1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <asm/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 int tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 if (!tcp_memory_pressure) { 330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 331 tcp_memory_pressure = 1; 332 } 333 } 334 EXPORT_SYMBOL(tcp_enter_memory_pressure); 335 336 /* Convert seconds to retransmits based on initial and max timeout */ 337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 338 { 339 u8 res = 0; 340 341 if (seconds > 0) { 342 int period = timeout; 343 344 res = 1; 345 while (seconds > period && res < 255) { 346 res++; 347 timeout <<= 1; 348 if (timeout > rto_max) 349 timeout = rto_max; 350 period += timeout; 351 } 352 } 353 return res; 354 } 355 356 /* Convert retransmits to seconds based on initial and max timeout */ 357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 358 { 359 int period = 0; 360 361 if (retrans > 0) { 362 period = timeout; 363 while (--retrans) { 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return period; 371 } 372 373 /* Address-family independent initialization for a tcp_sock. 374 * 375 * NOTE: A lot of things set to zero explicitly by call to 376 * sk_alloc() so need not be done here. 377 */ 378 void tcp_init_sock(struct sock *sk) 379 { 380 struct inet_connection_sock *icsk = inet_csk(sk); 381 struct tcp_sock *tp = tcp_sk(sk); 382 383 __skb_queue_head_init(&tp->out_of_order_queue); 384 tcp_init_xmit_timers(sk); 385 tcp_prequeue_init(tp); 386 INIT_LIST_HEAD(&tp->tsq_node); 387 388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 390 391 /* So many TCP implementations out there (incorrectly) count the 392 * initial SYN frame in their delayed-ACK and congestion control 393 * algorithms that we must have the following bandaid to talk 394 * efficiently to them. -DaveM 395 */ 396 tp->snd_cwnd = TCP_INIT_CWND; 397 398 /* See draft-stevens-tcpca-spec-01 for discussion of the 399 * initialization of these values. 400 */ 401 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 402 tp->snd_cwnd_clamp = ~0; 403 tp->mss_cache = TCP_MSS_DEFAULT; 404 405 tp->reordering = sysctl_tcp_reordering; 406 tcp_enable_early_retrans(tp); 407 tcp_assign_congestion_control(sk); 408 409 tp->tsoffset = 0; 410 411 sk->sk_state = TCP_CLOSE; 412 413 sk->sk_write_space = sk_stream_write_space; 414 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 415 416 icsk->icsk_sync_mss = tcp_sync_mss; 417 418 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 419 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 420 421 local_bh_disable(); 422 sock_update_memcg(sk); 423 sk_sockets_allocated_inc(sk); 424 local_bh_enable(); 425 } 426 EXPORT_SYMBOL(tcp_init_sock); 427 428 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 429 { 430 if (sk->sk_tsflags) { 431 struct skb_shared_info *shinfo = skb_shinfo(skb); 432 433 sock_tx_timestamp(sk, &shinfo->tx_flags); 434 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 435 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 436 } 437 } 438 439 /* 440 * Wait for a TCP event. 441 * 442 * Note that we don't need to lock the socket, as the upper poll layers 443 * take care of normal races (between the test and the event) and we don't 444 * go look at any of the socket buffers directly. 445 */ 446 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 447 { 448 unsigned int mask; 449 struct sock *sk = sock->sk; 450 const struct tcp_sock *tp = tcp_sk(sk); 451 452 sock_rps_record_flow(sk); 453 454 sock_poll_wait(file, sk_sleep(sk), wait); 455 if (sk->sk_state == TCP_LISTEN) 456 return inet_csk_listen_poll(sk); 457 458 /* Socket is not locked. We are protected from async events 459 * by poll logic and correct handling of state changes 460 * made by other threads is impossible in any case. 461 */ 462 463 mask = 0; 464 465 /* 466 * POLLHUP is certainly not done right. But poll() doesn't 467 * have a notion of HUP in just one direction, and for a 468 * socket the read side is more interesting. 469 * 470 * Some poll() documentation says that POLLHUP is incompatible 471 * with the POLLOUT/POLLWR flags, so somebody should check this 472 * all. But careful, it tends to be safer to return too many 473 * bits than too few, and you can easily break real applications 474 * if you don't tell them that something has hung up! 475 * 476 * Check-me. 477 * 478 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 479 * our fs/select.c). It means that after we received EOF, 480 * poll always returns immediately, making impossible poll() on write() 481 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 482 * if and only if shutdown has been made in both directions. 483 * Actually, it is interesting to look how Solaris and DUX 484 * solve this dilemma. I would prefer, if POLLHUP were maskable, 485 * then we could set it on SND_SHUTDOWN. BTW examples given 486 * in Stevens' books assume exactly this behaviour, it explains 487 * why POLLHUP is incompatible with POLLOUT. --ANK 488 * 489 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 490 * blocking on fresh not-connected or disconnected socket. --ANK 491 */ 492 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 493 mask |= POLLHUP; 494 if (sk->sk_shutdown & RCV_SHUTDOWN) 495 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 496 497 /* Connected or passive Fast Open socket? */ 498 if (sk->sk_state != TCP_SYN_SENT && 499 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 500 int target = sock_rcvlowat(sk, 0, INT_MAX); 501 502 if (tp->urg_seq == tp->copied_seq && 503 !sock_flag(sk, SOCK_URGINLINE) && 504 tp->urg_data) 505 target++; 506 507 /* Potential race condition. If read of tp below will 508 * escape above sk->sk_state, we can be illegally awaken 509 * in SYN_* states. */ 510 if (tp->rcv_nxt - tp->copied_seq >= target) 511 mask |= POLLIN | POLLRDNORM; 512 513 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 514 if (sk_stream_is_writeable(sk)) { 515 mask |= POLLOUT | POLLWRNORM; 516 } else { /* send SIGIO later */ 517 set_bit(SOCK_ASYNC_NOSPACE, 518 &sk->sk_socket->flags); 519 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 520 521 /* Race breaker. If space is freed after 522 * wspace test but before the flags are set, 523 * IO signal will be lost. 524 */ 525 if (sk_stream_is_writeable(sk)) 526 mask |= POLLOUT | POLLWRNORM; 527 } 528 } else 529 mask |= POLLOUT | POLLWRNORM; 530 531 if (tp->urg_data & TCP_URG_VALID) 532 mask |= POLLPRI; 533 } 534 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 535 smp_rmb(); 536 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 537 mask |= POLLERR; 538 539 return mask; 540 } 541 EXPORT_SYMBOL(tcp_poll); 542 543 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 544 { 545 struct tcp_sock *tp = tcp_sk(sk); 546 int answ; 547 bool slow; 548 549 switch (cmd) { 550 case SIOCINQ: 551 if (sk->sk_state == TCP_LISTEN) 552 return -EINVAL; 553 554 slow = lock_sock_fast(sk); 555 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 556 answ = 0; 557 else if (sock_flag(sk, SOCK_URGINLINE) || 558 !tp->urg_data || 559 before(tp->urg_seq, tp->copied_seq) || 560 !before(tp->urg_seq, tp->rcv_nxt)) { 561 562 answ = tp->rcv_nxt - tp->copied_seq; 563 564 /* Subtract 1, if FIN was received */ 565 if (answ && sock_flag(sk, SOCK_DONE)) 566 answ--; 567 } else 568 answ = tp->urg_seq - tp->copied_seq; 569 unlock_sock_fast(sk, slow); 570 break; 571 case SIOCATMARK: 572 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 573 break; 574 case SIOCOUTQ: 575 if (sk->sk_state == TCP_LISTEN) 576 return -EINVAL; 577 578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 579 answ = 0; 580 else 581 answ = tp->write_seq - tp->snd_una; 582 break; 583 case SIOCOUTQNSD: 584 if (sk->sk_state == TCP_LISTEN) 585 return -EINVAL; 586 587 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 588 answ = 0; 589 else 590 answ = tp->write_seq - tp->snd_nxt; 591 break; 592 default: 593 return -ENOIOCTLCMD; 594 } 595 596 return put_user(answ, (int __user *)arg); 597 } 598 EXPORT_SYMBOL(tcp_ioctl); 599 600 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 601 { 602 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 603 tp->pushed_seq = tp->write_seq; 604 } 605 606 static inline bool forced_push(const struct tcp_sock *tp) 607 { 608 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 609 } 610 611 static void skb_entail(struct sock *sk, struct sk_buff *skb) 612 { 613 struct tcp_sock *tp = tcp_sk(sk); 614 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 615 616 skb->csum = 0; 617 tcb->seq = tcb->end_seq = tp->write_seq; 618 tcb->tcp_flags = TCPHDR_ACK; 619 tcb->sacked = 0; 620 __skb_header_release(skb); 621 tcp_add_write_queue_tail(sk, skb); 622 sk->sk_wmem_queued += skb->truesize; 623 sk_mem_charge(sk, skb->truesize); 624 if (tp->nonagle & TCP_NAGLE_PUSH) 625 tp->nonagle &= ~TCP_NAGLE_PUSH; 626 } 627 628 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 629 { 630 if (flags & MSG_OOB) 631 tp->snd_up = tp->write_seq; 632 } 633 634 /* If a not yet filled skb is pushed, do not send it if 635 * we have data packets in Qdisc or NIC queues : 636 * Because TX completion will happen shortly, it gives a chance 637 * to coalesce future sendmsg() payload into this skb, without 638 * need for a timer, and with no latency trade off. 639 * As packets containing data payload have a bigger truesize 640 * than pure acks (dataless) packets, the last checks prevent 641 * autocorking if we only have an ACK in Qdisc/NIC queues, 642 * or if TX completion was delayed after we processed ACK packet. 643 */ 644 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 645 int size_goal) 646 { 647 return skb->len < size_goal && 648 sysctl_tcp_autocorking && 649 skb != tcp_write_queue_head(sk) && 650 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 651 } 652 653 static void tcp_push(struct sock *sk, int flags, int mss_now, 654 int nonagle, int size_goal) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct sk_buff *skb; 658 659 if (!tcp_send_head(sk)) 660 return; 661 662 skb = tcp_write_queue_tail(sk); 663 if (!(flags & MSG_MORE) || forced_push(tp)) 664 tcp_mark_push(tp, skb); 665 666 tcp_mark_urg(tp, flags); 667 668 if (tcp_should_autocork(sk, skb, size_goal)) { 669 670 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 671 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 672 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 673 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 674 } 675 /* It is possible TX completion already happened 676 * before we set TSQ_THROTTLED. 677 */ 678 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 679 return; 680 } 681 682 if (flags & MSG_MORE) 683 nonagle = TCP_NAGLE_CORK; 684 685 __tcp_push_pending_frames(sk, mss_now, nonagle); 686 } 687 688 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 689 unsigned int offset, size_t len) 690 { 691 struct tcp_splice_state *tss = rd_desc->arg.data; 692 int ret; 693 694 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 695 tss->flags); 696 if (ret > 0) 697 rd_desc->count -= ret; 698 return ret; 699 } 700 701 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 702 { 703 /* Store TCP splice context information in read_descriptor_t. */ 704 read_descriptor_t rd_desc = { 705 .arg.data = tss, 706 .count = tss->len, 707 }; 708 709 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 710 } 711 712 /** 713 * tcp_splice_read - splice data from TCP socket to a pipe 714 * @sock: socket to splice from 715 * @ppos: position (not valid) 716 * @pipe: pipe to splice to 717 * @len: number of bytes to splice 718 * @flags: splice modifier flags 719 * 720 * Description: 721 * Will read pages from given socket and fill them into a pipe. 722 * 723 **/ 724 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 725 struct pipe_inode_info *pipe, size_t len, 726 unsigned int flags) 727 { 728 struct sock *sk = sock->sk; 729 struct tcp_splice_state tss = { 730 .pipe = pipe, 731 .len = len, 732 .flags = flags, 733 }; 734 long timeo; 735 ssize_t spliced; 736 int ret; 737 738 sock_rps_record_flow(sk); 739 /* 740 * We can't seek on a socket input 741 */ 742 if (unlikely(*ppos)) 743 return -ESPIPE; 744 745 ret = spliced = 0; 746 747 lock_sock(sk); 748 749 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 750 while (tss.len) { 751 ret = __tcp_splice_read(sk, &tss); 752 if (ret < 0) 753 break; 754 else if (!ret) { 755 if (spliced) 756 break; 757 if (sock_flag(sk, SOCK_DONE)) 758 break; 759 if (sk->sk_err) { 760 ret = sock_error(sk); 761 break; 762 } 763 if (sk->sk_shutdown & RCV_SHUTDOWN) 764 break; 765 if (sk->sk_state == TCP_CLOSE) { 766 /* 767 * This occurs when user tries to read 768 * from never connected socket. 769 */ 770 if (!sock_flag(sk, SOCK_DONE)) 771 ret = -ENOTCONN; 772 break; 773 } 774 if (!timeo) { 775 ret = -EAGAIN; 776 break; 777 } 778 sk_wait_data(sk, &timeo); 779 if (signal_pending(current)) { 780 ret = sock_intr_errno(timeo); 781 break; 782 } 783 continue; 784 } 785 tss.len -= ret; 786 spliced += ret; 787 788 if (!timeo) 789 break; 790 release_sock(sk); 791 lock_sock(sk); 792 793 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 794 (sk->sk_shutdown & RCV_SHUTDOWN) || 795 signal_pending(current)) 796 break; 797 } 798 799 release_sock(sk); 800 801 if (spliced) 802 return spliced; 803 804 return ret; 805 } 806 EXPORT_SYMBOL(tcp_splice_read); 807 808 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 809 { 810 struct sk_buff *skb; 811 812 /* The TCP header must be at least 32-bit aligned. */ 813 size = ALIGN(size, 4); 814 815 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 816 if (skb) { 817 if (sk_wmem_schedule(sk, skb->truesize)) { 818 skb_reserve(skb, sk->sk_prot->max_header); 819 /* 820 * Make sure that we have exactly size bytes 821 * available to the caller, no more, no less. 822 */ 823 skb->reserved_tailroom = skb->end - skb->tail - size; 824 return skb; 825 } 826 __kfree_skb(skb); 827 } else { 828 sk->sk_prot->enter_memory_pressure(sk); 829 sk_stream_moderate_sndbuf(sk); 830 } 831 return NULL; 832 } 833 834 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 835 int large_allowed) 836 { 837 struct tcp_sock *tp = tcp_sk(sk); 838 u32 xmit_size_goal, old_size_goal; 839 840 xmit_size_goal = mss_now; 841 842 if (large_allowed && sk_can_gso(sk)) { 843 u32 gso_size, hlen; 844 845 /* Maybe we should/could use sk->sk_prot->max_header here ? */ 846 hlen = inet_csk(sk)->icsk_af_ops->net_header_len + 847 inet_csk(sk)->icsk_ext_hdr_len + 848 tp->tcp_header_len; 849 850 /* Goal is to send at least one packet per ms, 851 * not one big TSO packet every 100 ms. 852 * This preserves ACK clocking and is consistent 853 * with tcp_tso_should_defer() heuristic. 854 */ 855 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC); 856 gso_size = max_t(u32, gso_size, 857 sysctl_tcp_min_tso_segs * mss_now); 858 859 xmit_size_goal = min_t(u32, gso_size, 860 sk->sk_gso_max_size - 1 - hlen); 861 862 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 863 864 /* We try hard to avoid divides here */ 865 old_size_goal = tp->xmit_size_goal_segs * mss_now; 866 867 if (likely(old_size_goal <= xmit_size_goal && 868 old_size_goal + mss_now > xmit_size_goal)) { 869 xmit_size_goal = old_size_goal; 870 } else { 871 tp->xmit_size_goal_segs = 872 min_t(u16, xmit_size_goal / mss_now, 873 sk->sk_gso_max_segs); 874 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 875 } 876 } 877 878 return max(xmit_size_goal, mss_now); 879 } 880 881 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 882 { 883 int mss_now; 884 885 mss_now = tcp_current_mss(sk); 886 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 887 888 return mss_now; 889 } 890 891 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 892 size_t size, int flags) 893 { 894 struct tcp_sock *tp = tcp_sk(sk); 895 int mss_now, size_goal; 896 int err; 897 ssize_t copied; 898 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 899 900 /* Wait for a connection to finish. One exception is TCP Fast Open 901 * (passive side) where data is allowed to be sent before a connection 902 * is fully established. 903 */ 904 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 905 !tcp_passive_fastopen(sk)) { 906 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 907 goto out_err; 908 } 909 910 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 911 912 mss_now = tcp_send_mss(sk, &size_goal, flags); 913 copied = 0; 914 915 err = -EPIPE; 916 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 917 goto out_err; 918 919 while (size > 0) { 920 struct sk_buff *skb = tcp_write_queue_tail(sk); 921 int copy, i; 922 bool can_coalesce; 923 924 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 925 new_segment: 926 if (!sk_stream_memory_free(sk)) 927 goto wait_for_sndbuf; 928 929 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 930 if (!skb) 931 goto wait_for_memory; 932 933 skb_entail(sk, skb); 934 copy = size_goal; 935 } 936 937 if (copy > size) 938 copy = size; 939 940 i = skb_shinfo(skb)->nr_frags; 941 can_coalesce = skb_can_coalesce(skb, i, page, offset); 942 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 943 tcp_mark_push(tp, skb); 944 goto new_segment; 945 } 946 if (!sk_wmem_schedule(sk, copy)) 947 goto wait_for_memory; 948 949 if (can_coalesce) { 950 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 951 } else { 952 get_page(page); 953 skb_fill_page_desc(skb, i, page, offset, copy); 954 } 955 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 956 957 skb->len += copy; 958 skb->data_len += copy; 959 skb->truesize += copy; 960 sk->sk_wmem_queued += copy; 961 sk_mem_charge(sk, copy); 962 skb->ip_summed = CHECKSUM_PARTIAL; 963 tp->write_seq += copy; 964 TCP_SKB_CB(skb)->end_seq += copy; 965 tcp_skb_pcount_set(skb, 0); 966 967 if (!copied) 968 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 969 970 copied += copy; 971 offset += copy; 972 if (!(size -= copy)) { 973 tcp_tx_timestamp(sk, skb); 974 goto out; 975 } 976 977 if (skb->len < size_goal || (flags & MSG_OOB)) 978 continue; 979 980 if (forced_push(tp)) { 981 tcp_mark_push(tp, skb); 982 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 983 } else if (skb == tcp_send_head(sk)) 984 tcp_push_one(sk, mss_now); 985 continue; 986 987 wait_for_sndbuf: 988 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 989 wait_for_memory: 990 tcp_push(sk, flags & ~MSG_MORE, mss_now, 991 TCP_NAGLE_PUSH, size_goal); 992 993 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 994 goto do_error; 995 996 mss_now = tcp_send_mss(sk, &size_goal, flags); 997 } 998 999 out: 1000 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 1001 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1002 return copied; 1003 1004 do_error: 1005 if (copied) 1006 goto out; 1007 out_err: 1008 return sk_stream_error(sk, flags, err); 1009 } 1010 1011 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1012 size_t size, int flags) 1013 { 1014 ssize_t res; 1015 1016 if (!(sk->sk_route_caps & NETIF_F_SG) || 1017 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 1018 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1019 flags); 1020 1021 lock_sock(sk); 1022 res = do_tcp_sendpages(sk, page, offset, size, flags); 1023 release_sock(sk); 1024 return res; 1025 } 1026 EXPORT_SYMBOL(tcp_sendpage); 1027 1028 static inline int select_size(const struct sock *sk, bool sg) 1029 { 1030 const struct tcp_sock *tp = tcp_sk(sk); 1031 int tmp = tp->mss_cache; 1032 1033 if (sg) { 1034 if (sk_can_gso(sk)) { 1035 /* Small frames wont use a full page: 1036 * Payload will immediately follow tcp header. 1037 */ 1038 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1039 } else { 1040 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1041 1042 if (tmp >= pgbreak && 1043 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1044 tmp = pgbreak; 1045 } 1046 } 1047 1048 return tmp; 1049 } 1050 1051 void tcp_free_fastopen_req(struct tcp_sock *tp) 1052 { 1053 if (tp->fastopen_req != NULL) { 1054 kfree(tp->fastopen_req); 1055 tp->fastopen_req = NULL; 1056 } 1057 } 1058 1059 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1060 int *copied, size_t size) 1061 { 1062 struct tcp_sock *tp = tcp_sk(sk); 1063 int err, flags; 1064 1065 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1066 return -EOPNOTSUPP; 1067 if (tp->fastopen_req != NULL) 1068 return -EALREADY; /* Another Fast Open is in progress */ 1069 1070 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1071 sk->sk_allocation); 1072 if (unlikely(tp->fastopen_req == NULL)) 1073 return -ENOBUFS; 1074 tp->fastopen_req->data = msg; 1075 tp->fastopen_req->size = size; 1076 1077 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1078 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1079 msg->msg_namelen, flags); 1080 *copied = tp->fastopen_req->copied; 1081 tcp_free_fastopen_req(tp); 1082 return err; 1083 } 1084 1085 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1086 size_t size) 1087 { 1088 struct iovec *iov; 1089 struct tcp_sock *tp = tcp_sk(sk); 1090 struct sk_buff *skb; 1091 int iovlen, flags, err, copied = 0; 1092 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1093 bool sg; 1094 long timeo; 1095 1096 lock_sock(sk); 1097 1098 flags = msg->msg_flags; 1099 if (flags & MSG_FASTOPEN) { 1100 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1101 if (err == -EINPROGRESS && copied_syn > 0) 1102 goto out; 1103 else if (err) 1104 goto out_err; 1105 offset = copied_syn; 1106 } 1107 1108 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1109 1110 /* Wait for a connection to finish. One exception is TCP Fast Open 1111 * (passive side) where data is allowed to be sent before a connection 1112 * is fully established. 1113 */ 1114 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1115 !tcp_passive_fastopen(sk)) { 1116 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1117 goto do_error; 1118 } 1119 1120 if (unlikely(tp->repair)) { 1121 if (tp->repair_queue == TCP_RECV_QUEUE) { 1122 copied = tcp_send_rcvq(sk, msg, size); 1123 goto out_nopush; 1124 } 1125 1126 err = -EINVAL; 1127 if (tp->repair_queue == TCP_NO_QUEUE) 1128 goto out_err; 1129 1130 /* 'common' sending to sendq */ 1131 } 1132 1133 /* This should be in poll */ 1134 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1135 1136 mss_now = tcp_send_mss(sk, &size_goal, flags); 1137 1138 /* Ok commence sending. */ 1139 iovlen = msg->msg_iovlen; 1140 iov = msg->msg_iov; 1141 copied = 0; 1142 1143 err = -EPIPE; 1144 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1145 goto out_err; 1146 1147 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1148 1149 while (--iovlen >= 0) { 1150 size_t seglen = iov->iov_len; 1151 unsigned char __user *from = iov->iov_base; 1152 1153 iov++; 1154 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1155 if (offset >= seglen) { 1156 offset -= seglen; 1157 continue; 1158 } 1159 seglen -= offset; 1160 from += offset; 1161 offset = 0; 1162 } 1163 1164 while (seglen > 0) { 1165 int copy = 0; 1166 int max = size_goal; 1167 1168 skb = tcp_write_queue_tail(sk); 1169 if (tcp_send_head(sk)) { 1170 if (skb->ip_summed == CHECKSUM_NONE) 1171 max = mss_now; 1172 copy = max - skb->len; 1173 } 1174 1175 if (copy <= 0) { 1176 new_segment: 1177 /* Allocate new segment. If the interface is SG, 1178 * allocate skb fitting to single page. 1179 */ 1180 if (!sk_stream_memory_free(sk)) 1181 goto wait_for_sndbuf; 1182 1183 skb = sk_stream_alloc_skb(sk, 1184 select_size(sk, sg), 1185 sk->sk_allocation); 1186 if (!skb) 1187 goto wait_for_memory; 1188 1189 /* 1190 * Check whether we can use HW checksum. 1191 */ 1192 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1193 skb->ip_summed = CHECKSUM_PARTIAL; 1194 1195 skb_entail(sk, skb); 1196 copy = size_goal; 1197 max = size_goal; 1198 1199 /* All packets are restored as if they have 1200 * already been sent. skb_mstamp isn't set to 1201 * avoid wrong rtt estimation. 1202 */ 1203 if (tp->repair) 1204 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1205 } 1206 1207 /* Try to append data to the end of skb. */ 1208 if (copy > seglen) 1209 copy = seglen; 1210 1211 /* Where to copy to? */ 1212 if (skb_availroom(skb) > 0) { 1213 /* We have some space in skb head. Superb! */ 1214 copy = min_t(int, copy, skb_availroom(skb)); 1215 err = skb_add_data_nocache(sk, skb, from, copy); 1216 if (err) 1217 goto do_fault; 1218 } else { 1219 bool merge = true; 1220 int i = skb_shinfo(skb)->nr_frags; 1221 struct page_frag *pfrag = sk_page_frag(sk); 1222 1223 if (!sk_page_frag_refill(sk, pfrag)) 1224 goto wait_for_memory; 1225 1226 if (!skb_can_coalesce(skb, i, pfrag->page, 1227 pfrag->offset)) { 1228 if (i == MAX_SKB_FRAGS || !sg) { 1229 tcp_mark_push(tp, skb); 1230 goto new_segment; 1231 } 1232 merge = false; 1233 } 1234 1235 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1236 1237 if (!sk_wmem_schedule(sk, copy)) 1238 goto wait_for_memory; 1239 1240 err = skb_copy_to_page_nocache(sk, from, skb, 1241 pfrag->page, 1242 pfrag->offset, 1243 copy); 1244 if (err) 1245 goto do_error; 1246 1247 /* Update the skb. */ 1248 if (merge) { 1249 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1250 } else { 1251 skb_fill_page_desc(skb, i, pfrag->page, 1252 pfrag->offset, copy); 1253 get_page(pfrag->page); 1254 } 1255 pfrag->offset += copy; 1256 } 1257 1258 if (!copied) 1259 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1260 1261 tp->write_seq += copy; 1262 TCP_SKB_CB(skb)->end_seq += copy; 1263 tcp_skb_pcount_set(skb, 0); 1264 1265 from += copy; 1266 copied += copy; 1267 if ((seglen -= copy) == 0 && iovlen == 0) { 1268 tcp_tx_timestamp(sk, skb); 1269 goto out; 1270 } 1271 1272 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1273 continue; 1274 1275 if (forced_push(tp)) { 1276 tcp_mark_push(tp, skb); 1277 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1278 } else if (skb == tcp_send_head(sk)) 1279 tcp_push_one(sk, mss_now); 1280 continue; 1281 1282 wait_for_sndbuf: 1283 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1284 wait_for_memory: 1285 if (copied) 1286 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1287 TCP_NAGLE_PUSH, size_goal); 1288 1289 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1290 goto do_error; 1291 1292 mss_now = tcp_send_mss(sk, &size_goal, flags); 1293 } 1294 } 1295 1296 out: 1297 if (copied) 1298 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1299 out_nopush: 1300 release_sock(sk); 1301 return copied + copied_syn; 1302 1303 do_fault: 1304 if (!skb->len) { 1305 tcp_unlink_write_queue(skb, sk); 1306 /* It is the one place in all of TCP, except connection 1307 * reset, where we can be unlinking the send_head. 1308 */ 1309 tcp_check_send_head(sk, skb); 1310 sk_wmem_free_skb(sk, skb); 1311 } 1312 1313 do_error: 1314 if (copied + copied_syn) 1315 goto out; 1316 out_err: 1317 err = sk_stream_error(sk, flags, err); 1318 release_sock(sk); 1319 return err; 1320 } 1321 EXPORT_SYMBOL(tcp_sendmsg); 1322 1323 /* 1324 * Handle reading urgent data. BSD has very simple semantics for 1325 * this, no blocking and very strange errors 8) 1326 */ 1327 1328 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1329 { 1330 struct tcp_sock *tp = tcp_sk(sk); 1331 1332 /* No URG data to read. */ 1333 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1334 tp->urg_data == TCP_URG_READ) 1335 return -EINVAL; /* Yes this is right ! */ 1336 1337 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1338 return -ENOTCONN; 1339 1340 if (tp->urg_data & TCP_URG_VALID) { 1341 int err = 0; 1342 char c = tp->urg_data; 1343 1344 if (!(flags & MSG_PEEK)) 1345 tp->urg_data = TCP_URG_READ; 1346 1347 /* Read urgent data. */ 1348 msg->msg_flags |= MSG_OOB; 1349 1350 if (len > 0) { 1351 if (!(flags & MSG_TRUNC)) 1352 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1353 len = 1; 1354 } else 1355 msg->msg_flags |= MSG_TRUNC; 1356 1357 return err ? -EFAULT : len; 1358 } 1359 1360 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1361 return 0; 1362 1363 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1364 * the available implementations agree in this case: 1365 * this call should never block, independent of the 1366 * blocking state of the socket. 1367 * Mike <pall@rz.uni-karlsruhe.de> 1368 */ 1369 return -EAGAIN; 1370 } 1371 1372 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1373 { 1374 struct sk_buff *skb; 1375 int copied = 0, err = 0; 1376 1377 /* XXX -- need to support SO_PEEK_OFF */ 1378 1379 skb_queue_walk(&sk->sk_write_queue, skb) { 1380 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1381 if (err) 1382 break; 1383 1384 copied += skb->len; 1385 } 1386 1387 return err ?: copied; 1388 } 1389 1390 /* Clean up the receive buffer for full frames taken by the user, 1391 * then send an ACK if necessary. COPIED is the number of bytes 1392 * tcp_recvmsg has given to the user so far, it speeds up the 1393 * calculation of whether or not we must ACK for the sake of 1394 * a window update. 1395 */ 1396 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1397 { 1398 struct tcp_sock *tp = tcp_sk(sk); 1399 bool time_to_ack = false; 1400 1401 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1402 1403 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1404 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1405 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1406 1407 if (inet_csk_ack_scheduled(sk)) { 1408 const struct inet_connection_sock *icsk = inet_csk(sk); 1409 /* Delayed ACKs frequently hit locked sockets during bulk 1410 * receive. */ 1411 if (icsk->icsk_ack.blocked || 1412 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1413 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1414 /* 1415 * If this read emptied read buffer, we send ACK, if 1416 * connection is not bidirectional, user drained 1417 * receive buffer and there was a small segment 1418 * in queue. 1419 */ 1420 (copied > 0 && 1421 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1422 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1423 !icsk->icsk_ack.pingpong)) && 1424 !atomic_read(&sk->sk_rmem_alloc))) 1425 time_to_ack = true; 1426 } 1427 1428 /* We send an ACK if we can now advertise a non-zero window 1429 * which has been raised "significantly". 1430 * 1431 * Even if window raised up to infinity, do not send window open ACK 1432 * in states, where we will not receive more. It is useless. 1433 */ 1434 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1435 __u32 rcv_window_now = tcp_receive_window(tp); 1436 1437 /* Optimize, __tcp_select_window() is not cheap. */ 1438 if (2*rcv_window_now <= tp->window_clamp) { 1439 __u32 new_window = __tcp_select_window(sk); 1440 1441 /* Send ACK now, if this read freed lots of space 1442 * in our buffer. Certainly, new_window is new window. 1443 * We can advertise it now, if it is not less than current one. 1444 * "Lots" means "at least twice" here. 1445 */ 1446 if (new_window && new_window >= 2 * rcv_window_now) 1447 time_to_ack = true; 1448 } 1449 } 1450 if (time_to_ack) 1451 tcp_send_ack(sk); 1452 } 1453 1454 static void tcp_prequeue_process(struct sock *sk) 1455 { 1456 struct sk_buff *skb; 1457 struct tcp_sock *tp = tcp_sk(sk); 1458 1459 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1460 1461 /* RX process wants to run with disabled BHs, though it is not 1462 * necessary */ 1463 local_bh_disable(); 1464 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1465 sk_backlog_rcv(sk, skb); 1466 local_bh_enable(); 1467 1468 /* Clear memory counter. */ 1469 tp->ucopy.memory = 0; 1470 } 1471 1472 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1473 { 1474 struct sk_buff *skb; 1475 u32 offset; 1476 1477 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1478 offset = seq - TCP_SKB_CB(skb)->seq; 1479 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1480 offset--; 1481 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1482 *off = offset; 1483 return skb; 1484 } 1485 /* This looks weird, but this can happen if TCP collapsing 1486 * splitted a fat GRO packet, while we released socket lock 1487 * in skb_splice_bits() 1488 */ 1489 sk_eat_skb(sk, skb); 1490 } 1491 return NULL; 1492 } 1493 1494 /* 1495 * This routine provides an alternative to tcp_recvmsg() for routines 1496 * that would like to handle copying from skbuffs directly in 'sendfile' 1497 * fashion. 1498 * Note: 1499 * - It is assumed that the socket was locked by the caller. 1500 * - The routine does not block. 1501 * - At present, there is no support for reading OOB data 1502 * or for 'peeking' the socket using this routine 1503 * (although both would be easy to implement). 1504 */ 1505 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1506 sk_read_actor_t recv_actor) 1507 { 1508 struct sk_buff *skb; 1509 struct tcp_sock *tp = tcp_sk(sk); 1510 u32 seq = tp->copied_seq; 1511 u32 offset; 1512 int copied = 0; 1513 1514 if (sk->sk_state == TCP_LISTEN) 1515 return -ENOTCONN; 1516 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1517 if (offset < skb->len) { 1518 int used; 1519 size_t len; 1520 1521 len = skb->len - offset; 1522 /* Stop reading if we hit a patch of urgent data */ 1523 if (tp->urg_data) { 1524 u32 urg_offset = tp->urg_seq - seq; 1525 if (urg_offset < len) 1526 len = urg_offset; 1527 if (!len) 1528 break; 1529 } 1530 used = recv_actor(desc, skb, offset, len); 1531 if (used <= 0) { 1532 if (!copied) 1533 copied = used; 1534 break; 1535 } else if (used <= len) { 1536 seq += used; 1537 copied += used; 1538 offset += used; 1539 } 1540 /* If recv_actor drops the lock (e.g. TCP splice 1541 * receive) the skb pointer might be invalid when 1542 * getting here: tcp_collapse might have deleted it 1543 * while aggregating skbs from the socket queue. 1544 */ 1545 skb = tcp_recv_skb(sk, seq - 1, &offset); 1546 if (!skb) 1547 break; 1548 /* TCP coalescing might have appended data to the skb. 1549 * Try to splice more frags 1550 */ 1551 if (offset + 1 != skb->len) 1552 continue; 1553 } 1554 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1555 sk_eat_skb(sk, skb); 1556 ++seq; 1557 break; 1558 } 1559 sk_eat_skb(sk, skb); 1560 if (!desc->count) 1561 break; 1562 tp->copied_seq = seq; 1563 } 1564 tp->copied_seq = seq; 1565 1566 tcp_rcv_space_adjust(sk); 1567 1568 /* Clean up data we have read: This will do ACK frames. */ 1569 if (copied > 0) { 1570 tcp_recv_skb(sk, seq, &offset); 1571 tcp_cleanup_rbuf(sk, copied); 1572 } 1573 return copied; 1574 } 1575 EXPORT_SYMBOL(tcp_read_sock); 1576 1577 /* 1578 * This routine copies from a sock struct into the user buffer. 1579 * 1580 * Technical note: in 2.3 we work on _locked_ socket, so that 1581 * tricks with *seq access order and skb->users are not required. 1582 * Probably, code can be easily improved even more. 1583 */ 1584 1585 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1586 size_t len, int nonblock, int flags, int *addr_len) 1587 { 1588 struct tcp_sock *tp = tcp_sk(sk); 1589 int copied = 0; 1590 u32 peek_seq; 1591 u32 *seq; 1592 unsigned long used; 1593 int err; 1594 int target; /* Read at least this many bytes */ 1595 long timeo; 1596 struct task_struct *user_recv = NULL; 1597 struct sk_buff *skb; 1598 u32 urg_hole = 0; 1599 1600 if (unlikely(flags & MSG_ERRQUEUE)) 1601 return ip_recv_error(sk, msg, len, addr_len); 1602 1603 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1604 (sk->sk_state == TCP_ESTABLISHED)) 1605 sk_busy_loop(sk, nonblock); 1606 1607 lock_sock(sk); 1608 1609 err = -ENOTCONN; 1610 if (sk->sk_state == TCP_LISTEN) 1611 goto out; 1612 1613 timeo = sock_rcvtimeo(sk, nonblock); 1614 1615 /* Urgent data needs to be handled specially. */ 1616 if (flags & MSG_OOB) 1617 goto recv_urg; 1618 1619 if (unlikely(tp->repair)) { 1620 err = -EPERM; 1621 if (!(flags & MSG_PEEK)) 1622 goto out; 1623 1624 if (tp->repair_queue == TCP_SEND_QUEUE) 1625 goto recv_sndq; 1626 1627 err = -EINVAL; 1628 if (tp->repair_queue == TCP_NO_QUEUE) 1629 goto out; 1630 1631 /* 'common' recv queue MSG_PEEK-ing */ 1632 } 1633 1634 seq = &tp->copied_seq; 1635 if (flags & MSG_PEEK) { 1636 peek_seq = tp->copied_seq; 1637 seq = &peek_seq; 1638 } 1639 1640 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1641 1642 do { 1643 u32 offset; 1644 1645 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1646 if (tp->urg_data && tp->urg_seq == *seq) { 1647 if (copied) 1648 break; 1649 if (signal_pending(current)) { 1650 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1651 break; 1652 } 1653 } 1654 1655 /* Next get a buffer. */ 1656 1657 skb_queue_walk(&sk->sk_receive_queue, skb) { 1658 /* Now that we have two receive queues this 1659 * shouldn't happen. 1660 */ 1661 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1662 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1663 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1664 flags)) 1665 break; 1666 1667 offset = *seq - TCP_SKB_CB(skb)->seq; 1668 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1669 offset--; 1670 if (offset < skb->len) 1671 goto found_ok_skb; 1672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1673 goto found_fin_ok; 1674 WARN(!(flags & MSG_PEEK), 1675 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1676 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1677 } 1678 1679 /* Well, if we have backlog, try to process it now yet. */ 1680 1681 if (copied >= target && !sk->sk_backlog.tail) 1682 break; 1683 1684 if (copied) { 1685 if (sk->sk_err || 1686 sk->sk_state == TCP_CLOSE || 1687 (sk->sk_shutdown & RCV_SHUTDOWN) || 1688 !timeo || 1689 signal_pending(current)) 1690 break; 1691 } else { 1692 if (sock_flag(sk, SOCK_DONE)) 1693 break; 1694 1695 if (sk->sk_err) { 1696 copied = sock_error(sk); 1697 break; 1698 } 1699 1700 if (sk->sk_shutdown & RCV_SHUTDOWN) 1701 break; 1702 1703 if (sk->sk_state == TCP_CLOSE) { 1704 if (!sock_flag(sk, SOCK_DONE)) { 1705 /* This occurs when user tries to read 1706 * from never connected socket. 1707 */ 1708 copied = -ENOTCONN; 1709 break; 1710 } 1711 break; 1712 } 1713 1714 if (!timeo) { 1715 copied = -EAGAIN; 1716 break; 1717 } 1718 1719 if (signal_pending(current)) { 1720 copied = sock_intr_errno(timeo); 1721 break; 1722 } 1723 } 1724 1725 tcp_cleanup_rbuf(sk, copied); 1726 1727 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1728 /* Install new reader */ 1729 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1730 user_recv = current; 1731 tp->ucopy.task = user_recv; 1732 tp->ucopy.iov = msg->msg_iov; 1733 } 1734 1735 tp->ucopy.len = len; 1736 1737 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1738 !(flags & (MSG_PEEK | MSG_TRUNC))); 1739 1740 /* Ugly... If prequeue is not empty, we have to 1741 * process it before releasing socket, otherwise 1742 * order will be broken at second iteration. 1743 * More elegant solution is required!!! 1744 * 1745 * Look: we have the following (pseudo)queues: 1746 * 1747 * 1. packets in flight 1748 * 2. backlog 1749 * 3. prequeue 1750 * 4. receive_queue 1751 * 1752 * Each queue can be processed only if the next ones 1753 * are empty. At this point we have empty receive_queue. 1754 * But prequeue _can_ be not empty after 2nd iteration, 1755 * when we jumped to start of loop because backlog 1756 * processing added something to receive_queue. 1757 * We cannot release_sock(), because backlog contains 1758 * packets arrived _after_ prequeued ones. 1759 * 1760 * Shortly, algorithm is clear --- to process all 1761 * the queues in order. We could make it more directly, 1762 * requeueing packets from backlog to prequeue, if 1763 * is not empty. It is more elegant, but eats cycles, 1764 * unfortunately. 1765 */ 1766 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1767 goto do_prequeue; 1768 1769 /* __ Set realtime policy in scheduler __ */ 1770 } 1771 1772 if (copied >= target) { 1773 /* Do not sleep, just process backlog. */ 1774 release_sock(sk); 1775 lock_sock(sk); 1776 } else 1777 sk_wait_data(sk, &timeo); 1778 1779 if (user_recv) { 1780 int chunk; 1781 1782 /* __ Restore normal policy in scheduler __ */ 1783 1784 if ((chunk = len - tp->ucopy.len) != 0) { 1785 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1786 len -= chunk; 1787 copied += chunk; 1788 } 1789 1790 if (tp->rcv_nxt == tp->copied_seq && 1791 !skb_queue_empty(&tp->ucopy.prequeue)) { 1792 do_prequeue: 1793 tcp_prequeue_process(sk); 1794 1795 if ((chunk = len - tp->ucopy.len) != 0) { 1796 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1797 len -= chunk; 1798 copied += chunk; 1799 } 1800 } 1801 } 1802 if ((flags & MSG_PEEK) && 1803 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1804 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1805 current->comm, 1806 task_pid_nr(current)); 1807 peek_seq = tp->copied_seq; 1808 } 1809 continue; 1810 1811 found_ok_skb: 1812 /* Ok so how much can we use? */ 1813 used = skb->len - offset; 1814 if (len < used) 1815 used = len; 1816 1817 /* Do we have urgent data here? */ 1818 if (tp->urg_data) { 1819 u32 urg_offset = tp->urg_seq - *seq; 1820 if (urg_offset < used) { 1821 if (!urg_offset) { 1822 if (!sock_flag(sk, SOCK_URGINLINE)) { 1823 ++*seq; 1824 urg_hole++; 1825 offset++; 1826 used--; 1827 if (!used) 1828 goto skip_copy; 1829 } 1830 } else 1831 used = urg_offset; 1832 } 1833 } 1834 1835 if (!(flags & MSG_TRUNC)) { 1836 err = skb_copy_datagram_iovec(skb, offset, 1837 msg->msg_iov, used); 1838 if (err) { 1839 /* Exception. Bailout! */ 1840 if (!copied) 1841 copied = -EFAULT; 1842 break; 1843 } 1844 } 1845 1846 *seq += used; 1847 copied += used; 1848 len -= used; 1849 1850 tcp_rcv_space_adjust(sk); 1851 1852 skip_copy: 1853 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1854 tp->urg_data = 0; 1855 tcp_fast_path_check(sk); 1856 } 1857 if (used + offset < skb->len) 1858 continue; 1859 1860 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1861 goto found_fin_ok; 1862 if (!(flags & MSG_PEEK)) 1863 sk_eat_skb(sk, skb); 1864 continue; 1865 1866 found_fin_ok: 1867 /* Process the FIN. */ 1868 ++*seq; 1869 if (!(flags & MSG_PEEK)) 1870 sk_eat_skb(sk, skb); 1871 break; 1872 } while (len > 0); 1873 1874 if (user_recv) { 1875 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1876 int chunk; 1877 1878 tp->ucopy.len = copied > 0 ? len : 0; 1879 1880 tcp_prequeue_process(sk); 1881 1882 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1883 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1884 len -= chunk; 1885 copied += chunk; 1886 } 1887 } 1888 1889 tp->ucopy.task = NULL; 1890 tp->ucopy.len = 0; 1891 } 1892 1893 /* According to UNIX98, msg_name/msg_namelen are ignored 1894 * on connected socket. I was just happy when found this 8) --ANK 1895 */ 1896 1897 /* Clean up data we have read: This will do ACK frames. */ 1898 tcp_cleanup_rbuf(sk, copied); 1899 1900 release_sock(sk); 1901 return copied; 1902 1903 out: 1904 release_sock(sk); 1905 return err; 1906 1907 recv_urg: 1908 err = tcp_recv_urg(sk, msg, len, flags); 1909 goto out; 1910 1911 recv_sndq: 1912 err = tcp_peek_sndq(sk, msg, len); 1913 goto out; 1914 } 1915 EXPORT_SYMBOL(tcp_recvmsg); 1916 1917 void tcp_set_state(struct sock *sk, int state) 1918 { 1919 int oldstate = sk->sk_state; 1920 1921 switch (state) { 1922 case TCP_ESTABLISHED: 1923 if (oldstate != TCP_ESTABLISHED) 1924 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1925 break; 1926 1927 case TCP_CLOSE: 1928 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1929 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1930 1931 sk->sk_prot->unhash(sk); 1932 if (inet_csk(sk)->icsk_bind_hash && 1933 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1934 inet_put_port(sk); 1935 /* fall through */ 1936 default: 1937 if (oldstate == TCP_ESTABLISHED) 1938 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1939 } 1940 1941 /* Change state AFTER socket is unhashed to avoid closed 1942 * socket sitting in hash tables. 1943 */ 1944 sk->sk_state = state; 1945 1946 #ifdef STATE_TRACE 1947 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1948 #endif 1949 } 1950 EXPORT_SYMBOL_GPL(tcp_set_state); 1951 1952 /* 1953 * State processing on a close. This implements the state shift for 1954 * sending our FIN frame. Note that we only send a FIN for some 1955 * states. A shutdown() may have already sent the FIN, or we may be 1956 * closed. 1957 */ 1958 1959 static const unsigned char new_state[16] = { 1960 /* current state: new state: action: */ 1961 /* (Invalid) */ TCP_CLOSE, 1962 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1963 /* TCP_SYN_SENT */ TCP_CLOSE, 1964 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1965 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1966 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1967 /* TCP_TIME_WAIT */ TCP_CLOSE, 1968 /* TCP_CLOSE */ TCP_CLOSE, 1969 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1970 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1971 /* TCP_LISTEN */ TCP_CLOSE, 1972 /* TCP_CLOSING */ TCP_CLOSING, 1973 }; 1974 1975 static int tcp_close_state(struct sock *sk) 1976 { 1977 int next = (int)new_state[sk->sk_state]; 1978 int ns = next & TCP_STATE_MASK; 1979 1980 tcp_set_state(sk, ns); 1981 1982 return next & TCP_ACTION_FIN; 1983 } 1984 1985 /* 1986 * Shutdown the sending side of a connection. Much like close except 1987 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1988 */ 1989 1990 void tcp_shutdown(struct sock *sk, int how) 1991 { 1992 /* We need to grab some memory, and put together a FIN, 1993 * and then put it into the queue to be sent. 1994 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1995 */ 1996 if (!(how & SEND_SHUTDOWN)) 1997 return; 1998 1999 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2000 if ((1 << sk->sk_state) & 2001 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2002 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2003 /* Clear out any half completed packets. FIN if needed. */ 2004 if (tcp_close_state(sk)) 2005 tcp_send_fin(sk); 2006 } 2007 } 2008 EXPORT_SYMBOL(tcp_shutdown); 2009 2010 bool tcp_check_oom(struct sock *sk, int shift) 2011 { 2012 bool too_many_orphans, out_of_socket_memory; 2013 2014 too_many_orphans = tcp_too_many_orphans(sk, shift); 2015 out_of_socket_memory = tcp_out_of_memory(sk); 2016 2017 if (too_many_orphans) 2018 net_info_ratelimited("too many orphaned sockets\n"); 2019 if (out_of_socket_memory) 2020 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2021 return too_many_orphans || out_of_socket_memory; 2022 } 2023 2024 void tcp_close(struct sock *sk, long timeout) 2025 { 2026 struct sk_buff *skb; 2027 int data_was_unread = 0; 2028 int state; 2029 2030 lock_sock(sk); 2031 sk->sk_shutdown = SHUTDOWN_MASK; 2032 2033 if (sk->sk_state == TCP_LISTEN) { 2034 tcp_set_state(sk, TCP_CLOSE); 2035 2036 /* Special case. */ 2037 inet_csk_listen_stop(sk); 2038 2039 goto adjudge_to_death; 2040 } 2041 2042 /* We need to flush the recv. buffs. We do this only on the 2043 * descriptor close, not protocol-sourced closes, because the 2044 * reader process may not have drained the data yet! 2045 */ 2046 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2047 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2048 2049 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2050 len--; 2051 data_was_unread += len; 2052 __kfree_skb(skb); 2053 } 2054 2055 sk_mem_reclaim(sk); 2056 2057 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2058 if (sk->sk_state == TCP_CLOSE) 2059 goto adjudge_to_death; 2060 2061 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2062 * data was lost. To witness the awful effects of the old behavior of 2063 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2064 * GET in an FTP client, suspend the process, wait for the client to 2065 * advertise a zero window, then kill -9 the FTP client, wheee... 2066 * Note: timeout is always zero in such a case. 2067 */ 2068 if (unlikely(tcp_sk(sk)->repair)) { 2069 sk->sk_prot->disconnect(sk, 0); 2070 } else if (data_was_unread) { 2071 /* Unread data was tossed, zap the connection. */ 2072 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2073 tcp_set_state(sk, TCP_CLOSE); 2074 tcp_send_active_reset(sk, sk->sk_allocation); 2075 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2076 /* Check zero linger _after_ checking for unread data. */ 2077 sk->sk_prot->disconnect(sk, 0); 2078 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2079 } else if (tcp_close_state(sk)) { 2080 /* We FIN if the application ate all the data before 2081 * zapping the connection. 2082 */ 2083 2084 /* RED-PEN. Formally speaking, we have broken TCP state 2085 * machine. State transitions: 2086 * 2087 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2088 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2089 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2090 * 2091 * are legal only when FIN has been sent (i.e. in window), 2092 * rather than queued out of window. Purists blame. 2093 * 2094 * F.e. "RFC state" is ESTABLISHED, 2095 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2096 * 2097 * The visible declinations are that sometimes 2098 * we enter time-wait state, when it is not required really 2099 * (harmless), do not send active resets, when they are 2100 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2101 * they look as CLOSING or LAST_ACK for Linux) 2102 * Probably, I missed some more holelets. 2103 * --ANK 2104 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2105 * in a single packet! (May consider it later but will 2106 * probably need API support or TCP_CORK SYN-ACK until 2107 * data is written and socket is closed.) 2108 */ 2109 tcp_send_fin(sk); 2110 } 2111 2112 sk_stream_wait_close(sk, timeout); 2113 2114 adjudge_to_death: 2115 state = sk->sk_state; 2116 sock_hold(sk); 2117 sock_orphan(sk); 2118 2119 /* It is the last release_sock in its life. It will remove backlog. */ 2120 release_sock(sk); 2121 2122 2123 /* Now socket is owned by kernel and we acquire BH lock 2124 to finish close. No need to check for user refs. 2125 */ 2126 local_bh_disable(); 2127 bh_lock_sock(sk); 2128 WARN_ON(sock_owned_by_user(sk)); 2129 2130 percpu_counter_inc(sk->sk_prot->orphan_count); 2131 2132 /* Have we already been destroyed by a softirq or backlog? */ 2133 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2134 goto out; 2135 2136 /* This is a (useful) BSD violating of the RFC. There is a 2137 * problem with TCP as specified in that the other end could 2138 * keep a socket open forever with no application left this end. 2139 * We use a 1 minute timeout (about the same as BSD) then kill 2140 * our end. If they send after that then tough - BUT: long enough 2141 * that we won't make the old 4*rto = almost no time - whoops 2142 * reset mistake. 2143 * 2144 * Nope, it was not mistake. It is really desired behaviour 2145 * f.e. on http servers, when such sockets are useless, but 2146 * consume significant resources. Let's do it with special 2147 * linger2 option. --ANK 2148 */ 2149 2150 if (sk->sk_state == TCP_FIN_WAIT2) { 2151 struct tcp_sock *tp = tcp_sk(sk); 2152 if (tp->linger2 < 0) { 2153 tcp_set_state(sk, TCP_CLOSE); 2154 tcp_send_active_reset(sk, GFP_ATOMIC); 2155 NET_INC_STATS_BH(sock_net(sk), 2156 LINUX_MIB_TCPABORTONLINGER); 2157 } else { 2158 const int tmo = tcp_fin_time(sk); 2159 2160 if (tmo > TCP_TIMEWAIT_LEN) { 2161 inet_csk_reset_keepalive_timer(sk, 2162 tmo - TCP_TIMEWAIT_LEN); 2163 } else { 2164 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2165 goto out; 2166 } 2167 } 2168 } 2169 if (sk->sk_state != TCP_CLOSE) { 2170 sk_mem_reclaim(sk); 2171 if (tcp_check_oom(sk, 0)) { 2172 tcp_set_state(sk, TCP_CLOSE); 2173 tcp_send_active_reset(sk, GFP_ATOMIC); 2174 NET_INC_STATS_BH(sock_net(sk), 2175 LINUX_MIB_TCPABORTONMEMORY); 2176 } 2177 } 2178 2179 if (sk->sk_state == TCP_CLOSE) { 2180 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2181 /* We could get here with a non-NULL req if the socket is 2182 * aborted (e.g., closed with unread data) before 3WHS 2183 * finishes. 2184 */ 2185 if (req != NULL) 2186 reqsk_fastopen_remove(sk, req, false); 2187 inet_csk_destroy_sock(sk); 2188 } 2189 /* Otherwise, socket is reprieved until protocol close. */ 2190 2191 out: 2192 bh_unlock_sock(sk); 2193 local_bh_enable(); 2194 sock_put(sk); 2195 } 2196 EXPORT_SYMBOL(tcp_close); 2197 2198 /* These states need RST on ABORT according to RFC793 */ 2199 2200 static inline bool tcp_need_reset(int state) 2201 { 2202 return (1 << state) & 2203 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2204 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2205 } 2206 2207 int tcp_disconnect(struct sock *sk, int flags) 2208 { 2209 struct inet_sock *inet = inet_sk(sk); 2210 struct inet_connection_sock *icsk = inet_csk(sk); 2211 struct tcp_sock *tp = tcp_sk(sk); 2212 int err = 0; 2213 int old_state = sk->sk_state; 2214 2215 if (old_state != TCP_CLOSE) 2216 tcp_set_state(sk, TCP_CLOSE); 2217 2218 /* ABORT function of RFC793 */ 2219 if (old_state == TCP_LISTEN) { 2220 inet_csk_listen_stop(sk); 2221 } else if (unlikely(tp->repair)) { 2222 sk->sk_err = ECONNABORTED; 2223 } else if (tcp_need_reset(old_state) || 2224 (tp->snd_nxt != tp->write_seq && 2225 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2226 /* The last check adjusts for discrepancy of Linux wrt. RFC 2227 * states 2228 */ 2229 tcp_send_active_reset(sk, gfp_any()); 2230 sk->sk_err = ECONNRESET; 2231 } else if (old_state == TCP_SYN_SENT) 2232 sk->sk_err = ECONNRESET; 2233 2234 tcp_clear_xmit_timers(sk); 2235 __skb_queue_purge(&sk->sk_receive_queue); 2236 tcp_write_queue_purge(sk); 2237 __skb_queue_purge(&tp->out_of_order_queue); 2238 2239 inet->inet_dport = 0; 2240 2241 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2242 inet_reset_saddr(sk); 2243 2244 sk->sk_shutdown = 0; 2245 sock_reset_flag(sk, SOCK_DONE); 2246 tp->srtt_us = 0; 2247 if ((tp->write_seq += tp->max_window + 2) == 0) 2248 tp->write_seq = 1; 2249 icsk->icsk_backoff = 0; 2250 tp->snd_cwnd = 2; 2251 icsk->icsk_probes_out = 0; 2252 tp->packets_out = 0; 2253 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2254 tp->snd_cwnd_cnt = 0; 2255 tp->window_clamp = 0; 2256 tcp_set_ca_state(sk, TCP_CA_Open); 2257 tcp_clear_retrans(tp); 2258 inet_csk_delack_init(sk); 2259 tcp_init_send_head(sk); 2260 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2261 __sk_dst_reset(sk); 2262 2263 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2264 2265 sk->sk_error_report(sk); 2266 return err; 2267 } 2268 EXPORT_SYMBOL(tcp_disconnect); 2269 2270 void tcp_sock_destruct(struct sock *sk) 2271 { 2272 inet_sock_destruct(sk); 2273 2274 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2275 } 2276 2277 static inline bool tcp_can_repair_sock(const struct sock *sk) 2278 { 2279 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2280 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2281 } 2282 2283 static int tcp_repair_options_est(struct tcp_sock *tp, 2284 struct tcp_repair_opt __user *optbuf, unsigned int len) 2285 { 2286 struct tcp_repair_opt opt; 2287 2288 while (len >= sizeof(opt)) { 2289 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2290 return -EFAULT; 2291 2292 optbuf++; 2293 len -= sizeof(opt); 2294 2295 switch (opt.opt_code) { 2296 case TCPOPT_MSS: 2297 tp->rx_opt.mss_clamp = opt.opt_val; 2298 break; 2299 case TCPOPT_WINDOW: 2300 { 2301 u16 snd_wscale = opt.opt_val & 0xFFFF; 2302 u16 rcv_wscale = opt.opt_val >> 16; 2303 2304 if (snd_wscale > 14 || rcv_wscale > 14) 2305 return -EFBIG; 2306 2307 tp->rx_opt.snd_wscale = snd_wscale; 2308 tp->rx_opt.rcv_wscale = rcv_wscale; 2309 tp->rx_opt.wscale_ok = 1; 2310 } 2311 break; 2312 case TCPOPT_SACK_PERM: 2313 if (opt.opt_val != 0) 2314 return -EINVAL; 2315 2316 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2317 if (sysctl_tcp_fack) 2318 tcp_enable_fack(tp); 2319 break; 2320 case TCPOPT_TIMESTAMP: 2321 if (opt.opt_val != 0) 2322 return -EINVAL; 2323 2324 tp->rx_opt.tstamp_ok = 1; 2325 break; 2326 } 2327 } 2328 2329 return 0; 2330 } 2331 2332 /* 2333 * Socket option code for TCP. 2334 */ 2335 static int do_tcp_setsockopt(struct sock *sk, int level, 2336 int optname, char __user *optval, unsigned int optlen) 2337 { 2338 struct tcp_sock *tp = tcp_sk(sk); 2339 struct inet_connection_sock *icsk = inet_csk(sk); 2340 int val; 2341 int err = 0; 2342 2343 /* These are data/string values, all the others are ints */ 2344 switch (optname) { 2345 case TCP_CONGESTION: { 2346 char name[TCP_CA_NAME_MAX]; 2347 2348 if (optlen < 1) 2349 return -EINVAL; 2350 2351 val = strncpy_from_user(name, optval, 2352 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2353 if (val < 0) 2354 return -EFAULT; 2355 name[val] = 0; 2356 2357 lock_sock(sk); 2358 err = tcp_set_congestion_control(sk, name); 2359 release_sock(sk); 2360 return err; 2361 } 2362 default: 2363 /* fallthru */ 2364 break; 2365 } 2366 2367 if (optlen < sizeof(int)) 2368 return -EINVAL; 2369 2370 if (get_user(val, (int __user *)optval)) 2371 return -EFAULT; 2372 2373 lock_sock(sk); 2374 2375 switch (optname) { 2376 case TCP_MAXSEG: 2377 /* Values greater than interface MTU won't take effect. However 2378 * at the point when this call is done we typically don't yet 2379 * know which interface is going to be used */ 2380 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2381 err = -EINVAL; 2382 break; 2383 } 2384 tp->rx_opt.user_mss = val; 2385 break; 2386 2387 case TCP_NODELAY: 2388 if (val) { 2389 /* TCP_NODELAY is weaker than TCP_CORK, so that 2390 * this option on corked socket is remembered, but 2391 * it is not activated until cork is cleared. 2392 * 2393 * However, when TCP_NODELAY is set we make 2394 * an explicit push, which overrides even TCP_CORK 2395 * for currently queued segments. 2396 */ 2397 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2398 tcp_push_pending_frames(sk); 2399 } else { 2400 tp->nonagle &= ~TCP_NAGLE_OFF; 2401 } 2402 break; 2403 2404 case TCP_THIN_LINEAR_TIMEOUTS: 2405 if (val < 0 || val > 1) 2406 err = -EINVAL; 2407 else 2408 tp->thin_lto = val; 2409 break; 2410 2411 case TCP_THIN_DUPACK: 2412 if (val < 0 || val > 1) 2413 err = -EINVAL; 2414 else { 2415 tp->thin_dupack = val; 2416 if (tp->thin_dupack) 2417 tcp_disable_early_retrans(tp); 2418 } 2419 break; 2420 2421 case TCP_REPAIR: 2422 if (!tcp_can_repair_sock(sk)) 2423 err = -EPERM; 2424 else if (val == 1) { 2425 tp->repair = 1; 2426 sk->sk_reuse = SK_FORCE_REUSE; 2427 tp->repair_queue = TCP_NO_QUEUE; 2428 } else if (val == 0) { 2429 tp->repair = 0; 2430 sk->sk_reuse = SK_NO_REUSE; 2431 tcp_send_window_probe(sk); 2432 } else 2433 err = -EINVAL; 2434 2435 break; 2436 2437 case TCP_REPAIR_QUEUE: 2438 if (!tp->repair) 2439 err = -EPERM; 2440 else if (val < TCP_QUEUES_NR) 2441 tp->repair_queue = val; 2442 else 2443 err = -EINVAL; 2444 break; 2445 2446 case TCP_QUEUE_SEQ: 2447 if (sk->sk_state != TCP_CLOSE) 2448 err = -EPERM; 2449 else if (tp->repair_queue == TCP_SEND_QUEUE) 2450 tp->write_seq = val; 2451 else if (tp->repair_queue == TCP_RECV_QUEUE) 2452 tp->rcv_nxt = val; 2453 else 2454 err = -EINVAL; 2455 break; 2456 2457 case TCP_REPAIR_OPTIONS: 2458 if (!tp->repair) 2459 err = -EINVAL; 2460 else if (sk->sk_state == TCP_ESTABLISHED) 2461 err = tcp_repair_options_est(tp, 2462 (struct tcp_repair_opt __user *)optval, 2463 optlen); 2464 else 2465 err = -EPERM; 2466 break; 2467 2468 case TCP_CORK: 2469 /* When set indicates to always queue non-full frames. 2470 * Later the user clears this option and we transmit 2471 * any pending partial frames in the queue. This is 2472 * meant to be used alongside sendfile() to get properly 2473 * filled frames when the user (for example) must write 2474 * out headers with a write() call first and then use 2475 * sendfile to send out the data parts. 2476 * 2477 * TCP_CORK can be set together with TCP_NODELAY and it is 2478 * stronger than TCP_NODELAY. 2479 */ 2480 if (val) { 2481 tp->nonagle |= TCP_NAGLE_CORK; 2482 } else { 2483 tp->nonagle &= ~TCP_NAGLE_CORK; 2484 if (tp->nonagle&TCP_NAGLE_OFF) 2485 tp->nonagle |= TCP_NAGLE_PUSH; 2486 tcp_push_pending_frames(sk); 2487 } 2488 break; 2489 2490 case TCP_KEEPIDLE: 2491 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2492 err = -EINVAL; 2493 else { 2494 tp->keepalive_time = val * HZ; 2495 if (sock_flag(sk, SOCK_KEEPOPEN) && 2496 !((1 << sk->sk_state) & 2497 (TCPF_CLOSE | TCPF_LISTEN))) { 2498 u32 elapsed = keepalive_time_elapsed(tp); 2499 if (tp->keepalive_time > elapsed) 2500 elapsed = tp->keepalive_time - elapsed; 2501 else 2502 elapsed = 0; 2503 inet_csk_reset_keepalive_timer(sk, elapsed); 2504 } 2505 } 2506 break; 2507 case TCP_KEEPINTVL: 2508 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2509 err = -EINVAL; 2510 else 2511 tp->keepalive_intvl = val * HZ; 2512 break; 2513 case TCP_KEEPCNT: 2514 if (val < 1 || val > MAX_TCP_KEEPCNT) 2515 err = -EINVAL; 2516 else 2517 tp->keepalive_probes = val; 2518 break; 2519 case TCP_SYNCNT: 2520 if (val < 1 || val > MAX_TCP_SYNCNT) 2521 err = -EINVAL; 2522 else 2523 icsk->icsk_syn_retries = val; 2524 break; 2525 2526 case TCP_LINGER2: 2527 if (val < 0) 2528 tp->linger2 = -1; 2529 else if (val > sysctl_tcp_fin_timeout / HZ) 2530 tp->linger2 = 0; 2531 else 2532 tp->linger2 = val * HZ; 2533 break; 2534 2535 case TCP_DEFER_ACCEPT: 2536 /* Translate value in seconds to number of retransmits */ 2537 icsk->icsk_accept_queue.rskq_defer_accept = 2538 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2539 TCP_RTO_MAX / HZ); 2540 break; 2541 2542 case TCP_WINDOW_CLAMP: 2543 if (!val) { 2544 if (sk->sk_state != TCP_CLOSE) { 2545 err = -EINVAL; 2546 break; 2547 } 2548 tp->window_clamp = 0; 2549 } else 2550 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2551 SOCK_MIN_RCVBUF / 2 : val; 2552 break; 2553 2554 case TCP_QUICKACK: 2555 if (!val) { 2556 icsk->icsk_ack.pingpong = 1; 2557 } else { 2558 icsk->icsk_ack.pingpong = 0; 2559 if ((1 << sk->sk_state) & 2560 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2561 inet_csk_ack_scheduled(sk)) { 2562 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2563 tcp_cleanup_rbuf(sk, 1); 2564 if (!(val & 1)) 2565 icsk->icsk_ack.pingpong = 1; 2566 } 2567 } 2568 break; 2569 2570 #ifdef CONFIG_TCP_MD5SIG 2571 case TCP_MD5SIG: 2572 /* Read the IP->Key mappings from userspace */ 2573 err = tp->af_specific->md5_parse(sk, optval, optlen); 2574 break; 2575 #endif 2576 case TCP_USER_TIMEOUT: 2577 /* Cap the max time in ms TCP will retry or probe the window 2578 * before giving up and aborting (ETIMEDOUT) a connection. 2579 */ 2580 if (val < 0) 2581 err = -EINVAL; 2582 else 2583 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2584 break; 2585 2586 case TCP_FASTOPEN: 2587 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2588 TCPF_LISTEN))) 2589 err = fastopen_init_queue(sk, val); 2590 else 2591 err = -EINVAL; 2592 break; 2593 case TCP_TIMESTAMP: 2594 if (!tp->repair) 2595 err = -EPERM; 2596 else 2597 tp->tsoffset = val - tcp_time_stamp; 2598 break; 2599 case TCP_NOTSENT_LOWAT: 2600 tp->notsent_lowat = val; 2601 sk->sk_write_space(sk); 2602 break; 2603 default: 2604 err = -ENOPROTOOPT; 2605 break; 2606 } 2607 2608 release_sock(sk); 2609 return err; 2610 } 2611 2612 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2613 unsigned int optlen) 2614 { 2615 const struct inet_connection_sock *icsk = inet_csk(sk); 2616 2617 if (level != SOL_TCP) 2618 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2619 optval, optlen); 2620 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2621 } 2622 EXPORT_SYMBOL(tcp_setsockopt); 2623 2624 #ifdef CONFIG_COMPAT 2625 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2626 char __user *optval, unsigned int optlen) 2627 { 2628 if (level != SOL_TCP) 2629 return inet_csk_compat_setsockopt(sk, level, optname, 2630 optval, optlen); 2631 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2632 } 2633 EXPORT_SYMBOL(compat_tcp_setsockopt); 2634 #endif 2635 2636 /* Return information about state of tcp endpoint in API format. */ 2637 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2638 { 2639 const struct tcp_sock *tp = tcp_sk(sk); 2640 const struct inet_connection_sock *icsk = inet_csk(sk); 2641 u32 now = tcp_time_stamp; 2642 2643 memset(info, 0, sizeof(*info)); 2644 2645 info->tcpi_state = sk->sk_state; 2646 info->tcpi_ca_state = icsk->icsk_ca_state; 2647 info->tcpi_retransmits = icsk->icsk_retransmits; 2648 info->tcpi_probes = icsk->icsk_probes_out; 2649 info->tcpi_backoff = icsk->icsk_backoff; 2650 2651 if (tp->rx_opt.tstamp_ok) 2652 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2653 if (tcp_is_sack(tp)) 2654 info->tcpi_options |= TCPI_OPT_SACK; 2655 if (tp->rx_opt.wscale_ok) { 2656 info->tcpi_options |= TCPI_OPT_WSCALE; 2657 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2658 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2659 } 2660 2661 if (tp->ecn_flags & TCP_ECN_OK) 2662 info->tcpi_options |= TCPI_OPT_ECN; 2663 if (tp->ecn_flags & TCP_ECN_SEEN) 2664 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2665 if (tp->syn_data_acked) 2666 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2667 2668 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2669 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2670 info->tcpi_snd_mss = tp->mss_cache; 2671 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2672 2673 if (sk->sk_state == TCP_LISTEN) { 2674 info->tcpi_unacked = sk->sk_ack_backlog; 2675 info->tcpi_sacked = sk->sk_max_ack_backlog; 2676 } else { 2677 info->tcpi_unacked = tp->packets_out; 2678 info->tcpi_sacked = tp->sacked_out; 2679 } 2680 info->tcpi_lost = tp->lost_out; 2681 info->tcpi_retrans = tp->retrans_out; 2682 info->tcpi_fackets = tp->fackets_out; 2683 2684 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2685 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2686 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2687 2688 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2689 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2690 info->tcpi_rtt = tp->srtt_us >> 3; 2691 info->tcpi_rttvar = tp->mdev_us >> 2; 2692 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2693 info->tcpi_snd_cwnd = tp->snd_cwnd; 2694 info->tcpi_advmss = tp->advmss; 2695 info->tcpi_reordering = tp->reordering; 2696 2697 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2698 info->tcpi_rcv_space = tp->rcvq_space.space; 2699 2700 info->tcpi_total_retrans = tp->total_retrans; 2701 2702 info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ? 2703 sk->sk_pacing_rate : ~0ULL; 2704 info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ? 2705 sk->sk_max_pacing_rate : ~0ULL; 2706 } 2707 EXPORT_SYMBOL_GPL(tcp_get_info); 2708 2709 static int do_tcp_getsockopt(struct sock *sk, int level, 2710 int optname, char __user *optval, int __user *optlen) 2711 { 2712 struct inet_connection_sock *icsk = inet_csk(sk); 2713 struct tcp_sock *tp = tcp_sk(sk); 2714 int val, len; 2715 2716 if (get_user(len, optlen)) 2717 return -EFAULT; 2718 2719 len = min_t(unsigned int, len, sizeof(int)); 2720 2721 if (len < 0) 2722 return -EINVAL; 2723 2724 switch (optname) { 2725 case TCP_MAXSEG: 2726 val = tp->mss_cache; 2727 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2728 val = tp->rx_opt.user_mss; 2729 if (tp->repair) 2730 val = tp->rx_opt.mss_clamp; 2731 break; 2732 case TCP_NODELAY: 2733 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2734 break; 2735 case TCP_CORK: 2736 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2737 break; 2738 case TCP_KEEPIDLE: 2739 val = keepalive_time_when(tp) / HZ; 2740 break; 2741 case TCP_KEEPINTVL: 2742 val = keepalive_intvl_when(tp) / HZ; 2743 break; 2744 case TCP_KEEPCNT: 2745 val = keepalive_probes(tp); 2746 break; 2747 case TCP_SYNCNT: 2748 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2749 break; 2750 case TCP_LINGER2: 2751 val = tp->linger2; 2752 if (val >= 0) 2753 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2754 break; 2755 case TCP_DEFER_ACCEPT: 2756 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2757 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2758 break; 2759 case TCP_WINDOW_CLAMP: 2760 val = tp->window_clamp; 2761 break; 2762 case TCP_INFO: { 2763 struct tcp_info info; 2764 2765 if (get_user(len, optlen)) 2766 return -EFAULT; 2767 2768 tcp_get_info(sk, &info); 2769 2770 len = min_t(unsigned int, len, sizeof(info)); 2771 if (put_user(len, optlen)) 2772 return -EFAULT; 2773 if (copy_to_user(optval, &info, len)) 2774 return -EFAULT; 2775 return 0; 2776 } 2777 case TCP_QUICKACK: 2778 val = !icsk->icsk_ack.pingpong; 2779 break; 2780 2781 case TCP_CONGESTION: 2782 if (get_user(len, optlen)) 2783 return -EFAULT; 2784 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2785 if (put_user(len, optlen)) 2786 return -EFAULT; 2787 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2788 return -EFAULT; 2789 return 0; 2790 2791 case TCP_THIN_LINEAR_TIMEOUTS: 2792 val = tp->thin_lto; 2793 break; 2794 case TCP_THIN_DUPACK: 2795 val = tp->thin_dupack; 2796 break; 2797 2798 case TCP_REPAIR: 2799 val = tp->repair; 2800 break; 2801 2802 case TCP_REPAIR_QUEUE: 2803 if (tp->repair) 2804 val = tp->repair_queue; 2805 else 2806 return -EINVAL; 2807 break; 2808 2809 case TCP_QUEUE_SEQ: 2810 if (tp->repair_queue == TCP_SEND_QUEUE) 2811 val = tp->write_seq; 2812 else if (tp->repair_queue == TCP_RECV_QUEUE) 2813 val = tp->rcv_nxt; 2814 else 2815 return -EINVAL; 2816 break; 2817 2818 case TCP_USER_TIMEOUT: 2819 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2820 break; 2821 2822 case TCP_FASTOPEN: 2823 if (icsk->icsk_accept_queue.fastopenq != NULL) 2824 val = icsk->icsk_accept_queue.fastopenq->max_qlen; 2825 else 2826 val = 0; 2827 break; 2828 2829 case TCP_TIMESTAMP: 2830 val = tcp_time_stamp + tp->tsoffset; 2831 break; 2832 case TCP_NOTSENT_LOWAT: 2833 val = tp->notsent_lowat; 2834 break; 2835 default: 2836 return -ENOPROTOOPT; 2837 } 2838 2839 if (put_user(len, optlen)) 2840 return -EFAULT; 2841 if (copy_to_user(optval, &val, len)) 2842 return -EFAULT; 2843 return 0; 2844 } 2845 2846 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2847 int __user *optlen) 2848 { 2849 struct inet_connection_sock *icsk = inet_csk(sk); 2850 2851 if (level != SOL_TCP) 2852 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2853 optval, optlen); 2854 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2855 } 2856 EXPORT_SYMBOL(tcp_getsockopt); 2857 2858 #ifdef CONFIG_COMPAT 2859 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2860 char __user *optval, int __user *optlen) 2861 { 2862 if (level != SOL_TCP) 2863 return inet_csk_compat_getsockopt(sk, level, optname, 2864 optval, optlen); 2865 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2866 } 2867 EXPORT_SYMBOL(compat_tcp_getsockopt); 2868 #endif 2869 2870 #ifdef CONFIG_TCP_MD5SIG 2871 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2872 static DEFINE_MUTEX(tcp_md5sig_mutex); 2873 static bool tcp_md5sig_pool_populated = false; 2874 2875 static void __tcp_alloc_md5sig_pool(void) 2876 { 2877 int cpu; 2878 2879 for_each_possible_cpu(cpu) { 2880 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) { 2881 struct crypto_hash *hash; 2882 2883 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2884 if (IS_ERR_OR_NULL(hash)) 2885 return; 2886 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash; 2887 } 2888 } 2889 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2890 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2891 */ 2892 smp_wmb(); 2893 tcp_md5sig_pool_populated = true; 2894 } 2895 2896 bool tcp_alloc_md5sig_pool(void) 2897 { 2898 if (unlikely(!tcp_md5sig_pool_populated)) { 2899 mutex_lock(&tcp_md5sig_mutex); 2900 2901 if (!tcp_md5sig_pool_populated) 2902 __tcp_alloc_md5sig_pool(); 2903 2904 mutex_unlock(&tcp_md5sig_mutex); 2905 } 2906 return tcp_md5sig_pool_populated; 2907 } 2908 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2909 2910 2911 /** 2912 * tcp_get_md5sig_pool - get md5sig_pool for this user 2913 * 2914 * We use percpu structure, so if we succeed, we exit with preemption 2915 * and BH disabled, to make sure another thread or softirq handling 2916 * wont try to get same context. 2917 */ 2918 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2919 { 2920 local_bh_disable(); 2921 2922 if (tcp_md5sig_pool_populated) { 2923 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 2924 smp_rmb(); 2925 return this_cpu_ptr(&tcp_md5sig_pool); 2926 } 2927 local_bh_enable(); 2928 return NULL; 2929 } 2930 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2931 2932 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2933 const struct tcphdr *th) 2934 { 2935 struct scatterlist sg; 2936 struct tcphdr hdr; 2937 int err; 2938 2939 /* We are not allowed to change tcphdr, make a local copy */ 2940 memcpy(&hdr, th, sizeof(hdr)); 2941 hdr.check = 0; 2942 2943 /* options aren't included in the hash */ 2944 sg_init_one(&sg, &hdr, sizeof(hdr)); 2945 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 2946 return err; 2947 } 2948 EXPORT_SYMBOL(tcp_md5_hash_header); 2949 2950 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 2951 const struct sk_buff *skb, unsigned int header_len) 2952 { 2953 struct scatterlist sg; 2954 const struct tcphdr *tp = tcp_hdr(skb); 2955 struct hash_desc *desc = &hp->md5_desc; 2956 unsigned int i; 2957 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 2958 skb_headlen(skb) - header_len : 0; 2959 const struct skb_shared_info *shi = skb_shinfo(skb); 2960 struct sk_buff *frag_iter; 2961 2962 sg_init_table(&sg, 1); 2963 2964 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 2965 if (crypto_hash_update(desc, &sg, head_data_len)) 2966 return 1; 2967 2968 for (i = 0; i < shi->nr_frags; ++i) { 2969 const struct skb_frag_struct *f = &shi->frags[i]; 2970 unsigned int offset = f->page_offset; 2971 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 2972 2973 sg_set_page(&sg, page, skb_frag_size(f), 2974 offset_in_page(offset)); 2975 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 2976 return 1; 2977 } 2978 2979 skb_walk_frags(skb, frag_iter) 2980 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 2981 return 1; 2982 2983 return 0; 2984 } 2985 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 2986 2987 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 2988 { 2989 struct scatterlist sg; 2990 2991 sg_init_one(&sg, key->key, key->keylen); 2992 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 2993 } 2994 EXPORT_SYMBOL(tcp_md5_hash_key); 2995 2996 #endif 2997 2998 void tcp_done(struct sock *sk) 2999 { 3000 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3001 3002 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3003 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3004 3005 tcp_set_state(sk, TCP_CLOSE); 3006 tcp_clear_xmit_timers(sk); 3007 if (req != NULL) 3008 reqsk_fastopen_remove(sk, req, false); 3009 3010 sk->sk_shutdown = SHUTDOWN_MASK; 3011 3012 if (!sock_flag(sk, SOCK_DEAD)) 3013 sk->sk_state_change(sk); 3014 else 3015 inet_csk_destroy_sock(sk); 3016 } 3017 EXPORT_SYMBOL_GPL(tcp_done); 3018 3019 extern struct tcp_congestion_ops tcp_reno; 3020 3021 static __initdata unsigned long thash_entries; 3022 static int __init set_thash_entries(char *str) 3023 { 3024 ssize_t ret; 3025 3026 if (!str) 3027 return 0; 3028 3029 ret = kstrtoul(str, 0, &thash_entries); 3030 if (ret) 3031 return 0; 3032 3033 return 1; 3034 } 3035 __setup("thash_entries=", set_thash_entries); 3036 3037 static void __init tcp_init_mem(void) 3038 { 3039 unsigned long limit = nr_free_buffer_pages() / 8; 3040 limit = max(limit, 128UL); 3041 sysctl_tcp_mem[0] = limit / 4 * 3; 3042 sysctl_tcp_mem[1] = limit; 3043 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3044 } 3045 3046 void __init tcp_init(void) 3047 { 3048 struct sk_buff *skb = NULL; 3049 unsigned long limit; 3050 int max_rshare, max_wshare, cnt; 3051 unsigned int i; 3052 3053 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3054 3055 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3056 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3057 tcp_hashinfo.bind_bucket_cachep = 3058 kmem_cache_create("tcp_bind_bucket", 3059 sizeof(struct inet_bind_bucket), 0, 3060 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3061 3062 /* Size and allocate the main established and bind bucket 3063 * hash tables. 3064 * 3065 * The methodology is similar to that of the buffer cache. 3066 */ 3067 tcp_hashinfo.ehash = 3068 alloc_large_system_hash("TCP established", 3069 sizeof(struct inet_ehash_bucket), 3070 thash_entries, 3071 17, /* one slot per 128 KB of memory */ 3072 0, 3073 NULL, 3074 &tcp_hashinfo.ehash_mask, 3075 0, 3076 thash_entries ? 0 : 512 * 1024); 3077 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3078 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3079 3080 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3081 panic("TCP: failed to alloc ehash_locks"); 3082 tcp_hashinfo.bhash = 3083 alloc_large_system_hash("TCP bind", 3084 sizeof(struct inet_bind_hashbucket), 3085 tcp_hashinfo.ehash_mask + 1, 3086 17, /* one slot per 128 KB of memory */ 3087 0, 3088 &tcp_hashinfo.bhash_size, 3089 NULL, 3090 0, 3091 64 * 1024); 3092 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3093 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3094 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3095 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3096 } 3097 3098 3099 cnt = tcp_hashinfo.ehash_mask + 1; 3100 3101 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3102 sysctl_tcp_max_orphans = cnt / 2; 3103 sysctl_max_syn_backlog = max(128, cnt / 256); 3104 3105 tcp_init_mem(); 3106 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3107 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3108 max_wshare = min(4UL*1024*1024, limit); 3109 max_rshare = min(6UL*1024*1024, limit); 3110 3111 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3112 sysctl_tcp_wmem[1] = 16*1024; 3113 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3114 3115 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3116 sysctl_tcp_rmem[1] = 87380; 3117 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3118 3119 pr_info("Hash tables configured (established %u bind %u)\n", 3120 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3121 3122 tcp_metrics_init(); 3123 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3124 tcp_tasklet_init(); 3125 } 3126