local_bh_enable(); 1205 1206 /* Clear memory counter. */ 1207 tp->ucopy.memory = 0; 1208 } 1209 1210 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1211 { 1212 struct sk_buff *skb; 1213 u32 offset; 1214 1215 skb_queue_walk(&sk->sk_receive_queue, skb) { 1216 offset = seq - TCP_SKB_CB(skb)->seq; 1217 if (tcp_hdr(skb)->syn) 1218 offset--; 1219 if (offset < skb->len || tcp_hdr(skb)->fin) { 1220 *off = offset; 1221 return skb; 1222 } 1223 } 1224 return NULL; 1225 } 1226 1227 /* 1228 * This routine provides an alternative to tcp_recvmsg() for routines 1229 * that would like to handle copying from skbuffs directly in 'sendfile' 1230 * fashion. 1231 * Note: 1232 * - It is assumed that the socket was locked by the caller. 1233 * - The routine does not block. 1234 * - At present, there is no support for reading OOB data 1235 * or for 'peeking' the socket using this routine 1236 * (although both would be easy to implement). 1237 */ 1238 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1239 sk_read_actor_t recv_actor) 1240 { 1241 struct sk_buff *skb; 1242 struct tcp_sock *tp = tcp_sk(sk); 1243 u32 seq = tp->copied_seq; 1244 u32 offset; 1245 int copied = 0; 1246 1247 if (sk->sk_state == TCP_LISTEN) 1248 return -ENOTCONN; 1249 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1250 if (offset < skb->len) { 1251 int used; 1252 size_t len; 1253 1254 len = skb->len - offset; 1255 /* Stop reading if we hit a patch of urgent data */ 1256 if (tp->urg_data) { 1257 u32 urg_offset = tp->urg_seq - seq; 1258 if (urg_offset < len) 1259 len = urg_offset; 1260 if (!len) 1261 break; 1262 } 1263 used = recv_actor(desc, skb, offset, len); 1264 if (used < 0) { 1265 if (!copied) 1266 copied = used; 1267 break; 1268 } else if (used <= len) { 1269 seq += used; 1270 copied += used; 1271 offset += used; 1272 } 1273 /* 1274 * If recv_actor drops the lock (e.g. TCP splice 1275 * receive) the skb pointer might be invalid when 1276 * getting here: tcp_collapse might have deleted it 1277 * while aggregating skbs from the socket queue. 1278 */ 1279 skb = tcp_recv_skb(sk, seq-1, &offset); 1280 if (!skb || (offset+1 != skb->len)) 1281 break; 1282 } 1283 if (tcp_hdr(skb)->fin) { 1284 sk_eat_skb(sk, skb, 0); 1285 ++seq; 1286 break; 1287 } 1288 sk_eat_skb(sk, skb, 0); 1289 if (!desc->count) 1290 break; 1291 } 1292 tp->copied_seq = seq; 1293 1294 tcp_rcv_space_adjust(sk); 1295 1296 /* Clean up data we have read: This will do ACK frames. */ 1297 if (copied > 0) 1298 tcp_cleanup_rbuf(sk, copied); 1299 return copied; 1300 } 1301 1302 /* 1303 * This routine copies from a sock struct into the user buffer. 1304 * 1305 * Technical note: in 2.3 we work on _locked_ socket, so that 1306 * tricks with *seq access order and skb->users are not required. 1307 * Probably, code can be easily improved even more. 1308 */ 1309 1310 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1311 size_t len, int nonblock, int flags, int *addr_len) 1312 { 1313 struct tcp_sock *tp = tcp_sk(sk); 1314 int copied = 0; 1315 u32 peek_seq; 1316 u32 *seq; 1317 unsigned long used; 1318 int err; 1319 int target; /* Read at least this many bytes */ 1320 long timeo; 1321 struct task_struct *user_recv = NULL; 1322 int copied_early = 0; 1323 struct sk_buff *skb; 1324 u32 urg_hole = 0; 1325 1326 lock_sock(sk); 1327 1328 TCP_CHECK_TIMER(sk); 1329 1330 err = -ENOTCONN; 1331 if (sk->sk_state == TCP_LISTEN) 1332 goto out; 1333 1334 timeo = sock_rcvtimeo(sk, nonblock); 1335 1336 /* Urgent data needs to be handled specially. */ 1337 if (flags & MSG_OOB) 1338 goto recv_urg; 1339 1340 seq = &tp->copied_seq; 1341 if (flags & MSG_PEEK) { 1342 peek_seq = tp->copied_seq; 1343 seq = &peek_seq; 1344 } 1345 1346 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1347 1348 #ifdef CONFIG_NET_DMA 1349 tp->ucopy.dma_chan = NULL; 1350 preempt_disable(); 1351 skb = skb_peek_tail(&sk->sk_receive_queue); 1352 { 1353 int available = 0; 1354 1355 if (skb) 1356 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1357 if ((available < target) && 1358 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1359 !sysctl_tcp_low_latency && 1360 dma_find_channel(DMA_MEMCPY)) { 1361 preempt_enable_no_resched(); 1362 tp->ucopy.pinned_list = 1363 dma_pin_iovec_pages(msg->msg_iov, len); 1364 } else { 1365 preempt_enable_no_resched(); 1366 } 1367 } 1368 #endif 1369 1370 do { 1371 u32 offset; 1372 1373 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1374 if (tp->urg_data && tp->urg_seq == *seq) { 1375 if (copied) 1376 break; 1377 if (signal_pending(current)) { 1378 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1379 break; 1380 } 1381 } 1382 1383 /* Next get a buffer. */ 1384 1385 skb = skb_peek(&sk->sk_receive_queue); 1386 do { 1387 if (!skb) 1388 break; 1389 1390 /* Now that we have two receive queues this 1391 * shouldn't happen. 1392 */ 1393 if (before(*seq, TCP_SKB_CB(skb)->seq)) { 1394 printk(KERN_INFO "recvmsg bug: copied %X " 1395 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq); 1396 break; 1397 } 1398 offset = *seq - TCP_SKB_CB(skb)->seq; 1399 if (tcp_hdr(skb)->syn) 1400 offset--; 1401 if (offset < skb->len) 1402 goto found_ok_skb; 1403 if (tcp_hdr(skb)->fin) 1404 goto found_fin_ok; 1405 WARN_ON(!(flags & MSG_PEEK)); 1406 skb = skb->next; 1407 } while (skb != (struct sk_buff *)&sk->sk_receive_queue); 1408 1409 /* Well, if we have backlog, try to process it now yet. */ 1410 1411 if (copied >= target && !sk->sk_backlog.tail) 1412 break; 1413 1414 if (copied) { 1415 if (sk->sk_err || 1416 sk->sk_state == TCP_CLOSE || 1417 (sk->sk_shutdown & RCV_SHUTDOWN) || 1418 !timeo || 1419 signal_pending(current)) 1420 break; 1421 } else { 1422 if (sock_flag(sk, SOCK_DONE)) 1423 break; 1424 1425 if (sk->sk_err) { 1426 copied = sock_error(sk); 1427 break; 1428 } 1429 1430 if (sk->sk_shutdown & RCV_SHUTDOWN) 1431 break; 1432 1433 if (sk->sk_state == TCP_CLOSE) { 1434 if (!sock_flag(sk, SOCK_DONE)) { 1435 /* This occurs when user tries to read 1436 * from never connected socket. 1437 */ 1438 copied = -ENOTCONN; 1439 break; 1440 } 1441 break; 1442 } 1443 1444 if (!timeo) { 1445 copied = -EAGAIN; 1446 break; 1447 } 1448 1449 if (signal_pending(current)) { 1450 copied = sock_intr_errno(timeo); 1451 break; 1452 } 1453 } 1454 1455 tcp_cleanup_rbuf(sk, copied); 1456 1457 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1458 /* Install new reader */ 1459 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1460 user_recv = current; 1461 tp->ucopy.task = user_recv; 1462 tp->ucopy.iov = msg->msg_iov; 1463 } 1464 1465 tp->ucopy.len = len; 1466 1467 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1468 !(flags & (MSG_PEEK | MSG_TRUNC))); 1469 1470 /* Ugly... If prequeue is not empty, we have to 1471 * process it before releasing socket, otherwise 1472 * order will be broken at second iteration. 1473 * More elegant solution is required!!! 1474 * 1475 * Look: we have the following (pseudo)queues: 1476 * 1477 * 1. packets in flight 1478 * 2. backlog 1479 * 3. prequeue 1480 * 4. receive_queue 1481 * 1482 * Each queue can be processed only if the next ones 1483 * are empty. At this point we have empty receive_queue. 1484 * But prequeue _can_ be not empty after 2nd iteration, 1485 * when we jumped to start of loop because backlog 1486 * processing added something to receive_queue. 1487 * We cannot release_sock(), because backlog contains 1488 * packets arrived _after_ prequeued ones. 1489 * 1490 * Shortly, algorithm is clear --- to process all 1491 * the queues in order. We could make it more directly, 1492 * requeueing packets from backlog to prequeue, if 1493 * is not empty. It is more elegant, but eats cycles, 1494 * unfortunately. 1495 */ 1496 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1497 goto do_prequeue; 1498 1499 /* __ Set realtime policy in scheduler __ */ 1500 } 1501 1502 if (copied >= target) { 1503 /* Do not sleep, just process backlog. */ 1504 release_sock(sk); 1505 lock_sock(sk); 1506 } else 1507 sk_wait_data(sk, &timeo); 1508 1509 #ifdef CONFIG_NET_DMA 1510 tp->ucopy.wakeup = 0; 1511 #endif 1512 1513 if (user_recv) { 1514 int chunk; 1515 1516 /* __ Restore normal policy in scheduler __ */ 1517 1518 if ((chunk = len - tp->ucopy.len) != 0) { 1519 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1520 len -= chunk; 1521 copied += chunk; 1522 } 1523 1524 if (tp->rcv_nxt == tp->copied_seq && 1525 !skb_queue_empty(&tp->ucopy.prequeue)) { 1526 do_prequeue: 1527 tcp_prequeue_process(sk); 1528 1529 if ((chunk = len - tp->ucopy.len) != 0) { 1530 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1531 len -= chunk; 1532 copied += chunk; 1533 } 1534 } 1535 } 1536 if ((flags & MSG_PEEK) && 1537 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1538 if (net_ratelimit()) 1539 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1540 current->comm, task_pid_nr(current)); 1541 peek_seq = tp->copied_seq; 1542 } 1543 continue; 1544 1545 found_ok_skb: 1546 /* Ok so how much can we use? */ 1547 used = skb->len - offset; 1548 if (len < used) 1549 used = len; 1550 1551 /* Do we have urgent data here? */ 1552 if (tp->urg_data) { 1553 u32 urg_offset = tp->urg_seq - *seq; 1554 if (urg_offset < used) { 1555 if (!urg_offset) { 1556 if (!sock_flag(sk, SOCK_URGINLINE)) { 1557 ++*seq; 1558 urg_hole++; 1559 offset++; 1560 used--; 1561 if (!used) 1562 goto skip_copy; 1563 } 1564 } else 1565 used = urg_offset; 1566 } 1567 } 1568 1569 if (!(flags & MSG_TRUNC)) { 1570 #ifdef CONFIG_NET_DMA 1571 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1572 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1573 1574 if (tp->ucopy.dma_chan) { 1575 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1576 tp->ucopy.dma_chan, skb, offset, 1577 msg->msg_iov, used, 1578 tp->ucopy.pinned_list); 1579 1580 if (tp->ucopy.dma_cookie < 0) { 1581 1582 printk(KERN_ALERT "dma_cookie < 0\n"); 1583 1584 /* Exception. Bailout! */ 1585 if (!copied) 1586 copied = -EFAULT; 1587 break; 1588 } 1589 if ((offset + used) == skb->len) 1590 copied_early = 1; 1591 1592 } else 1593 #endif 1594 { 1595 err = skb_copy_datagram_iovec(skb, offset, 1596 msg->msg_iov, used); 1597 if (err) { 1598 /* Exception. Bailout! */ 1599 if (!copied) 1600 copied = -EFAULT; 1601 break; 1602 } 1603 } 1604 } 1605 1606 *seq += used; 1607 copied += used; 1608 len -= used; 1609 1610 tcp_rcv_space_adjust(sk); 1611 1612 skip_copy: 1613 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1614 tp->urg_data = 0; 1615 tcp_fast_path_check(sk); 1616 } 1617 if (used + offset < skb->len) 1618 continue; 1619 1620 if (tcp_hdr(skb)->fin) 1621 goto found_fin_ok; 1622 if (!(flags & MSG_PEEK)) { 1623 sk_eat_skb(sk, skb, copied_early); 1624 copied_early = 0; 1625 } 1626 continue; 1627 1628 found_fin_ok: 1629 /* Process the FIN. */ 1630 ++*seq; 1631 if (!(flags & MSG_PEEK)) { 1632 sk_eat_skb(sk, skb, copied_early); 1633 copied_early = 0; 1634 } 1635 break; 1636 } while (len > 0); 1637 1638 if (user_recv) { 1639 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1640 int chunk; 1641 1642 tp->ucopy.len = copied > 0 ? len : 0; 1643 1644 tcp_prequeue_process(sk); 1645 1646 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1647 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1648 len -= chunk; 1649 copied += chunk; 1650 } 1651 } 1652 1653 tp->ucopy.task = NULL; 1654 tp->ucopy.len = 0; 1655 } 1656 1657 #ifdef CONFIG_NET_DMA 1658 if (tp->ucopy.dma_chan) { 1659 dma_cookie_t done, used; 1660 1661 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1662 1663 while (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1664 tp->ucopy.dma_cookie, &done, 1665 &used) == DMA_IN_PROGRESS) { 1666 /* do partial cleanup of sk_async_wait_queue */ 1667 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1668 (dma_async_is_complete(skb->dma_cookie, done, 1669 used) == DMA_SUCCESS)) { 1670 __skb_dequeue(&sk->sk_async_wait_queue); 1671 kfree_skb(skb); 1672 } 1673 } 1674 1675 /* Safe to free early-copied skbs now */ 1676 __skb_queue_purge(&sk->sk_async_wait_queue); 1677 tp->ucopy.dma_chan = NULL; 1678 } 1679 if (tp->ucopy.pinned_list) { 1680 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1681 tp->ucopy.pinned_list = NULL; 1682 } 1683 #endif 1684 1685 /* According to UNIX98, msg_name/msg_namelen are ignored 1686 * on connected socket. I was just happy when found this 8) --ANK 1687 */ 1688 1689 /* Clean up data we have read: This will do ACK frames. */ 1690 tcp_cleanup_rbuf(sk, copied); 1691 1692 TCP_CHECK_TIMER(sk); 1693 release_sock(sk); 1694 return copied; 1695 1696 out: 1697 TCP_CHECK_TIMER(sk); 1698 release_sock(sk); 1699 return err; 1700 1701 recv_urg: 1702 err = tcp_recv_urg(sk, msg, len, flags); 1703 goto out; 1704 } 1705 1706 void tcp_set_state(struct sock *sk, int state) 1707 { 1708 int oldstate = sk->sk_state; 1709 1710 switch (state) { 1711 case TCP_ESTABLISHED: 1712 if (oldstate != TCP_ESTABLISHED) 1713 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1714 break; 1715 1716 case TCP_CLOSE: 1717 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1718 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1719 1720 sk->sk_prot->unhash(sk); 1721 if (inet_csk(sk)->icsk_bind_hash && 1722 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1723 inet_put_port(sk); 1724 /* fall through */ 1725 default: 1726 if (oldstate == TCP_ESTABLISHED) 1727 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1728 } 1729 1730 /* Change state AFTER socket is unhashed to avoid closed 1731 * socket sitting in hash tables. 1732 */ 1733 sk->sk_state = state; 1734 1735 #ifdef STATE_TRACE 1736 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1737 #endif 1738 } 1739 EXPORT_SYMBOL_GPL(tcp_set_state); 1740 1741 /* 1742 * State processing on a close. This implements the state shift for 1743 * sending our FIN frame. Note that we only send a FIN for some 1744 * states. A shutdown() may have already sent the FIN, or we may be 1745 * closed. 1746 */ 1747 1748 static const unsigned char new_state[16] = { 1749 /* current state: new state: action: */ 1750 /* (Invalid) */ TCP_CLOSE, 1751 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1752 /* TCP_SYN_SENT */ TCP_CLOSE, 1753 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1754 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1755 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1756 /* TCP_TIME_WAIT */ TCP_CLOSE, 1757 /* TCP_CLOSE */ TCP_CLOSE, 1758 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1759 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1760 /* TCP_LISTEN */ TCP_CLOSE, 1761 /* TCP_CLOSING */ TCP_CLOSING, 1762 }; 1763 1764 static int tcp_close_state(struct sock *sk) 1765 { 1766 int next = (int)new_state[sk->sk_state]; 1767 int ns = next & TCP_STATE_MASK; 1768 1769 tcp_set_state(sk, ns); 1770 1771 return next & TCP_ACTION_FIN; 1772 } 1773 1774 /* 1775 * Shutdown the sending side of a connection. Much like close except 1776 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1777 */ 1778 1779 void tcp_shutdown(struct sock *sk, int how) 1780 { 1781 /* We need to grab some memory, and put together a FIN, 1782 * and then put it into the queue to be sent. 1783 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1784 */ 1785 if (!(how & SEND_SHUTDOWN)) 1786 return; 1787 1788 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1789 if ((1 << sk->sk_state) & 1790 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1791 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1792 /* Clear out any half completed packets. FIN if needed. */ 1793 if (tcp_close_state(sk)) 1794 tcp_send_fin(sk); 1795 } 1796 } 1797 1798 void tcp_close(struct sock *sk, long timeout) 1799 { 1800 struct sk_buff *skb; 1801 int data_was_unread = 0; 1802 int state; 1803 1804 lock_sock(sk); 1805 sk->sk_shutdown = SHUTDOWN_MASK; 1806 1807 if (sk->sk_state == TCP_LISTEN) { 1808 tcp_set_state(sk, TCP_CLOSE); 1809 1810 /* Special case. */ 1811 inet_csk_listen_stop(sk); 1812 1813 goto adjudge_to_death; 1814 } 1815 1816 /* We need to flush the recv. buffs. We do this only on the 1817 * descriptor close, not protocol-sourced closes, because the 1818 * reader process may not have drained the data yet! 1819 */ 1820 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1821 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1822 tcp_hdr(skb)->fin; 1823 data_was_unread += len; 1824 __kfree_skb(skb); 1825 } 1826 1827 sk_mem_reclaim(sk); 1828 1829 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1830 * data was lost. To witness the awful effects of the old behavior of 1831 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1832 * GET in an FTP client, suspend the process, wait for the client to 1833 * advertise a zero window, then kill -9 the FTP client, wheee... 1834 * Note: timeout is always zero in such a case. 1835 */ 1836 if (data_was_unread) { 1837 /* Unread data was tossed, zap the connection. */ 1838 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1839 tcp_set_state(sk, TCP_CLOSE); 1840 tcp_send_active_reset(sk, GFP_KERNEL); 1841 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1842 /* Check zero linger _after_ checking for unread data. */ 1843 sk->sk_prot->disconnect(sk, 0); 1844 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1845 } else if (tcp_close_state(sk)) { 1846 /* We FIN if the application ate all the data before 1847 * zapping the connection. 1848 */ 1849 1850 /* RED-PEN. Formally speaking, we have broken TCP state 1851 * machine. State transitions: 1852 * 1853 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1854 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1855 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1856 * 1857 * are legal only when FIN has been sent (i.e. in window), 1858 * rather than queued out of window. Purists blame. 1859 * 1860 * F.e. "RFC state" is ESTABLISHED, 1861 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1862 * 1863 * The visible declinations are that sometimes 1864 * we enter time-wait state, when it is not required really 1865 * (harmless), do not send active resets, when they are 1866 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1867 * they look as CLOSING or LAST_ACK for Linux) 1868 * Probably, I missed some more holelets. 1869 * --ANK 1870 */ 1871 tcp_send_fin(sk); 1872 } 1873 1874 sk_stream_wait_close(sk, timeout); 1875 1876 adjudge_to_death: 1877 state = sk->sk_state; 1878 sock_hold(sk); 1879 sock_orphan(sk); 1880 1881 /* It is the last release_sock in its life. It will remove backlog. */ 1882 release_sock(sk); 1883 1884 1885 /* Now socket is owned by kernel and we acquire BH lock 1886 to finish close. No need to check for user refs. 1887 */ 1888 local_bh_disable(); 1889 bh_lock_sock(sk); 1890 WARN_ON(sock_owned_by_user(sk)); 1891 1892 percpu_counter_inc(sk->sk_prot->orphan_count); 1893 1894 /* Have we already been destroyed by a softirq or backlog? */ 1895 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1896 goto out; 1897 1898 /* This is a (useful) BSD violating of the RFC. There is a 1899 * problem with TCP as specified in that the other end could 1900 * keep a socket open forever with no application left this end. 1901 * We use a 3 minute timeout (about the same as BSD) then kill 1902 * our end. If they send after that then tough - BUT: long enough 1903 * that we won't make the old 4*rto = almost no time - whoops 1904 * reset mistake. 1905 * 1906 * Nope, it was not mistake. It is really desired behaviour 1907 * f.e. on http servers, when such sockets are useless, but 1908 * consume significant resources. Let's do it with special 1909 * linger2 option. --ANK 1910 */ 1911 1912 if (sk->sk_state == TCP_FIN_WAIT2) { 1913 struct tcp_sock *tp = tcp_sk(sk); 1914 if (tp->linger2 < 0) { 1915 tcp_set_state(sk, TCP_CLOSE); 1916 tcp_send_active_reset(sk, GFP_ATOMIC); 1917 NET_INC_STATS_BH(sock_net(sk), 1918 LINUX_MIB_TCPABORTONLINGER); 1919 } else { 1920 const int tmo = tcp_fin_time(sk); 1921 1922 if (tmo > TCP_TIMEWAIT_LEN) { 1923 inet_csk_reset_keepalive_timer(sk, 1924 tmo - TCP_TIMEWAIT_LEN); 1925 } else { 1926 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 1927 goto out; 1928 } 1929 } 1930 } 1931 if (sk->sk_state != TCP_CLOSE) { 1932 int orphan_count = percpu_counter_read_positive( 1933 sk->sk_prot->orphan_count); 1934 1935 sk_mem_reclaim(sk); 1936 if (tcp_too_many_orphans(sk, orphan_count)) { 1937 if (net_ratelimit()) 1938 printk(KERN_INFO "TCP: too many of orphaned " 1939 "sockets\n"); 1940 tcp_set_state(sk, TCP_CLOSE); 1941 tcp_send_active_reset(sk, GFP_ATOMIC); 1942 NET_INC_STATS_BH(sock_net(sk), 1943 LINUX_MIB_TCPABORTONMEMORY); 1944 } 1945 } 1946 1947 if (sk->sk_state == TCP_CLOSE) 1948 inet_csk_destroy_sock(sk); 1949 /* Otherwise, socket is reprieved until protocol close. */ 1950 1951 out: 1952 bh_unlock_sock(sk); 1953 local_bh_enable(); 1954 sock_put(sk); 1955 } 1956 1957 /* These states need RST on ABORT according to RFC793 */ 1958 1959 static inline int tcp_need_reset(int state) 1960 { 1961 return (1 << state) & 1962 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 1963 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 1964 } 1965 1966 int tcp_disconnect(struct sock *sk, int flags) 1967 { 1968 struct inet_sock *inet = inet_sk(sk); 1969 struct inet_connection_sock *icsk = inet_csk(sk); 1970 struct tcp_sock *tp = tcp_sk(sk); 1971 int err = 0; 1972 int old_state = sk->sk_state; 1973 1974 if (old_state != TCP_CLOSE) 1975 tcp_set_state(sk, TCP_CLOSE); 1976 1977 /* ABORT function of RFC793 */ 1978 if (old_state == TCP_LISTEN) { 1979 inet_csk_listen_stop(sk); 1980 } else if (tcp_need_reset(old_state) || 1981 (tp->snd_nxt != tp->write_seq && 1982 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 1983 /* The last check adjusts for discrepancy of Linux wrt. RFC 1984 * states 1985 */ 1986 tcp_send_active_reset(sk, gfp_any()); 1987 sk->sk_err = ECONNRESET; 1988 } else if (old_state == TCP_SYN_SENT) 1989 sk->sk_err = ECONNRESET; 1990 1991 tcp_clear_xmit_timers(sk); 1992 __skb_queue_purge(&sk->sk_receive_queue); 1993 tcp_write_queue_purge(sk); 1994 __skb_queue_purge(&tp->out_of_order_queue); 1995 #ifdef CONFIG_NET_DMA 1996 __skb_queue_purge(&sk->sk_async_wait_queue); 1997 #endif 1998 1999 inet->dport = 0; 2000 2001 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2002 inet_reset_saddr(sk); 2003 2004 sk->sk_shutdown = 0; 2005 sock_reset_flag(sk, SOCK_DONE); 2006 tp->srtt = 0; 2007 if ((tp->write_seq += tp->max_window + 2) == 0) 2008 tp->write_seq = 1; 2009 icsk->icsk_backoff = 0; 2010 tp->snd_cwnd = 2; 2011 icsk->icsk_probes_out = 0; 2012 tp->packets_out = 0; 2013 tp->snd_ssthresh = 0x7fffffff; 2014 tp->snd_cwnd_cnt = 0; 2015 tp->bytes_acked = 0; 2016 tcp_set_ca_state(sk, TCP_CA_Open); 2017 tcp_clear_retrans(tp); 2018 inet_csk_delack_init(sk); 2019 tcp_init_send_head(sk); 2020 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2021 __sk_dst_reset(sk); 2022 2023 WARN_ON(inet->num && !icsk->icsk_bind_hash); 2024 2025 sk->sk_error_report(sk); 2026 return err; 2027 } 2028 2029 /* 2030 * Socket option code for TCP. 2031 */ 2032 static int do_tcp_setsockopt(struct sock *sk, int level, 2033 int optname, char __user *optval, int optlen) 2034 { 2035 struct tcp_sock *tp = tcp_sk(sk); 2036 struct inet_connection_sock *icsk = inet_csk(sk); 2037 int val; 2038 int err = 0; 2039 2040 /* This is a string value all the others are int's */ 2041 if (optname == TCP_CONGESTION) { 2042 char name[TCP_CA_NAME_MAX]; 2043 2044 if (optlen < 1) 2045 return -EINVAL; 2046 2047 val = strncpy_from_user(name, optval, 2048 min(TCP_CA_NAME_MAX-1, optlen)); 2049 if (val < 0) 2050 return -EFAULT; 2051 name[val] = 0; 2052 2053 lock_sock(sk); 2054 err = tcp_set_congestion_control(sk, name); 2055 release_sock(sk); 2056 return err; 2057 } 2058 2059 if (optlen < sizeof(int)) 2060 return -EINVAL; 2061 2062 if (get_user(val, (int __user *)optval)) 2063 return -EFAULT; 2064 2065 lock_sock(sk); 2066 2067 switch (optname) { 2068 case TCP_MAXSEG: 2069 /* Values greater than interface MTU won't take effect. However 2070 * at the point when this call is done we typically don't yet 2071 * know which interface is going to be used */ 2072 if (val < 8 || val > MAX_TCP_WINDOW) { 2073 err = -EINVAL; 2074 break; 2075 } 2076 tp->rx_opt.user_mss = val; 2077 break; 2078 2079 case TCP_NODELAY: 2080 if (val) { 2081 /* TCP_NODELAY is weaker than TCP_CORK, so that 2082 * this option on corked socket is remembered, but 2083 * it is not activated until cork is cleared. 2084 * 2085 * However, when TCP_NODELAY is set we make 2086 * an explicit push, which overrides even TCP_CORK 2087 * for currently queued segments. 2088 */ 2089 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2090 tcp_push_pending_frames(sk); 2091 } else { 2092 tp->nonagle &= ~TCP_NAGLE_OFF; 2093 } 2094 break; 2095 2096 case TCP_CORK: 2097 /* When set indicates to always queue non-full frames. 2098 * Later the user clears this option and we transmit 2099 * any pending partial frames in the queue. This is 2100 * meant to be used alongside sendfile() to get properly 2101 * filled frames when the user (for example) must write 2102 * out headers with a write() call first and then use 2103 * sendfile to send out the data parts. 2104 * 2105 * TCP_CORK can be set together with TCP_NODELAY and it is 2106 * stronger than TCP_NODELAY. 2107 */ 2108 if (val) { 2109 tp->nonagle |= TCP_NAGLE_CORK; 2110 } else { 2111 tp->nonagle &= ~TCP_NAGLE_CORK; 2112 if (tp->nonagle&TCP_NAGLE_OFF) 2113 tp->nonagle |= TCP_NAGLE_PUSH; 2114 tcp_push_pending_frames(sk); 2115 } 2116 break; 2117 2118 case TCP_KEEPIDLE: 2119 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2120 err = -EINVAL; 2121 else { 2122 tp->keepalive_time = val * HZ; 2123 if (sock_flag(sk, SOCK_KEEPOPEN) && 2124 !((1 << sk->sk_state) & 2125 (TCPF_CLOSE | TCPF_LISTEN))) { 2126 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp; 2127 if (tp->keepalive_time > elapsed) 2128 elapsed = tp->keepalive_time - elapsed; 2129 else 2130 elapsed = 0; 2131 inet_csk_reset_keepalive_timer(sk, elapsed); 2132 } 2133 } 2134 break; 2135 case TCP_KEEPINTVL: 2136 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2137 err = -EINVAL; 2138 else 2139 tp->keepalive_intvl = val * HZ; 2140 break; 2141 case TCP_KEEPCNT: 2142 if (val < 1 || val > MAX_TCP_KEEPCNT) 2143 err = -EINVAL; 2144 else 2145 tp->keepalive_probes = val; 2146 break; 2147 case TCP_SYNCNT: 2148 if (val < 1 || val > MAX_TCP_SYNCNT) 2149 err = -EINVAL; 2150 else 2151 icsk->icsk_syn_retries = val; 2152 break; 2153 2154 case TCP_LINGER2: 2155 if (val < 0) 2156 tp->linger2 = -1; 2157 else if (val > sysctl_tcp_fin_timeout / HZ) 2158 tp->linger2 = 0; 2159 else 2160 tp->linger2 = val * HZ; 2161 break; 2162 2163 case TCP_DEFER_ACCEPT: 2164 icsk->icsk_accept_queue.rskq_defer_accept = 0; 2165 if (val > 0) { 2166 /* Translate value in seconds to number of 2167 * retransmits */ 2168 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 && 2169 val > ((TCP_TIMEOUT_INIT / HZ) << 2170 icsk->icsk_accept_queue.rskq_defer_accept)) 2171 icsk->icsk_accept_queue.rskq_defer_accept++; 2172 icsk->icsk_accept_queue.rskq_defer_accept++; 2173 } 2174 break; 2175 2176 case TCP_WINDOW_CLAMP: 2177 if (!val) { 2178 if (sk->sk_state != TCP_CLOSE) { 2179 err = -EINVAL; 2180 break; 2181 } 2182 tp->window_clamp = 0; 2183 } else 2184 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2185 SOCK_MIN_RCVBUF / 2 : val; 2186 break; 2187 2188 case TCP_QUICKACK: 2189 if (!val) { 2190 icsk->icsk_ack.pingpong = 1; 2191 } else { 2192 icsk->icsk_ack.pingpong = 0; 2193 if ((1 << sk->sk_state) & 2194 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2195 inet_csk_ack_scheduled(sk)) { 2196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2197 tcp_cleanup_rbuf(sk, 1); 2198 if (!(val & 1)) 2199 icsk->icsk_ack.pingpong = 1; 2200 } 2201 } 2202 break; 2203 2204 #ifdef CONFIG_TCP_MD5SIG 2205 case TCP_MD5SIG: 2206 /* Read the IP->Key mappings from userspace */ 2207 err = tp->af_specific->md5_parse(sk, optval, optlen); 2208 break; 2209 #endif 2210 2211 default: 2212 err = -ENOPROTOOPT; 2213 break; 2214 } 2215 2216 release_sock(sk); 2217 return err; 2218 } 2219 2220 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2221 int optlen) 2222 { 2223 struct inet_connection_sock *icsk = inet_csk(sk); 2224 2225 if (level != SOL_TCP) 2226 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2227 optval, optlen); 2228 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2229 } 2230 2231 #ifdef CONFIG_COMPAT 2232 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2233 char __user *optval, int optlen) 2234 { 2235 if (level != SOL_TCP) 2236 return inet_csk_compat_setsockopt(sk, level, optname, 2237 optval, optlen); 2238 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2239 } 2240 2241 EXPORT_SYMBOL(compat_tcp_setsockopt); 2242 #endif 2243 2244 /* Return information about state of tcp endpoint in API format. */ 2245 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2246 { 2247 struct tcp_sock *tp = tcp_sk(sk); 2248 const struct inet_connection_sock *icsk = inet_csk(sk); 2249 u32 now = tcp_time_stamp; 2250 2251 memset(info, 0, sizeof(*info)); 2252 2253 info->tcpi_state = sk->sk_state; 2254 info->tcpi_ca_state = icsk->icsk_ca_state; 2255 info->tcpi_retransmits = icsk->icsk_retransmits; 2256 info->tcpi_probes = icsk->icsk_probes_out; 2257 info->tcpi_backoff = icsk->icsk_backoff; 2258 2259 if (tp->rx_opt.tstamp_ok) 2260 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2261 if (tcp_is_sack(tp)) 2262 info->tcpi_options |= TCPI_OPT_SACK; 2263 if (tp->rx_opt.wscale_ok) { 2264 info->tcpi_options |= TCPI_OPT_WSCALE; 2265 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2266 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2267 } 2268 2269 if (tp->ecn_flags&TCP_ECN_OK) 2270 info->tcpi_options |= TCPI_OPT_ECN; 2271 2272 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2273 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2274 info->tcpi_snd_mss = tp->mss_cache; 2275 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2276 2277 if (sk->sk_state == TCP_LISTEN) { 2278 info->tcpi_unacked = sk->sk_ack_backlog; 2279 info->tcpi_sacked = sk->sk_max_ack_backlog; 2280 } else { 2281 info->tcpi_unacked = tp->packets_out; 2282 info->tcpi_sacked = tp->sacked_out; 2283 } 2284 info->tcpi_lost = tp->lost_out; 2285 info->tcpi_retrans = tp->retrans_out; 2286 info->tcpi_fackets = tp->fackets_out; 2287 2288 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2289 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2290 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2291 2292 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2293 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2294 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2295 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2296 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2297 info->tcpi_snd_cwnd = tp->snd_cwnd; 2298 info->tcpi_advmss = tp->advmss; 2299 info->tcpi_reordering = tp->reordering; 2300 2301 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2302 info->tcpi_rcv_space = tp->rcvq_space.space; 2303 2304 info->tcpi_total_retrans = tp->total_retrans; 2305 } 2306 2307 EXPORT_SYMBOL_GPL(tcp_get_info); 2308 2309 static int do_tcp_getsockopt(struct sock *sk, int level, 2310 int optname, char __user *optval, int __user *optlen) 2311 { 2312 struct inet_connection_sock *icsk = inet_csk(sk); 2313 struct tcp_sock *tp = tcp_sk(sk); 2314 int val, len; 2315 2316 if (get_user(len, optlen)) 2317 return -EFAULT; 2318 2319 len = min_t(unsigned int, len, sizeof(int)); 2320 2321 if (len < 0) 2322 return -EINVAL; 2323 2324 switch (optname) { 2325 case TCP_MAXSEG: 2326 val = tp->mss_cache; 2327 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2328 val = tp->rx_opt.user_mss; 2329 break; 2330 case TCP_NODELAY: 2331 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2332 break; 2333 case TCP_CORK: 2334 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2335 break; 2336 case TCP_KEEPIDLE: 2337 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ; 2338 break; 2339 case TCP_KEEPINTVL: 2340 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ; 2341 break; 2342 case TCP_KEEPCNT: 2343 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes; 2344 break; 2345 case TCP_SYNCNT: 2346 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2347 break; 2348 case TCP_LINGER2: 2349 val = tp->linger2; 2350 if (val >= 0) 2351 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2352 break; 2353 case TCP_DEFER_ACCEPT: 2354 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 : 2355 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1)); 2356 break; 2357 case TCP_WINDOW_CLAMP: 2358 val = tp->window_clamp; 2359 break; 2360 case TCP_INFO: { 2361 struct tcp_info info; 2362 2363 if (get_user(len, optlen)) 2364 return -EFAULT; 2365 2366 tcp_get_info(sk, &info); 2367 2368 len = min_t(unsigned int, len, sizeof(info)); 2369 if (put_user(len, optlen)) 2370 return -EFAULT; 2371 if (copy_to_user(optval, &info, len)) 2372 return -EFAULT; 2373 return 0; 2374 } 2375 case TCP_QUICKACK: 2376 val = !icsk->icsk_ack.pingpong; 2377 break; 2378 2379 case TCP_CONGESTION: 2380 if (get_user(len, optlen)) 2381 return -EFAULT; 2382 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2383 if (put_user(len, optlen)) 2384 return -EFAULT; 2385 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2386 return -EFAULT; 2387 return 0; 2388 default: 2389 return -ENOPROTOOPT; 2390 } 2391 2392 if (put_user(len, optlen)) 2393 return -EFAULT; 2394 if (copy_to_user(optval, &val, len)) 2395 return -EFAULT; 2396 return 0; 2397 } 2398 2399 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2400 int __user *optlen) 2401 { 2402 struct inet_connection_sock *icsk = inet_csk(sk); 2403 2404 if (level != SOL_TCP) 2405 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2406 optval, optlen); 2407 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2408 } 2409 2410 #ifdef CONFIG_COMPAT 2411 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2412 char __user *optval, int __user *optlen) 2413 { 2414 if (level != SOL_TCP) 2415 return inet_csk_compat_getsockopt(sk, level, optname, 2416 optval, optlen); 2417 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2418 } 2419 2420 EXPORT_SYMBOL(compat_tcp_getsockopt); 2421 #endif 2422 2423 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features) 2424 { 2425 struct sk_buff *segs = ERR_PTR(-EINVAL); 2426 struct tcphdr *th; 2427 unsigned thlen; 2428 unsigned int seq; 2429 __be32 delta; 2430 unsigned int oldlen; 2431 unsigned int mss; 2432 2433 if (!pskb_may_pull(skb, sizeof(*th))) 2434 goto out; 2435 2436 th = tcp_hdr(skb); 2437 thlen = th->doff * 4; 2438 if (thlen < sizeof(*th)) 2439 goto out; 2440 2441 if (!pskb_may_pull(skb, thlen)) 2442 goto out; 2443 2444 oldlen = (u16)~skb->len; 2445 __skb_pull(skb, thlen); 2446 2447 mss = skb_shinfo(skb)->gso_size; 2448 if (unlikely(skb->len <= mss)) 2449 goto out; 2450 2451 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2452 /* Packet is from an untrusted source, reset gso_segs. */ 2453 int type = skb_shinfo(skb)->gso_type; 2454 2455 if (unlikely(type & 2456 ~(SKB_GSO_TCPV4 | 2457 SKB_GSO_DODGY | 2458 SKB_GSO_TCP_ECN | 2459 SKB_GSO_TCPV6 | 2460 0) || 2461 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2462 goto out; 2463 2464 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2465 2466 segs = NULL; 2467 goto out; 2468 } 2469 2470 segs = skb_segment(skb, features); 2471 if (IS_ERR(segs)) 2472 goto out; 2473 2474 delta = htonl(oldlen + (thlen + mss)); 2475 2476 skb = segs; 2477 th = tcp_hdr(skb); 2478 seq = ntohl(th->seq); 2479 2480 do { 2481 th->fin = th->psh = 0; 2482 2483 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2484 (__force u32)delta)); 2485 if (skb->ip_summed != CHECKSUM_PARTIAL) 2486 th->check = 2487 csum_fold(csum_partial(skb_transport_header(skb), 2488 thlen, skb->csum)); 2489 2490 seq += mss; 2491 skb = skb->next; 2492 th = tcp_hdr(skb); 2493 2494 th->seq = htonl(seq); 2495 th->cwr = 0; 2496 } while (skb->next); 2497 2498 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2499 skb->data_len); 2500 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2501 (__force u32)delta)); 2502 if (skb->ip_summed != CHECKSUM_PARTIAL) 2503 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2504 thlen, skb->csum)); 2505 2506 out: 2507 return segs; 2508 } 2509 EXPORT_SYMBOL(tcp_tso_segment); 2510 2511 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2512 { 2513 struct sk_buff **pp = NULL; 2514 struct sk_buff *p; 2515 struct tcphdr *th; 2516 struct tcphdr *th2; 2517 unsigned int len; 2518 unsigned int thlen; 2519 unsigned int flags; 2520 unsigned int mss = 1; 2521 int flush = 1; 2522 int i; 2523 2524 th = skb_gro_header(skb, sizeof(*th)); 2525 if (unlikely(!th)) 2526 goto out; 2527 2528 thlen = th->doff * 4; 2529 if (thlen < sizeof(*th)) 2530 goto out; 2531 2532 th = skb_gro_header(skb, thlen); 2533 if (unlikely(!th)) 2534 goto out; 2535 2536 skb_gro_pull(skb, thlen); 2537 2538 len = skb_gro_len(skb); 2539 flags = tcp_flag_word(th); 2540 2541 for (; (p = *head); head = &p->next) { 2542 if (!NAPI_GRO_CB(p)->same_flow) 2543 continue; 2544 2545 th2 = tcp_hdr(p); 2546 2547 if ((th->source ^ th2->source) | (th->dest ^ th2->dest)) { 2548 NAPI_GRO_CB(p)->same_flow = 0; 2549 continue; 2550 } 2551 2552 goto found; 2553 } 2554 2555 goto out_check_final; 2556 2557 found: 2558 flush = NAPI_GRO_CB(p)->flush; 2559 flush |= flags & TCP_FLAG_CWR; 2560 flush |= (flags ^ tcp_flag_word(th2)) & 2561 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH); 2562 flush |= (th->ack_seq ^ th2->ack_seq) | (th->window ^ th2->window); 2563 for (i = sizeof(*th); !flush && i < thlen; i += 4) 2564 flush |= *(u32 *)((u8 *)th + i) ^ 2565 *(u32 *)((u8 *)th2 + i); 2566 2567 mss = skb_shinfo(p)->gso_size; 2568 2569 flush |= (len > mss) | !len; 2570 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2571 2572 if (flush || skb_gro_receive(head, skb)) { 2573 mss = 1; 2574 goto out_check_final; 2575 } 2576 2577 p = *head; 2578 th2 = tcp_hdr(p); 2579 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2580 2581 out_check_final: 2582 flush = len < mss; 2583 flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST | 2584 TCP_FLAG_SYN | TCP_FLAG_FIN); 2585 2586 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2587 pp = head; 2588 2589 out: 2590 NAPI_GRO_CB(skb)->flush |= flush; 2591 2592 return pp; 2593 } 2594 EXPORT_SYMBOL(tcp_gro_receive); 2595 2596 int tcp_gro_complete(struct sk_buff *skb) 2597 { 2598 struct tcphdr *th = tcp_hdr(skb); 2599 2600 skb->csum_start = skb_transport_header(skb) - skb->head; 2601 skb->csum_offset = offsetof(struct tcphdr, check); 2602 skb->ip_summed = CHECKSUM_PARTIAL; 2603 2604 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2605 2606 if (th->cwr) 2607 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2608 2609 return 0; 2610 } 2611 EXPORT_SYMBOL(tcp_gro_complete); 2612 2613 #ifdef CONFIG_TCP_MD5SIG 2614 static unsigned long tcp_md5sig_users; 2615 static struct tcp_md5sig_pool **tcp_md5sig_pool; 2616 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2617 2618 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool) 2619 { 2620 int cpu; 2621 for_each_possible_cpu(cpu) { 2622 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu); 2623 if (p) { 2624 if (p->md5_desc.tfm) 2625 crypto_free_hash(p->md5_desc.tfm); 2626 kfree(p); 2627 p = NULL; 2628 } 2629 } 2630 free_percpu(pool); 2631 } 2632 2633 void tcp_free_md5sig_pool(void) 2634 { 2635 struct tcp_md5sig_pool **pool = NULL; 2636 2637 spin_lock_bh(&tcp_md5sig_pool_lock); 2638 if (--tcp_md5sig_users == 0) { 2639 pool = tcp_md5sig_pool; 2640 tcp_md5sig_pool = NULL; 2641 } 2642 spin_unlock_bh(&tcp_md5sig_pool_lock); 2643 if (pool) 2644 __tcp_free_md5sig_pool(pool); 2645 } 2646 2647 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2648 2649 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void) 2650 { 2651 int cpu; 2652 struct tcp_md5sig_pool **pool; 2653 2654 pool = alloc_percpu(struct tcp_md5sig_pool *); 2655 if (!pool) 2656 return NULL; 2657 2658 for_each_possible_cpu(cpu) { 2659 struct tcp_md5sig_pool *p; 2660 struct crypto_hash *hash; 2661 2662 p = kzalloc(sizeof(*p), GFP_KERNEL); 2663 if (!p) 2664 goto out_free; 2665 *per_cpu_ptr(pool, cpu) = p; 2666 2667 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2668 if (!hash || IS_ERR(hash)) 2669 goto out_free; 2670 2671 p->md5_desc.tfm = hash; 2672 } 2673 return pool; 2674 out_free: 2675 __tcp_free_md5sig_pool(pool); 2676 return NULL; 2677 } 2678 2679 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void) 2680 { 2681 struct tcp_md5sig_pool **pool; 2682 int alloc = 0; 2683 2684 retry: 2685 spin_lock_bh(&tcp_md5sig_pool_lock); 2686 pool = tcp_md5sig_pool; 2687 if (tcp_md5sig_users++ == 0) { 2688 alloc = 1; 2689 spin_unlock_bh(&tcp_md5sig_pool_lock); 2690 } else if (!pool) { 2691 tcp_md5sig_users--; 2692 spin_unlock_bh(&tcp_md5sig_pool_lock); 2693 cpu_relax(); 2694 goto retry; 2695 } else 2696 spin_unlock_bh(&tcp_md5sig_pool_lock); 2697 2698 if (alloc) { 2699 /* we cannot hold spinlock here because this may sleep. */ 2700 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool(); 2701 spin_lock_bh(&tcp_md5sig_pool_lock); 2702 if (!p) { 2703 tcp_md5sig_users--; 2704 spin_unlock_bh(&tcp_md5sig_pool_lock); 2705 return NULL; 2706 } 2707 pool = tcp_md5sig_pool; 2708 if (pool) { 2709 /* oops, it has already been assigned. */ 2710 spin_unlock_bh(&tcp_md5sig_pool_lock); 2711 __tcp_free_md5sig_pool(p); 2712 } else { 2713 tcp_md5sig_pool = pool = p; 2714 spin_unlock_bh(&tcp_md5sig_pool_lock); 2715 } 2716 } 2717 return pool; 2718 } 2719 2720 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2721 2722 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu) 2723 { 2724 struct tcp_md5sig_pool **p; 2725 spin_lock_bh(&tcp_md5sig_pool_lock); 2726 p = tcp_md5sig_pool; 2727 if (p) 2728 tcp_md5sig_users++; 2729 spin_unlock_bh(&tcp_md5sig_pool_lock); 2730 return (p ? *per_cpu_ptr(p, cpu) : NULL); 2731 } 2732 2733 EXPORT_SYMBOL(__tcp_get_md5sig_pool); 2734 2735 void __tcp_put_md5sig_pool(void) 2736 { 2737 tcp_free_md5sig_pool(); 2738 } 2739 2740 EXPORT_SYMBOL(__tcp_put_md5sig_pool); 2741 2742 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2743 struct tcphdr *th) 2744 { 2745 struct scatterlist sg; 2746 int err; 2747 2748 __sum16 old_checksum = th->check; 2749 th->check = 0; 2750 /* options aren't included in the hash */ 2751 sg_init_one(&sg, th, sizeof(struct tcphdr)); 2752 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr)); 2753 th->check = old_checksum; 2754 return err; 2755 } 2756 2757 EXPORT_SYMBOL(tcp_md5_hash_header); 2758 2759 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2760 struct sk_buff *skb, unsigned header_len) 2761 { 2762 struct scatterlist sg; 2763 const struct tcphdr *tp = tcp_hdr(skb); 2764 struct hash_desc *desc = &hp->md5_desc; 2765 unsigned i; 2766 const unsigned head_data_len = skb_headlen(skb) > header_len ? 2767 skb_headlen(skb) - header_len : 0; 2768 const struct skb_shared_info *shi = skb_shinfo(skb); 2769 2770 sg_init_table(&sg, 1); 2771 2772 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2773 if (crypto_hash_update(desc, &sg, head_data_len)) 2774 return 1; 2775 2776 for (i = 0; i < shi->nr_frags; ++i) { 2777 const struct skb_frag_struct *f = &shi->frags[i]; 2778 sg_set_page(&sg, f->page, f->size, f->page_offset); 2779 if (crypto_hash_update(desc, &sg, f->size)) 2780 return 1; 2781 } 2782 2783 return 0; 2784 } 2785 2786 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2787 2788 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key) 2789 { 2790 struct scatterlist sg; 2791 2792 sg_init_one(&sg, key->key, key->keylen); 2793 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2794 } 2795 2796 EXPORT_SYMBOL(tcp_md5_hash_key); 2797 2798 #endif 2799 2800 void tcp_done(struct sock *sk) 2801 { 2802 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 2803 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 2804 2805 tcp_set_state(sk, TCP_CLOSE); 2806 tcp_clear_xmit_timers(sk); 2807 2808 sk->sk_shutdown = SHUTDOWN_MASK; 2809 2810 if (!sock_flag(sk, SOCK_DEAD)) 2811 sk->sk_state_change(sk); 2812 else 2813 inet_csk_destroy_sock(sk); 2814 } 2815 EXPORT_SYMBOL_GPL(tcp_done); 2816 2817 extern struct tcp_congestion_ops tcp_reno; 2818 2819 static __initdata unsigned long thash_entries; 2820 static int __init set_thash_entries(char *str) 2821 { 2822 if (!str) 2823 return 0; 2824 thash_entries = simple_strtoul(str, &str, 0); 2825 return 1; 2826 } 2827 __setup("thash_entries=", set_thash_entries); 2828 2829 void __init tcp_init(void) 2830 { 2831 struct sk_buff *skb = NULL; 2832 unsigned long nr_pages, limit; 2833 int order, i, max_share; 2834 2835 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 2836 2837 percpu_counter_init(&tcp_sockets_allocated, 0); 2838 percpu_counter_init(&tcp_orphan_count, 0); 2839 tcp_hashinfo.bind_bucket_cachep = 2840 kmem_cache_create("tcp_bind_bucket", 2841 sizeof(struct inet_bind_bucket), 0, 2842 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2843 2844 /* Size and allocate the main established and bind bucket 2845 * hash tables. 2846 * 2847 * The methodology is similar to that of the buffer cache. 2848 */ 2849 tcp_hashinfo.ehash = 2850 alloc_large_system_hash("TCP established", 2851 sizeof(struct inet_ehash_bucket), 2852 thash_entries, 2853 (num_physpages >= 128 * 1024) ? 2854 13 : 15, 2855 0, 2856 &tcp_hashinfo.ehash_size, 2857 NULL, 2858 thash_entries ? 0 : 512 * 1024); 2859 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size; 2860 for (i = 0; i < tcp_hashinfo.ehash_size; i++) { 2861 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 2862 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 2863 } 2864 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 2865 panic("TCP: failed to alloc ehash_locks"); 2866 tcp_hashinfo.bhash = 2867 alloc_large_system_hash("TCP bind", 2868 sizeof(struct inet_bind_hashbucket), 2869 tcp_hashinfo.ehash_size, 2870 (num_physpages >= 128 * 1024) ? 2871 13 : 15, 2872 0, 2873 &tcp_hashinfo.bhash_size, 2874 NULL, 2875 64 * 1024); 2876 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 2877 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 2878 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 2879 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 2880 } 2881 2882 /* Try to be a bit smarter and adjust defaults depending 2883 * on available memory. 2884 */ 2885 for (order = 0; ((1 << order) << PAGE_SHIFT) < 2886 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket)); 2887 order++) 2888 ; 2889 if (order >= 4) { 2890 tcp_death_row.sysctl_max_tw_buckets = 180000; 2891 sysctl_tcp_max_orphans = 4096 << (order - 4); 2892 sysctl_max_syn_backlog = 1024; 2893 } else if (order < 3) { 2894 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order); 2895 sysctl_tcp_max_orphans >>= (3 - order); 2896 sysctl_max_syn_backlog = 128; 2897 } 2898 2899 /* Set the pressure threshold to be a fraction of global memory that 2900 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of 2901 * memory, with a floor of 128 pages. 2902 */ 2903 nr_pages = totalram_pages - totalhigh_pages; 2904 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); 2905 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); 2906 limit = max(limit, 128UL); 2907 sysctl_tcp_mem[0] = limit / 4 * 3; 2908 sysctl_tcp_mem[1] = limit; 2909 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 2910 2911 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 2912 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 2913 max_share = min(4UL*1024*1024, limit); 2914 2915 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 2916 sysctl_tcp_wmem[1] = 16*1024; 2917 sysctl_tcp_wmem[2] = max(64*1024, max_share); 2918 2919 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 2920 sysctl_tcp_rmem[1] = 87380; 2921 sysctl_tcp_rmem[2] = max(87380, max_share); 2922 2923 printk(KERN_INFO "TCP: Hash tables configured " 2924 "(established %d bind %d)\n", 2925 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size); 2926 2927 tcp_register_congestion_control(&tcp_reno); 2928 } 2929 2930 EXPORT_SYMBOL(tcp_close); 2931 EXPORT_SYMBOL(tcp_disconnect); 2932 EXPORT_SYMBOL(tcp_getsockopt); 2933 EXPORT_SYMBOL(tcp_ioctl); 2934 EXPORT_SYMBOL(tcp_poll); 2935 EXPORT_SYMBOL(tcp_read_sock); 2936 EXPORT_SYMBOL(tcp_recvmsg); 2937 EXPORT_SYMBOL(tcp_sendmsg); 2938 EXPORT_SYMBOL(tcp_splice_read); 2939 EXPORT_SYMBOL(tcp_sendpage); 2940 EXPORT_SYMBOL(tcp_setsockopt); 2941 EXPORT_SYMBOL(tcp_shutdown); 2942