xref: /openbmc/linux/net/ipv4/tcp.c (revision 76ce0265)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 struct percpu_counter tcp_orphan_count;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count);
285 
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 
289 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291 
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320 
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323 
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	unsigned long val;
329 
330 	if (READ_ONCE(tcp_memory_pressure))
331 		return;
332 	val = jiffies;
333 
334 	if (!val)
335 		val--;
336 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340 
341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 	unsigned long val;
344 
345 	if (!READ_ONCE(tcp_memory_pressure))
346 		return;
347 	val = xchg(&tcp_memory_pressure, 0);
348 	if (val)
349 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 			      jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353 
354 /* Convert seconds to retransmits based on initial and max timeout */
355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 	u8 res = 0;
358 
359 	if (seconds > 0) {
360 		int period = timeout;
361 
362 		res = 1;
363 		while (seconds > period && res < 255) {
364 			res++;
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return res;
372 }
373 
374 /* Convert retransmits to seconds based on initial and max timeout */
375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 	int period = 0;
378 
379 	if (retrans > 0) {
380 		period = timeout;
381 		while (--retrans) {
382 			timeout <<= 1;
383 			if (timeout > rto_max)
384 				timeout = rto_max;
385 			period += timeout;
386 		}
387 	}
388 	return period;
389 }
390 
391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 	u32 rate = READ_ONCE(tp->rate_delivered);
394 	u32 intv = READ_ONCE(tp->rate_interval_us);
395 	u64 rate64 = 0;
396 
397 	if (rate && intv) {
398 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 		do_div(rate64, intv);
400 	}
401 	return rate64;
402 }
403 
404 /* Address-family independent initialization for a tcp_sock.
405  *
406  * NOTE: A lot of things set to zero explicitly by call to
407  *       sk_alloc() so need not be done here.
408  */
409 void tcp_init_sock(struct sock *sk)
410 {
411 	struct inet_connection_sock *icsk = inet_csk(sk);
412 	struct tcp_sock *tp = tcp_sk(sk);
413 
414 	tp->out_of_order_queue = RB_ROOT;
415 	sk->tcp_rtx_queue = RB_ROOT;
416 	tcp_init_xmit_timers(sk);
417 	INIT_LIST_HEAD(&tp->tsq_node);
418 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419 
420 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
422 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423 
424 	/* So many TCP implementations out there (incorrectly) count the
425 	 * initial SYN frame in their delayed-ACK and congestion control
426 	 * algorithms that we must have the following bandaid to talk
427 	 * efficiently to them.  -DaveM
428 	 */
429 	tp->snd_cwnd = TCP_INIT_CWND;
430 
431 	/* There's a bubble in the pipe until at least the first ACK. */
432 	tp->app_limited = ~0U;
433 
434 	/* See draft-stevens-tcpca-spec-01 for discussion of the
435 	 * initialization of these values.
436 	 */
437 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
438 	tp->snd_cwnd_clamp = ~0;
439 	tp->mss_cache = TCP_MSS_DEFAULT;
440 
441 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
442 	tcp_assign_congestion_control(sk);
443 
444 	tp->tsoffset = 0;
445 	tp->rack.reo_wnd_steps = 1;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
453 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
454 
455 	sk_sockets_allocated_inc(sk);
456 	sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459 
460 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
461 {
462 	struct sk_buff *skb = tcp_write_queue_tail(sk);
463 
464 	if (tsflags && skb) {
465 		struct skb_shared_info *shinfo = skb_shinfo(skb);
466 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
467 
468 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
469 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
470 			tcb->txstamp_ack = 1;
471 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
472 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
473 	}
474 }
475 
476 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
477 					  int target, struct sock *sk)
478 {
479 	return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) ||
480 		(sk->sk_prot->stream_memory_read ?
481 		sk->sk_prot->stream_memory_read(sk) : false);
482 }
483 
484 /*
485  *	Wait for a TCP event.
486  *
487  *	Note that we don't need to lock the socket, as the upper poll layers
488  *	take care of normal races (between the test and the event) and we don't
489  *	go look at any of the socket buffers directly.
490  */
491 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
492 {
493 	__poll_t mask;
494 	struct sock *sk = sock->sk;
495 	const struct tcp_sock *tp = tcp_sk(sk);
496 	int state;
497 
498 	sock_poll_wait(file, sock, wait);
499 
500 	state = inet_sk_state_load(sk);
501 	if (state == TCP_LISTEN)
502 		return inet_csk_listen_poll(sk);
503 
504 	/* Socket is not locked. We are protected from async events
505 	 * by poll logic and correct handling of state changes
506 	 * made by other threads is impossible in any case.
507 	 */
508 
509 	mask = 0;
510 
511 	/*
512 	 * EPOLLHUP is certainly not done right. But poll() doesn't
513 	 * have a notion of HUP in just one direction, and for a
514 	 * socket the read side is more interesting.
515 	 *
516 	 * Some poll() documentation says that EPOLLHUP is incompatible
517 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
518 	 * all. But careful, it tends to be safer to return too many
519 	 * bits than too few, and you can easily break real applications
520 	 * if you don't tell them that something has hung up!
521 	 *
522 	 * Check-me.
523 	 *
524 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
525 	 * our fs/select.c). It means that after we received EOF,
526 	 * poll always returns immediately, making impossible poll() on write()
527 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
528 	 * if and only if shutdown has been made in both directions.
529 	 * Actually, it is interesting to look how Solaris and DUX
530 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
531 	 * then we could set it on SND_SHUTDOWN. BTW examples given
532 	 * in Stevens' books assume exactly this behaviour, it explains
533 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
534 	 *
535 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
536 	 * blocking on fresh not-connected or disconnected socket. --ANK
537 	 */
538 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
539 		mask |= EPOLLHUP;
540 	if (sk->sk_shutdown & RCV_SHUTDOWN)
541 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
542 
543 	/* Connected or passive Fast Open socket? */
544 	if (state != TCP_SYN_SENT &&
545 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
546 		int target = sock_rcvlowat(sk, 0, INT_MAX);
547 
548 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
549 		    !sock_flag(sk, SOCK_URGINLINE) &&
550 		    tp->urg_data)
551 			target++;
552 
553 		if (tcp_stream_is_readable(tp, target, sk))
554 			mask |= EPOLLIN | EPOLLRDNORM;
555 
556 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
557 			if (sk_stream_is_writeable(sk)) {
558 				mask |= EPOLLOUT | EPOLLWRNORM;
559 			} else {  /* send SIGIO later */
560 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
561 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
562 
563 				/* Race breaker. If space is freed after
564 				 * wspace test but before the flags are set,
565 				 * IO signal will be lost. Memory barrier
566 				 * pairs with the input side.
567 				 */
568 				smp_mb__after_atomic();
569 				if (sk_stream_is_writeable(sk))
570 					mask |= EPOLLOUT | EPOLLWRNORM;
571 			}
572 		} else
573 			mask |= EPOLLOUT | EPOLLWRNORM;
574 
575 		if (tp->urg_data & TCP_URG_VALID)
576 			mask |= EPOLLPRI;
577 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
578 		/* Active TCP fastopen socket with defer_connect
579 		 * Return EPOLLOUT so application can call write()
580 		 * in order for kernel to generate SYN+data
581 		 */
582 		mask |= EPOLLOUT | EPOLLWRNORM;
583 	}
584 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
585 	smp_rmb();
586 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
587 		mask |= EPOLLERR;
588 
589 	return mask;
590 }
591 EXPORT_SYMBOL(tcp_poll);
592 
593 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
594 {
595 	struct tcp_sock *tp = tcp_sk(sk);
596 	int answ;
597 	bool slow;
598 
599 	switch (cmd) {
600 	case SIOCINQ:
601 		if (sk->sk_state == TCP_LISTEN)
602 			return -EINVAL;
603 
604 		slow = lock_sock_fast(sk);
605 		answ = tcp_inq(sk);
606 		unlock_sock_fast(sk, slow);
607 		break;
608 	case SIOCATMARK:
609 		answ = tp->urg_data &&
610 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
611 		break;
612 	case SIOCOUTQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
617 			answ = 0;
618 		else
619 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
620 		break;
621 	case SIOCOUTQNSD:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 			answ = 0;
627 		else
628 			answ = READ_ONCE(tp->write_seq) -
629 			       READ_ONCE(tp->snd_nxt);
630 		break;
631 	default:
632 		return -ENOIOCTLCMD;
633 	}
634 
635 	return put_user(answ, (int __user *)arg);
636 }
637 EXPORT_SYMBOL(tcp_ioctl);
638 
639 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
640 {
641 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
642 	tp->pushed_seq = tp->write_seq;
643 }
644 
645 static inline bool forced_push(const struct tcp_sock *tp)
646 {
647 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
648 }
649 
650 static void skb_entail(struct sock *sk, struct sk_buff *skb)
651 {
652 	struct tcp_sock *tp = tcp_sk(sk);
653 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
654 
655 	skb->csum    = 0;
656 	tcb->seq     = tcb->end_seq = tp->write_seq;
657 	tcb->tcp_flags = TCPHDR_ACK;
658 	tcb->sacked  = 0;
659 	__skb_header_release(skb);
660 	tcp_add_write_queue_tail(sk, skb);
661 	sk_wmem_queued_add(sk, skb->truesize);
662 	sk_mem_charge(sk, skb->truesize);
663 	if (tp->nonagle & TCP_NAGLE_PUSH)
664 		tp->nonagle &= ~TCP_NAGLE_PUSH;
665 
666 	tcp_slow_start_after_idle_check(sk);
667 }
668 
669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
670 {
671 	if (flags & MSG_OOB)
672 		tp->snd_up = tp->write_seq;
673 }
674 
675 /* If a not yet filled skb is pushed, do not send it if
676  * we have data packets in Qdisc or NIC queues :
677  * Because TX completion will happen shortly, it gives a chance
678  * to coalesce future sendmsg() payload into this skb, without
679  * need for a timer, and with no latency trade off.
680  * As packets containing data payload have a bigger truesize
681  * than pure acks (dataless) packets, the last checks prevent
682  * autocorking if we only have an ACK in Qdisc/NIC queues,
683  * or if TX completion was delayed after we processed ACK packet.
684  */
685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 				int size_goal)
687 {
688 	return skb->len < size_goal &&
689 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
690 	       !tcp_rtx_queue_empty(sk) &&
691 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
692 }
693 
694 void tcp_push(struct sock *sk, int flags, int mss_now,
695 	      int nonagle, int size_goal)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 	struct sk_buff *skb;
699 
700 	skb = tcp_write_queue_tail(sk);
701 	if (!skb)
702 		return;
703 	if (!(flags & MSG_MORE) || forced_push(tp))
704 		tcp_mark_push(tp, skb);
705 
706 	tcp_mark_urg(tp, flags);
707 
708 	if (tcp_should_autocork(sk, skb, size_goal)) {
709 
710 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
711 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
712 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
713 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
714 		}
715 		/* It is possible TX completion already happened
716 		 * before we set TSQ_THROTTLED.
717 		 */
718 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
719 			return;
720 	}
721 
722 	if (flags & MSG_MORE)
723 		nonagle = TCP_NAGLE_CORK;
724 
725 	__tcp_push_pending_frames(sk, mss_now, nonagle);
726 }
727 
728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
729 				unsigned int offset, size_t len)
730 {
731 	struct tcp_splice_state *tss = rd_desc->arg.data;
732 	int ret;
733 
734 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
735 			      min(rd_desc->count, len), tss->flags);
736 	if (ret > 0)
737 		rd_desc->count -= ret;
738 	return ret;
739 }
740 
741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
742 {
743 	/* Store TCP splice context information in read_descriptor_t. */
744 	read_descriptor_t rd_desc = {
745 		.arg.data = tss,
746 		.count	  = tss->len,
747 	};
748 
749 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
750 }
751 
752 /**
753  *  tcp_splice_read - splice data from TCP socket to a pipe
754  * @sock:	socket to splice from
755  * @ppos:	position (not valid)
756  * @pipe:	pipe to splice to
757  * @len:	number of bytes to splice
758  * @flags:	splice modifier flags
759  *
760  * Description:
761  *    Will read pages from given socket and fill them into a pipe.
762  *
763  **/
764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
765 			struct pipe_inode_info *pipe, size_t len,
766 			unsigned int flags)
767 {
768 	struct sock *sk = sock->sk;
769 	struct tcp_splice_state tss = {
770 		.pipe = pipe,
771 		.len = len,
772 		.flags = flags,
773 	};
774 	long timeo;
775 	ssize_t spliced;
776 	int ret;
777 
778 	sock_rps_record_flow(sk);
779 	/*
780 	 * We can't seek on a socket input
781 	 */
782 	if (unlikely(*ppos))
783 		return -ESPIPE;
784 
785 	ret = spliced = 0;
786 
787 	lock_sock(sk);
788 
789 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
790 	while (tss.len) {
791 		ret = __tcp_splice_read(sk, &tss);
792 		if (ret < 0)
793 			break;
794 		else if (!ret) {
795 			if (spliced)
796 				break;
797 			if (sock_flag(sk, SOCK_DONE))
798 				break;
799 			if (sk->sk_err) {
800 				ret = sock_error(sk);
801 				break;
802 			}
803 			if (sk->sk_shutdown & RCV_SHUTDOWN)
804 				break;
805 			if (sk->sk_state == TCP_CLOSE) {
806 				/*
807 				 * This occurs when user tries to read
808 				 * from never connected socket.
809 				 */
810 				ret = -ENOTCONN;
811 				break;
812 			}
813 			if (!timeo) {
814 				ret = -EAGAIN;
815 				break;
816 			}
817 			/* if __tcp_splice_read() got nothing while we have
818 			 * an skb in receive queue, we do not want to loop.
819 			 * This might happen with URG data.
820 			 */
821 			if (!skb_queue_empty(&sk->sk_receive_queue))
822 				break;
823 			sk_wait_data(sk, &timeo, NULL);
824 			if (signal_pending(current)) {
825 				ret = sock_intr_errno(timeo);
826 				break;
827 			}
828 			continue;
829 		}
830 		tss.len -= ret;
831 		spliced += ret;
832 
833 		if (!timeo)
834 			break;
835 		release_sock(sk);
836 		lock_sock(sk);
837 
838 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
839 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
840 		    signal_pending(current))
841 			break;
842 	}
843 
844 	release_sock(sk);
845 
846 	if (spliced)
847 		return spliced;
848 
849 	return ret;
850 }
851 EXPORT_SYMBOL(tcp_splice_read);
852 
853 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
854 				    bool force_schedule)
855 {
856 	struct sk_buff *skb;
857 
858 	if (likely(!size)) {
859 		skb = sk->sk_tx_skb_cache;
860 		if (skb) {
861 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
862 			sk->sk_tx_skb_cache = NULL;
863 			pskb_trim(skb, 0);
864 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
865 			skb_shinfo(skb)->tx_flags = 0;
866 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
867 			return skb;
868 		}
869 	}
870 	/* The TCP header must be at least 32-bit aligned.  */
871 	size = ALIGN(size, 4);
872 
873 	if (unlikely(tcp_under_memory_pressure(sk)))
874 		sk_mem_reclaim_partial(sk);
875 
876 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
877 	if (likely(skb)) {
878 		bool mem_scheduled;
879 
880 		if (force_schedule) {
881 			mem_scheduled = true;
882 			sk_forced_mem_schedule(sk, skb->truesize);
883 		} else {
884 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
885 		}
886 		if (likely(mem_scheduled)) {
887 			skb_reserve(skb, sk->sk_prot->max_header);
888 			/*
889 			 * Make sure that we have exactly size bytes
890 			 * available to the caller, no more, no less.
891 			 */
892 			skb->reserved_tailroom = skb->end - skb->tail - size;
893 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
894 			return skb;
895 		}
896 		__kfree_skb(skb);
897 	} else {
898 		sk->sk_prot->enter_memory_pressure(sk);
899 		sk_stream_moderate_sndbuf(sk);
900 	}
901 	return NULL;
902 }
903 
904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
905 				       int large_allowed)
906 {
907 	struct tcp_sock *tp = tcp_sk(sk);
908 	u32 new_size_goal, size_goal;
909 
910 	if (!large_allowed)
911 		return mss_now;
912 
913 	/* Note : tcp_tso_autosize() will eventually split this later */
914 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
915 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
916 
917 	/* We try hard to avoid divides here */
918 	size_goal = tp->gso_segs * mss_now;
919 	if (unlikely(new_size_goal < size_goal ||
920 		     new_size_goal >= size_goal + mss_now)) {
921 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
922 				     sk->sk_gso_max_segs);
923 		size_goal = tp->gso_segs * mss_now;
924 	}
925 
926 	return max(size_goal, mss_now);
927 }
928 
929 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
930 {
931 	int mss_now;
932 
933 	mss_now = tcp_current_mss(sk);
934 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
935 
936 	return mss_now;
937 }
938 
939 /* In some cases, both sendpage() and sendmsg() could have added
940  * an skb to the write queue, but failed adding payload on it.
941  * We need to remove it to consume less memory, but more
942  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
943  * users.
944  */
945 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
946 {
947 	if (skb && !skb->len) {
948 		tcp_unlink_write_queue(skb, sk);
949 		if (tcp_write_queue_empty(sk))
950 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
951 		sk_wmem_free_skb(sk, skb);
952 	}
953 }
954 
955 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
956 			 size_t size, int flags)
957 {
958 	struct tcp_sock *tp = tcp_sk(sk);
959 	int mss_now, size_goal;
960 	int err;
961 	ssize_t copied;
962 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
963 
964 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
965 	    WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
966 		return -EINVAL;
967 
968 	/* Wait for a connection to finish. One exception is TCP Fast Open
969 	 * (passive side) where data is allowed to be sent before a connection
970 	 * is fully established.
971 	 */
972 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
973 	    !tcp_passive_fastopen(sk)) {
974 		err = sk_stream_wait_connect(sk, &timeo);
975 		if (err != 0)
976 			goto out_err;
977 	}
978 
979 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
980 
981 	mss_now = tcp_send_mss(sk, &size_goal, flags);
982 	copied = 0;
983 
984 	err = -EPIPE;
985 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
986 		goto out_err;
987 
988 	while (size > 0) {
989 		struct sk_buff *skb = tcp_write_queue_tail(sk);
990 		int copy, i;
991 		bool can_coalesce;
992 
993 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
994 		    !tcp_skb_can_collapse_to(skb)) {
995 new_segment:
996 			if (!sk_stream_memory_free(sk))
997 				goto wait_for_sndbuf;
998 
999 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1000 					tcp_rtx_and_write_queues_empty(sk));
1001 			if (!skb)
1002 				goto wait_for_memory;
1003 
1004 #ifdef CONFIG_TLS_DEVICE
1005 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1006 #endif
1007 			skb_entail(sk, skb);
1008 			copy = size_goal;
1009 		}
1010 
1011 		if (copy > size)
1012 			copy = size;
1013 
1014 		i = skb_shinfo(skb)->nr_frags;
1015 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1016 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1017 			tcp_mark_push(tp, skb);
1018 			goto new_segment;
1019 		}
1020 		if (!sk_wmem_schedule(sk, copy))
1021 			goto wait_for_memory;
1022 
1023 		if (can_coalesce) {
1024 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1025 		} else {
1026 			get_page(page);
1027 			skb_fill_page_desc(skb, i, page, offset, copy);
1028 		}
1029 
1030 		if (!(flags & MSG_NO_SHARED_FRAGS))
1031 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1032 
1033 		skb->len += copy;
1034 		skb->data_len += copy;
1035 		skb->truesize += copy;
1036 		sk_wmem_queued_add(sk, copy);
1037 		sk_mem_charge(sk, copy);
1038 		skb->ip_summed = CHECKSUM_PARTIAL;
1039 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1040 		TCP_SKB_CB(skb)->end_seq += copy;
1041 		tcp_skb_pcount_set(skb, 0);
1042 
1043 		if (!copied)
1044 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1045 
1046 		copied += copy;
1047 		offset += copy;
1048 		size -= copy;
1049 		if (!size)
1050 			goto out;
1051 
1052 		if (skb->len < size_goal || (flags & MSG_OOB))
1053 			continue;
1054 
1055 		if (forced_push(tp)) {
1056 			tcp_mark_push(tp, skb);
1057 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1058 		} else if (skb == tcp_send_head(sk))
1059 			tcp_push_one(sk, mss_now);
1060 		continue;
1061 
1062 wait_for_sndbuf:
1063 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1064 wait_for_memory:
1065 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1066 			 TCP_NAGLE_PUSH, size_goal);
1067 
1068 		err = sk_stream_wait_memory(sk, &timeo);
1069 		if (err != 0)
1070 			goto do_error;
1071 
1072 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1073 	}
1074 
1075 out:
1076 	if (copied) {
1077 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1078 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1079 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1080 	}
1081 	return copied;
1082 
1083 do_error:
1084 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1085 	if (copied)
1086 		goto out;
1087 out_err:
1088 	/* make sure we wake any epoll edge trigger waiter */
1089 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1090 		sk->sk_write_space(sk);
1091 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1092 	}
1093 	return sk_stream_error(sk, flags, err);
1094 }
1095 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1096 
1097 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1098 			size_t size, int flags)
1099 {
1100 	if (!(sk->sk_route_caps & NETIF_F_SG))
1101 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1102 
1103 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1104 
1105 	return do_tcp_sendpages(sk, page, offset, size, flags);
1106 }
1107 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1108 
1109 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1110 		 size_t size, int flags)
1111 {
1112 	int ret;
1113 
1114 	lock_sock(sk);
1115 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1116 	release_sock(sk);
1117 
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL(tcp_sendpage);
1121 
1122 void tcp_free_fastopen_req(struct tcp_sock *tp)
1123 {
1124 	if (tp->fastopen_req) {
1125 		kfree(tp->fastopen_req);
1126 		tp->fastopen_req = NULL;
1127 	}
1128 }
1129 
1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131 				int *copied, size_t size,
1132 				struct ubuf_info *uarg)
1133 {
1134 	struct tcp_sock *tp = tcp_sk(sk);
1135 	struct inet_sock *inet = inet_sk(sk);
1136 	struct sockaddr *uaddr = msg->msg_name;
1137 	int err, flags;
1138 
1139 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1140 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1141 	     uaddr->sa_family == AF_UNSPEC))
1142 		return -EOPNOTSUPP;
1143 	if (tp->fastopen_req)
1144 		return -EALREADY; /* Another Fast Open is in progress */
1145 
1146 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1147 				   sk->sk_allocation);
1148 	if (unlikely(!tp->fastopen_req))
1149 		return -ENOBUFS;
1150 	tp->fastopen_req->data = msg;
1151 	tp->fastopen_req->size = size;
1152 	tp->fastopen_req->uarg = uarg;
1153 
1154 	if (inet->defer_connect) {
1155 		err = tcp_connect(sk);
1156 		/* Same failure procedure as in tcp_v4/6_connect */
1157 		if (err) {
1158 			tcp_set_state(sk, TCP_CLOSE);
1159 			inet->inet_dport = 0;
1160 			sk->sk_route_caps = 0;
1161 		}
1162 	}
1163 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1164 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1165 				    msg->msg_namelen, flags, 1);
1166 	/* fastopen_req could already be freed in __inet_stream_connect
1167 	 * if the connection times out or gets rst
1168 	 */
1169 	if (tp->fastopen_req) {
1170 		*copied = tp->fastopen_req->copied;
1171 		tcp_free_fastopen_req(tp);
1172 		inet->defer_connect = 0;
1173 	}
1174 	return err;
1175 }
1176 
1177 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1178 {
1179 	struct tcp_sock *tp = tcp_sk(sk);
1180 	struct ubuf_info *uarg = NULL;
1181 	struct sk_buff *skb;
1182 	struct sockcm_cookie sockc;
1183 	int flags, err, copied = 0;
1184 	int mss_now = 0, size_goal, copied_syn = 0;
1185 	int process_backlog = 0;
1186 	bool zc = false;
1187 	long timeo;
1188 
1189 	flags = msg->msg_flags;
1190 
1191 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1192 		skb = tcp_write_queue_tail(sk);
1193 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1194 		if (!uarg) {
1195 			err = -ENOBUFS;
1196 			goto out_err;
1197 		}
1198 
1199 		zc = sk->sk_route_caps & NETIF_F_SG;
1200 		if (!zc)
1201 			uarg->zerocopy = 0;
1202 	}
1203 
1204 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1205 	    !tp->repair) {
1206 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1207 		if (err == -EINPROGRESS && copied_syn > 0)
1208 			goto out;
1209 		else if (err)
1210 			goto out_err;
1211 	}
1212 
1213 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1214 
1215 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1216 
1217 	/* Wait for a connection to finish. One exception is TCP Fast Open
1218 	 * (passive side) where data is allowed to be sent before a connection
1219 	 * is fully established.
1220 	 */
1221 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1222 	    !tcp_passive_fastopen(sk)) {
1223 		err = sk_stream_wait_connect(sk, &timeo);
1224 		if (err != 0)
1225 			goto do_error;
1226 	}
1227 
1228 	if (unlikely(tp->repair)) {
1229 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1230 			copied = tcp_send_rcvq(sk, msg, size);
1231 			goto out_nopush;
1232 		}
1233 
1234 		err = -EINVAL;
1235 		if (tp->repair_queue == TCP_NO_QUEUE)
1236 			goto out_err;
1237 
1238 		/* 'common' sending to sendq */
1239 	}
1240 
1241 	sockcm_init(&sockc, sk);
1242 	if (msg->msg_controllen) {
1243 		err = sock_cmsg_send(sk, msg, &sockc);
1244 		if (unlikely(err)) {
1245 			err = -EINVAL;
1246 			goto out_err;
1247 		}
1248 	}
1249 
1250 	/* This should be in poll */
1251 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1252 
1253 	/* Ok commence sending. */
1254 	copied = 0;
1255 
1256 restart:
1257 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1258 
1259 	err = -EPIPE;
1260 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1261 		goto do_error;
1262 
1263 	while (msg_data_left(msg)) {
1264 		int copy = 0;
1265 
1266 		skb = tcp_write_queue_tail(sk);
1267 		if (skb)
1268 			copy = size_goal - skb->len;
1269 
1270 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1271 			bool first_skb;
1272 
1273 new_segment:
1274 			if (!sk_stream_memory_free(sk))
1275 				goto wait_for_sndbuf;
1276 
1277 			if (unlikely(process_backlog >= 16)) {
1278 				process_backlog = 0;
1279 				if (sk_flush_backlog(sk))
1280 					goto restart;
1281 			}
1282 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1283 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1284 						  first_skb);
1285 			if (!skb)
1286 				goto wait_for_memory;
1287 
1288 			process_backlog++;
1289 			skb->ip_summed = CHECKSUM_PARTIAL;
1290 
1291 			skb_entail(sk, skb);
1292 			copy = size_goal;
1293 
1294 			/* All packets are restored as if they have
1295 			 * already been sent. skb_mstamp_ns isn't set to
1296 			 * avoid wrong rtt estimation.
1297 			 */
1298 			if (tp->repair)
1299 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1300 		}
1301 
1302 		/* Try to append data to the end of skb. */
1303 		if (copy > msg_data_left(msg))
1304 			copy = msg_data_left(msg);
1305 
1306 		/* Where to copy to? */
1307 		if (skb_availroom(skb) > 0 && !zc) {
1308 			/* We have some space in skb head. Superb! */
1309 			copy = min_t(int, copy, skb_availroom(skb));
1310 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1311 			if (err)
1312 				goto do_fault;
1313 		} else if (!zc) {
1314 			bool merge = true;
1315 			int i = skb_shinfo(skb)->nr_frags;
1316 			struct page_frag *pfrag = sk_page_frag(sk);
1317 
1318 			if (!sk_page_frag_refill(sk, pfrag))
1319 				goto wait_for_memory;
1320 
1321 			if (!skb_can_coalesce(skb, i, pfrag->page,
1322 					      pfrag->offset)) {
1323 				if (i >= sysctl_max_skb_frags) {
1324 					tcp_mark_push(tp, skb);
1325 					goto new_segment;
1326 				}
1327 				merge = false;
1328 			}
1329 
1330 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1331 
1332 			if (!sk_wmem_schedule(sk, copy))
1333 				goto wait_for_memory;
1334 
1335 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1336 						       pfrag->page,
1337 						       pfrag->offset,
1338 						       copy);
1339 			if (err)
1340 				goto do_error;
1341 
1342 			/* Update the skb. */
1343 			if (merge) {
1344 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1345 			} else {
1346 				skb_fill_page_desc(skb, i, pfrag->page,
1347 						   pfrag->offset, copy);
1348 				page_ref_inc(pfrag->page);
1349 			}
1350 			pfrag->offset += copy;
1351 		} else {
1352 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1353 			if (err == -EMSGSIZE || err == -EEXIST) {
1354 				tcp_mark_push(tp, skb);
1355 				goto new_segment;
1356 			}
1357 			if (err < 0)
1358 				goto do_error;
1359 			copy = err;
1360 		}
1361 
1362 		if (!copied)
1363 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1364 
1365 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1366 		TCP_SKB_CB(skb)->end_seq += copy;
1367 		tcp_skb_pcount_set(skb, 0);
1368 
1369 		copied += copy;
1370 		if (!msg_data_left(msg)) {
1371 			if (unlikely(flags & MSG_EOR))
1372 				TCP_SKB_CB(skb)->eor = 1;
1373 			goto out;
1374 		}
1375 
1376 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1377 			continue;
1378 
1379 		if (forced_push(tp)) {
1380 			tcp_mark_push(tp, skb);
1381 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1382 		} else if (skb == tcp_send_head(sk))
1383 			tcp_push_one(sk, mss_now);
1384 		continue;
1385 
1386 wait_for_sndbuf:
1387 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1388 wait_for_memory:
1389 		if (copied)
1390 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1391 				 TCP_NAGLE_PUSH, size_goal);
1392 
1393 		err = sk_stream_wait_memory(sk, &timeo);
1394 		if (err != 0)
1395 			goto do_error;
1396 
1397 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1398 	}
1399 
1400 out:
1401 	if (copied) {
1402 		tcp_tx_timestamp(sk, sockc.tsflags);
1403 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1404 	}
1405 out_nopush:
1406 	sock_zerocopy_put(uarg);
1407 	return copied + copied_syn;
1408 
1409 do_error:
1410 	skb = tcp_write_queue_tail(sk);
1411 do_fault:
1412 	tcp_remove_empty_skb(sk, skb);
1413 
1414 	if (copied + copied_syn)
1415 		goto out;
1416 out_err:
1417 	sock_zerocopy_put_abort(uarg, true);
1418 	err = sk_stream_error(sk, flags, err);
1419 	/* make sure we wake any epoll edge trigger waiter */
1420 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1421 		sk->sk_write_space(sk);
1422 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1423 	}
1424 	return err;
1425 }
1426 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1427 
1428 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1429 {
1430 	int ret;
1431 
1432 	lock_sock(sk);
1433 	ret = tcp_sendmsg_locked(sk, msg, size);
1434 	release_sock(sk);
1435 
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL(tcp_sendmsg);
1439 
1440 /*
1441  *	Handle reading urgent data. BSD has very simple semantics for
1442  *	this, no blocking and very strange errors 8)
1443  */
1444 
1445 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1446 {
1447 	struct tcp_sock *tp = tcp_sk(sk);
1448 
1449 	/* No URG data to read. */
1450 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1451 	    tp->urg_data == TCP_URG_READ)
1452 		return -EINVAL;	/* Yes this is right ! */
1453 
1454 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1455 		return -ENOTCONN;
1456 
1457 	if (tp->urg_data & TCP_URG_VALID) {
1458 		int err = 0;
1459 		char c = tp->urg_data;
1460 
1461 		if (!(flags & MSG_PEEK))
1462 			tp->urg_data = TCP_URG_READ;
1463 
1464 		/* Read urgent data. */
1465 		msg->msg_flags |= MSG_OOB;
1466 
1467 		if (len > 0) {
1468 			if (!(flags & MSG_TRUNC))
1469 				err = memcpy_to_msg(msg, &c, 1);
1470 			len = 1;
1471 		} else
1472 			msg->msg_flags |= MSG_TRUNC;
1473 
1474 		return err ? -EFAULT : len;
1475 	}
1476 
1477 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1478 		return 0;
1479 
1480 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1481 	 * the available implementations agree in this case:
1482 	 * this call should never block, independent of the
1483 	 * blocking state of the socket.
1484 	 * Mike <pall@rz.uni-karlsruhe.de>
1485 	 */
1486 	return -EAGAIN;
1487 }
1488 
1489 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1490 {
1491 	struct sk_buff *skb;
1492 	int copied = 0, err = 0;
1493 
1494 	/* XXX -- need to support SO_PEEK_OFF */
1495 
1496 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1497 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1498 		if (err)
1499 			return err;
1500 		copied += skb->len;
1501 	}
1502 
1503 	skb_queue_walk(&sk->sk_write_queue, skb) {
1504 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1505 		if (err)
1506 			break;
1507 
1508 		copied += skb->len;
1509 	}
1510 
1511 	return err ?: copied;
1512 }
1513 
1514 /* Clean up the receive buffer for full frames taken by the user,
1515  * then send an ACK if necessary.  COPIED is the number of bytes
1516  * tcp_recvmsg has given to the user so far, it speeds up the
1517  * calculation of whether or not we must ACK for the sake of
1518  * a window update.
1519  */
1520 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1521 {
1522 	struct tcp_sock *tp = tcp_sk(sk);
1523 	bool time_to_ack = false;
1524 
1525 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1526 
1527 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1528 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1529 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1530 
1531 	if (inet_csk_ack_scheduled(sk)) {
1532 		const struct inet_connection_sock *icsk = inet_csk(sk);
1533 		   /* Delayed ACKs frequently hit locked sockets during bulk
1534 		    * receive. */
1535 		if (icsk->icsk_ack.blocked ||
1536 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1537 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1538 		    /*
1539 		     * If this read emptied read buffer, we send ACK, if
1540 		     * connection is not bidirectional, user drained
1541 		     * receive buffer and there was a small segment
1542 		     * in queue.
1543 		     */
1544 		    (copied > 0 &&
1545 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1546 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1547 		       !inet_csk_in_pingpong_mode(sk))) &&
1548 		      !atomic_read(&sk->sk_rmem_alloc)))
1549 			time_to_ack = true;
1550 	}
1551 
1552 	/* We send an ACK if we can now advertise a non-zero window
1553 	 * which has been raised "significantly".
1554 	 *
1555 	 * Even if window raised up to infinity, do not send window open ACK
1556 	 * in states, where we will not receive more. It is useless.
1557 	 */
1558 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1559 		__u32 rcv_window_now = tcp_receive_window(tp);
1560 
1561 		/* Optimize, __tcp_select_window() is not cheap. */
1562 		if (2*rcv_window_now <= tp->window_clamp) {
1563 			__u32 new_window = __tcp_select_window(sk);
1564 
1565 			/* Send ACK now, if this read freed lots of space
1566 			 * in our buffer. Certainly, new_window is new window.
1567 			 * We can advertise it now, if it is not less than current one.
1568 			 * "Lots" means "at least twice" here.
1569 			 */
1570 			if (new_window && new_window >= 2 * rcv_window_now)
1571 				time_to_ack = true;
1572 		}
1573 	}
1574 	if (time_to_ack)
1575 		tcp_send_ack(sk);
1576 }
1577 
1578 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1579 {
1580 	struct sk_buff *skb;
1581 	u32 offset;
1582 
1583 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1584 		offset = seq - TCP_SKB_CB(skb)->seq;
1585 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1586 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1587 			offset--;
1588 		}
1589 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1590 			*off = offset;
1591 			return skb;
1592 		}
1593 		/* This looks weird, but this can happen if TCP collapsing
1594 		 * splitted a fat GRO packet, while we released socket lock
1595 		 * in skb_splice_bits()
1596 		 */
1597 		sk_eat_skb(sk, skb);
1598 	}
1599 	return NULL;
1600 }
1601 
1602 /*
1603  * This routine provides an alternative to tcp_recvmsg() for routines
1604  * that would like to handle copying from skbuffs directly in 'sendfile'
1605  * fashion.
1606  * Note:
1607  *	- It is assumed that the socket was locked by the caller.
1608  *	- The routine does not block.
1609  *	- At present, there is no support for reading OOB data
1610  *	  or for 'peeking' the socket using this routine
1611  *	  (although both would be easy to implement).
1612  */
1613 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1614 		  sk_read_actor_t recv_actor)
1615 {
1616 	struct sk_buff *skb;
1617 	struct tcp_sock *tp = tcp_sk(sk);
1618 	u32 seq = tp->copied_seq;
1619 	u32 offset;
1620 	int copied = 0;
1621 
1622 	if (sk->sk_state == TCP_LISTEN)
1623 		return -ENOTCONN;
1624 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1625 		if (offset < skb->len) {
1626 			int used;
1627 			size_t len;
1628 
1629 			len = skb->len - offset;
1630 			/* Stop reading if we hit a patch of urgent data */
1631 			if (tp->urg_data) {
1632 				u32 urg_offset = tp->urg_seq - seq;
1633 				if (urg_offset < len)
1634 					len = urg_offset;
1635 				if (!len)
1636 					break;
1637 			}
1638 			used = recv_actor(desc, skb, offset, len);
1639 			if (used <= 0) {
1640 				if (!copied)
1641 					copied = used;
1642 				break;
1643 			} else if (used <= len) {
1644 				seq += used;
1645 				copied += used;
1646 				offset += used;
1647 			}
1648 			/* If recv_actor drops the lock (e.g. TCP splice
1649 			 * receive) the skb pointer might be invalid when
1650 			 * getting here: tcp_collapse might have deleted it
1651 			 * while aggregating skbs from the socket queue.
1652 			 */
1653 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1654 			if (!skb)
1655 				break;
1656 			/* TCP coalescing might have appended data to the skb.
1657 			 * Try to splice more frags
1658 			 */
1659 			if (offset + 1 != skb->len)
1660 				continue;
1661 		}
1662 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1663 			sk_eat_skb(sk, skb);
1664 			++seq;
1665 			break;
1666 		}
1667 		sk_eat_skb(sk, skb);
1668 		if (!desc->count)
1669 			break;
1670 		WRITE_ONCE(tp->copied_seq, seq);
1671 	}
1672 	WRITE_ONCE(tp->copied_seq, seq);
1673 
1674 	tcp_rcv_space_adjust(sk);
1675 
1676 	/* Clean up data we have read: This will do ACK frames. */
1677 	if (copied > 0) {
1678 		tcp_recv_skb(sk, seq, &offset);
1679 		tcp_cleanup_rbuf(sk, copied);
1680 	}
1681 	return copied;
1682 }
1683 EXPORT_SYMBOL(tcp_read_sock);
1684 
1685 int tcp_peek_len(struct socket *sock)
1686 {
1687 	return tcp_inq(sock->sk);
1688 }
1689 EXPORT_SYMBOL(tcp_peek_len);
1690 
1691 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1692 int tcp_set_rcvlowat(struct sock *sk, int val)
1693 {
1694 	int cap;
1695 
1696 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1697 		cap = sk->sk_rcvbuf >> 1;
1698 	else
1699 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1700 	val = min(val, cap);
1701 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1702 
1703 	/* Check if we need to signal EPOLLIN right now */
1704 	tcp_data_ready(sk);
1705 
1706 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 		return 0;
1708 
1709 	val <<= 1;
1710 	if (val > sk->sk_rcvbuf) {
1711 		WRITE_ONCE(sk->sk_rcvbuf, val);
1712 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1713 	}
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(tcp_set_rcvlowat);
1717 
1718 #ifdef CONFIG_MMU
1719 static const struct vm_operations_struct tcp_vm_ops = {
1720 };
1721 
1722 int tcp_mmap(struct file *file, struct socket *sock,
1723 	     struct vm_area_struct *vma)
1724 {
1725 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1726 		return -EPERM;
1727 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1728 
1729 	/* Instruct vm_insert_page() to not down_read(mmap_sem) */
1730 	vma->vm_flags |= VM_MIXEDMAP;
1731 
1732 	vma->vm_ops = &tcp_vm_ops;
1733 	return 0;
1734 }
1735 EXPORT_SYMBOL(tcp_mmap);
1736 
1737 static int tcp_zerocopy_receive(struct sock *sk,
1738 				struct tcp_zerocopy_receive *zc)
1739 {
1740 	unsigned long address = (unsigned long)zc->address;
1741 	u32 length = 0, seq, offset, zap_len;
1742 	const skb_frag_t *frags = NULL;
1743 	struct vm_area_struct *vma;
1744 	struct sk_buff *skb = NULL;
1745 	struct tcp_sock *tp;
1746 	int inq;
1747 	int ret;
1748 
1749 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1750 		return -EINVAL;
1751 
1752 	if (sk->sk_state == TCP_LISTEN)
1753 		return -ENOTCONN;
1754 
1755 	sock_rps_record_flow(sk);
1756 
1757 	down_read(&current->mm->mmap_sem);
1758 
1759 	ret = -EINVAL;
1760 	vma = find_vma(current->mm, address);
1761 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1762 		goto out;
1763 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1764 
1765 	tp = tcp_sk(sk);
1766 	seq = tp->copied_seq;
1767 	inq = tcp_inq(sk);
1768 	zc->length = min_t(u32, zc->length, inq);
1769 	zap_len = zc->length & ~(PAGE_SIZE - 1);
1770 	if (zap_len) {
1771 		zap_page_range(vma, address, zap_len);
1772 		zc->recv_skip_hint = 0;
1773 	} else {
1774 		zc->recv_skip_hint = zc->length;
1775 	}
1776 	ret = 0;
1777 	while (length + PAGE_SIZE <= zc->length) {
1778 		if (zc->recv_skip_hint < PAGE_SIZE) {
1779 			if (skb) {
1780 				if (zc->recv_skip_hint > 0)
1781 					break;
1782 				skb = skb->next;
1783 				offset = seq - TCP_SKB_CB(skb)->seq;
1784 			} else {
1785 				skb = tcp_recv_skb(sk, seq, &offset);
1786 			}
1787 
1788 			zc->recv_skip_hint = skb->len - offset;
1789 			offset -= skb_headlen(skb);
1790 			if ((int)offset < 0 || skb_has_frag_list(skb))
1791 				break;
1792 			frags = skb_shinfo(skb)->frags;
1793 			while (offset) {
1794 				if (skb_frag_size(frags) > offset)
1795 					goto out;
1796 				offset -= skb_frag_size(frags);
1797 				frags++;
1798 			}
1799 		}
1800 		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1801 			int remaining = zc->recv_skip_hint;
1802 
1803 			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1804 					     skb_frag_off(frags))) {
1805 				remaining -= skb_frag_size(frags);
1806 				frags++;
1807 			}
1808 			zc->recv_skip_hint -= remaining;
1809 			break;
1810 		}
1811 		ret = vm_insert_page(vma, address + length,
1812 				     skb_frag_page(frags));
1813 		if (ret)
1814 			break;
1815 		length += PAGE_SIZE;
1816 		seq += PAGE_SIZE;
1817 		zc->recv_skip_hint -= PAGE_SIZE;
1818 		frags++;
1819 	}
1820 out:
1821 	up_read(&current->mm->mmap_sem);
1822 	if (length) {
1823 		WRITE_ONCE(tp->copied_seq, seq);
1824 		tcp_rcv_space_adjust(sk);
1825 
1826 		/* Clean up data we have read: This will do ACK frames. */
1827 		tcp_recv_skb(sk, seq, &offset);
1828 		tcp_cleanup_rbuf(sk, length);
1829 		ret = 0;
1830 		if (length == zc->length)
1831 			zc->recv_skip_hint = 0;
1832 	} else {
1833 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1834 			ret = -EIO;
1835 	}
1836 	zc->length = length;
1837 	return ret;
1838 }
1839 #endif
1840 
1841 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1842 				    struct scm_timestamping_internal *tss)
1843 {
1844 	if (skb->tstamp)
1845 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1846 	else
1847 		tss->ts[0] = (struct timespec64) {0};
1848 
1849 	if (skb_hwtstamps(skb)->hwtstamp)
1850 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1851 	else
1852 		tss->ts[2] = (struct timespec64) {0};
1853 }
1854 
1855 /* Similar to __sock_recv_timestamp, but does not require an skb */
1856 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1857 			       struct scm_timestamping_internal *tss)
1858 {
1859 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1860 	bool has_timestamping = false;
1861 
1862 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1863 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1864 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1865 				if (new_tstamp) {
1866 					struct __kernel_timespec kts = {
1867 						.tv_sec = tss->ts[0].tv_sec,
1868 						.tv_nsec = tss->ts[0].tv_nsec,
1869 					};
1870 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1871 						 sizeof(kts), &kts);
1872 				} else {
1873 					struct __kernel_old_timespec ts_old = {
1874 						.tv_sec = tss->ts[0].tv_sec,
1875 						.tv_nsec = tss->ts[0].tv_nsec,
1876 					};
1877 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1878 						 sizeof(ts_old), &ts_old);
1879 				}
1880 			} else {
1881 				if (new_tstamp) {
1882 					struct __kernel_sock_timeval stv = {
1883 						.tv_sec = tss->ts[0].tv_sec,
1884 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1885 					};
1886 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1887 						 sizeof(stv), &stv);
1888 				} else {
1889 					struct __kernel_old_timeval tv = {
1890 						.tv_sec = tss->ts[0].tv_sec,
1891 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1892 					};
1893 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1894 						 sizeof(tv), &tv);
1895 				}
1896 			}
1897 		}
1898 
1899 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1900 			has_timestamping = true;
1901 		else
1902 			tss->ts[0] = (struct timespec64) {0};
1903 	}
1904 
1905 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1906 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1907 			has_timestamping = true;
1908 		else
1909 			tss->ts[2] = (struct timespec64) {0};
1910 	}
1911 
1912 	if (has_timestamping) {
1913 		tss->ts[1] = (struct timespec64) {0};
1914 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1915 			put_cmsg_scm_timestamping64(msg, tss);
1916 		else
1917 			put_cmsg_scm_timestamping(msg, tss);
1918 	}
1919 }
1920 
1921 static int tcp_inq_hint(struct sock *sk)
1922 {
1923 	const struct tcp_sock *tp = tcp_sk(sk);
1924 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1925 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1926 	int inq;
1927 
1928 	inq = rcv_nxt - copied_seq;
1929 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1930 		lock_sock(sk);
1931 		inq = tp->rcv_nxt - tp->copied_seq;
1932 		release_sock(sk);
1933 	}
1934 	/* After receiving a FIN, tell the user-space to continue reading
1935 	 * by returning a non-zero inq.
1936 	 */
1937 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
1938 		inq = 1;
1939 	return inq;
1940 }
1941 
1942 /*
1943  *	This routine copies from a sock struct into the user buffer.
1944  *
1945  *	Technical note: in 2.3 we work on _locked_ socket, so that
1946  *	tricks with *seq access order and skb->users are not required.
1947  *	Probably, code can be easily improved even more.
1948  */
1949 
1950 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1951 		int flags, int *addr_len)
1952 {
1953 	struct tcp_sock *tp = tcp_sk(sk);
1954 	int copied = 0;
1955 	u32 peek_seq;
1956 	u32 *seq;
1957 	unsigned long used;
1958 	int err, inq;
1959 	int target;		/* Read at least this many bytes */
1960 	long timeo;
1961 	struct sk_buff *skb, *last;
1962 	u32 urg_hole = 0;
1963 	struct scm_timestamping_internal tss;
1964 	int cmsg_flags;
1965 
1966 	if (unlikely(flags & MSG_ERRQUEUE))
1967 		return inet_recv_error(sk, msg, len, addr_len);
1968 
1969 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1970 	    (sk->sk_state == TCP_ESTABLISHED))
1971 		sk_busy_loop(sk, nonblock);
1972 
1973 	lock_sock(sk);
1974 
1975 	err = -ENOTCONN;
1976 	if (sk->sk_state == TCP_LISTEN)
1977 		goto out;
1978 
1979 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
1980 	timeo = sock_rcvtimeo(sk, nonblock);
1981 
1982 	/* Urgent data needs to be handled specially. */
1983 	if (flags & MSG_OOB)
1984 		goto recv_urg;
1985 
1986 	if (unlikely(tp->repair)) {
1987 		err = -EPERM;
1988 		if (!(flags & MSG_PEEK))
1989 			goto out;
1990 
1991 		if (tp->repair_queue == TCP_SEND_QUEUE)
1992 			goto recv_sndq;
1993 
1994 		err = -EINVAL;
1995 		if (tp->repair_queue == TCP_NO_QUEUE)
1996 			goto out;
1997 
1998 		/* 'common' recv queue MSG_PEEK-ing */
1999 	}
2000 
2001 	seq = &tp->copied_seq;
2002 	if (flags & MSG_PEEK) {
2003 		peek_seq = tp->copied_seq;
2004 		seq = &peek_seq;
2005 	}
2006 
2007 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2008 
2009 	do {
2010 		u32 offset;
2011 
2012 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2013 		if (tp->urg_data && tp->urg_seq == *seq) {
2014 			if (copied)
2015 				break;
2016 			if (signal_pending(current)) {
2017 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2018 				break;
2019 			}
2020 		}
2021 
2022 		/* Next get a buffer. */
2023 
2024 		last = skb_peek_tail(&sk->sk_receive_queue);
2025 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2026 			last = skb;
2027 			/* Now that we have two receive queues this
2028 			 * shouldn't happen.
2029 			 */
2030 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2031 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2032 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2033 				 flags))
2034 				break;
2035 
2036 			offset = *seq - TCP_SKB_CB(skb)->seq;
2037 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2038 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2039 				offset--;
2040 			}
2041 			if (offset < skb->len)
2042 				goto found_ok_skb;
2043 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2044 				goto found_fin_ok;
2045 			WARN(!(flags & MSG_PEEK),
2046 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2047 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2048 		}
2049 
2050 		/* Well, if we have backlog, try to process it now yet. */
2051 
2052 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2053 			break;
2054 
2055 		if (copied) {
2056 			if (sk->sk_err ||
2057 			    sk->sk_state == TCP_CLOSE ||
2058 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2059 			    !timeo ||
2060 			    signal_pending(current))
2061 				break;
2062 		} else {
2063 			if (sock_flag(sk, SOCK_DONE))
2064 				break;
2065 
2066 			if (sk->sk_err) {
2067 				copied = sock_error(sk);
2068 				break;
2069 			}
2070 
2071 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2072 				break;
2073 
2074 			if (sk->sk_state == TCP_CLOSE) {
2075 				/* This occurs when user tries to read
2076 				 * from never connected socket.
2077 				 */
2078 				copied = -ENOTCONN;
2079 				break;
2080 			}
2081 
2082 			if (!timeo) {
2083 				copied = -EAGAIN;
2084 				break;
2085 			}
2086 
2087 			if (signal_pending(current)) {
2088 				copied = sock_intr_errno(timeo);
2089 				break;
2090 			}
2091 		}
2092 
2093 		tcp_cleanup_rbuf(sk, copied);
2094 
2095 		if (copied >= target) {
2096 			/* Do not sleep, just process backlog. */
2097 			release_sock(sk);
2098 			lock_sock(sk);
2099 		} else {
2100 			sk_wait_data(sk, &timeo, last);
2101 		}
2102 
2103 		if ((flags & MSG_PEEK) &&
2104 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2105 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2106 					    current->comm,
2107 					    task_pid_nr(current));
2108 			peek_seq = tp->copied_seq;
2109 		}
2110 		continue;
2111 
2112 found_ok_skb:
2113 		/* Ok so how much can we use? */
2114 		used = skb->len - offset;
2115 		if (len < used)
2116 			used = len;
2117 
2118 		/* Do we have urgent data here? */
2119 		if (tp->urg_data) {
2120 			u32 urg_offset = tp->urg_seq - *seq;
2121 			if (urg_offset < used) {
2122 				if (!urg_offset) {
2123 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2124 						WRITE_ONCE(*seq, *seq + 1);
2125 						urg_hole++;
2126 						offset++;
2127 						used--;
2128 						if (!used)
2129 							goto skip_copy;
2130 					}
2131 				} else
2132 					used = urg_offset;
2133 			}
2134 		}
2135 
2136 		if (!(flags & MSG_TRUNC)) {
2137 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2138 			if (err) {
2139 				/* Exception. Bailout! */
2140 				if (!copied)
2141 					copied = -EFAULT;
2142 				break;
2143 			}
2144 		}
2145 
2146 		WRITE_ONCE(*seq, *seq + used);
2147 		copied += used;
2148 		len -= used;
2149 
2150 		tcp_rcv_space_adjust(sk);
2151 
2152 skip_copy:
2153 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2154 			tp->urg_data = 0;
2155 			tcp_fast_path_check(sk);
2156 		}
2157 		if (used + offset < skb->len)
2158 			continue;
2159 
2160 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2161 			tcp_update_recv_tstamps(skb, &tss);
2162 			cmsg_flags |= 2;
2163 		}
2164 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2165 			goto found_fin_ok;
2166 		if (!(flags & MSG_PEEK))
2167 			sk_eat_skb(sk, skb);
2168 		continue;
2169 
2170 found_fin_ok:
2171 		/* Process the FIN. */
2172 		WRITE_ONCE(*seq, *seq + 1);
2173 		if (!(flags & MSG_PEEK))
2174 			sk_eat_skb(sk, skb);
2175 		break;
2176 	} while (len > 0);
2177 
2178 	/* According to UNIX98, msg_name/msg_namelen are ignored
2179 	 * on connected socket. I was just happy when found this 8) --ANK
2180 	 */
2181 
2182 	/* Clean up data we have read: This will do ACK frames. */
2183 	tcp_cleanup_rbuf(sk, copied);
2184 
2185 	release_sock(sk);
2186 
2187 	if (cmsg_flags) {
2188 		if (cmsg_flags & 2)
2189 			tcp_recv_timestamp(msg, sk, &tss);
2190 		if (cmsg_flags & 1) {
2191 			inq = tcp_inq_hint(sk);
2192 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2193 		}
2194 	}
2195 
2196 	return copied;
2197 
2198 out:
2199 	release_sock(sk);
2200 	return err;
2201 
2202 recv_urg:
2203 	err = tcp_recv_urg(sk, msg, len, flags);
2204 	goto out;
2205 
2206 recv_sndq:
2207 	err = tcp_peek_sndq(sk, msg, len);
2208 	goto out;
2209 }
2210 EXPORT_SYMBOL(tcp_recvmsg);
2211 
2212 void tcp_set_state(struct sock *sk, int state)
2213 {
2214 	int oldstate = sk->sk_state;
2215 
2216 	/* We defined a new enum for TCP states that are exported in BPF
2217 	 * so as not force the internal TCP states to be frozen. The
2218 	 * following checks will detect if an internal state value ever
2219 	 * differs from the BPF value. If this ever happens, then we will
2220 	 * need to remap the internal value to the BPF value before calling
2221 	 * tcp_call_bpf_2arg.
2222 	 */
2223 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2224 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2225 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2226 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2227 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2228 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2229 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2230 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2231 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2232 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2233 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2234 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2235 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2236 
2237 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2238 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2239 
2240 	switch (state) {
2241 	case TCP_ESTABLISHED:
2242 		if (oldstate != TCP_ESTABLISHED)
2243 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2244 		break;
2245 
2246 	case TCP_CLOSE:
2247 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2248 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2249 
2250 		sk->sk_prot->unhash(sk);
2251 		if (inet_csk(sk)->icsk_bind_hash &&
2252 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2253 			inet_put_port(sk);
2254 		/* fall through */
2255 	default:
2256 		if (oldstate == TCP_ESTABLISHED)
2257 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2258 	}
2259 
2260 	/* Change state AFTER socket is unhashed to avoid closed
2261 	 * socket sitting in hash tables.
2262 	 */
2263 	inet_sk_state_store(sk, state);
2264 }
2265 EXPORT_SYMBOL_GPL(tcp_set_state);
2266 
2267 /*
2268  *	State processing on a close. This implements the state shift for
2269  *	sending our FIN frame. Note that we only send a FIN for some
2270  *	states. A shutdown() may have already sent the FIN, or we may be
2271  *	closed.
2272  */
2273 
2274 static const unsigned char new_state[16] = {
2275   /* current state:        new state:      action:	*/
2276   [0 /* (Invalid) */]	= TCP_CLOSE,
2277   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2278   [TCP_SYN_SENT]	= TCP_CLOSE,
2279   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2280   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2281   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2282   [TCP_TIME_WAIT]	= TCP_CLOSE,
2283   [TCP_CLOSE]		= TCP_CLOSE,
2284   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2285   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2286   [TCP_LISTEN]		= TCP_CLOSE,
2287   [TCP_CLOSING]		= TCP_CLOSING,
2288   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2289 };
2290 
2291 static int tcp_close_state(struct sock *sk)
2292 {
2293 	int next = (int)new_state[sk->sk_state];
2294 	int ns = next & TCP_STATE_MASK;
2295 
2296 	tcp_set_state(sk, ns);
2297 
2298 	return next & TCP_ACTION_FIN;
2299 }
2300 
2301 /*
2302  *	Shutdown the sending side of a connection. Much like close except
2303  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2304  */
2305 
2306 void tcp_shutdown(struct sock *sk, int how)
2307 {
2308 	/*	We need to grab some memory, and put together a FIN,
2309 	 *	and then put it into the queue to be sent.
2310 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2311 	 */
2312 	if (!(how & SEND_SHUTDOWN))
2313 		return;
2314 
2315 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2316 	if ((1 << sk->sk_state) &
2317 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2318 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2319 		/* Clear out any half completed packets.  FIN if needed. */
2320 		if (tcp_close_state(sk))
2321 			tcp_send_fin(sk);
2322 	}
2323 }
2324 EXPORT_SYMBOL(tcp_shutdown);
2325 
2326 bool tcp_check_oom(struct sock *sk, int shift)
2327 {
2328 	bool too_many_orphans, out_of_socket_memory;
2329 
2330 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2331 	out_of_socket_memory = tcp_out_of_memory(sk);
2332 
2333 	if (too_many_orphans)
2334 		net_info_ratelimited("too many orphaned sockets\n");
2335 	if (out_of_socket_memory)
2336 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2337 	return too_many_orphans || out_of_socket_memory;
2338 }
2339 
2340 void tcp_close(struct sock *sk, long timeout)
2341 {
2342 	struct sk_buff *skb;
2343 	int data_was_unread = 0;
2344 	int state;
2345 
2346 	lock_sock(sk);
2347 	sk->sk_shutdown = SHUTDOWN_MASK;
2348 
2349 	if (sk->sk_state == TCP_LISTEN) {
2350 		tcp_set_state(sk, TCP_CLOSE);
2351 
2352 		/* Special case. */
2353 		inet_csk_listen_stop(sk);
2354 
2355 		goto adjudge_to_death;
2356 	}
2357 
2358 	/*  We need to flush the recv. buffs.  We do this only on the
2359 	 *  descriptor close, not protocol-sourced closes, because the
2360 	 *  reader process may not have drained the data yet!
2361 	 */
2362 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2363 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2364 
2365 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2366 			len--;
2367 		data_was_unread += len;
2368 		__kfree_skb(skb);
2369 	}
2370 
2371 	sk_mem_reclaim(sk);
2372 
2373 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2374 	if (sk->sk_state == TCP_CLOSE)
2375 		goto adjudge_to_death;
2376 
2377 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2378 	 * data was lost. To witness the awful effects of the old behavior of
2379 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2380 	 * GET in an FTP client, suspend the process, wait for the client to
2381 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2382 	 * Note: timeout is always zero in such a case.
2383 	 */
2384 	if (unlikely(tcp_sk(sk)->repair)) {
2385 		sk->sk_prot->disconnect(sk, 0);
2386 	} else if (data_was_unread) {
2387 		/* Unread data was tossed, zap the connection. */
2388 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2389 		tcp_set_state(sk, TCP_CLOSE);
2390 		tcp_send_active_reset(sk, sk->sk_allocation);
2391 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2392 		/* Check zero linger _after_ checking for unread data. */
2393 		sk->sk_prot->disconnect(sk, 0);
2394 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2395 	} else if (tcp_close_state(sk)) {
2396 		/* We FIN if the application ate all the data before
2397 		 * zapping the connection.
2398 		 */
2399 
2400 		/* RED-PEN. Formally speaking, we have broken TCP state
2401 		 * machine. State transitions:
2402 		 *
2403 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2404 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2405 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2406 		 *
2407 		 * are legal only when FIN has been sent (i.e. in window),
2408 		 * rather than queued out of window. Purists blame.
2409 		 *
2410 		 * F.e. "RFC state" is ESTABLISHED,
2411 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2412 		 *
2413 		 * The visible declinations are that sometimes
2414 		 * we enter time-wait state, when it is not required really
2415 		 * (harmless), do not send active resets, when they are
2416 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2417 		 * they look as CLOSING or LAST_ACK for Linux)
2418 		 * Probably, I missed some more holelets.
2419 		 * 						--ANK
2420 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2421 		 * in a single packet! (May consider it later but will
2422 		 * probably need API support or TCP_CORK SYN-ACK until
2423 		 * data is written and socket is closed.)
2424 		 */
2425 		tcp_send_fin(sk);
2426 	}
2427 
2428 	sk_stream_wait_close(sk, timeout);
2429 
2430 adjudge_to_death:
2431 	state = sk->sk_state;
2432 	sock_hold(sk);
2433 	sock_orphan(sk);
2434 
2435 	local_bh_disable();
2436 	bh_lock_sock(sk);
2437 	/* remove backlog if any, without releasing ownership. */
2438 	__release_sock(sk);
2439 
2440 	percpu_counter_inc(sk->sk_prot->orphan_count);
2441 
2442 	/* Have we already been destroyed by a softirq or backlog? */
2443 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2444 		goto out;
2445 
2446 	/*	This is a (useful) BSD violating of the RFC. There is a
2447 	 *	problem with TCP as specified in that the other end could
2448 	 *	keep a socket open forever with no application left this end.
2449 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2450 	 *	our end. If they send after that then tough - BUT: long enough
2451 	 *	that we won't make the old 4*rto = almost no time - whoops
2452 	 *	reset mistake.
2453 	 *
2454 	 *	Nope, it was not mistake. It is really desired behaviour
2455 	 *	f.e. on http servers, when such sockets are useless, but
2456 	 *	consume significant resources. Let's do it with special
2457 	 *	linger2	option.					--ANK
2458 	 */
2459 
2460 	if (sk->sk_state == TCP_FIN_WAIT2) {
2461 		struct tcp_sock *tp = tcp_sk(sk);
2462 		if (tp->linger2 < 0) {
2463 			tcp_set_state(sk, TCP_CLOSE);
2464 			tcp_send_active_reset(sk, GFP_ATOMIC);
2465 			__NET_INC_STATS(sock_net(sk),
2466 					LINUX_MIB_TCPABORTONLINGER);
2467 		} else {
2468 			const int tmo = tcp_fin_time(sk);
2469 
2470 			if (tmo > TCP_TIMEWAIT_LEN) {
2471 				inet_csk_reset_keepalive_timer(sk,
2472 						tmo - TCP_TIMEWAIT_LEN);
2473 			} else {
2474 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2475 				goto out;
2476 			}
2477 		}
2478 	}
2479 	if (sk->sk_state != TCP_CLOSE) {
2480 		sk_mem_reclaim(sk);
2481 		if (tcp_check_oom(sk, 0)) {
2482 			tcp_set_state(sk, TCP_CLOSE);
2483 			tcp_send_active_reset(sk, GFP_ATOMIC);
2484 			__NET_INC_STATS(sock_net(sk),
2485 					LINUX_MIB_TCPABORTONMEMORY);
2486 		} else if (!check_net(sock_net(sk))) {
2487 			/* Not possible to send reset; just close */
2488 			tcp_set_state(sk, TCP_CLOSE);
2489 		}
2490 	}
2491 
2492 	if (sk->sk_state == TCP_CLOSE) {
2493 		struct request_sock *req;
2494 
2495 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2496 						lockdep_sock_is_held(sk));
2497 		/* We could get here with a non-NULL req if the socket is
2498 		 * aborted (e.g., closed with unread data) before 3WHS
2499 		 * finishes.
2500 		 */
2501 		if (req)
2502 			reqsk_fastopen_remove(sk, req, false);
2503 		inet_csk_destroy_sock(sk);
2504 	}
2505 	/* Otherwise, socket is reprieved until protocol close. */
2506 
2507 out:
2508 	bh_unlock_sock(sk);
2509 	local_bh_enable();
2510 	release_sock(sk);
2511 	sock_put(sk);
2512 }
2513 EXPORT_SYMBOL(tcp_close);
2514 
2515 /* These states need RST on ABORT according to RFC793 */
2516 
2517 static inline bool tcp_need_reset(int state)
2518 {
2519 	return (1 << state) &
2520 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2521 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2522 }
2523 
2524 static void tcp_rtx_queue_purge(struct sock *sk)
2525 {
2526 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2527 
2528 	tcp_sk(sk)->highest_sack = NULL;
2529 	while (p) {
2530 		struct sk_buff *skb = rb_to_skb(p);
2531 
2532 		p = rb_next(p);
2533 		/* Since we are deleting whole queue, no need to
2534 		 * list_del(&skb->tcp_tsorted_anchor)
2535 		 */
2536 		tcp_rtx_queue_unlink(skb, sk);
2537 		sk_wmem_free_skb(sk, skb);
2538 	}
2539 }
2540 
2541 void tcp_write_queue_purge(struct sock *sk)
2542 {
2543 	struct sk_buff *skb;
2544 
2545 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2546 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2547 		tcp_skb_tsorted_anchor_cleanup(skb);
2548 		sk_wmem_free_skb(sk, skb);
2549 	}
2550 	tcp_rtx_queue_purge(sk);
2551 	skb = sk->sk_tx_skb_cache;
2552 	if (skb) {
2553 		__kfree_skb(skb);
2554 		sk->sk_tx_skb_cache = NULL;
2555 	}
2556 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2557 	sk_mem_reclaim(sk);
2558 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2559 	tcp_sk(sk)->packets_out = 0;
2560 	inet_csk(sk)->icsk_backoff = 0;
2561 }
2562 
2563 int tcp_disconnect(struct sock *sk, int flags)
2564 {
2565 	struct inet_sock *inet = inet_sk(sk);
2566 	struct inet_connection_sock *icsk = inet_csk(sk);
2567 	struct tcp_sock *tp = tcp_sk(sk);
2568 	int old_state = sk->sk_state;
2569 	u32 seq;
2570 
2571 	if (old_state != TCP_CLOSE)
2572 		tcp_set_state(sk, TCP_CLOSE);
2573 
2574 	/* ABORT function of RFC793 */
2575 	if (old_state == TCP_LISTEN) {
2576 		inet_csk_listen_stop(sk);
2577 	} else if (unlikely(tp->repair)) {
2578 		sk->sk_err = ECONNABORTED;
2579 	} else if (tcp_need_reset(old_state) ||
2580 		   (tp->snd_nxt != tp->write_seq &&
2581 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2582 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2583 		 * states
2584 		 */
2585 		tcp_send_active_reset(sk, gfp_any());
2586 		sk->sk_err = ECONNRESET;
2587 	} else if (old_state == TCP_SYN_SENT)
2588 		sk->sk_err = ECONNRESET;
2589 
2590 	tcp_clear_xmit_timers(sk);
2591 	__skb_queue_purge(&sk->sk_receive_queue);
2592 	if (sk->sk_rx_skb_cache) {
2593 		__kfree_skb(sk->sk_rx_skb_cache);
2594 		sk->sk_rx_skb_cache = NULL;
2595 	}
2596 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2597 	tp->urg_data = 0;
2598 	tcp_write_queue_purge(sk);
2599 	tcp_fastopen_active_disable_ofo_check(sk);
2600 	skb_rbtree_purge(&tp->out_of_order_queue);
2601 
2602 	inet->inet_dport = 0;
2603 
2604 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2605 		inet_reset_saddr(sk);
2606 
2607 	sk->sk_shutdown = 0;
2608 	sock_reset_flag(sk, SOCK_DONE);
2609 	tp->srtt_us = 0;
2610 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2611 	tp->rcv_rtt_last_tsecr = 0;
2612 
2613 	seq = tp->write_seq + tp->max_window + 2;
2614 	if (!seq)
2615 		seq = 1;
2616 	WRITE_ONCE(tp->write_seq, seq);
2617 
2618 	icsk->icsk_backoff = 0;
2619 	icsk->icsk_probes_out = 0;
2620 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2621 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2622 	tp->snd_cwnd = TCP_INIT_CWND;
2623 	tp->snd_cwnd_cnt = 0;
2624 	tp->window_clamp = 0;
2625 	tp->delivered = 0;
2626 	tp->delivered_ce = 0;
2627 	tcp_set_ca_state(sk, TCP_CA_Open);
2628 	tp->is_sack_reneg = 0;
2629 	tcp_clear_retrans(tp);
2630 	tp->total_retrans = 0;
2631 	inet_csk_delack_init(sk);
2632 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2633 	 * issue in __tcp_select_window()
2634 	 */
2635 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2636 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2637 	__sk_dst_reset(sk);
2638 	dst_release(sk->sk_rx_dst);
2639 	sk->sk_rx_dst = NULL;
2640 	tcp_saved_syn_free(tp);
2641 	tp->compressed_ack = 0;
2642 	tp->segs_in = 0;
2643 	tp->segs_out = 0;
2644 	tp->bytes_sent = 0;
2645 	tp->bytes_acked = 0;
2646 	tp->bytes_received = 0;
2647 	tp->bytes_retrans = 0;
2648 	tp->data_segs_in = 0;
2649 	tp->data_segs_out = 0;
2650 	tp->duplicate_sack[0].start_seq = 0;
2651 	tp->duplicate_sack[0].end_seq = 0;
2652 	tp->dsack_dups = 0;
2653 	tp->reord_seen = 0;
2654 	tp->retrans_out = 0;
2655 	tp->sacked_out = 0;
2656 	tp->tlp_high_seq = 0;
2657 	tp->last_oow_ack_time = 0;
2658 	/* There's a bubble in the pipe until at least the first ACK. */
2659 	tp->app_limited = ~0U;
2660 	tp->rack.mstamp = 0;
2661 	tp->rack.advanced = 0;
2662 	tp->rack.reo_wnd_steps = 1;
2663 	tp->rack.last_delivered = 0;
2664 	tp->rack.reo_wnd_persist = 0;
2665 	tp->rack.dsack_seen = 0;
2666 	tp->syn_data_acked = 0;
2667 	tp->rx_opt.saw_tstamp = 0;
2668 	tp->rx_opt.dsack = 0;
2669 	tp->rx_opt.num_sacks = 0;
2670 	tp->rcv_ooopack = 0;
2671 
2672 
2673 	/* Clean up fastopen related fields */
2674 	tcp_free_fastopen_req(tp);
2675 	inet->defer_connect = 0;
2676 	tp->fastopen_client_fail = 0;
2677 
2678 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2679 
2680 	if (sk->sk_frag.page) {
2681 		put_page(sk->sk_frag.page);
2682 		sk->sk_frag.page = NULL;
2683 		sk->sk_frag.offset = 0;
2684 	}
2685 
2686 	sk->sk_error_report(sk);
2687 	return 0;
2688 }
2689 EXPORT_SYMBOL(tcp_disconnect);
2690 
2691 static inline bool tcp_can_repair_sock(const struct sock *sk)
2692 {
2693 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2694 		(sk->sk_state != TCP_LISTEN);
2695 }
2696 
2697 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2698 {
2699 	struct tcp_repair_window opt;
2700 
2701 	if (!tp->repair)
2702 		return -EPERM;
2703 
2704 	if (len != sizeof(opt))
2705 		return -EINVAL;
2706 
2707 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2708 		return -EFAULT;
2709 
2710 	if (opt.max_window < opt.snd_wnd)
2711 		return -EINVAL;
2712 
2713 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2714 		return -EINVAL;
2715 
2716 	if (after(opt.rcv_wup, tp->rcv_nxt))
2717 		return -EINVAL;
2718 
2719 	tp->snd_wl1	= opt.snd_wl1;
2720 	tp->snd_wnd	= opt.snd_wnd;
2721 	tp->max_window	= opt.max_window;
2722 
2723 	tp->rcv_wnd	= opt.rcv_wnd;
2724 	tp->rcv_wup	= opt.rcv_wup;
2725 
2726 	return 0;
2727 }
2728 
2729 static int tcp_repair_options_est(struct sock *sk,
2730 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2731 {
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 	struct tcp_repair_opt opt;
2734 
2735 	while (len >= sizeof(opt)) {
2736 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2737 			return -EFAULT;
2738 
2739 		optbuf++;
2740 		len -= sizeof(opt);
2741 
2742 		switch (opt.opt_code) {
2743 		case TCPOPT_MSS:
2744 			tp->rx_opt.mss_clamp = opt.opt_val;
2745 			tcp_mtup_init(sk);
2746 			break;
2747 		case TCPOPT_WINDOW:
2748 			{
2749 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2750 				u16 rcv_wscale = opt.opt_val >> 16;
2751 
2752 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2753 					return -EFBIG;
2754 
2755 				tp->rx_opt.snd_wscale = snd_wscale;
2756 				tp->rx_opt.rcv_wscale = rcv_wscale;
2757 				tp->rx_opt.wscale_ok = 1;
2758 			}
2759 			break;
2760 		case TCPOPT_SACK_PERM:
2761 			if (opt.opt_val != 0)
2762 				return -EINVAL;
2763 
2764 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2765 			break;
2766 		case TCPOPT_TIMESTAMP:
2767 			if (opt.opt_val != 0)
2768 				return -EINVAL;
2769 
2770 			tp->rx_opt.tstamp_ok = 1;
2771 			break;
2772 		}
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2779 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2780 
2781 static void tcp_enable_tx_delay(void)
2782 {
2783 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2784 		static int __tcp_tx_delay_enabled = 0;
2785 
2786 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2787 			static_branch_enable(&tcp_tx_delay_enabled);
2788 			pr_info("TCP_TX_DELAY enabled\n");
2789 		}
2790 	}
2791 }
2792 
2793 /*
2794  *	Socket option code for TCP.
2795  */
2796 static int do_tcp_setsockopt(struct sock *sk, int level,
2797 		int optname, char __user *optval, unsigned int optlen)
2798 {
2799 	struct tcp_sock *tp = tcp_sk(sk);
2800 	struct inet_connection_sock *icsk = inet_csk(sk);
2801 	struct net *net = sock_net(sk);
2802 	int val;
2803 	int err = 0;
2804 
2805 	/* These are data/string values, all the others are ints */
2806 	switch (optname) {
2807 	case TCP_CONGESTION: {
2808 		char name[TCP_CA_NAME_MAX];
2809 
2810 		if (optlen < 1)
2811 			return -EINVAL;
2812 
2813 		val = strncpy_from_user(name, optval,
2814 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2815 		if (val < 0)
2816 			return -EFAULT;
2817 		name[val] = 0;
2818 
2819 		lock_sock(sk);
2820 		err = tcp_set_congestion_control(sk, name, true, true,
2821 						 ns_capable(sock_net(sk)->user_ns,
2822 							    CAP_NET_ADMIN));
2823 		release_sock(sk);
2824 		return err;
2825 	}
2826 	case TCP_ULP: {
2827 		char name[TCP_ULP_NAME_MAX];
2828 
2829 		if (optlen < 1)
2830 			return -EINVAL;
2831 
2832 		val = strncpy_from_user(name, optval,
2833 					min_t(long, TCP_ULP_NAME_MAX - 1,
2834 					      optlen));
2835 		if (val < 0)
2836 			return -EFAULT;
2837 		name[val] = 0;
2838 
2839 		lock_sock(sk);
2840 		err = tcp_set_ulp(sk, name);
2841 		release_sock(sk);
2842 		return err;
2843 	}
2844 	case TCP_FASTOPEN_KEY: {
2845 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
2846 		__u8 *backup_key = NULL;
2847 
2848 		/* Allow a backup key as well to facilitate key rotation
2849 		 * First key is the active one.
2850 		 */
2851 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
2852 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
2853 			return -EINVAL;
2854 
2855 		if (copy_from_user(key, optval, optlen))
2856 			return -EFAULT;
2857 
2858 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
2859 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
2860 
2861 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
2862 	}
2863 	default:
2864 		/* fallthru */
2865 		break;
2866 	}
2867 
2868 	if (optlen < sizeof(int))
2869 		return -EINVAL;
2870 
2871 	if (get_user(val, (int __user *)optval))
2872 		return -EFAULT;
2873 
2874 	lock_sock(sk);
2875 
2876 	switch (optname) {
2877 	case TCP_MAXSEG:
2878 		/* Values greater than interface MTU won't take effect. However
2879 		 * at the point when this call is done we typically don't yet
2880 		 * know which interface is going to be used
2881 		 */
2882 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2883 			err = -EINVAL;
2884 			break;
2885 		}
2886 		tp->rx_opt.user_mss = val;
2887 		break;
2888 
2889 	case TCP_NODELAY:
2890 		if (val) {
2891 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2892 			 * this option on corked socket is remembered, but
2893 			 * it is not activated until cork is cleared.
2894 			 *
2895 			 * However, when TCP_NODELAY is set we make
2896 			 * an explicit push, which overrides even TCP_CORK
2897 			 * for currently queued segments.
2898 			 */
2899 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2900 			tcp_push_pending_frames(sk);
2901 		} else {
2902 			tp->nonagle &= ~TCP_NAGLE_OFF;
2903 		}
2904 		break;
2905 
2906 	case TCP_THIN_LINEAR_TIMEOUTS:
2907 		if (val < 0 || val > 1)
2908 			err = -EINVAL;
2909 		else
2910 			tp->thin_lto = val;
2911 		break;
2912 
2913 	case TCP_THIN_DUPACK:
2914 		if (val < 0 || val > 1)
2915 			err = -EINVAL;
2916 		break;
2917 
2918 	case TCP_REPAIR:
2919 		if (!tcp_can_repair_sock(sk))
2920 			err = -EPERM;
2921 		else if (val == TCP_REPAIR_ON) {
2922 			tp->repair = 1;
2923 			sk->sk_reuse = SK_FORCE_REUSE;
2924 			tp->repair_queue = TCP_NO_QUEUE;
2925 		} else if (val == TCP_REPAIR_OFF) {
2926 			tp->repair = 0;
2927 			sk->sk_reuse = SK_NO_REUSE;
2928 			tcp_send_window_probe(sk);
2929 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
2930 			tp->repair = 0;
2931 			sk->sk_reuse = SK_NO_REUSE;
2932 		} else
2933 			err = -EINVAL;
2934 
2935 		break;
2936 
2937 	case TCP_REPAIR_QUEUE:
2938 		if (!tp->repair)
2939 			err = -EPERM;
2940 		else if ((unsigned int)val < TCP_QUEUES_NR)
2941 			tp->repair_queue = val;
2942 		else
2943 			err = -EINVAL;
2944 		break;
2945 
2946 	case TCP_QUEUE_SEQ:
2947 		if (sk->sk_state != TCP_CLOSE)
2948 			err = -EPERM;
2949 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2950 			WRITE_ONCE(tp->write_seq, val);
2951 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2952 			WRITE_ONCE(tp->rcv_nxt, val);
2953 		else
2954 			err = -EINVAL;
2955 		break;
2956 
2957 	case TCP_REPAIR_OPTIONS:
2958 		if (!tp->repair)
2959 			err = -EINVAL;
2960 		else if (sk->sk_state == TCP_ESTABLISHED)
2961 			err = tcp_repair_options_est(sk,
2962 					(struct tcp_repair_opt __user *)optval,
2963 					optlen);
2964 		else
2965 			err = -EPERM;
2966 		break;
2967 
2968 	case TCP_CORK:
2969 		/* When set indicates to always queue non-full frames.
2970 		 * Later the user clears this option and we transmit
2971 		 * any pending partial frames in the queue.  This is
2972 		 * meant to be used alongside sendfile() to get properly
2973 		 * filled frames when the user (for example) must write
2974 		 * out headers with a write() call first and then use
2975 		 * sendfile to send out the data parts.
2976 		 *
2977 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2978 		 * stronger than TCP_NODELAY.
2979 		 */
2980 		if (val) {
2981 			tp->nonagle |= TCP_NAGLE_CORK;
2982 		} else {
2983 			tp->nonagle &= ~TCP_NAGLE_CORK;
2984 			if (tp->nonagle&TCP_NAGLE_OFF)
2985 				tp->nonagle |= TCP_NAGLE_PUSH;
2986 			tcp_push_pending_frames(sk);
2987 		}
2988 		break;
2989 
2990 	case TCP_KEEPIDLE:
2991 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2992 			err = -EINVAL;
2993 		else {
2994 			tp->keepalive_time = val * HZ;
2995 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2996 			    !((1 << sk->sk_state) &
2997 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2998 				u32 elapsed = keepalive_time_elapsed(tp);
2999 				if (tp->keepalive_time > elapsed)
3000 					elapsed = tp->keepalive_time - elapsed;
3001 				else
3002 					elapsed = 0;
3003 				inet_csk_reset_keepalive_timer(sk, elapsed);
3004 			}
3005 		}
3006 		break;
3007 	case TCP_KEEPINTVL:
3008 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3009 			err = -EINVAL;
3010 		else
3011 			tp->keepalive_intvl = val * HZ;
3012 		break;
3013 	case TCP_KEEPCNT:
3014 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3015 			err = -EINVAL;
3016 		else
3017 			tp->keepalive_probes = val;
3018 		break;
3019 	case TCP_SYNCNT:
3020 		if (val < 1 || val > MAX_TCP_SYNCNT)
3021 			err = -EINVAL;
3022 		else
3023 			icsk->icsk_syn_retries = val;
3024 		break;
3025 
3026 	case TCP_SAVE_SYN:
3027 		if (val < 0 || val > 1)
3028 			err = -EINVAL;
3029 		else
3030 			tp->save_syn = val;
3031 		break;
3032 
3033 	case TCP_LINGER2:
3034 		if (val < 0)
3035 			tp->linger2 = -1;
3036 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
3037 			tp->linger2 = 0;
3038 		else
3039 			tp->linger2 = val * HZ;
3040 		break;
3041 
3042 	case TCP_DEFER_ACCEPT:
3043 		/* Translate value in seconds to number of retransmits */
3044 		icsk->icsk_accept_queue.rskq_defer_accept =
3045 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3046 					TCP_RTO_MAX / HZ);
3047 		break;
3048 
3049 	case TCP_WINDOW_CLAMP:
3050 		if (!val) {
3051 			if (sk->sk_state != TCP_CLOSE) {
3052 				err = -EINVAL;
3053 				break;
3054 			}
3055 			tp->window_clamp = 0;
3056 		} else
3057 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3058 						SOCK_MIN_RCVBUF / 2 : val;
3059 		break;
3060 
3061 	case TCP_QUICKACK:
3062 		if (!val) {
3063 			inet_csk_enter_pingpong_mode(sk);
3064 		} else {
3065 			inet_csk_exit_pingpong_mode(sk);
3066 			if ((1 << sk->sk_state) &
3067 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3068 			    inet_csk_ack_scheduled(sk)) {
3069 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3070 				tcp_cleanup_rbuf(sk, 1);
3071 				if (!(val & 1))
3072 					inet_csk_enter_pingpong_mode(sk);
3073 			}
3074 		}
3075 		break;
3076 
3077 #ifdef CONFIG_TCP_MD5SIG
3078 	case TCP_MD5SIG:
3079 	case TCP_MD5SIG_EXT:
3080 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3081 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3082 		else
3083 			err = -EINVAL;
3084 		break;
3085 #endif
3086 	case TCP_USER_TIMEOUT:
3087 		/* Cap the max time in ms TCP will retry or probe the window
3088 		 * before giving up and aborting (ETIMEDOUT) a connection.
3089 		 */
3090 		if (val < 0)
3091 			err = -EINVAL;
3092 		else
3093 			icsk->icsk_user_timeout = val;
3094 		break;
3095 
3096 	case TCP_FASTOPEN:
3097 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3098 		    TCPF_LISTEN))) {
3099 			tcp_fastopen_init_key_once(net);
3100 
3101 			fastopen_queue_tune(sk, val);
3102 		} else {
3103 			err = -EINVAL;
3104 		}
3105 		break;
3106 	case TCP_FASTOPEN_CONNECT:
3107 		if (val > 1 || val < 0) {
3108 			err = -EINVAL;
3109 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3110 			if (sk->sk_state == TCP_CLOSE)
3111 				tp->fastopen_connect = val;
3112 			else
3113 				err = -EINVAL;
3114 		} else {
3115 			err = -EOPNOTSUPP;
3116 		}
3117 		break;
3118 	case TCP_FASTOPEN_NO_COOKIE:
3119 		if (val > 1 || val < 0)
3120 			err = -EINVAL;
3121 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3122 			err = -EINVAL;
3123 		else
3124 			tp->fastopen_no_cookie = val;
3125 		break;
3126 	case TCP_TIMESTAMP:
3127 		if (!tp->repair)
3128 			err = -EPERM;
3129 		else
3130 			tp->tsoffset = val - tcp_time_stamp_raw();
3131 		break;
3132 	case TCP_REPAIR_WINDOW:
3133 		err = tcp_repair_set_window(tp, optval, optlen);
3134 		break;
3135 	case TCP_NOTSENT_LOWAT:
3136 		tp->notsent_lowat = val;
3137 		sk->sk_write_space(sk);
3138 		break;
3139 	case TCP_INQ:
3140 		if (val > 1 || val < 0)
3141 			err = -EINVAL;
3142 		else
3143 			tp->recvmsg_inq = val;
3144 		break;
3145 	case TCP_TX_DELAY:
3146 		if (val)
3147 			tcp_enable_tx_delay();
3148 		tp->tcp_tx_delay = val;
3149 		break;
3150 	default:
3151 		err = -ENOPROTOOPT;
3152 		break;
3153 	}
3154 
3155 	release_sock(sk);
3156 	return err;
3157 }
3158 
3159 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3160 		   unsigned int optlen)
3161 {
3162 	const struct inet_connection_sock *icsk = inet_csk(sk);
3163 
3164 	if (level != SOL_TCP)
3165 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3166 						     optval, optlen);
3167 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3168 }
3169 EXPORT_SYMBOL(tcp_setsockopt);
3170 
3171 #ifdef CONFIG_COMPAT
3172 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3173 			  char __user *optval, unsigned int optlen)
3174 {
3175 	if (level != SOL_TCP)
3176 		return inet_csk_compat_setsockopt(sk, level, optname,
3177 						  optval, optlen);
3178 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3179 }
3180 EXPORT_SYMBOL(compat_tcp_setsockopt);
3181 #endif
3182 
3183 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3184 				      struct tcp_info *info)
3185 {
3186 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3187 	enum tcp_chrono i;
3188 
3189 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3190 		stats[i] = tp->chrono_stat[i - 1];
3191 		if (i == tp->chrono_type)
3192 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3193 		stats[i] *= USEC_PER_SEC / HZ;
3194 		total += stats[i];
3195 	}
3196 
3197 	info->tcpi_busy_time = total;
3198 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3199 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3200 }
3201 
3202 /* Return information about state of tcp endpoint in API format. */
3203 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3204 {
3205 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3206 	const struct inet_connection_sock *icsk = inet_csk(sk);
3207 	unsigned long rate;
3208 	u32 now;
3209 	u64 rate64;
3210 	bool slow;
3211 
3212 	memset(info, 0, sizeof(*info));
3213 	if (sk->sk_type != SOCK_STREAM)
3214 		return;
3215 
3216 	info->tcpi_state = inet_sk_state_load(sk);
3217 
3218 	/* Report meaningful fields for all TCP states, including listeners */
3219 	rate = READ_ONCE(sk->sk_pacing_rate);
3220 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3221 	info->tcpi_pacing_rate = rate64;
3222 
3223 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3224 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3225 	info->tcpi_max_pacing_rate = rate64;
3226 
3227 	info->tcpi_reordering = tp->reordering;
3228 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3229 
3230 	if (info->tcpi_state == TCP_LISTEN) {
3231 		/* listeners aliased fields :
3232 		 * tcpi_unacked -> Number of children ready for accept()
3233 		 * tcpi_sacked  -> max backlog
3234 		 */
3235 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3236 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3237 		return;
3238 	}
3239 
3240 	slow = lock_sock_fast(sk);
3241 
3242 	info->tcpi_ca_state = icsk->icsk_ca_state;
3243 	info->tcpi_retransmits = icsk->icsk_retransmits;
3244 	info->tcpi_probes = icsk->icsk_probes_out;
3245 	info->tcpi_backoff = icsk->icsk_backoff;
3246 
3247 	if (tp->rx_opt.tstamp_ok)
3248 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3249 	if (tcp_is_sack(tp))
3250 		info->tcpi_options |= TCPI_OPT_SACK;
3251 	if (tp->rx_opt.wscale_ok) {
3252 		info->tcpi_options |= TCPI_OPT_WSCALE;
3253 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3254 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3255 	}
3256 
3257 	if (tp->ecn_flags & TCP_ECN_OK)
3258 		info->tcpi_options |= TCPI_OPT_ECN;
3259 	if (tp->ecn_flags & TCP_ECN_SEEN)
3260 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3261 	if (tp->syn_data_acked)
3262 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3263 
3264 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3265 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3266 	info->tcpi_snd_mss = tp->mss_cache;
3267 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3268 
3269 	info->tcpi_unacked = tp->packets_out;
3270 	info->tcpi_sacked = tp->sacked_out;
3271 
3272 	info->tcpi_lost = tp->lost_out;
3273 	info->tcpi_retrans = tp->retrans_out;
3274 
3275 	now = tcp_jiffies32;
3276 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3277 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3278 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3279 
3280 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3281 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3282 	info->tcpi_rtt = tp->srtt_us >> 3;
3283 	info->tcpi_rttvar = tp->mdev_us >> 2;
3284 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3285 	info->tcpi_advmss = tp->advmss;
3286 
3287 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3288 	info->tcpi_rcv_space = tp->rcvq_space.space;
3289 
3290 	info->tcpi_total_retrans = tp->total_retrans;
3291 
3292 	info->tcpi_bytes_acked = tp->bytes_acked;
3293 	info->tcpi_bytes_received = tp->bytes_received;
3294 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3295 	tcp_get_info_chrono_stats(tp, info);
3296 
3297 	info->tcpi_segs_out = tp->segs_out;
3298 	info->tcpi_segs_in = tp->segs_in;
3299 
3300 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3301 	info->tcpi_data_segs_in = tp->data_segs_in;
3302 	info->tcpi_data_segs_out = tp->data_segs_out;
3303 
3304 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3305 	rate64 = tcp_compute_delivery_rate(tp);
3306 	if (rate64)
3307 		info->tcpi_delivery_rate = rate64;
3308 	info->tcpi_delivered = tp->delivered;
3309 	info->tcpi_delivered_ce = tp->delivered_ce;
3310 	info->tcpi_bytes_sent = tp->bytes_sent;
3311 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3312 	info->tcpi_dsack_dups = tp->dsack_dups;
3313 	info->tcpi_reord_seen = tp->reord_seen;
3314 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3315 	info->tcpi_snd_wnd = tp->snd_wnd;
3316 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3317 	unlock_sock_fast(sk, slow);
3318 }
3319 EXPORT_SYMBOL_GPL(tcp_get_info);
3320 
3321 static size_t tcp_opt_stats_get_size(void)
3322 {
3323 	return
3324 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3325 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3326 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3327 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3328 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3329 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3330 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3331 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3332 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3333 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3334 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3335 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3336 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3337 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3338 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3339 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3340 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3341 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3342 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3343 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3344 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3345 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3346 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3347 		0;
3348 }
3349 
3350 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3351 {
3352 	const struct tcp_sock *tp = tcp_sk(sk);
3353 	struct sk_buff *stats;
3354 	struct tcp_info info;
3355 	unsigned long rate;
3356 	u64 rate64;
3357 
3358 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3359 	if (!stats)
3360 		return NULL;
3361 
3362 	tcp_get_info_chrono_stats(tp, &info);
3363 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3364 			  info.tcpi_busy_time, TCP_NLA_PAD);
3365 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3366 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3367 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3368 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3369 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3370 			  tp->data_segs_out, TCP_NLA_PAD);
3371 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3372 			  tp->total_retrans, TCP_NLA_PAD);
3373 
3374 	rate = READ_ONCE(sk->sk_pacing_rate);
3375 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3376 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3377 
3378 	rate64 = tcp_compute_delivery_rate(tp);
3379 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3380 
3381 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3382 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3383 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3384 
3385 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3386 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3387 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3388 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3389 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3390 
3391 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3392 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3393 
3394 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3395 			  TCP_NLA_PAD);
3396 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3397 			  TCP_NLA_PAD);
3398 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3399 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3400 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3401 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3402 
3403 	return stats;
3404 }
3405 
3406 static int do_tcp_getsockopt(struct sock *sk, int level,
3407 		int optname, char __user *optval, int __user *optlen)
3408 {
3409 	struct inet_connection_sock *icsk = inet_csk(sk);
3410 	struct tcp_sock *tp = tcp_sk(sk);
3411 	struct net *net = sock_net(sk);
3412 	int val, len;
3413 
3414 	if (get_user(len, optlen))
3415 		return -EFAULT;
3416 
3417 	len = min_t(unsigned int, len, sizeof(int));
3418 
3419 	if (len < 0)
3420 		return -EINVAL;
3421 
3422 	switch (optname) {
3423 	case TCP_MAXSEG:
3424 		val = tp->mss_cache;
3425 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3426 			val = tp->rx_opt.user_mss;
3427 		if (tp->repair)
3428 			val = tp->rx_opt.mss_clamp;
3429 		break;
3430 	case TCP_NODELAY:
3431 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3432 		break;
3433 	case TCP_CORK:
3434 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3435 		break;
3436 	case TCP_KEEPIDLE:
3437 		val = keepalive_time_when(tp) / HZ;
3438 		break;
3439 	case TCP_KEEPINTVL:
3440 		val = keepalive_intvl_when(tp) / HZ;
3441 		break;
3442 	case TCP_KEEPCNT:
3443 		val = keepalive_probes(tp);
3444 		break;
3445 	case TCP_SYNCNT:
3446 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3447 		break;
3448 	case TCP_LINGER2:
3449 		val = tp->linger2;
3450 		if (val >= 0)
3451 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3452 		break;
3453 	case TCP_DEFER_ACCEPT:
3454 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3455 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3456 		break;
3457 	case TCP_WINDOW_CLAMP:
3458 		val = tp->window_clamp;
3459 		break;
3460 	case TCP_INFO: {
3461 		struct tcp_info info;
3462 
3463 		if (get_user(len, optlen))
3464 			return -EFAULT;
3465 
3466 		tcp_get_info(sk, &info);
3467 
3468 		len = min_t(unsigned int, len, sizeof(info));
3469 		if (put_user(len, optlen))
3470 			return -EFAULT;
3471 		if (copy_to_user(optval, &info, len))
3472 			return -EFAULT;
3473 		return 0;
3474 	}
3475 	case TCP_CC_INFO: {
3476 		const struct tcp_congestion_ops *ca_ops;
3477 		union tcp_cc_info info;
3478 		size_t sz = 0;
3479 		int attr;
3480 
3481 		if (get_user(len, optlen))
3482 			return -EFAULT;
3483 
3484 		ca_ops = icsk->icsk_ca_ops;
3485 		if (ca_ops && ca_ops->get_info)
3486 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3487 
3488 		len = min_t(unsigned int, len, sz);
3489 		if (put_user(len, optlen))
3490 			return -EFAULT;
3491 		if (copy_to_user(optval, &info, len))
3492 			return -EFAULT;
3493 		return 0;
3494 	}
3495 	case TCP_QUICKACK:
3496 		val = !inet_csk_in_pingpong_mode(sk);
3497 		break;
3498 
3499 	case TCP_CONGESTION:
3500 		if (get_user(len, optlen))
3501 			return -EFAULT;
3502 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3503 		if (put_user(len, optlen))
3504 			return -EFAULT;
3505 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3506 			return -EFAULT;
3507 		return 0;
3508 
3509 	case TCP_ULP:
3510 		if (get_user(len, optlen))
3511 			return -EFAULT;
3512 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3513 		if (!icsk->icsk_ulp_ops) {
3514 			if (put_user(0, optlen))
3515 				return -EFAULT;
3516 			return 0;
3517 		}
3518 		if (put_user(len, optlen))
3519 			return -EFAULT;
3520 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3521 			return -EFAULT;
3522 		return 0;
3523 
3524 	case TCP_FASTOPEN_KEY: {
3525 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3526 		struct tcp_fastopen_context *ctx;
3527 		unsigned int key_len = 0;
3528 
3529 		if (get_user(len, optlen))
3530 			return -EFAULT;
3531 
3532 		rcu_read_lock();
3533 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3534 		if (ctx) {
3535 			key_len = tcp_fastopen_context_len(ctx) *
3536 					TCP_FASTOPEN_KEY_LENGTH;
3537 			memcpy(&key[0], &ctx->key[0], key_len);
3538 		}
3539 		rcu_read_unlock();
3540 
3541 		len = min_t(unsigned int, len, key_len);
3542 		if (put_user(len, optlen))
3543 			return -EFAULT;
3544 		if (copy_to_user(optval, key, len))
3545 			return -EFAULT;
3546 		return 0;
3547 	}
3548 	case TCP_THIN_LINEAR_TIMEOUTS:
3549 		val = tp->thin_lto;
3550 		break;
3551 
3552 	case TCP_THIN_DUPACK:
3553 		val = 0;
3554 		break;
3555 
3556 	case TCP_REPAIR:
3557 		val = tp->repair;
3558 		break;
3559 
3560 	case TCP_REPAIR_QUEUE:
3561 		if (tp->repair)
3562 			val = tp->repair_queue;
3563 		else
3564 			return -EINVAL;
3565 		break;
3566 
3567 	case TCP_REPAIR_WINDOW: {
3568 		struct tcp_repair_window opt;
3569 
3570 		if (get_user(len, optlen))
3571 			return -EFAULT;
3572 
3573 		if (len != sizeof(opt))
3574 			return -EINVAL;
3575 
3576 		if (!tp->repair)
3577 			return -EPERM;
3578 
3579 		opt.snd_wl1	= tp->snd_wl1;
3580 		opt.snd_wnd	= tp->snd_wnd;
3581 		opt.max_window	= tp->max_window;
3582 		opt.rcv_wnd	= tp->rcv_wnd;
3583 		opt.rcv_wup	= tp->rcv_wup;
3584 
3585 		if (copy_to_user(optval, &opt, len))
3586 			return -EFAULT;
3587 		return 0;
3588 	}
3589 	case TCP_QUEUE_SEQ:
3590 		if (tp->repair_queue == TCP_SEND_QUEUE)
3591 			val = tp->write_seq;
3592 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3593 			val = tp->rcv_nxt;
3594 		else
3595 			return -EINVAL;
3596 		break;
3597 
3598 	case TCP_USER_TIMEOUT:
3599 		val = icsk->icsk_user_timeout;
3600 		break;
3601 
3602 	case TCP_FASTOPEN:
3603 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3604 		break;
3605 
3606 	case TCP_FASTOPEN_CONNECT:
3607 		val = tp->fastopen_connect;
3608 		break;
3609 
3610 	case TCP_FASTOPEN_NO_COOKIE:
3611 		val = tp->fastopen_no_cookie;
3612 		break;
3613 
3614 	case TCP_TX_DELAY:
3615 		val = tp->tcp_tx_delay;
3616 		break;
3617 
3618 	case TCP_TIMESTAMP:
3619 		val = tcp_time_stamp_raw() + tp->tsoffset;
3620 		break;
3621 	case TCP_NOTSENT_LOWAT:
3622 		val = tp->notsent_lowat;
3623 		break;
3624 	case TCP_INQ:
3625 		val = tp->recvmsg_inq;
3626 		break;
3627 	case TCP_SAVE_SYN:
3628 		val = tp->save_syn;
3629 		break;
3630 	case TCP_SAVED_SYN: {
3631 		if (get_user(len, optlen))
3632 			return -EFAULT;
3633 
3634 		lock_sock(sk);
3635 		if (tp->saved_syn) {
3636 			if (len < tp->saved_syn[0]) {
3637 				if (put_user(tp->saved_syn[0], optlen)) {
3638 					release_sock(sk);
3639 					return -EFAULT;
3640 				}
3641 				release_sock(sk);
3642 				return -EINVAL;
3643 			}
3644 			len = tp->saved_syn[0];
3645 			if (put_user(len, optlen)) {
3646 				release_sock(sk);
3647 				return -EFAULT;
3648 			}
3649 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3650 				release_sock(sk);
3651 				return -EFAULT;
3652 			}
3653 			tcp_saved_syn_free(tp);
3654 			release_sock(sk);
3655 		} else {
3656 			release_sock(sk);
3657 			len = 0;
3658 			if (put_user(len, optlen))
3659 				return -EFAULT;
3660 		}
3661 		return 0;
3662 	}
3663 #ifdef CONFIG_MMU
3664 	case TCP_ZEROCOPY_RECEIVE: {
3665 		struct tcp_zerocopy_receive zc;
3666 		int err;
3667 
3668 		if (get_user(len, optlen))
3669 			return -EFAULT;
3670 		if (len != sizeof(zc))
3671 			return -EINVAL;
3672 		if (copy_from_user(&zc, optval, len))
3673 			return -EFAULT;
3674 		lock_sock(sk);
3675 		err = tcp_zerocopy_receive(sk, &zc);
3676 		release_sock(sk);
3677 		if (!err && copy_to_user(optval, &zc, len))
3678 			err = -EFAULT;
3679 		return err;
3680 	}
3681 #endif
3682 	default:
3683 		return -ENOPROTOOPT;
3684 	}
3685 
3686 	if (put_user(len, optlen))
3687 		return -EFAULT;
3688 	if (copy_to_user(optval, &val, len))
3689 		return -EFAULT;
3690 	return 0;
3691 }
3692 
3693 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3694 		   int __user *optlen)
3695 {
3696 	struct inet_connection_sock *icsk = inet_csk(sk);
3697 
3698 	if (level != SOL_TCP)
3699 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3700 						     optval, optlen);
3701 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3702 }
3703 EXPORT_SYMBOL(tcp_getsockopt);
3704 
3705 #ifdef CONFIG_COMPAT
3706 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3707 			  char __user *optval, int __user *optlen)
3708 {
3709 	if (level != SOL_TCP)
3710 		return inet_csk_compat_getsockopt(sk, level, optname,
3711 						  optval, optlen);
3712 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3713 }
3714 EXPORT_SYMBOL(compat_tcp_getsockopt);
3715 #endif
3716 
3717 #ifdef CONFIG_TCP_MD5SIG
3718 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3719 static DEFINE_MUTEX(tcp_md5sig_mutex);
3720 static bool tcp_md5sig_pool_populated = false;
3721 
3722 static void __tcp_alloc_md5sig_pool(void)
3723 {
3724 	struct crypto_ahash *hash;
3725 	int cpu;
3726 
3727 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3728 	if (IS_ERR(hash))
3729 		return;
3730 
3731 	for_each_possible_cpu(cpu) {
3732 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3733 		struct ahash_request *req;
3734 
3735 		if (!scratch) {
3736 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3737 					       sizeof(struct tcphdr),
3738 					       GFP_KERNEL,
3739 					       cpu_to_node(cpu));
3740 			if (!scratch)
3741 				return;
3742 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3743 		}
3744 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3745 			continue;
3746 
3747 		req = ahash_request_alloc(hash, GFP_KERNEL);
3748 		if (!req)
3749 			return;
3750 
3751 		ahash_request_set_callback(req, 0, NULL, NULL);
3752 
3753 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3754 	}
3755 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3756 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3757 	 */
3758 	smp_wmb();
3759 	tcp_md5sig_pool_populated = true;
3760 }
3761 
3762 bool tcp_alloc_md5sig_pool(void)
3763 {
3764 	if (unlikely(!tcp_md5sig_pool_populated)) {
3765 		mutex_lock(&tcp_md5sig_mutex);
3766 
3767 		if (!tcp_md5sig_pool_populated) {
3768 			__tcp_alloc_md5sig_pool();
3769 			if (tcp_md5sig_pool_populated)
3770 				static_branch_inc(&tcp_md5_needed);
3771 		}
3772 
3773 		mutex_unlock(&tcp_md5sig_mutex);
3774 	}
3775 	return tcp_md5sig_pool_populated;
3776 }
3777 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3778 
3779 
3780 /**
3781  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3782  *
3783  *	We use percpu structure, so if we succeed, we exit with preemption
3784  *	and BH disabled, to make sure another thread or softirq handling
3785  *	wont try to get same context.
3786  */
3787 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3788 {
3789 	local_bh_disable();
3790 
3791 	if (tcp_md5sig_pool_populated) {
3792 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3793 		smp_rmb();
3794 		return this_cpu_ptr(&tcp_md5sig_pool);
3795 	}
3796 	local_bh_enable();
3797 	return NULL;
3798 }
3799 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3800 
3801 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3802 			  const struct sk_buff *skb, unsigned int header_len)
3803 {
3804 	struct scatterlist sg;
3805 	const struct tcphdr *tp = tcp_hdr(skb);
3806 	struct ahash_request *req = hp->md5_req;
3807 	unsigned int i;
3808 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3809 					   skb_headlen(skb) - header_len : 0;
3810 	const struct skb_shared_info *shi = skb_shinfo(skb);
3811 	struct sk_buff *frag_iter;
3812 
3813 	sg_init_table(&sg, 1);
3814 
3815 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3816 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3817 	if (crypto_ahash_update(req))
3818 		return 1;
3819 
3820 	for (i = 0; i < shi->nr_frags; ++i) {
3821 		const skb_frag_t *f = &shi->frags[i];
3822 		unsigned int offset = skb_frag_off(f);
3823 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3824 
3825 		sg_set_page(&sg, page, skb_frag_size(f),
3826 			    offset_in_page(offset));
3827 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3828 		if (crypto_ahash_update(req))
3829 			return 1;
3830 	}
3831 
3832 	skb_walk_frags(skb, frag_iter)
3833 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3834 			return 1;
3835 
3836 	return 0;
3837 }
3838 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3839 
3840 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3841 {
3842 	struct scatterlist sg;
3843 
3844 	sg_init_one(&sg, key->key, key->keylen);
3845 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3846 	return crypto_ahash_update(hp->md5_req);
3847 }
3848 EXPORT_SYMBOL(tcp_md5_hash_key);
3849 
3850 #endif
3851 
3852 void tcp_done(struct sock *sk)
3853 {
3854 	struct request_sock *req;
3855 
3856 	/* We might be called with a new socket, after
3857 	 * inet_csk_prepare_forced_close() has been called
3858 	 * so we can not use lockdep_sock_is_held(sk)
3859 	 */
3860 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
3861 
3862 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3863 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3864 
3865 	tcp_set_state(sk, TCP_CLOSE);
3866 	tcp_clear_xmit_timers(sk);
3867 	if (req)
3868 		reqsk_fastopen_remove(sk, req, false);
3869 
3870 	sk->sk_shutdown = SHUTDOWN_MASK;
3871 
3872 	if (!sock_flag(sk, SOCK_DEAD))
3873 		sk->sk_state_change(sk);
3874 	else
3875 		inet_csk_destroy_sock(sk);
3876 }
3877 EXPORT_SYMBOL_GPL(tcp_done);
3878 
3879 int tcp_abort(struct sock *sk, int err)
3880 {
3881 	if (!sk_fullsock(sk)) {
3882 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3883 			struct request_sock *req = inet_reqsk(sk);
3884 
3885 			local_bh_disable();
3886 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3887 			local_bh_enable();
3888 			return 0;
3889 		}
3890 		return -EOPNOTSUPP;
3891 	}
3892 
3893 	/* Don't race with userspace socket closes such as tcp_close. */
3894 	lock_sock(sk);
3895 
3896 	if (sk->sk_state == TCP_LISTEN) {
3897 		tcp_set_state(sk, TCP_CLOSE);
3898 		inet_csk_listen_stop(sk);
3899 	}
3900 
3901 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3902 	local_bh_disable();
3903 	bh_lock_sock(sk);
3904 
3905 	if (!sock_flag(sk, SOCK_DEAD)) {
3906 		sk->sk_err = err;
3907 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3908 		smp_wmb();
3909 		sk->sk_error_report(sk);
3910 		if (tcp_need_reset(sk->sk_state))
3911 			tcp_send_active_reset(sk, GFP_ATOMIC);
3912 		tcp_done(sk);
3913 	}
3914 
3915 	bh_unlock_sock(sk);
3916 	local_bh_enable();
3917 	tcp_write_queue_purge(sk);
3918 	release_sock(sk);
3919 	return 0;
3920 }
3921 EXPORT_SYMBOL_GPL(tcp_abort);
3922 
3923 extern struct tcp_congestion_ops tcp_reno;
3924 
3925 static __initdata unsigned long thash_entries;
3926 static int __init set_thash_entries(char *str)
3927 {
3928 	ssize_t ret;
3929 
3930 	if (!str)
3931 		return 0;
3932 
3933 	ret = kstrtoul(str, 0, &thash_entries);
3934 	if (ret)
3935 		return 0;
3936 
3937 	return 1;
3938 }
3939 __setup("thash_entries=", set_thash_entries);
3940 
3941 static void __init tcp_init_mem(void)
3942 {
3943 	unsigned long limit = nr_free_buffer_pages() / 16;
3944 
3945 	limit = max(limit, 128UL);
3946 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3947 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3948 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3949 }
3950 
3951 void __init tcp_init(void)
3952 {
3953 	int max_rshare, max_wshare, cnt;
3954 	unsigned long limit;
3955 	unsigned int i;
3956 
3957 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3958 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3959 		     sizeof_field(struct sk_buff, cb));
3960 
3961 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3962 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3963 	inet_hashinfo_init(&tcp_hashinfo);
3964 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3965 			    thash_entries, 21,  /* one slot per 2 MB*/
3966 			    0, 64 * 1024);
3967 	tcp_hashinfo.bind_bucket_cachep =
3968 		kmem_cache_create("tcp_bind_bucket",
3969 				  sizeof(struct inet_bind_bucket), 0,
3970 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3971 
3972 	/* Size and allocate the main established and bind bucket
3973 	 * hash tables.
3974 	 *
3975 	 * The methodology is similar to that of the buffer cache.
3976 	 */
3977 	tcp_hashinfo.ehash =
3978 		alloc_large_system_hash("TCP established",
3979 					sizeof(struct inet_ehash_bucket),
3980 					thash_entries,
3981 					17, /* one slot per 128 KB of memory */
3982 					0,
3983 					NULL,
3984 					&tcp_hashinfo.ehash_mask,
3985 					0,
3986 					thash_entries ? 0 : 512 * 1024);
3987 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3988 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3989 
3990 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3991 		panic("TCP: failed to alloc ehash_locks");
3992 	tcp_hashinfo.bhash =
3993 		alloc_large_system_hash("TCP bind",
3994 					sizeof(struct inet_bind_hashbucket),
3995 					tcp_hashinfo.ehash_mask + 1,
3996 					17, /* one slot per 128 KB of memory */
3997 					0,
3998 					&tcp_hashinfo.bhash_size,
3999 					NULL,
4000 					0,
4001 					64 * 1024);
4002 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4003 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4004 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4005 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4006 	}
4007 
4008 
4009 	cnt = tcp_hashinfo.ehash_mask + 1;
4010 	sysctl_tcp_max_orphans = cnt / 2;
4011 
4012 	tcp_init_mem();
4013 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4014 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4015 	max_wshare = min(4UL*1024*1024, limit);
4016 	max_rshare = min(6UL*1024*1024, limit);
4017 
4018 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4019 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4020 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4021 
4022 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4023 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4024 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4025 
4026 	pr_info("Hash tables configured (established %u bind %u)\n",
4027 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4028 
4029 	tcp_v4_init();
4030 	tcp_metrics_init();
4031 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4032 	tcp_tasklet_init();
4033 	mptcp_init();
4034 }
4035