xref: /openbmc/linux/net/ipv4/tcp.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 	tcp_scaling_ratio_init(sk);
461 
462 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 	sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466 
467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 	struct sk_buff *skb = tcp_write_queue_tail(sk);
470 
471 	if (tsflags && skb) {
472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
473 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474 
475 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 			tcb->txstamp_ack = 1;
478 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 	}
481 }
482 
483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 	if (tcp_epollin_ready(sk, target))
486 		return true;
487 	return sk_is_readable(sk);
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	u8 shutdown;
503 	int state;
504 
505 	sock_poll_wait(file, sock, wait);
506 
507 	state = inet_sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * EPOLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that EPOLLHUP is incompatible
524 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	shutdown = READ_ONCE(sk->sk_shutdown);
546 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 		u16 urg_data = READ_ONCE(tp->urg_data);
556 
557 		if (unlikely(urg_data) &&
558 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE))
560 			target++;
561 
562 		if (tcp_stream_is_readable(sk, target))
563 			mask |= EPOLLIN | EPOLLRDNORM;
564 
565 		if (!(shutdown & SEND_SHUTDOWN)) {
566 			if (__sk_stream_is_writeable(sk, 1)) {
567 				mask |= EPOLLOUT | EPOLLWRNORM;
568 			} else {  /* send SIGIO later */
569 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571 
572 				/* Race breaker. If space is freed after
573 				 * wspace test but before the flags are set,
574 				 * IO signal will be lost. Memory barrier
575 				 * pairs with the input side.
576 				 */
577 				smp_mb__after_atomic();
578 				if (__sk_stream_is_writeable(sk, 1))
579 					mask |= EPOLLOUT | EPOLLWRNORM;
580 			}
581 		} else
582 			mask |= EPOLLOUT | EPOLLWRNORM;
583 
584 		if (urg_data & TCP_URG_VALID)
585 			mask |= EPOLLPRI;
586 	} else if (state == TCP_SYN_SENT &&
587 		   inet_test_bit(DEFER_CONNECT, sk)) {
588 		/* Active TCP fastopen socket with defer_connect
589 		 * Return EPOLLOUT so application can call write()
590 		 * in order for kernel to generate SYN+data
591 		 */
592 		mask |= EPOLLOUT | EPOLLWRNORM;
593 	}
594 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
595 	smp_rmb();
596 	if (READ_ONCE(sk->sk_err) ||
597 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
598 		mask |= EPOLLERR;
599 
600 	return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603 
604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	int answ;
608 	bool slow;
609 
610 	switch (cmd) {
611 	case SIOCINQ:
612 		if (sk->sk_state == TCP_LISTEN)
613 			return -EINVAL;
614 
615 		slow = lock_sock_fast(sk);
616 		answ = tcp_inq(sk);
617 		unlock_sock_fast(sk, slow);
618 		break;
619 	case SIOCATMARK:
620 		answ = READ_ONCE(tp->urg_data) &&
621 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = READ_ONCE(tp->write_seq) -
640 			       READ_ONCE(tp->snd_nxt);
641 		break;
642 	default:
643 		return -ENOIOCTLCMD;
644 	}
645 
646 	*karg = answ;
647 	return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650 
651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 	tp->pushed_seq = tp->write_seq;
655 }
656 
657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661 
662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666 
667 	tcb->seq     = tcb->end_seq = tp->write_seq;
668 	tcb->tcp_flags = TCPHDR_ACK;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk_wmem_queued_add(sk, skb->truesize);
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 	       tcp_skb_can_collapse_to(skb);
703 }
704 
705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 	      int nonagle, int size_goal)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct sk_buff *skb;
710 
711 	skb = tcp_write_queue_tail(sk);
712 	if (!skb)
713 		return;
714 	if (!(flags & MSG_MORE) || forced_push(tp))
715 		tcp_mark_push(tp, skb);
716 
717 	tcp_mark_urg(tp, flags);
718 
719 	if (tcp_should_autocork(sk, skb, size_goal)) {
720 
721 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
722 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 			smp_mb__after_atomic();
726 		}
727 		/* It is possible TX completion already happened
728 		 * before we set TSQ_THROTTLED.
729 		 */
730 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 			return;
732 	}
733 
734 	if (flags & MSG_MORE)
735 		nonagle = TCP_NAGLE_CORK;
736 
737 	__tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739 
740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 				unsigned int offset, size_t len)
742 {
743 	struct tcp_splice_state *tss = rd_desc->arg.data;
744 	int ret;
745 
746 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 			      min(rd_desc->count, len), tss->flags);
748 	if (ret > 0)
749 		rd_desc->count -= ret;
750 	return ret;
751 }
752 
753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 	/* Store TCP splice context information in read_descriptor_t. */
756 	read_descriptor_t rd_desc = {
757 		.arg.data = tss,
758 		.count	  = tss->len,
759 	};
760 
761 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763 
764 /**
765  *  tcp_splice_read - splice data from TCP socket to a pipe
766  * @sock:	socket to splice from
767  * @ppos:	position (not valid)
768  * @pipe:	pipe to splice to
769  * @len:	number of bytes to splice
770  * @flags:	splice modifier flags
771  *
772  * Description:
773  *    Will read pages from given socket and fill them into a pipe.
774  *
775  **/
776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 			struct pipe_inode_info *pipe, size_t len,
778 			unsigned int flags)
779 {
780 	struct sock *sk = sock->sk;
781 	struct tcp_splice_state tss = {
782 		.pipe = pipe,
783 		.len = len,
784 		.flags = flags,
785 	};
786 	long timeo;
787 	ssize_t spliced;
788 	int ret;
789 
790 	sock_rps_record_flow(sk);
791 	/*
792 	 * We can't seek on a socket input
793 	 */
794 	if (unlikely(*ppos))
795 		return -ESPIPE;
796 
797 	ret = spliced = 0;
798 
799 	lock_sock(sk);
800 
801 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 	while (tss.len) {
803 		ret = __tcp_splice_read(sk, &tss);
804 		if (ret < 0)
805 			break;
806 		else if (!ret) {
807 			if (spliced)
808 				break;
809 			if (sock_flag(sk, SOCK_DONE))
810 				break;
811 			if (sk->sk_err) {
812 				ret = sock_error(sk);
813 				break;
814 			}
815 			if (sk->sk_shutdown & RCV_SHUTDOWN)
816 				break;
817 			if (sk->sk_state == TCP_CLOSE) {
818 				/*
819 				 * This occurs when user tries to read
820 				 * from never connected socket.
821 				 */
822 				ret = -ENOTCONN;
823 				break;
824 			}
825 			if (!timeo) {
826 				ret = -EAGAIN;
827 				break;
828 			}
829 			/* if __tcp_splice_read() got nothing while we have
830 			 * an skb in receive queue, we do not want to loop.
831 			 * This might happen with URG data.
832 			 */
833 			if (!skb_queue_empty(&sk->sk_receive_queue))
834 				break;
835 			ret = sk_wait_data(sk, &timeo, NULL);
836 			if (ret < 0)
837 				break;
838 			if (signal_pending(current)) {
839 				ret = sock_intr_errno(timeo);
840 				break;
841 			}
842 			continue;
843 		}
844 		tss.len -= ret;
845 		spliced += ret;
846 
847 		if (!tss.len || !timeo)
848 			break;
849 		release_sock(sk);
850 		lock_sock(sk);
851 
852 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 		    signal_pending(current))
855 			break;
856 	}
857 
858 	release_sock(sk);
859 
860 	if (spliced)
861 		return spliced;
862 
863 	return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866 
867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
868 				     bool force_schedule)
869 {
870 	struct sk_buff *skb;
871 
872 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
873 	if (likely(skb)) {
874 		bool mem_scheduled;
875 
876 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877 		if (force_schedule) {
878 			mem_scheduled = true;
879 			sk_forced_mem_schedule(sk, skb->truesize);
880 		} else {
881 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
882 		}
883 		if (likely(mem_scheduled)) {
884 			skb_reserve(skb, MAX_TCP_HEADER);
885 			skb->ip_summed = CHECKSUM_PARTIAL;
886 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
887 			return skb;
888 		}
889 		__kfree_skb(skb);
890 	} else {
891 		sk->sk_prot->enter_memory_pressure(sk);
892 		sk_stream_moderate_sndbuf(sk);
893 	}
894 	return NULL;
895 }
896 
897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
898 				       int large_allowed)
899 {
900 	struct tcp_sock *tp = tcp_sk(sk);
901 	u32 new_size_goal, size_goal;
902 
903 	if (!large_allowed)
904 		return mss_now;
905 
906 	/* Note : tcp_tso_autosize() will eventually split this later */
907 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
908 
909 	/* We try hard to avoid divides here */
910 	size_goal = tp->gso_segs * mss_now;
911 	if (unlikely(new_size_goal < size_goal ||
912 		     new_size_goal >= size_goal + mss_now)) {
913 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
914 				     sk->sk_gso_max_segs);
915 		size_goal = tp->gso_segs * mss_now;
916 	}
917 
918 	return max(size_goal, mss_now);
919 }
920 
921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
922 {
923 	int mss_now;
924 
925 	mss_now = tcp_current_mss(sk);
926 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
927 
928 	return mss_now;
929 }
930 
931 /* In some cases, sendmsg() could have added an skb to the write queue,
932  * but failed adding payload on it. We need to remove it to consume less
933  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
934  * epoll() users. Another reason is that tcp_write_xmit() does not like
935  * finding an empty skb in the write queue.
936  */
937 void tcp_remove_empty_skb(struct sock *sk)
938 {
939 	struct sk_buff *skb = tcp_write_queue_tail(sk);
940 
941 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
942 		tcp_unlink_write_queue(skb, sk);
943 		if (tcp_write_queue_empty(sk))
944 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945 		tcp_wmem_free_skb(sk, skb);
946 	}
947 }
948 
949 /* skb changing from pure zc to mixed, must charge zc */
950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
951 {
952 	if (unlikely(skb_zcopy_pure(skb))) {
953 		u32 extra = skb->truesize -
954 			    SKB_TRUESIZE(skb_end_offset(skb));
955 
956 		if (!sk_wmem_schedule(sk, extra))
957 			return -ENOMEM;
958 
959 		sk_mem_charge(sk, extra);
960 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
961 	}
962 	return 0;
963 }
964 
965 
966 int tcp_wmem_schedule(struct sock *sk, int copy)
967 {
968 	int left;
969 
970 	if (likely(sk_wmem_schedule(sk, copy)))
971 		return copy;
972 
973 	/* We could be in trouble if we have nothing queued.
974 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
975 	 * to guarantee some progress.
976 	 */
977 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
978 	if (left > 0)
979 		sk_forced_mem_schedule(sk, min(left, copy));
980 	return min(copy, sk->sk_forward_alloc);
981 }
982 
983 void tcp_free_fastopen_req(struct tcp_sock *tp)
984 {
985 	if (tp->fastopen_req) {
986 		kfree(tp->fastopen_req);
987 		tp->fastopen_req = NULL;
988 	}
989 }
990 
991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
992 			 size_t size, struct ubuf_info *uarg)
993 {
994 	struct tcp_sock *tp = tcp_sk(sk);
995 	struct inet_sock *inet = inet_sk(sk);
996 	struct sockaddr *uaddr = msg->msg_name;
997 	int err, flags;
998 
999 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1000 	      TFO_CLIENT_ENABLE) ||
1001 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1002 	     uaddr->sa_family == AF_UNSPEC))
1003 		return -EOPNOTSUPP;
1004 	if (tp->fastopen_req)
1005 		return -EALREADY; /* Another Fast Open is in progress */
1006 
1007 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008 				   sk->sk_allocation);
1009 	if (unlikely(!tp->fastopen_req))
1010 		return -ENOBUFS;
1011 	tp->fastopen_req->data = msg;
1012 	tp->fastopen_req->size = size;
1013 	tp->fastopen_req->uarg = uarg;
1014 
1015 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1016 		err = tcp_connect(sk);
1017 		/* Same failure procedure as in tcp_v4/6_connect */
1018 		if (err) {
1019 			tcp_set_state(sk, TCP_CLOSE);
1020 			inet->inet_dport = 0;
1021 			sk->sk_route_caps = 0;
1022 		}
1023 	}
1024 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1025 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1026 				    msg->msg_namelen, flags, 1);
1027 	/* fastopen_req could already be freed in __inet_stream_connect
1028 	 * if the connection times out or gets rst
1029 	 */
1030 	if (tp->fastopen_req) {
1031 		*copied = tp->fastopen_req->copied;
1032 		tcp_free_fastopen_req(tp);
1033 		inet_clear_bit(DEFER_CONNECT, sk);
1034 	}
1035 	return err;
1036 }
1037 
1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	struct ubuf_info *uarg = NULL;
1042 	struct sk_buff *skb;
1043 	struct sockcm_cookie sockc;
1044 	int flags, err, copied = 0;
1045 	int mss_now = 0, size_goal, copied_syn = 0;
1046 	int process_backlog = 0;
1047 	int zc = 0;
1048 	long timeo;
1049 
1050 	flags = msg->msg_flags;
1051 
1052 	if ((flags & MSG_ZEROCOPY) && size) {
1053 		if (msg->msg_ubuf) {
1054 			uarg = msg->msg_ubuf;
1055 			if (sk->sk_route_caps & NETIF_F_SG)
1056 				zc = MSG_ZEROCOPY;
1057 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1058 			skb = tcp_write_queue_tail(sk);
1059 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1060 			if (!uarg) {
1061 				err = -ENOBUFS;
1062 				goto out_err;
1063 			}
1064 			if (sk->sk_route_caps & NETIF_F_SG)
1065 				zc = MSG_ZEROCOPY;
1066 			else
1067 				uarg_to_msgzc(uarg)->zerocopy = 0;
1068 		}
1069 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1070 		if (sk->sk_route_caps & NETIF_F_SG)
1071 			zc = MSG_SPLICE_PAGES;
1072 	}
1073 
1074 	if (unlikely(flags & MSG_FASTOPEN ||
1075 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1076 	    !tp->repair) {
1077 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1078 		if (err == -EINPROGRESS && copied_syn > 0)
1079 			goto out;
1080 		else if (err)
1081 			goto out_err;
1082 	}
1083 
1084 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085 
1086 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1087 
1088 	/* Wait for a connection to finish. One exception is TCP Fast Open
1089 	 * (passive side) where data is allowed to be sent before a connection
1090 	 * is fully established.
1091 	 */
1092 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093 	    !tcp_passive_fastopen(sk)) {
1094 		err = sk_stream_wait_connect(sk, &timeo);
1095 		if (err != 0)
1096 			goto do_error;
1097 	}
1098 
1099 	if (unlikely(tp->repair)) {
1100 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1101 			copied = tcp_send_rcvq(sk, msg, size);
1102 			goto out_nopush;
1103 		}
1104 
1105 		err = -EINVAL;
1106 		if (tp->repair_queue == TCP_NO_QUEUE)
1107 			goto out_err;
1108 
1109 		/* 'common' sending to sendq */
1110 	}
1111 
1112 	sockcm_init(&sockc, sk);
1113 	if (msg->msg_controllen) {
1114 		err = sock_cmsg_send(sk, msg, &sockc);
1115 		if (unlikely(err)) {
1116 			err = -EINVAL;
1117 			goto out_err;
1118 		}
1119 	}
1120 
1121 	/* This should be in poll */
1122 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1123 
1124 	/* Ok commence sending. */
1125 	copied = 0;
1126 
1127 restart:
1128 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1129 
1130 	err = -EPIPE;
1131 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132 		goto do_error;
1133 
1134 	while (msg_data_left(msg)) {
1135 		ssize_t copy = 0;
1136 
1137 		skb = tcp_write_queue_tail(sk);
1138 		if (skb)
1139 			copy = size_goal - skb->len;
1140 
1141 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1142 			bool first_skb;
1143 
1144 new_segment:
1145 			if (!sk_stream_memory_free(sk))
1146 				goto wait_for_space;
1147 
1148 			if (unlikely(process_backlog >= 16)) {
1149 				process_backlog = 0;
1150 				if (sk_flush_backlog(sk))
1151 					goto restart;
1152 			}
1153 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1154 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1155 						   first_skb);
1156 			if (!skb)
1157 				goto wait_for_space;
1158 
1159 			process_backlog++;
1160 
1161 #ifdef CONFIG_SKB_DECRYPTED
1162 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1163 #endif
1164 			tcp_skb_entail(sk, skb);
1165 			copy = size_goal;
1166 
1167 			/* All packets are restored as if they have
1168 			 * already been sent. skb_mstamp_ns isn't set to
1169 			 * avoid wrong rtt estimation.
1170 			 */
1171 			if (tp->repair)
1172 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1173 		}
1174 
1175 		/* Try to append data to the end of skb. */
1176 		if (copy > msg_data_left(msg))
1177 			copy = msg_data_left(msg);
1178 
1179 		if (zc == 0) {
1180 			bool merge = true;
1181 			int i = skb_shinfo(skb)->nr_frags;
1182 			struct page_frag *pfrag = sk_page_frag(sk);
1183 
1184 			if (!sk_page_frag_refill(sk, pfrag))
1185 				goto wait_for_space;
1186 
1187 			if (!skb_can_coalesce(skb, i, pfrag->page,
1188 					      pfrag->offset)) {
1189 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1190 					tcp_mark_push(tp, skb);
1191 					goto new_segment;
1192 				}
1193 				merge = false;
1194 			}
1195 
1196 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1197 
1198 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1199 				if (tcp_downgrade_zcopy_pure(sk, skb))
1200 					goto wait_for_space;
1201 				skb_zcopy_downgrade_managed(skb);
1202 			}
1203 
1204 			copy = tcp_wmem_schedule(sk, copy);
1205 			if (!copy)
1206 				goto wait_for_space;
1207 
1208 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1209 						       pfrag->page,
1210 						       pfrag->offset,
1211 						       copy);
1212 			if (err)
1213 				goto do_error;
1214 
1215 			/* Update the skb. */
1216 			if (merge) {
1217 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1218 			} else {
1219 				skb_fill_page_desc(skb, i, pfrag->page,
1220 						   pfrag->offset, copy);
1221 				page_ref_inc(pfrag->page);
1222 			}
1223 			pfrag->offset += copy;
1224 		} else if (zc == MSG_ZEROCOPY)  {
1225 			/* First append to a fragless skb builds initial
1226 			 * pure zerocopy skb
1227 			 */
1228 			if (!skb->len)
1229 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1230 
1231 			if (!skb_zcopy_pure(skb)) {
1232 				copy = tcp_wmem_schedule(sk, copy);
1233 				if (!copy)
1234 					goto wait_for_space;
1235 			}
1236 
1237 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1238 			if (err == -EMSGSIZE || err == -EEXIST) {
1239 				tcp_mark_push(tp, skb);
1240 				goto new_segment;
1241 			}
1242 			if (err < 0)
1243 				goto do_error;
1244 			copy = err;
1245 		} else if (zc == MSG_SPLICE_PAGES) {
1246 			/* Splice in data if we can; copy if we can't. */
1247 			if (tcp_downgrade_zcopy_pure(sk, skb))
1248 				goto wait_for_space;
1249 			copy = tcp_wmem_schedule(sk, copy);
1250 			if (!copy)
1251 				goto wait_for_space;
1252 
1253 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1254 						   sk->sk_allocation);
1255 			if (err < 0) {
1256 				if (err == -EMSGSIZE) {
1257 					tcp_mark_push(tp, skb);
1258 					goto new_segment;
1259 				}
1260 				goto do_error;
1261 			}
1262 			copy = err;
1263 
1264 			if (!(flags & MSG_NO_SHARED_FRAGS))
1265 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1266 
1267 			sk_wmem_queued_add(sk, copy);
1268 			sk_mem_charge(sk, copy);
1269 		}
1270 
1271 		if (!copied)
1272 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1273 
1274 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1275 		TCP_SKB_CB(skb)->end_seq += copy;
1276 		tcp_skb_pcount_set(skb, 0);
1277 
1278 		copied += copy;
1279 		if (!msg_data_left(msg)) {
1280 			if (unlikely(flags & MSG_EOR))
1281 				TCP_SKB_CB(skb)->eor = 1;
1282 			goto out;
1283 		}
1284 
1285 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1286 			continue;
1287 
1288 		if (forced_push(tp)) {
1289 			tcp_mark_push(tp, skb);
1290 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1291 		} else if (skb == tcp_send_head(sk))
1292 			tcp_push_one(sk, mss_now);
1293 		continue;
1294 
1295 wait_for_space:
1296 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1297 		tcp_remove_empty_skb(sk);
1298 		if (copied)
1299 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1300 				 TCP_NAGLE_PUSH, size_goal);
1301 
1302 		err = sk_stream_wait_memory(sk, &timeo);
1303 		if (err != 0)
1304 			goto do_error;
1305 
1306 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1307 	}
1308 
1309 out:
1310 	if (copied) {
1311 		tcp_tx_timestamp(sk, sockc.tsflags);
1312 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1313 	}
1314 out_nopush:
1315 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1316 	if (uarg && !msg->msg_ubuf)
1317 		net_zcopy_put(uarg);
1318 	return copied + copied_syn;
1319 
1320 do_error:
1321 	tcp_remove_empty_skb(sk);
1322 
1323 	if (copied + copied_syn)
1324 		goto out;
1325 out_err:
1326 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1327 	if (uarg && !msg->msg_ubuf)
1328 		net_zcopy_put_abort(uarg, true);
1329 	err = sk_stream_error(sk, flags, err);
1330 	/* make sure we wake any epoll edge trigger waiter */
1331 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1332 		sk->sk_write_space(sk);
1333 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1334 	}
1335 	return err;
1336 }
1337 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1338 
1339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1340 {
1341 	int ret;
1342 
1343 	lock_sock(sk);
1344 	ret = tcp_sendmsg_locked(sk, msg, size);
1345 	release_sock(sk);
1346 
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL(tcp_sendmsg);
1350 
1351 void tcp_splice_eof(struct socket *sock)
1352 {
1353 	struct sock *sk = sock->sk;
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355 	int mss_now, size_goal;
1356 
1357 	if (!tcp_write_queue_tail(sk))
1358 		return;
1359 
1360 	lock_sock(sk);
1361 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1362 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1363 	release_sock(sk);
1364 }
1365 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1366 
1367 /*
1368  *	Handle reading urgent data. BSD has very simple semantics for
1369  *	this, no blocking and very strange errors 8)
1370  */
1371 
1372 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1373 {
1374 	struct tcp_sock *tp = tcp_sk(sk);
1375 
1376 	/* No URG data to read. */
1377 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1378 	    tp->urg_data == TCP_URG_READ)
1379 		return -EINVAL;	/* Yes this is right ! */
1380 
1381 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1382 		return -ENOTCONN;
1383 
1384 	if (tp->urg_data & TCP_URG_VALID) {
1385 		int err = 0;
1386 		char c = tp->urg_data;
1387 
1388 		if (!(flags & MSG_PEEK))
1389 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1390 
1391 		/* Read urgent data. */
1392 		msg->msg_flags |= MSG_OOB;
1393 
1394 		if (len > 0) {
1395 			if (!(flags & MSG_TRUNC))
1396 				err = memcpy_to_msg(msg, &c, 1);
1397 			len = 1;
1398 		} else
1399 			msg->msg_flags |= MSG_TRUNC;
1400 
1401 		return err ? -EFAULT : len;
1402 	}
1403 
1404 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1405 		return 0;
1406 
1407 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1408 	 * the available implementations agree in this case:
1409 	 * this call should never block, independent of the
1410 	 * blocking state of the socket.
1411 	 * Mike <pall@rz.uni-karlsruhe.de>
1412 	 */
1413 	return -EAGAIN;
1414 }
1415 
1416 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1417 {
1418 	struct sk_buff *skb;
1419 	int copied = 0, err = 0;
1420 
1421 	/* XXX -- need to support SO_PEEK_OFF */
1422 
1423 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1424 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1425 		if (err)
1426 			return err;
1427 		copied += skb->len;
1428 	}
1429 
1430 	skb_queue_walk(&sk->sk_write_queue, skb) {
1431 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 		if (err)
1433 			break;
1434 
1435 		copied += skb->len;
1436 	}
1437 
1438 	return err ?: copied;
1439 }
1440 
1441 /* Clean up the receive buffer for full frames taken by the user,
1442  * then send an ACK if necessary.  COPIED is the number of bytes
1443  * tcp_recvmsg has given to the user so far, it speeds up the
1444  * calculation of whether or not we must ACK for the sake of
1445  * a window update.
1446  */
1447 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1448 {
1449 	struct tcp_sock *tp = tcp_sk(sk);
1450 	bool time_to_ack = false;
1451 
1452 	if (inet_csk_ack_scheduled(sk)) {
1453 		const struct inet_connection_sock *icsk = inet_csk(sk);
1454 
1455 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1456 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1457 		    /*
1458 		     * If this read emptied read buffer, we send ACK, if
1459 		     * connection is not bidirectional, user drained
1460 		     * receive buffer and there was a small segment
1461 		     * in queue.
1462 		     */
1463 		    (copied > 0 &&
1464 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1465 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1466 		       !inet_csk_in_pingpong_mode(sk))) &&
1467 		      !atomic_read(&sk->sk_rmem_alloc)))
1468 			time_to_ack = true;
1469 	}
1470 
1471 	/* We send an ACK if we can now advertise a non-zero window
1472 	 * which has been raised "significantly".
1473 	 *
1474 	 * Even if window raised up to infinity, do not send window open ACK
1475 	 * in states, where we will not receive more. It is useless.
1476 	 */
1477 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1478 		__u32 rcv_window_now = tcp_receive_window(tp);
1479 
1480 		/* Optimize, __tcp_select_window() is not cheap. */
1481 		if (2*rcv_window_now <= tp->window_clamp) {
1482 			__u32 new_window = __tcp_select_window(sk);
1483 
1484 			/* Send ACK now, if this read freed lots of space
1485 			 * in our buffer. Certainly, new_window is new window.
1486 			 * We can advertise it now, if it is not less than current one.
1487 			 * "Lots" means "at least twice" here.
1488 			 */
1489 			if (new_window && new_window >= 2 * rcv_window_now)
1490 				time_to_ack = true;
1491 		}
1492 	}
1493 	if (time_to_ack)
1494 		tcp_send_ack(sk);
1495 }
1496 
1497 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1498 {
1499 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1500 	struct tcp_sock *tp = tcp_sk(sk);
1501 
1502 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1503 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1504 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1505 	__tcp_cleanup_rbuf(sk, copied);
1506 }
1507 
1508 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1509 {
1510 	__skb_unlink(skb, &sk->sk_receive_queue);
1511 	if (likely(skb->destructor == sock_rfree)) {
1512 		sock_rfree(skb);
1513 		skb->destructor = NULL;
1514 		skb->sk = NULL;
1515 		return skb_attempt_defer_free(skb);
1516 	}
1517 	__kfree_skb(skb);
1518 }
1519 
1520 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1521 {
1522 	struct sk_buff *skb;
1523 	u32 offset;
1524 
1525 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1526 		offset = seq - TCP_SKB_CB(skb)->seq;
1527 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1528 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1529 			offset--;
1530 		}
1531 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1532 			*off = offset;
1533 			return skb;
1534 		}
1535 		/* This looks weird, but this can happen if TCP collapsing
1536 		 * splitted a fat GRO packet, while we released socket lock
1537 		 * in skb_splice_bits()
1538 		 */
1539 		tcp_eat_recv_skb(sk, skb);
1540 	}
1541 	return NULL;
1542 }
1543 EXPORT_SYMBOL(tcp_recv_skb);
1544 
1545 /*
1546  * This routine provides an alternative to tcp_recvmsg() for routines
1547  * that would like to handle copying from skbuffs directly in 'sendfile'
1548  * fashion.
1549  * Note:
1550  *	- It is assumed that the socket was locked by the caller.
1551  *	- The routine does not block.
1552  *	- At present, there is no support for reading OOB data
1553  *	  or for 'peeking' the socket using this routine
1554  *	  (although both would be easy to implement).
1555  */
1556 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1557 		  sk_read_actor_t recv_actor)
1558 {
1559 	struct sk_buff *skb;
1560 	struct tcp_sock *tp = tcp_sk(sk);
1561 	u32 seq = tp->copied_seq;
1562 	u32 offset;
1563 	int copied = 0;
1564 
1565 	if (sk->sk_state == TCP_LISTEN)
1566 		return -ENOTCONN;
1567 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1568 		if (offset < skb->len) {
1569 			int used;
1570 			size_t len;
1571 
1572 			len = skb->len - offset;
1573 			/* Stop reading if we hit a patch of urgent data */
1574 			if (unlikely(tp->urg_data)) {
1575 				u32 urg_offset = tp->urg_seq - seq;
1576 				if (urg_offset < len)
1577 					len = urg_offset;
1578 				if (!len)
1579 					break;
1580 			}
1581 			used = recv_actor(desc, skb, offset, len);
1582 			if (used <= 0) {
1583 				if (!copied)
1584 					copied = used;
1585 				break;
1586 			}
1587 			if (WARN_ON_ONCE(used > len))
1588 				used = len;
1589 			seq += used;
1590 			copied += used;
1591 			offset += used;
1592 
1593 			/* If recv_actor drops the lock (e.g. TCP splice
1594 			 * receive) the skb pointer might be invalid when
1595 			 * getting here: tcp_collapse might have deleted it
1596 			 * while aggregating skbs from the socket queue.
1597 			 */
1598 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1599 			if (!skb)
1600 				break;
1601 			/* TCP coalescing might have appended data to the skb.
1602 			 * Try to splice more frags
1603 			 */
1604 			if (offset + 1 != skb->len)
1605 				continue;
1606 		}
1607 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1608 			tcp_eat_recv_skb(sk, skb);
1609 			++seq;
1610 			break;
1611 		}
1612 		tcp_eat_recv_skb(sk, skb);
1613 		if (!desc->count)
1614 			break;
1615 		WRITE_ONCE(tp->copied_seq, seq);
1616 	}
1617 	WRITE_ONCE(tp->copied_seq, seq);
1618 
1619 	tcp_rcv_space_adjust(sk);
1620 
1621 	/* Clean up data we have read: This will do ACK frames. */
1622 	if (copied > 0) {
1623 		tcp_recv_skb(sk, seq, &offset);
1624 		tcp_cleanup_rbuf(sk, copied);
1625 	}
1626 	return copied;
1627 }
1628 EXPORT_SYMBOL(tcp_read_sock);
1629 
1630 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1631 {
1632 	struct sk_buff *skb;
1633 	int copied = 0;
1634 
1635 	if (sk->sk_state == TCP_LISTEN)
1636 		return -ENOTCONN;
1637 
1638 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1639 		u8 tcp_flags;
1640 		int used;
1641 
1642 		__skb_unlink(skb, &sk->sk_receive_queue);
1643 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1644 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1645 		used = recv_actor(sk, skb);
1646 		if (used < 0) {
1647 			if (!copied)
1648 				copied = used;
1649 			break;
1650 		}
1651 		copied += used;
1652 
1653 		if (tcp_flags & TCPHDR_FIN)
1654 			break;
1655 	}
1656 	return copied;
1657 }
1658 EXPORT_SYMBOL(tcp_read_skb);
1659 
1660 void tcp_read_done(struct sock *sk, size_t len)
1661 {
1662 	struct tcp_sock *tp = tcp_sk(sk);
1663 	u32 seq = tp->copied_seq;
1664 	struct sk_buff *skb;
1665 	size_t left;
1666 	u32 offset;
1667 
1668 	if (sk->sk_state == TCP_LISTEN)
1669 		return;
1670 
1671 	left = len;
1672 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1673 		int used;
1674 
1675 		used = min_t(size_t, skb->len - offset, left);
1676 		seq += used;
1677 		left -= used;
1678 
1679 		if (skb->len > offset + used)
1680 			break;
1681 
1682 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1683 			tcp_eat_recv_skb(sk, skb);
1684 			++seq;
1685 			break;
1686 		}
1687 		tcp_eat_recv_skb(sk, skb);
1688 	}
1689 	WRITE_ONCE(tp->copied_seq, seq);
1690 
1691 	tcp_rcv_space_adjust(sk);
1692 
1693 	/* Clean up data we have read: This will do ACK frames. */
1694 	if (left != len)
1695 		tcp_cleanup_rbuf(sk, len - left);
1696 }
1697 EXPORT_SYMBOL(tcp_read_done);
1698 
1699 int tcp_peek_len(struct socket *sock)
1700 {
1701 	return tcp_inq(sock->sk);
1702 }
1703 EXPORT_SYMBOL(tcp_peek_len);
1704 
1705 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1706 int tcp_set_rcvlowat(struct sock *sk, int val)
1707 {
1708 	int space, cap;
1709 
1710 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1711 		cap = sk->sk_rcvbuf >> 1;
1712 	else
1713 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1714 	val = min(val, cap);
1715 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1716 
1717 	/* Check if we need to signal EPOLLIN right now */
1718 	tcp_data_ready(sk);
1719 
1720 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1721 		return 0;
1722 
1723 	space = tcp_space_from_win(sk, val);
1724 	if (space > sk->sk_rcvbuf) {
1725 		WRITE_ONCE(sk->sk_rcvbuf, space);
1726 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1727 	}
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL(tcp_set_rcvlowat);
1731 
1732 void tcp_update_recv_tstamps(struct sk_buff *skb,
1733 			     struct scm_timestamping_internal *tss)
1734 {
1735 	if (skb->tstamp)
1736 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1737 	else
1738 		tss->ts[0] = (struct timespec64) {0};
1739 
1740 	if (skb_hwtstamps(skb)->hwtstamp)
1741 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1742 	else
1743 		tss->ts[2] = (struct timespec64) {0};
1744 }
1745 
1746 #ifdef CONFIG_MMU
1747 static const struct vm_operations_struct tcp_vm_ops = {
1748 };
1749 
1750 int tcp_mmap(struct file *file, struct socket *sock,
1751 	     struct vm_area_struct *vma)
1752 {
1753 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1754 		return -EPERM;
1755 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1756 
1757 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1758 	vm_flags_set(vma, VM_MIXEDMAP);
1759 
1760 	vma->vm_ops = &tcp_vm_ops;
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL(tcp_mmap);
1764 
1765 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1766 				       u32 *offset_frag)
1767 {
1768 	skb_frag_t *frag;
1769 
1770 	if (unlikely(offset_skb >= skb->len))
1771 		return NULL;
1772 
1773 	offset_skb -= skb_headlen(skb);
1774 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1775 		return NULL;
1776 
1777 	frag = skb_shinfo(skb)->frags;
1778 	while (offset_skb) {
1779 		if (skb_frag_size(frag) > offset_skb) {
1780 			*offset_frag = offset_skb;
1781 			return frag;
1782 		}
1783 		offset_skb -= skb_frag_size(frag);
1784 		++frag;
1785 	}
1786 	*offset_frag = 0;
1787 	return frag;
1788 }
1789 
1790 static bool can_map_frag(const skb_frag_t *frag)
1791 {
1792 	struct page *page;
1793 
1794 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1795 		return false;
1796 
1797 	page = skb_frag_page(frag);
1798 
1799 	if (PageCompound(page) || page->mapping)
1800 		return false;
1801 
1802 	return true;
1803 }
1804 
1805 static int find_next_mappable_frag(const skb_frag_t *frag,
1806 				   int remaining_in_skb)
1807 {
1808 	int offset = 0;
1809 
1810 	if (likely(can_map_frag(frag)))
1811 		return 0;
1812 
1813 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1814 		offset += skb_frag_size(frag);
1815 		++frag;
1816 	}
1817 	return offset;
1818 }
1819 
1820 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1821 					  struct tcp_zerocopy_receive *zc,
1822 					  struct sk_buff *skb, u32 offset)
1823 {
1824 	u32 frag_offset, partial_frag_remainder = 0;
1825 	int mappable_offset;
1826 	skb_frag_t *frag;
1827 
1828 	/* worst case: skip to next skb. try to improve on this case below */
1829 	zc->recv_skip_hint = skb->len - offset;
1830 
1831 	/* Find the frag containing this offset (and how far into that frag) */
1832 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1833 	if (!frag)
1834 		return;
1835 
1836 	if (frag_offset) {
1837 		struct skb_shared_info *info = skb_shinfo(skb);
1838 
1839 		/* We read part of the last frag, must recvmsg() rest of skb. */
1840 		if (frag == &info->frags[info->nr_frags - 1])
1841 			return;
1842 
1843 		/* Else, we must at least read the remainder in this frag. */
1844 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1845 		zc->recv_skip_hint -= partial_frag_remainder;
1846 		++frag;
1847 	}
1848 
1849 	/* partial_frag_remainder: If part way through a frag, must read rest.
1850 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1851 	 * in partial_frag_remainder.
1852 	 */
1853 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1854 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1855 }
1856 
1857 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1858 			      int flags, struct scm_timestamping_internal *tss,
1859 			      int *cmsg_flags);
1860 static int receive_fallback_to_copy(struct sock *sk,
1861 				    struct tcp_zerocopy_receive *zc, int inq,
1862 				    struct scm_timestamping_internal *tss)
1863 {
1864 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1865 	struct msghdr msg = {};
1866 	struct iovec iov;
1867 	int err;
1868 
1869 	zc->length = 0;
1870 	zc->recv_skip_hint = 0;
1871 
1872 	if (copy_address != zc->copybuf_address)
1873 		return -EINVAL;
1874 
1875 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1876 				  inq, &iov, &msg.msg_iter);
1877 	if (err)
1878 		return err;
1879 
1880 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1881 				 tss, &zc->msg_flags);
1882 	if (err < 0)
1883 		return err;
1884 
1885 	zc->copybuf_len = err;
1886 	if (likely(zc->copybuf_len)) {
1887 		struct sk_buff *skb;
1888 		u32 offset;
1889 
1890 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1891 		if (skb)
1892 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1893 	}
1894 	return 0;
1895 }
1896 
1897 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1898 				   struct sk_buff *skb, u32 copylen,
1899 				   u32 *offset, u32 *seq)
1900 {
1901 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1902 	struct msghdr msg = {};
1903 	struct iovec iov;
1904 	int err;
1905 
1906 	if (copy_address != zc->copybuf_address)
1907 		return -EINVAL;
1908 
1909 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1910 				  copylen, &iov, &msg.msg_iter);
1911 	if (err)
1912 		return err;
1913 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1914 	if (err)
1915 		return err;
1916 	zc->recv_skip_hint -= copylen;
1917 	*offset += copylen;
1918 	*seq += copylen;
1919 	return (__s32)copylen;
1920 }
1921 
1922 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1923 				  struct sock *sk,
1924 				  struct sk_buff *skb,
1925 				  u32 *seq,
1926 				  s32 copybuf_len,
1927 				  struct scm_timestamping_internal *tss)
1928 {
1929 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1930 
1931 	if (!copylen)
1932 		return 0;
1933 	/* skb is null if inq < PAGE_SIZE. */
1934 	if (skb) {
1935 		offset = *seq - TCP_SKB_CB(skb)->seq;
1936 	} else {
1937 		skb = tcp_recv_skb(sk, *seq, &offset);
1938 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1939 			tcp_update_recv_tstamps(skb, tss);
1940 			zc->msg_flags |= TCP_CMSG_TS;
1941 		}
1942 	}
1943 
1944 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1945 						  seq);
1946 	return zc->copybuf_len < 0 ? 0 : copylen;
1947 }
1948 
1949 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1950 					      struct page **pending_pages,
1951 					      unsigned long pages_remaining,
1952 					      unsigned long *address,
1953 					      u32 *length,
1954 					      u32 *seq,
1955 					      struct tcp_zerocopy_receive *zc,
1956 					      u32 total_bytes_to_map,
1957 					      int err)
1958 {
1959 	/* At least one page did not map. Try zapping if we skipped earlier. */
1960 	if (err == -EBUSY &&
1961 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1962 		u32 maybe_zap_len;
1963 
1964 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1965 				*length + /* Mapped or pending */
1966 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1967 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1968 		err = 0;
1969 	}
1970 
1971 	if (!err) {
1972 		unsigned long leftover_pages = pages_remaining;
1973 		int bytes_mapped;
1974 
1975 		/* We called zap_page_range_single, try to reinsert. */
1976 		err = vm_insert_pages(vma, *address,
1977 				      pending_pages,
1978 				      &pages_remaining);
1979 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1980 		*seq += bytes_mapped;
1981 		*address += bytes_mapped;
1982 	}
1983 	if (err) {
1984 		/* Either we were unable to zap, OR we zapped, retried an
1985 		 * insert, and still had an issue. Either ways, pages_remaining
1986 		 * is the number of pages we were unable to map, and we unroll
1987 		 * some state we speculatively touched before.
1988 		 */
1989 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1990 
1991 		*length -= bytes_not_mapped;
1992 		zc->recv_skip_hint += bytes_not_mapped;
1993 	}
1994 	return err;
1995 }
1996 
1997 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1998 					struct page **pages,
1999 					unsigned int pages_to_map,
2000 					unsigned long *address,
2001 					u32 *length,
2002 					u32 *seq,
2003 					struct tcp_zerocopy_receive *zc,
2004 					u32 total_bytes_to_map)
2005 {
2006 	unsigned long pages_remaining = pages_to_map;
2007 	unsigned int pages_mapped;
2008 	unsigned int bytes_mapped;
2009 	int err;
2010 
2011 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2012 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2013 	bytes_mapped = PAGE_SIZE * pages_mapped;
2014 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2015 	 * mapping (some but not all of the pages).
2016 	 */
2017 	*seq += bytes_mapped;
2018 	*address += bytes_mapped;
2019 
2020 	if (likely(!err))
2021 		return 0;
2022 
2023 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2024 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2025 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2026 		err);
2027 }
2028 
2029 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2030 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2031 				      struct tcp_zerocopy_receive *zc,
2032 				      struct scm_timestamping_internal *tss)
2033 {
2034 	unsigned long msg_control_addr;
2035 	struct msghdr cmsg_dummy;
2036 
2037 	msg_control_addr = (unsigned long)zc->msg_control;
2038 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2039 	cmsg_dummy.msg_controllen =
2040 		(__kernel_size_t)zc->msg_controllen;
2041 	cmsg_dummy.msg_flags = in_compat_syscall()
2042 		? MSG_CMSG_COMPAT : 0;
2043 	cmsg_dummy.msg_control_is_user = true;
2044 	zc->msg_flags = 0;
2045 	if (zc->msg_control == msg_control_addr &&
2046 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2047 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2048 		zc->msg_control = (__u64)
2049 			((uintptr_t)cmsg_dummy.msg_control_user);
2050 		zc->msg_controllen =
2051 			(__u64)cmsg_dummy.msg_controllen;
2052 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2053 	}
2054 }
2055 
2056 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2057 					   unsigned long address,
2058 					   bool *mmap_locked)
2059 {
2060 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2061 
2062 	if (vma) {
2063 		if (vma->vm_ops != &tcp_vm_ops) {
2064 			vma_end_read(vma);
2065 			return NULL;
2066 		}
2067 		*mmap_locked = false;
2068 		return vma;
2069 	}
2070 
2071 	mmap_read_lock(mm);
2072 	vma = vma_lookup(mm, address);
2073 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2074 		mmap_read_unlock(mm);
2075 		return NULL;
2076 	}
2077 	*mmap_locked = true;
2078 	return vma;
2079 }
2080 
2081 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2082 static int tcp_zerocopy_receive(struct sock *sk,
2083 				struct tcp_zerocopy_receive *zc,
2084 				struct scm_timestamping_internal *tss)
2085 {
2086 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2087 	unsigned long address = (unsigned long)zc->address;
2088 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2089 	s32 copybuf_len = zc->copybuf_len;
2090 	struct tcp_sock *tp = tcp_sk(sk);
2091 	const skb_frag_t *frags = NULL;
2092 	unsigned int pages_to_map = 0;
2093 	struct vm_area_struct *vma;
2094 	struct sk_buff *skb = NULL;
2095 	u32 seq = tp->copied_seq;
2096 	u32 total_bytes_to_map;
2097 	int inq = tcp_inq(sk);
2098 	bool mmap_locked;
2099 	int ret;
2100 
2101 	zc->copybuf_len = 0;
2102 	zc->msg_flags = 0;
2103 
2104 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2105 		return -EINVAL;
2106 
2107 	if (sk->sk_state == TCP_LISTEN)
2108 		return -ENOTCONN;
2109 
2110 	sock_rps_record_flow(sk);
2111 
2112 	if (inq && inq <= copybuf_len)
2113 		return receive_fallback_to_copy(sk, zc, inq, tss);
2114 
2115 	if (inq < PAGE_SIZE) {
2116 		zc->length = 0;
2117 		zc->recv_skip_hint = inq;
2118 		if (!inq && sock_flag(sk, SOCK_DONE))
2119 			return -EIO;
2120 		return 0;
2121 	}
2122 
2123 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2124 	if (!vma)
2125 		return -EINVAL;
2126 
2127 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2128 	avail_len = min_t(u32, vma_len, inq);
2129 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2130 	if (total_bytes_to_map) {
2131 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2132 			zap_page_range_single(vma, address, total_bytes_to_map,
2133 					      NULL);
2134 		zc->length = total_bytes_to_map;
2135 		zc->recv_skip_hint = 0;
2136 	} else {
2137 		zc->length = avail_len;
2138 		zc->recv_skip_hint = avail_len;
2139 	}
2140 	ret = 0;
2141 	while (length + PAGE_SIZE <= zc->length) {
2142 		int mappable_offset;
2143 		struct page *page;
2144 
2145 		if (zc->recv_skip_hint < PAGE_SIZE) {
2146 			u32 offset_frag;
2147 
2148 			if (skb) {
2149 				if (zc->recv_skip_hint > 0)
2150 					break;
2151 				skb = skb->next;
2152 				offset = seq - TCP_SKB_CB(skb)->seq;
2153 			} else {
2154 				skb = tcp_recv_skb(sk, seq, &offset);
2155 			}
2156 
2157 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2158 				tcp_update_recv_tstamps(skb, tss);
2159 				zc->msg_flags |= TCP_CMSG_TS;
2160 			}
2161 			zc->recv_skip_hint = skb->len - offset;
2162 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2163 			if (!frags || offset_frag)
2164 				break;
2165 		}
2166 
2167 		mappable_offset = find_next_mappable_frag(frags,
2168 							  zc->recv_skip_hint);
2169 		if (mappable_offset) {
2170 			zc->recv_skip_hint = mappable_offset;
2171 			break;
2172 		}
2173 		page = skb_frag_page(frags);
2174 		prefetchw(page);
2175 		pages[pages_to_map++] = page;
2176 		length += PAGE_SIZE;
2177 		zc->recv_skip_hint -= PAGE_SIZE;
2178 		frags++;
2179 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2180 		    zc->recv_skip_hint < PAGE_SIZE) {
2181 			/* Either full batch, or we're about to go to next skb
2182 			 * (and we cannot unroll failed ops across skbs).
2183 			 */
2184 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2185 							   pages_to_map,
2186 							   &address, &length,
2187 							   &seq, zc,
2188 							   total_bytes_to_map);
2189 			if (ret)
2190 				goto out;
2191 			pages_to_map = 0;
2192 		}
2193 	}
2194 	if (pages_to_map) {
2195 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2196 						   &address, &length, &seq,
2197 						   zc, total_bytes_to_map);
2198 	}
2199 out:
2200 	if (mmap_locked)
2201 		mmap_read_unlock(current->mm);
2202 	else
2203 		vma_end_read(vma);
2204 	/* Try to copy straggler data. */
2205 	if (!ret)
2206 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2207 
2208 	if (length + copylen) {
2209 		WRITE_ONCE(tp->copied_seq, seq);
2210 		tcp_rcv_space_adjust(sk);
2211 
2212 		/* Clean up data we have read: This will do ACK frames. */
2213 		tcp_recv_skb(sk, seq, &offset);
2214 		tcp_cleanup_rbuf(sk, length + copylen);
2215 		ret = 0;
2216 		if (length == zc->length)
2217 			zc->recv_skip_hint = 0;
2218 	} else {
2219 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2220 			ret = -EIO;
2221 	}
2222 	zc->length = length;
2223 	return ret;
2224 }
2225 #endif
2226 
2227 /* Similar to __sock_recv_timestamp, but does not require an skb */
2228 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2229 			struct scm_timestamping_internal *tss)
2230 {
2231 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2232 	bool has_timestamping = false;
2233 
2234 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2235 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2236 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2237 				if (new_tstamp) {
2238 					struct __kernel_timespec kts = {
2239 						.tv_sec = tss->ts[0].tv_sec,
2240 						.tv_nsec = tss->ts[0].tv_nsec,
2241 					};
2242 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2243 						 sizeof(kts), &kts);
2244 				} else {
2245 					struct __kernel_old_timespec ts_old = {
2246 						.tv_sec = tss->ts[0].tv_sec,
2247 						.tv_nsec = tss->ts[0].tv_nsec,
2248 					};
2249 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2250 						 sizeof(ts_old), &ts_old);
2251 				}
2252 			} else {
2253 				if (new_tstamp) {
2254 					struct __kernel_sock_timeval stv = {
2255 						.tv_sec = tss->ts[0].tv_sec,
2256 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2257 					};
2258 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2259 						 sizeof(stv), &stv);
2260 				} else {
2261 					struct __kernel_old_timeval tv = {
2262 						.tv_sec = tss->ts[0].tv_sec,
2263 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2264 					};
2265 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2266 						 sizeof(tv), &tv);
2267 				}
2268 			}
2269 		}
2270 
2271 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2272 			has_timestamping = true;
2273 		else
2274 			tss->ts[0] = (struct timespec64) {0};
2275 	}
2276 
2277 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2278 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2279 			has_timestamping = true;
2280 		else
2281 			tss->ts[2] = (struct timespec64) {0};
2282 	}
2283 
2284 	if (has_timestamping) {
2285 		tss->ts[1] = (struct timespec64) {0};
2286 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2287 			put_cmsg_scm_timestamping64(msg, tss);
2288 		else
2289 			put_cmsg_scm_timestamping(msg, tss);
2290 	}
2291 }
2292 
2293 static int tcp_inq_hint(struct sock *sk)
2294 {
2295 	const struct tcp_sock *tp = tcp_sk(sk);
2296 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2297 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2298 	int inq;
2299 
2300 	inq = rcv_nxt - copied_seq;
2301 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2302 		lock_sock(sk);
2303 		inq = tp->rcv_nxt - tp->copied_seq;
2304 		release_sock(sk);
2305 	}
2306 	/* After receiving a FIN, tell the user-space to continue reading
2307 	 * by returning a non-zero inq.
2308 	 */
2309 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2310 		inq = 1;
2311 	return inq;
2312 }
2313 
2314 /*
2315  *	This routine copies from a sock struct into the user buffer.
2316  *
2317  *	Technical note: in 2.3 we work on _locked_ socket, so that
2318  *	tricks with *seq access order and skb->users are not required.
2319  *	Probably, code can be easily improved even more.
2320  */
2321 
2322 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2323 			      int flags, struct scm_timestamping_internal *tss,
2324 			      int *cmsg_flags)
2325 {
2326 	struct tcp_sock *tp = tcp_sk(sk);
2327 	int copied = 0;
2328 	u32 peek_seq;
2329 	u32 *seq;
2330 	unsigned long used;
2331 	int err;
2332 	int target;		/* Read at least this many bytes */
2333 	long timeo;
2334 	struct sk_buff *skb, *last;
2335 	u32 urg_hole = 0;
2336 
2337 	err = -ENOTCONN;
2338 	if (sk->sk_state == TCP_LISTEN)
2339 		goto out;
2340 
2341 	if (tp->recvmsg_inq) {
2342 		*cmsg_flags = TCP_CMSG_INQ;
2343 		msg->msg_get_inq = 1;
2344 	}
2345 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2346 
2347 	/* Urgent data needs to be handled specially. */
2348 	if (flags & MSG_OOB)
2349 		goto recv_urg;
2350 
2351 	if (unlikely(tp->repair)) {
2352 		err = -EPERM;
2353 		if (!(flags & MSG_PEEK))
2354 			goto out;
2355 
2356 		if (tp->repair_queue == TCP_SEND_QUEUE)
2357 			goto recv_sndq;
2358 
2359 		err = -EINVAL;
2360 		if (tp->repair_queue == TCP_NO_QUEUE)
2361 			goto out;
2362 
2363 		/* 'common' recv queue MSG_PEEK-ing */
2364 	}
2365 
2366 	seq = &tp->copied_seq;
2367 	if (flags & MSG_PEEK) {
2368 		peek_seq = tp->copied_seq;
2369 		seq = &peek_seq;
2370 	}
2371 
2372 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2373 
2374 	do {
2375 		u32 offset;
2376 
2377 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2378 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2379 			if (copied)
2380 				break;
2381 			if (signal_pending(current)) {
2382 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2383 				break;
2384 			}
2385 		}
2386 
2387 		/* Next get a buffer. */
2388 
2389 		last = skb_peek_tail(&sk->sk_receive_queue);
2390 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2391 			last = skb;
2392 			/* Now that we have two receive queues this
2393 			 * shouldn't happen.
2394 			 */
2395 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2396 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2397 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2398 				 flags))
2399 				break;
2400 
2401 			offset = *seq - TCP_SKB_CB(skb)->seq;
2402 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2403 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2404 				offset--;
2405 			}
2406 			if (offset < skb->len)
2407 				goto found_ok_skb;
2408 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2409 				goto found_fin_ok;
2410 			WARN(!(flags & MSG_PEEK),
2411 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2412 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2413 		}
2414 
2415 		/* Well, if we have backlog, try to process it now yet. */
2416 
2417 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2418 			break;
2419 
2420 		if (copied) {
2421 			if (!timeo ||
2422 			    sk->sk_err ||
2423 			    sk->sk_state == TCP_CLOSE ||
2424 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2425 			    signal_pending(current))
2426 				break;
2427 		} else {
2428 			if (sock_flag(sk, SOCK_DONE))
2429 				break;
2430 
2431 			if (sk->sk_err) {
2432 				copied = sock_error(sk);
2433 				break;
2434 			}
2435 
2436 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2437 				break;
2438 
2439 			if (sk->sk_state == TCP_CLOSE) {
2440 				/* This occurs when user tries to read
2441 				 * from never connected socket.
2442 				 */
2443 				copied = -ENOTCONN;
2444 				break;
2445 			}
2446 
2447 			if (!timeo) {
2448 				copied = -EAGAIN;
2449 				break;
2450 			}
2451 
2452 			if (signal_pending(current)) {
2453 				copied = sock_intr_errno(timeo);
2454 				break;
2455 			}
2456 		}
2457 
2458 		if (copied >= target) {
2459 			/* Do not sleep, just process backlog. */
2460 			__sk_flush_backlog(sk);
2461 		} else {
2462 			tcp_cleanup_rbuf(sk, copied);
2463 			err = sk_wait_data(sk, &timeo, last);
2464 			if (err < 0) {
2465 				err = copied ? : err;
2466 				goto out;
2467 			}
2468 		}
2469 
2470 		if ((flags & MSG_PEEK) &&
2471 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2472 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2473 					    current->comm,
2474 					    task_pid_nr(current));
2475 			peek_seq = tp->copied_seq;
2476 		}
2477 		continue;
2478 
2479 found_ok_skb:
2480 		/* Ok so how much can we use? */
2481 		used = skb->len - offset;
2482 		if (len < used)
2483 			used = len;
2484 
2485 		/* Do we have urgent data here? */
2486 		if (unlikely(tp->urg_data)) {
2487 			u32 urg_offset = tp->urg_seq - *seq;
2488 			if (urg_offset < used) {
2489 				if (!urg_offset) {
2490 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2491 						WRITE_ONCE(*seq, *seq + 1);
2492 						urg_hole++;
2493 						offset++;
2494 						used--;
2495 						if (!used)
2496 							goto skip_copy;
2497 					}
2498 				} else
2499 					used = urg_offset;
2500 			}
2501 		}
2502 
2503 		if (!(flags & MSG_TRUNC)) {
2504 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2505 			if (err) {
2506 				/* Exception. Bailout! */
2507 				if (!copied)
2508 					copied = -EFAULT;
2509 				break;
2510 			}
2511 		}
2512 
2513 		WRITE_ONCE(*seq, *seq + used);
2514 		copied += used;
2515 		len -= used;
2516 
2517 		tcp_rcv_space_adjust(sk);
2518 
2519 skip_copy:
2520 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2521 			WRITE_ONCE(tp->urg_data, 0);
2522 			tcp_fast_path_check(sk);
2523 		}
2524 
2525 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2526 			tcp_update_recv_tstamps(skb, tss);
2527 			*cmsg_flags |= TCP_CMSG_TS;
2528 		}
2529 
2530 		if (used + offset < skb->len)
2531 			continue;
2532 
2533 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2534 			goto found_fin_ok;
2535 		if (!(flags & MSG_PEEK))
2536 			tcp_eat_recv_skb(sk, skb);
2537 		continue;
2538 
2539 found_fin_ok:
2540 		/* Process the FIN. */
2541 		WRITE_ONCE(*seq, *seq + 1);
2542 		if (!(flags & MSG_PEEK))
2543 			tcp_eat_recv_skb(sk, skb);
2544 		break;
2545 	} while (len > 0);
2546 
2547 	/* According to UNIX98, msg_name/msg_namelen are ignored
2548 	 * on connected socket. I was just happy when found this 8) --ANK
2549 	 */
2550 
2551 	/* Clean up data we have read: This will do ACK frames. */
2552 	tcp_cleanup_rbuf(sk, copied);
2553 	return copied;
2554 
2555 out:
2556 	return err;
2557 
2558 recv_urg:
2559 	err = tcp_recv_urg(sk, msg, len, flags);
2560 	goto out;
2561 
2562 recv_sndq:
2563 	err = tcp_peek_sndq(sk, msg, len);
2564 	goto out;
2565 }
2566 
2567 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2568 		int *addr_len)
2569 {
2570 	int cmsg_flags = 0, ret;
2571 	struct scm_timestamping_internal tss;
2572 
2573 	if (unlikely(flags & MSG_ERRQUEUE))
2574 		return inet_recv_error(sk, msg, len, addr_len);
2575 
2576 	if (sk_can_busy_loop(sk) &&
2577 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2578 	    sk->sk_state == TCP_ESTABLISHED)
2579 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2580 
2581 	lock_sock(sk);
2582 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2583 	release_sock(sk);
2584 
2585 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2586 		if (cmsg_flags & TCP_CMSG_TS)
2587 			tcp_recv_timestamp(msg, sk, &tss);
2588 		if (msg->msg_get_inq) {
2589 			msg->msg_inq = tcp_inq_hint(sk);
2590 			if (cmsg_flags & TCP_CMSG_INQ)
2591 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2592 					 sizeof(msg->msg_inq), &msg->msg_inq);
2593 		}
2594 	}
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL(tcp_recvmsg);
2598 
2599 void tcp_set_state(struct sock *sk, int state)
2600 {
2601 	int oldstate = sk->sk_state;
2602 
2603 	/* We defined a new enum for TCP states that are exported in BPF
2604 	 * so as not force the internal TCP states to be frozen. The
2605 	 * following checks will detect if an internal state value ever
2606 	 * differs from the BPF value. If this ever happens, then we will
2607 	 * need to remap the internal value to the BPF value before calling
2608 	 * tcp_call_bpf_2arg.
2609 	 */
2610 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2611 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2612 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2613 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2614 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2615 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2616 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2617 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2618 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2619 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2620 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2621 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2622 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2623 
2624 	/* bpf uapi header bpf.h defines an anonymous enum with values
2625 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2626 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2627 	 * But clang built vmlinux does not have this enum in DWARF
2628 	 * since clang removes the above code before generating IR/debuginfo.
2629 	 * Let us explicitly emit the type debuginfo to ensure the
2630 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2631 	 * regardless of which compiler is used.
2632 	 */
2633 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2634 
2635 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2636 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2637 
2638 	switch (state) {
2639 	case TCP_ESTABLISHED:
2640 		if (oldstate != TCP_ESTABLISHED)
2641 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2642 		break;
2643 	case TCP_CLOSE_WAIT:
2644 		if (oldstate == TCP_SYN_RECV)
2645 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2646 		break;
2647 
2648 	case TCP_CLOSE:
2649 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2650 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2651 
2652 		sk->sk_prot->unhash(sk);
2653 		if (inet_csk(sk)->icsk_bind_hash &&
2654 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2655 			inet_put_port(sk);
2656 		fallthrough;
2657 	default:
2658 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2659 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2660 	}
2661 
2662 	/* Change state AFTER socket is unhashed to avoid closed
2663 	 * socket sitting in hash tables.
2664 	 */
2665 	inet_sk_state_store(sk, state);
2666 }
2667 EXPORT_SYMBOL_GPL(tcp_set_state);
2668 
2669 /*
2670  *	State processing on a close. This implements the state shift for
2671  *	sending our FIN frame. Note that we only send a FIN for some
2672  *	states. A shutdown() may have already sent the FIN, or we may be
2673  *	closed.
2674  */
2675 
2676 static const unsigned char new_state[16] = {
2677   /* current state:        new state:      action:	*/
2678   [0 /* (Invalid) */]	= TCP_CLOSE,
2679   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2680   [TCP_SYN_SENT]	= TCP_CLOSE,
2681   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2682   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2683   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2684   [TCP_TIME_WAIT]	= TCP_CLOSE,
2685   [TCP_CLOSE]		= TCP_CLOSE,
2686   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2687   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2688   [TCP_LISTEN]		= TCP_CLOSE,
2689   [TCP_CLOSING]		= TCP_CLOSING,
2690   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2691 };
2692 
2693 static int tcp_close_state(struct sock *sk)
2694 {
2695 	int next = (int)new_state[sk->sk_state];
2696 	int ns = next & TCP_STATE_MASK;
2697 
2698 	tcp_set_state(sk, ns);
2699 
2700 	return next & TCP_ACTION_FIN;
2701 }
2702 
2703 /*
2704  *	Shutdown the sending side of a connection. Much like close except
2705  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2706  */
2707 
2708 void tcp_shutdown(struct sock *sk, int how)
2709 {
2710 	/*	We need to grab some memory, and put together a FIN,
2711 	 *	and then put it into the queue to be sent.
2712 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2713 	 */
2714 	if (!(how & SEND_SHUTDOWN))
2715 		return;
2716 
2717 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2718 	if ((1 << sk->sk_state) &
2719 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2720 	     TCPF_CLOSE_WAIT)) {
2721 		/* Clear out any half completed packets.  FIN if needed. */
2722 		if (tcp_close_state(sk))
2723 			tcp_send_fin(sk);
2724 	}
2725 }
2726 EXPORT_SYMBOL(tcp_shutdown);
2727 
2728 int tcp_orphan_count_sum(void)
2729 {
2730 	int i, total = 0;
2731 
2732 	for_each_possible_cpu(i)
2733 		total += per_cpu(tcp_orphan_count, i);
2734 
2735 	return max(total, 0);
2736 }
2737 
2738 static int tcp_orphan_cache;
2739 static struct timer_list tcp_orphan_timer;
2740 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2741 
2742 static void tcp_orphan_update(struct timer_list *unused)
2743 {
2744 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2745 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2746 }
2747 
2748 static bool tcp_too_many_orphans(int shift)
2749 {
2750 	return READ_ONCE(tcp_orphan_cache) << shift >
2751 		READ_ONCE(sysctl_tcp_max_orphans);
2752 }
2753 
2754 bool tcp_check_oom(struct sock *sk, int shift)
2755 {
2756 	bool too_many_orphans, out_of_socket_memory;
2757 
2758 	too_many_orphans = tcp_too_many_orphans(shift);
2759 	out_of_socket_memory = tcp_out_of_memory(sk);
2760 
2761 	if (too_many_orphans)
2762 		net_info_ratelimited("too many orphaned sockets\n");
2763 	if (out_of_socket_memory)
2764 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2765 	return too_many_orphans || out_of_socket_memory;
2766 }
2767 
2768 void __tcp_close(struct sock *sk, long timeout)
2769 {
2770 	struct sk_buff *skb;
2771 	int data_was_unread = 0;
2772 	int state;
2773 
2774 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2775 
2776 	if (sk->sk_state == TCP_LISTEN) {
2777 		tcp_set_state(sk, TCP_CLOSE);
2778 
2779 		/* Special case. */
2780 		inet_csk_listen_stop(sk);
2781 
2782 		goto adjudge_to_death;
2783 	}
2784 
2785 	/*  We need to flush the recv. buffs.  We do this only on the
2786 	 *  descriptor close, not protocol-sourced closes, because the
2787 	 *  reader process may not have drained the data yet!
2788 	 */
2789 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2790 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2791 
2792 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2793 			len--;
2794 		data_was_unread += len;
2795 		__kfree_skb(skb);
2796 	}
2797 
2798 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2799 	if (sk->sk_state == TCP_CLOSE)
2800 		goto adjudge_to_death;
2801 
2802 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2803 	 * data was lost. To witness the awful effects of the old behavior of
2804 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2805 	 * GET in an FTP client, suspend the process, wait for the client to
2806 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2807 	 * Note: timeout is always zero in such a case.
2808 	 */
2809 	if (unlikely(tcp_sk(sk)->repair)) {
2810 		sk->sk_prot->disconnect(sk, 0);
2811 	} else if (data_was_unread) {
2812 		/* Unread data was tossed, zap the connection. */
2813 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2814 		tcp_set_state(sk, TCP_CLOSE);
2815 		tcp_send_active_reset(sk, sk->sk_allocation);
2816 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2817 		/* Check zero linger _after_ checking for unread data. */
2818 		sk->sk_prot->disconnect(sk, 0);
2819 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2820 	} else if (tcp_close_state(sk)) {
2821 		/* We FIN if the application ate all the data before
2822 		 * zapping the connection.
2823 		 */
2824 
2825 		/* RED-PEN. Formally speaking, we have broken TCP state
2826 		 * machine. State transitions:
2827 		 *
2828 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2829 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2830 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2831 		 *
2832 		 * are legal only when FIN has been sent (i.e. in window),
2833 		 * rather than queued out of window. Purists blame.
2834 		 *
2835 		 * F.e. "RFC state" is ESTABLISHED,
2836 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2837 		 *
2838 		 * The visible declinations are that sometimes
2839 		 * we enter time-wait state, when it is not required really
2840 		 * (harmless), do not send active resets, when they are
2841 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2842 		 * they look as CLOSING or LAST_ACK for Linux)
2843 		 * Probably, I missed some more holelets.
2844 		 * 						--ANK
2845 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2846 		 * in a single packet! (May consider it later but will
2847 		 * probably need API support or TCP_CORK SYN-ACK until
2848 		 * data is written and socket is closed.)
2849 		 */
2850 		tcp_send_fin(sk);
2851 	}
2852 
2853 	sk_stream_wait_close(sk, timeout);
2854 
2855 adjudge_to_death:
2856 	state = sk->sk_state;
2857 	sock_hold(sk);
2858 	sock_orphan(sk);
2859 
2860 	local_bh_disable();
2861 	bh_lock_sock(sk);
2862 	/* remove backlog if any, without releasing ownership. */
2863 	__release_sock(sk);
2864 
2865 	this_cpu_inc(tcp_orphan_count);
2866 
2867 	/* Have we already been destroyed by a softirq or backlog? */
2868 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2869 		goto out;
2870 
2871 	/*	This is a (useful) BSD violating of the RFC. There is a
2872 	 *	problem with TCP as specified in that the other end could
2873 	 *	keep a socket open forever with no application left this end.
2874 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2875 	 *	our end. If they send after that then tough - BUT: long enough
2876 	 *	that we won't make the old 4*rto = almost no time - whoops
2877 	 *	reset mistake.
2878 	 *
2879 	 *	Nope, it was not mistake. It is really desired behaviour
2880 	 *	f.e. on http servers, when such sockets are useless, but
2881 	 *	consume significant resources. Let's do it with special
2882 	 *	linger2	option.					--ANK
2883 	 */
2884 
2885 	if (sk->sk_state == TCP_FIN_WAIT2) {
2886 		struct tcp_sock *tp = tcp_sk(sk);
2887 		if (READ_ONCE(tp->linger2) < 0) {
2888 			tcp_set_state(sk, TCP_CLOSE);
2889 			tcp_send_active_reset(sk, GFP_ATOMIC);
2890 			__NET_INC_STATS(sock_net(sk),
2891 					LINUX_MIB_TCPABORTONLINGER);
2892 		} else {
2893 			const int tmo = tcp_fin_time(sk);
2894 
2895 			if (tmo > TCP_TIMEWAIT_LEN) {
2896 				inet_csk_reset_keepalive_timer(sk,
2897 						tmo - TCP_TIMEWAIT_LEN);
2898 			} else {
2899 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2900 				goto out;
2901 			}
2902 		}
2903 	}
2904 	if (sk->sk_state != TCP_CLOSE) {
2905 		if (tcp_check_oom(sk, 0)) {
2906 			tcp_set_state(sk, TCP_CLOSE);
2907 			tcp_send_active_reset(sk, GFP_ATOMIC);
2908 			__NET_INC_STATS(sock_net(sk),
2909 					LINUX_MIB_TCPABORTONMEMORY);
2910 		} else if (!check_net(sock_net(sk))) {
2911 			/* Not possible to send reset; just close */
2912 			tcp_set_state(sk, TCP_CLOSE);
2913 		}
2914 	}
2915 
2916 	if (sk->sk_state == TCP_CLOSE) {
2917 		struct request_sock *req;
2918 
2919 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2920 						lockdep_sock_is_held(sk));
2921 		/* We could get here with a non-NULL req if the socket is
2922 		 * aborted (e.g., closed with unread data) before 3WHS
2923 		 * finishes.
2924 		 */
2925 		if (req)
2926 			reqsk_fastopen_remove(sk, req, false);
2927 		inet_csk_destroy_sock(sk);
2928 	}
2929 	/* Otherwise, socket is reprieved until protocol close. */
2930 
2931 out:
2932 	bh_unlock_sock(sk);
2933 	local_bh_enable();
2934 }
2935 
2936 void tcp_close(struct sock *sk, long timeout)
2937 {
2938 	lock_sock(sk);
2939 	__tcp_close(sk, timeout);
2940 	release_sock(sk);
2941 	if (!sk->sk_net_refcnt)
2942 		inet_csk_clear_xmit_timers_sync(sk);
2943 	sock_put(sk);
2944 }
2945 EXPORT_SYMBOL(tcp_close);
2946 
2947 /* These states need RST on ABORT according to RFC793 */
2948 
2949 static inline bool tcp_need_reset(int state)
2950 {
2951 	return (1 << state) &
2952 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2953 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2954 }
2955 
2956 static void tcp_rtx_queue_purge(struct sock *sk)
2957 {
2958 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2959 
2960 	tcp_sk(sk)->highest_sack = NULL;
2961 	while (p) {
2962 		struct sk_buff *skb = rb_to_skb(p);
2963 
2964 		p = rb_next(p);
2965 		/* Since we are deleting whole queue, no need to
2966 		 * list_del(&skb->tcp_tsorted_anchor)
2967 		 */
2968 		tcp_rtx_queue_unlink(skb, sk);
2969 		tcp_wmem_free_skb(sk, skb);
2970 	}
2971 }
2972 
2973 void tcp_write_queue_purge(struct sock *sk)
2974 {
2975 	struct sk_buff *skb;
2976 
2977 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2978 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2979 		tcp_skb_tsorted_anchor_cleanup(skb);
2980 		tcp_wmem_free_skb(sk, skb);
2981 	}
2982 	tcp_rtx_queue_purge(sk);
2983 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2984 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2985 	tcp_sk(sk)->packets_out = 0;
2986 	inet_csk(sk)->icsk_backoff = 0;
2987 }
2988 
2989 int tcp_disconnect(struct sock *sk, int flags)
2990 {
2991 	struct inet_sock *inet = inet_sk(sk);
2992 	struct inet_connection_sock *icsk = inet_csk(sk);
2993 	struct tcp_sock *tp = tcp_sk(sk);
2994 	int old_state = sk->sk_state;
2995 	u32 seq;
2996 
2997 	if (old_state != TCP_CLOSE)
2998 		tcp_set_state(sk, TCP_CLOSE);
2999 
3000 	/* ABORT function of RFC793 */
3001 	if (old_state == TCP_LISTEN) {
3002 		inet_csk_listen_stop(sk);
3003 	} else if (unlikely(tp->repair)) {
3004 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3005 	} else if (tcp_need_reset(old_state) ||
3006 		   (tp->snd_nxt != tp->write_seq &&
3007 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3008 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3009 		 * states
3010 		 */
3011 		tcp_send_active_reset(sk, gfp_any());
3012 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3013 	} else if (old_state == TCP_SYN_SENT)
3014 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3015 
3016 	tcp_clear_xmit_timers(sk);
3017 	__skb_queue_purge(&sk->sk_receive_queue);
3018 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3019 	WRITE_ONCE(tp->urg_data, 0);
3020 	tcp_write_queue_purge(sk);
3021 	tcp_fastopen_active_disable_ofo_check(sk);
3022 	skb_rbtree_purge(&tp->out_of_order_queue);
3023 
3024 	inet->inet_dport = 0;
3025 
3026 	inet_bhash2_reset_saddr(sk);
3027 
3028 	WRITE_ONCE(sk->sk_shutdown, 0);
3029 	sock_reset_flag(sk, SOCK_DONE);
3030 	tp->srtt_us = 0;
3031 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3032 	tp->rcv_rtt_last_tsecr = 0;
3033 
3034 	seq = tp->write_seq + tp->max_window + 2;
3035 	if (!seq)
3036 		seq = 1;
3037 	WRITE_ONCE(tp->write_seq, seq);
3038 
3039 	icsk->icsk_backoff = 0;
3040 	icsk->icsk_probes_out = 0;
3041 	icsk->icsk_probes_tstamp = 0;
3042 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3043 	icsk->icsk_rto_min = TCP_RTO_MIN;
3044 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3045 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3046 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3047 	tp->snd_cwnd_cnt = 0;
3048 	tp->is_cwnd_limited = 0;
3049 	tp->max_packets_out = 0;
3050 	tp->window_clamp = 0;
3051 	tp->delivered = 0;
3052 	tp->delivered_ce = 0;
3053 	if (icsk->icsk_ca_ops->release)
3054 		icsk->icsk_ca_ops->release(sk);
3055 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3056 	icsk->icsk_ca_initialized = 0;
3057 	tcp_set_ca_state(sk, TCP_CA_Open);
3058 	tp->is_sack_reneg = 0;
3059 	tcp_clear_retrans(tp);
3060 	tp->total_retrans = 0;
3061 	inet_csk_delack_init(sk);
3062 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3063 	 * issue in __tcp_select_window()
3064 	 */
3065 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3066 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3067 	__sk_dst_reset(sk);
3068 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3069 	tcp_saved_syn_free(tp);
3070 	tp->compressed_ack = 0;
3071 	tp->segs_in = 0;
3072 	tp->segs_out = 0;
3073 	tp->bytes_sent = 0;
3074 	tp->bytes_acked = 0;
3075 	tp->bytes_received = 0;
3076 	tp->bytes_retrans = 0;
3077 	tp->data_segs_in = 0;
3078 	tp->data_segs_out = 0;
3079 	tp->duplicate_sack[0].start_seq = 0;
3080 	tp->duplicate_sack[0].end_seq = 0;
3081 	tp->dsack_dups = 0;
3082 	tp->reord_seen = 0;
3083 	tp->retrans_out = 0;
3084 	tp->sacked_out = 0;
3085 	tp->tlp_high_seq = 0;
3086 	tp->last_oow_ack_time = 0;
3087 	tp->plb_rehash = 0;
3088 	/* There's a bubble in the pipe until at least the first ACK. */
3089 	tp->app_limited = ~0U;
3090 	tp->rate_app_limited = 1;
3091 	tp->rack.mstamp = 0;
3092 	tp->rack.advanced = 0;
3093 	tp->rack.reo_wnd_steps = 1;
3094 	tp->rack.last_delivered = 0;
3095 	tp->rack.reo_wnd_persist = 0;
3096 	tp->rack.dsack_seen = 0;
3097 	tp->syn_data_acked = 0;
3098 	tp->rx_opt.saw_tstamp = 0;
3099 	tp->rx_opt.dsack = 0;
3100 	tp->rx_opt.num_sacks = 0;
3101 	tp->rcv_ooopack = 0;
3102 
3103 
3104 	/* Clean up fastopen related fields */
3105 	tcp_free_fastopen_req(tp);
3106 	inet_clear_bit(DEFER_CONNECT, sk);
3107 	tp->fastopen_client_fail = 0;
3108 
3109 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3110 
3111 	if (sk->sk_frag.page) {
3112 		put_page(sk->sk_frag.page);
3113 		sk->sk_frag.page = NULL;
3114 		sk->sk_frag.offset = 0;
3115 	}
3116 	sk_error_report(sk);
3117 	return 0;
3118 }
3119 EXPORT_SYMBOL(tcp_disconnect);
3120 
3121 static inline bool tcp_can_repair_sock(const struct sock *sk)
3122 {
3123 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3124 		(sk->sk_state != TCP_LISTEN);
3125 }
3126 
3127 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3128 {
3129 	struct tcp_repair_window opt;
3130 
3131 	if (!tp->repair)
3132 		return -EPERM;
3133 
3134 	if (len != sizeof(opt))
3135 		return -EINVAL;
3136 
3137 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3138 		return -EFAULT;
3139 
3140 	if (opt.max_window < opt.snd_wnd)
3141 		return -EINVAL;
3142 
3143 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3144 		return -EINVAL;
3145 
3146 	if (after(opt.rcv_wup, tp->rcv_nxt))
3147 		return -EINVAL;
3148 
3149 	tp->snd_wl1	= opt.snd_wl1;
3150 	tp->snd_wnd	= opt.snd_wnd;
3151 	tp->max_window	= opt.max_window;
3152 
3153 	tp->rcv_wnd	= opt.rcv_wnd;
3154 	tp->rcv_wup	= opt.rcv_wup;
3155 
3156 	return 0;
3157 }
3158 
3159 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3160 		unsigned int len)
3161 {
3162 	struct tcp_sock *tp = tcp_sk(sk);
3163 	struct tcp_repair_opt opt;
3164 	size_t offset = 0;
3165 
3166 	while (len >= sizeof(opt)) {
3167 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3168 			return -EFAULT;
3169 
3170 		offset += sizeof(opt);
3171 		len -= sizeof(opt);
3172 
3173 		switch (opt.opt_code) {
3174 		case TCPOPT_MSS:
3175 			tp->rx_opt.mss_clamp = opt.opt_val;
3176 			tcp_mtup_init(sk);
3177 			break;
3178 		case TCPOPT_WINDOW:
3179 			{
3180 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3181 				u16 rcv_wscale = opt.opt_val >> 16;
3182 
3183 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3184 					return -EFBIG;
3185 
3186 				tp->rx_opt.snd_wscale = snd_wscale;
3187 				tp->rx_opt.rcv_wscale = rcv_wscale;
3188 				tp->rx_opt.wscale_ok = 1;
3189 			}
3190 			break;
3191 		case TCPOPT_SACK_PERM:
3192 			if (opt.opt_val != 0)
3193 				return -EINVAL;
3194 
3195 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3196 			break;
3197 		case TCPOPT_TIMESTAMP:
3198 			if (opt.opt_val != 0)
3199 				return -EINVAL;
3200 
3201 			tp->rx_opt.tstamp_ok = 1;
3202 			break;
3203 		}
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3210 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3211 
3212 static void tcp_enable_tx_delay(void)
3213 {
3214 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3215 		static int __tcp_tx_delay_enabled = 0;
3216 
3217 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3218 			static_branch_enable(&tcp_tx_delay_enabled);
3219 			pr_info("TCP_TX_DELAY enabled\n");
3220 		}
3221 	}
3222 }
3223 
3224 /* When set indicates to always queue non-full frames.  Later the user clears
3225  * this option and we transmit any pending partial frames in the queue.  This is
3226  * meant to be used alongside sendfile() to get properly filled frames when the
3227  * user (for example) must write out headers with a write() call first and then
3228  * use sendfile to send out the data parts.
3229  *
3230  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3231  * TCP_NODELAY.
3232  */
3233 void __tcp_sock_set_cork(struct sock *sk, bool on)
3234 {
3235 	struct tcp_sock *tp = tcp_sk(sk);
3236 
3237 	if (on) {
3238 		tp->nonagle |= TCP_NAGLE_CORK;
3239 	} else {
3240 		tp->nonagle &= ~TCP_NAGLE_CORK;
3241 		if (tp->nonagle & TCP_NAGLE_OFF)
3242 			tp->nonagle |= TCP_NAGLE_PUSH;
3243 		tcp_push_pending_frames(sk);
3244 	}
3245 }
3246 
3247 void tcp_sock_set_cork(struct sock *sk, bool on)
3248 {
3249 	lock_sock(sk);
3250 	__tcp_sock_set_cork(sk, on);
3251 	release_sock(sk);
3252 }
3253 EXPORT_SYMBOL(tcp_sock_set_cork);
3254 
3255 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3256  * remembered, but it is not activated until cork is cleared.
3257  *
3258  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3259  * even TCP_CORK for currently queued segments.
3260  */
3261 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3262 {
3263 	if (on) {
3264 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3265 		tcp_push_pending_frames(sk);
3266 	} else {
3267 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3268 	}
3269 }
3270 
3271 void tcp_sock_set_nodelay(struct sock *sk)
3272 {
3273 	lock_sock(sk);
3274 	__tcp_sock_set_nodelay(sk, true);
3275 	release_sock(sk);
3276 }
3277 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3278 
3279 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3280 {
3281 	if (!val) {
3282 		inet_csk_enter_pingpong_mode(sk);
3283 		return;
3284 	}
3285 
3286 	inet_csk_exit_pingpong_mode(sk);
3287 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3288 	    inet_csk_ack_scheduled(sk)) {
3289 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3290 		tcp_cleanup_rbuf(sk, 1);
3291 		if (!(val & 1))
3292 			inet_csk_enter_pingpong_mode(sk);
3293 	}
3294 }
3295 
3296 void tcp_sock_set_quickack(struct sock *sk, int val)
3297 {
3298 	lock_sock(sk);
3299 	__tcp_sock_set_quickack(sk, val);
3300 	release_sock(sk);
3301 }
3302 EXPORT_SYMBOL(tcp_sock_set_quickack);
3303 
3304 int tcp_sock_set_syncnt(struct sock *sk, int val)
3305 {
3306 	if (val < 1 || val > MAX_TCP_SYNCNT)
3307 		return -EINVAL;
3308 
3309 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3310 	return 0;
3311 }
3312 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3313 
3314 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3315 {
3316 	/* Cap the max time in ms TCP will retry or probe the window
3317 	 * before giving up and aborting (ETIMEDOUT) a connection.
3318 	 */
3319 	if (val < 0)
3320 		return -EINVAL;
3321 
3322 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3323 	return 0;
3324 }
3325 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3326 
3327 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3328 {
3329 	struct tcp_sock *tp = tcp_sk(sk);
3330 
3331 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3332 		return -EINVAL;
3333 
3334 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3335 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3336 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3337 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3338 		u32 elapsed = keepalive_time_elapsed(tp);
3339 
3340 		if (tp->keepalive_time > elapsed)
3341 			elapsed = tp->keepalive_time - elapsed;
3342 		else
3343 			elapsed = 0;
3344 		inet_csk_reset_keepalive_timer(sk, elapsed);
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 int tcp_sock_set_keepidle(struct sock *sk, int val)
3351 {
3352 	int err;
3353 
3354 	lock_sock(sk);
3355 	err = tcp_sock_set_keepidle_locked(sk, val);
3356 	release_sock(sk);
3357 	return err;
3358 }
3359 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3360 
3361 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3362 {
3363 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3364 		return -EINVAL;
3365 
3366 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3367 	return 0;
3368 }
3369 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3370 
3371 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3372 {
3373 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3374 		return -EINVAL;
3375 
3376 	/* Paired with READ_ONCE() in keepalive_probes() */
3377 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3378 	return 0;
3379 }
3380 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3381 
3382 int tcp_set_window_clamp(struct sock *sk, int val)
3383 {
3384 	struct tcp_sock *tp = tcp_sk(sk);
3385 
3386 	if (!val) {
3387 		if (sk->sk_state != TCP_CLOSE)
3388 			return -EINVAL;
3389 		WRITE_ONCE(tp->window_clamp, 0);
3390 	} else {
3391 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3392 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3393 						SOCK_MIN_RCVBUF / 2 : val;
3394 
3395 		if (new_window_clamp == old_window_clamp)
3396 			return 0;
3397 
3398 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3399 		if (new_window_clamp < old_window_clamp) {
3400 			/* need to apply the reserved mem provisioning only
3401 			 * when shrinking the window clamp
3402 			 */
3403 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3404 
3405 		} else {
3406 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3407 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3408 					       tp->rcv_ssthresh);
3409 		}
3410 	}
3411 	return 0;
3412 }
3413 
3414 /*
3415  *	Socket option code for TCP.
3416  */
3417 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3418 		      sockptr_t optval, unsigned int optlen)
3419 {
3420 	struct tcp_sock *tp = tcp_sk(sk);
3421 	struct inet_connection_sock *icsk = inet_csk(sk);
3422 	struct net *net = sock_net(sk);
3423 	int val;
3424 	int err = 0;
3425 
3426 	/* These are data/string values, all the others are ints */
3427 	switch (optname) {
3428 	case TCP_CONGESTION: {
3429 		char name[TCP_CA_NAME_MAX];
3430 
3431 		if (optlen < 1)
3432 			return -EINVAL;
3433 
3434 		val = strncpy_from_sockptr(name, optval,
3435 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3436 		if (val < 0)
3437 			return -EFAULT;
3438 		name[val] = 0;
3439 
3440 		sockopt_lock_sock(sk);
3441 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3442 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3443 								    CAP_NET_ADMIN));
3444 		sockopt_release_sock(sk);
3445 		return err;
3446 	}
3447 	case TCP_ULP: {
3448 		char name[TCP_ULP_NAME_MAX];
3449 
3450 		if (optlen < 1)
3451 			return -EINVAL;
3452 
3453 		val = strncpy_from_sockptr(name, optval,
3454 					min_t(long, TCP_ULP_NAME_MAX - 1,
3455 					      optlen));
3456 		if (val < 0)
3457 			return -EFAULT;
3458 		name[val] = 0;
3459 
3460 		sockopt_lock_sock(sk);
3461 		err = tcp_set_ulp(sk, name);
3462 		sockopt_release_sock(sk);
3463 		return err;
3464 	}
3465 	case TCP_FASTOPEN_KEY: {
3466 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3467 		__u8 *backup_key = NULL;
3468 
3469 		/* Allow a backup key as well to facilitate key rotation
3470 		 * First key is the active one.
3471 		 */
3472 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3473 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3474 			return -EINVAL;
3475 
3476 		if (copy_from_sockptr(key, optval, optlen))
3477 			return -EFAULT;
3478 
3479 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3480 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3481 
3482 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3483 	}
3484 	default:
3485 		/* fallthru */
3486 		break;
3487 	}
3488 
3489 	if (optlen < sizeof(int))
3490 		return -EINVAL;
3491 
3492 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3493 		return -EFAULT;
3494 
3495 	/* Handle options that can be set without locking the socket. */
3496 	switch (optname) {
3497 	case TCP_SYNCNT:
3498 		return tcp_sock_set_syncnt(sk, val);
3499 	case TCP_USER_TIMEOUT:
3500 		return tcp_sock_set_user_timeout(sk, val);
3501 	case TCP_KEEPINTVL:
3502 		return tcp_sock_set_keepintvl(sk, val);
3503 	case TCP_KEEPCNT:
3504 		return tcp_sock_set_keepcnt(sk, val);
3505 	case TCP_LINGER2:
3506 		if (val < 0)
3507 			WRITE_ONCE(tp->linger2, -1);
3508 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3509 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3510 		else
3511 			WRITE_ONCE(tp->linger2, val * HZ);
3512 		return 0;
3513 	case TCP_DEFER_ACCEPT:
3514 		/* Translate value in seconds to number of retransmits */
3515 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3516 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3517 					   TCP_RTO_MAX / HZ));
3518 		return 0;
3519 	}
3520 
3521 	sockopt_lock_sock(sk);
3522 
3523 	switch (optname) {
3524 	case TCP_MAXSEG:
3525 		/* Values greater than interface MTU won't take effect. However
3526 		 * at the point when this call is done we typically don't yet
3527 		 * know which interface is going to be used
3528 		 */
3529 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3530 			err = -EINVAL;
3531 			break;
3532 		}
3533 		tp->rx_opt.user_mss = val;
3534 		break;
3535 
3536 	case TCP_NODELAY:
3537 		__tcp_sock_set_nodelay(sk, val);
3538 		break;
3539 
3540 	case TCP_THIN_LINEAR_TIMEOUTS:
3541 		if (val < 0 || val > 1)
3542 			err = -EINVAL;
3543 		else
3544 			tp->thin_lto = val;
3545 		break;
3546 
3547 	case TCP_THIN_DUPACK:
3548 		if (val < 0 || val > 1)
3549 			err = -EINVAL;
3550 		break;
3551 
3552 	case TCP_REPAIR:
3553 		if (!tcp_can_repair_sock(sk))
3554 			err = -EPERM;
3555 		else if (val == TCP_REPAIR_ON) {
3556 			tp->repair = 1;
3557 			sk->sk_reuse = SK_FORCE_REUSE;
3558 			tp->repair_queue = TCP_NO_QUEUE;
3559 		} else if (val == TCP_REPAIR_OFF) {
3560 			tp->repair = 0;
3561 			sk->sk_reuse = SK_NO_REUSE;
3562 			tcp_send_window_probe(sk);
3563 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3564 			tp->repair = 0;
3565 			sk->sk_reuse = SK_NO_REUSE;
3566 		} else
3567 			err = -EINVAL;
3568 
3569 		break;
3570 
3571 	case TCP_REPAIR_QUEUE:
3572 		if (!tp->repair)
3573 			err = -EPERM;
3574 		else if ((unsigned int)val < TCP_QUEUES_NR)
3575 			tp->repair_queue = val;
3576 		else
3577 			err = -EINVAL;
3578 		break;
3579 
3580 	case TCP_QUEUE_SEQ:
3581 		if (sk->sk_state != TCP_CLOSE) {
3582 			err = -EPERM;
3583 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3584 			if (!tcp_rtx_queue_empty(sk))
3585 				err = -EPERM;
3586 			else
3587 				WRITE_ONCE(tp->write_seq, val);
3588 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3589 			if (tp->rcv_nxt != tp->copied_seq) {
3590 				err = -EPERM;
3591 			} else {
3592 				WRITE_ONCE(tp->rcv_nxt, val);
3593 				WRITE_ONCE(tp->copied_seq, val);
3594 			}
3595 		} else {
3596 			err = -EINVAL;
3597 		}
3598 		break;
3599 
3600 	case TCP_REPAIR_OPTIONS:
3601 		if (!tp->repair)
3602 			err = -EINVAL;
3603 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3604 			err = tcp_repair_options_est(sk, optval, optlen);
3605 		else
3606 			err = -EPERM;
3607 		break;
3608 
3609 	case TCP_CORK:
3610 		__tcp_sock_set_cork(sk, val);
3611 		break;
3612 
3613 	case TCP_KEEPIDLE:
3614 		err = tcp_sock_set_keepidle_locked(sk, val);
3615 		break;
3616 	case TCP_SAVE_SYN:
3617 		/* 0: disable, 1: enable, 2: start from ether_header */
3618 		if (val < 0 || val > 2)
3619 			err = -EINVAL;
3620 		else
3621 			tp->save_syn = val;
3622 		break;
3623 
3624 	case TCP_WINDOW_CLAMP:
3625 		err = tcp_set_window_clamp(sk, val);
3626 		break;
3627 
3628 	case TCP_QUICKACK:
3629 		__tcp_sock_set_quickack(sk, val);
3630 		break;
3631 
3632 #ifdef CONFIG_TCP_MD5SIG
3633 	case TCP_MD5SIG:
3634 	case TCP_MD5SIG_EXT:
3635 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3636 		break;
3637 #endif
3638 	case TCP_FASTOPEN:
3639 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3640 		    TCPF_LISTEN))) {
3641 			tcp_fastopen_init_key_once(net);
3642 
3643 			fastopen_queue_tune(sk, val);
3644 		} else {
3645 			err = -EINVAL;
3646 		}
3647 		break;
3648 	case TCP_FASTOPEN_CONNECT:
3649 		if (val > 1 || val < 0) {
3650 			err = -EINVAL;
3651 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3652 			   TFO_CLIENT_ENABLE) {
3653 			if (sk->sk_state == TCP_CLOSE)
3654 				tp->fastopen_connect = val;
3655 			else
3656 				err = -EINVAL;
3657 		} else {
3658 			err = -EOPNOTSUPP;
3659 		}
3660 		break;
3661 	case TCP_FASTOPEN_NO_COOKIE:
3662 		if (val > 1 || val < 0)
3663 			err = -EINVAL;
3664 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3665 			err = -EINVAL;
3666 		else
3667 			tp->fastopen_no_cookie = val;
3668 		break;
3669 	case TCP_TIMESTAMP:
3670 		if (!tp->repair)
3671 			err = -EPERM;
3672 		else
3673 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3674 		break;
3675 	case TCP_REPAIR_WINDOW:
3676 		err = tcp_repair_set_window(tp, optval, optlen);
3677 		break;
3678 	case TCP_NOTSENT_LOWAT:
3679 		WRITE_ONCE(tp->notsent_lowat, val);
3680 		sk->sk_write_space(sk);
3681 		break;
3682 	case TCP_INQ:
3683 		if (val > 1 || val < 0)
3684 			err = -EINVAL;
3685 		else
3686 			tp->recvmsg_inq = val;
3687 		break;
3688 	case TCP_TX_DELAY:
3689 		if (val)
3690 			tcp_enable_tx_delay();
3691 		WRITE_ONCE(tp->tcp_tx_delay, val);
3692 		break;
3693 	default:
3694 		err = -ENOPROTOOPT;
3695 		break;
3696 	}
3697 
3698 	sockopt_release_sock(sk);
3699 	return err;
3700 }
3701 
3702 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3703 		   unsigned int optlen)
3704 {
3705 	const struct inet_connection_sock *icsk = inet_csk(sk);
3706 
3707 	if (level != SOL_TCP)
3708 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3709 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3710 								optval, optlen);
3711 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3712 }
3713 EXPORT_SYMBOL(tcp_setsockopt);
3714 
3715 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3716 				      struct tcp_info *info)
3717 {
3718 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3719 	enum tcp_chrono i;
3720 
3721 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3722 		stats[i] = tp->chrono_stat[i - 1];
3723 		if (i == tp->chrono_type)
3724 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3725 		stats[i] *= USEC_PER_SEC / HZ;
3726 		total += stats[i];
3727 	}
3728 
3729 	info->tcpi_busy_time = total;
3730 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3731 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3732 }
3733 
3734 /* Return information about state of tcp endpoint in API format. */
3735 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3736 {
3737 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3738 	const struct inet_connection_sock *icsk = inet_csk(sk);
3739 	unsigned long rate;
3740 	u32 now;
3741 	u64 rate64;
3742 	bool slow;
3743 
3744 	memset(info, 0, sizeof(*info));
3745 	if (sk->sk_type != SOCK_STREAM)
3746 		return;
3747 
3748 	info->tcpi_state = inet_sk_state_load(sk);
3749 
3750 	/* Report meaningful fields for all TCP states, including listeners */
3751 	rate = READ_ONCE(sk->sk_pacing_rate);
3752 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3753 	info->tcpi_pacing_rate = rate64;
3754 
3755 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3756 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3757 	info->tcpi_max_pacing_rate = rate64;
3758 
3759 	info->tcpi_reordering = tp->reordering;
3760 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3761 
3762 	if (info->tcpi_state == TCP_LISTEN) {
3763 		/* listeners aliased fields :
3764 		 * tcpi_unacked -> Number of children ready for accept()
3765 		 * tcpi_sacked  -> max backlog
3766 		 */
3767 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3768 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3769 		return;
3770 	}
3771 
3772 	slow = lock_sock_fast(sk);
3773 
3774 	info->tcpi_ca_state = icsk->icsk_ca_state;
3775 	info->tcpi_retransmits = icsk->icsk_retransmits;
3776 	info->tcpi_probes = icsk->icsk_probes_out;
3777 	info->tcpi_backoff = icsk->icsk_backoff;
3778 
3779 	if (tp->rx_opt.tstamp_ok)
3780 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3781 	if (tcp_is_sack(tp))
3782 		info->tcpi_options |= TCPI_OPT_SACK;
3783 	if (tp->rx_opt.wscale_ok) {
3784 		info->tcpi_options |= TCPI_OPT_WSCALE;
3785 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3786 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3787 	}
3788 
3789 	if (tp->ecn_flags & TCP_ECN_OK)
3790 		info->tcpi_options |= TCPI_OPT_ECN;
3791 	if (tp->ecn_flags & TCP_ECN_SEEN)
3792 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3793 	if (tp->syn_data_acked)
3794 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3795 
3796 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3797 	info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3798 					      tcp_delack_max(sk)));
3799 	info->tcpi_snd_mss = tp->mss_cache;
3800 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3801 
3802 	info->tcpi_unacked = tp->packets_out;
3803 	info->tcpi_sacked = tp->sacked_out;
3804 
3805 	info->tcpi_lost = tp->lost_out;
3806 	info->tcpi_retrans = tp->retrans_out;
3807 
3808 	now = tcp_jiffies32;
3809 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3810 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3811 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3812 
3813 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3814 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3815 	info->tcpi_rtt = tp->srtt_us >> 3;
3816 	info->tcpi_rttvar = tp->mdev_us >> 2;
3817 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3818 	info->tcpi_advmss = tp->advmss;
3819 
3820 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3821 	info->tcpi_rcv_space = tp->rcvq_space.space;
3822 
3823 	info->tcpi_total_retrans = tp->total_retrans;
3824 
3825 	info->tcpi_bytes_acked = tp->bytes_acked;
3826 	info->tcpi_bytes_received = tp->bytes_received;
3827 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3828 	tcp_get_info_chrono_stats(tp, info);
3829 
3830 	info->tcpi_segs_out = tp->segs_out;
3831 
3832 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3833 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3834 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3835 
3836 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3837 	info->tcpi_data_segs_out = tp->data_segs_out;
3838 
3839 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3840 	rate64 = tcp_compute_delivery_rate(tp);
3841 	if (rate64)
3842 		info->tcpi_delivery_rate = rate64;
3843 	info->tcpi_delivered = tp->delivered;
3844 	info->tcpi_delivered_ce = tp->delivered_ce;
3845 	info->tcpi_bytes_sent = tp->bytes_sent;
3846 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3847 	info->tcpi_dsack_dups = tp->dsack_dups;
3848 	info->tcpi_reord_seen = tp->reord_seen;
3849 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3850 	info->tcpi_snd_wnd = tp->snd_wnd;
3851 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3852 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3853 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3854 	unlock_sock_fast(sk, slow);
3855 }
3856 EXPORT_SYMBOL_GPL(tcp_get_info);
3857 
3858 static size_t tcp_opt_stats_get_size(void)
3859 {
3860 	return
3861 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3862 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3863 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3864 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3865 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3866 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3867 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3868 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3869 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3870 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3871 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3872 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3873 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3874 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3875 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3876 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3877 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3878 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3879 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3880 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3881 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3882 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3883 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3884 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3885 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3886 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3887 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3888 		0;
3889 }
3890 
3891 /* Returns TTL or hop limit of an incoming packet from skb. */
3892 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3893 {
3894 	if (skb->protocol == htons(ETH_P_IP))
3895 		return ip_hdr(skb)->ttl;
3896 	else if (skb->protocol == htons(ETH_P_IPV6))
3897 		return ipv6_hdr(skb)->hop_limit;
3898 	else
3899 		return 0;
3900 }
3901 
3902 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3903 					       const struct sk_buff *orig_skb,
3904 					       const struct sk_buff *ack_skb)
3905 {
3906 	const struct tcp_sock *tp = tcp_sk(sk);
3907 	struct sk_buff *stats;
3908 	struct tcp_info info;
3909 	unsigned long rate;
3910 	u64 rate64;
3911 
3912 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3913 	if (!stats)
3914 		return NULL;
3915 
3916 	tcp_get_info_chrono_stats(tp, &info);
3917 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3918 			  info.tcpi_busy_time, TCP_NLA_PAD);
3919 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3920 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3921 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3922 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3923 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3924 			  tp->data_segs_out, TCP_NLA_PAD);
3925 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3926 			  tp->total_retrans, TCP_NLA_PAD);
3927 
3928 	rate = READ_ONCE(sk->sk_pacing_rate);
3929 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3930 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3931 
3932 	rate64 = tcp_compute_delivery_rate(tp);
3933 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3934 
3935 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3936 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3937 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3938 
3939 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3940 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3941 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3942 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3943 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3944 
3945 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3946 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3947 
3948 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3949 			  TCP_NLA_PAD);
3950 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3951 			  TCP_NLA_PAD);
3952 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3953 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3954 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3955 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3956 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3957 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3958 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3959 			  TCP_NLA_PAD);
3960 	if (ack_skb)
3961 		nla_put_u8(stats, TCP_NLA_TTL,
3962 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3963 
3964 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3965 	return stats;
3966 }
3967 
3968 int do_tcp_getsockopt(struct sock *sk, int level,
3969 		      int optname, sockptr_t optval, sockptr_t optlen)
3970 {
3971 	struct inet_connection_sock *icsk = inet_csk(sk);
3972 	struct tcp_sock *tp = tcp_sk(sk);
3973 	struct net *net = sock_net(sk);
3974 	int val, len;
3975 
3976 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3977 		return -EFAULT;
3978 
3979 	if (len < 0)
3980 		return -EINVAL;
3981 
3982 	len = min_t(unsigned int, len, sizeof(int));
3983 
3984 	switch (optname) {
3985 	case TCP_MAXSEG:
3986 		val = tp->mss_cache;
3987 		if (tp->rx_opt.user_mss &&
3988 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3989 			val = tp->rx_opt.user_mss;
3990 		if (tp->repair)
3991 			val = tp->rx_opt.mss_clamp;
3992 		break;
3993 	case TCP_NODELAY:
3994 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3995 		break;
3996 	case TCP_CORK:
3997 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3998 		break;
3999 	case TCP_KEEPIDLE:
4000 		val = keepalive_time_when(tp) / HZ;
4001 		break;
4002 	case TCP_KEEPINTVL:
4003 		val = keepalive_intvl_when(tp) / HZ;
4004 		break;
4005 	case TCP_KEEPCNT:
4006 		val = keepalive_probes(tp);
4007 		break;
4008 	case TCP_SYNCNT:
4009 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4010 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4011 		break;
4012 	case TCP_LINGER2:
4013 		val = READ_ONCE(tp->linger2);
4014 		if (val >= 0)
4015 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4016 		break;
4017 	case TCP_DEFER_ACCEPT:
4018 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4019 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4020 				      TCP_RTO_MAX / HZ);
4021 		break;
4022 	case TCP_WINDOW_CLAMP:
4023 		val = READ_ONCE(tp->window_clamp);
4024 		break;
4025 	case TCP_INFO: {
4026 		struct tcp_info info;
4027 
4028 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4029 			return -EFAULT;
4030 
4031 		tcp_get_info(sk, &info);
4032 
4033 		len = min_t(unsigned int, len, sizeof(info));
4034 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4035 			return -EFAULT;
4036 		if (copy_to_sockptr(optval, &info, len))
4037 			return -EFAULT;
4038 		return 0;
4039 	}
4040 	case TCP_CC_INFO: {
4041 		const struct tcp_congestion_ops *ca_ops;
4042 		union tcp_cc_info info;
4043 		size_t sz = 0;
4044 		int attr;
4045 
4046 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4047 			return -EFAULT;
4048 
4049 		ca_ops = icsk->icsk_ca_ops;
4050 		if (ca_ops && ca_ops->get_info)
4051 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4052 
4053 		len = min_t(unsigned int, len, sz);
4054 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4055 			return -EFAULT;
4056 		if (copy_to_sockptr(optval, &info, len))
4057 			return -EFAULT;
4058 		return 0;
4059 	}
4060 	case TCP_QUICKACK:
4061 		val = !inet_csk_in_pingpong_mode(sk);
4062 		break;
4063 
4064 	case TCP_CONGESTION:
4065 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4066 			return -EFAULT;
4067 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4068 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4069 			return -EFAULT;
4070 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4071 			return -EFAULT;
4072 		return 0;
4073 
4074 	case TCP_ULP:
4075 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4076 			return -EFAULT;
4077 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4078 		if (!icsk->icsk_ulp_ops) {
4079 			len = 0;
4080 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4081 				return -EFAULT;
4082 			return 0;
4083 		}
4084 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4085 			return -EFAULT;
4086 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4087 			return -EFAULT;
4088 		return 0;
4089 
4090 	case TCP_FASTOPEN_KEY: {
4091 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4092 		unsigned int key_len;
4093 
4094 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4095 			return -EFAULT;
4096 
4097 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4098 				TCP_FASTOPEN_KEY_LENGTH;
4099 		len = min_t(unsigned int, len, key_len);
4100 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4101 			return -EFAULT;
4102 		if (copy_to_sockptr(optval, key, len))
4103 			return -EFAULT;
4104 		return 0;
4105 	}
4106 	case TCP_THIN_LINEAR_TIMEOUTS:
4107 		val = tp->thin_lto;
4108 		break;
4109 
4110 	case TCP_THIN_DUPACK:
4111 		val = 0;
4112 		break;
4113 
4114 	case TCP_REPAIR:
4115 		val = tp->repair;
4116 		break;
4117 
4118 	case TCP_REPAIR_QUEUE:
4119 		if (tp->repair)
4120 			val = tp->repair_queue;
4121 		else
4122 			return -EINVAL;
4123 		break;
4124 
4125 	case TCP_REPAIR_WINDOW: {
4126 		struct tcp_repair_window opt;
4127 
4128 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4129 			return -EFAULT;
4130 
4131 		if (len != sizeof(opt))
4132 			return -EINVAL;
4133 
4134 		if (!tp->repair)
4135 			return -EPERM;
4136 
4137 		opt.snd_wl1	= tp->snd_wl1;
4138 		opt.snd_wnd	= tp->snd_wnd;
4139 		opt.max_window	= tp->max_window;
4140 		opt.rcv_wnd	= tp->rcv_wnd;
4141 		opt.rcv_wup	= tp->rcv_wup;
4142 
4143 		if (copy_to_sockptr(optval, &opt, len))
4144 			return -EFAULT;
4145 		return 0;
4146 	}
4147 	case TCP_QUEUE_SEQ:
4148 		if (tp->repair_queue == TCP_SEND_QUEUE)
4149 			val = tp->write_seq;
4150 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4151 			val = tp->rcv_nxt;
4152 		else
4153 			return -EINVAL;
4154 		break;
4155 
4156 	case TCP_USER_TIMEOUT:
4157 		val = READ_ONCE(icsk->icsk_user_timeout);
4158 		break;
4159 
4160 	case TCP_FASTOPEN:
4161 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4162 		break;
4163 
4164 	case TCP_FASTOPEN_CONNECT:
4165 		val = tp->fastopen_connect;
4166 		break;
4167 
4168 	case TCP_FASTOPEN_NO_COOKIE:
4169 		val = tp->fastopen_no_cookie;
4170 		break;
4171 
4172 	case TCP_TX_DELAY:
4173 		val = READ_ONCE(tp->tcp_tx_delay);
4174 		break;
4175 
4176 	case TCP_TIMESTAMP:
4177 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4178 		break;
4179 	case TCP_NOTSENT_LOWAT:
4180 		val = READ_ONCE(tp->notsent_lowat);
4181 		break;
4182 	case TCP_INQ:
4183 		val = tp->recvmsg_inq;
4184 		break;
4185 	case TCP_SAVE_SYN:
4186 		val = tp->save_syn;
4187 		break;
4188 	case TCP_SAVED_SYN: {
4189 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4190 			return -EFAULT;
4191 
4192 		sockopt_lock_sock(sk);
4193 		if (tp->saved_syn) {
4194 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4195 				len = tcp_saved_syn_len(tp->saved_syn);
4196 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4197 					sockopt_release_sock(sk);
4198 					return -EFAULT;
4199 				}
4200 				sockopt_release_sock(sk);
4201 				return -EINVAL;
4202 			}
4203 			len = tcp_saved_syn_len(tp->saved_syn);
4204 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4205 				sockopt_release_sock(sk);
4206 				return -EFAULT;
4207 			}
4208 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4209 				sockopt_release_sock(sk);
4210 				return -EFAULT;
4211 			}
4212 			tcp_saved_syn_free(tp);
4213 			sockopt_release_sock(sk);
4214 		} else {
4215 			sockopt_release_sock(sk);
4216 			len = 0;
4217 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4218 				return -EFAULT;
4219 		}
4220 		return 0;
4221 	}
4222 #ifdef CONFIG_MMU
4223 	case TCP_ZEROCOPY_RECEIVE: {
4224 		struct scm_timestamping_internal tss;
4225 		struct tcp_zerocopy_receive zc = {};
4226 		int err;
4227 
4228 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4229 			return -EFAULT;
4230 		if (len < 0 ||
4231 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4232 			return -EINVAL;
4233 		if (unlikely(len > sizeof(zc))) {
4234 			err = check_zeroed_sockptr(optval, sizeof(zc),
4235 						   len - sizeof(zc));
4236 			if (err < 1)
4237 				return err == 0 ? -EINVAL : err;
4238 			len = sizeof(zc);
4239 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4240 				return -EFAULT;
4241 		}
4242 		if (copy_from_sockptr(&zc, optval, len))
4243 			return -EFAULT;
4244 		if (zc.reserved)
4245 			return -EINVAL;
4246 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4247 			return -EINVAL;
4248 		sockopt_lock_sock(sk);
4249 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4250 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4251 							  &zc, &len, err);
4252 		sockopt_release_sock(sk);
4253 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4254 			goto zerocopy_rcv_cmsg;
4255 		switch (len) {
4256 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4257 			goto zerocopy_rcv_cmsg;
4258 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4259 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4260 		case offsetofend(struct tcp_zerocopy_receive, flags):
4261 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4262 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4263 		case offsetofend(struct tcp_zerocopy_receive, err):
4264 			goto zerocopy_rcv_sk_err;
4265 		case offsetofend(struct tcp_zerocopy_receive, inq):
4266 			goto zerocopy_rcv_inq;
4267 		case offsetofend(struct tcp_zerocopy_receive, length):
4268 		default:
4269 			goto zerocopy_rcv_out;
4270 		}
4271 zerocopy_rcv_cmsg:
4272 		if (zc.msg_flags & TCP_CMSG_TS)
4273 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4274 		else
4275 			zc.msg_flags = 0;
4276 zerocopy_rcv_sk_err:
4277 		if (!err)
4278 			zc.err = sock_error(sk);
4279 zerocopy_rcv_inq:
4280 		zc.inq = tcp_inq_hint(sk);
4281 zerocopy_rcv_out:
4282 		if (!err && copy_to_sockptr(optval, &zc, len))
4283 			err = -EFAULT;
4284 		return err;
4285 	}
4286 #endif
4287 	default:
4288 		return -ENOPROTOOPT;
4289 	}
4290 
4291 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4292 		return -EFAULT;
4293 	if (copy_to_sockptr(optval, &val, len))
4294 		return -EFAULT;
4295 	return 0;
4296 }
4297 
4298 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4299 {
4300 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4301 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4302 	 */
4303 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4304 		return true;
4305 
4306 	return false;
4307 }
4308 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4309 
4310 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4311 		   int __user *optlen)
4312 {
4313 	struct inet_connection_sock *icsk = inet_csk(sk);
4314 
4315 	if (level != SOL_TCP)
4316 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4317 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4318 								optval, optlen);
4319 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4320 				 USER_SOCKPTR(optlen));
4321 }
4322 EXPORT_SYMBOL(tcp_getsockopt);
4323 
4324 #ifdef CONFIG_TCP_MD5SIG
4325 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4326 static DEFINE_MUTEX(tcp_md5sig_mutex);
4327 static bool tcp_md5sig_pool_populated = false;
4328 
4329 static void __tcp_alloc_md5sig_pool(void)
4330 {
4331 	struct crypto_ahash *hash;
4332 	int cpu;
4333 
4334 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4335 	if (IS_ERR(hash))
4336 		return;
4337 
4338 	for_each_possible_cpu(cpu) {
4339 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4340 		struct ahash_request *req;
4341 
4342 		if (!scratch) {
4343 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4344 					       sizeof(struct tcphdr),
4345 					       GFP_KERNEL,
4346 					       cpu_to_node(cpu));
4347 			if (!scratch)
4348 				return;
4349 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4350 		}
4351 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4352 			continue;
4353 
4354 		req = ahash_request_alloc(hash, GFP_KERNEL);
4355 		if (!req)
4356 			return;
4357 
4358 		ahash_request_set_callback(req, 0, NULL, NULL);
4359 
4360 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4361 	}
4362 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4363 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4364 	 */
4365 	smp_wmb();
4366 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4367 	 * and tcp_get_md5sig_pool().
4368 	*/
4369 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4370 }
4371 
4372 bool tcp_alloc_md5sig_pool(void)
4373 {
4374 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4375 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4376 		mutex_lock(&tcp_md5sig_mutex);
4377 
4378 		if (!tcp_md5sig_pool_populated)
4379 			__tcp_alloc_md5sig_pool();
4380 
4381 		mutex_unlock(&tcp_md5sig_mutex);
4382 	}
4383 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4384 	return READ_ONCE(tcp_md5sig_pool_populated);
4385 }
4386 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4387 
4388 
4389 /**
4390  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4391  *
4392  *	We use percpu structure, so if we succeed, we exit with preemption
4393  *	and BH disabled, to make sure another thread or softirq handling
4394  *	wont try to get same context.
4395  */
4396 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4397 {
4398 	local_bh_disable();
4399 
4400 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4401 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4402 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4403 		smp_rmb();
4404 		return this_cpu_ptr(&tcp_md5sig_pool);
4405 	}
4406 	local_bh_enable();
4407 	return NULL;
4408 }
4409 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4410 
4411 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4412 			  const struct sk_buff *skb, unsigned int header_len)
4413 {
4414 	struct scatterlist sg;
4415 	const struct tcphdr *tp = tcp_hdr(skb);
4416 	struct ahash_request *req = hp->md5_req;
4417 	unsigned int i;
4418 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4419 					   skb_headlen(skb) - header_len : 0;
4420 	const struct skb_shared_info *shi = skb_shinfo(skb);
4421 	struct sk_buff *frag_iter;
4422 
4423 	sg_init_table(&sg, 1);
4424 
4425 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4426 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4427 	if (crypto_ahash_update(req))
4428 		return 1;
4429 
4430 	for (i = 0; i < shi->nr_frags; ++i) {
4431 		const skb_frag_t *f = &shi->frags[i];
4432 		unsigned int offset = skb_frag_off(f);
4433 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4434 
4435 		sg_set_page(&sg, page, skb_frag_size(f),
4436 			    offset_in_page(offset));
4437 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4438 		if (crypto_ahash_update(req))
4439 			return 1;
4440 	}
4441 
4442 	skb_walk_frags(skb, frag_iter)
4443 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4444 			return 1;
4445 
4446 	return 0;
4447 }
4448 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4449 
4450 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4451 {
4452 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4453 	struct scatterlist sg;
4454 
4455 	sg_init_one(&sg, key->key, keylen);
4456 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4457 
4458 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4459 	return data_race(crypto_ahash_update(hp->md5_req));
4460 }
4461 EXPORT_SYMBOL(tcp_md5_hash_key);
4462 
4463 /* Called with rcu_read_lock() */
4464 enum skb_drop_reason
4465 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4466 		     const void *saddr, const void *daddr,
4467 		     int family, int dif, int sdif)
4468 {
4469 	/*
4470 	 * This gets called for each TCP segment that arrives
4471 	 * so we want to be efficient.
4472 	 * We have 3 drop cases:
4473 	 * o No MD5 hash and one expected.
4474 	 * o MD5 hash and we're not expecting one.
4475 	 * o MD5 hash and its wrong.
4476 	 */
4477 	const __u8 *hash_location = NULL;
4478 	struct tcp_md5sig_key *hash_expected;
4479 	const struct tcphdr *th = tcp_hdr(skb);
4480 	const struct tcp_sock *tp = tcp_sk(sk);
4481 	int genhash, l3index;
4482 	u8 newhash[16];
4483 
4484 	/* sdif set, means packet ingressed via a device
4485 	 * in an L3 domain and dif is set to the l3mdev
4486 	 */
4487 	l3index = sdif ? dif : 0;
4488 
4489 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4490 	hash_location = tcp_parse_md5sig_option(th);
4491 
4492 	/* We've parsed the options - do we have a hash? */
4493 	if (!hash_expected && !hash_location)
4494 		return SKB_NOT_DROPPED_YET;
4495 
4496 	if (hash_expected && !hash_location) {
4497 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4498 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4499 	}
4500 
4501 	if (!hash_expected && hash_location) {
4502 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4503 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4504 	}
4505 
4506 	/* Check the signature.
4507 	 * To support dual stack listeners, we need to handle
4508 	 * IPv4-mapped case.
4509 	 */
4510 	if (family == AF_INET)
4511 		genhash = tcp_v4_md5_hash_skb(newhash,
4512 					      hash_expected,
4513 					      NULL, skb);
4514 	else
4515 		genhash = tp->af_specific->calc_md5_hash(newhash,
4516 							 hash_expected,
4517 							 NULL, skb);
4518 
4519 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4520 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4521 		if (family == AF_INET) {
4522 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4523 					saddr, ntohs(th->source),
4524 					daddr, ntohs(th->dest),
4525 					genhash ? " tcp_v4_calc_md5_hash failed"
4526 					: "", l3index);
4527 		} else {
4528 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4529 					genhash ? "failed" : "mismatch",
4530 					saddr, ntohs(th->source),
4531 					daddr, ntohs(th->dest), l3index);
4532 		}
4533 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4534 	}
4535 	return SKB_NOT_DROPPED_YET;
4536 }
4537 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4538 
4539 #endif
4540 
4541 void tcp_done(struct sock *sk)
4542 {
4543 	struct request_sock *req;
4544 
4545 	/* We might be called with a new socket, after
4546 	 * inet_csk_prepare_forced_close() has been called
4547 	 * so we can not use lockdep_sock_is_held(sk)
4548 	 */
4549 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4550 
4551 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4552 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4553 
4554 	tcp_set_state(sk, TCP_CLOSE);
4555 	tcp_clear_xmit_timers(sk);
4556 	if (req)
4557 		reqsk_fastopen_remove(sk, req, false);
4558 
4559 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4560 
4561 	if (!sock_flag(sk, SOCK_DEAD))
4562 		sk->sk_state_change(sk);
4563 	else
4564 		inet_csk_destroy_sock(sk);
4565 }
4566 EXPORT_SYMBOL_GPL(tcp_done);
4567 
4568 int tcp_abort(struct sock *sk, int err)
4569 {
4570 	int state = inet_sk_state_load(sk);
4571 
4572 	if (state == TCP_NEW_SYN_RECV) {
4573 		struct request_sock *req = inet_reqsk(sk);
4574 
4575 		local_bh_disable();
4576 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4577 		local_bh_enable();
4578 		return 0;
4579 	}
4580 	if (state == TCP_TIME_WAIT) {
4581 		struct inet_timewait_sock *tw = inet_twsk(sk);
4582 
4583 		refcount_inc(&tw->tw_refcnt);
4584 		local_bh_disable();
4585 		inet_twsk_deschedule_put(tw);
4586 		local_bh_enable();
4587 		return 0;
4588 	}
4589 
4590 	/* BPF context ensures sock locking. */
4591 	if (!has_current_bpf_ctx())
4592 		/* Don't race with userspace socket closes such as tcp_close. */
4593 		lock_sock(sk);
4594 
4595 	if (sk->sk_state == TCP_LISTEN) {
4596 		tcp_set_state(sk, TCP_CLOSE);
4597 		inet_csk_listen_stop(sk);
4598 	}
4599 
4600 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4601 	local_bh_disable();
4602 	bh_lock_sock(sk);
4603 
4604 	if (!sock_flag(sk, SOCK_DEAD)) {
4605 		WRITE_ONCE(sk->sk_err, err);
4606 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4607 		smp_wmb();
4608 		sk_error_report(sk);
4609 		if (tcp_need_reset(sk->sk_state))
4610 			tcp_send_active_reset(sk, GFP_ATOMIC);
4611 		tcp_done(sk);
4612 	}
4613 
4614 	bh_unlock_sock(sk);
4615 	local_bh_enable();
4616 	tcp_write_queue_purge(sk);
4617 	if (!has_current_bpf_ctx())
4618 		release_sock(sk);
4619 	return 0;
4620 }
4621 EXPORT_SYMBOL_GPL(tcp_abort);
4622 
4623 extern struct tcp_congestion_ops tcp_reno;
4624 
4625 static __initdata unsigned long thash_entries;
4626 static int __init set_thash_entries(char *str)
4627 {
4628 	ssize_t ret;
4629 
4630 	if (!str)
4631 		return 0;
4632 
4633 	ret = kstrtoul(str, 0, &thash_entries);
4634 	if (ret)
4635 		return 0;
4636 
4637 	return 1;
4638 }
4639 __setup("thash_entries=", set_thash_entries);
4640 
4641 static void __init tcp_init_mem(void)
4642 {
4643 	unsigned long limit = nr_free_buffer_pages() / 16;
4644 
4645 	limit = max(limit, 128UL);
4646 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4647 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4648 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4649 }
4650 
4651 void __init tcp_init(void)
4652 {
4653 	int max_rshare, max_wshare, cnt;
4654 	unsigned long limit;
4655 	unsigned int i;
4656 
4657 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4658 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4659 		     sizeof_field(struct sk_buff, cb));
4660 
4661 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4662 
4663 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4664 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4665 
4666 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4667 			    thash_entries, 21,  /* one slot per 2 MB*/
4668 			    0, 64 * 1024);
4669 	tcp_hashinfo.bind_bucket_cachep =
4670 		kmem_cache_create("tcp_bind_bucket",
4671 				  sizeof(struct inet_bind_bucket), 0,
4672 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4673 				  SLAB_ACCOUNT,
4674 				  NULL);
4675 	tcp_hashinfo.bind2_bucket_cachep =
4676 		kmem_cache_create("tcp_bind2_bucket",
4677 				  sizeof(struct inet_bind2_bucket), 0,
4678 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4679 				  SLAB_ACCOUNT,
4680 				  NULL);
4681 
4682 	/* Size and allocate the main established and bind bucket
4683 	 * hash tables.
4684 	 *
4685 	 * The methodology is similar to that of the buffer cache.
4686 	 */
4687 	tcp_hashinfo.ehash =
4688 		alloc_large_system_hash("TCP established",
4689 					sizeof(struct inet_ehash_bucket),
4690 					thash_entries,
4691 					17, /* one slot per 128 KB of memory */
4692 					0,
4693 					NULL,
4694 					&tcp_hashinfo.ehash_mask,
4695 					0,
4696 					thash_entries ? 0 : 512 * 1024);
4697 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4698 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4699 
4700 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4701 		panic("TCP: failed to alloc ehash_locks");
4702 	tcp_hashinfo.bhash =
4703 		alloc_large_system_hash("TCP bind",
4704 					2 * sizeof(struct inet_bind_hashbucket),
4705 					tcp_hashinfo.ehash_mask + 1,
4706 					17, /* one slot per 128 KB of memory */
4707 					0,
4708 					&tcp_hashinfo.bhash_size,
4709 					NULL,
4710 					0,
4711 					64 * 1024);
4712 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4713 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4714 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4715 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4716 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4717 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4718 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4719 	}
4720 
4721 	tcp_hashinfo.pernet = false;
4722 
4723 	cnt = tcp_hashinfo.ehash_mask + 1;
4724 	sysctl_tcp_max_orphans = cnt / 2;
4725 
4726 	tcp_init_mem();
4727 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4728 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4729 	max_wshare = min(4UL*1024*1024, limit);
4730 	max_rshare = min(6UL*1024*1024, limit);
4731 
4732 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4733 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4734 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4735 
4736 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4737 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4738 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4739 
4740 	pr_info("Hash tables configured (established %u bind %u)\n",
4741 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4742 
4743 	tcp_v4_init();
4744 	tcp_metrics_init();
4745 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4746 	tcp_tasklet_init();
4747 	mptcp_init();
4748 }
4749