1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <asm/unaligned.h> 283 #include <net/busy_poll.h> 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 int tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 if (!tcp_memory_pressure) { 330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 331 tcp_memory_pressure = 1; 332 } 333 } 334 EXPORT_SYMBOL(tcp_enter_memory_pressure); 335 336 /* Convert seconds to retransmits based on initial and max timeout */ 337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 338 { 339 u8 res = 0; 340 341 if (seconds > 0) { 342 int period = timeout; 343 344 res = 1; 345 while (seconds > period && res < 255) { 346 res++; 347 timeout <<= 1; 348 if (timeout > rto_max) 349 timeout = rto_max; 350 period += timeout; 351 } 352 } 353 return res; 354 } 355 356 /* Convert retransmits to seconds based on initial and max timeout */ 357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 358 { 359 int period = 0; 360 361 if (retrans > 0) { 362 period = timeout; 363 while (--retrans) { 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return period; 371 } 372 373 /* Address-family independent initialization for a tcp_sock. 374 * 375 * NOTE: A lot of things set to zero explicitly by call to 376 * sk_alloc() so need not be done here. 377 */ 378 void tcp_init_sock(struct sock *sk) 379 { 380 struct inet_connection_sock *icsk = inet_csk(sk); 381 struct tcp_sock *tp = tcp_sk(sk); 382 383 tp->out_of_order_queue = RB_ROOT; 384 tcp_init_xmit_timers(sk); 385 tcp_prequeue_init(tp); 386 INIT_LIST_HEAD(&tp->tsq_node); 387 388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 390 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U); 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* There's a bubble in the pipe until at least the first ACK. */ 400 tp->app_limited = ~0U; 401 402 /* See draft-stevens-tcpca-spec-01 for discussion of the 403 * initialization of these values. 404 */ 405 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 406 tp->snd_cwnd_clamp = ~0; 407 tp->mss_cache = TCP_MSS_DEFAULT; 408 u64_stats_init(&tp->syncp); 409 410 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 411 tcp_enable_early_retrans(tp); 412 tcp_assign_congestion_control(sk); 413 414 tp->tsoffset = 0; 415 416 sk->sk_state = TCP_CLOSE; 417 418 sk->sk_write_space = sk_stream_write_space; 419 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 420 421 icsk->icsk_sync_mss = tcp_sync_mss; 422 423 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 424 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 425 426 local_bh_disable(); 427 sk_sockets_allocated_inc(sk); 428 local_bh_enable(); 429 } 430 EXPORT_SYMBOL(tcp_init_sock); 431 432 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb) 433 { 434 if (tsflags) { 435 struct skb_shared_info *shinfo = skb_shinfo(skb); 436 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 437 438 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 439 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 440 tcb->txstamp_ack = 1; 441 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 442 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 443 } 444 } 445 446 /* 447 * Wait for a TCP event. 448 * 449 * Note that we don't need to lock the socket, as the upper poll layers 450 * take care of normal races (between the test and the event) and we don't 451 * go look at any of the socket buffers directly. 452 */ 453 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 454 { 455 unsigned int mask; 456 struct sock *sk = sock->sk; 457 const struct tcp_sock *tp = tcp_sk(sk); 458 int state; 459 460 sock_rps_record_flow(sk); 461 462 sock_poll_wait(file, sk_sleep(sk), wait); 463 464 state = sk_state_load(sk); 465 if (state == TCP_LISTEN) 466 return inet_csk_listen_poll(sk); 467 468 /* Socket is not locked. We are protected from async events 469 * by poll logic and correct handling of state changes 470 * made by other threads is impossible in any case. 471 */ 472 473 mask = 0; 474 475 /* 476 * POLLHUP is certainly not done right. But poll() doesn't 477 * have a notion of HUP in just one direction, and for a 478 * socket the read side is more interesting. 479 * 480 * Some poll() documentation says that POLLHUP is incompatible 481 * with the POLLOUT/POLLWR flags, so somebody should check this 482 * all. But careful, it tends to be safer to return too many 483 * bits than too few, and you can easily break real applications 484 * if you don't tell them that something has hung up! 485 * 486 * Check-me. 487 * 488 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 489 * our fs/select.c). It means that after we received EOF, 490 * poll always returns immediately, making impossible poll() on write() 491 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 492 * if and only if shutdown has been made in both directions. 493 * Actually, it is interesting to look how Solaris and DUX 494 * solve this dilemma. I would prefer, if POLLHUP were maskable, 495 * then we could set it on SND_SHUTDOWN. BTW examples given 496 * in Stevens' books assume exactly this behaviour, it explains 497 * why POLLHUP is incompatible with POLLOUT. --ANK 498 * 499 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 500 * blocking on fresh not-connected or disconnected socket. --ANK 501 */ 502 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 503 mask |= POLLHUP; 504 if (sk->sk_shutdown & RCV_SHUTDOWN) 505 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 506 507 /* Connected or passive Fast Open socket? */ 508 if (state != TCP_SYN_SENT && 509 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 510 int target = sock_rcvlowat(sk, 0, INT_MAX); 511 512 if (tp->urg_seq == tp->copied_seq && 513 !sock_flag(sk, SOCK_URGINLINE) && 514 tp->urg_data) 515 target++; 516 517 if (tp->rcv_nxt - tp->copied_seq >= target) 518 mask |= POLLIN | POLLRDNORM; 519 520 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 521 if (sk_stream_is_writeable(sk)) { 522 mask |= POLLOUT | POLLWRNORM; 523 } else { /* send SIGIO later */ 524 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 525 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 526 527 /* Race breaker. If space is freed after 528 * wspace test but before the flags are set, 529 * IO signal will be lost. Memory barrier 530 * pairs with the input side. 531 */ 532 smp_mb__after_atomic(); 533 if (sk_stream_is_writeable(sk)) 534 mask |= POLLOUT | POLLWRNORM; 535 } 536 } else 537 mask |= POLLOUT | POLLWRNORM; 538 539 if (tp->urg_data & TCP_URG_VALID) 540 mask |= POLLPRI; 541 } 542 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 543 smp_rmb(); 544 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 545 mask |= POLLERR; 546 547 return mask; 548 } 549 EXPORT_SYMBOL(tcp_poll); 550 551 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 552 { 553 struct tcp_sock *tp = tcp_sk(sk); 554 int answ; 555 bool slow; 556 557 switch (cmd) { 558 case SIOCINQ: 559 if (sk->sk_state == TCP_LISTEN) 560 return -EINVAL; 561 562 slow = lock_sock_fast(sk); 563 answ = tcp_inq(sk); 564 unlock_sock_fast(sk, slow); 565 break; 566 case SIOCATMARK: 567 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 568 break; 569 case SIOCOUTQ: 570 if (sk->sk_state == TCP_LISTEN) 571 return -EINVAL; 572 573 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 574 answ = 0; 575 else 576 answ = tp->write_seq - tp->snd_una; 577 break; 578 case SIOCOUTQNSD: 579 if (sk->sk_state == TCP_LISTEN) 580 return -EINVAL; 581 582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 583 answ = 0; 584 else 585 answ = tp->write_seq - tp->snd_nxt; 586 break; 587 default: 588 return -ENOIOCTLCMD; 589 } 590 591 return put_user(answ, (int __user *)arg); 592 } 593 EXPORT_SYMBOL(tcp_ioctl); 594 595 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 596 { 597 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 598 tp->pushed_seq = tp->write_seq; 599 } 600 601 static inline bool forced_push(const struct tcp_sock *tp) 602 { 603 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 604 } 605 606 static void skb_entail(struct sock *sk, struct sk_buff *skb) 607 { 608 struct tcp_sock *tp = tcp_sk(sk); 609 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 610 611 skb->csum = 0; 612 tcb->seq = tcb->end_seq = tp->write_seq; 613 tcb->tcp_flags = TCPHDR_ACK; 614 tcb->sacked = 0; 615 __skb_header_release(skb); 616 tcp_add_write_queue_tail(sk, skb); 617 sk->sk_wmem_queued += skb->truesize; 618 sk_mem_charge(sk, skb->truesize); 619 if (tp->nonagle & TCP_NAGLE_PUSH) 620 tp->nonagle &= ~TCP_NAGLE_PUSH; 621 622 tcp_slow_start_after_idle_check(sk); 623 } 624 625 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 626 { 627 if (flags & MSG_OOB) 628 tp->snd_up = tp->write_seq; 629 } 630 631 /* If a not yet filled skb is pushed, do not send it if 632 * we have data packets in Qdisc or NIC queues : 633 * Because TX completion will happen shortly, it gives a chance 634 * to coalesce future sendmsg() payload into this skb, without 635 * need for a timer, and with no latency trade off. 636 * As packets containing data payload have a bigger truesize 637 * than pure acks (dataless) packets, the last checks prevent 638 * autocorking if we only have an ACK in Qdisc/NIC queues, 639 * or if TX completion was delayed after we processed ACK packet. 640 */ 641 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 642 int size_goal) 643 { 644 return skb->len < size_goal && 645 sysctl_tcp_autocorking && 646 skb != tcp_write_queue_head(sk) && 647 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 648 } 649 650 static void tcp_push(struct sock *sk, int flags, int mss_now, 651 int nonagle, int size_goal) 652 { 653 struct tcp_sock *tp = tcp_sk(sk); 654 struct sk_buff *skb; 655 656 if (!tcp_send_head(sk)) 657 return; 658 659 skb = tcp_write_queue_tail(sk); 660 if (!(flags & MSG_MORE) || forced_push(tp)) 661 tcp_mark_push(tp, skb); 662 663 tcp_mark_urg(tp, flags); 664 665 if (tcp_should_autocork(sk, skb, size_goal)) { 666 667 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 668 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 669 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 670 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 671 } 672 /* It is possible TX completion already happened 673 * before we set TSQ_THROTTLED. 674 */ 675 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 676 return; 677 } 678 679 if (flags & MSG_MORE) 680 nonagle = TCP_NAGLE_CORK; 681 682 __tcp_push_pending_frames(sk, mss_now, nonagle); 683 } 684 685 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 686 unsigned int offset, size_t len) 687 { 688 struct tcp_splice_state *tss = rd_desc->arg.data; 689 int ret; 690 691 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 692 min(rd_desc->count, len), tss->flags); 693 if (ret > 0) 694 rd_desc->count -= ret; 695 return ret; 696 } 697 698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 699 { 700 /* Store TCP splice context information in read_descriptor_t. */ 701 read_descriptor_t rd_desc = { 702 .arg.data = tss, 703 .count = tss->len, 704 }; 705 706 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 707 } 708 709 /** 710 * tcp_splice_read - splice data from TCP socket to a pipe 711 * @sock: socket to splice from 712 * @ppos: position (not valid) 713 * @pipe: pipe to splice to 714 * @len: number of bytes to splice 715 * @flags: splice modifier flags 716 * 717 * Description: 718 * Will read pages from given socket and fill them into a pipe. 719 * 720 **/ 721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 722 struct pipe_inode_info *pipe, size_t len, 723 unsigned int flags) 724 { 725 struct sock *sk = sock->sk; 726 struct tcp_splice_state tss = { 727 .pipe = pipe, 728 .len = len, 729 .flags = flags, 730 }; 731 long timeo; 732 ssize_t spliced; 733 int ret; 734 735 sock_rps_record_flow(sk); 736 /* 737 * We can't seek on a socket input 738 */ 739 if (unlikely(*ppos)) 740 return -ESPIPE; 741 742 ret = spliced = 0; 743 744 lock_sock(sk); 745 746 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 747 while (tss.len) { 748 ret = __tcp_splice_read(sk, &tss); 749 if (ret < 0) 750 break; 751 else if (!ret) { 752 if (spliced) 753 break; 754 if (sock_flag(sk, SOCK_DONE)) 755 break; 756 if (sk->sk_err) { 757 ret = sock_error(sk); 758 break; 759 } 760 if (sk->sk_shutdown & RCV_SHUTDOWN) 761 break; 762 if (sk->sk_state == TCP_CLOSE) { 763 /* 764 * This occurs when user tries to read 765 * from never connected socket. 766 */ 767 if (!sock_flag(sk, SOCK_DONE)) 768 ret = -ENOTCONN; 769 break; 770 } 771 if (!timeo) { 772 ret = -EAGAIN; 773 break; 774 } 775 sk_wait_data(sk, &timeo, NULL); 776 if (signal_pending(current)) { 777 ret = sock_intr_errno(timeo); 778 break; 779 } 780 continue; 781 } 782 tss.len -= ret; 783 spliced += ret; 784 785 if (!timeo) 786 break; 787 release_sock(sk); 788 lock_sock(sk); 789 790 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 791 (sk->sk_shutdown & RCV_SHUTDOWN) || 792 signal_pending(current)) 793 break; 794 } 795 796 release_sock(sk); 797 798 if (spliced) 799 return spliced; 800 801 return ret; 802 } 803 EXPORT_SYMBOL(tcp_splice_read); 804 805 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 806 bool force_schedule) 807 { 808 struct sk_buff *skb; 809 810 /* The TCP header must be at least 32-bit aligned. */ 811 size = ALIGN(size, 4); 812 813 if (unlikely(tcp_under_memory_pressure(sk))) 814 sk_mem_reclaim_partial(sk); 815 816 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 817 if (likely(skb)) { 818 bool mem_scheduled; 819 820 if (force_schedule) { 821 mem_scheduled = true; 822 sk_forced_mem_schedule(sk, skb->truesize); 823 } else { 824 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 825 } 826 if (likely(mem_scheduled)) { 827 skb_reserve(skb, sk->sk_prot->max_header); 828 /* 829 * Make sure that we have exactly size bytes 830 * available to the caller, no more, no less. 831 */ 832 skb->reserved_tailroom = skb->end - skb->tail - size; 833 return skb; 834 } 835 __kfree_skb(skb); 836 } else { 837 sk->sk_prot->enter_memory_pressure(sk); 838 sk_stream_moderate_sndbuf(sk); 839 } 840 return NULL; 841 } 842 843 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 844 int large_allowed) 845 { 846 struct tcp_sock *tp = tcp_sk(sk); 847 u32 new_size_goal, size_goal; 848 849 if (!large_allowed || !sk_can_gso(sk)) 850 return mss_now; 851 852 /* Note : tcp_tso_autosize() will eventually split this later */ 853 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 854 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 855 856 /* We try hard to avoid divides here */ 857 size_goal = tp->gso_segs * mss_now; 858 if (unlikely(new_size_goal < size_goal || 859 new_size_goal >= size_goal + mss_now)) { 860 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 861 sk->sk_gso_max_segs); 862 size_goal = tp->gso_segs * mss_now; 863 } 864 865 return max(size_goal, mss_now); 866 } 867 868 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 869 { 870 int mss_now; 871 872 mss_now = tcp_current_mss(sk); 873 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 874 875 return mss_now; 876 } 877 878 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 879 size_t size, int flags) 880 { 881 struct tcp_sock *tp = tcp_sk(sk); 882 int mss_now, size_goal; 883 int err; 884 ssize_t copied; 885 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 886 887 /* Wait for a connection to finish. One exception is TCP Fast Open 888 * (passive side) where data is allowed to be sent before a connection 889 * is fully established. 890 */ 891 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 892 !tcp_passive_fastopen(sk)) { 893 err = sk_stream_wait_connect(sk, &timeo); 894 if (err != 0) 895 goto out_err; 896 } 897 898 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 899 900 mss_now = tcp_send_mss(sk, &size_goal, flags); 901 copied = 0; 902 903 err = -EPIPE; 904 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 905 goto out_err; 906 907 while (size > 0) { 908 struct sk_buff *skb = tcp_write_queue_tail(sk); 909 int copy, i; 910 bool can_coalesce; 911 912 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 || 913 !tcp_skb_can_collapse_to(skb)) { 914 new_segment: 915 if (!sk_stream_memory_free(sk)) 916 goto wait_for_sndbuf; 917 918 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 919 skb_queue_empty(&sk->sk_write_queue)); 920 if (!skb) 921 goto wait_for_memory; 922 923 skb_entail(sk, skb); 924 copy = size_goal; 925 } 926 927 if (copy > size) 928 copy = size; 929 930 i = skb_shinfo(skb)->nr_frags; 931 can_coalesce = skb_can_coalesce(skb, i, page, offset); 932 if (!can_coalesce && i >= sysctl_max_skb_frags) { 933 tcp_mark_push(tp, skb); 934 goto new_segment; 935 } 936 if (!sk_wmem_schedule(sk, copy)) 937 goto wait_for_memory; 938 939 if (can_coalesce) { 940 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 941 } else { 942 get_page(page); 943 skb_fill_page_desc(skb, i, page, offset, copy); 944 } 945 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 946 947 skb->len += copy; 948 skb->data_len += copy; 949 skb->truesize += copy; 950 sk->sk_wmem_queued += copy; 951 sk_mem_charge(sk, copy); 952 skb->ip_summed = CHECKSUM_PARTIAL; 953 tp->write_seq += copy; 954 TCP_SKB_CB(skb)->end_seq += copy; 955 tcp_skb_pcount_set(skb, 0); 956 957 if (!copied) 958 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 959 960 copied += copy; 961 offset += copy; 962 size -= copy; 963 if (!size) { 964 tcp_tx_timestamp(sk, sk->sk_tsflags, skb); 965 goto out; 966 } 967 968 if (skb->len < size_goal || (flags & MSG_OOB)) 969 continue; 970 971 if (forced_push(tp)) { 972 tcp_mark_push(tp, skb); 973 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 974 } else if (skb == tcp_send_head(sk)) 975 tcp_push_one(sk, mss_now); 976 continue; 977 978 wait_for_sndbuf: 979 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 980 wait_for_memory: 981 tcp_push(sk, flags & ~MSG_MORE, mss_now, 982 TCP_NAGLE_PUSH, size_goal); 983 984 err = sk_stream_wait_memory(sk, &timeo); 985 if (err != 0) 986 goto do_error; 987 988 mss_now = tcp_send_mss(sk, &size_goal, flags); 989 } 990 991 out: 992 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 993 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 994 return copied; 995 996 do_error: 997 if (copied) 998 goto out; 999 out_err: 1000 /* make sure we wake any epoll edge trigger waiter */ 1001 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1002 sk->sk_write_space(sk); 1003 return sk_stream_error(sk, flags, err); 1004 } 1005 1006 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1007 size_t size, int flags) 1008 { 1009 ssize_t res; 1010 1011 if (!(sk->sk_route_caps & NETIF_F_SG) || 1012 !sk_check_csum_caps(sk)) 1013 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1014 flags); 1015 1016 lock_sock(sk); 1017 1018 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1019 1020 res = do_tcp_sendpages(sk, page, offset, size, flags); 1021 release_sock(sk); 1022 return res; 1023 } 1024 EXPORT_SYMBOL(tcp_sendpage); 1025 1026 /* Do not bother using a page frag for very small frames. 1027 * But use this heuristic only for the first skb in write queue. 1028 * 1029 * Having no payload in skb->head allows better SACK shifting 1030 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1031 * write queue has less skbs. 1032 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1033 * This also speeds up tso_fragment(), since it wont fallback 1034 * to tcp_fragment(). 1035 */ 1036 static int linear_payload_sz(bool first_skb) 1037 { 1038 if (first_skb) 1039 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1040 return 0; 1041 } 1042 1043 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1044 { 1045 const struct tcp_sock *tp = tcp_sk(sk); 1046 int tmp = tp->mss_cache; 1047 1048 if (sg) { 1049 if (sk_can_gso(sk)) { 1050 tmp = linear_payload_sz(first_skb); 1051 } else { 1052 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1053 1054 if (tmp >= pgbreak && 1055 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1056 tmp = pgbreak; 1057 } 1058 } 1059 1060 return tmp; 1061 } 1062 1063 void tcp_free_fastopen_req(struct tcp_sock *tp) 1064 { 1065 if (tp->fastopen_req) { 1066 kfree(tp->fastopen_req); 1067 tp->fastopen_req = NULL; 1068 } 1069 } 1070 1071 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1072 int *copied, size_t size) 1073 { 1074 struct tcp_sock *tp = tcp_sk(sk); 1075 int err, flags; 1076 1077 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1078 return -EOPNOTSUPP; 1079 if (tp->fastopen_req) 1080 return -EALREADY; /* Another Fast Open is in progress */ 1081 1082 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1083 sk->sk_allocation); 1084 if (unlikely(!tp->fastopen_req)) 1085 return -ENOBUFS; 1086 tp->fastopen_req->data = msg; 1087 tp->fastopen_req->size = size; 1088 1089 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1090 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1091 msg->msg_namelen, flags); 1092 *copied = tp->fastopen_req->copied; 1093 tcp_free_fastopen_req(tp); 1094 return err; 1095 } 1096 1097 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 struct sk_buff *skb; 1101 struct sockcm_cookie sockc; 1102 int flags, err, copied = 0; 1103 int mss_now = 0, size_goal, copied_syn = 0; 1104 bool process_backlog = false; 1105 bool sg; 1106 long timeo; 1107 1108 lock_sock(sk); 1109 1110 flags = msg->msg_flags; 1111 if (flags & MSG_FASTOPEN) { 1112 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1113 if (err == -EINPROGRESS && copied_syn > 0) 1114 goto out; 1115 else if (err) 1116 goto out_err; 1117 } 1118 1119 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1120 1121 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1122 1123 /* Wait for a connection to finish. One exception is TCP Fast Open 1124 * (passive side) where data is allowed to be sent before a connection 1125 * is fully established. 1126 */ 1127 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1128 !tcp_passive_fastopen(sk)) { 1129 err = sk_stream_wait_connect(sk, &timeo); 1130 if (err != 0) 1131 goto do_error; 1132 } 1133 1134 if (unlikely(tp->repair)) { 1135 if (tp->repair_queue == TCP_RECV_QUEUE) { 1136 copied = tcp_send_rcvq(sk, msg, size); 1137 goto out_nopush; 1138 } 1139 1140 err = -EINVAL; 1141 if (tp->repair_queue == TCP_NO_QUEUE) 1142 goto out_err; 1143 1144 /* 'common' sending to sendq */ 1145 } 1146 1147 sockc.tsflags = sk->sk_tsflags; 1148 if (msg->msg_controllen) { 1149 err = sock_cmsg_send(sk, msg, &sockc); 1150 if (unlikely(err)) { 1151 err = -EINVAL; 1152 goto out_err; 1153 } 1154 } 1155 1156 /* This should be in poll */ 1157 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1158 1159 /* Ok commence sending. */ 1160 copied = 0; 1161 1162 restart: 1163 mss_now = tcp_send_mss(sk, &size_goal, flags); 1164 1165 err = -EPIPE; 1166 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1167 goto out_err; 1168 1169 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1170 1171 while (msg_data_left(msg)) { 1172 int copy = 0; 1173 int max = size_goal; 1174 1175 skb = tcp_write_queue_tail(sk); 1176 if (tcp_send_head(sk)) { 1177 if (skb->ip_summed == CHECKSUM_NONE) 1178 max = mss_now; 1179 copy = max - skb->len; 1180 } 1181 1182 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1183 bool first_skb; 1184 1185 new_segment: 1186 /* Allocate new segment. If the interface is SG, 1187 * allocate skb fitting to single page. 1188 */ 1189 if (!sk_stream_memory_free(sk)) 1190 goto wait_for_sndbuf; 1191 1192 if (process_backlog && sk_flush_backlog(sk)) { 1193 process_backlog = false; 1194 goto restart; 1195 } 1196 first_skb = skb_queue_empty(&sk->sk_write_queue); 1197 skb = sk_stream_alloc_skb(sk, 1198 select_size(sk, sg, first_skb), 1199 sk->sk_allocation, 1200 first_skb); 1201 if (!skb) 1202 goto wait_for_memory; 1203 1204 process_backlog = true; 1205 /* 1206 * Check whether we can use HW checksum. 1207 */ 1208 if (sk_check_csum_caps(sk)) 1209 skb->ip_summed = CHECKSUM_PARTIAL; 1210 1211 skb_entail(sk, skb); 1212 copy = size_goal; 1213 max = size_goal; 1214 1215 /* All packets are restored as if they have 1216 * already been sent. skb_mstamp isn't set to 1217 * avoid wrong rtt estimation. 1218 */ 1219 if (tp->repair) 1220 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1221 } 1222 1223 /* Try to append data to the end of skb. */ 1224 if (copy > msg_data_left(msg)) 1225 copy = msg_data_left(msg); 1226 1227 /* Where to copy to? */ 1228 if (skb_availroom(skb) > 0) { 1229 /* We have some space in skb head. Superb! */ 1230 copy = min_t(int, copy, skb_availroom(skb)); 1231 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1232 if (err) 1233 goto do_fault; 1234 } else { 1235 bool merge = true; 1236 int i = skb_shinfo(skb)->nr_frags; 1237 struct page_frag *pfrag = sk_page_frag(sk); 1238 1239 if (!sk_page_frag_refill(sk, pfrag)) 1240 goto wait_for_memory; 1241 1242 if (!skb_can_coalesce(skb, i, pfrag->page, 1243 pfrag->offset)) { 1244 if (i == sysctl_max_skb_frags || !sg) { 1245 tcp_mark_push(tp, skb); 1246 goto new_segment; 1247 } 1248 merge = false; 1249 } 1250 1251 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1252 1253 if (!sk_wmem_schedule(sk, copy)) 1254 goto wait_for_memory; 1255 1256 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1257 pfrag->page, 1258 pfrag->offset, 1259 copy); 1260 if (err) 1261 goto do_error; 1262 1263 /* Update the skb. */ 1264 if (merge) { 1265 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1266 } else { 1267 skb_fill_page_desc(skb, i, pfrag->page, 1268 pfrag->offset, copy); 1269 get_page(pfrag->page); 1270 } 1271 pfrag->offset += copy; 1272 } 1273 1274 if (!copied) 1275 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1276 1277 tp->write_seq += copy; 1278 TCP_SKB_CB(skb)->end_seq += copy; 1279 tcp_skb_pcount_set(skb, 0); 1280 1281 copied += copy; 1282 if (!msg_data_left(msg)) { 1283 tcp_tx_timestamp(sk, sockc.tsflags, skb); 1284 if (unlikely(flags & MSG_EOR)) 1285 TCP_SKB_CB(skb)->eor = 1; 1286 goto out; 1287 } 1288 1289 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1290 continue; 1291 1292 if (forced_push(tp)) { 1293 tcp_mark_push(tp, skb); 1294 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1295 } else if (skb == tcp_send_head(sk)) 1296 tcp_push_one(sk, mss_now); 1297 continue; 1298 1299 wait_for_sndbuf: 1300 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1301 wait_for_memory: 1302 if (copied) 1303 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1304 TCP_NAGLE_PUSH, size_goal); 1305 1306 err = sk_stream_wait_memory(sk, &timeo); 1307 if (err != 0) 1308 goto do_error; 1309 1310 mss_now = tcp_send_mss(sk, &size_goal, flags); 1311 } 1312 1313 out: 1314 if (copied) 1315 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1316 out_nopush: 1317 release_sock(sk); 1318 return copied + copied_syn; 1319 1320 do_fault: 1321 if (!skb->len) { 1322 tcp_unlink_write_queue(skb, sk); 1323 /* It is the one place in all of TCP, except connection 1324 * reset, where we can be unlinking the send_head. 1325 */ 1326 tcp_check_send_head(sk, skb); 1327 sk_wmem_free_skb(sk, skb); 1328 } 1329 1330 do_error: 1331 if (copied + copied_syn) 1332 goto out; 1333 out_err: 1334 err = sk_stream_error(sk, flags, err); 1335 /* make sure we wake any epoll edge trigger waiter */ 1336 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1337 sk->sk_write_space(sk); 1338 release_sock(sk); 1339 return err; 1340 } 1341 EXPORT_SYMBOL(tcp_sendmsg); 1342 1343 /* 1344 * Handle reading urgent data. BSD has very simple semantics for 1345 * this, no blocking and very strange errors 8) 1346 */ 1347 1348 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1349 { 1350 struct tcp_sock *tp = tcp_sk(sk); 1351 1352 /* No URG data to read. */ 1353 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1354 tp->urg_data == TCP_URG_READ) 1355 return -EINVAL; /* Yes this is right ! */ 1356 1357 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1358 return -ENOTCONN; 1359 1360 if (tp->urg_data & TCP_URG_VALID) { 1361 int err = 0; 1362 char c = tp->urg_data; 1363 1364 if (!(flags & MSG_PEEK)) 1365 tp->urg_data = TCP_URG_READ; 1366 1367 /* Read urgent data. */ 1368 msg->msg_flags |= MSG_OOB; 1369 1370 if (len > 0) { 1371 if (!(flags & MSG_TRUNC)) 1372 err = memcpy_to_msg(msg, &c, 1); 1373 len = 1; 1374 } else 1375 msg->msg_flags |= MSG_TRUNC; 1376 1377 return err ? -EFAULT : len; 1378 } 1379 1380 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1381 return 0; 1382 1383 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1384 * the available implementations agree in this case: 1385 * this call should never block, independent of the 1386 * blocking state of the socket. 1387 * Mike <pall@rz.uni-karlsruhe.de> 1388 */ 1389 return -EAGAIN; 1390 } 1391 1392 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1393 { 1394 struct sk_buff *skb; 1395 int copied = 0, err = 0; 1396 1397 /* XXX -- need to support SO_PEEK_OFF */ 1398 1399 skb_queue_walk(&sk->sk_write_queue, skb) { 1400 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1401 if (err) 1402 break; 1403 1404 copied += skb->len; 1405 } 1406 1407 return err ?: copied; 1408 } 1409 1410 /* Clean up the receive buffer for full frames taken by the user, 1411 * then send an ACK if necessary. COPIED is the number of bytes 1412 * tcp_recvmsg has given to the user so far, it speeds up the 1413 * calculation of whether or not we must ACK for the sake of 1414 * a window update. 1415 */ 1416 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1417 { 1418 struct tcp_sock *tp = tcp_sk(sk); 1419 bool time_to_ack = false; 1420 1421 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1422 1423 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1424 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1425 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1426 1427 if (inet_csk_ack_scheduled(sk)) { 1428 const struct inet_connection_sock *icsk = inet_csk(sk); 1429 /* Delayed ACKs frequently hit locked sockets during bulk 1430 * receive. */ 1431 if (icsk->icsk_ack.blocked || 1432 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1433 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1434 /* 1435 * If this read emptied read buffer, we send ACK, if 1436 * connection is not bidirectional, user drained 1437 * receive buffer and there was a small segment 1438 * in queue. 1439 */ 1440 (copied > 0 && 1441 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1442 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1443 !icsk->icsk_ack.pingpong)) && 1444 !atomic_read(&sk->sk_rmem_alloc))) 1445 time_to_ack = true; 1446 } 1447 1448 /* We send an ACK if we can now advertise a non-zero window 1449 * which has been raised "significantly". 1450 * 1451 * Even if window raised up to infinity, do not send window open ACK 1452 * in states, where we will not receive more. It is useless. 1453 */ 1454 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1455 __u32 rcv_window_now = tcp_receive_window(tp); 1456 1457 /* Optimize, __tcp_select_window() is not cheap. */ 1458 if (2*rcv_window_now <= tp->window_clamp) { 1459 __u32 new_window = __tcp_select_window(sk); 1460 1461 /* Send ACK now, if this read freed lots of space 1462 * in our buffer. Certainly, new_window is new window. 1463 * We can advertise it now, if it is not less than current one. 1464 * "Lots" means "at least twice" here. 1465 */ 1466 if (new_window && new_window >= 2 * rcv_window_now) 1467 time_to_ack = true; 1468 } 1469 } 1470 if (time_to_ack) 1471 tcp_send_ack(sk); 1472 } 1473 1474 static void tcp_prequeue_process(struct sock *sk) 1475 { 1476 struct sk_buff *skb; 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 1479 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1480 1481 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1482 sk_backlog_rcv(sk, skb); 1483 1484 /* Clear memory counter. */ 1485 tp->ucopy.memory = 0; 1486 } 1487 1488 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1489 { 1490 struct sk_buff *skb; 1491 u32 offset; 1492 1493 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1494 offset = seq - TCP_SKB_CB(skb)->seq; 1495 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1496 pr_err_once("%s: found a SYN, please report !\n", __func__); 1497 offset--; 1498 } 1499 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1500 *off = offset; 1501 return skb; 1502 } 1503 /* This looks weird, but this can happen if TCP collapsing 1504 * splitted a fat GRO packet, while we released socket lock 1505 * in skb_splice_bits() 1506 */ 1507 sk_eat_skb(sk, skb); 1508 } 1509 return NULL; 1510 } 1511 1512 /* 1513 * This routine provides an alternative to tcp_recvmsg() for routines 1514 * that would like to handle copying from skbuffs directly in 'sendfile' 1515 * fashion. 1516 * Note: 1517 * - It is assumed that the socket was locked by the caller. 1518 * - The routine does not block. 1519 * - At present, there is no support for reading OOB data 1520 * or for 'peeking' the socket using this routine 1521 * (although both would be easy to implement). 1522 */ 1523 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1524 sk_read_actor_t recv_actor) 1525 { 1526 struct sk_buff *skb; 1527 struct tcp_sock *tp = tcp_sk(sk); 1528 u32 seq = tp->copied_seq; 1529 u32 offset; 1530 int copied = 0; 1531 1532 if (sk->sk_state == TCP_LISTEN) 1533 return -ENOTCONN; 1534 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1535 if (offset < skb->len) { 1536 int used; 1537 size_t len; 1538 1539 len = skb->len - offset; 1540 /* Stop reading if we hit a patch of urgent data */ 1541 if (tp->urg_data) { 1542 u32 urg_offset = tp->urg_seq - seq; 1543 if (urg_offset < len) 1544 len = urg_offset; 1545 if (!len) 1546 break; 1547 } 1548 used = recv_actor(desc, skb, offset, len); 1549 if (used <= 0) { 1550 if (!copied) 1551 copied = used; 1552 break; 1553 } else if (used <= len) { 1554 seq += used; 1555 copied += used; 1556 offset += used; 1557 } 1558 /* If recv_actor drops the lock (e.g. TCP splice 1559 * receive) the skb pointer might be invalid when 1560 * getting here: tcp_collapse might have deleted it 1561 * while aggregating skbs from the socket queue. 1562 */ 1563 skb = tcp_recv_skb(sk, seq - 1, &offset); 1564 if (!skb) 1565 break; 1566 /* TCP coalescing might have appended data to the skb. 1567 * Try to splice more frags 1568 */ 1569 if (offset + 1 != skb->len) 1570 continue; 1571 } 1572 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1573 sk_eat_skb(sk, skb); 1574 ++seq; 1575 break; 1576 } 1577 sk_eat_skb(sk, skb); 1578 if (!desc->count) 1579 break; 1580 tp->copied_seq = seq; 1581 } 1582 tp->copied_seq = seq; 1583 1584 tcp_rcv_space_adjust(sk); 1585 1586 /* Clean up data we have read: This will do ACK frames. */ 1587 if (copied > 0) { 1588 tcp_recv_skb(sk, seq, &offset); 1589 tcp_cleanup_rbuf(sk, copied); 1590 } 1591 return copied; 1592 } 1593 EXPORT_SYMBOL(tcp_read_sock); 1594 1595 int tcp_peek_len(struct socket *sock) 1596 { 1597 return tcp_inq(sock->sk); 1598 } 1599 EXPORT_SYMBOL(tcp_peek_len); 1600 1601 /* 1602 * This routine copies from a sock struct into the user buffer. 1603 * 1604 * Technical note: in 2.3 we work on _locked_ socket, so that 1605 * tricks with *seq access order and skb->users are not required. 1606 * Probably, code can be easily improved even more. 1607 */ 1608 1609 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1610 int flags, int *addr_len) 1611 { 1612 struct tcp_sock *tp = tcp_sk(sk); 1613 int copied = 0; 1614 u32 peek_seq; 1615 u32 *seq; 1616 unsigned long used; 1617 int err; 1618 int target; /* Read at least this many bytes */ 1619 long timeo; 1620 struct task_struct *user_recv = NULL; 1621 struct sk_buff *skb, *last; 1622 u32 urg_hole = 0; 1623 1624 if (unlikely(flags & MSG_ERRQUEUE)) 1625 return inet_recv_error(sk, msg, len, addr_len); 1626 1627 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1628 (sk->sk_state == TCP_ESTABLISHED)) 1629 sk_busy_loop(sk, nonblock); 1630 1631 lock_sock(sk); 1632 1633 err = -ENOTCONN; 1634 if (sk->sk_state == TCP_LISTEN) 1635 goto out; 1636 1637 timeo = sock_rcvtimeo(sk, nonblock); 1638 1639 /* Urgent data needs to be handled specially. */ 1640 if (flags & MSG_OOB) 1641 goto recv_urg; 1642 1643 if (unlikely(tp->repair)) { 1644 err = -EPERM; 1645 if (!(flags & MSG_PEEK)) 1646 goto out; 1647 1648 if (tp->repair_queue == TCP_SEND_QUEUE) 1649 goto recv_sndq; 1650 1651 err = -EINVAL; 1652 if (tp->repair_queue == TCP_NO_QUEUE) 1653 goto out; 1654 1655 /* 'common' recv queue MSG_PEEK-ing */ 1656 } 1657 1658 seq = &tp->copied_seq; 1659 if (flags & MSG_PEEK) { 1660 peek_seq = tp->copied_seq; 1661 seq = &peek_seq; 1662 } 1663 1664 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1665 1666 do { 1667 u32 offset; 1668 1669 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1670 if (tp->urg_data && tp->urg_seq == *seq) { 1671 if (copied) 1672 break; 1673 if (signal_pending(current)) { 1674 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1675 break; 1676 } 1677 } 1678 1679 /* Next get a buffer. */ 1680 1681 last = skb_peek_tail(&sk->sk_receive_queue); 1682 skb_queue_walk(&sk->sk_receive_queue, skb) { 1683 last = skb; 1684 /* Now that we have two receive queues this 1685 * shouldn't happen. 1686 */ 1687 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1688 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1689 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1690 flags)) 1691 break; 1692 1693 offset = *seq - TCP_SKB_CB(skb)->seq; 1694 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1695 pr_err_once("%s: found a SYN, please report !\n", __func__); 1696 offset--; 1697 } 1698 if (offset < skb->len) 1699 goto found_ok_skb; 1700 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1701 goto found_fin_ok; 1702 WARN(!(flags & MSG_PEEK), 1703 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1704 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1705 } 1706 1707 /* Well, if we have backlog, try to process it now yet. */ 1708 1709 if (copied >= target && !sk->sk_backlog.tail) 1710 break; 1711 1712 if (copied) { 1713 if (sk->sk_err || 1714 sk->sk_state == TCP_CLOSE || 1715 (sk->sk_shutdown & RCV_SHUTDOWN) || 1716 !timeo || 1717 signal_pending(current)) 1718 break; 1719 } else { 1720 if (sock_flag(sk, SOCK_DONE)) 1721 break; 1722 1723 if (sk->sk_err) { 1724 copied = sock_error(sk); 1725 break; 1726 } 1727 1728 if (sk->sk_shutdown & RCV_SHUTDOWN) 1729 break; 1730 1731 if (sk->sk_state == TCP_CLOSE) { 1732 if (!sock_flag(sk, SOCK_DONE)) { 1733 /* This occurs when user tries to read 1734 * from never connected socket. 1735 */ 1736 copied = -ENOTCONN; 1737 break; 1738 } 1739 break; 1740 } 1741 1742 if (!timeo) { 1743 copied = -EAGAIN; 1744 break; 1745 } 1746 1747 if (signal_pending(current)) { 1748 copied = sock_intr_errno(timeo); 1749 break; 1750 } 1751 } 1752 1753 tcp_cleanup_rbuf(sk, copied); 1754 1755 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1756 /* Install new reader */ 1757 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1758 user_recv = current; 1759 tp->ucopy.task = user_recv; 1760 tp->ucopy.msg = msg; 1761 } 1762 1763 tp->ucopy.len = len; 1764 1765 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1766 !(flags & (MSG_PEEK | MSG_TRUNC))); 1767 1768 /* Ugly... If prequeue is not empty, we have to 1769 * process it before releasing socket, otherwise 1770 * order will be broken at second iteration. 1771 * More elegant solution is required!!! 1772 * 1773 * Look: we have the following (pseudo)queues: 1774 * 1775 * 1. packets in flight 1776 * 2. backlog 1777 * 3. prequeue 1778 * 4. receive_queue 1779 * 1780 * Each queue can be processed only if the next ones 1781 * are empty. At this point we have empty receive_queue. 1782 * But prequeue _can_ be not empty after 2nd iteration, 1783 * when we jumped to start of loop because backlog 1784 * processing added something to receive_queue. 1785 * We cannot release_sock(), because backlog contains 1786 * packets arrived _after_ prequeued ones. 1787 * 1788 * Shortly, algorithm is clear --- to process all 1789 * the queues in order. We could make it more directly, 1790 * requeueing packets from backlog to prequeue, if 1791 * is not empty. It is more elegant, but eats cycles, 1792 * unfortunately. 1793 */ 1794 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1795 goto do_prequeue; 1796 1797 /* __ Set realtime policy in scheduler __ */ 1798 } 1799 1800 if (copied >= target) { 1801 /* Do not sleep, just process backlog. */ 1802 release_sock(sk); 1803 lock_sock(sk); 1804 } else { 1805 sk_wait_data(sk, &timeo, last); 1806 } 1807 1808 if (user_recv) { 1809 int chunk; 1810 1811 /* __ Restore normal policy in scheduler __ */ 1812 1813 chunk = len - tp->ucopy.len; 1814 if (chunk != 0) { 1815 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1816 len -= chunk; 1817 copied += chunk; 1818 } 1819 1820 if (tp->rcv_nxt == tp->copied_seq && 1821 !skb_queue_empty(&tp->ucopy.prequeue)) { 1822 do_prequeue: 1823 tcp_prequeue_process(sk); 1824 1825 chunk = len - tp->ucopy.len; 1826 if (chunk != 0) { 1827 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1828 len -= chunk; 1829 copied += chunk; 1830 } 1831 } 1832 } 1833 if ((flags & MSG_PEEK) && 1834 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1835 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1836 current->comm, 1837 task_pid_nr(current)); 1838 peek_seq = tp->copied_seq; 1839 } 1840 continue; 1841 1842 found_ok_skb: 1843 /* Ok so how much can we use? */ 1844 used = skb->len - offset; 1845 if (len < used) 1846 used = len; 1847 1848 /* Do we have urgent data here? */ 1849 if (tp->urg_data) { 1850 u32 urg_offset = tp->urg_seq - *seq; 1851 if (urg_offset < used) { 1852 if (!urg_offset) { 1853 if (!sock_flag(sk, SOCK_URGINLINE)) { 1854 ++*seq; 1855 urg_hole++; 1856 offset++; 1857 used--; 1858 if (!used) 1859 goto skip_copy; 1860 } 1861 } else 1862 used = urg_offset; 1863 } 1864 } 1865 1866 if (!(flags & MSG_TRUNC)) { 1867 err = skb_copy_datagram_msg(skb, offset, msg, used); 1868 if (err) { 1869 /* Exception. Bailout! */ 1870 if (!copied) 1871 copied = -EFAULT; 1872 break; 1873 } 1874 } 1875 1876 *seq += used; 1877 copied += used; 1878 len -= used; 1879 1880 tcp_rcv_space_adjust(sk); 1881 1882 skip_copy: 1883 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1884 tp->urg_data = 0; 1885 tcp_fast_path_check(sk); 1886 } 1887 if (used + offset < skb->len) 1888 continue; 1889 1890 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1891 goto found_fin_ok; 1892 if (!(flags & MSG_PEEK)) 1893 sk_eat_skb(sk, skb); 1894 continue; 1895 1896 found_fin_ok: 1897 /* Process the FIN. */ 1898 ++*seq; 1899 if (!(flags & MSG_PEEK)) 1900 sk_eat_skb(sk, skb); 1901 break; 1902 } while (len > 0); 1903 1904 if (user_recv) { 1905 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1906 int chunk; 1907 1908 tp->ucopy.len = copied > 0 ? len : 0; 1909 1910 tcp_prequeue_process(sk); 1911 1912 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1913 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1914 len -= chunk; 1915 copied += chunk; 1916 } 1917 } 1918 1919 tp->ucopy.task = NULL; 1920 tp->ucopy.len = 0; 1921 } 1922 1923 /* According to UNIX98, msg_name/msg_namelen are ignored 1924 * on connected socket. I was just happy when found this 8) --ANK 1925 */ 1926 1927 /* Clean up data we have read: This will do ACK frames. */ 1928 tcp_cleanup_rbuf(sk, copied); 1929 1930 release_sock(sk); 1931 return copied; 1932 1933 out: 1934 release_sock(sk); 1935 return err; 1936 1937 recv_urg: 1938 err = tcp_recv_urg(sk, msg, len, flags); 1939 goto out; 1940 1941 recv_sndq: 1942 err = tcp_peek_sndq(sk, msg, len); 1943 goto out; 1944 } 1945 EXPORT_SYMBOL(tcp_recvmsg); 1946 1947 void tcp_set_state(struct sock *sk, int state) 1948 { 1949 int oldstate = sk->sk_state; 1950 1951 switch (state) { 1952 case TCP_ESTABLISHED: 1953 if (oldstate != TCP_ESTABLISHED) 1954 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1955 break; 1956 1957 case TCP_CLOSE: 1958 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1959 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1960 1961 sk->sk_prot->unhash(sk); 1962 if (inet_csk(sk)->icsk_bind_hash && 1963 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1964 inet_put_port(sk); 1965 /* fall through */ 1966 default: 1967 if (oldstate == TCP_ESTABLISHED) 1968 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1969 } 1970 1971 /* Change state AFTER socket is unhashed to avoid closed 1972 * socket sitting in hash tables. 1973 */ 1974 sk_state_store(sk, state); 1975 1976 #ifdef STATE_TRACE 1977 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1978 #endif 1979 } 1980 EXPORT_SYMBOL_GPL(tcp_set_state); 1981 1982 /* 1983 * State processing on a close. This implements the state shift for 1984 * sending our FIN frame. Note that we only send a FIN for some 1985 * states. A shutdown() may have already sent the FIN, or we may be 1986 * closed. 1987 */ 1988 1989 static const unsigned char new_state[16] = { 1990 /* current state: new state: action: */ 1991 [0 /* (Invalid) */] = TCP_CLOSE, 1992 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1993 [TCP_SYN_SENT] = TCP_CLOSE, 1994 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1995 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1996 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1997 [TCP_TIME_WAIT] = TCP_CLOSE, 1998 [TCP_CLOSE] = TCP_CLOSE, 1999 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2000 [TCP_LAST_ACK] = TCP_LAST_ACK, 2001 [TCP_LISTEN] = TCP_CLOSE, 2002 [TCP_CLOSING] = TCP_CLOSING, 2003 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2004 }; 2005 2006 static int tcp_close_state(struct sock *sk) 2007 { 2008 int next = (int)new_state[sk->sk_state]; 2009 int ns = next & TCP_STATE_MASK; 2010 2011 tcp_set_state(sk, ns); 2012 2013 return next & TCP_ACTION_FIN; 2014 } 2015 2016 /* 2017 * Shutdown the sending side of a connection. Much like close except 2018 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2019 */ 2020 2021 void tcp_shutdown(struct sock *sk, int how) 2022 { 2023 /* We need to grab some memory, and put together a FIN, 2024 * and then put it into the queue to be sent. 2025 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2026 */ 2027 if (!(how & SEND_SHUTDOWN)) 2028 return; 2029 2030 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2031 if ((1 << sk->sk_state) & 2032 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2033 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2034 /* Clear out any half completed packets. FIN if needed. */ 2035 if (tcp_close_state(sk)) 2036 tcp_send_fin(sk); 2037 } 2038 } 2039 EXPORT_SYMBOL(tcp_shutdown); 2040 2041 bool tcp_check_oom(struct sock *sk, int shift) 2042 { 2043 bool too_many_orphans, out_of_socket_memory; 2044 2045 too_many_orphans = tcp_too_many_orphans(sk, shift); 2046 out_of_socket_memory = tcp_out_of_memory(sk); 2047 2048 if (too_many_orphans) 2049 net_info_ratelimited("too many orphaned sockets\n"); 2050 if (out_of_socket_memory) 2051 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2052 return too_many_orphans || out_of_socket_memory; 2053 } 2054 2055 void tcp_close(struct sock *sk, long timeout) 2056 { 2057 struct sk_buff *skb; 2058 int data_was_unread = 0; 2059 int state; 2060 2061 lock_sock(sk); 2062 sk->sk_shutdown = SHUTDOWN_MASK; 2063 2064 if (sk->sk_state == TCP_LISTEN) { 2065 tcp_set_state(sk, TCP_CLOSE); 2066 2067 /* Special case. */ 2068 inet_csk_listen_stop(sk); 2069 2070 goto adjudge_to_death; 2071 } 2072 2073 /* We need to flush the recv. buffs. We do this only on the 2074 * descriptor close, not protocol-sourced closes, because the 2075 * reader process may not have drained the data yet! 2076 */ 2077 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2078 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2079 2080 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2081 len--; 2082 data_was_unread += len; 2083 __kfree_skb(skb); 2084 } 2085 2086 sk_mem_reclaim(sk); 2087 2088 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2089 if (sk->sk_state == TCP_CLOSE) 2090 goto adjudge_to_death; 2091 2092 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2093 * data was lost. To witness the awful effects of the old behavior of 2094 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2095 * GET in an FTP client, suspend the process, wait for the client to 2096 * advertise a zero window, then kill -9 the FTP client, wheee... 2097 * Note: timeout is always zero in such a case. 2098 */ 2099 if (unlikely(tcp_sk(sk)->repair)) { 2100 sk->sk_prot->disconnect(sk, 0); 2101 } else if (data_was_unread) { 2102 /* Unread data was tossed, zap the connection. */ 2103 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2104 tcp_set_state(sk, TCP_CLOSE); 2105 tcp_send_active_reset(sk, sk->sk_allocation); 2106 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2107 /* Check zero linger _after_ checking for unread data. */ 2108 sk->sk_prot->disconnect(sk, 0); 2109 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2110 } else if (tcp_close_state(sk)) { 2111 /* We FIN if the application ate all the data before 2112 * zapping the connection. 2113 */ 2114 2115 /* RED-PEN. Formally speaking, we have broken TCP state 2116 * machine. State transitions: 2117 * 2118 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2119 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2120 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2121 * 2122 * are legal only when FIN has been sent (i.e. in window), 2123 * rather than queued out of window. Purists blame. 2124 * 2125 * F.e. "RFC state" is ESTABLISHED, 2126 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2127 * 2128 * The visible declinations are that sometimes 2129 * we enter time-wait state, when it is not required really 2130 * (harmless), do not send active resets, when they are 2131 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2132 * they look as CLOSING or LAST_ACK for Linux) 2133 * Probably, I missed some more holelets. 2134 * --ANK 2135 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2136 * in a single packet! (May consider it later but will 2137 * probably need API support or TCP_CORK SYN-ACK until 2138 * data is written and socket is closed.) 2139 */ 2140 tcp_send_fin(sk); 2141 } 2142 2143 sk_stream_wait_close(sk, timeout); 2144 2145 adjudge_to_death: 2146 state = sk->sk_state; 2147 sock_hold(sk); 2148 sock_orphan(sk); 2149 2150 /* It is the last release_sock in its life. It will remove backlog. */ 2151 release_sock(sk); 2152 2153 2154 /* Now socket is owned by kernel and we acquire BH lock 2155 to finish close. No need to check for user refs. 2156 */ 2157 local_bh_disable(); 2158 bh_lock_sock(sk); 2159 WARN_ON(sock_owned_by_user(sk)); 2160 2161 percpu_counter_inc(sk->sk_prot->orphan_count); 2162 2163 /* Have we already been destroyed by a softirq or backlog? */ 2164 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2165 goto out; 2166 2167 /* This is a (useful) BSD violating of the RFC. There is a 2168 * problem with TCP as specified in that the other end could 2169 * keep a socket open forever with no application left this end. 2170 * We use a 1 minute timeout (about the same as BSD) then kill 2171 * our end. If they send after that then tough - BUT: long enough 2172 * that we won't make the old 4*rto = almost no time - whoops 2173 * reset mistake. 2174 * 2175 * Nope, it was not mistake. It is really desired behaviour 2176 * f.e. on http servers, when such sockets are useless, but 2177 * consume significant resources. Let's do it with special 2178 * linger2 option. --ANK 2179 */ 2180 2181 if (sk->sk_state == TCP_FIN_WAIT2) { 2182 struct tcp_sock *tp = tcp_sk(sk); 2183 if (tp->linger2 < 0) { 2184 tcp_set_state(sk, TCP_CLOSE); 2185 tcp_send_active_reset(sk, GFP_ATOMIC); 2186 __NET_INC_STATS(sock_net(sk), 2187 LINUX_MIB_TCPABORTONLINGER); 2188 } else { 2189 const int tmo = tcp_fin_time(sk); 2190 2191 if (tmo > TCP_TIMEWAIT_LEN) { 2192 inet_csk_reset_keepalive_timer(sk, 2193 tmo - TCP_TIMEWAIT_LEN); 2194 } else { 2195 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2196 goto out; 2197 } 2198 } 2199 } 2200 if (sk->sk_state != TCP_CLOSE) { 2201 sk_mem_reclaim(sk); 2202 if (tcp_check_oom(sk, 0)) { 2203 tcp_set_state(sk, TCP_CLOSE); 2204 tcp_send_active_reset(sk, GFP_ATOMIC); 2205 __NET_INC_STATS(sock_net(sk), 2206 LINUX_MIB_TCPABORTONMEMORY); 2207 } 2208 } 2209 2210 if (sk->sk_state == TCP_CLOSE) { 2211 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2212 /* We could get here with a non-NULL req if the socket is 2213 * aborted (e.g., closed with unread data) before 3WHS 2214 * finishes. 2215 */ 2216 if (req) 2217 reqsk_fastopen_remove(sk, req, false); 2218 inet_csk_destroy_sock(sk); 2219 } 2220 /* Otherwise, socket is reprieved until protocol close. */ 2221 2222 out: 2223 bh_unlock_sock(sk); 2224 local_bh_enable(); 2225 sock_put(sk); 2226 } 2227 EXPORT_SYMBOL(tcp_close); 2228 2229 /* These states need RST on ABORT according to RFC793 */ 2230 2231 static inline bool tcp_need_reset(int state) 2232 { 2233 return (1 << state) & 2234 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2235 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2236 } 2237 2238 int tcp_disconnect(struct sock *sk, int flags) 2239 { 2240 struct inet_sock *inet = inet_sk(sk); 2241 struct inet_connection_sock *icsk = inet_csk(sk); 2242 struct tcp_sock *tp = tcp_sk(sk); 2243 int err = 0; 2244 int old_state = sk->sk_state; 2245 2246 if (old_state != TCP_CLOSE) 2247 tcp_set_state(sk, TCP_CLOSE); 2248 2249 /* ABORT function of RFC793 */ 2250 if (old_state == TCP_LISTEN) { 2251 inet_csk_listen_stop(sk); 2252 } else if (unlikely(tp->repair)) { 2253 sk->sk_err = ECONNABORTED; 2254 } else if (tcp_need_reset(old_state) || 2255 (tp->snd_nxt != tp->write_seq && 2256 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2257 /* The last check adjusts for discrepancy of Linux wrt. RFC 2258 * states 2259 */ 2260 tcp_send_active_reset(sk, gfp_any()); 2261 sk->sk_err = ECONNRESET; 2262 } else if (old_state == TCP_SYN_SENT) 2263 sk->sk_err = ECONNRESET; 2264 2265 tcp_clear_xmit_timers(sk); 2266 __skb_queue_purge(&sk->sk_receive_queue); 2267 tcp_write_queue_purge(sk); 2268 skb_rbtree_purge(&tp->out_of_order_queue); 2269 2270 inet->inet_dport = 0; 2271 2272 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2273 inet_reset_saddr(sk); 2274 2275 sk->sk_shutdown = 0; 2276 sock_reset_flag(sk, SOCK_DONE); 2277 tp->srtt_us = 0; 2278 tp->write_seq += tp->max_window + 2; 2279 if (tp->write_seq == 0) 2280 tp->write_seq = 1; 2281 icsk->icsk_backoff = 0; 2282 tp->snd_cwnd = 2; 2283 icsk->icsk_probes_out = 0; 2284 tp->packets_out = 0; 2285 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2286 tp->snd_cwnd_cnt = 0; 2287 tp->window_clamp = 0; 2288 tcp_set_ca_state(sk, TCP_CA_Open); 2289 tcp_clear_retrans(tp); 2290 inet_csk_delack_init(sk); 2291 tcp_init_send_head(sk); 2292 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2293 __sk_dst_reset(sk); 2294 2295 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2296 2297 sk->sk_error_report(sk); 2298 return err; 2299 } 2300 EXPORT_SYMBOL(tcp_disconnect); 2301 2302 static inline bool tcp_can_repair_sock(const struct sock *sk) 2303 { 2304 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2305 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2306 } 2307 2308 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2309 { 2310 struct tcp_repair_window opt; 2311 2312 if (!tp->repair) 2313 return -EPERM; 2314 2315 if (len != sizeof(opt)) 2316 return -EINVAL; 2317 2318 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2319 return -EFAULT; 2320 2321 if (opt.max_window < opt.snd_wnd) 2322 return -EINVAL; 2323 2324 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2325 return -EINVAL; 2326 2327 if (after(opt.rcv_wup, tp->rcv_nxt)) 2328 return -EINVAL; 2329 2330 tp->snd_wl1 = opt.snd_wl1; 2331 tp->snd_wnd = opt.snd_wnd; 2332 tp->max_window = opt.max_window; 2333 2334 tp->rcv_wnd = opt.rcv_wnd; 2335 tp->rcv_wup = opt.rcv_wup; 2336 2337 return 0; 2338 } 2339 2340 static int tcp_repair_options_est(struct tcp_sock *tp, 2341 struct tcp_repair_opt __user *optbuf, unsigned int len) 2342 { 2343 struct tcp_repair_opt opt; 2344 2345 while (len >= sizeof(opt)) { 2346 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2347 return -EFAULT; 2348 2349 optbuf++; 2350 len -= sizeof(opt); 2351 2352 switch (opt.opt_code) { 2353 case TCPOPT_MSS: 2354 tp->rx_opt.mss_clamp = opt.opt_val; 2355 break; 2356 case TCPOPT_WINDOW: 2357 { 2358 u16 snd_wscale = opt.opt_val & 0xFFFF; 2359 u16 rcv_wscale = opt.opt_val >> 16; 2360 2361 if (snd_wscale > 14 || rcv_wscale > 14) 2362 return -EFBIG; 2363 2364 tp->rx_opt.snd_wscale = snd_wscale; 2365 tp->rx_opt.rcv_wscale = rcv_wscale; 2366 tp->rx_opt.wscale_ok = 1; 2367 } 2368 break; 2369 case TCPOPT_SACK_PERM: 2370 if (opt.opt_val != 0) 2371 return -EINVAL; 2372 2373 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2374 if (sysctl_tcp_fack) 2375 tcp_enable_fack(tp); 2376 break; 2377 case TCPOPT_TIMESTAMP: 2378 if (opt.opt_val != 0) 2379 return -EINVAL; 2380 2381 tp->rx_opt.tstamp_ok = 1; 2382 break; 2383 } 2384 } 2385 2386 return 0; 2387 } 2388 2389 /* 2390 * Socket option code for TCP. 2391 */ 2392 static int do_tcp_setsockopt(struct sock *sk, int level, 2393 int optname, char __user *optval, unsigned int optlen) 2394 { 2395 struct tcp_sock *tp = tcp_sk(sk); 2396 struct inet_connection_sock *icsk = inet_csk(sk); 2397 struct net *net = sock_net(sk); 2398 int val; 2399 int err = 0; 2400 2401 /* These are data/string values, all the others are ints */ 2402 switch (optname) { 2403 case TCP_CONGESTION: { 2404 char name[TCP_CA_NAME_MAX]; 2405 2406 if (optlen < 1) 2407 return -EINVAL; 2408 2409 val = strncpy_from_user(name, optval, 2410 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2411 if (val < 0) 2412 return -EFAULT; 2413 name[val] = 0; 2414 2415 lock_sock(sk); 2416 err = tcp_set_congestion_control(sk, name); 2417 release_sock(sk); 2418 return err; 2419 } 2420 default: 2421 /* fallthru */ 2422 break; 2423 } 2424 2425 if (optlen < sizeof(int)) 2426 return -EINVAL; 2427 2428 if (get_user(val, (int __user *)optval)) 2429 return -EFAULT; 2430 2431 lock_sock(sk); 2432 2433 switch (optname) { 2434 case TCP_MAXSEG: 2435 /* Values greater than interface MTU won't take effect. However 2436 * at the point when this call is done we typically don't yet 2437 * know which interface is going to be used */ 2438 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2439 err = -EINVAL; 2440 break; 2441 } 2442 tp->rx_opt.user_mss = val; 2443 break; 2444 2445 case TCP_NODELAY: 2446 if (val) { 2447 /* TCP_NODELAY is weaker than TCP_CORK, so that 2448 * this option on corked socket is remembered, but 2449 * it is not activated until cork is cleared. 2450 * 2451 * However, when TCP_NODELAY is set we make 2452 * an explicit push, which overrides even TCP_CORK 2453 * for currently queued segments. 2454 */ 2455 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2456 tcp_push_pending_frames(sk); 2457 } else { 2458 tp->nonagle &= ~TCP_NAGLE_OFF; 2459 } 2460 break; 2461 2462 case TCP_THIN_LINEAR_TIMEOUTS: 2463 if (val < 0 || val > 1) 2464 err = -EINVAL; 2465 else 2466 tp->thin_lto = val; 2467 break; 2468 2469 case TCP_THIN_DUPACK: 2470 if (val < 0 || val > 1) 2471 err = -EINVAL; 2472 else { 2473 tp->thin_dupack = val; 2474 if (tp->thin_dupack) 2475 tcp_disable_early_retrans(tp); 2476 } 2477 break; 2478 2479 case TCP_REPAIR: 2480 if (!tcp_can_repair_sock(sk)) 2481 err = -EPERM; 2482 else if (val == 1) { 2483 tp->repair = 1; 2484 sk->sk_reuse = SK_FORCE_REUSE; 2485 tp->repair_queue = TCP_NO_QUEUE; 2486 } else if (val == 0) { 2487 tp->repair = 0; 2488 sk->sk_reuse = SK_NO_REUSE; 2489 tcp_send_window_probe(sk); 2490 } else 2491 err = -EINVAL; 2492 2493 break; 2494 2495 case TCP_REPAIR_QUEUE: 2496 if (!tp->repair) 2497 err = -EPERM; 2498 else if (val < TCP_QUEUES_NR) 2499 tp->repair_queue = val; 2500 else 2501 err = -EINVAL; 2502 break; 2503 2504 case TCP_QUEUE_SEQ: 2505 if (sk->sk_state != TCP_CLOSE) 2506 err = -EPERM; 2507 else if (tp->repair_queue == TCP_SEND_QUEUE) 2508 tp->write_seq = val; 2509 else if (tp->repair_queue == TCP_RECV_QUEUE) 2510 tp->rcv_nxt = val; 2511 else 2512 err = -EINVAL; 2513 break; 2514 2515 case TCP_REPAIR_OPTIONS: 2516 if (!tp->repair) 2517 err = -EINVAL; 2518 else if (sk->sk_state == TCP_ESTABLISHED) 2519 err = tcp_repair_options_est(tp, 2520 (struct tcp_repair_opt __user *)optval, 2521 optlen); 2522 else 2523 err = -EPERM; 2524 break; 2525 2526 case TCP_CORK: 2527 /* When set indicates to always queue non-full frames. 2528 * Later the user clears this option and we transmit 2529 * any pending partial frames in the queue. This is 2530 * meant to be used alongside sendfile() to get properly 2531 * filled frames when the user (for example) must write 2532 * out headers with a write() call first and then use 2533 * sendfile to send out the data parts. 2534 * 2535 * TCP_CORK can be set together with TCP_NODELAY and it is 2536 * stronger than TCP_NODELAY. 2537 */ 2538 if (val) { 2539 tp->nonagle |= TCP_NAGLE_CORK; 2540 } else { 2541 tp->nonagle &= ~TCP_NAGLE_CORK; 2542 if (tp->nonagle&TCP_NAGLE_OFF) 2543 tp->nonagle |= TCP_NAGLE_PUSH; 2544 tcp_push_pending_frames(sk); 2545 } 2546 break; 2547 2548 case TCP_KEEPIDLE: 2549 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2550 err = -EINVAL; 2551 else { 2552 tp->keepalive_time = val * HZ; 2553 if (sock_flag(sk, SOCK_KEEPOPEN) && 2554 !((1 << sk->sk_state) & 2555 (TCPF_CLOSE | TCPF_LISTEN))) { 2556 u32 elapsed = keepalive_time_elapsed(tp); 2557 if (tp->keepalive_time > elapsed) 2558 elapsed = tp->keepalive_time - elapsed; 2559 else 2560 elapsed = 0; 2561 inet_csk_reset_keepalive_timer(sk, elapsed); 2562 } 2563 } 2564 break; 2565 case TCP_KEEPINTVL: 2566 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2567 err = -EINVAL; 2568 else 2569 tp->keepalive_intvl = val * HZ; 2570 break; 2571 case TCP_KEEPCNT: 2572 if (val < 1 || val > MAX_TCP_KEEPCNT) 2573 err = -EINVAL; 2574 else 2575 tp->keepalive_probes = val; 2576 break; 2577 case TCP_SYNCNT: 2578 if (val < 1 || val > MAX_TCP_SYNCNT) 2579 err = -EINVAL; 2580 else 2581 icsk->icsk_syn_retries = val; 2582 break; 2583 2584 case TCP_SAVE_SYN: 2585 if (val < 0 || val > 1) 2586 err = -EINVAL; 2587 else 2588 tp->save_syn = val; 2589 break; 2590 2591 case TCP_LINGER2: 2592 if (val < 0) 2593 tp->linger2 = -1; 2594 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2595 tp->linger2 = 0; 2596 else 2597 tp->linger2 = val * HZ; 2598 break; 2599 2600 case TCP_DEFER_ACCEPT: 2601 /* Translate value in seconds to number of retransmits */ 2602 icsk->icsk_accept_queue.rskq_defer_accept = 2603 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2604 TCP_RTO_MAX / HZ); 2605 break; 2606 2607 case TCP_WINDOW_CLAMP: 2608 if (!val) { 2609 if (sk->sk_state != TCP_CLOSE) { 2610 err = -EINVAL; 2611 break; 2612 } 2613 tp->window_clamp = 0; 2614 } else 2615 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2616 SOCK_MIN_RCVBUF / 2 : val; 2617 break; 2618 2619 case TCP_QUICKACK: 2620 if (!val) { 2621 icsk->icsk_ack.pingpong = 1; 2622 } else { 2623 icsk->icsk_ack.pingpong = 0; 2624 if ((1 << sk->sk_state) & 2625 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2626 inet_csk_ack_scheduled(sk)) { 2627 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2628 tcp_cleanup_rbuf(sk, 1); 2629 if (!(val & 1)) 2630 icsk->icsk_ack.pingpong = 1; 2631 } 2632 } 2633 break; 2634 2635 #ifdef CONFIG_TCP_MD5SIG 2636 case TCP_MD5SIG: 2637 /* Read the IP->Key mappings from userspace */ 2638 err = tp->af_specific->md5_parse(sk, optval, optlen); 2639 break; 2640 #endif 2641 case TCP_USER_TIMEOUT: 2642 /* Cap the max time in ms TCP will retry or probe the window 2643 * before giving up and aborting (ETIMEDOUT) a connection. 2644 */ 2645 if (val < 0) 2646 err = -EINVAL; 2647 else 2648 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2649 break; 2650 2651 case TCP_FASTOPEN: 2652 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2653 TCPF_LISTEN))) { 2654 tcp_fastopen_init_key_once(true); 2655 2656 fastopen_queue_tune(sk, val); 2657 } else { 2658 err = -EINVAL; 2659 } 2660 break; 2661 case TCP_TIMESTAMP: 2662 if (!tp->repair) 2663 err = -EPERM; 2664 else 2665 tp->tsoffset = val - tcp_time_stamp; 2666 break; 2667 case TCP_REPAIR_WINDOW: 2668 err = tcp_repair_set_window(tp, optval, optlen); 2669 break; 2670 case TCP_NOTSENT_LOWAT: 2671 tp->notsent_lowat = val; 2672 sk->sk_write_space(sk); 2673 break; 2674 default: 2675 err = -ENOPROTOOPT; 2676 break; 2677 } 2678 2679 release_sock(sk); 2680 return err; 2681 } 2682 2683 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2684 unsigned int optlen) 2685 { 2686 const struct inet_connection_sock *icsk = inet_csk(sk); 2687 2688 if (level != SOL_TCP) 2689 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2690 optval, optlen); 2691 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2692 } 2693 EXPORT_SYMBOL(tcp_setsockopt); 2694 2695 #ifdef CONFIG_COMPAT 2696 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2697 char __user *optval, unsigned int optlen) 2698 { 2699 if (level != SOL_TCP) 2700 return inet_csk_compat_setsockopt(sk, level, optname, 2701 optval, optlen); 2702 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2703 } 2704 EXPORT_SYMBOL(compat_tcp_setsockopt); 2705 #endif 2706 2707 /* Return information about state of tcp endpoint in API format. */ 2708 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2709 { 2710 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2711 const struct inet_connection_sock *icsk = inet_csk(sk); 2712 u32 now = tcp_time_stamp, intv; 2713 unsigned int start; 2714 int notsent_bytes; 2715 u64 rate64; 2716 u32 rate; 2717 2718 memset(info, 0, sizeof(*info)); 2719 if (sk->sk_type != SOCK_STREAM) 2720 return; 2721 2722 info->tcpi_state = sk_state_load(sk); 2723 2724 info->tcpi_ca_state = icsk->icsk_ca_state; 2725 info->tcpi_retransmits = icsk->icsk_retransmits; 2726 info->tcpi_probes = icsk->icsk_probes_out; 2727 info->tcpi_backoff = icsk->icsk_backoff; 2728 2729 if (tp->rx_opt.tstamp_ok) 2730 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2731 if (tcp_is_sack(tp)) 2732 info->tcpi_options |= TCPI_OPT_SACK; 2733 if (tp->rx_opt.wscale_ok) { 2734 info->tcpi_options |= TCPI_OPT_WSCALE; 2735 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2736 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2737 } 2738 2739 if (tp->ecn_flags & TCP_ECN_OK) 2740 info->tcpi_options |= TCPI_OPT_ECN; 2741 if (tp->ecn_flags & TCP_ECN_SEEN) 2742 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2743 if (tp->syn_data_acked) 2744 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2745 2746 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2747 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2748 info->tcpi_snd_mss = tp->mss_cache; 2749 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2750 2751 if (info->tcpi_state == TCP_LISTEN) { 2752 info->tcpi_unacked = sk->sk_ack_backlog; 2753 info->tcpi_sacked = sk->sk_max_ack_backlog; 2754 } else { 2755 info->tcpi_unacked = tp->packets_out; 2756 info->tcpi_sacked = tp->sacked_out; 2757 } 2758 info->tcpi_lost = tp->lost_out; 2759 info->tcpi_retrans = tp->retrans_out; 2760 info->tcpi_fackets = tp->fackets_out; 2761 2762 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2763 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2764 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2765 2766 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2767 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2768 info->tcpi_rtt = tp->srtt_us >> 3; 2769 info->tcpi_rttvar = tp->mdev_us >> 2; 2770 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2771 info->tcpi_snd_cwnd = tp->snd_cwnd; 2772 info->tcpi_advmss = tp->advmss; 2773 info->tcpi_reordering = tp->reordering; 2774 2775 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2776 info->tcpi_rcv_space = tp->rcvq_space.space; 2777 2778 info->tcpi_total_retrans = tp->total_retrans; 2779 2780 rate = READ_ONCE(sk->sk_pacing_rate); 2781 rate64 = rate != ~0U ? rate : ~0ULL; 2782 put_unaligned(rate64, &info->tcpi_pacing_rate); 2783 2784 rate = READ_ONCE(sk->sk_max_pacing_rate); 2785 rate64 = rate != ~0U ? rate : ~0ULL; 2786 put_unaligned(rate64, &info->tcpi_max_pacing_rate); 2787 2788 do { 2789 start = u64_stats_fetch_begin_irq(&tp->syncp); 2790 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked); 2791 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received); 2792 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2793 info->tcpi_segs_out = tp->segs_out; 2794 info->tcpi_segs_in = tp->segs_in; 2795 2796 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); 2797 info->tcpi_notsent_bytes = max(0, notsent_bytes); 2798 2799 info->tcpi_min_rtt = tcp_min_rtt(tp); 2800 info->tcpi_data_segs_in = tp->data_segs_in; 2801 info->tcpi_data_segs_out = tp->data_segs_out; 2802 2803 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 2804 rate = READ_ONCE(tp->rate_delivered); 2805 intv = READ_ONCE(tp->rate_interval_us); 2806 if (rate && intv) { 2807 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 2808 do_div(rate64, intv); 2809 put_unaligned(rate64, &info->tcpi_delivery_rate); 2810 } 2811 } 2812 EXPORT_SYMBOL_GPL(tcp_get_info); 2813 2814 static int do_tcp_getsockopt(struct sock *sk, int level, 2815 int optname, char __user *optval, int __user *optlen) 2816 { 2817 struct inet_connection_sock *icsk = inet_csk(sk); 2818 struct tcp_sock *tp = tcp_sk(sk); 2819 struct net *net = sock_net(sk); 2820 int val, len; 2821 2822 if (get_user(len, optlen)) 2823 return -EFAULT; 2824 2825 len = min_t(unsigned int, len, sizeof(int)); 2826 2827 if (len < 0) 2828 return -EINVAL; 2829 2830 switch (optname) { 2831 case TCP_MAXSEG: 2832 val = tp->mss_cache; 2833 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2834 val = tp->rx_opt.user_mss; 2835 if (tp->repair) 2836 val = tp->rx_opt.mss_clamp; 2837 break; 2838 case TCP_NODELAY: 2839 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2840 break; 2841 case TCP_CORK: 2842 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2843 break; 2844 case TCP_KEEPIDLE: 2845 val = keepalive_time_when(tp) / HZ; 2846 break; 2847 case TCP_KEEPINTVL: 2848 val = keepalive_intvl_when(tp) / HZ; 2849 break; 2850 case TCP_KEEPCNT: 2851 val = keepalive_probes(tp); 2852 break; 2853 case TCP_SYNCNT: 2854 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2855 break; 2856 case TCP_LINGER2: 2857 val = tp->linger2; 2858 if (val >= 0) 2859 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2860 break; 2861 case TCP_DEFER_ACCEPT: 2862 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2863 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2864 break; 2865 case TCP_WINDOW_CLAMP: 2866 val = tp->window_clamp; 2867 break; 2868 case TCP_INFO: { 2869 struct tcp_info info; 2870 2871 if (get_user(len, optlen)) 2872 return -EFAULT; 2873 2874 tcp_get_info(sk, &info); 2875 2876 len = min_t(unsigned int, len, sizeof(info)); 2877 if (put_user(len, optlen)) 2878 return -EFAULT; 2879 if (copy_to_user(optval, &info, len)) 2880 return -EFAULT; 2881 return 0; 2882 } 2883 case TCP_CC_INFO: { 2884 const struct tcp_congestion_ops *ca_ops; 2885 union tcp_cc_info info; 2886 size_t sz = 0; 2887 int attr; 2888 2889 if (get_user(len, optlen)) 2890 return -EFAULT; 2891 2892 ca_ops = icsk->icsk_ca_ops; 2893 if (ca_ops && ca_ops->get_info) 2894 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2895 2896 len = min_t(unsigned int, len, sz); 2897 if (put_user(len, optlen)) 2898 return -EFAULT; 2899 if (copy_to_user(optval, &info, len)) 2900 return -EFAULT; 2901 return 0; 2902 } 2903 case TCP_QUICKACK: 2904 val = !icsk->icsk_ack.pingpong; 2905 break; 2906 2907 case TCP_CONGESTION: 2908 if (get_user(len, optlen)) 2909 return -EFAULT; 2910 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2911 if (put_user(len, optlen)) 2912 return -EFAULT; 2913 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2914 return -EFAULT; 2915 return 0; 2916 2917 case TCP_THIN_LINEAR_TIMEOUTS: 2918 val = tp->thin_lto; 2919 break; 2920 case TCP_THIN_DUPACK: 2921 val = tp->thin_dupack; 2922 break; 2923 2924 case TCP_REPAIR: 2925 val = tp->repair; 2926 break; 2927 2928 case TCP_REPAIR_QUEUE: 2929 if (tp->repair) 2930 val = tp->repair_queue; 2931 else 2932 return -EINVAL; 2933 break; 2934 2935 case TCP_REPAIR_WINDOW: { 2936 struct tcp_repair_window opt; 2937 2938 if (get_user(len, optlen)) 2939 return -EFAULT; 2940 2941 if (len != sizeof(opt)) 2942 return -EINVAL; 2943 2944 if (!tp->repair) 2945 return -EPERM; 2946 2947 opt.snd_wl1 = tp->snd_wl1; 2948 opt.snd_wnd = tp->snd_wnd; 2949 opt.max_window = tp->max_window; 2950 opt.rcv_wnd = tp->rcv_wnd; 2951 opt.rcv_wup = tp->rcv_wup; 2952 2953 if (copy_to_user(optval, &opt, len)) 2954 return -EFAULT; 2955 return 0; 2956 } 2957 case TCP_QUEUE_SEQ: 2958 if (tp->repair_queue == TCP_SEND_QUEUE) 2959 val = tp->write_seq; 2960 else if (tp->repair_queue == TCP_RECV_QUEUE) 2961 val = tp->rcv_nxt; 2962 else 2963 return -EINVAL; 2964 break; 2965 2966 case TCP_USER_TIMEOUT: 2967 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2968 break; 2969 2970 case TCP_FASTOPEN: 2971 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2972 break; 2973 2974 case TCP_TIMESTAMP: 2975 val = tcp_time_stamp + tp->tsoffset; 2976 break; 2977 case TCP_NOTSENT_LOWAT: 2978 val = tp->notsent_lowat; 2979 break; 2980 case TCP_SAVE_SYN: 2981 val = tp->save_syn; 2982 break; 2983 case TCP_SAVED_SYN: { 2984 if (get_user(len, optlen)) 2985 return -EFAULT; 2986 2987 lock_sock(sk); 2988 if (tp->saved_syn) { 2989 if (len < tp->saved_syn[0]) { 2990 if (put_user(tp->saved_syn[0], optlen)) { 2991 release_sock(sk); 2992 return -EFAULT; 2993 } 2994 release_sock(sk); 2995 return -EINVAL; 2996 } 2997 len = tp->saved_syn[0]; 2998 if (put_user(len, optlen)) { 2999 release_sock(sk); 3000 return -EFAULT; 3001 } 3002 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3003 release_sock(sk); 3004 return -EFAULT; 3005 } 3006 tcp_saved_syn_free(tp); 3007 release_sock(sk); 3008 } else { 3009 release_sock(sk); 3010 len = 0; 3011 if (put_user(len, optlen)) 3012 return -EFAULT; 3013 } 3014 return 0; 3015 } 3016 default: 3017 return -ENOPROTOOPT; 3018 } 3019 3020 if (put_user(len, optlen)) 3021 return -EFAULT; 3022 if (copy_to_user(optval, &val, len)) 3023 return -EFAULT; 3024 return 0; 3025 } 3026 3027 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3028 int __user *optlen) 3029 { 3030 struct inet_connection_sock *icsk = inet_csk(sk); 3031 3032 if (level != SOL_TCP) 3033 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3034 optval, optlen); 3035 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3036 } 3037 EXPORT_SYMBOL(tcp_getsockopt); 3038 3039 #ifdef CONFIG_COMPAT 3040 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3041 char __user *optval, int __user *optlen) 3042 { 3043 if (level != SOL_TCP) 3044 return inet_csk_compat_getsockopt(sk, level, optname, 3045 optval, optlen); 3046 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3047 } 3048 EXPORT_SYMBOL(compat_tcp_getsockopt); 3049 #endif 3050 3051 #ifdef CONFIG_TCP_MD5SIG 3052 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3053 static DEFINE_MUTEX(tcp_md5sig_mutex); 3054 static bool tcp_md5sig_pool_populated = false; 3055 3056 static void __tcp_alloc_md5sig_pool(void) 3057 { 3058 struct crypto_ahash *hash; 3059 int cpu; 3060 3061 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3062 if (IS_ERR(hash)) 3063 return; 3064 3065 for_each_possible_cpu(cpu) { 3066 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3067 struct ahash_request *req; 3068 3069 if (!scratch) { 3070 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3071 sizeof(struct tcphdr), 3072 GFP_KERNEL, 3073 cpu_to_node(cpu)); 3074 if (!scratch) 3075 return; 3076 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3077 } 3078 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3079 continue; 3080 3081 req = ahash_request_alloc(hash, GFP_KERNEL); 3082 if (!req) 3083 return; 3084 3085 ahash_request_set_callback(req, 0, NULL, NULL); 3086 3087 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3088 } 3089 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3090 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3091 */ 3092 smp_wmb(); 3093 tcp_md5sig_pool_populated = true; 3094 } 3095 3096 bool tcp_alloc_md5sig_pool(void) 3097 { 3098 if (unlikely(!tcp_md5sig_pool_populated)) { 3099 mutex_lock(&tcp_md5sig_mutex); 3100 3101 if (!tcp_md5sig_pool_populated) 3102 __tcp_alloc_md5sig_pool(); 3103 3104 mutex_unlock(&tcp_md5sig_mutex); 3105 } 3106 return tcp_md5sig_pool_populated; 3107 } 3108 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3109 3110 3111 /** 3112 * tcp_get_md5sig_pool - get md5sig_pool for this user 3113 * 3114 * We use percpu structure, so if we succeed, we exit with preemption 3115 * and BH disabled, to make sure another thread or softirq handling 3116 * wont try to get same context. 3117 */ 3118 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3119 { 3120 local_bh_disable(); 3121 3122 if (tcp_md5sig_pool_populated) { 3123 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3124 smp_rmb(); 3125 return this_cpu_ptr(&tcp_md5sig_pool); 3126 } 3127 local_bh_enable(); 3128 return NULL; 3129 } 3130 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3131 3132 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3133 const struct sk_buff *skb, unsigned int header_len) 3134 { 3135 struct scatterlist sg; 3136 const struct tcphdr *tp = tcp_hdr(skb); 3137 struct ahash_request *req = hp->md5_req; 3138 unsigned int i; 3139 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3140 skb_headlen(skb) - header_len : 0; 3141 const struct skb_shared_info *shi = skb_shinfo(skb); 3142 struct sk_buff *frag_iter; 3143 3144 sg_init_table(&sg, 1); 3145 3146 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3147 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3148 if (crypto_ahash_update(req)) 3149 return 1; 3150 3151 for (i = 0; i < shi->nr_frags; ++i) { 3152 const struct skb_frag_struct *f = &shi->frags[i]; 3153 unsigned int offset = f->page_offset; 3154 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3155 3156 sg_set_page(&sg, page, skb_frag_size(f), 3157 offset_in_page(offset)); 3158 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3159 if (crypto_ahash_update(req)) 3160 return 1; 3161 } 3162 3163 skb_walk_frags(skb, frag_iter) 3164 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3165 return 1; 3166 3167 return 0; 3168 } 3169 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3170 3171 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3172 { 3173 struct scatterlist sg; 3174 3175 sg_init_one(&sg, key->key, key->keylen); 3176 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3177 return crypto_ahash_update(hp->md5_req); 3178 } 3179 EXPORT_SYMBOL(tcp_md5_hash_key); 3180 3181 #endif 3182 3183 void tcp_done(struct sock *sk) 3184 { 3185 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3186 3187 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3188 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3189 3190 tcp_set_state(sk, TCP_CLOSE); 3191 tcp_clear_xmit_timers(sk); 3192 if (req) 3193 reqsk_fastopen_remove(sk, req, false); 3194 3195 sk->sk_shutdown = SHUTDOWN_MASK; 3196 3197 if (!sock_flag(sk, SOCK_DEAD)) 3198 sk->sk_state_change(sk); 3199 else 3200 inet_csk_destroy_sock(sk); 3201 } 3202 EXPORT_SYMBOL_GPL(tcp_done); 3203 3204 int tcp_abort(struct sock *sk, int err) 3205 { 3206 if (!sk_fullsock(sk)) { 3207 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3208 struct request_sock *req = inet_reqsk(sk); 3209 3210 local_bh_disable(); 3211 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3212 req); 3213 local_bh_enable(); 3214 return 0; 3215 } 3216 return -EOPNOTSUPP; 3217 } 3218 3219 /* Don't race with userspace socket closes such as tcp_close. */ 3220 lock_sock(sk); 3221 3222 if (sk->sk_state == TCP_LISTEN) { 3223 tcp_set_state(sk, TCP_CLOSE); 3224 inet_csk_listen_stop(sk); 3225 } 3226 3227 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3228 local_bh_disable(); 3229 bh_lock_sock(sk); 3230 3231 if (!sock_flag(sk, SOCK_DEAD)) { 3232 sk->sk_err = err; 3233 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3234 smp_wmb(); 3235 sk->sk_error_report(sk); 3236 if (tcp_need_reset(sk->sk_state)) 3237 tcp_send_active_reset(sk, GFP_ATOMIC); 3238 tcp_done(sk); 3239 } 3240 3241 bh_unlock_sock(sk); 3242 local_bh_enable(); 3243 release_sock(sk); 3244 return 0; 3245 } 3246 EXPORT_SYMBOL_GPL(tcp_abort); 3247 3248 extern struct tcp_congestion_ops tcp_reno; 3249 3250 static __initdata unsigned long thash_entries; 3251 static int __init set_thash_entries(char *str) 3252 { 3253 ssize_t ret; 3254 3255 if (!str) 3256 return 0; 3257 3258 ret = kstrtoul(str, 0, &thash_entries); 3259 if (ret) 3260 return 0; 3261 3262 return 1; 3263 } 3264 __setup("thash_entries=", set_thash_entries); 3265 3266 static void __init tcp_init_mem(void) 3267 { 3268 unsigned long limit = nr_free_buffer_pages() / 16; 3269 3270 limit = max(limit, 128UL); 3271 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3272 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3273 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3274 } 3275 3276 void __init tcp_init(void) 3277 { 3278 int max_rshare, max_wshare, cnt; 3279 unsigned long limit; 3280 unsigned int i; 3281 3282 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3283 FIELD_SIZEOF(struct sk_buff, cb)); 3284 3285 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3286 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3287 tcp_hashinfo.bind_bucket_cachep = 3288 kmem_cache_create("tcp_bind_bucket", 3289 sizeof(struct inet_bind_bucket), 0, 3290 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3291 3292 /* Size and allocate the main established and bind bucket 3293 * hash tables. 3294 * 3295 * The methodology is similar to that of the buffer cache. 3296 */ 3297 tcp_hashinfo.ehash = 3298 alloc_large_system_hash("TCP established", 3299 sizeof(struct inet_ehash_bucket), 3300 thash_entries, 3301 17, /* one slot per 128 KB of memory */ 3302 0, 3303 NULL, 3304 &tcp_hashinfo.ehash_mask, 3305 0, 3306 thash_entries ? 0 : 512 * 1024); 3307 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3308 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3309 3310 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3311 panic("TCP: failed to alloc ehash_locks"); 3312 tcp_hashinfo.bhash = 3313 alloc_large_system_hash("TCP bind", 3314 sizeof(struct inet_bind_hashbucket), 3315 tcp_hashinfo.ehash_mask + 1, 3316 17, /* one slot per 128 KB of memory */ 3317 0, 3318 &tcp_hashinfo.bhash_size, 3319 NULL, 3320 0, 3321 64 * 1024); 3322 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3323 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3324 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3325 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3326 } 3327 3328 3329 cnt = tcp_hashinfo.ehash_mask + 1; 3330 3331 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3332 sysctl_tcp_max_orphans = cnt / 2; 3333 sysctl_max_syn_backlog = max(128, cnt / 256); 3334 3335 tcp_init_mem(); 3336 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3337 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3338 max_wshare = min(4UL*1024*1024, limit); 3339 max_rshare = min(6UL*1024*1024, limit); 3340 3341 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3342 sysctl_tcp_wmem[1] = 16*1024; 3343 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3344 3345 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3346 sysctl_tcp_rmem[1] = 87380; 3347 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3348 3349 pr_info("Hash tables configured (established %u bind %u)\n", 3350 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3351 3352 tcp_metrics_init(); 3353 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3354 tcp_tasklet_init(); 3355 } 3356