xref: /openbmc/linux/net/ipv4/tcp.c (revision 65cf840f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 #include <linux/slab.h>
269 
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276 
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279 
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 int sysctl_tcp_mem[3] __read_mostly;
286 int sysctl_tcp_wmem[3] __read_mostly;
287 int sysctl_tcp_rmem[3] __read_mostly;
288 
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 	if (!tcp_memory_pressure) {
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 		tcp_memory_pressure = 1;
326 	}
327 }
328 
329 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 
331 /* Convert seconds to retransmits based on initial and max timeout */
332 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
333 {
334 	u8 res = 0;
335 
336 	if (seconds > 0) {
337 		int period = timeout;
338 
339 		res = 1;
340 		while (seconds > period && res < 255) {
341 			res++;
342 			timeout <<= 1;
343 			if (timeout > rto_max)
344 				timeout = rto_max;
345 			period += timeout;
346 		}
347 	}
348 	return res;
349 }
350 
351 /* Convert retransmits to seconds based on initial and max timeout */
352 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
353 {
354 	int period = 0;
355 
356 	if (retrans > 0) {
357 		period = timeout;
358 		while (--retrans) {
359 			timeout <<= 1;
360 			if (timeout > rto_max)
361 				timeout = rto_max;
362 			period += timeout;
363 		}
364 	}
365 	return period;
366 }
367 
368 /*
369  *	Wait for a TCP event.
370  *
371  *	Note that we don't need to lock the socket, as the upper poll layers
372  *	take care of normal races (between the test and the event) and we don't
373  *	go look at any of the socket buffers directly.
374  */
375 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
376 {
377 	unsigned int mask;
378 	struct sock *sk = sock->sk;
379 	struct tcp_sock *tp = tcp_sk(sk);
380 
381 	sock_poll_wait(file, sk_sleep(sk), wait);
382 	if (sk->sk_state == TCP_LISTEN)
383 		return inet_csk_listen_poll(sk);
384 
385 	/* Socket is not locked. We are protected from async events
386 	 * by poll logic and correct handling of state changes
387 	 * made by other threads is impossible in any case.
388 	 */
389 
390 	mask = 0;
391 	if (sk->sk_err)
392 		mask = POLLERR;
393 
394 	/*
395 	 * POLLHUP is certainly not done right. But poll() doesn't
396 	 * have a notion of HUP in just one direction, and for a
397 	 * socket the read side is more interesting.
398 	 *
399 	 * Some poll() documentation says that POLLHUP is incompatible
400 	 * with the POLLOUT/POLLWR flags, so somebody should check this
401 	 * all. But careful, it tends to be safer to return too many
402 	 * bits than too few, and you can easily break real applications
403 	 * if you don't tell them that something has hung up!
404 	 *
405 	 * Check-me.
406 	 *
407 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
408 	 * our fs/select.c). It means that after we received EOF,
409 	 * poll always returns immediately, making impossible poll() on write()
410 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
411 	 * if and only if shutdown has been made in both directions.
412 	 * Actually, it is interesting to look how Solaris and DUX
413 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
414 	 * then we could set it on SND_SHUTDOWN. BTW examples given
415 	 * in Stevens' books assume exactly this behaviour, it explains
416 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
417 	 *
418 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
419 	 * blocking on fresh not-connected or disconnected socket. --ANK
420 	 */
421 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
422 		mask |= POLLHUP;
423 	if (sk->sk_shutdown & RCV_SHUTDOWN)
424 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
425 
426 	/* Connected? */
427 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
428 		int target = sock_rcvlowat(sk, 0, INT_MAX);
429 
430 		if (tp->urg_seq == tp->copied_seq &&
431 		    !sock_flag(sk, SOCK_URGINLINE) &&
432 		    tp->urg_data)
433 			target++;
434 
435 		/* Potential race condition. If read of tp below will
436 		 * escape above sk->sk_state, we can be illegally awaken
437 		 * in SYN_* states. */
438 		if (tp->rcv_nxt - tp->copied_seq >= target)
439 			mask |= POLLIN | POLLRDNORM;
440 
441 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
442 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
443 				mask |= POLLOUT | POLLWRNORM;
444 			} else {  /* send SIGIO later */
445 				set_bit(SOCK_ASYNC_NOSPACE,
446 					&sk->sk_socket->flags);
447 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
448 
449 				/* Race breaker. If space is freed after
450 				 * wspace test but before the flags are set,
451 				 * IO signal will be lost.
452 				 */
453 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
454 					mask |= POLLOUT | POLLWRNORM;
455 			}
456 		}
457 
458 		if (tp->urg_data & TCP_URG_VALID)
459 			mask |= POLLPRI;
460 	}
461 	return mask;
462 }
463 
464 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
465 {
466 	struct tcp_sock *tp = tcp_sk(sk);
467 	int answ;
468 
469 	switch (cmd) {
470 	case SIOCINQ:
471 		if (sk->sk_state == TCP_LISTEN)
472 			return -EINVAL;
473 
474 		lock_sock(sk);
475 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
476 			answ = 0;
477 		else if (sock_flag(sk, SOCK_URGINLINE) ||
478 			 !tp->urg_data ||
479 			 before(tp->urg_seq, tp->copied_seq) ||
480 			 !before(tp->urg_seq, tp->rcv_nxt)) {
481 			struct sk_buff *skb;
482 
483 			answ = tp->rcv_nxt - tp->copied_seq;
484 
485 			/* Subtract 1, if FIN is in queue. */
486 			skb = skb_peek_tail(&sk->sk_receive_queue);
487 			if (answ && skb)
488 				answ -= tcp_hdr(skb)->fin;
489 		} else
490 			answ = tp->urg_seq - tp->copied_seq;
491 		release_sock(sk);
492 		break;
493 	case SIOCATMARK:
494 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
495 		break;
496 	case SIOCOUTQ:
497 		if (sk->sk_state == TCP_LISTEN)
498 			return -EINVAL;
499 
500 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
501 			answ = 0;
502 		else
503 			answ = tp->write_seq - tp->snd_una;
504 		break;
505 	default:
506 		return -ENOIOCTLCMD;
507 	}
508 
509 	return put_user(answ, (int __user *)arg);
510 }
511 
512 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
513 {
514 	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
515 	tp->pushed_seq = tp->write_seq;
516 }
517 
518 static inline int forced_push(struct tcp_sock *tp)
519 {
520 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
521 }
522 
523 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
527 
528 	skb->csum    = 0;
529 	tcb->seq     = tcb->end_seq = tp->write_seq;
530 	tcb->flags   = TCPCB_FLAG_ACK;
531 	tcb->sacked  = 0;
532 	skb_header_release(skb);
533 	tcp_add_write_queue_tail(sk, skb);
534 	sk->sk_wmem_queued += skb->truesize;
535 	sk_mem_charge(sk, skb->truesize);
536 	if (tp->nonagle & TCP_NAGLE_PUSH)
537 		tp->nonagle &= ~TCP_NAGLE_PUSH;
538 }
539 
540 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
541 {
542 	if (flags & MSG_OOB)
543 		tp->snd_up = tp->write_seq;
544 }
545 
546 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
547 			    int nonagle)
548 {
549 	if (tcp_send_head(sk)) {
550 		struct tcp_sock *tp = tcp_sk(sk);
551 
552 		if (!(flags & MSG_MORE) || forced_push(tp))
553 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
554 
555 		tcp_mark_urg(tp, flags);
556 		__tcp_push_pending_frames(sk, mss_now,
557 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
558 	}
559 }
560 
561 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
562 				unsigned int offset, size_t len)
563 {
564 	struct tcp_splice_state *tss = rd_desc->arg.data;
565 	int ret;
566 
567 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
568 			      tss->flags);
569 	if (ret > 0)
570 		rd_desc->count -= ret;
571 	return ret;
572 }
573 
574 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
575 {
576 	/* Store TCP splice context information in read_descriptor_t. */
577 	read_descriptor_t rd_desc = {
578 		.arg.data = tss,
579 		.count	  = tss->len,
580 	};
581 
582 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
583 }
584 
585 /**
586  *  tcp_splice_read - splice data from TCP socket to a pipe
587  * @sock:	socket to splice from
588  * @ppos:	position (not valid)
589  * @pipe:	pipe to splice to
590  * @len:	number of bytes to splice
591  * @flags:	splice modifier flags
592  *
593  * Description:
594  *    Will read pages from given socket and fill them into a pipe.
595  *
596  **/
597 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
598 			struct pipe_inode_info *pipe, size_t len,
599 			unsigned int flags)
600 {
601 	struct sock *sk = sock->sk;
602 	struct tcp_splice_state tss = {
603 		.pipe = pipe,
604 		.len = len,
605 		.flags = flags,
606 	};
607 	long timeo;
608 	ssize_t spliced;
609 	int ret;
610 
611 	/*
612 	 * We can't seek on a socket input
613 	 */
614 	if (unlikely(*ppos))
615 		return -ESPIPE;
616 
617 	ret = spliced = 0;
618 
619 	lock_sock(sk);
620 
621 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
622 	while (tss.len) {
623 		ret = __tcp_splice_read(sk, &tss);
624 		if (ret < 0)
625 			break;
626 		else if (!ret) {
627 			if (spliced)
628 				break;
629 			if (sock_flag(sk, SOCK_DONE))
630 				break;
631 			if (sk->sk_err) {
632 				ret = sock_error(sk);
633 				break;
634 			}
635 			if (sk->sk_shutdown & RCV_SHUTDOWN)
636 				break;
637 			if (sk->sk_state == TCP_CLOSE) {
638 				/*
639 				 * This occurs when user tries to read
640 				 * from never connected socket.
641 				 */
642 				if (!sock_flag(sk, SOCK_DONE))
643 					ret = -ENOTCONN;
644 				break;
645 			}
646 			if (!timeo) {
647 				ret = -EAGAIN;
648 				break;
649 			}
650 			sk_wait_data(sk, &timeo);
651 			if (signal_pending(current)) {
652 				ret = sock_intr_errno(timeo);
653 				break;
654 			}
655 			continue;
656 		}
657 		tss.len -= ret;
658 		spliced += ret;
659 
660 		if (!timeo)
661 			break;
662 		release_sock(sk);
663 		lock_sock(sk);
664 
665 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
666 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
667 		    signal_pending(current))
668 			break;
669 	}
670 
671 	release_sock(sk);
672 
673 	if (spliced)
674 		return spliced;
675 
676 	return ret;
677 }
678 
679 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
680 {
681 	struct sk_buff *skb;
682 
683 	/* The TCP header must be at least 32-bit aligned.  */
684 	size = ALIGN(size, 4);
685 
686 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
687 	if (skb) {
688 		if (sk_wmem_schedule(sk, skb->truesize)) {
689 			/*
690 			 * Make sure that we have exactly size bytes
691 			 * available to the caller, no more, no less.
692 			 */
693 			skb_reserve(skb, skb_tailroom(skb) - size);
694 			return skb;
695 		}
696 		__kfree_skb(skb);
697 	} else {
698 		sk->sk_prot->enter_memory_pressure(sk);
699 		sk_stream_moderate_sndbuf(sk);
700 	}
701 	return NULL;
702 }
703 
704 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
705 				       int large_allowed)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	u32 xmit_size_goal, old_size_goal;
709 
710 	xmit_size_goal = mss_now;
711 
712 	if (large_allowed && sk_can_gso(sk)) {
713 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
714 				  inet_csk(sk)->icsk_af_ops->net_header_len -
715 				  inet_csk(sk)->icsk_ext_hdr_len -
716 				  tp->tcp_header_len);
717 
718 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
719 
720 		/* We try hard to avoid divides here */
721 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
722 
723 		if (likely(old_size_goal <= xmit_size_goal &&
724 			   old_size_goal + mss_now > xmit_size_goal)) {
725 			xmit_size_goal = old_size_goal;
726 		} else {
727 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
728 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
729 		}
730 	}
731 
732 	return max(xmit_size_goal, mss_now);
733 }
734 
735 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
736 {
737 	int mss_now;
738 
739 	mss_now = tcp_current_mss(sk);
740 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
741 
742 	return mss_now;
743 }
744 
745 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
746 			 size_t psize, int flags)
747 {
748 	struct tcp_sock *tp = tcp_sk(sk);
749 	int mss_now, size_goal;
750 	int err;
751 	ssize_t copied;
752 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
753 
754 	/* Wait for a connection to finish. */
755 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
756 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
757 			goto out_err;
758 
759 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
760 
761 	mss_now = tcp_send_mss(sk, &size_goal, flags);
762 	copied = 0;
763 
764 	err = -EPIPE;
765 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
766 		goto out_err;
767 
768 	while (psize > 0) {
769 		struct sk_buff *skb = tcp_write_queue_tail(sk);
770 		struct page *page = pages[poffset / PAGE_SIZE];
771 		int copy, i, can_coalesce;
772 		int offset = poffset % PAGE_SIZE;
773 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
774 
775 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
776 new_segment:
777 			if (!sk_stream_memory_free(sk))
778 				goto wait_for_sndbuf;
779 
780 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
781 			if (!skb)
782 				goto wait_for_memory;
783 
784 			skb_entail(sk, skb);
785 			copy = size_goal;
786 		}
787 
788 		if (copy > size)
789 			copy = size;
790 
791 		i = skb_shinfo(skb)->nr_frags;
792 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
793 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
794 			tcp_mark_push(tp, skb);
795 			goto new_segment;
796 		}
797 		if (!sk_wmem_schedule(sk, copy))
798 			goto wait_for_memory;
799 
800 		if (can_coalesce) {
801 			skb_shinfo(skb)->frags[i - 1].size += copy;
802 		} else {
803 			get_page(page);
804 			skb_fill_page_desc(skb, i, page, offset, copy);
805 		}
806 
807 		skb->len += copy;
808 		skb->data_len += copy;
809 		skb->truesize += copy;
810 		sk->sk_wmem_queued += copy;
811 		sk_mem_charge(sk, copy);
812 		skb->ip_summed = CHECKSUM_PARTIAL;
813 		tp->write_seq += copy;
814 		TCP_SKB_CB(skb)->end_seq += copy;
815 		skb_shinfo(skb)->gso_segs = 0;
816 
817 		if (!copied)
818 			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
819 
820 		copied += copy;
821 		poffset += copy;
822 		if (!(psize -= copy))
823 			goto out;
824 
825 		if (skb->len < size_goal || (flags & MSG_OOB))
826 			continue;
827 
828 		if (forced_push(tp)) {
829 			tcp_mark_push(tp, skb);
830 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
831 		} else if (skb == tcp_send_head(sk))
832 			tcp_push_one(sk, mss_now);
833 		continue;
834 
835 wait_for_sndbuf:
836 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
837 wait_for_memory:
838 		if (copied)
839 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
840 
841 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
842 			goto do_error;
843 
844 		mss_now = tcp_send_mss(sk, &size_goal, flags);
845 	}
846 
847 out:
848 	if (copied)
849 		tcp_push(sk, flags, mss_now, tp->nonagle);
850 	return copied;
851 
852 do_error:
853 	if (copied)
854 		goto out;
855 out_err:
856 	return sk_stream_error(sk, flags, err);
857 }
858 
859 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
860 		     size_t size, int flags)
861 {
862 	ssize_t res;
863 	struct sock *sk = sock->sk;
864 
865 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
866 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
867 		return sock_no_sendpage(sock, page, offset, size, flags);
868 
869 	lock_sock(sk);
870 	TCP_CHECK_TIMER(sk);
871 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
872 	TCP_CHECK_TIMER(sk);
873 	release_sock(sk);
874 	return res;
875 }
876 
877 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
878 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
879 
880 static inline int select_size(struct sock *sk, int sg)
881 {
882 	struct tcp_sock *tp = tcp_sk(sk);
883 	int tmp = tp->mss_cache;
884 
885 	if (sg) {
886 		if (sk_can_gso(sk))
887 			tmp = 0;
888 		else {
889 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
890 
891 			if (tmp >= pgbreak &&
892 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
893 				tmp = pgbreak;
894 		}
895 	}
896 
897 	return tmp;
898 }
899 
900 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
901 		size_t size)
902 {
903 	struct sock *sk = sock->sk;
904 	struct iovec *iov;
905 	struct tcp_sock *tp = tcp_sk(sk);
906 	struct sk_buff *skb;
907 	int iovlen, flags;
908 	int mss_now, size_goal;
909 	int sg, err, copied;
910 	long timeo;
911 
912 	lock_sock(sk);
913 	TCP_CHECK_TIMER(sk);
914 
915 	flags = msg->msg_flags;
916 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
917 
918 	/* Wait for a connection to finish. */
919 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
920 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
921 			goto out_err;
922 
923 	/* This should be in poll */
924 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
925 
926 	mss_now = tcp_send_mss(sk, &size_goal, flags);
927 
928 	/* Ok commence sending. */
929 	iovlen = msg->msg_iovlen;
930 	iov = msg->msg_iov;
931 	copied = 0;
932 
933 	err = -EPIPE;
934 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
935 		goto out_err;
936 
937 	sg = sk->sk_route_caps & NETIF_F_SG;
938 
939 	while (--iovlen >= 0) {
940 		int seglen = iov->iov_len;
941 		unsigned char __user *from = iov->iov_base;
942 
943 		iov++;
944 
945 		while (seglen > 0) {
946 			int copy = 0;
947 			int max = size_goal;
948 
949 			skb = tcp_write_queue_tail(sk);
950 			if (tcp_send_head(sk)) {
951 				if (skb->ip_summed == CHECKSUM_NONE)
952 					max = mss_now;
953 				copy = max - skb->len;
954 			}
955 
956 			if (copy <= 0) {
957 new_segment:
958 				/* Allocate new segment. If the interface is SG,
959 				 * allocate skb fitting to single page.
960 				 */
961 				if (!sk_stream_memory_free(sk))
962 					goto wait_for_sndbuf;
963 
964 				skb = sk_stream_alloc_skb(sk,
965 							  select_size(sk, sg),
966 							  sk->sk_allocation);
967 				if (!skb)
968 					goto wait_for_memory;
969 
970 				/*
971 				 * Check whether we can use HW checksum.
972 				 */
973 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
974 					skb->ip_summed = CHECKSUM_PARTIAL;
975 
976 				skb_entail(sk, skb);
977 				copy = size_goal;
978 				max = size_goal;
979 			}
980 
981 			/* Try to append data to the end of skb. */
982 			if (copy > seglen)
983 				copy = seglen;
984 
985 			/* Where to copy to? */
986 			if (skb_tailroom(skb) > 0) {
987 				/* We have some space in skb head. Superb! */
988 				if (copy > skb_tailroom(skb))
989 					copy = skb_tailroom(skb);
990 				if ((err = skb_add_data(skb, from, copy)) != 0)
991 					goto do_fault;
992 			} else {
993 				int merge = 0;
994 				int i = skb_shinfo(skb)->nr_frags;
995 				struct page *page = TCP_PAGE(sk);
996 				int off = TCP_OFF(sk);
997 
998 				if (skb_can_coalesce(skb, i, page, off) &&
999 				    off != PAGE_SIZE) {
1000 					/* We can extend the last page
1001 					 * fragment. */
1002 					merge = 1;
1003 				} else if (i == MAX_SKB_FRAGS || !sg) {
1004 					/* Need to add new fragment and cannot
1005 					 * do this because interface is non-SG,
1006 					 * or because all the page slots are
1007 					 * busy. */
1008 					tcp_mark_push(tp, skb);
1009 					goto new_segment;
1010 				} else if (page) {
1011 					if (off == PAGE_SIZE) {
1012 						put_page(page);
1013 						TCP_PAGE(sk) = page = NULL;
1014 						off = 0;
1015 					}
1016 				} else
1017 					off = 0;
1018 
1019 				if (copy > PAGE_SIZE - off)
1020 					copy = PAGE_SIZE - off;
1021 
1022 				if (!sk_wmem_schedule(sk, copy))
1023 					goto wait_for_memory;
1024 
1025 				if (!page) {
1026 					/* Allocate new cache page. */
1027 					if (!(page = sk_stream_alloc_page(sk)))
1028 						goto wait_for_memory;
1029 				}
1030 
1031 				/* Time to copy data. We are close to
1032 				 * the end! */
1033 				err = skb_copy_to_page(sk, from, skb, page,
1034 						       off, copy);
1035 				if (err) {
1036 					/* If this page was new, give it to the
1037 					 * socket so it does not get leaked.
1038 					 */
1039 					if (!TCP_PAGE(sk)) {
1040 						TCP_PAGE(sk) = page;
1041 						TCP_OFF(sk) = 0;
1042 					}
1043 					goto do_error;
1044 				}
1045 
1046 				/* Update the skb. */
1047 				if (merge) {
1048 					skb_shinfo(skb)->frags[i - 1].size +=
1049 									copy;
1050 				} else {
1051 					skb_fill_page_desc(skb, i, page, off, copy);
1052 					if (TCP_PAGE(sk)) {
1053 						get_page(page);
1054 					} else if (off + copy < PAGE_SIZE) {
1055 						get_page(page);
1056 						TCP_PAGE(sk) = page;
1057 					}
1058 				}
1059 
1060 				TCP_OFF(sk) = off + copy;
1061 			}
1062 
1063 			if (!copied)
1064 				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
1065 
1066 			tp->write_seq += copy;
1067 			TCP_SKB_CB(skb)->end_seq += copy;
1068 			skb_shinfo(skb)->gso_segs = 0;
1069 
1070 			from += copy;
1071 			copied += copy;
1072 			if ((seglen -= copy) == 0 && iovlen == 0)
1073 				goto out;
1074 
1075 			if (skb->len < max || (flags & MSG_OOB))
1076 				continue;
1077 
1078 			if (forced_push(tp)) {
1079 				tcp_mark_push(tp, skb);
1080 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1081 			} else if (skb == tcp_send_head(sk))
1082 				tcp_push_one(sk, mss_now);
1083 			continue;
1084 
1085 wait_for_sndbuf:
1086 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088 			if (copied)
1089 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1090 
1091 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1092 				goto do_error;
1093 
1094 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1095 		}
1096 	}
1097 
1098 out:
1099 	if (copied)
1100 		tcp_push(sk, flags, mss_now, tp->nonagle);
1101 	TCP_CHECK_TIMER(sk);
1102 	release_sock(sk);
1103 	return copied;
1104 
1105 do_fault:
1106 	if (!skb->len) {
1107 		tcp_unlink_write_queue(skb, sk);
1108 		/* It is the one place in all of TCP, except connection
1109 		 * reset, where we can be unlinking the send_head.
1110 		 */
1111 		tcp_check_send_head(sk, skb);
1112 		sk_wmem_free_skb(sk, skb);
1113 	}
1114 
1115 do_error:
1116 	if (copied)
1117 		goto out;
1118 out_err:
1119 	err = sk_stream_error(sk, flags, err);
1120 	TCP_CHECK_TIMER(sk);
1121 	release_sock(sk);
1122 	return err;
1123 }
1124 
1125 /*
1126  *	Handle reading urgent data. BSD has very simple semantics for
1127  *	this, no blocking and very strange errors 8)
1128  */
1129 
1130 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1131 {
1132 	struct tcp_sock *tp = tcp_sk(sk);
1133 
1134 	/* No URG data to read. */
1135 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1136 	    tp->urg_data == TCP_URG_READ)
1137 		return -EINVAL;	/* Yes this is right ! */
1138 
1139 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1140 		return -ENOTCONN;
1141 
1142 	if (tp->urg_data & TCP_URG_VALID) {
1143 		int err = 0;
1144 		char c = tp->urg_data;
1145 
1146 		if (!(flags & MSG_PEEK))
1147 			tp->urg_data = TCP_URG_READ;
1148 
1149 		/* Read urgent data. */
1150 		msg->msg_flags |= MSG_OOB;
1151 
1152 		if (len > 0) {
1153 			if (!(flags & MSG_TRUNC))
1154 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1155 			len = 1;
1156 		} else
1157 			msg->msg_flags |= MSG_TRUNC;
1158 
1159 		return err ? -EFAULT : len;
1160 	}
1161 
1162 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1163 		return 0;
1164 
1165 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1166 	 * the available implementations agree in this case:
1167 	 * this call should never block, independent of the
1168 	 * blocking state of the socket.
1169 	 * Mike <pall@rz.uni-karlsruhe.de>
1170 	 */
1171 	return -EAGAIN;
1172 }
1173 
1174 /* Clean up the receive buffer for full frames taken by the user,
1175  * then send an ACK if necessary.  COPIED is the number of bytes
1176  * tcp_recvmsg has given to the user so far, it speeds up the
1177  * calculation of whether or not we must ACK for the sake of
1178  * a window update.
1179  */
1180 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1181 {
1182 	struct tcp_sock *tp = tcp_sk(sk);
1183 	int time_to_ack = 0;
1184 
1185 #if TCP_DEBUG
1186 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1187 
1188 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1189 	     KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1190 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1191 #endif
1192 
1193 	if (inet_csk_ack_scheduled(sk)) {
1194 		const struct inet_connection_sock *icsk = inet_csk(sk);
1195 		   /* Delayed ACKs frequently hit locked sockets during bulk
1196 		    * receive. */
1197 		if (icsk->icsk_ack.blocked ||
1198 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1199 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1200 		    /*
1201 		     * If this read emptied read buffer, we send ACK, if
1202 		     * connection is not bidirectional, user drained
1203 		     * receive buffer and there was a small segment
1204 		     * in queue.
1205 		     */
1206 		    (copied > 0 &&
1207 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1208 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1209 		       !icsk->icsk_ack.pingpong)) &&
1210 		      !atomic_read(&sk->sk_rmem_alloc)))
1211 			time_to_ack = 1;
1212 	}
1213 
1214 	/* We send an ACK if we can now advertise a non-zero window
1215 	 * which has been raised "significantly".
1216 	 *
1217 	 * Even if window raised up to infinity, do not send window open ACK
1218 	 * in states, where we will not receive more. It is useless.
1219 	 */
1220 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1221 		__u32 rcv_window_now = tcp_receive_window(tp);
1222 
1223 		/* Optimize, __tcp_select_window() is not cheap. */
1224 		if (2*rcv_window_now <= tp->window_clamp) {
1225 			__u32 new_window = __tcp_select_window(sk);
1226 
1227 			/* Send ACK now, if this read freed lots of space
1228 			 * in our buffer. Certainly, new_window is new window.
1229 			 * We can advertise it now, if it is not less than current one.
1230 			 * "Lots" means "at least twice" here.
1231 			 */
1232 			if (new_window && new_window >= 2 * rcv_window_now)
1233 				time_to_ack = 1;
1234 		}
1235 	}
1236 	if (time_to_ack)
1237 		tcp_send_ack(sk);
1238 }
1239 
1240 static void tcp_prequeue_process(struct sock *sk)
1241 {
1242 	struct sk_buff *skb;
1243 	struct tcp_sock *tp = tcp_sk(sk);
1244 
1245 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1246 
1247 	/* RX process wants to run with disabled BHs, though it is not
1248 	 * necessary */
1249 	local_bh_disable();
1250 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1251 		sk_backlog_rcv(sk, skb);
1252 	local_bh_enable();
1253 
1254 	/* Clear memory counter. */
1255 	tp->ucopy.memory = 0;
1256 }
1257 
1258 #ifdef CONFIG_NET_DMA
1259 static void tcp_service_net_dma(struct sock *sk, bool wait)
1260 {
1261 	dma_cookie_t done, used;
1262 	dma_cookie_t last_issued;
1263 	struct tcp_sock *tp = tcp_sk(sk);
1264 
1265 	if (!tp->ucopy.dma_chan)
1266 		return;
1267 
1268 	last_issued = tp->ucopy.dma_cookie;
1269 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1270 
1271 	do {
1272 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1273 					      last_issued, &done,
1274 					      &used) == DMA_SUCCESS) {
1275 			/* Safe to free early-copied skbs now */
1276 			__skb_queue_purge(&sk->sk_async_wait_queue);
1277 			break;
1278 		} else {
1279 			struct sk_buff *skb;
1280 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1281 			       (dma_async_is_complete(skb->dma_cookie, done,
1282 						      used) == DMA_SUCCESS)) {
1283 				__skb_dequeue(&sk->sk_async_wait_queue);
1284 				kfree_skb(skb);
1285 			}
1286 		}
1287 	} while (wait);
1288 }
1289 #endif
1290 
1291 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1292 {
1293 	struct sk_buff *skb;
1294 	u32 offset;
1295 
1296 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1297 		offset = seq - TCP_SKB_CB(skb)->seq;
1298 		if (tcp_hdr(skb)->syn)
1299 			offset--;
1300 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1301 			*off = offset;
1302 			return skb;
1303 		}
1304 	}
1305 	return NULL;
1306 }
1307 
1308 /*
1309  * This routine provides an alternative to tcp_recvmsg() for routines
1310  * that would like to handle copying from skbuffs directly in 'sendfile'
1311  * fashion.
1312  * Note:
1313  *	- It is assumed that the socket was locked by the caller.
1314  *	- The routine does not block.
1315  *	- At present, there is no support for reading OOB data
1316  *	  or for 'peeking' the socket using this routine
1317  *	  (although both would be easy to implement).
1318  */
1319 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1320 		  sk_read_actor_t recv_actor)
1321 {
1322 	struct sk_buff *skb;
1323 	struct tcp_sock *tp = tcp_sk(sk);
1324 	u32 seq = tp->copied_seq;
1325 	u32 offset;
1326 	int copied = 0;
1327 
1328 	if (sk->sk_state == TCP_LISTEN)
1329 		return -ENOTCONN;
1330 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1331 		if (offset < skb->len) {
1332 			int used;
1333 			size_t len;
1334 
1335 			len = skb->len - offset;
1336 			/* Stop reading if we hit a patch of urgent data */
1337 			if (tp->urg_data) {
1338 				u32 urg_offset = tp->urg_seq - seq;
1339 				if (urg_offset < len)
1340 					len = urg_offset;
1341 				if (!len)
1342 					break;
1343 			}
1344 			used = recv_actor(desc, skb, offset, len);
1345 			if (used < 0) {
1346 				if (!copied)
1347 					copied = used;
1348 				break;
1349 			} else if (used <= len) {
1350 				seq += used;
1351 				copied += used;
1352 				offset += used;
1353 			}
1354 			/*
1355 			 * If recv_actor drops the lock (e.g. TCP splice
1356 			 * receive) the skb pointer might be invalid when
1357 			 * getting here: tcp_collapse might have deleted it
1358 			 * while aggregating skbs from the socket queue.
1359 			 */
1360 			skb = tcp_recv_skb(sk, seq-1, &offset);
1361 			if (!skb || (offset+1 != skb->len))
1362 				break;
1363 		}
1364 		if (tcp_hdr(skb)->fin) {
1365 			sk_eat_skb(sk, skb, 0);
1366 			++seq;
1367 			break;
1368 		}
1369 		sk_eat_skb(sk, skb, 0);
1370 		if (!desc->count)
1371 			break;
1372 		tp->copied_seq = seq;
1373 	}
1374 	tp->copied_seq = seq;
1375 
1376 	tcp_rcv_space_adjust(sk);
1377 
1378 	/* Clean up data we have read: This will do ACK frames. */
1379 	if (copied > 0)
1380 		tcp_cleanup_rbuf(sk, copied);
1381 	return copied;
1382 }
1383 
1384 /*
1385  *	This routine copies from a sock struct into the user buffer.
1386  *
1387  *	Technical note: in 2.3 we work on _locked_ socket, so that
1388  *	tricks with *seq access order and skb->users are not required.
1389  *	Probably, code can be easily improved even more.
1390  */
1391 
1392 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1393 		size_t len, int nonblock, int flags, int *addr_len)
1394 {
1395 	struct tcp_sock *tp = tcp_sk(sk);
1396 	int copied = 0;
1397 	u32 peek_seq;
1398 	u32 *seq;
1399 	unsigned long used;
1400 	int err;
1401 	int target;		/* Read at least this many bytes */
1402 	long timeo;
1403 	struct task_struct *user_recv = NULL;
1404 	int copied_early = 0;
1405 	struct sk_buff *skb;
1406 	u32 urg_hole = 0;
1407 
1408 	lock_sock(sk);
1409 
1410 	TCP_CHECK_TIMER(sk);
1411 
1412 	err = -ENOTCONN;
1413 	if (sk->sk_state == TCP_LISTEN)
1414 		goto out;
1415 
1416 	timeo = sock_rcvtimeo(sk, nonblock);
1417 
1418 	/* Urgent data needs to be handled specially. */
1419 	if (flags & MSG_OOB)
1420 		goto recv_urg;
1421 
1422 	seq = &tp->copied_seq;
1423 	if (flags & MSG_PEEK) {
1424 		peek_seq = tp->copied_seq;
1425 		seq = &peek_seq;
1426 	}
1427 
1428 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1429 
1430 #ifdef CONFIG_NET_DMA
1431 	tp->ucopy.dma_chan = NULL;
1432 	preempt_disable();
1433 	skb = skb_peek_tail(&sk->sk_receive_queue);
1434 	{
1435 		int available = 0;
1436 
1437 		if (skb)
1438 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1439 		if ((available < target) &&
1440 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1441 		    !sysctl_tcp_low_latency &&
1442 		    dma_find_channel(DMA_MEMCPY)) {
1443 			preempt_enable_no_resched();
1444 			tp->ucopy.pinned_list =
1445 					dma_pin_iovec_pages(msg->msg_iov, len);
1446 		} else {
1447 			preempt_enable_no_resched();
1448 		}
1449 	}
1450 #endif
1451 
1452 	do {
1453 		u32 offset;
1454 
1455 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1456 		if (tp->urg_data && tp->urg_seq == *seq) {
1457 			if (copied)
1458 				break;
1459 			if (signal_pending(current)) {
1460 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1461 				break;
1462 			}
1463 		}
1464 
1465 		/* Next get a buffer. */
1466 
1467 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1468 			/* Now that we have two receive queues this
1469 			 * shouldn't happen.
1470 			 */
1471 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1472 			     KERN_INFO "recvmsg bug: copied %X "
1473 				       "seq %X rcvnxt %X fl %X\n", *seq,
1474 				       TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1475 				       flags))
1476 				break;
1477 
1478 			offset = *seq - TCP_SKB_CB(skb)->seq;
1479 			if (tcp_hdr(skb)->syn)
1480 				offset--;
1481 			if (offset < skb->len)
1482 				goto found_ok_skb;
1483 			if (tcp_hdr(skb)->fin)
1484 				goto found_fin_ok;
1485 			WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
1486 					"copied %X seq %X rcvnxt %X fl %X\n",
1487 					*seq, TCP_SKB_CB(skb)->seq,
1488 					tp->rcv_nxt, flags);
1489 		}
1490 
1491 		/* Well, if we have backlog, try to process it now yet. */
1492 
1493 		if (copied >= target && !sk->sk_backlog.tail)
1494 			break;
1495 
1496 		if (copied) {
1497 			if (sk->sk_err ||
1498 			    sk->sk_state == TCP_CLOSE ||
1499 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1500 			    !timeo ||
1501 			    signal_pending(current))
1502 				break;
1503 		} else {
1504 			if (sock_flag(sk, SOCK_DONE))
1505 				break;
1506 
1507 			if (sk->sk_err) {
1508 				copied = sock_error(sk);
1509 				break;
1510 			}
1511 
1512 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1513 				break;
1514 
1515 			if (sk->sk_state == TCP_CLOSE) {
1516 				if (!sock_flag(sk, SOCK_DONE)) {
1517 					/* This occurs when user tries to read
1518 					 * from never connected socket.
1519 					 */
1520 					copied = -ENOTCONN;
1521 					break;
1522 				}
1523 				break;
1524 			}
1525 
1526 			if (!timeo) {
1527 				copied = -EAGAIN;
1528 				break;
1529 			}
1530 
1531 			if (signal_pending(current)) {
1532 				copied = sock_intr_errno(timeo);
1533 				break;
1534 			}
1535 		}
1536 
1537 		tcp_cleanup_rbuf(sk, copied);
1538 
1539 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1540 			/* Install new reader */
1541 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1542 				user_recv = current;
1543 				tp->ucopy.task = user_recv;
1544 				tp->ucopy.iov = msg->msg_iov;
1545 			}
1546 
1547 			tp->ucopy.len = len;
1548 
1549 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1550 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1551 
1552 			/* Ugly... If prequeue is not empty, we have to
1553 			 * process it before releasing socket, otherwise
1554 			 * order will be broken at second iteration.
1555 			 * More elegant solution is required!!!
1556 			 *
1557 			 * Look: we have the following (pseudo)queues:
1558 			 *
1559 			 * 1. packets in flight
1560 			 * 2. backlog
1561 			 * 3. prequeue
1562 			 * 4. receive_queue
1563 			 *
1564 			 * Each queue can be processed only if the next ones
1565 			 * are empty. At this point we have empty receive_queue.
1566 			 * But prequeue _can_ be not empty after 2nd iteration,
1567 			 * when we jumped to start of loop because backlog
1568 			 * processing added something to receive_queue.
1569 			 * We cannot release_sock(), because backlog contains
1570 			 * packets arrived _after_ prequeued ones.
1571 			 *
1572 			 * Shortly, algorithm is clear --- to process all
1573 			 * the queues in order. We could make it more directly,
1574 			 * requeueing packets from backlog to prequeue, if
1575 			 * is not empty. It is more elegant, but eats cycles,
1576 			 * unfortunately.
1577 			 */
1578 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1579 				goto do_prequeue;
1580 
1581 			/* __ Set realtime policy in scheduler __ */
1582 		}
1583 
1584 #ifdef CONFIG_NET_DMA
1585 		if (tp->ucopy.dma_chan)
1586 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1587 #endif
1588 		if (copied >= target) {
1589 			/* Do not sleep, just process backlog. */
1590 			release_sock(sk);
1591 			lock_sock(sk);
1592 		} else
1593 			sk_wait_data(sk, &timeo);
1594 
1595 #ifdef CONFIG_NET_DMA
1596 		tcp_service_net_dma(sk, false);  /* Don't block */
1597 		tp->ucopy.wakeup = 0;
1598 #endif
1599 
1600 		if (user_recv) {
1601 			int chunk;
1602 
1603 			/* __ Restore normal policy in scheduler __ */
1604 
1605 			if ((chunk = len - tp->ucopy.len) != 0) {
1606 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1607 				len -= chunk;
1608 				copied += chunk;
1609 			}
1610 
1611 			if (tp->rcv_nxt == tp->copied_seq &&
1612 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1613 do_prequeue:
1614 				tcp_prequeue_process(sk);
1615 
1616 				if ((chunk = len - tp->ucopy.len) != 0) {
1617 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1618 					len -= chunk;
1619 					copied += chunk;
1620 				}
1621 			}
1622 		}
1623 		if ((flags & MSG_PEEK) &&
1624 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1625 			if (net_ratelimit())
1626 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1627 				       current->comm, task_pid_nr(current));
1628 			peek_seq = tp->copied_seq;
1629 		}
1630 		continue;
1631 
1632 	found_ok_skb:
1633 		/* Ok so how much can we use? */
1634 		used = skb->len - offset;
1635 		if (len < used)
1636 			used = len;
1637 
1638 		/* Do we have urgent data here? */
1639 		if (tp->urg_data) {
1640 			u32 urg_offset = tp->urg_seq - *seq;
1641 			if (urg_offset < used) {
1642 				if (!urg_offset) {
1643 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1644 						++*seq;
1645 						urg_hole++;
1646 						offset++;
1647 						used--;
1648 						if (!used)
1649 							goto skip_copy;
1650 					}
1651 				} else
1652 					used = urg_offset;
1653 			}
1654 		}
1655 
1656 		if (!(flags & MSG_TRUNC)) {
1657 #ifdef CONFIG_NET_DMA
1658 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1659 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1660 
1661 			if (tp->ucopy.dma_chan) {
1662 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1663 					tp->ucopy.dma_chan, skb, offset,
1664 					msg->msg_iov, used,
1665 					tp->ucopy.pinned_list);
1666 
1667 				if (tp->ucopy.dma_cookie < 0) {
1668 
1669 					printk(KERN_ALERT "dma_cookie < 0\n");
1670 
1671 					/* Exception. Bailout! */
1672 					if (!copied)
1673 						copied = -EFAULT;
1674 					break;
1675 				}
1676 
1677 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1678 
1679 				if ((offset + used) == skb->len)
1680 					copied_early = 1;
1681 
1682 			} else
1683 #endif
1684 			{
1685 				err = skb_copy_datagram_iovec(skb, offset,
1686 						msg->msg_iov, used);
1687 				if (err) {
1688 					/* Exception. Bailout! */
1689 					if (!copied)
1690 						copied = -EFAULT;
1691 					break;
1692 				}
1693 			}
1694 		}
1695 
1696 		*seq += used;
1697 		copied += used;
1698 		len -= used;
1699 
1700 		tcp_rcv_space_adjust(sk);
1701 
1702 skip_copy:
1703 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1704 			tp->urg_data = 0;
1705 			tcp_fast_path_check(sk);
1706 		}
1707 		if (used + offset < skb->len)
1708 			continue;
1709 
1710 		if (tcp_hdr(skb)->fin)
1711 			goto found_fin_ok;
1712 		if (!(flags & MSG_PEEK)) {
1713 			sk_eat_skb(sk, skb, copied_early);
1714 			copied_early = 0;
1715 		}
1716 		continue;
1717 
1718 	found_fin_ok:
1719 		/* Process the FIN. */
1720 		++*seq;
1721 		if (!(flags & MSG_PEEK)) {
1722 			sk_eat_skb(sk, skb, copied_early);
1723 			copied_early = 0;
1724 		}
1725 		break;
1726 	} while (len > 0);
1727 
1728 	if (user_recv) {
1729 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1730 			int chunk;
1731 
1732 			tp->ucopy.len = copied > 0 ? len : 0;
1733 
1734 			tcp_prequeue_process(sk);
1735 
1736 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1737 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1738 				len -= chunk;
1739 				copied += chunk;
1740 			}
1741 		}
1742 
1743 		tp->ucopy.task = NULL;
1744 		tp->ucopy.len = 0;
1745 	}
1746 
1747 #ifdef CONFIG_NET_DMA
1748 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1749 	tp->ucopy.dma_chan = NULL;
1750 
1751 	if (tp->ucopy.pinned_list) {
1752 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1753 		tp->ucopy.pinned_list = NULL;
1754 	}
1755 #endif
1756 
1757 	/* According to UNIX98, msg_name/msg_namelen are ignored
1758 	 * on connected socket. I was just happy when found this 8) --ANK
1759 	 */
1760 
1761 	/* Clean up data we have read: This will do ACK frames. */
1762 	tcp_cleanup_rbuf(sk, copied);
1763 
1764 	TCP_CHECK_TIMER(sk);
1765 	release_sock(sk);
1766 	return copied;
1767 
1768 out:
1769 	TCP_CHECK_TIMER(sk);
1770 	release_sock(sk);
1771 	return err;
1772 
1773 recv_urg:
1774 	err = tcp_recv_urg(sk, msg, len, flags);
1775 	goto out;
1776 }
1777 
1778 void tcp_set_state(struct sock *sk, int state)
1779 {
1780 	int oldstate = sk->sk_state;
1781 
1782 	switch (state) {
1783 	case TCP_ESTABLISHED:
1784 		if (oldstate != TCP_ESTABLISHED)
1785 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1786 		break;
1787 
1788 	case TCP_CLOSE:
1789 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1790 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1791 
1792 		sk->sk_prot->unhash(sk);
1793 		if (inet_csk(sk)->icsk_bind_hash &&
1794 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1795 			inet_put_port(sk);
1796 		/* fall through */
1797 	default:
1798 		if (oldstate == TCP_ESTABLISHED)
1799 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1800 	}
1801 
1802 	/* Change state AFTER socket is unhashed to avoid closed
1803 	 * socket sitting in hash tables.
1804 	 */
1805 	sk->sk_state = state;
1806 
1807 #ifdef STATE_TRACE
1808 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1809 #endif
1810 }
1811 EXPORT_SYMBOL_GPL(tcp_set_state);
1812 
1813 /*
1814  *	State processing on a close. This implements the state shift for
1815  *	sending our FIN frame. Note that we only send a FIN for some
1816  *	states. A shutdown() may have already sent the FIN, or we may be
1817  *	closed.
1818  */
1819 
1820 static const unsigned char new_state[16] = {
1821   /* current state:        new state:      action:	*/
1822   /* (Invalid)		*/ TCP_CLOSE,
1823   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1824   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1825   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1826   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1827   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1828   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1829   /* TCP_CLOSE		*/ TCP_CLOSE,
1830   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1831   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1832   /* TCP_LISTEN		*/ TCP_CLOSE,
1833   /* TCP_CLOSING	*/ TCP_CLOSING,
1834 };
1835 
1836 static int tcp_close_state(struct sock *sk)
1837 {
1838 	int next = (int)new_state[sk->sk_state];
1839 	int ns = next & TCP_STATE_MASK;
1840 
1841 	tcp_set_state(sk, ns);
1842 
1843 	return next & TCP_ACTION_FIN;
1844 }
1845 
1846 /*
1847  *	Shutdown the sending side of a connection. Much like close except
1848  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1849  */
1850 
1851 void tcp_shutdown(struct sock *sk, int how)
1852 {
1853 	/*	We need to grab some memory, and put together a FIN,
1854 	 *	and then put it into the queue to be sent.
1855 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1856 	 */
1857 	if (!(how & SEND_SHUTDOWN))
1858 		return;
1859 
1860 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1861 	if ((1 << sk->sk_state) &
1862 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1863 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1864 		/* Clear out any half completed packets.  FIN if needed. */
1865 		if (tcp_close_state(sk))
1866 			tcp_send_fin(sk);
1867 	}
1868 }
1869 
1870 void tcp_close(struct sock *sk, long timeout)
1871 {
1872 	struct sk_buff *skb;
1873 	int data_was_unread = 0;
1874 	int state;
1875 
1876 	lock_sock(sk);
1877 	sk->sk_shutdown = SHUTDOWN_MASK;
1878 
1879 	if (sk->sk_state == TCP_LISTEN) {
1880 		tcp_set_state(sk, TCP_CLOSE);
1881 
1882 		/* Special case. */
1883 		inet_csk_listen_stop(sk);
1884 
1885 		goto adjudge_to_death;
1886 	}
1887 
1888 	/*  We need to flush the recv. buffs.  We do this only on the
1889 	 *  descriptor close, not protocol-sourced closes, because the
1890 	 *  reader process may not have drained the data yet!
1891 	 */
1892 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1893 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1894 			  tcp_hdr(skb)->fin;
1895 		data_was_unread += len;
1896 		__kfree_skb(skb);
1897 	}
1898 
1899 	sk_mem_reclaim(sk);
1900 
1901 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1902 	 * data was lost. To witness the awful effects of the old behavior of
1903 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1904 	 * GET in an FTP client, suspend the process, wait for the client to
1905 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1906 	 * Note: timeout is always zero in such a case.
1907 	 */
1908 	if (data_was_unread) {
1909 		/* Unread data was tossed, zap the connection. */
1910 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1911 		tcp_set_state(sk, TCP_CLOSE);
1912 		tcp_send_active_reset(sk, sk->sk_allocation);
1913 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1914 		/* Check zero linger _after_ checking for unread data. */
1915 		sk->sk_prot->disconnect(sk, 0);
1916 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1917 	} else if (tcp_close_state(sk)) {
1918 		/* We FIN if the application ate all the data before
1919 		 * zapping the connection.
1920 		 */
1921 
1922 		/* RED-PEN. Formally speaking, we have broken TCP state
1923 		 * machine. State transitions:
1924 		 *
1925 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1926 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1927 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1928 		 *
1929 		 * are legal only when FIN has been sent (i.e. in window),
1930 		 * rather than queued out of window. Purists blame.
1931 		 *
1932 		 * F.e. "RFC state" is ESTABLISHED,
1933 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1934 		 *
1935 		 * The visible declinations are that sometimes
1936 		 * we enter time-wait state, when it is not required really
1937 		 * (harmless), do not send active resets, when they are
1938 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1939 		 * they look as CLOSING or LAST_ACK for Linux)
1940 		 * Probably, I missed some more holelets.
1941 		 * 						--ANK
1942 		 */
1943 		tcp_send_fin(sk);
1944 	}
1945 
1946 	sk_stream_wait_close(sk, timeout);
1947 
1948 adjudge_to_death:
1949 	state = sk->sk_state;
1950 	sock_hold(sk);
1951 	sock_orphan(sk);
1952 
1953 	/* It is the last release_sock in its life. It will remove backlog. */
1954 	release_sock(sk);
1955 
1956 
1957 	/* Now socket is owned by kernel and we acquire BH lock
1958 	   to finish close. No need to check for user refs.
1959 	 */
1960 	local_bh_disable();
1961 	bh_lock_sock(sk);
1962 	WARN_ON(sock_owned_by_user(sk));
1963 
1964 	percpu_counter_inc(sk->sk_prot->orphan_count);
1965 
1966 	/* Have we already been destroyed by a softirq or backlog? */
1967 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1968 		goto out;
1969 
1970 	/*	This is a (useful) BSD violating of the RFC. There is a
1971 	 *	problem with TCP as specified in that the other end could
1972 	 *	keep a socket open forever with no application left this end.
1973 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1974 	 *	our end. If they send after that then tough - BUT: long enough
1975 	 *	that we won't make the old 4*rto = almost no time - whoops
1976 	 *	reset mistake.
1977 	 *
1978 	 *	Nope, it was not mistake. It is really desired behaviour
1979 	 *	f.e. on http servers, when such sockets are useless, but
1980 	 *	consume significant resources. Let's do it with special
1981 	 *	linger2	option.					--ANK
1982 	 */
1983 
1984 	if (sk->sk_state == TCP_FIN_WAIT2) {
1985 		struct tcp_sock *tp = tcp_sk(sk);
1986 		if (tp->linger2 < 0) {
1987 			tcp_set_state(sk, TCP_CLOSE);
1988 			tcp_send_active_reset(sk, GFP_ATOMIC);
1989 			NET_INC_STATS_BH(sock_net(sk),
1990 					LINUX_MIB_TCPABORTONLINGER);
1991 		} else {
1992 			const int tmo = tcp_fin_time(sk);
1993 
1994 			if (tmo > TCP_TIMEWAIT_LEN) {
1995 				inet_csk_reset_keepalive_timer(sk,
1996 						tmo - TCP_TIMEWAIT_LEN);
1997 			} else {
1998 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1999 				goto out;
2000 			}
2001 		}
2002 	}
2003 	if (sk->sk_state != TCP_CLOSE) {
2004 		int orphan_count = percpu_counter_read_positive(
2005 						sk->sk_prot->orphan_count);
2006 
2007 		sk_mem_reclaim(sk);
2008 		if (tcp_too_many_orphans(sk, orphan_count)) {
2009 			if (net_ratelimit())
2010 				printk(KERN_INFO "TCP: too many of orphaned "
2011 				       "sockets\n");
2012 			tcp_set_state(sk, TCP_CLOSE);
2013 			tcp_send_active_reset(sk, GFP_ATOMIC);
2014 			NET_INC_STATS_BH(sock_net(sk),
2015 					LINUX_MIB_TCPABORTONMEMORY);
2016 		}
2017 	}
2018 
2019 	if (sk->sk_state == TCP_CLOSE)
2020 		inet_csk_destroy_sock(sk);
2021 	/* Otherwise, socket is reprieved until protocol close. */
2022 
2023 out:
2024 	bh_unlock_sock(sk);
2025 	local_bh_enable();
2026 	sock_put(sk);
2027 }
2028 
2029 /* These states need RST on ABORT according to RFC793 */
2030 
2031 static inline int tcp_need_reset(int state)
2032 {
2033 	return (1 << state) &
2034 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2035 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2036 }
2037 
2038 int tcp_disconnect(struct sock *sk, int flags)
2039 {
2040 	struct inet_sock *inet = inet_sk(sk);
2041 	struct inet_connection_sock *icsk = inet_csk(sk);
2042 	struct tcp_sock *tp = tcp_sk(sk);
2043 	int err = 0;
2044 	int old_state = sk->sk_state;
2045 
2046 	if (old_state != TCP_CLOSE)
2047 		tcp_set_state(sk, TCP_CLOSE);
2048 
2049 	/* ABORT function of RFC793 */
2050 	if (old_state == TCP_LISTEN) {
2051 		inet_csk_listen_stop(sk);
2052 	} else if (tcp_need_reset(old_state) ||
2053 		   (tp->snd_nxt != tp->write_seq &&
2054 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2055 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2056 		 * states
2057 		 */
2058 		tcp_send_active_reset(sk, gfp_any());
2059 		sk->sk_err = ECONNRESET;
2060 	} else if (old_state == TCP_SYN_SENT)
2061 		sk->sk_err = ECONNRESET;
2062 
2063 	tcp_clear_xmit_timers(sk);
2064 	__skb_queue_purge(&sk->sk_receive_queue);
2065 	tcp_write_queue_purge(sk);
2066 	__skb_queue_purge(&tp->out_of_order_queue);
2067 #ifdef CONFIG_NET_DMA
2068 	__skb_queue_purge(&sk->sk_async_wait_queue);
2069 #endif
2070 
2071 	inet->inet_dport = 0;
2072 
2073 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2074 		inet_reset_saddr(sk);
2075 
2076 	sk->sk_shutdown = 0;
2077 	sock_reset_flag(sk, SOCK_DONE);
2078 	tp->srtt = 0;
2079 	if ((tp->write_seq += tp->max_window + 2) == 0)
2080 		tp->write_seq = 1;
2081 	icsk->icsk_backoff = 0;
2082 	tp->snd_cwnd = 2;
2083 	icsk->icsk_probes_out = 0;
2084 	tp->packets_out = 0;
2085 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2086 	tp->snd_cwnd_cnt = 0;
2087 	tp->bytes_acked = 0;
2088 	tp->window_clamp = 0;
2089 	tcp_set_ca_state(sk, TCP_CA_Open);
2090 	tcp_clear_retrans(tp);
2091 	inet_csk_delack_init(sk);
2092 	tcp_init_send_head(sk);
2093 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2094 	__sk_dst_reset(sk);
2095 
2096 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2097 
2098 	sk->sk_error_report(sk);
2099 	return err;
2100 }
2101 
2102 /*
2103  *	Socket option code for TCP.
2104  */
2105 static int do_tcp_setsockopt(struct sock *sk, int level,
2106 		int optname, char __user *optval, unsigned int optlen)
2107 {
2108 	struct tcp_sock *tp = tcp_sk(sk);
2109 	struct inet_connection_sock *icsk = inet_csk(sk);
2110 	int val;
2111 	int err = 0;
2112 
2113 	/* These are data/string values, all the others are ints */
2114 	switch (optname) {
2115 	case TCP_CONGESTION: {
2116 		char name[TCP_CA_NAME_MAX];
2117 
2118 		if (optlen < 1)
2119 			return -EINVAL;
2120 
2121 		val = strncpy_from_user(name, optval,
2122 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2123 		if (val < 0)
2124 			return -EFAULT;
2125 		name[val] = 0;
2126 
2127 		lock_sock(sk);
2128 		err = tcp_set_congestion_control(sk, name);
2129 		release_sock(sk);
2130 		return err;
2131 	}
2132 	case TCP_COOKIE_TRANSACTIONS: {
2133 		struct tcp_cookie_transactions ctd;
2134 		struct tcp_cookie_values *cvp = NULL;
2135 
2136 		if (sizeof(ctd) > optlen)
2137 			return -EINVAL;
2138 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2139 			return -EFAULT;
2140 
2141 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2142 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2143 			return -EINVAL;
2144 
2145 		if (ctd.tcpct_cookie_desired == 0) {
2146 			/* default to global value */
2147 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2148 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2149 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2150 			return -EINVAL;
2151 		}
2152 
2153 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2154 			/* Supercedes all other values */
2155 			lock_sock(sk);
2156 			if (tp->cookie_values != NULL) {
2157 				kref_put(&tp->cookie_values->kref,
2158 					 tcp_cookie_values_release);
2159 				tp->cookie_values = NULL;
2160 			}
2161 			tp->rx_opt.cookie_in_always = 0; /* false */
2162 			tp->rx_opt.cookie_out_never = 1; /* true */
2163 			release_sock(sk);
2164 			return err;
2165 		}
2166 
2167 		/* Allocate ancillary memory before locking.
2168 		 */
2169 		if (ctd.tcpct_used > 0 ||
2170 		    (tp->cookie_values == NULL &&
2171 		     (sysctl_tcp_cookie_size > 0 ||
2172 		      ctd.tcpct_cookie_desired > 0 ||
2173 		      ctd.tcpct_s_data_desired > 0))) {
2174 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2175 				      GFP_KERNEL);
2176 			if (cvp == NULL)
2177 				return -ENOMEM;
2178 		}
2179 		lock_sock(sk);
2180 		tp->rx_opt.cookie_in_always =
2181 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2182 		tp->rx_opt.cookie_out_never = 0; /* false */
2183 
2184 		if (tp->cookie_values != NULL) {
2185 			if (cvp != NULL) {
2186 				/* Changed values are recorded by a changed
2187 				 * pointer, ensuring the cookie will differ,
2188 				 * without separately hashing each value later.
2189 				 */
2190 				kref_put(&tp->cookie_values->kref,
2191 					 tcp_cookie_values_release);
2192 				kref_init(&cvp->kref);
2193 				tp->cookie_values = cvp;
2194 			} else {
2195 				cvp = tp->cookie_values;
2196 			}
2197 		}
2198 		if (cvp != NULL) {
2199 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2200 
2201 			if (ctd.tcpct_used > 0) {
2202 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2203 				       ctd.tcpct_used);
2204 				cvp->s_data_desired = ctd.tcpct_used;
2205 				cvp->s_data_constant = 1; /* true */
2206 			} else {
2207 				/* No constant payload data. */
2208 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2209 				cvp->s_data_constant = 0; /* false */
2210 			}
2211 		}
2212 		release_sock(sk);
2213 		return err;
2214 	}
2215 	default:
2216 		/* fallthru */
2217 		break;
2218 	}
2219 
2220 	if (optlen < sizeof(int))
2221 		return -EINVAL;
2222 
2223 	if (get_user(val, (int __user *)optval))
2224 		return -EFAULT;
2225 
2226 	lock_sock(sk);
2227 
2228 	switch (optname) {
2229 	case TCP_MAXSEG:
2230 		/* Values greater than interface MTU won't take effect. However
2231 		 * at the point when this call is done we typically don't yet
2232 		 * know which interface is going to be used */
2233 		if (val < 8 || val > MAX_TCP_WINDOW) {
2234 			err = -EINVAL;
2235 			break;
2236 		}
2237 		tp->rx_opt.user_mss = val;
2238 		break;
2239 
2240 	case TCP_NODELAY:
2241 		if (val) {
2242 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2243 			 * this option on corked socket is remembered, but
2244 			 * it is not activated until cork is cleared.
2245 			 *
2246 			 * However, when TCP_NODELAY is set we make
2247 			 * an explicit push, which overrides even TCP_CORK
2248 			 * for currently queued segments.
2249 			 */
2250 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2251 			tcp_push_pending_frames(sk);
2252 		} else {
2253 			tp->nonagle &= ~TCP_NAGLE_OFF;
2254 		}
2255 		break;
2256 
2257 	case TCP_THIN_LINEAR_TIMEOUTS:
2258 		if (val < 0 || val > 1)
2259 			err = -EINVAL;
2260 		else
2261 			tp->thin_lto = val;
2262 		break;
2263 
2264 	case TCP_THIN_DUPACK:
2265 		if (val < 0 || val > 1)
2266 			err = -EINVAL;
2267 		else
2268 			tp->thin_dupack = val;
2269 		break;
2270 
2271 	case TCP_CORK:
2272 		/* When set indicates to always queue non-full frames.
2273 		 * Later the user clears this option and we transmit
2274 		 * any pending partial frames in the queue.  This is
2275 		 * meant to be used alongside sendfile() to get properly
2276 		 * filled frames when the user (for example) must write
2277 		 * out headers with a write() call first and then use
2278 		 * sendfile to send out the data parts.
2279 		 *
2280 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2281 		 * stronger than TCP_NODELAY.
2282 		 */
2283 		if (val) {
2284 			tp->nonagle |= TCP_NAGLE_CORK;
2285 		} else {
2286 			tp->nonagle &= ~TCP_NAGLE_CORK;
2287 			if (tp->nonagle&TCP_NAGLE_OFF)
2288 				tp->nonagle |= TCP_NAGLE_PUSH;
2289 			tcp_push_pending_frames(sk);
2290 		}
2291 		break;
2292 
2293 	case TCP_KEEPIDLE:
2294 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2295 			err = -EINVAL;
2296 		else {
2297 			tp->keepalive_time = val * HZ;
2298 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2299 			    !((1 << sk->sk_state) &
2300 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2301 				u32 elapsed = keepalive_time_elapsed(tp);
2302 				if (tp->keepalive_time > elapsed)
2303 					elapsed = tp->keepalive_time - elapsed;
2304 				else
2305 					elapsed = 0;
2306 				inet_csk_reset_keepalive_timer(sk, elapsed);
2307 			}
2308 		}
2309 		break;
2310 	case TCP_KEEPINTVL:
2311 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2312 			err = -EINVAL;
2313 		else
2314 			tp->keepalive_intvl = val * HZ;
2315 		break;
2316 	case TCP_KEEPCNT:
2317 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2318 			err = -EINVAL;
2319 		else
2320 			tp->keepalive_probes = val;
2321 		break;
2322 	case TCP_SYNCNT:
2323 		if (val < 1 || val > MAX_TCP_SYNCNT)
2324 			err = -EINVAL;
2325 		else
2326 			icsk->icsk_syn_retries = val;
2327 		break;
2328 
2329 	case TCP_LINGER2:
2330 		if (val < 0)
2331 			tp->linger2 = -1;
2332 		else if (val > sysctl_tcp_fin_timeout / HZ)
2333 			tp->linger2 = 0;
2334 		else
2335 			tp->linger2 = val * HZ;
2336 		break;
2337 
2338 	case TCP_DEFER_ACCEPT:
2339 		/* Translate value in seconds to number of retransmits */
2340 		icsk->icsk_accept_queue.rskq_defer_accept =
2341 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2342 					TCP_RTO_MAX / HZ);
2343 		break;
2344 
2345 	case TCP_WINDOW_CLAMP:
2346 		if (!val) {
2347 			if (sk->sk_state != TCP_CLOSE) {
2348 				err = -EINVAL;
2349 				break;
2350 			}
2351 			tp->window_clamp = 0;
2352 		} else
2353 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2354 						SOCK_MIN_RCVBUF / 2 : val;
2355 		break;
2356 
2357 	case TCP_QUICKACK:
2358 		if (!val) {
2359 			icsk->icsk_ack.pingpong = 1;
2360 		} else {
2361 			icsk->icsk_ack.pingpong = 0;
2362 			if ((1 << sk->sk_state) &
2363 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2364 			    inet_csk_ack_scheduled(sk)) {
2365 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2366 				tcp_cleanup_rbuf(sk, 1);
2367 				if (!(val & 1))
2368 					icsk->icsk_ack.pingpong = 1;
2369 			}
2370 		}
2371 		break;
2372 
2373 #ifdef CONFIG_TCP_MD5SIG
2374 	case TCP_MD5SIG:
2375 		/* Read the IP->Key mappings from userspace */
2376 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2377 		break;
2378 #endif
2379 
2380 	default:
2381 		err = -ENOPROTOOPT;
2382 		break;
2383 	}
2384 
2385 	release_sock(sk);
2386 	return err;
2387 }
2388 
2389 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2390 		   unsigned int optlen)
2391 {
2392 	struct inet_connection_sock *icsk = inet_csk(sk);
2393 
2394 	if (level != SOL_TCP)
2395 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2396 						     optval, optlen);
2397 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2398 }
2399 
2400 #ifdef CONFIG_COMPAT
2401 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2402 			  char __user *optval, unsigned int optlen)
2403 {
2404 	if (level != SOL_TCP)
2405 		return inet_csk_compat_setsockopt(sk, level, optname,
2406 						  optval, optlen);
2407 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2408 }
2409 
2410 EXPORT_SYMBOL(compat_tcp_setsockopt);
2411 #endif
2412 
2413 /* Return information about state of tcp endpoint in API format. */
2414 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2415 {
2416 	struct tcp_sock *tp = tcp_sk(sk);
2417 	const struct inet_connection_sock *icsk = inet_csk(sk);
2418 	u32 now = tcp_time_stamp;
2419 
2420 	memset(info, 0, sizeof(*info));
2421 
2422 	info->tcpi_state = sk->sk_state;
2423 	info->tcpi_ca_state = icsk->icsk_ca_state;
2424 	info->tcpi_retransmits = icsk->icsk_retransmits;
2425 	info->tcpi_probes = icsk->icsk_probes_out;
2426 	info->tcpi_backoff = icsk->icsk_backoff;
2427 
2428 	if (tp->rx_opt.tstamp_ok)
2429 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2430 	if (tcp_is_sack(tp))
2431 		info->tcpi_options |= TCPI_OPT_SACK;
2432 	if (tp->rx_opt.wscale_ok) {
2433 		info->tcpi_options |= TCPI_OPT_WSCALE;
2434 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2435 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2436 	}
2437 
2438 	if (tp->ecn_flags&TCP_ECN_OK)
2439 		info->tcpi_options |= TCPI_OPT_ECN;
2440 
2441 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2442 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2443 	info->tcpi_snd_mss = tp->mss_cache;
2444 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2445 
2446 	if (sk->sk_state == TCP_LISTEN) {
2447 		info->tcpi_unacked = sk->sk_ack_backlog;
2448 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2449 	} else {
2450 		info->tcpi_unacked = tp->packets_out;
2451 		info->tcpi_sacked = tp->sacked_out;
2452 	}
2453 	info->tcpi_lost = tp->lost_out;
2454 	info->tcpi_retrans = tp->retrans_out;
2455 	info->tcpi_fackets = tp->fackets_out;
2456 
2457 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2458 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2459 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2460 
2461 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2462 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2463 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2464 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2465 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2466 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2467 	info->tcpi_advmss = tp->advmss;
2468 	info->tcpi_reordering = tp->reordering;
2469 
2470 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2471 	info->tcpi_rcv_space = tp->rcvq_space.space;
2472 
2473 	info->tcpi_total_retrans = tp->total_retrans;
2474 }
2475 
2476 EXPORT_SYMBOL_GPL(tcp_get_info);
2477 
2478 static int do_tcp_getsockopt(struct sock *sk, int level,
2479 		int optname, char __user *optval, int __user *optlen)
2480 {
2481 	struct inet_connection_sock *icsk = inet_csk(sk);
2482 	struct tcp_sock *tp = tcp_sk(sk);
2483 	int val, len;
2484 
2485 	if (get_user(len, optlen))
2486 		return -EFAULT;
2487 
2488 	len = min_t(unsigned int, len, sizeof(int));
2489 
2490 	if (len < 0)
2491 		return -EINVAL;
2492 
2493 	switch (optname) {
2494 	case TCP_MAXSEG:
2495 		val = tp->mss_cache;
2496 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2497 			val = tp->rx_opt.user_mss;
2498 		break;
2499 	case TCP_NODELAY:
2500 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2501 		break;
2502 	case TCP_CORK:
2503 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2504 		break;
2505 	case TCP_KEEPIDLE:
2506 		val = keepalive_time_when(tp) / HZ;
2507 		break;
2508 	case TCP_KEEPINTVL:
2509 		val = keepalive_intvl_when(tp) / HZ;
2510 		break;
2511 	case TCP_KEEPCNT:
2512 		val = keepalive_probes(tp);
2513 		break;
2514 	case TCP_SYNCNT:
2515 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2516 		break;
2517 	case TCP_LINGER2:
2518 		val = tp->linger2;
2519 		if (val >= 0)
2520 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2521 		break;
2522 	case TCP_DEFER_ACCEPT:
2523 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2524 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2525 		break;
2526 	case TCP_WINDOW_CLAMP:
2527 		val = tp->window_clamp;
2528 		break;
2529 	case TCP_INFO: {
2530 		struct tcp_info info;
2531 
2532 		if (get_user(len, optlen))
2533 			return -EFAULT;
2534 
2535 		tcp_get_info(sk, &info);
2536 
2537 		len = min_t(unsigned int, len, sizeof(info));
2538 		if (put_user(len, optlen))
2539 			return -EFAULT;
2540 		if (copy_to_user(optval, &info, len))
2541 			return -EFAULT;
2542 		return 0;
2543 	}
2544 	case TCP_QUICKACK:
2545 		val = !icsk->icsk_ack.pingpong;
2546 		break;
2547 
2548 	case TCP_CONGESTION:
2549 		if (get_user(len, optlen))
2550 			return -EFAULT;
2551 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2552 		if (put_user(len, optlen))
2553 			return -EFAULT;
2554 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2555 			return -EFAULT;
2556 		return 0;
2557 
2558 	case TCP_COOKIE_TRANSACTIONS: {
2559 		struct tcp_cookie_transactions ctd;
2560 		struct tcp_cookie_values *cvp = tp->cookie_values;
2561 
2562 		if (get_user(len, optlen))
2563 			return -EFAULT;
2564 		if (len < sizeof(ctd))
2565 			return -EINVAL;
2566 
2567 		memset(&ctd, 0, sizeof(ctd));
2568 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2569 				   TCP_COOKIE_IN_ALWAYS : 0)
2570 				| (tp->rx_opt.cookie_out_never ?
2571 				   TCP_COOKIE_OUT_NEVER : 0);
2572 
2573 		if (cvp != NULL) {
2574 			ctd.tcpct_flags |= (cvp->s_data_in ?
2575 					    TCP_S_DATA_IN : 0)
2576 					 | (cvp->s_data_out ?
2577 					    TCP_S_DATA_OUT : 0);
2578 
2579 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2580 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2581 
2582 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2583 			       cvp->cookie_pair_size);
2584 			ctd.tcpct_used = cvp->cookie_pair_size;
2585 		}
2586 
2587 		if (put_user(sizeof(ctd), optlen))
2588 			return -EFAULT;
2589 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2590 			return -EFAULT;
2591 		return 0;
2592 	}
2593 	default:
2594 		return -ENOPROTOOPT;
2595 	}
2596 
2597 	if (put_user(len, optlen))
2598 		return -EFAULT;
2599 	if (copy_to_user(optval, &val, len))
2600 		return -EFAULT;
2601 	return 0;
2602 }
2603 
2604 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2605 		   int __user *optlen)
2606 {
2607 	struct inet_connection_sock *icsk = inet_csk(sk);
2608 
2609 	if (level != SOL_TCP)
2610 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2611 						     optval, optlen);
2612 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2613 }
2614 
2615 #ifdef CONFIG_COMPAT
2616 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2617 			  char __user *optval, int __user *optlen)
2618 {
2619 	if (level != SOL_TCP)
2620 		return inet_csk_compat_getsockopt(sk, level, optname,
2621 						  optval, optlen);
2622 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2623 }
2624 
2625 EXPORT_SYMBOL(compat_tcp_getsockopt);
2626 #endif
2627 
2628 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2629 {
2630 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2631 	struct tcphdr *th;
2632 	unsigned thlen;
2633 	unsigned int seq;
2634 	__be32 delta;
2635 	unsigned int oldlen;
2636 	unsigned int mss;
2637 
2638 	if (!pskb_may_pull(skb, sizeof(*th)))
2639 		goto out;
2640 
2641 	th = tcp_hdr(skb);
2642 	thlen = th->doff * 4;
2643 	if (thlen < sizeof(*th))
2644 		goto out;
2645 
2646 	if (!pskb_may_pull(skb, thlen))
2647 		goto out;
2648 
2649 	oldlen = (u16)~skb->len;
2650 	__skb_pull(skb, thlen);
2651 
2652 	mss = skb_shinfo(skb)->gso_size;
2653 	if (unlikely(skb->len <= mss))
2654 		goto out;
2655 
2656 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2657 		/* Packet is from an untrusted source, reset gso_segs. */
2658 		int type = skb_shinfo(skb)->gso_type;
2659 
2660 		if (unlikely(type &
2661 			     ~(SKB_GSO_TCPV4 |
2662 			       SKB_GSO_DODGY |
2663 			       SKB_GSO_TCP_ECN |
2664 			       SKB_GSO_TCPV6 |
2665 			       0) ||
2666 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2667 			goto out;
2668 
2669 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2670 
2671 		segs = NULL;
2672 		goto out;
2673 	}
2674 
2675 	segs = skb_segment(skb, features);
2676 	if (IS_ERR(segs))
2677 		goto out;
2678 
2679 	delta = htonl(oldlen + (thlen + mss));
2680 
2681 	skb = segs;
2682 	th = tcp_hdr(skb);
2683 	seq = ntohl(th->seq);
2684 
2685 	do {
2686 		th->fin = th->psh = 0;
2687 
2688 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2689 				       (__force u32)delta));
2690 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2691 			th->check =
2692 			     csum_fold(csum_partial(skb_transport_header(skb),
2693 						    thlen, skb->csum));
2694 
2695 		seq += mss;
2696 		skb = skb->next;
2697 		th = tcp_hdr(skb);
2698 
2699 		th->seq = htonl(seq);
2700 		th->cwr = 0;
2701 	} while (skb->next);
2702 
2703 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2704 		      skb->data_len);
2705 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2706 				(__force u32)delta));
2707 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2708 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2709 						   thlen, skb->csum));
2710 
2711 out:
2712 	return segs;
2713 }
2714 EXPORT_SYMBOL(tcp_tso_segment);
2715 
2716 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2717 {
2718 	struct sk_buff **pp = NULL;
2719 	struct sk_buff *p;
2720 	struct tcphdr *th;
2721 	struct tcphdr *th2;
2722 	unsigned int len;
2723 	unsigned int thlen;
2724 	__be32 flags;
2725 	unsigned int mss = 1;
2726 	unsigned int hlen;
2727 	unsigned int off;
2728 	int flush = 1;
2729 	int i;
2730 
2731 	off = skb_gro_offset(skb);
2732 	hlen = off + sizeof(*th);
2733 	th = skb_gro_header_fast(skb, off);
2734 	if (skb_gro_header_hard(skb, hlen)) {
2735 		th = skb_gro_header_slow(skb, hlen, off);
2736 		if (unlikely(!th))
2737 			goto out;
2738 	}
2739 
2740 	thlen = th->doff * 4;
2741 	if (thlen < sizeof(*th))
2742 		goto out;
2743 
2744 	hlen = off + thlen;
2745 	if (skb_gro_header_hard(skb, hlen)) {
2746 		th = skb_gro_header_slow(skb, hlen, off);
2747 		if (unlikely(!th))
2748 			goto out;
2749 	}
2750 
2751 	skb_gro_pull(skb, thlen);
2752 
2753 	len = skb_gro_len(skb);
2754 	flags = tcp_flag_word(th);
2755 
2756 	for (; (p = *head); head = &p->next) {
2757 		if (!NAPI_GRO_CB(p)->same_flow)
2758 			continue;
2759 
2760 		th2 = tcp_hdr(p);
2761 
2762 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2763 			NAPI_GRO_CB(p)->same_flow = 0;
2764 			continue;
2765 		}
2766 
2767 		goto found;
2768 	}
2769 
2770 	goto out_check_final;
2771 
2772 found:
2773 	flush = NAPI_GRO_CB(p)->flush;
2774 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2775 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2776 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2777 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2778 	for (i = sizeof(*th); i < thlen; i += 4)
2779 		flush |= *(u32 *)((u8 *)th + i) ^
2780 			 *(u32 *)((u8 *)th2 + i);
2781 
2782 	mss = skb_shinfo(p)->gso_size;
2783 
2784 	flush |= (len - 1) >= mss;
2785 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2786 
2787 	if (flush || skb_gro_receive(head, skb)) {
2788 		mss = 1;
2789 		goto out_check_final;
2790 	}
2791 
2792 	p = *head;
2793 	th2 = tcp_hdr(p);
2794 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2795 
2796 out_check_final:
2797 	flush = len < mss;
2798 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2799 					TCP_FLAG_RST | TCP_FLAG_SYN |
2800 					TCP_FLAG_FIN));
2801 
2802 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2803 		pp = head;
2804 
2805 out:
2806 	NAPI_GRO_CB(skb)->flush |= flush;
2807 
2808 	return pp;
2809 }
2810 EXPORT_SYMBOL(tcp_gro_receive);
2811 
2812 int tcp_gro_complete(struct sk_buff *skb)
2813 {
2814 	struct tcphdr *th = tcp_hdr(skb);
2815 
2816 	skb->csum_start = skb_transport_header(skb) - skb->head;
2817 	skb->csum_offset = offsetof(struct tcphdr, check);
2818 	skb->ip_summed = CHECKSUM_PARTIAL;
2819 
2820 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2821 
2822 	if (th->cwr)
2823 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2824 
2825 	return 0;
2826 }
2827 EXPORT_SYMBOL(tcp_gro_complete);
2828 
2829 #ifdef CONFIG_TCP_MD5SIG
2830 static unsigned long tcp_md5sig_users;
2831 static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2832 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2833 
2834 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2835 {
2836 	int cpu;
2837 	for_each_possible_cpu(cpu) {
2838 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2839 		if (p) {
2840 			if (p->md5_desc.tfm)
2841 				crypto_free_hash(p->md5_desc.tfm);
2842 			kfree(p);
2843 		}
2844 	}
2845 	free_percpu(pool);
2846 }
2847 
2848 void tcp_free_md5sig_pool(void)
2849 {
2850 	struct tcp_md5sig_pool * __percpu *pool = NULL;
2851 
2852 	spin_lock_bh(&tcp_md5sig_pool_lock);
2853 	if (--tcp_md5sig_users == 0) {
2854 		pool = tcp_md5sig_pool;
2855 		tcp_md5sig_pool = NULL;
2856 	}
2857 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2858 	if (pool)
2859 		__tcp_free_md5sig_pool(pool);
2860 }
2861 
2862 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2863 
2864 static struct tcp_md5sig_pool * __percpu *
2865 __tcp_alloc_md5sig_pool(struct sock *sk)
2866 {
2867 	int cpu;
2868 	struct tcp_md5sig_pool * __percpu *pool;
2869 
2870 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2871 	if (!pool)
2872 		return NULL;
2873 
2874 	for_each_possible_cpu(cpu) {
2875 		struct tcp_md5sig_pool *p;
2876 		struct crypto_hash *hash;
2877 
2878 		p = kzalloc(sizeof(*p), sk->sk_allocation);
2879 		if (!p)
2880 			goto out_free;
2881 		*per_cpu_ptr(pool, cpu) = p;
2882 
2883 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2884 		if (!hash || IS_ERR(hash))
2885 			goto out_free;
2886 
2887 		p->md5_desc.tfm = hash;
2888 	}
2889 	return pool;
2890 out_free:
2891 	__tcp_free_md5sig_pool(pool);
2892 	return NULL;
2893 }
2894 
2895 struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2896 {
2897 	struct tcp_md5sig_pool * __percpu *pool;
2898 	int alloc = 0;
2899 
2900 retry:
2901 	spin_lock_bh(&tcp_md5sig_pool_lock);
2902 	pool = tcp_md5sig_pool;
2903 	if (tcp_md5sig_users++ == 0) {
2904 		alloc = 1;
2905 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2906 	} else if (!pool) {
2907 		tcp_md5sig_users--;
2908 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2909 		cpu_relax();
2910 		goto retry;
2911 	} else
2912 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2913 
2914 	if (alloc) {
2915 		/* we cannot hold spinlock here because this may sleep. */
2916 		struct tcp_md5sig_pool * __percpu *p;
2917 
2918 		p = __tcp_alloc_md5sig_pool(sk);
2919 		spin_lock_bh(&tcp_md5sig_pool_lock);
2920 		if (!p) {
2921 			tcp_md5sig_users--;
2922 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2923 			return NULL;
2924 		}
2925 		pool = tcp_md5sig_pool;
2926 		if (pool) {
2927 			/* oops, it has already been assigned. */
2928 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2929 			__tcp_free_md5sig_pool(p);
2930 		} else {
2931 			tcp_md5sig_pool = pool = p;
2932 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2933 		}
2934 	}
2935 	return pool;
2936 }
2937 
2938 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2939 
2940 
2941 /**
2942  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2943  *
2944  *	We use percpu structure, so if we succeed, we exit with preemption
2945  *	and BH disabled, to make sure another thread or softirq handling
2946  *	wont try to get same context.
2947  */
2948 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2949 {
2950 	struct tcp_md5sig_pool * __percpu *p;
2951 
2952 	local_bh_disable();
2953 
2954 	spin_lock(&tcp_md5sig_pool_lock);
2955 	p = tcp_md5sig_pool;
2956 	if (p)
2957 		tcp_md5sig_users++;
2958 	spin_unlock(&tcp_md5sig_pool_lock);
2959 
2960 	if (p)
2961 		return *per_cpu_ptr(p, smp_processor_id());
2962 
2963 	local_bh_enable();
2964 	return NULL;
2965 }
2966 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2967 
2968 void tcp_put_md5sig_pool(void)
2969 {
2970 	local_bh_enable();
2971 	tcp_free_md5sig_pool();
2972 }
2973 EXPORT_SYMBOL(tcp_put_md5sig_pool);
2974 
2975 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2976 			struct tcphdr *th)
2977 {
2978 	struct scatterlist sg;
2979 	int err;
2980 
2981 	__sum16 old_checksum = th->check;
2982 	th->check = 0;
2983 	/* options aren't included in the hash */
2984 	sg_init_one(&sg, th, sizeof(struct tcphdr));
2985 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2986 	th->check = old_checksum;
2987 	return err;
2988 }
2989 
2990 EXPORT_SYMBOL(tcp_md5_hash_header);
2991 
2992 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2993 			  struct sk_buff *skb, unsigned header_len)
2994 {
2995 	struct scatterlist sg;
2996 	const struct tcphdr *tp = tcp_hdr(skb);
2997 	struct hash_desc *desc = &hp->md5_desc;
2998 	unsigned i;
2999 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3000 				       skb_headlen(skb) - header_len : 0;
3001 	const struct skb_shared_info *shi = skb_shinfo(skb);
3002 
3003 	sg_init_table(&sg, 1);
3004 
3005 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3006 	if (crypto_hash_update(desc, &sg, head_data_len))
3007 		return 1;
3008 
3009 	for (i = 0; i < shi->nr_frags; ++i) {
3010 		const struct skb_frag_struct *f = &shi->frags[i];
3011 		sg_set_page(&sg, f->page, f->size, f->page_offset);
3012 		if (crypto_hash_update(desc, &sg, f->size))
3013 			return 1;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3020 
3021 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3022 {
3023 	struct scatterlist sg;
3024 
3025 	sg_init_one(&sg, key->key, key->keylen);
3026 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3027 }
3028 
3029 EXPORT_SYMBOL(tcp_md5_hash_key);
3030 
3031 #endif
3032 
3033 /**
3034  * Each Responder maintains up to two secret values concurrently for
3035  * efficient secret rollover.  Each secret value has 4 states:
3036  *
3037  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3038  *    Generates new Responder-Cookies, but not yet used for primary
3039  *    verification.  This is a short-term state, typically lasting only
3040  *    one round trip time (RTT).
3041  *
3042  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3043  *    Used both for generation and primary verification.
3044  *
3045  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3046  *    Used for verification, until the first failure that can be
3047  *    verified by the newer Generating secret.  At that time, this
3048  *    cookie's state is changed to Secondary, and the Generating
3049  *    cookie's state is changed to Primary.  This is a short-term state,
3050  *    typically lasting only one round trip time (RTT).
3051  *
3052  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3053  *    Used for secondary verification, after primary verification
3054  *    failures.  This state lasts no more than twice the Maximum Segment
3055  *    Lifetime (2MSL).  Then, the secret is discarded.
3056  */
3057 struct tcp_cookie_secret {
3058 	/* The secret is divided into two parts.  The digest part is the
3059 	 * equivalent of previously hashing a secret and saving the state,
3060 	 * and serves as an initialization vector (IV).  The message part
3061 	 * serves as the trailing secret.
3062 	 */
3063 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3064 	unsigned long			expires;
3065 };
3066 
3067 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3068 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3069 #define TCP_SECRET_LIFE (HZ * 600)
3070 
3071 static struct tcp_cookie_secret tcp_secret_one;
3072 static struct tcp_cookie_secret tcp_secret_two;
3073 
3074 /* Essentially a circular list, without dynamic allocation. */
3075 static struct tcp_cookie_secret *tcp_secret_generating;
3076 static struct tcp_cookie_secret *tcp_secret_primary;
3077 static struct tcp_cookie_secret *tcp_secret_retiring;
3078 static struct tcp_cookie_secret *tcp_secret_secondary;
3079 
3080 static DEFINE_SPINLOCK(tcp_secret_locker);
3081 
3082 /* Select a pseudo-random word in the cookie workspace.
3083  */
3084 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3085 {
3086 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3087 }
3088 
3089 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3090  * Called in softirq context.
3091  * Returns: 0 for success.
3092  */
3093 int tcp_cookie_generator(u32 *bakery)
3094 {
3095 	unsigned long jiffy = jiffies;
3096 
3097 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3098 		spin_lock_bh(&tcp_secret_locker);
3099 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3100 			/* refreshed by another */
3101 			memcpy(bakery,
3102 			       &tcp_secret_generating->secrets[0],
3103 			       COOKIE_WORKSPACE_WORDS);
3104 		} else {
3105 			/* still needs refreshing */
3106 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3107 
3108 			/* The first time, paranoia assumes that the
3109 			 * randomization function isn't as strong.  But,
3110 			 * this secret initialization is delayed until
3111 			 * the last possible moment (packet arrival).
3112 			 * Although that time is observable, it is
3113 			 * unpredictably variable.  Mash in the most
3114 			 * volatile clock bits available, and expire the
3115 			 * secret extra quickly.
3116 			 */
3117 			if (unlikely(tcp_secret_primary->expires ==
3118 				     tcp_secret_secondary->expires)) {
3119 				struct timespec tv;
3120 
3121 				getnstimeofday(&tv);
3122 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3123 					(u32)tv.tv_nsec;
3124 
3125 				tcp_secret_secondary->expires = jiffy
3126 					+ TCP_SECRET_1MSL
3127 					+ (0x0f & tcp_cookie_work(bakery, 0));
3128 			} else {
3129 				tcp_secret_secondary->expires = jiffy
3130 					+ TCP_SECRET_LIFE
3131 					+ (0xff & tcp_cookie_work(bakery, 1));
3132 				tcp_secret_primary->expires = jiffy
3133 					+ TCP_SECRET_2MSL
3134 					+ (0x1f & tcp_cookie_work(bakery, 2));
3135 			}
3136 			memcpy(&tcp_secret_secondary->secrets[0],
3137 			       bakery, COOKIE_WORKSPACE_WORDS);
3138 
3139 			rcu_assign_pointer(tcp_secret_generating,
3140 					   tcp_secret_secondary);
3141 			rcu_assign_pointer(tcp_secret_retiring,
3142 					   tcp_secret_primary);
3143 			/*
3144 			 * Neither call_rcu() nor synchronize_rcu() needed.
3145 			 * Retiring data is not freed.  It is replaced after
3146 			 * further (locked) pointer updates, and a quiet time
3147 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3148 			 */
3149 		}
3150 		spin_unlock_bh(&tcp_secret_locker);
3151 	} else {
3152 		rcu_read_lock_bh();
3153 		memcpy(bakery,
3154 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3155 		       COOKIE_WORKSPACE_WORDS);
3156 		rcu_read_unlock_bh();
3157 	}
3158 	return 0;
3159 }
3160 EXPORT_SYMBOL(tcp_cookie_generator);
3161 
3162 void tcp_done(struct sock *sk)
3163 {
3164 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3165 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3166 
3167 	tcp_set_state(sk, TCP_CLOSE);
3168 	tcp_clear_xmit_timers(sk);
3169 
3170 	sk->sk_shutdown = SHUTDOWN_MASK;
3171 
3172 	if (!sock_flag(sk, SOCK_DEAD))
3173 		sk->sk_state_change(sk);
3174 	else
3175 		inet_csk_destroy_sock(sk);
3176 }
3177 EXPORT_SYMBOL_GPL(tcp_done);
3178 
3179 extern struct tcp_congestion_ops tcp_reno;
3180 
3181 static __initdata unsigned long thash_entries;
3182 static int __init set_thash_entries(char *str)
3183 {
3184 	if (!str)
3185 		return 0;
3186 	thash_entries = simple_strtoul(str, &str, 0);
3187 	return 1;
3188 }
3189 __setup("thash_entries=", set_thash_entries);
3190 
3191 void __init tcp_init(void)
3192 {
3193 	struct sk_buff *skb = NULL;
3194 	unsigned long nr_pages, limit;
3195 	int order, i, max_share;
3196 	unsigned long jiffy = jiffies;
3197 
3198 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3199 
3200 	percpu_counter_init(&tcp_sockets_allocated, 0);
3201 	percpu_counter_init(&tcp_orphan_count, 0);
3202 	tcp_hashinfo.bind_bucket_cachep =
3203 		kmem_cache_create("tcp_bind_bucket",
3204 				  sizeof(struct inet_bind_bucket), 0,
3205 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3206 
3207 	/* Size and allocate the main established and bind bucket
3208 	 * hash tables.
3209 	 *
3210 	 * The methodology is similar to that of the buffer cache.
3211 	 */
3212 	tcp_hashinfo.ehash =
3213 		alloc_large_system_hash("TCP established",
3214 					sizeof(struct inet_ehash_bucket),
3215 					thash_entries,
3216 					(totalram_pages >= 128 * 1024) ?
3217 					13 : 15,
3218 					0,
3219 					NULL,
3220 					&tcp_hashinfo.ehash_mask,
3221 					thash_entries ? 0 : 512 * 1024);
3222 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3223 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3224 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3225 	}
3226 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3227 		panic("TCP: failed to alloc ehash_locks");
3228 	tcp_hashinfo.bhash =
3229 		alloc_large_system_hash("TCP bind",
3230 					sizeof(struct inet_bind_hashbucket),
3231 					tcp_hashinfo.ehash_mask + 1,
3232 					(totalram_pages >= 128 * 1024) ?
3233 					13 : 15,
3234 					0,
3235 					&tcp_hashinfo.bhash_size,
3236 					NULL,
3237 					64 * 1024);
3238 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3239 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3240 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3241 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3242 	}
3243 
3244 	/* Try to be a bit smarter and adjust defaults depending
3245 	 * on available memory.
3246 	 */
3247 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
3248 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
3249 			order++)
3250 		;
3251 	if (order >= 4) {
3252 		tcp_death_row.sysctl_max_tw_buckets = 180000;
3253 		sysctl_tcp_max_orphans = 4096 << (order - 4);
3254 		sysctl_max_syn_backlog = 1024;
3255 	} else if (order < 3) {
3256 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
3257 		sysctl_tcp_max_orphans >>= (3 - order);
3258 		sysctl_max_syn_backlog = 128;
3259 	}
3260 
3261 	/* Set the pressure threshold to be a fraction of global memory that
3262 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3263 	 * memory, with a floor of 128 pages.
3264 	 */
3265 	nr_pages = totalram_pages - totalhigh_pages;
3266 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3267 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3268 	limit = max(limit, 128UL);
3269 	sysctl_tcp_mem[0] = limit / 4 * 3;
3270 	sysctl_tcp_mem[1] = limit;
3271 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3272 
3273 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3274 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3275 	max_share = min(4UL*1024*1024, limit);
3276 
3277 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3278 	sysctl_tcp_wmem[1] = 16*1024;
3279 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3280 
3281 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3282 	sysctl_tcp_rmem[1] = 87380;
3283 	sysctl_tcp_rmem[2] = max(87380, max_share);
3284 
3285 	printk(KERN_INFO "TCP: Hash tables configured "
3286 	       "(established %u bind %u)\n",
3287 	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3288 
3289 	tcp_register_congestion_control(&tcp_reno);
3290 
3291 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3292 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3293 	tcp_secret_one.expires = jiffy; /* past due */
3294 	tcp_secret_two.expires = jiffy; /* past due */
3295 	tcp_secret_generating = &tcp_secret_one;
3296 	tcp_secret_primary = &tcp_secret_one;
3297 	tcp_secret_retiring = &tcp_secret_two;
3298 	tcp_secret_secondary = &tcp_secret_two;
3299 }
3300 
3301 EXPORT_SYMBOL(tcp_close);
3302 EXPORT_SYMBOL(tcp_disconnect);
3303 EXPORT_SYMBOL(tcp_getsockopt);
3304 EXPORT_SYMBOL(tcp_ioctl);
3305 EXPORT_SYMBOL(tcp_poll);
3306 EXPORT_SYMBOL(tcp_read_sock);
3307 EXPORT_SYMBOL(tcp_recvmsg);
3308 EXPORT_SYMBOL(tcp_sendmsg);
3309 EXPORT_SYMBOL(tcp_splice_read);
3310 EXPORT_SYMBOL(tcp_sendpage);
3311 EXPORT_SYMBOL(tcp_setsockopt);
3312 EXPORT_SYMBOL(tcp_shutdown);
3313