xref: /openbmc/linux/net/ipv4/tcp.c (revision 6dfcd296)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	tp->out_of_order_queue = RB_ROOT;
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 	minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* There's a bubble in the pipe until at least the first ACK. */
400 	tp->app_limited = ~0U;
401 
402 	/* See draft-stevens-tcpca-spec-01 for discussion of the
403 	 * initialization of these values.
404 	 */
405 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
406 	tp->snd_cwnd_clamp = ~0;
407 	tp->mss_cache = TCP_MSS_DEFAULT;
408 	u64_stats_init(&tp->syncp);
409 
410 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
411 	tcp_enable_early_retrans(tp);
412 	tcp_assign_congestion_control(sk);
413 
414 	tp->tsoffset = 0;
415 
416 	sk->sk_state = TCP_CLOSE;
417 
418 	sk->sk_write_space = sk_stream_write_space;
419 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
420 
421 	icsk->icsk_sync_mss = tcp_sync_mss;
422 
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	sk_sockets_allocated_inc(sk);
428 	local_bh_enable();
429 }
430 EXPORT_SYMBOL(tcp_init_sock);
431 
432 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
433 {
434 	if (tsflags) {
435 		struct skb_shared_info *shinfo = skb_shinfo(skb);
436 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
437 
438 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
439 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
440 			tcb->txstamp_ack = 1;
441 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
442 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
443 	}
444 }
445 
446 /*
447  *	Wait for a TCP event.
448  *
449  *	Note that we don't need to lock the socket, as the upper poll layers
450  *	take care of normal races (between the test and the event) and we don't
451  *	go look at any of the socket buffers directly.
452  */
453 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
454 {
455 	unsigned int mask;
456 	struct sock *sk = sock->sk;
457 	const struct tcp_sock *tp = tcp_sk(sk);
458 	int state;
459 
460 	sock_rps_record_flow(sk);
461 
462 	sock_poll_wait(file, sk_sleep(sk), wait);
463 
464 	state = sk_state_load(sk);
465 	if (state == TCP_LISTEN)
466 		return inet_csk_listen_poll(sk);
467 
468 	/* Socket is not locked. We are protected from async events
469 	 * by poll logic and correct handling of state changes
470 	 * made by other threads is impossible in any case.
471 	 */
472 
473 	mask = 0;
474 
475 	/*
476 	 * POLLHUP is certainly not done right. But poll() doesn't
477 	 * have a notion of HUP in just one direction, and for a
478 	 * socket the read side is more interesting.
479 	 *
480 	 * Some poll() documentation says that POLLHUP is incompatible
481 	 * with the POLLOUT/POLLWR flags, so somebody should check this
482 	 * all. But careful, it tends to be safer to return too many
483 	 * bits than too few, and you can easily break real applications
484 	 * if you don't tell them that something has hung up!
485 	 *
486 	 * Check-me.
487 	 *
488 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
489 	 * our fs/select.c). It means that after we received EOF,
490 	 * poll always returns immediately, making impossible poll() on write()
491 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
492 	 * if and only if shutdown has been made in both directions.
493 	 * Actually, it is interesting to look how Solaris and DUX
494 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
495 	 * then we could set it on SND_SHUTDOWN. BTW examples given
496 	 * in Stevens' books assume exactly this behaviour, it explains
497 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
498 	 *
499 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
500 	 * blocking on fresh not-connected or disconnected socket. --ANK
501 	 */
502 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
503 		mask |= POLLHUP;
504 	if (sk->sk_shutdown & RCV_SHUTDOWN)
505 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
506 
507 	/* Connected or passive Fast Open socket? */
508 	if (state != TCP_SYN_SENT &&
509 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
510 		int target = sock_rcvlowat(sk, 0, INT_MAX);
511 
512 		if (tp->urg_seq == tp->copied_seq &&
513 		    !sock_flag(sk, SOCK_URGINLINE) &&
514 		    tp->urg_data)
515 			target++;
516 
517 		if (tp->rcv_nxt - tp->copied_seq >= target)
518 			mask |= POLLIN | POLLRDNORM;
519 
520 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
521 			if (sk_stream_is_writeable(sk)) {
522 				mask |= POLLOUT | POLLWRNORM;
523 			} else {  /* send SIGIO later */
524 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
525 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
526 
527 				/* Race breaker. If space is freed after
528 				 * wspace test but before the flags are set,
529 				 * IO signal will be lost. Memory barrier
530 				 * pairs with the input side.
531 				 */
532 				smp_mb__after_atomic();
533 				if (sk_stream_is_writeable(sk))
534 					mask |= POLLOUT | POLLWRNORM;
535 			}
536 		} else
537 			mask |= POLLOUT | POLLWRNORM;
538 
539 		if (tp->urg_data & TCP_URG_VALID)
540 			mask |= POLLPRI;
541 	}
542 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
543 	smp_rmb();
544 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
545 		mask |= POLLERR;
546 
547 	return mask;
548 }
549 EXPORT_SYMBOL(tcp_poll);
550 
551 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
552 {
553 	struct tcp_sock *tp = tcp_sk(sk);
554 	int answ;
555 	bool slow;
556 
557 	switch (cmd) {
558 	case SIOCINQ:
559 		if (sk->sk_state == TCP_LISTEN)
560 			return -EINVAL;
561 
562 		slow = lock_sock_fast(sk);
563 		answ = tcp_inq(sk);
564 		unlock_sock_fast(sk, slow);
565 		break;
566 	case SIOCATMARK:
567 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
568 		break;
569 	case SIOCOUTQ:
570 		if (sk->sk_state == TCP_LISTEN)
571 			return -EINVAL;
572 
573 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
574 			answ = 0;
575 		else
576 			answ = tp->write_seq - tp->snd_una;
577 		break;
578 	case SIOCOUTQNSD:
579 		if (sk->sk_state == TCP_LISTEN)
580 			return -EINVAL;
581 
582 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 			answ = 0;
584 		else
585 			answ = tp->write_seq - tp->snd_nxt;
586 		break;
587 	default:
588 		return -ENOIOCTLCMD;
589 	}
590 
591 	return put_user(answ, (int __user *)arg);
592 }
593 EXPORT_SYMBOL(tcp_ioctl);
594 
595 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
596 {
597 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
598 	tp->pushed_seq = tp->write_seq;
599 }
600 
601 static inline bool forced_push(const struct tcp_sock *tp)
602 {
603 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
604 }
605 
606 static void skb_entail(struct sock *sk, struct sk_buff *skb)
607 {
608 	struct tcp_sock *tp = tcp_sk(sk);
609 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
610 
611 	skb->csum    = 0;
612 	tcb->seq     = tcb->end_seq = tp->write_seq;
613 	tcb->tcp_flags = TCPHDR_ACK;
614 	tcb->sacked  = 0;
615 	__skb_header_release(skb);
616 	tcp_add_write_queue_tail(sk, skb);
617 	sk->sk_wmem_queued += skb->truesize;
618 	sk_mem_charge(sk, skb->truesize);
619 	if (tp->nonagle & TCP_NAGLE_PUSH)
620 		tp->nonagle &= ~TCP_NAGLE_PUSH;
621 
622 	tcp_slow_start_after_idle_check(sk);
623 }
624 
625 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
626 {
627 	if (flags & MSG_OOB)
628 		tp->snd_up = tp->write_seq;
629 }
630 
631 /* If a not yet filled skb is pushed, do not send it if
632  * we have data packets in Qdisc or NIC queues :
633  * Because TX completion will happen shortly, it gives a chance
634  * to coalesce future sendmsg() payload into this skb, without
635  * need for a timer, and with no latency trade off.
636  * As packets containing data payload have a bigger truesize
637  * than pure acks (dataless) packets, the last checks prevent
638  * autocorking if we only have an ACK in Qdisc/NIC queues,
639  * or if TX completion was delayed after we processed ACK packet.
640  */
641 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
642 				int size_goal)
643 {
644 	return skb->len < size_goal &&
645 	       sysctl_tcp_autocorking &&
646 	       skb != tcp_write_queue_head(sk) &&
647 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
648 }
649 
650 static void tcp_push(struct sock *sk, int flags, int mss_now,
651 		     int nonagle, int size_goal)
652 {
653 	struct tcp_sock *tp = tcp_sk(sk);
654 	struct sk_buff *skb;
655 
656 	if (!tcp_send_head(sk))
657 		return;
658 
659 	skb = tcp_write_queue_tail(sk);
660 	if (!(flags & MSG_MORE) || forced_push(tp))
661 		tcp_mark_push(tp, skb);
662 
663 	tcp_mark_urg(tp, flags);
664 
665 	if (tcp_should_autocork(sk, skb, size_goal)) {
666 
667 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
668 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
669 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
670 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
671 		}
672 		/* It is possible TX completion already happened
673 		 * before we set TSQ_THROTTLED.
674 		 */
675 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
676 			return;
677 	}
678 
679 	if (flags & MSG_MORE)
680 		nonagle = TCP_NAGLE_CORK;
681 
682 	__tcp_push_pending_frames(sk, mss_now, nonagle);
683 }
684 
685 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
686 				unsigned int offset, size_t len)
687 {
688 	struct tcp_splice_state *tss = rd_desc->arg.data;
689 	int ret;
690 
691 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
692 			      min(rd_desc->count, len), tss->flags);
693 	if (ret > 0)
694 		rd_desc->count -= ret;
695 	return ret;
696 }
697 
698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
699 {
700 	/* Store TCP splice context information in read_descriptor_t. */
701 	read_descriptor_t rd_desc = {
702 		.arg.data = tss,
703 		.count	  = tss->len,
704 	};
705 
706 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
707 }
708 
709 /**
710  *  tcp_splice_read - splice data from TCP socket to a pipe
711  * @sock:	socket to splice from
712  * @ppos:	position (not valid)
713  * @pipe:	pipe to splice to
714  * @len:	number of bytes to splice
715  * @flags:	splice modifier flags
716  *
717  * Description:
718  *    Will read pages from given socket and fill them into a pipe.
719  *
720  **/
721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
722 			struct pipe_inode_info *pipe, size_t len,
723 			unsigned int flags)
724 {
725 	struct sock *sk = sock->sk;
726 	struct tcp_splice_state tss = {
727 		.pipe = pipe,
728 		.len = len,
729 		.flags = flags,
730 	};
731 	long timeo;
732 	ssize_t spliced;
733 	int ret;
734 
735 	sock_rps_record_flow(sk);
736 	/*
737 	 * We can't seek on a socket input
738 	 */
739 	if (unlikely(*ppos))
740 		return -ESPIPE;
741 
742 	ret = spliced = 0;
743 
744 	lock_sock(sk);
745 
746 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
747 	while (tss.len) {
748 		ret = __tcp_splice_read(sk, &tss);
749 		if (ret < 0)
750 			break;
751 		else if (!ret) {
752 			if (spliced)
753 				break;
754 			if (sock_flag(sk, SOCK_DONE))
755 				break;
756 			if (sk->sk_err) {
757 				ret = sock_error(sk);
758 				break;
759 			}
760 			if (sk->sk_shutdown & RCV_SHUTDOWN)
761 				break;
762 			if (sk->sk_state == TCP_CLOSE) {
763 				/*
764 				 * This occurs when user tries to read
765 				 * from never connected socket.
766 				 */
767 				if (!sock_flag(sk, SOCK_DONE))
768 					ret = -ENOTCONN;
769 				break;
770 			}
771 			if (!timeo) {
772 				ret = -EAGAIN;
773 				break;
774 			}
775 			sk_wait_data(sk, &timeo, NULL);
776 			if (signal_pending(current)) {
777 				ret = sock_intr_errno(timeo);
778 				break;
779 			}
780 			continue;
781 		}
782 		tss.len -= ret;
783 		spliced += ret;
784 
785 		if (!timeo)
786 			break;
787 		release_sock(sk);
788 		lock_sock(sk);
789 
790 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
791 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
792 		    signal_pending(current))
793 			break;
794 	}
795 
796 	release_sock(sk);
797 
798 	if (spliced)
799 		return spliced;
800 
801 	return ret;
802 }
803 EXPORT_SYMBOL(tcp_splice_read);
804 
805 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
806 				    bool force_schedule)
807 {
808 	struct sk_buff *skb;
809 
810 	/* The TCP header must be at least 32-bit aligned.  */
811 	size = ALIGN(size, 4);
812 
813 	if (unlikely(tcp_under_memory_pressure(sk)))
814 		sk_mem_reclaim_partial(sk);
815 
816 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
817 	if (likely(skb)) {
818 		bool mem_scheduled;
819 
820 		if (force_schedule) {
821 			mem_scheduled = true;
822 			sk_forced_mem_schedule(sk, skb->truesize);
823 		} else {
824 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
825 		}
826 		if (likely(mem_scheduled)) {
827 			skb_reserve(skb, sk->sk_prot->max_header);
828 			/*
829 			 * Make sure that we have exactly size bytes
830 			 * available to the caller, no more, no less.
831 			 */
832 			skb->reserved_tailroom = skb->end - skb->tail - size;
833 			return skb;
834 		}
835 		__kfree_skb(skb);
836 	} else {
837 		sk->sk_prot->enter_memory_pressure(sk);
838 		sk_stream_moderate_sndbuf(sk);
839 	}
840 	return NULL;
841 }
842 
843 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
844 				       int large_allowed)
845 {
846 	struct tcp_sock *tp = tcp_sk(sk);
847 	u32 new_size_goal, size_goal;
848 
849 	if (!large_allowed || !sk_can_gso(sk))
850 		return mss_now;
851 
852 	/* Note : tcp_tso_autosize() will eventually split this later */
853 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
854 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
855 
856 	/* We try hard to avoid divides here */
857 	size_goal = tp->gso_segs * mss_now;
858 	if (unlikely(new_size_goal < size_goal ||
859 		     new_size_goal >= size_goal + mss_now)) {
860 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
861 				     sk->sk_gso_max_segs);
862 		size_goal = tp->gso_segs * mss_now;
863 	}
864 
865 	return max(size_goal, mss_now);
866 }
867 
868 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
869 {
870 	int mss_now;
871 
872 	mss_now = tcp_current_mss(sk);
873 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
874 
875 	return mss_now;
876 }
877 
878 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
879 				size_t size, int flags)
880 {
881 	struct tcp_sock *tp = tcp_sk(sk);
882 	int mss_now, size_goal;
883 	int err;
884 	ssize_t copied;
885 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
886 
887 	/* Wait for a connection to finish. One exception is TCP Fast Open
888 	 * (passive side) where data is allowed to be sent before a connection
889 	 * is fully established.
890 	 */
891 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
892 	    !tcp_passive_fastopen(sk)) {
893 		err = sk_stream_wait_connect(sk, &timeo);
894 		if (err != 0)
895 			goto out_err;
896 	}
897 
898 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
899 
900 	mss_now = tcp_send_mss(sk, &size_goal, flags);
901 	copied = 0;
902 
903 	err = -EPIPE;
904 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
905 		goto out_err;
906 
907 	while (size > 0) {
908 		struct sk_buff *skb = tcp_write_queue_tail(sk);
909 		int copy, i;
910 		bool can_coalesce;
911 
912 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
913 		    !tcp_skb_can_collapse_to(skb)) {
914 new_segment:
915 			if (!sk_stream_memory_free(sk))
916 				goto wait_for_sndbuf;
917 
918 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
919 						  skb_queue_empty(&sk->sk_write_queue));
920 			if (!skb)
921 				goto wait_for_memory;
922 
923 			skb_entail(sk, skb);
924 			copy = size_goal;
925 		}
926 
927 		if (copy > size)
928 			copy = size;
929 
930 		i = skb_shinfo(skb)->nr_frags;
931 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
932 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
933 			tcp_mark_push(tp, skb);
934 			goto new_segment;
935 		}
936 		if (!sk_wmem_schedule(sk, copy))
937 			goto wait_for_memory;
938 
939 		if (can_coalesce) {
940 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
941 		} else {
942 			get_page(page);
943 			skb_fill_page_desc(skb, i, page, offset, copy);
944 		}
945 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
946 
947 		skb->len += copy;
948 		skb->data_len += copy;
949 		skb->truesize += copy;
950 		sk->sk_wmem_queued += copy;
951 		sk_mem_charge(sk, copy);
952 		skb->ip_summed = CHECKSUM_PARTIAL;
953 		tp->write_seq += copy;
954 		TCP_SKB_CB(skb)->end_seq += copy;
955 		tcp_skb_pcount_set(skb, 0);
956 
957 		if (!copied)
958 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
959 
960 		copied += copy;
961 		offset += copy;
962 		size -= copy;
963 		if (!size) {
964 			tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
965 			goto out;
966 		}
967 
968 		if (skb->len < size_goal || (flags & MSG_OOB))
969 			continue;
970 
971 		if (forced_push(tp)) {
972 			tcp_mark_push(tp, skb);
973 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
974 		} else if (skb == tcp_send_head(sk))
975 			tcp_push_one(sk, mss_now);
976 		continue;
977 
978 wait_for_sndbuf:
979 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
980 wait_for_memory:
981 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
982 			 TCP_NAGLE_PUSH, size_goal);
983 
984 		err = sk_stream_wait_memory(sk, &timeo);
985 		if (err != 0)
986 			goto do_error;
987 
988 		mss_now = tcp_send_mss(sk, &size_goal, flags);
989 	}
990 
991 out:
992 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
993 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
994 	return copied;
995 
996 do_error:
997 	if (copied)
998 		goto out;
999 out_err:
1000 	/* make sure we wake any epoll edge trigger waiter */
1001 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1002 		sk->sk_write_space(sk);
1003 	return sk_stream_error(sk, flags, err);
1004 }
1005 
1006 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1007 		 size_t size, int flags)
1008 {
1009 	ssize_t res;
1010 
1011 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1012 	    !sk_check_csum_caps(sk))
1013 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1014 					flags);
1015 
1016 	lock_sock(sk);
1017 
1018 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1019 
1020 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1021 	release_sock(sk);
1022 	return res;
1023 }
1024 EXPORT_SYMBOL(tcp_sendpage);
1025 
1026 /* Do not bother using a page frag for very small frames.
1027  * But use this heuristic only for the first skb in write queue.
1028  *
1029  * Having no payload in skb->head allows better SACK shifting
1030  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1031  * write queue has less skbs.
1032  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1033  * This also speeds up tso_fragment(), since it wont fallback
1034  * to tcp_fragment().
1035  */
1036 static int linear_payload_sz(bool first_skb)
1037 {
1038 	if (first_skb)
1039 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1040 	return 0;
1041 }
1042 
1043 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1044 {
1045 	const struct tcp_sock *tp = tcp_sk(sk);
1046 	int tmp = tp->mss_cache;
1047 
1048 	if (sg) {
1049 		if (sk_can_gso(sk)) {
1050 			tmp = linear_payload_sz(first_skb);
1051 		} else {
1052 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1053 
1054 			if (tmp >= pgbreak &&
1055 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1056 				tmp = pgbreak;
1057 		}
1058 	}
1059 
1060 	return tmp;
1061 }
1062 
1063 void tcp_free_fastopen_req(struct tcp_sock *tp)
1064 {
1065 	if (tp->fastopen_req) {
1066 		kfree(tp->fastopen_req);
1067 		tp->fastopen_req = NULL;
1068 	}
1069 }
1070 
1071 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1072 				int *copied, size_t size)
1073 {
1074 	struct tcp_sock *tp = tcp_sk(sk);
1075 	int err, flags;
1076 
1077 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1078 		return -EOPNOTSUPP;
1079 	if (tp->fastopen_req)
1080 		return -EALREADY; /* Another Fast Open is in progress */
1081 
1082 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1083 				   sk->sk_allocation);
1084 	if (unlikely(!tp->fastopen_req))
1085 		return -ENOBUFS;
1086 	tp->fastopen_req->data = msg;
1087 	tp->fastopen_req->size = size;
1088 
1089 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1090 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1091 				    msg->msg_namelen, flags);
1092 	*copied = tp->fastopen_req->copied;
1093 	tcp_free_fastopen_req(tp);
1094 	return err;
1095 }
1096 
1097 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	struct sk_buff *skb;
1101 	struct sockcm_cookie sockc;
1102 	int flags, err, copied = 0;
1103 	int mss_now = 0, size_goal, copied_syn = 0;
1104 	bool process_backlog = false;
1105 	bool sg;
1106 	long timeo;
1107 
1108 	lock_sock(sk);
1109 
1110 	flags = msg->msg_flags;
1111 	if (flags & MSG_FASTOPEN) {
1112 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1113 		if (err == -EINPROGRESS && copied_syn > 0)
1114 			goto out;
1115 		else if (err)
1116 			goto out_err;
1117 	}
1118 
1119 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1120 
1121 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1122 
1123 	/* Wait for a connection to finish. One exception is TCP Fast Open
1124 	 * (passive side) where data is allowed to be sent before a connection
1125 	 * is fully established.
1126 	 */
1127 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1128 	    !tcp_passive_fastopen(sk)) {
1129 		err = sk_stream_wait_connect(sk, &timeo);
1130 		if (err != 0)
1131 			goto do_error;
1132 	}
1133 
1134 	if (unlikely(tp->repair)) {
1135 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1136 			copied = tcp_send_rcvq(sk, msg, size);
1137 			goto out_nopush;
1138 		}
1139 
1140 		err = -EINVAL;
1141 		if (tp->repair_queue == TCP_NO_QUEUE)
1142 			goto out_err;
1143 
1144 		/* 'common' sending to sendq */
1145 	}
1146 
1147 	sockc.tsflags = sk->sk_tsflags;
1148 	if (msg->msg_controllen) {
1149 		err = sock_cmsg_send(sk, msg, &sockc);
1150 		if (unlikely(err)) {
1151 			err = -EINVAL;
1152 			goto out_err;
1153 		}
1154 	}
1155 
1156 	/* This should be in poll */
1157 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158 
1159 	/* Ok commence sending. */
1160 	copied = 0;
1161 
1162 restart:
1163 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1164 
1165 	err = -EPIPE;
1166 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1167 		goto out_err;
1168 
1169 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1170 
1171 	while (msg_data_left(msg)) {
1172 		int copy = 0;
1173 		int max = size_goal;
1174 
1175 		skb = tcp_write_queue_tail(sk);
1176 		if (tcp_send_head(sk)) {
1177 			if (skb->ip_summed == CHECKSUM_NONE)
1178 				max = mss_now;
1179 			copy = max - skb->len;
1180 		}
1181 
1182 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1183 			bool first_skb;
1184 
1185 new_segment:
1186 			/* Allocate new segment. If the interface is SG,
1187 			 * allocate skb fitting to single page.
1188 			 */
1189 			if (!sk_stream_memory_free(sk))
1190 				goto wait_for_sndbuf;
1191 
1192 			if (process_backlog && sk_flush_backlog(sk)) {
1193 				process_backlog = false;
1194 				goto restart;
1195 			}
1196 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1197 			skb = sk_stream_alloc_skb(sk,
1198 						  select_size(sk, sg, first_skb),
1199 						  sk->sk_allocation,
1200 						  first_skb);
1201 			if (!skb)
1202 				goto wait_for_memory;
1203 
1204 			process_backlog = true;
1205 			/*
1206 			 * Check whether we can use HW checksum.
1207 			 */
1208 			if (sk_check_csum_caps(sk))
1209 				skb->ip_summed = CHECKSUM_PARTIAL;
1210 
1211 			skb_entail(sk, skb);
1212 			copy = size_goal;
1213 			max = size_goal;
1214 
1215 			/* All packets are restored as if they have
1216 			 * already been sent. skb_mstamp isn't set to
1217 			 * avoid wrong rtt estimation.
1218 			 */
1219 			if (tp->repair)
1220 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1221 		}
1222 
1223 		/* Try to append data to the end of skb. */
1224 		if (copy > msg_data_left(msg))
1225 			copy = msg_data_left(msg);
1226 
1227 		/* Where to copy to? */
1228 		if (skb_availroom(skb) > 0) {
1229 			/* We have some space in skb head. Superb! */
1230 			copy = min_t(int, copy, skb_availroom(skb));
1231 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1232 			if (err)
1233 				goto do_fault;
1234 		} else {
1235 			bool merge = true;
1236 			int i = skb_shinfo(skb)->nr_frags;
1237 			struct page_frag *pfrag = sk_page_frag(sk);
1238 
1239 			if (!sk_page_frag_refill(sk, pfrag))
1240 				goto wait_for_memory;
1241 
1242 			if (!skb_can_coalesce(skb, i, pfrag->page,
1243 					      pfrag->offset)) {
1244 				if (i == sysctl_max_skb_frags || !sg) {
1245 					tcp_mark_push(tp, skb);
1246 					goto new_segment;
1247 				}
1248 				merge = false;
1249 			}
1250 
1251 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1252 
1253 			if (!sk_wmem_schedule(sk, copy))
1254 				goto wait_for_memory;
1255 
1256 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1257 						       pfrag->page,
1258 						       pfrag->offset,
1259 						       copy);
1260 			if (err)
1261 				goto do_error;
1262 
1263 			/* Update the skb. */
1264 			if (merge) {
1265 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1266 			} else {
1267 				skb_fill_page_desc(skb, i, pfrag->page,
1268 						   pfrag->offset, copy);
1269 				get_page(pfrag->page);
1270 			}
1271 			pfrag->offset += copy;
1272 		}
1273 
1274 		if (!copied)
1275 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1276 
1277 		tp->write_seq += copy;
1278 		TCP_SKB_CB(skb)->end_seq += copy;
1279 		tcp_skb_pcount_set(skb, 0);
1280 
1281 		copied += copy;
1282 		if (!msg_data_left(msg)) {
1283 			tcp_tx_timestamp(sk, sockc.tsflags, skb);
1284 			if (unlikely(flags & MSG_EOR))
1285 				TCP_SKB_CB(skb)->eor = 1;
1286 			goto out;
1287 		}
1288 
1289 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1290 			continue;
1291 
1292 		if (forced_push(tp)) {
1293 			tcp_mark_push(tp, skb);
1294 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1295 		} else if (skb == tcp_send_head(sk))
1296 			tcp_push_one(sk, mss_now);
1297 		continue;
1298 
1299 wait_for_sndbuf:
1300 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1301 wait_for_memory:
1302 		if (copied)
1303 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1304 				 TCP_NAGLE_PUSH, size_goal);
1305 
1306 		err = sk_stream_wait_memory(sk, &timeo);
1307 		if (err != 0)
1308 			goto do_error;
1309 
1310 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1311 	}
1312 
1313 out:
1314 	if (copied)
1315 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1316 out_nopush:
1317 	release_sock(sk);
1318 	return copied + copied_syn;
1319 
1320 do_fault:
1321 	if (!skb->len) {
1322 		tcp_unlink_write_queue(skb, sk);
1323 		/* It is the one place in all of TCP, except connection
1324 		 * reset, where we can be unlinking the send_head.
1325 		 */
1326 		tcp_check_send_head(sk, skb);
1327 		sk_wmem_free_skb(sk, skb);
1328 	}
1329 
1330 do_error:
1331 	if (copied + copied_syn)
1332 		goto out;
1333 out_err:
1334 	err = sk_stream_error(sk, flags, err);
1335 	/* make sure we wake any epoll edge trigger waiter */
1336 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1337 		sk->sk_write_space(sk);
1338 	release_sock(sk);
1339 	return err;
1340 }
1341 EXPORT_SYMBOL(tcp_sendmsg);
1342 
1343 /*
1344  *	Handle reading urgent data. BSD has very simple semantics for
1345  *	this, no blocking and very strange errors 8)
1346  */
1347 
1348 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1349 {
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351 
1352 	/* No URG data to read. */
1353 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1354 	    tp->urg_data == TCP_URG_READ)
1355 		return -EINVAL;	/* Yes this is right ! */
1356 
1357 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1358 		return -ENOTCONN;
1359 
1360 	if (tp->urg_data & TCP_URG_VALID) {
1361 		int err = 0;
1362 		char c = tp->urg_data;
1363 
1364 		if (!(flags & MSG_PEEK))
1365 			tp->urg_data = TCP_URG_READ;
1366 
1367 		/* Read urgent data. */
1368 		msg->msg_flags |= MSG_OOB;
1369 
1370 		if (len > 0) {
1371 			if (!(flags & MSG_TRUNC))
1372 				err = memcpy_to_msg(msg, &c, 1);
1373 			len = 1;
1374 		} else
1375 			msg->msg_flags |= MSG_TRUNC;
1376 
1377 		return err ? -EFAULT : len;
1378 	}
1379 
1380 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1381 		return 0;
1382 
1383 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1384 	 * the available implementations agree in this case:
1385 	 * this call should never block, independent of the
1386 	 * blocking state of the socket.
1387 	 * Mike <pall@rz.uni-karlsruhe.de>
1388 	 */
1389 	return -EAGAIN;
1390 }
1391 
1392 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1393 {
1394 	struct sk_buff *skb;
1395 	int copied = 0, err = 0;
1396 
1397 	/* XXX -- need to support SO_PEEK_OFF */
1398 
1399 	skb_queue_walk(&sk->sk_write_queue, skb) {
1400 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1401 		if (err)
1402 			break;
1403 
1404 		copied += skb->len;
1405 	}
1406 
1407 	return err ?: copied;
1408 }
1409 
1410 /* Clean up the receive buffer for full frames taken by the user,
1411  * then send an ACK if necessary.  COPIED is the number of bytes
1412  * tcp_recvmsg has given to the user so far, it speeds up the
1413  * calculation of whether or not we must ACK for the sake of
1414  * a window update.
1415  */
1416 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1417 {
1418 	struct tcp_sock *tp = tcp_sk(sk);
1419 	bool time_to_ack = false;
1420 
1421 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1422 
1423 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1424 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1425 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1426 
1427 	if (inet_csk_ack_scheduled(sk)) {
1428 		const struct inet_connection_sock *icsk = inet_csk(sk);
1429 		   /* Delayed ACKs frequently hit locked sockets during bulk
1430 		    * receive. */
1431 		if (icsk->icsk_ack.blocked ||
1432 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1433 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1434 		    /*
1435 		     * If this read emptied read buffer, we send ACK, if
1436 		     * connection is not bidirectional, user drained
1437 		     * receive buffer and there was a small segment
1438 		     * in queue.
1439 		     */
1440 		    (copied > 0 &&
1441 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1442 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1443 		       !icsk->icsk_ack.pingpong)) &&
1444 		      !atomic_read(&sk->sk_rmem_alloc)))
1445 			time_to_ack = true;
1446 	}
1447 
1448 	/* We send an ACK if we can now advertise a non-zero window
1449 	 * which has been raised "significantly".
1450 	 *
1451 	 * Even if window raised up to infinity, do not send window open ACK
1452 	 * in states, where we will not receive more. It is useless.
1453 	 */
1454 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1455 		__u32 rcv_window_now = tcp_receive_window(tp);
1456 
1457 		/* Optimize, __tcp_select_window() is not cheap. */
1458 		if (2*rcv_window_now <= tp->window_clamp) {
1459 			__u32 new_window = __tcp_select_window(sk);
1460 
1461 			/* Send ACK now, if this read freed lots of space
1462 			 * in our buffer. Certainly, new_window is new window.
1463 			 * We can advertise it now, if it is not less than current one.
1464 			 * "Lots" means "at least twice" here.
1465 			 */
1466 			if (new_window && new_window >= 2 * rcv_window_now)
1467 				time_to_ack = true;
1468 		}
1469 	}
1470 	if (time_to_ack)
1471 		tcp_send_ack(sk);
1472 }
1473 
1474 static void tcp_prequeue_process(struct sock *sk)
1475 {
1476 	struct sk_buff *skb;
1477 	struct tcp_sock *tp = tcp_sk(sk);
1478 
1479 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1480 
1481 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1482 		sk_backlog_rcv(sk, skb);
1483 
1484 	/* Clear memory counter. */
1485 	tp->ucopy.memory = 0;
1486 }
1487 
1488 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1489 {
1490 	struct sk_buff *skb;
1491 	u32 offset;
1492 
1493 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1494 		offset = seq - TCP_SKB_CB(skb)->seq;
1495 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1496 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1497 			offset--;
1498 		}
1499 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1500 			*off = offset;
1501 			return skb;
1502 		}
1503 		/* This looks weird, but this can happen if TCP collapsing
1504 		 * splitted a fat GRO packet, while we released socket lock
1505 		 * in skb_splice_bits()
1506 		 */
1507 		sk_eat_skb(sk, skb);
1508 	}
1509 	return NULL;
1510 }
1511 
1512 /*
1513  * This routine provides an alternative to tcp_recvmsg() for routines
1514  * that would like to handle copying from skbuffs directly in 'sendfile'
1515  * fashion.
1516  * Note:
1517  *	- It is assumed that the socket was locked by the caller.
1518  *	- The routine does not block.
1519  *	- At present, there is no support for reading OOB data
1520  *	  or for 'peeking' the socket using this routine
1521  *	  (although both would be easy to implement).
1522  */
1523 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1524 		  sk_read_actor_t recv_actor)
1525 {
1526 	struct sk_buff *skb;
1527 	struct tcp_sock *tp = tcp_sk(sk);
1528 	u32 seq = tp->copied_seq;
1529 	u32 offset;
1530 	int copied = 0;
1531 
1532 	if (sk->sk_state == TCP_LISTEN)
1533 		return -ENOTCONN;
1534 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1535 		if (offset < skb->len) {
1536 			int used;
1537 			size_t len;
1538 
1539 			len = skb->len - offset;
1540 			/* Stop reading if we hit a patch of urgent data */
1541 			if (tp->urg_data) {
1542 				u32 urg_offset = tp->urg_seq - seq;
1543 				if (urg_offset < len)
1544 					len = urg_offset;
1545 				if (!len)
1546 					break;
1547 			}
1548 			used = recv_actor(desc, skb, offset, len);
1549 			if (used <= 0) {
1550 				if (!copied)
1551 					copied = used;
1552 				break;
1553 			} else if (used <= len) {
1554 				seq += used;
1555 				copied += used;
1556 				offset += used;
1557 			}
1558 			/* If recv_actor drops the lock (e.g. TCP splice
1559 			 * receive) the skb pointer might be invalid when
1560 			 * getting here: tcp_collapse might have deleted it
1561 			 * while aggregating skbs from the socket queue.
1562 			 */
1563 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1564 			if (!skb)
1565 				break;
1566 			/* TCP coalescing might have appended data to the skb.
1567 			 * Try to splice more frags
1568 			 */
1569 			if (offset + 1 != skb->len)
1570 				continue;
1571 		}
1572 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1573 			sk_eat_skb(sk, skb);
1574 			++seq;
1575 			break;
1576 		}
1577 		sk_eat_skb(sk, skb);
1578 		if (!desc->count)
1579 			break;
1580 		tp->copied_seq = seq;
1581 	}
1582 	tp->copied_seq = seq;
1583 
1584 	tcp_rcv_space_adjust(sk);
1585 
1586 	/* Clean up data we have read: This will do ACK frames. */
1587 	if (copied > 0) {
1588 		tcp_recv_skb(sk, seq, &offset);
1589 		tcp_cleanup_rbuf(sk, copied);
1590 	}
1591 	return copied;
1592 }
1593 EXPORT_SYMBOL(tcp_read_sock);
1594 
1595 int tcp_peek_len(struct socket *sock)
1596 {
1597 	return tcp_inq(sock->sk);
1598 }
1599 EXPORT_SYMBOL(tcp_peek_len);
1600 
1601 /*
1602  *	This routine copies from a sock struct into the user buffer.
1603  *
1604  *	Technical note: in 2.3 we work on _locked_ socket, so that
1605  *	tricks with *seq access order and skb->users are not required.
1606  *	Probably, code can be easily improved even more.
1607  */
1608 
1609 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1610 		int flags, int *addr_len)
1611 {
1612 	struct tcp_sock *tp = tcp_sk(sk);
1613 	int copied = 0;
1614 	u32 peek_seq;
1615 	u32 *seq;
1616 	unsigned long used;
1617 	int err;
1618 	int target;		/* Read at least this many bytes */
1619 	long timeo;
1620 	struct task_struct *user_recv = NULL;
1621 	struct sk_buff *skb, *last;
1622 	u32 urg_hole = 0;
1623 
1624 	if (unlikely(flags & MSG_ERRQUEUE))
1625 		return inet_recv_error(sk, msg, len, addr_len);
1626 
1627 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1628 	    (sk->sk_state == TCP_ESTABLISHED))
1629 		sk_busy_loop(sk, nonblock);
1630 
1631 	lock_sock(sk);
1632 
1633 	err = -ENOTCONN;
1634 	if (sk->sk_state == TCP_LISTEN)
1635 		goto out;
1636 
1637 	timeo = sock_rcvtimeo(sk, nonblock);
1638 
1639 	/* Urgent data needs to be handled specially. */
1640 	if (flags & MSG_OOB)
1641 		goto recv_urg;
1642 
1643 	if (unlikely(tp->repair)) {
1644 		err = -EPERM;
1645 		if (!(flags & MSG_PEEK))
1646 			goto out;
1647 
1648 		if (tp->repair_queue == TCP_SEND_QUEUE)
1649 			goto recv_sndq;
1650 
1651 		err = -EINVAL;
1652 		if (tp->repair_queue == TCP_NO_QUEUE)
1653 			goto out;
1654 
1655 		/* 'common' recv queue MSG_PEEK-ing */
1656 	}
1657 
1658 	seq = &tp->copied_seq;
1659 	if (flags & MSG_PEEK) {
1660 		peek_seq = tp->copied_seq;
1661 		seq = &peek_seq;
1662 	}
1663 
1664 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1665 
1666 	do {
1667 		u32 offset;
1668 
1669 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1670 		if (tp->urg_data && tp->urg_seq == *seq) {
1671 			if (copied)
1672 				break;
1673 			if (signal_pending(current)) {
1674 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1675 				break;
1676 			}
1677 		}
1678 
1679 		/* Next get a buffer. */
1680 
1681 		last = skb_peek_tail(&sk->sk_receive_queue);
1682 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1683 			last = skb;
1684 			/* Now that we have two receive queues this
1685 			 * shouldn't happen.
1686 			 */
1687 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1688 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1689 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1690 				 flags))
1691 				break;
1692 
1693 			offset = *seq - TCP_SKB_CB(skb)->seq;
1694 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1695 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1696 				offset--;
1697 			}
1698 			if (offset < skb->len)
1699 				goto found_ok_skb;
1700 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1701 				goto found_fin_ok;
1702 			WARN(!(flags & MSG_PEEK),
1703 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1704 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1705 		}
1706 
1707 		/* Well, if we have backlog, try to process it now yet. */
1708 
1709 		if (copied >= target && !sk->sk_backlog.tail)
1710 			break;
1711 
1712 		if (copied) {
1713 			if (sk->sk_err ||
1714 			    sk->sk_state == TCP_CLOSE ||
1715 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1716 			    !timeo ||
1717 			    signal_pending(current))
1718 				break;
1719 		} else {
1720 			if (sock_flag(sk, SOCK_DONE))
1721 				break;
1722 
1723 			if (sk->sk_err) {
1724 				copied = sock_error(sk);
1725 				break;
1726 			}
1727 
1728 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1729 				break;
1730 
1731 			if (sk->sk_state == TCP_CLOSE) {
1732 				if (!sock_flag(sk, SOCK_DONE)) {
1733 					/* This occurs when user tries to read
1734 					 * from never connected socket.
1735 					 */
1736 					copied = -ENOTCONN;
1737 					break;
1738 				}
1739 				break;
1740 			}
1741 
1742 			if (!timeo) {
1743 				copied = -EAGAIN;
1744 				break;
1745 			}
1746 
1747 			if (signal_pending(current)) {
1748 				copied = sock_intr_errno(timeo);
1749 				break;
1750 			}
1751 		}
1752 
1753 		tcp_cleanup_rbuf(sk, copied);
1754 
1755 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1756 			/* Install new reader */
1757 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1758 				user_recv = current;
1759 				tp->ucopy.task = user_recv;
1760 				tp->ucopy.msg = msg;
1761 			}
1762 
1763 			tp->ucopy.len = len;
1764 
1765 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1766 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1767 
1768 			/* Ugly... If prequeue is not empty, we have to
1769 			 * process it before releasing socket, otherwise
1770 			 * order will be broken at second iteration.
1771 			 * More elegant solution is required!!!
1772 			 *
1773 			 * Look: we have the following (pseudo)queues:
1774 			 *
1775 			 * 1. packets in flight
1776 			 * 2. backlog
1777 			 * 3. prequeue
1778 			 * 4. receive_queue
1779 			 *
1780 			 * Each queue can be processed only if the next ones
1781 			 * are empty. At this point we have empty receive_queue.
1782 			 * But prequeue _can_ be not empty after 2nd iteration,
1783 			 * when we jumped to start of loop because backlog
1784 			 * processing added something to receive_queue.
1785 			 * We cannot release_sock(), because backlog contains
1786 			 * packets arrived _after_ prequeued ones.
1787 			 *
1788 			 * Shortly, algorithm is clear --- to process all
1789 			 * the queues in order. We could make it more directly,
1790 			 * requeueing packets from backlog to prequeue, if
1791 			 * is not empty. It is more elegant, but eats cycles,
1792 			 * unfortunately.
1793 			 */
1794 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1795 				goto do_prequeue;
1796 
1797 			/* __ Set realtime policy in scheduler __ */
1798 		}
1799 
1800 		if (copied >= target) {
1801 			/* Do not sleep, just process backlog. */
1802 			release_sock(sk);
1803 			lock_sock(sk);
1804 		} else {
1805 			sk_wait_data(sk, &timeo, last);
1806 		}
1807 
1808 		if (user_recv) {
1809 			int chunk;
1810 
1811 			/* __ Restore normal policy in scheduler __ */
1812 
1813 			chunk = len - tp->ucopy.len;
1814 			if (chunk != 0) {
1815 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1816 				len -= chunk;
1817 				copied += chunk;
1818 			}
1819 
1820 			if (tp->rcv_nxt == tp->copied_seq &&
1821 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1822 do_prequeue:
1823 				tcp_prequeue_process(sk);
1824 
1825 				chunk = len - tp->ucopy.len;
1826 				if (chunk != 0) {
1827 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1828 					len -= chunk;
1829 					copied += chunk;
1830 				}
1831 			}
1832 		}
1833 		if ((flags & MSG_PEEK) &&
1834 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1835 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1836 					    current->comm,
1837 					    task_pid_nr(current));
1838 			peek_seq = tp->copied_seq;
1839 		}
1840 		continue;
1841 
1842 	found_ok_skb:
1843 		/* Ok so how much can we use? */
1844 		used = skb->len - offset;
1845 		if (len < used)
1846 			used = len;
1847 
1848 		/* Do we have urgent data here? */
1849 		if (tp->urg_data) {
1850 			u32 urg_offset = tp->urg_seq - *seq;
1851 			if (urg_offset < used) {
1852 				if (!urg_offset) {
1853 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1854 						++*seq;
1855 						urg_hole++;
1856 						offset++;
1857 						used--;
1858 						if (!used)
1859 							goto skip_copy;
1860 					}
1861 				} else
1862 					used = urg_offset;
1863 			}
1864 		}
1865 
1866 		if (!(flags & MSG_TRUNC)) {
1867 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1868 			if (err) {
1869 				/* Exception. Bailout! */
1870 				if (!copied)
1871 					copied = -EFAULT;
1872 				break;
1873 			}
1874 		}
1875 
1876 		*seq += used;
1877 		copied += used;
1878 		len -= used;
1879 
1880 		tcp_rcv_space_adjust(sk);
1881 
1882 skip_copy:
1883 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1884 			tp->urg_data = 0;
1885 			tcp_fast_path_check(sk);
1886 		}
1887 		if (used + offset < skb->len)
1888 			continue;
1889 
1890 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1891 			goto found_fin_ok;
1892 		if (!(flags & MSG_PEEK))
1893 			sk_eat_skb(sk, skb);
1894 		continue;
1895 
1896 	found_fin_ok:
1897 		/* Process the FIN. */
1898 		++*seq;
1899 		if (!(flags & MSG_PEEK))
1900 			sk_eat_skb(sk, skb);
1901 		break;
1902 	} while (len > 0);
1903 
1904 	if (user_recv) {
1905 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1906 			int chunk;
1907 
1908 			tp->ucopy.len = copied > 0 ? len : 0;
1909 
1910 			tcp_prequeue_process(sk);
1911 
1912 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1913 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1914 				len -= chunk;
1915 				copied += chunk;
1916 			}
1917 		}
1918 
1919 		tp->ucopy.task = NULL;
1920 		tp->ucopy.len = 0;
1921 	}
1922 
1923 	/* According to UNIX98, msg_name/msg_namelen are ignored
1924 	 * on connected socket. I was just happy when found this 8) --ANK
1925 	 */
1926 
1927 	/* Clean up data we have read: This will do ACK frames. */
1928 	tcp_cleanup_rbuf(sk, copied);
1929 
1930 	release_sock(sk);
1931 	return copied;
1932 
1933 out:
1934 	release_sock(sk);
1935 	return err;
1936 
1937 recv_urg:
1938 	err = tcp_recv_urg(sk, msg, len, flags);
1939 	goto out;
1940 
1941 recv_sndq:
1942 	err = tcp_peek_sndq(sk, msg, len);
1943 	goto out;
1944 }
1945 EXPORT_SYMBOL(tcp_recvmsg);
1946 
1947 void tcp_set_state(struct sock *sk, int state)
1948 {
1949 	int oldstate = sk->sk_state;
1950 
1951 	switch (state) {
1952 	case TCP_ESTABLISHED:
1953 		if (oldstate != TCP_ESTABLISHED)
1954 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1955 		break;
1956 
1957 	case TCP_CLOSE:
1958 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1959 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1960 
1961 		sk->sk_prot->unhash(sk);
1962 		if (inet_csk(sk)->icsk_bind_hash &&
1963 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1964 			inet_put_port(sk);
1965 		/* fall through */
1966 	default:
1967 		if (oldstate == TCP_ESTABLISHED)
1968 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1969 	}
1970 
1971 	/* Change state AFTER socket is unhashed to avoid closed
1972 	 * socket sitting in hash tables.
1973 	 */
1974 	sk_state_store(sk, state);
1975 
1976 #ifdef STATE_TRACE
1977 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1978 #endif
1979 }
1980 EXPORT_SYMBOL_GPL(tcp_set_state);
1981 
1982 /*
1983  *	State processing on a close. This implements the state shift for
1984  *	sending our FIN frame. Note that we only send a FIN for some
1985  *	states. A shutdown() may have already sent the FIN, or we may be
1986  *	closed.
1987  */
1988 
1989 static const unsigned char new_state[16] = {
1990   /* current state:        new state:      action:	*/
1991   [0 /* (Invalid) */]	= TCP_CLOSE,
1992   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1993   [TCP_SYN_SENT]	= TCP_CLOSE,
1994   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1995   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1996   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1997   [TCP_TIME_WAIT]	= TCP_CLOSE,
1998   [TCP_CLOSE]		= TCP_CLOSE,
1999   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2000   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2001   [TCP_LISTEN]		= TCP_CLOSE,
2002   [TCP_CLOSING]		= TCP_CLOSING,
2003   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2004 };
2005 
2006 static int tcp_close_state(struct sock *sk)
2007 {
2008 	int next = (int)new_state[sk->sk_state];
2009 	int ns = next & TCP_STATE_MASK;
2010 
2011 	tcp_set_state(sk, ns);
2012 
2013 	return next & TCP_ACTION_FIN;
2014 }
2015 
2016 /*
2017  *	Shutdown the sending side of a connection. Much like close except
2018  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2019  */
2020 
2021 void tcp_shutdown(struct sock *sk, int how)
2022 {
2023 	/*	We need to grab some memory, and put together a FIN,
2024 	 *	and then put it into the queue to be sent.
2025 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2026 	 */
2027 	if (!(how & SEND_SHUTDOWN))
2028 		return;
2029 
2030 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2031 	if ((1 << sk->sk_state) &
2032 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2033 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2034 		/* Clear out any half completed packets.  FIN if needed. */
2035 		if (tcp_close_state(sk))
2036 			tcp_send_fin(sk);
2037 	}
2038 }
2039 EXPORT_SYMBOL(tcp_shutdown);
2040 
2041 bool tcp_check_oom(struct sock *sk, int shift)
2042 {
2043 	bool too_many_orphans, out_of_socket_memory;
2044 
2045 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2046 	out_of_socket_memory = tcp_out_of_memory(sk);
2047 
2048 	if (too_many_orphans)
2049 		net_info_ratelimited("too many orphaned sockets\n");
2050 	if (out_of_socket_memory)
2051 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2052 	return too_many_orphans || out_of_socket_memory;
2053 }
2054 
2055 void tcp_close(struct sock *sk, long timeout)
2056 {
2057 	struct sk_buff *skb;
2058 	int data_was_unread = 0;
2059 	int state;
2060 
2061 	lock_sock(sk);
2062 	sk->sk_shutdown = SHUTDOWN_MASK;
2063 
2064 	if (sk->sk_state == TCP_LISTEN) {
2065 		tcp_set_state(sk, TCP_CLOSE);
2066 
2067 		/* Special case. */
2068 		inet_csk_listen_stop(sk);
2069 
2070 		goto adjudge_to_death;
2071 	}
2072 
2073 	/*  We need to flush the recv. buffs.  We do this only on the
2074 	 *  descriptor close, not protocol-sourced closes, because the
2075 	 *  reader process may not have drained the data yet!
2076 	 */
2077 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2078 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2079 
2080 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2081 			len--;
2082 		data_was_unread += len;
2083 		__kfree_skb(skb);
2084 	}
2085 
2086 	sk_mem_reclaim(sk);
2087 
2088 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2089 	if (sk->sk_state == TCP_CLOSE)
2090 		goto adjudge_to_death;
2091 
2092 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2093 	 * data was lost. To witness the awful effects of the old behavior of
2094 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2095 	 * GET in an FTP client, suspend the process, wait for the client to
2096 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2097 	 * Note: timeout is always zero in such a case.
2098 	 */
2099 	if (unlikely(tcp_sk(sk)->repair)) {
2100 		sk->sk_prot->disconnect(sk, 0);
2101 	} else if (data_was_unread) {
2102 		/* Unread data was tossed, zap the connection. */
2103 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2104 		tcp_set_state(sk, TCP_CLOSE);
2105 		tcp_send_active_reset(sk, sk->sk_allocation);
2106 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2107 		/* Check zero linger _after_ checking for unread data. */
2108 		sk->sk_prot->disconnect(sk, 0);
2109 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2110 	} else if (tcp_close_state(sk)) {
2111 		/* We FIN if the application ate all the data before
2112 		 * zapping the connection.
2113 		 */
2114 
2115 		/* RED-PEN. Formally speaking, we have broken TCP state
2116 		 * machine. State transitions:
2117 		 *
2118 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2119 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2120 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2121 		 *
2122 		 * are legal only when FIN has been sent (i.e. in window),
2123 		 * rather than queued out of window. Purists blame.
2124 		 *
2125 		 * F.e. "RFC state" is ESTABLISHED,
2126 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2127 		 *
2128 		 * The visible declinations are that sometimes
2129 		 * we enter time-wait state, when it is not required really
2130 		 * (harmless), do not send active resets, when they are
2131 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2132 		 * they look as CLOSING or LAST_ACK for Linux)
2133 		 * Probably, I missed some more holelets.
2134 		 * 						--ANK
2135 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2136 		 * in a single packet! (May consider it later but will
2137 		 * probably need API support or TCP_CORK SYN-ACK until
2138 		 * data is written and socket is closed.)
2139 		 */
2140 		tcp_send_fin(sk);
2141 	}
2142 
2143 	sk_stream_wait_close(sk, timeout);
2144 
2145 adjudge_to_death:
2146 	state = sk->sk_state;
2147 	sock_hold(sk);
2148 	sock_orphan(sk);
2149 
2150 	/* It is the last release_sock in its life. It will remove backlog. */
2151 	release_sock(sk);
2152 
2153 
2154 	/* Now socket is owned by kernel and we acquire BH lock
2155 	   to finish close. No need to check for user refs.
2156 	 */
2157 	local_bh_disable();
2158 	bh_lock_sock(sk);
2159 	WARN_ON(sock_owned_by_user(sk));
2160 
2161 	percpu_counter_inc(sk->sk_prot->orphan_count);
2162 
2163 	/* Have we already been destroyed by a softirq or backlog? */
2164 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2165 		goto out;
2166 
2167 	/*	This is a (useful) BSD violating of the RFC. There is a
2168 	 *	problem with TCP as specified in that the other end could
2169 	 *	keep a socket open forever with no application left this end.
2170 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2171 	 *	our end. If they send after that then tough - BUT: long enough
2172 	 *	that we won't make the old 4*rto = almost no time - whoops
2173 	 *	reset mistake.
2174 	 *
2175 	 *	Nope, it was not mistake. It is really desired behaviour
2176 	 *	f.e. on http servers, when such sockets are useless, but
2177 	 *	consume significant resources. Let's do it with special
2178 	 *	linger2	option.					--ANK
2179 	 */
2180 
2181 	if (sk->sk_state == TCP_FIN_WAIT2) {
2182 		struct tcp_sock *tp = tcp_sk(sk);
2183 		if (tp->linger2 < 0) {
2184 			tcp_set_state(sk, TCP_CLOSE);
2185 			tcp_send_active_reset(sk, GFP_ATOMIC);
2186 			__NET_INC_STATS(sock_net(sk),
2187 					LINUX_MIB_TCPABORTONLINGER);
2188 		} else {
2189 			const int tmo = tcp_fin_time(sk);
2190 
2191 			if (tmo > TCP_TIMEWAIT_LEN) {
2192 				inet_csk_reset_keepalive_timer(sk,
2193 						tmo - TCP_TIMEWAIT_LEN);
2194 			} else {
2195 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2196 				goto out;
2197 			}
2198 		}
2199 	}
2200 	if (sk->sk_state != TCP_CLOSE) {
2201 		sk_mem_reclaim(sk);
2202 		if (tcp_check_oom(sk, 0)) {
2203 			tcp_set_state(sk, TCP_CLOSE);
2204 			tcp_send_active_reset(sk, GFP_ATOMIC);
2205 			__NET_INC_STATS(sock_net(sk),
2206 					LINUX_MIB_TCPABORTONMEMORY);
2207 		}
2208 	}
2209 
2210 	if (sk->sk_state == TCP_CLOSE) {
2211 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2212 		/* We could get here with a non-NULL req if the socket is
2213 		 * aborted (e.g., closed with unread data) before 3WHS
2214 		 * finishes.
2215 		 */
2216 		if (req)
2217 			reqsk_fastopen_remove(sk, req, false);
2218 		inet_csk_destroy_sock(sk);
2219 	}
2220 	/* Otherwise, socket is reprieved until protocol close. */
2221 
2222 out:
2223 	bh_unlock_sock(sk);
2224 	local_bh_enable();
2225 	sock_put(sk);
2226 }
2227 EXPORT_SYMBOL(tcp_close);
2228 
2229 /* These states need RST on ABORT according to RFC793 */
2230 
2231 static inline bool tcp_need_reset(int state)
2232 {
2233 	return (1 << state) &
2234 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2235 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2236 }
2237 
2238 int tcp_disconnect(struct sock *sk, int flags)
2239 {
2240 	struct inet_sock *inet = inet_sk(sk);
2241 	struct inet_connection_sock *icsk = inet_csk(sk);
2242 	struct tcp_sock *tp = tcp_sk(sk);
2243 	int err = 0;
2244 	int old_state = sk->sk_state;
2245 
2246 	if (old_state != TCP_CLOSE)
2247 		tcp_set_state(sk, TCP_CLOSE);
2248 
2249 	/* ABORT function of RFC793 */
2250 	if (old_state == TCP_LISTEN) {
2251 		inet_csk_listen_stop(sk);
2252 	} else if (unlikely(tp->repair)) {
2253 		sk->sk_err = ECONNABORTED;
2254 	} else if (tcp_need_reset(old_state) ||
2255 		   (tp->snd_nxt != tp->write_seq &&
2256 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2257 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2258 		 * states
2259 		 */
2260 		tcp_send_active_reset(sk, gfp_any());
2261 		sk->sk_err = ECONNRESET;
2262 	} else if (old_state == TCP_SYN_SENT)
2263 		sk->sk_err = ECONNRESET;
2264 
2265 	tcp_clear_xmit_timers(sk);
2266 	__skb_queue_purge(&sk->sk_receive_queue);
2267 	tcp_write_queue_purge(sk);
2268 	skb_rbtree_purge(&tp->out_of_order_queue);
2269 
2270 	inet->inet_dport = 0;
2271 
2272 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2273 		inet_reset_saddr(sk);
2274 
2275 	sk->sk_shutdown = 0;
2276 	sock_reset_flag(sk, SOCK_DONE);
2277 	tp->srtt_us = 0;
2278 	tp->write_seq += tp->max_window + 2;
2279 	if (tp->write_seq == 0)
2280 		tp->write_seq = 1;
2281 	icsk->icsk_backoff = 0;
2282 	tp->snd_cwnd = 2;
2283 	icsk->icsk_probes_out = 0;
2284 	tp->packets_out = 0;
2285 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2286 	tp->snd_cwnd_cnt = 0;
2287 	tp->window_clamp = 0;
2288 	tcp_set_ca_state(sk, TCP_CA_Open);
2289 	tcp_clear_retrans(tp);
2290 	inet_csk_delack_init(sk);
2291 	tcp_init_send_head(sk);
2292 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2293 	__sk_dst_reset(sk);
2294 
2295 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2296 
2297 	sk->sk_error_report(sk);
2298 	return err;
2299 }
2300 EXPORT_SYMBOL(tcp_disconnect);
2301 
2302 static inline bool tcp_can_repair_sock(const struct sock *sk)
2303 {
2304 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2305 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2306 }
2307 
2308 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2309 {
2310 	struct tcp_repair_window opt;
2311 
2312 	if (!tp->repair)
2313 		return -EPERM;
2314 
2315 	if (len != sizeof(opt))
2316 		return -EINVAL;
2317 
2318 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2319 		return -EFAULT;
2320 
2321 	if (opt.max_window < opt.snd_wnd)
2322 		return -EINVAL;
2323 
2324 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2325 		return -EINVAL;
2326 
2327 	if (after(opt.rcv_wup, tp->rcv_nxt))
2328 		return -EINVAL;
2329 
2330 	tp->snd_wl1	= opt.snd_wl1;
2331 	tp->snd_wnd	= opt.snd_wnd;
2332 	tp->max_window	= opt.max_window;
2333 
2334 	tp->rcv_wnd	= opt.rcv_wnd;
2335 	tp->rcv_wup	= opt.rcv_wup;
2336 
2337 	return 0;
2338 }
2339 
2340 static int tcp_repair_options_est(struct tcp_sock *tp,
2341 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2342 {
2343 	struct tcp_repair_opt opt;
2344 
2345 	while (len >= sizeof(opt)) {
2346 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2347 			return -EFAULT;
2348 
2349 		optbuf++;
2350 		len -= sizeof(opt);
2351 
2352 		switch (opt.opt_code) {
2353 		case TCPOPT_MSS:
2354 			tp->rx_opt.mss_clamp = opt.opt_val;
2355 			break;
2356 		case TCPOPT_WINDOW:
2357 			{
2358 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2359 				u16 rcv_wscale = opt.opt_val >> 16;
2360 
2361 				if (snd_wscale > 14 || rcv_wscale > 14)
2362 					return -EFBIG;
2363 
2364 				tp->rx_opt.snd_wscale = snd_wscale;
2365 				tp->rx_opt.rcv_wscale = rcv_wscale;
2366 				tp->rx_opt.wscale_ok = 1;
2367 			}
2368 			break;
2369 		case TCPOPT_SACK_PERM:
2370 			if (opt.opt_val != 0)
2371 				return -EINVAL;
2372 
2373 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2374 			if (sysctl_tcp_fack)
2375 				tcp_enable_fack(tp);
2376 			break;
2377 		case TCPOPT_TIMESTAMP:
2378 			if (opt.opt_val != 0)
2379 				return -EINVAL;
2380 
2381 			tp->rx_opt.tstamp_ok = 1;
2382 			break;
2383 		}
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 /*
2390  *	Socket option code for TCP.
2391  */
2392 static int do_tcp_setsockopt(struct sock *sk, int level,
2393 		int optname, char __user *optval, unsigned int optlen)
2394 {
2395 	struct tcp_sock *tp = tcp_sk(sk);
2396 	struct inet_connection_sock *icsk = inet_csk(sk);
2397 	struct net *net = sock_net(sk);
2398 	int val;
2399 	int err = 0;
2400 
2401 	/* These are data/string values, all the others are ints */
2402 	switch (optname) {
2403 	case TCP_CONGESTION: {
2404 		char name[TCP_CA_NAME_MAX];
2405 
2406 		if (optlen < 1)
2407 			return -EINVAL;
2408 
2409 		val = strncpy_from_user(name, optval,
2410 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2411 		if (val < 0)
2412 			return -EFAULT;
2413 		name[val] = 0;
2414 
2415 		lock_sock(sk);
2416 		err = tcp_set_congestion_control(sk, name);
2417 		release_sock(sk);
2418 		return err;
2419 	}
2420 	default:
2421 		/* fallthru */
2422 		break;
2423 	}
2424 
2425 	if (optlen < sizeof(int))
2426 		return -EINVAL;
2427 
2428 	if (get_user(val, (int __user *)optval))
2429 		return -EFAULT;
2430 
2431 	lock_sock(sk);
2432 
2433 	switch (optname) {
2434 	case TCP_MAXSEG:
2435 		/* Values greater than interface MTU won't take effect. However
2436 		 * at the point when this call is done we typically don't yet
2437 		 * know which interface is going to be used */
2438 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2439 			err = -EINVAL;
2440 			break;
2441 		}
2442 		tp->rx_opt.user_mss = val;
2443 		break;
2444 
2445 	case TCP_NODELAY:
2446 		if (val) {
2447 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2448 			 * this option on corked socket is remembered, but
2449 			 * it is not activated until cork is cleared.
2450 			 *
2451 			 * However, when TCP_NODELAY is set we make
2452 			 * an explicit push, which overrides even TCP_CORK
2453 			 * for currently queued segments.
2454 			 */
2455 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2456 			tcp_push_pending_frames(sk);
2457 		} else {
2458 			tp->nonagle &= ~TCP_NAGLE_OFF;
2459 		}
2460 		break;
2461 
2462 	case TCP_THIN_LINEAR_TIMEOUTS:
2463 		if (val < 0 || val > 1)
2464 			err = -EINVAL;
2465 		else
2466 			tp->thin_lto = val;
2467 		break;
2468 
2469 	case TCP_THIN_DUPACK:
2470 		if (val < 0 || val > 1)
2471 			err = -EINVAL;
2472 		else {
2473 			tp->thin_dupack = val;
2474 			if (tp->thin_dupack)
2475 				tcp_disable_early_retrans(tp);
2476 		}
2477 		break;
2478 
2479 	case TCP_REPAIR:
2480 		if (!tcp_can_repair_sock(sk))
2481 			err = -EPERM;
2482 		else if (val == 1) {
2483 			tp->repair = 1;
2484 			sk->sk_reuse = SK_FORCE_REUSE;
2485 			tp->repair_queue = TCP_NO_QUEUE;
2486 		} else if (val == 0) {
2487 			tp->repair = 0;
2488 			sk->sk_reuse = SK_NO_REUSE;
2489 			tcp_send_window_probe(sk);
2490 		} else
2491 			err = -EINVAL;
2492 
2493 		break;
2494 
2495 	case TCP_REPAIR_QUEUE:
2496 		if (!tp->repair)
2497 			err = -EPERM;
2498 		else if (val < TCP_QUEUES_NR)
2499 			tp->repair_queue = val;
2500 		else
2501 			err = -EINVAL;
2502 		break;
2503 
2504 	case TCP_QUEUE_SEQ:
2505 		if (sk->sk_state != TCP_CLOSE)
2506 			err = -EPERM;
2507 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2508 			tp->write_seq = val;
2509 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2510 			tp->rcv_nxt = val;
2511 		else
2512 			err = -EINVAL;
2513 		break;
2514 
2515 	case TCP_REPAIR_OPTIONS:
2516 		if (!tp->repair)
2517 			err = -EINVAL;
2518 		else if (sk->sk_state == TCP_ESTABLISHED)
2519 			err = tcp_repair_options_est(tp,
2520 					(struct tcp_repair_opt __user *)optval,
2521 					optlen);
2522 		else
2523 			err = -EPERM;
2524 		break;
2525 
2526 	case TCP_CORK:
2527 		/* When set indicates to always queue non-full frames.
2528 		 * Later the user clears this option and we transmit
2529 		 * any pending partial frames in the queue.  This is
2530 		 * meant to be used alongside sendfile() to get properly
2531 		 * filled frames when the user (for example) must write
2532 		 * out headers with a write() call first and then use
2533 		 * sendfile to send out the data parts.
2534 		 *
2535 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2536 		 * stronger than TCP_NODELAY.
2537 		 */
2538 		if (val) {
2539 			tp->nonagle |= TCP_NAGLE_CORK;
2540 		} else {
2541 			tp->nonagle &= ~TCP_NAGLE_CORK;
2542 			if (tp->nonagle&TCP_NAGLE_OFF)
2543 				tp->nonagle |= TCP_NAGLE_PUSH;
2544 			tcp_push_pending_frames(sk);
2545 		}
2546 		break;
2547 
2548 	case TCP_KEEPIDLE:
2549 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2550 			err = -EINVAL;
2551 		else {
2552 			tp->keepalive_time = val * HZ;
2553 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2554 			    !((1 << sk->sk_state) &
2555 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2556 				u32 elapsed = keepalive_time_elapsed(tp);
2557 				if (tp->keepalive_time > elapsed)
2558 					elapsed = tp->keepalive_time - elapsed;
2559 				else
2560 					elapsed = 0;
2561 				inet_csk_reset_keepalive_timer(sk, elapsed);
2562 			}
2563 		}
2564 		break;
2565 	case TCP_KEEPINTVL:
2566 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2567 			err = -EINVAL;
2568 		else
2569 			tp->keepalive_intvl = val * HZ;
2570 		break;
2571 	case TCP_KEEPCNT:
2572 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2573 			err = -EINVAL;
2574 		else
2575 			tp->keepalive_probes = val;
2576 		break;
2577 	case TCP_SYNCNT:
2578 		if (val < 1 || val > MAX_TCP_SYNCNT)
2579 			err = -EINVAL;
2580 		else
2581 			icsk->icsk_syn_retries = val;
2582 		break;
2583 
2584 	case TCP_SAVE_SYN:
2585 		if (val < 0 || val > 1)
2586 			err = -EINVAL;
2587 		else
2588 			tp->save_syn = val;
2589 		break;
2590 
2591 	case TCP_LINGER2:
2592 		if (val < 0)
2593 			tp->linger2 = -1;
2594 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2595 			tp->linger2 = 0;
2596 		else
2597 			tp->linger2 = val * HZ;
2598 		break;
2599 
2600 	case TCP_DEFER_ACCEPT:
2601 		/* Translate value in seconds to number of retransmits */
2602 		icsk->icsk_accept_queue.rskq_defer_accept =
2603 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2604 					TCP_RTO_MAX / HZ);
2605 		break;
2606 
2607 	case TCP_WINDOW_CLAMP:
2608 		if (!val) {
2609 			if (sk->sk_state != TCP_CLOSE) {
2610 				err = -EINVAL;
2611 				break;
2612 			}
2613 			tp->window_clamp = 0;
2614 		} else
2615 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2616 						SOCK_MIN_RCVBUF / 2 : val;
2617 		break;
2618 
2619 	case TCP_QUICKACK:
2620 		if (!val) {
2621 			icsk->icsk_ack.pingpong = 1;
2622 		} else {
2623 			icsk->icsk_ack.pingpong = 0;
2624 			if ((1 << sk->sk_state) &
2625 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2626 			    inet_csk_ack_scheduled(sk)) {
2627 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2628 				tcp_cleanup_rbuf(sk, 1);
2629 				if (!(val & 1))
2630 					icsk->icsk_ack.pingpong = 1;
2631 			}
2632 		}
2633 		break;
2634 
2635 #ifdef CONFIG_TCP_MD5SIG
2636 	case TCP_MD5SIG:
2637 		/* Read the IP->Key mappings from userspace */
2638 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2639 		break;
2640 #endif
2641 	case TCP_USER_TIMEOUT:
2642 		/* Cap the max time in ms TCP will retry or probe the window
2643 		 * before giving up and aborting (ETIMEDOUT) a connection.
2644 		 */
2645 		if (val < 0)
2646 			err = -EINVAL;
2647 		else
2648 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2649 		break;
2650 
2651 	case TCP_FASTOPEN:
2652 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2653 		    TCPF_LISTEN))) {
2654 			tcp_fastopen_init_key_once(true);
2655 
2656 			fastopen_queue_tune(sk, val);
2657 		} else {
2658 			err = -EINVAL;
2659 		}
2660 		break;
2661 	case TCP_TIMESTAMP:
2662 		if (!tp->repair)
2663 			err = -EPERM;
2664 		else
2665 			tp->tsoffset = val - tcp_time_stamp;
2666 		break;
2667 	case TCP_REPAIR_WINDOW:
2668 		err = tcp_repair_set_window(tp, optval, optlen);
2669 		break;
2670 	case TCP_NOTSENT_LOWAT:
2671 		tp->notsent_lowat = val;
2672 		sk->sk_write_space(sk);
2673 		break;
2674 	default:
2675 		err = -ENOPROTOOPT;
2676 		break;
2677 	}
2678 
2679 	release_sock(sk);
2680 	return err;
2681 }
2682 
2683 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2684 		   unsigned int optlen)
2685 {
2686 	const struct inet_connection_sock *icsk = inet_csk(sk);
2687 
2688 	if (level != SOL_TCP)
2689 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2690 						     optval, optlen);
2691 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2692 }
2693 EXPORT_SYMBOL(tcp_setsockopt);
2694 
2695 #ifdef CONFIG_COMPAT
2696 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2697 			  char __user *optval, unsigned int optlen)
2698 {
2699 	if (level != SOL_TCP)
2700 		return inet_csk_compat_setsockopt(sk, level, optname,
2701 						  optval, optlen);
2702 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2703 }
2704 EXPORT_SYMBOL(compat_tcp_setsockopt);
2705 #endif
2706 
2707 /* Return information about state of tcp endpoint in API format. */
2708 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2709 {
2710 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2711 	const struct inet_connection_sock *icsk = inet_csk(sk);
2712 	u32 now = tcp_time_stamp, intv;
2713 	unsigned int start;
2714 	int notsent_bytes;
2715 	u64 rate64;
2716 	u32 rate;
2717 
2718 	memset(info, 0, sizeof(*info));
2719 	if (sk->sk_type != SOCK_STREAM)
2720 		return;
2721 
2722 	info->tcpi_state = sk_state_load(sk);
2723 
2724 	info->tcpi_ca_state = icsk->icsk_ca_state;
2725 	info->tcpi_retransmits = icsk->icsk_retransmits;
2726 	info->tcpi_probes = icsk->icsk_probes_out;
2727 	info->tcpi_backoff = icsk->icsk_backoff;
2728 
2729 	if (tp->rx_opt.tstamp_ok)
2730 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2731 	if (tcp_is_sack(tp))
2732 		info->tcpi_options |= TCPI_OPT_SACK;
2733 	if (tp->rx_opt.wscale_ok) {
2734 		info->tcpi_options |= TCPI_OPT_WSCALE;
2735 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2736 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2737 	}
2738 
2739 	if (tp->ecn_flags & TCP_ECN_OK)
2740 		info->tcpi_options |= TCPI_OPT_ECN;
2741 	if (tp->ecn_flags & TCP_ECN_SEEN)
2742 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2743 	if (tp->syn_data_acked)
2744 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2745 
2746 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2747 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2748 	info->tcpi_snd_mss = tp->mss_cache;
2749 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2750 
2751 	if (info->tcpi_state == TCP_LISTEN) {
2752 		info->tcpi_unacked = sk->sk_ack_backlog;
2753 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2754 	} else {
2755 		info->tcpi_unacked = tp->packets_out;
2756 		info->tcpi_sacked = tp->sacked_out;
2757 	}
2758 	info->tcpi_lost = tp->lost_out;
2759 	info->tcpi_retrans = tp->retrans_out;
2760 	info->tcpi_fackets = tp->fackets_out;
2761 
2762 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2763 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2764 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2765 
2766 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2767 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2768 	info->tcpi_rtt = tp->srtt_us >> 3;
2769 	info->tcpi_rttvar = tp->mdev_us >> 2;
2770 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2771 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2772 	info->tcpi_advmss = tp->advmss;
2773 	info->tcpi_reordering = tp->reordering;
2774 
2775 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2776 	info->tcpi_rcv_space = tp->rcvq_space.space;
2777 
2778 	info->tcpi_total_retrans = tp->total_retrans;
2779 
2780 	rate = READ_ONCE(sk->sk_pacing_rate);
2781 	rate64 = rate != ~0U ? rate : ~0ULL;
2782 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2783 
2784 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2785 	rate64 = rate != ~0U ? rate : ~0ULL;
2786 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2787 
2788 	do {
2789 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2790 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2791 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2792 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2793 	info->tcpi_segs_out = tp->segs_out;
2794 	info->tcpi_segs_in = tp->segs_in;
2795 
2796 	notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2797 	info->tcpi_notsent_bytes = max(0, notsent_bytes);
2798 
2799 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2800 	info->tcpi_data_segs_in = tp->data_segs_in;
2801 	info->tcpi_data_segs_out = tp->data_segs_out;
2802 
2803 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2804 	rate = READ_ONCE(tp->rate_delivered);
2805 	intv = READ_ONCE(tp->rate_interval_us);
2806 	if (rate && intv) {
2807 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2808 		do_div(rate64, intv);
2809 		put_unaligned(rate64, &info->tcpi_delivery_rate);
2810 	}
2811 }
2812 EXPORT_SYMBOL_GPL(tcp_get_info);
2813 
2814 static int do_tcp_getsockopt(struct sock *sk, int level,
2815 		int optname, char __user *optval, int __user *optlen)
2816 {
2817 	struct inet_connection_sock *icsk = inet_csk(sk);
2818 	struct tcp_sock *tp = tcp_sk(sk);
2819 	struct net *net = sock_net(sk);
2820 	int val, len;
2821 
2822 	if (get_user(len, optlen))
2823 		return -EFAULT;
2824 
2825 	len = min_t(unsigned int, len, sizeof(int));
2826 
2827 	if (len < 0)
2828 		return -EINVAL;
2829 
2830 	switch (optname) {
2831 	case TCP_MAXSEG:
2832 		val = tp->mss_cache;
2833 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2834 			val = tp->rx_opt.user_mss;
2835 		if (tp->repair)
2836 			val = tp->rx_opt.mss_clamp;
2837 		break;
2838 	case TCP_NODELAY:
2839 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2840 		break;
2841 	case TCP_CORK:
2842 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2843 		break;
2844 	case TCP_KEEPIDLE:
2845 		val = keepalive_time_when(tp) / HZ;
2846 		break;
2847 	case TCP_KEEPINTVL:
2848 		val = keepalive_intvl_when(tp) / HZ;
2849 		break;
2850 	case TCP_KEEPCNT:
2851 		val = keepalive_probes(tp);
2852 		break;
2853 	case TCP_SYNCNT:
2854 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2855 		break;
2856 	case TCP_LINGER2:
2857 		val = tp->linger2;
2858 		if (val >= 0)
2859 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2860 		break;
2861 	case TCP_DEFER_ACCEPT:
2862 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2863 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2864 		break;
2865 	case TCP_WINDOW_CLAMP:
2866 		val = tp->window_clamp;
2867 		break;
2868 	case TCP_INFO: {
2869 		struct tcp_info info;
2870 
2871 		if (get_user(len, optlen))
2872 			return -EFAULT;
2873 
2874 		tcp_get_info(sk, &info);
2875 
2876 		len = min_t(unsigned int, len, sizeof(info));
2877 		if (put_user(len, optlen))
2878 			return -EFAULT;
2879 		if (copy_to_user(optval, &info, len))
2880 			return -EFAULT;
2881 		return 0;
2882 	}
2883 	case TCP_CC_INFO: {
2884 		const struct tcp_congestion_ops *ca_ops;
2885 		union tcp_cc_info info;
2886 		size_t sz = 0;
2887 		int attr;
2888 
2889 		if (get_user(len, optlen))
2890 			return -EFAULT;
2891 
2892 		ca_ops = icsk->icsk_ca_ops;
2893 		if (ca_ops && ca_ops->get_info)
2894 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2895 
2896 		len = min_t(unsigned int, len, sz);
2897 		if (put_user(len, optlen))
2898 			return -EFAULT;
2899 		if (copy_to_user(optval, &info, len))
2900 			return -EFAULT;
2901 		return 0;
2902 	}
2903 	case TCP_QUICKACK:
2904 		val = !icsk->icsk_ack.pingpong;
2905 		break;
2906 
2907 	case TCP_CONGESTION:
2908 		if (get_user(len, optlen))
2909 			return -EFAULT;
2910 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2911 		if (put_user(len, optlen))
2912 			return -EFAULT;
2913 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2914 			return -EFAULT;
2915 		return 0;
2916 
2917 	case TCP_THIN_LINEAR_TIMEOUTS:
2918 		val = tp->thin_lto;
2919 		break;
2920 	case TCP_THIN_DUPACK:
2921 		val = tp->thin_dupack;
2922 		break;
2923 
2924 	case TCP_REPAIR:
2925 		val = tp->repair;
2926 		break;
2927 
2928 	case TCP_REPAIR_QUEUE:
2929 		if (tp->repair)
2930 			val = tp->repair_queue;
2931 		else
2932 			return -EINVAL;
2933 		break;
2934 
2935 	case TCP_REPAIR_WINDOW: {
2936 		struct tcp_repair_window opt;
2937 
2938 		if (get_user(len, optlen))
2939 			return -EFAULT;
2940 
2941 		if (len != sizeof(opt))
2942 			return -EINVAL;
2943 
2944 		if (!tp->repair)
2945 			return -EPERM;
2946 
2947 		opt.snd_wl1	= tp->snd_wl1;
2948 		opt.snd_wnd	= tp->snd_wnd;
2949 		opt.max_window	= tp->max_window;
2950 		opt.rcv_wnd	= tp->rcv_wnd;
2951 		opt.rcv_wup	= tp->rcv_wup;
2952 
2953 		if (copy_to_user(optval, &opt, len))
2954 			return -EFAULT;
2955 		return 0;
2956 	}
2957 	case TCP_QUEUE_SEQ:
2958 		if (tp->repair_queue == TCP_SEND_QUEUE)
2959 			val = tp->write_seq;
2960 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2961 			val = tp->rcv_nxt;
2962 		else
2963 			return -EINVAL;
2964 		break;
2965 
2966 	case TCP_USER_TIMEOUT:
2967 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2968 		break;
2969 
2970 	case TCP_FASTOPEN:
2971 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2972 		break;
2973 
2974 	case TCP_TIMESTAMP:
2975 		val = tcp_time_stamp + tp->tsoffset;
2976 		break;
2977 	case TCP_NOTSENT_LOWAT:
2978 		val = tp->notsent_lowat;
2979 		break;
2980 	case TCP_SAVE_SYN:
2981 		val = tp->save_syn;
2982 		break;
2983 	case TCP_SAVED_SYN: {
2984 		if (get_user(len, optlen))
2985 			return -EFAULT;
2986 
2987 		lock_sock(sk);
2988 		if (tp->saved_syn) {
2989 			if (len < tp->saved_syn[0]) {
2990 				if (put_user(tp->saved_syn[0], optlen)) {
2991 					release_sock(sk);
2992 					return -EFAULT;
2993 				}
2994 				release_sock(sk);
2995 				return -EINVAL;
2996 			}
2997 			len = tp->saved_syn[0];
2998 			if (put_user(len, optlen)) {
2999 				release_sock(sk);
3000 				return -EFAULT;
3001 			}
3002 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3003 				release_sock(sk);
3004 				return -EFAULT;
3005 			}
3006 			tcp_saved_syn_free(tp);
3007 			release_sock(sk);
3008 		} else {
3009 			release_sock(sk);
3010 			len = 0;
3011 			if (put_user(len, optlen))
3012 				return -EFAULT;
3013 		}
3014 		return 0;
3015 	}
3016 	default:
3017 		return -ENOPROTOOPT;
3018 	}
3019 
3020 	if (put_user(len, optlen))
3021 		return -EFAULT;
3022 	if (copy_to_user(optval, &val, len))
3023 		return -EFAULT;
3024 	return 0;
3025 }
3026 
3027 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3028 		   int __user *optlen)
3029 {
3030 	struct inet_connection_sock *icsk = inet_csk(sk);
3031 
3032 	if (level != SOL_TCP)
3033 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3034 						     optval, optlen);
3035 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3036 }
3037 EXPORT_SYMBOL(tcp_getsockopt);
3038 
3039 #ifdef CONFIG_COMPAT
3040 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3041 			  char __user *optval, int __user *optlen)
3042 {
3043 	if (level != SOL_TCP)
3044 		return inet_csk_compat_getsockopt(sk, level, optname,
3045 						  optval, optlen);
3046 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3047 }
3048 EXPORT_SYMBOL(compat_tcp_getsockopt);
3049 #endif
3050 
3051 #ifdef CONFIG_TCP_MD5SIG
3052 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3053 static DEFINE_MUTEX(tcp_md5sig_mutex);
3054 static bool tcp_md5sig_pool_populated = false;
3055 
3056 static void __tcp_alloc_md5sig_pool(void)
3057 {
3058 	struct crypto_ahash *hash;
3059 	int cpu;
3060 
3061 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3062 	if (IS_ERR(hash))
3063 		return;
3064 
3065 	for_each_possible_cpu(cpu) {
3066 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3067 		struct ahash_request *req;
3068 
3069 		if (!scratch) {
3070 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3071 					       sizeof(struct tcphdr),
3072 					       GFP_KERNEL,
3073 					       cpu_to_node(cpu));
3074 			if (!scratch)
3075 				return;
3076 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3077 		}
3078 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3079 			continue;
3080 
3081 		req = ahash_request_alloc(hash, GFP_KERNEL);
3082 		if (!req)
3083 			return;
3084 
3085 		ahash_request_set_callback(req, 0, NULL, NULL);
3086 
3087 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3088 	}
3089 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3090 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3091 	 */
3092 	smp_wmb();
3093 	tcp_md5sig_pool_populated = true;
3094 }
3095 
3096 bool tcp_alloc_md5sig_pool(void)
3097 {
3098 	if (unlikely(!tcp_md5sig_pool_populated)) {
3099 		mutex_lock(&tcp_md5sig_mutex);
3100 
3101 		if (!tcp_md5sig_pool_populated)
3102 			__tcp_alloc_md5sig_pool();
3103 
3104 		mutex_unlock(&tcp_md5sig_mutex);
3105 	}
3106 	return tcp_md5sig_pool_populated;
3107 }
3108 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3109 
3110 
3111 /**
3112  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3113  *
3114  *	We use percpu structure, so if we succeed, we exit with preemption
3115  *	and BH disabled, to make sure another thread or softirq handling
3116  *	wont try to get same context.
3117  */
3118 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3119 {
3120 	local_bh_disable();
3121 
3122 	if (tcp_md5sig_pool_populated) {
3123 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3124 		smp_rmb();
3125 		return this_cpu_ptr(&tcp_md5sig_pool);
3126 	}
3127 	local_bh_enable();
3128 	return NULL;
3129 }
3130 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3131 
3132 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3133 			  const struct sk_buff *skb, unsigned int header_len)
3134 {
3135 	struct scatterlist sg;
3136 	const struct tcphdr *tp = tcp_hdr(skb);
3137 	struct ahash_request *req = hp->md5_req;
3138 	unsigned int i;
3139 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3140 					   skb_headlen(skb) - header_len : 0;
3141 	const struct skb_shared_info *shi = skb_shinfo(skb);
3142 	struct sk_buff *frag_iter;
3143 
3144 	sg_init_table(&sg, 1);
3145 
3146 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3147 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3148 	if (crypto_ahash_update(req))
3149 		return 1;
3150 
3151 	for (i = 0; i < shi->nr_frags; ++i) {
3152 		const struct skb_frag_struct *f = &shi->frags[i];
3153 		unsigned int offset = f->page_offset;
3154 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3155 
3156 		sg_set_page(&sg, page, skb_frag_size(f),
3157 			    offset_in_page(offset));
3158 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3159 		if (crypto_ahash_update(req))
3160 			return 1;
3161 	}
3162 
3163 	skb_walk_frags(skb, frag_iter)
3164 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3165 			return 1;
3166 
3167 	return 0;
3168 }
3169 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3170 
3171 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3172 {
3173 	struct scatterlist sg;
3174 
3175 	sg_init_one(&sg, key->key, key->keylen);
3176 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3177 	return crypto_ahash_update(hp->md5_req);
3178 }
3179 EXPORT_SYMBOL(tcp_md5_hash_key);
3180 
3181 #endif
3182 
3183 void tcp_done(struct sock *sk)
3184 {
3185 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3186 
3187 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3188 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3189 
3190 	tcp_set_state(sk, TCP_CLOSE);
3191 	tcp_clear_xmit_timers(sk);
3192 	if (req)
3193 		reqsk_fastopen_remove(sk, req, false);
3194 
3195 	sk->sk_shutdown = SHUTDOWN_MASK;
3196 
3197 	if (!sock_flag(sk, SOCK_DEAD))
3198 		sk->sk_state_change(sk);
3199 	else
3200 		inet_csk_destroy_sock(sk);
3201 }
3202 EXPORT_SYMBOL_GPL(tcp_done);
3203 
3204 int tcp_abort(struct sock *sk, int err)
3205 {
3206 	if (!sk_fullsock(sk)) {
3207 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3208 			struct request_sock *req = inet_reqsk(sk);
3209 
3210 			local_bh_disable();
3211 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3212 							  req);
3213 			local_bh_enable();
3214 			return 0;
3215 		}
3216 		return -EOPNOTSUPP;
3217 	}
3218 
3219 	/* Don't race with userspace socket closes such as tcp_close. */
3220 	lock_sock(sk);
3221 
3222 	if (sk->sk_state == TCP_LISTEN) {
3223 		tcp_set_state(sk, TCP_CLOSE);
3224 		inet_csk_listen_stop(sk);
3225 	}
3226 
3227 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3228 	local_bh_disable();
3229 	bh_lock_sock(sk);
3230 
3231 	if (!sock_flag(sk, SOCK_DEAD)) {
3232 		sk->sk_err = err;
3233 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3234 		smp_wmb();
3235 		sk->sk_error_report(sk);
3236 		if (tcp_need_reset(sk->sk_state))
3237 			tcp_send_active_reset(sk, GFP_ATOMIC);
3238 		tcp_done(sk);
3239 	}
3240 
3241 	bh_unlock_sock(sk);
3242 	local_bh_enable();
3243 	release_sock(sk);
3244 	return 0;
3245 }
3246 EXPORT_SYMBOL_GPL(tcp_abort);
3247 
3248 extern struct tcp_congestion_ops tcp_reno;
3249 
3250 static __initdata unsigned long thash_entries;
3251 static int __init set_thash_entries(char *str)
3252 {
3253 	ssize_t ret;
3254 
3255 	if (!str)
3256 		return 0;
3257 
3258 	ret = kstrtoul(str, 0, &thash_entries);
3259 	if (ret)
3260 		return 0;
3261 
3262 	return 1;
3263 }
3264 __setup("thash_entries=", set_thash_entries);
3265 
3266 static void __init tcp_init_mem(void)
3267 {
3268 	unsigned long limit = nr_free_buffer_pages() / 16;
3269 
3270 	limit = max(limit, 128UL);
3271 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3272 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3273 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3274 }
3275 
3276 void __init tcp_init(void)
3277 {
3278 	int max_rshare, max_wshare, cnt;
3279 	unsigned long limit;
3280 	unsigned int i;
3281 
3282 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3283 		     FIELD_SIZEOF(struct sk_buff, cb));
3284 
3285 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3286 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3287 	tcp_hashinfo.bind_bucket_cachep =
3288 		kmem_cache_create("tcp_bind_bucket",
3289 				  sizeof(struct inet_bind_bucket), 0,
3290 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3291 
3292 	/* Size and allocate the main established and bind bucket
3293 	 * hash tables.
3294 	 *
3295 	 * The methodology is similar to that of the buffer cache.
3296 	 */
3297 	tcp_hashinfo.ehash =
3298 		alloc_large_system_hash("TCP established",
3299 					sizeof(struct inet_ehash_bucket),
3300 					thash_entries,
3301 					17, /* one slot per 128 KB of memory */
3302 					0,
3303 					NULL,
3304 					&tcp_hashinfo.ehash_mask,
3305 					0,
3306 					thash_entries ? 0 : 512 * 1024);
3307 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3308 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3309 
3310 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3311 		panic("TCP: failed to alloc ehash_locks");
3312 	tcp_hashinfo.bhash =
3313 		alloc_large_system_hash("TCP bind",
3314 					sizeof(struct inet_bind_hashbucket),
3315 					tcp_hashinfo.ehash_mask + 1,
3316 					17, /* one slot per 128 KB of memory */
3317 					0,
3318 					&tcp_hashinfo.bhash_size,
3319 					NULL,
3320 					0,
3321 					64 * 1024);
3322 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3323 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3324 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3325 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3326 	}
3327 
3328 
3329 	cnt = tcp_hashinfo.ehash_mask + 1;
3330 
3331 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3332 	sysctl_tcp_max_orphans = cnt / 2;
3333 	sysctl_max_syn_backlog = max(128, cnt / 256);
3334 
3335 	tcp_init_mem();
3336 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3337 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3338 	max_wshare = min(4UL*1024*1024, limit);
3339 	max_rshare = min(6UL*1024*1024, limit);
3340 
3341 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3342 	sysctl_tcp_wmem[1] = 16*1024;
3343 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3344 
3345 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3346 	sysctl_tcp_rmem[1] = 87380;
3347 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3348 
3349 	pr_info("Hash tables configured (established %u bind %u)\n",
3350 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3351 
3352 	tcp_metrics_init();
3353 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3354 	tcp_tasklet_init();
3355 }
3356