1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/netdma.h> 277 #include <net/sock.h> 278 279 #include <asm/uaccess.h> 280 #include <asm/ioctls.h> 281 282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 283 284 struct percpu_counter tcp_orphan_count; 285 EXPORT_SYMBOL_GPL(tcp_orphan_count); 286 287 int sysctl_tcp_wmem[3] __read_mostly; 288 int sysctl_tcp_rmem[3] __read_mostly; 289 290 EXPORT_SYMBOL(sysctl_tcp_rmem); 291 EXPORT_SYMBOL(sysctl_tcp_wmem); 292 293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 294 EXPORT_SYMBOL(tcp_memory_allocated); 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 int tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL(tcp_memory_pressure); 319 320 void tcp_enter_memory_pressure(struct sock *sk) 321 { 322 if (!tcp_memory_pressure) { 323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 324 tcp_memory_pressure = 1; 325 } 326 } 327 EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329 /* Convert seconds to retransmits based on initial and max timeout */ 330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 331 { 332 u8 res = 0; 333 334 if (seconds > 0) { 335 int period = timeout; 336 337 res = 1; 338 while (seconds > period && res < 255) { 339 res++; 340 timeout <<= 1; 341 if (timeout > rto_max) 342 timeout = rto_max; 343 period += timeout; 344 } 345 } 346 return res; 347 } 348 349 /* Convert retransmits to seconds based on initial and max timeout */ 350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 351 { 352 int period = 0; 353 354 if (retrans > 0) { 355 period = timeout; 356 while (--retrans) { 357 timeout <<= 1; 358 if (timeout > rto_max) 359 timeout = rto_max; 360 period += timeout; 361 } 362 } 363 return period; 364 } 365 366 /* 367 * Wait for a TCP event. 368 * 369 * Note that we don't need to lock the socket, as the upper poll layers 370 * take care of normal races (between the test and the event) and we don't 371 * go look at any of the socket buffers directly. 372 */ 373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 374 { 375 unsigned int mask; 376 struct sock *sk = sock->sk; 377 const struct tcp_sock *tp = tcp_sk(sk); 378 379 sock_poll_wait(file, sk_sleep(sk), wait); 380 if (sk->sk_state == TCP_LISTEN) 381 return inet_csk_listen_poll(sk); 382 383 /* Socket is not locked. We are protected from async events 384 * by poll logic and correct handling of state changes 385 * made by other threads is impossible in any case. 386 */ 387 388 mask = 0; 389 390 /* 391 * POLLHUP is certainly not done right. But poll() doesn't 392 * have a notion of HUP in just one direction, and for a 393 * socket the read side is more interesting. 394 * 395 * Some poll() documentation says that POLLHUP is incompatible 396 * with the POLLOUT/POLLWR flags, so somebody should check this 397 * all. But careful, it tends to be safer to return too many 398 * bits than too few, and you can easily break real applications 399 * if you don't tell them that something has hung up! 400 * 401 * Check-me. 402 * 403 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 404 * our fs/select.c). It means that after we received EOF, 405 * poll always returns immediately, making impossible poll() on write() 406 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 407 * if and only if shutdown has been made in both directions. 408 * Actually, it is interesting to look how Solaris and DUX 409 * solve this dilemma. I would prefer, if POLLHUP were maskable, 410 * then we could set it on SND_SHUTDOWN. BTW examples given 411 * in Stevens' books assume exactly this behaviour, it explains 412 * why POLLHUP is incompatible with POLLOUT. --ANK 413 * 414 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 415 * blocking on fresh not-connected or disconnected socket. --ANK 416 */ 417 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 418 mask |= POLLHUP; 419 if (sk->sk_shutdown & RCV_SHUTDOWN) 420 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 421 422 /* Connected? */ 423 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 424 int target = sock_rcvlowat(sk, 0, INT_MAX); 425 426 if (tp->urg_seq == tp->copied_seq && 427 !sock_flag(sk, SOCK_URGINLINE) && 428 tp->urg_data) 429 target++; 430 431 /* Potential race condition. If read of tp below will 432 * escape above sk->sk_state, we can be illegally awaken 433 * in SYN_* states. */ 434 if (tp->rcv_nxt - tp->copied_seq >= target) 435 mask |= POLLIN | POLLRDNORM; 436 437 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 438 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 439 mask |= POLLOUT | POLLWRNORM; 440 } else { /* send SIGIO later */ 441 set_bit(SOCK_ASYNC_NOSPACE, 442 &sk->sk_socket->flags); 443 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 444 445 /* Race breaker. If space is freed after 446 * wspace test but before the flags are set, 447 * IO signal will be lost. 448 */ 449 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 450 mask |= POLLOUT | POLLWRNORM; 451 } 452 } else 453 mask |= POLLOUT | POLLWRNORM; 454 455 if (tp->urg_data & TCP_URG_VALID) 456 mask |= POLLPRI; 457 } 458 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 459 smp_rmb(); 460 if (sk->sk_err) 461 mask |= POLLERR; 462 463 return mask; 464 } 465 EXPORT_SYMBOL(tcp_poll); 466 467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 468 { 469 struct tcp_sock *tp = tcp_sk(sk); 470 int answ; 471 472 switch (cmd) { 473 case SIOCINQ: 474 if (sk->sk_state == TCP_LISTEN) 475 return -EINVAL; 476 477 lock_sock(sk); 478 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 479 answ = 0; 480 else if (sock_flag(sk, SOCK_URGINLINE) || 481 !tp->urg_data || 482 before(tp->urg_seq, tp->copied_seq) || 483 !before(tp->urg_seq, tp->rcv_nxt)) { 484 struct sk_buff *skb; 485 486 answ = tp->rcv_nxt - tp->copied_seq; 487 488 /* Subtract 1, if FIN is in queue. */ 489 skb = skb_peek_tail(&sk->sk_receive_queue); 490 if (answ && skb) 491 answ -= tcp_hdr(skb)->fin; 492 } else 493 answ = tp->urg_seq - tp->copied_seq; 494 release_sock(sk); 495 break; 496 case SIOCATMARK: 497 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 498 break; 499 case SIOCOUTQ: 500 if (sk->sk_state == TCP_LISTEN) 501 return -EINVAL; 502 503 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 504 answ = 0; 505 else 506 answ = tp->write_seq - tp->snd_una; 507 break; 508 case SIOCOUTQNSD: 509 if (sk->sk_state == TCP_LISTEN) 510 return -EINVAL; 511 512 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 513 answ = 0; 514 else 515 answ = tp->write_seq - tp->snd_nxt; 516 break; 517 default: 518 return -ENOIOCTLCMD; 519 } 520 521 return put_user(answ, (int __user *)arg); 522 } 523 EXPORT_SYMBOL(tcp_ioctl); 524 525 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 526 { 527 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 528 tp->pushed_seq = tp->write_seq; 529 } 530 531 static inline int forced_push(const struct tcp_sock *tp) 532 { 533 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 534 } 535 536 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 540 541 skb->csum = 0; 542 tcb->seq = tcb->end_seq = tp->write_seq; 543 tcb->tcp_flags = TCPHDR_ACK; 544 tcb->sacked = 0; 545 skb_header_release(skb); 546 tcp_add_write_queue_tail(sk, skb); 547 sk->sk_wmem_queued += skb->truesize; 548 sk_mem_charge(sk, skb->truesize); 549 if (tp->nonagle & TCP_NAGLE_PUSH) 550 tp->nonagle &= ~TCP_NAGLE_PUSH; 551 } 552 553 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 554 { 555 if (flags & MSG_OOB) 556 tp->snd_up = tp->write_seq; 557 } 558 559 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 560 int nonagle) 561 { 562 if (tcp_send_head(sk)) { 563 struct tcp_sock *tp = tcp_sk(sk); 564 565 if (!(flags & MSG_MORE) || forced_push(tp)) 566 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 567 568 tcp_mark_urg(tp, flags); 569 __tcp_push_pending_frames(sk, mss_now, 570 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 571 } 572 } 573 574 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 575 unsigned int offset, size_t len) 576 { 577 struct tcp_splice_state *tss = rd_desc->arg.data; 578 int ret; 579 580 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 581 tss->flags); 582 if (ret > 0) 583 rd_desc->count -= ret; 584 return ret; 585 } 586 587 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 588 { 589 /* Store TCP splice context information in read_descriptor_t. */ 590 read_descriptor_t rd_desc = { 591 .arg.data = tss, 592 .count = tss->len, 593 }; 594 595 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 596 } 597 598 /** 599 * tcp_splice_read - splice data from TCP socket to a pipe 600 * @sock: socket to splice from 601 * @ppos: position (not valid) 602 * @pipe: pipe to splice to 603 * @len: number of bytes to splice 604 * @flags: splice modifier flags 605 * 606 * Description: 607 * Will read pages from given socket and fill them into a pipe. 608 * 609 **/ 610 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 611 struct pipe_inode_info *pipe, size_t len, 612 unsigned int flags) 613 { 614 struct sock *sk = sock->sk; 615 struct tcp_splice_state tss = { 616 .pipe = pipe, 617 .len = len, 618 .flags = flags, 619 }; 620 long timeo; 621 ssize_t spliced; 622 int ret; 623 624 sock_rps_record_flow(sk); 625 /* 626 * We can't seek on a socket input 627 */ 628 if (unlikely(*ppos)) 629 return -ESPIPE; 630 631 ret = spliced = 0; 632 633 lock_sock(sk); 634 635 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 636 while (tss.len) { 637 ret = __tcp_splice_read(sk, &tss); 638 if (ret < 0) 639 break; 640 else if (!ret) { 641 if (spliced) 642 break; 643 if (sock_flag(sk, SOCK_DONE)) 644 break; 645 if (sk->sk_err) { 646 ret = sock_error(sk); 647 break; 648 } 649 if (sk->sk_shutdown & RCV_SHUTDOWN) 650 break; 651 if (sk->sk_state == TCP_CLOSE) { 652 /* 653 * This occurs when user tries to read 654 * from never connected socket. 655 */ 656 if (!sock_flag(sk, SOCK_DONE)) 657 ret = -ENOTCONN; 658 break; 659 } 660 if (!timeo) { 661 ret = -EAGAIN; 662 break; 663 } 664 sk_wait_data(sk, &timeo); 665 if (signal_pending(current)) { 666 ret = sock_intr_errno(timeo); 667 break; 668 } 669 continue; 670 } 671 tss.len -= ret; 672 spliced += ret; 673 674 if (!timeo) 675 break; 676 release_sock(sk); 677 lock_sock(sk); 678 679 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 680 (sk->sk_shutdown & RCV_SHUTDOWN) || 681 signal_pending(current)) 682 break; 683 } 684 685 release_sock(sk); 686 687 if (spliced) 688 return spliced; 689 690 return ret; 691 } 692 EXPORT_SYMBOL(tcp_splice_read); 693 694 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 695 { 696 struct sk_buff *skb; 697 698 /* The TCP header must be at least 32-bit aligned. */ 699 size = ALIGN(size, 4); 700 701 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 702 if (skb) { 703 if (sk_wmem_schedule(sk, skb->truesize)) { 704 skb_reserve(skb, sk->sk_prot->max_header); 705 /* 706 * Make sure that we have exactly size bytes 707 * available to the caller, no more, no less. 708 */ 709 skb->avail_size = size; 710 return skb; 711 } 712 __kfree_skb(skb); 713 } else { 714 sk->sk_prot->enter_memory_pressure(sk); 715 sk_stream_moderate_sndbuf(sk); 716 } 717 return NULL; 718 } 719 720 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 721 int large_allowed) 722 { 723 struct tcp_sock *tp = tcp_sk(sk); 724 u32 xmit_size_goal, old_size_goal; 725 726 xmit_size_goal = mss_now; 727 728 if (large_allowed && sk_can_gso(sk)) { 729 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 730 inet_csk(sk)->icsk_af_ops->net_header_len - 731 inet_csk(sk)->icsk_ext_hdr_len - 732 tp->tcp_header_len); 733 734 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 735 736 /* We try hard to avoid divides here */ 737 old_size_goal = tp->xmit_size_goal_segs * mss_now; 738 739 if (likely(old_size_goal <= xmit_size_goal && 740 old_size_goal + mss_now > xmit_size_goal)) { 741 xmit_size_goal = old_size_goal; 742 } else { 743 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 744 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 745 } 746 } 747 748 return max(xmit_size_goal, mss_now); 749 } 750 751 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 752 { 753 int mss_now; 754 755 mss_now = tcp_current_mss(sk); 756 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 757 758 return mss_now; 759 } 760 761 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 762 size_t psize, int flags) 763 { 764 struct tcp_sock *tp = tcp_sk(sk); 765 int mss_now, size_goal; 766 int err; 767 ssize_t copied; 768 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 769 770 /* Wait for a connection to finish. */ 771 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 772 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 773 goto out_err; 774 775 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 776 777 mss_now = tcp_send_mss(sk, &size_goal, flags); 778 copied = 0; 779 780 err = -EPIPE; 781 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 782 goto out_err; 783 784 while (psize > 0) { 785 struct sk_buff *skb = tcp_write_queue_tail(sk); 786 struct page *page = pages[poffset / PAGE_SIZE]; 787 int copy, i, can_coalesce; 788 int offset = poffset % PAGE_SIZE; 789 int size = min_t(size_t, psize, PAGE_SIZE - offset); 790 791 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 792 new_segment: 793 if (!sk_stream_memory_free(sk)) 794 goto wait_for_sndbuf; 795 796 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 797 if (!skb) 798 goto wait_for_memory; 799 800 skb_entail(sk, skb); 801 copy = size_goal; 802 } 803 804 if (copy > size) 805 copy = size; 806 807 i = skb_shinfo(skb)->nr_frags; 808 can_coalesce = skb_can_coalesce(skb, i, page, offset); 809 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 810 tcp_mark_push(tp, skb); 811 goto new_segment; 812 } 813 if (!sk_wmem_schedule(sk, copy)) 814 goto wait_for_memory; 815 816 if (can_coalesce) { 817 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 818 } else { 819 get_page(page); 820 skb_fill_page_desc(skb, i, page, offset, copy); 821 } 822 823 skb->len += copy; 824 skb->data_len += copy; 825 skb->truesize += copy; 826 sk->sk_wmem_queued += copy; 827 sk_mem_charge(sk, copy); 828 skb->ip_summed = CHECKSUM_PARTIAL; 829 tp->write_seq += copy; 830 TCP_SKB_CB(skb)->end_seq += copy; 831 skb_shinfo(skb)->gso_segs = 0; 832 833 if (!copied) 834 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 835 836 copied += copy; 837 poffset += copy; 838 if (!(psize -= copy)) 839 goto out; 840 841 if (skb->len < size_goal || (flags & MSG_OOB)) 842 continue; 843 844 if (forced_push(tp)) { 845 tcp_mark_push(tp, skb); 846 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 847 } else if (skb == tcp_send_head(sk)) 848 tcp_push_one(sk, mss_now); 849 continue; 850 851 wait_for_sndbuf: 852 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 853 wait_for_memory: 854 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 855 856 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 857 goto do_error; 858 859 mss_now = tcp_send_mss(sk, &size_goal, flags); 860 } 861 862 out: 863 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 864 tcp_push(sk, flags, mss_now, tp->nonagle); 865 return copied; 866 867 do_error: 868 if (copied) 869 goto out; 870 out_err: 871 return sk_stream_error(sk, flags, err); 872 } 873 874 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 875 size_t size, int flags) 876 { 877 ssize_t res; 878 879 if (!(sk->sk_route_caps & NETIF_F_SG) || 880 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 881 return sock_no_sendpage(sk->sk_socket, page, offset, size, 882 flags); 883 884 lock_sock(sk); 885 res = do_tcp_sendpages(sk, &page, offset, size, flags); 886 release_sock(sk); 887 return res; 888 } 889 EXPORT_SYMBOL(tcp_sendpage); 890 891 static inline int select_size(const struct sock *sk, bool sg) 892 { 893 const struct tcp_sock *tp = tcp_sk(sk); 894 int tmp = tp->mss_cache; 895 896 if (sg) { 897 if (sk_can_gso(sk)) { 898 /* Small frames wont use a full page: 899 * Payload will immediately follow tcp header. 900 */ 901 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 902 } else { 903 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 904 905 if (tmp >= pgbreak && 906 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 907 tmp = pgbreak; 908 } 909 } 910 911 return tmp; 912 } 913 914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 915 size_t size) 916 { 917 struct iovec *iov; 918 struct tcp_sock *tp = tcp_sk(sk); 919 struct sk_buff *skb; 920 int iovlen, flags, err, copied; 921 int mss_now, size_goal; 922 bool sg; 923 long timeo; 924 925 lock_sock(sk); 926 927 flags = msg->msg_flags; 928 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 929 930 /* Wait for a connection to finish. */ 931 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 932 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 933 goto out_err; 934 935 /* This should be in poll */ 936 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 937 938 mss_now = tcp_send_mss(sk, &size_goal, flags); 939 940 /* Ok commence sending. */ 941 iovlen = msg->msg_iovlen; 942 iov = msg->msg_iov; 943 copied = 0; 944 945 err = -EPIPE; 946 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 947 goto out_err; 948 949 sg = !!(sk->sk_route_caps & NETIF_F_SG); 950 951 while (--iovlen >= 0) { 952 size_t seglen = iov->iov_len; 953 unsigned char __user *from = iov->iov_base; 954 955 iov++; 956 957 while (seglen > 0) { 958 int copy = 0; 959 int max = size_goal; 960 961 skb = tcp_write_queue_tail(sk); 962 if (tcp_send_head(sk)) { 963 if (skb->ip_summed == CHECKSUM_NONE) 964 max = mss_now; 965 copy = max - skb->len; 966 } 967 968 if (copy <= 0) { 969 new_segment: 970 /* Allocate new segment. If the interface is SG, 971 * allocate skb fitting to single page. 972 */ 973 if (!sk_stream_memory_free(sk)) 974 goto wait_for_sndbuf; 975 976 skb = sk_stream_alloc_skb(sk, 977 select_size(sk, sg), 978 sk->sk_allocation); 979 if (!skb) 980 goto wait_for_memory; 981 982 /* 983 * Check whether we can use HW checksum. 984 */ 985 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 986 skb->ip_summed = CHECKSUM_PARTIAL; 987 988 skb_entail(sk, skb); 989 copy = size_goal; 990 max = size_goal; 991 } 992 993 /* Try to append data to the end of skb. */ 994 if (copy > seglen) 995 copy = seglen; 996 997 /* Where to copy to? */ 998 if (skb_availroom(skb) > 0) { 999 /* We have some space in skb head. Superb! */ 1000 copy = min_t(int, copy, skb_availroom(skb)); 1001 err = skb_add_data_nocache(sk, skb, from, copy); 1002 if (err) 1003 goto do_fault; 1004 } else { 1005 int merge = 0; 1006 int i = skb_shinfo(skb)->nr_frags; 1007 struct page *page = sk->sk_sndmsg_page; 1008 int off; 1009 1010 if (page && page_count(page) == 1) 1011 sk->sk_sndmsg_off = 0; 1012 1013 off = sk->sk_sndmsg_off; 1014 1015 if (skb_can_coalesce(skb, i, page, off) && 1016 off != PAGE_SIZE) { 1017 /* We can extend the last page 1018 * fragment. */ 1019 merge = 1; 1020 } else if (i == MAX_SKB_FRAGS || !sg) { 1021 /* Need to add new fragment and cannot 1022 * do this because interface is non-SG, 1023 * or because all the page slots are 1024 * busy. */ 1025 tcp_mark_push(tp, skb); 1026 goto new_segment; 1027 } else if (page) { 1028 if (off == PAGE_SIZE) { 1029 put_page(page); 1030 sk->sk_sndmsg_page = page = NULL; 1031 off = 0; 1032 } 1033 } else 1034 off = 0; 1035 1036 if (copy > PAGE_SIZE - off) 1037 copy = PAGE_SIZE - off; 1038 1039 if (!sk_wmem_schedule(sk, copy)) 1040 goto wait_for_memory; 1041 1042 if (!page) { 1043 /* Allocate new cache page. */ 1044 if (!(page = sk_stream_alloc_page(sk))) 1045 goto wait_for_memory; 1046 } 1047 1048 /* Time to copy data. We are close to 1049 * the end! */ 1050 err = skb_copy_to_page_nocache(sk, from, skb, 1051 page, off, copy); 1052 if (err) { 1053 /* If this page was new, give it to the 1054 * socket so it does not get leaked. 1055 */ 1056 if (!sk->sk_sndmsg_page) { 1057 sk->sk_sndmsg_page = page; 1058 sk->sk_sndmsg_off = 0; 1059 } 1060 goto do_error; 1061 } 1062 1063 /* Update the skb. */ 1064 if (merge) { 1065 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1066 } else { 1067 skb_fill_page_desc(skb, i, page, off, copy); 1068 if (sk->sk_sndmsg_page) { 1069 get_page(page); 1070 } else if (off + copy < PAGE_SIZE) { 1071 get_page(page); 1072 sk->sk_sndmsg_page = page; 1073 } 1074 } 1075 1076 sk->sk_sndmsg_off = off + copy; 1077 } 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 tp->write_seq += copy; 1083 TCP_SKB_CB(skb)->end_seq += copy; 1084 skb_shinfo(skb)->gso_segs = 0; 1085 1086 from += copy; 1087 copied += copy; 1088 if ((seglen -= copy) == 0 && iovlen == 0) 1089 goto out; 1090 1091 if (skb->len < max || (flags & MSG_OOB)) 1092 continue; 1093 1094 if (forced_push(tp)) { 1095 tcp_mark_push(tp, skb); 1096 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1097 } else if (skb == tcp_send_head(sk)) 1098 tcp_push_one(sk, mss_now); 1099 continue; 1100 1101 wait_for_sndbuf: 1102 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1103 wait_for_memory: 1104 if (copied) 1105 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1106 1107 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1108 goto do_error; 1109 1110 mss_now = tcp_send_mss(sk, &size_goal, flags); 1111 } 1112 } 1113 1114 out: 1115 if (copied) 1116 tcp_push(sk, flags, mss_now, tp->nonagle); 1117 release_sock(sk); 1118 return copied; 1119 1120 do_fault: 1121 if (!skb->len) { 1122 tcp_unlink_write_queue(skb, sk); 1123 /* It is the one place in all of TCP, except connection 1124 * reset, where we can be unlinking the send_head. 1125 */ 1126 tcp_check_send_head(sk, skb); 1127 sk_wmem_free_skb(sk, skb); 1128 } 1129 1130 do_error: 1131 if (copied) 1132 goto out; 1133 out_err: 1134 err = sk_stream_error(sk, flags, err); 1135 release_sock(sk); 1136 return err; 1137 } 1138 EXPORT_SYMBOL(tcp_sendmsg); 1139 1140 /* 1141 * Handle reading urgent data. BSD has very simple semantics for 1142 * this, no blocking and very strange errors 8) 1143 */ 1144 1145 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1146 { 1147 struct tcp_sock *tp = tcp_sk(sk); 1148 1149 /* No URG data to read. */ 1150 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1151 tp->urg_data == TCP_URG_READ) 1152 return -EINVAL; /* Yes this is right ! */ 1153 1154 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1155 return -ENOTCONN; 1156 1157 if (tp->urg_data & TCP_URG_VALID) { 1158 int err = 0; 1159 char c = tp->urg_data; 1160 1161 if (!(flags & MSG_PEEK)) 1162 tp->urg_data = TCP_URG_READ; 1163 1164 /* Read urgent data. */ 1165 msg->msg_flags |= MSG_OOB; 1166 1167 if (len > 0) { 1168 if (!(flags & MSG_TRUNC)) 1169 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1170 len = 1; 1171 } else 1172 msg->msg_flags |= MSG_TRUNC; 1173 1174 return err ? -EFAULT : len; 1175 } 1176 1177 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1178 return 0; 1179 1180 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1181 * the available implementations agree in this case: 1182 * this call should never block, independent of the 1183 * blocking state of the socket. 1184 * Mike <pall@rz.uni-karlsruhe.de> 1185 */ 1186 return -EAGAIN; 1187 } 1188 1189 /* Clean up the receive buffer for full frames taken by the user, 1190 * then send an ACK if necessary. COPIED is the number of bytes 1191 * tcp_recvmsg has given to the user so far, it speeds up the 1192 * calculation of whether or not we must ACK for the sake of 1193 * a window update. 1194 */ 1195 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1196 { 1197 struct tcp_sock *tp = tcp_sk(sk); 1198 int time_to_ack = 0; 1199 1200 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1201 1202 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1203 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1204 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1205 1206 if (inet_csk_ack_scheduled(sk)) { 1207 const struct inet_connection_sock *icsk = inet_csk(sk); 1208 /* Delayed ACKs frequently hit locked sockets during bulk 1209 * receive. */ 1210 if (icsk->icsk_ack.blocked || 1211 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1212 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1213 /* 1214 * If this read emptied read buffer, we send ACK, if 1215 * connection is not bidirectional, user drained 1216 * receive buffer and there was a small segment 1217 * in queue. 1218 */ 1219 (copied > 0 && 1220 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1221 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1222 !icsk->icsk_ack.pingpong)) && 1223 !atomic_read(&sk->sk_rmem_alloc))) 1224 time_to_ack = 1; 1225 } 1226 1227 /* We send an ACK if we can now advertise a non-zero window 1228 * which has been raised "significantly". 1229 * 1230 * Even if window raised up to infinity, do not send window open ACK 1231 * in states, where we will not receive more. It is useless. 1232 */ 1233 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1234 __u32 rcv_window_now = tcp_receive_window(tp); 1235 1236 /* Optimize, __tcp_select_window() is not cheap. */ 1237 if (2*rcv_window_now <= tp->window_clamp) { 1238 __u32 new_window = __tcp_select_window(sk); 1239 1240 /* Send ACK now, if this read freed lots of space 1241 * in our buffer. Certainly, new_window is new window. 1242 * We can advertise it now, if it is not less than current one. 1243 * "Lots" means "at least twice" here. 1244 */ 1245 if (new_window && new_window >= 2 * rcv_window_now) 1246 time_to_ack = 1; 1247 } 1248 } 1249 if (time_to_ack) 1250 tcp_send_ack(sk); 1251 } 1252 1253 static void tcp_prequeue_process(struct sock *sk) 1254 { 1255 struct sk_buff *skb; 1256 struct tcp_sock *tp = tcp_sk(sk); 1257 1258 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1259 1260 /* RX process wants to run with disabled BHs, though it is not 1261 * necessary */ 1262 local_bh_disable(); 1263 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1264 sk_backlog_rcv(sk, skb); 1265 local_bh_enable(); 1266 1267 /* Clear memory counter. */ 1268 tp->ucopy.memory = 0; 1269 } 1270 1271 #ifdef CONFIG_NET_DMA 1272 static void tcp_service_net_dma(struct sock *sk, bool wait) 1273 { 1274 dma_cookie_t done, used; 1275 dma_cookie_t last_issued; 1276 struct tcp_sock *tp = tcp_sk(sk); 1277 1278 if (!tp->ucopy.dma_chan) 1279 return; 1280 1281 last_issued = tp->ucopy.dma_cookie; 1282 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1283 1284 do { 1285 if (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1286 last_issued, &done, 1287 &used) == DMA_SUCCESS) { 1288 /* Safe to free early-copied skbs now */ 1289 __skb_queue_purge(&sk->sk_async_wait_queue); 1290 break; 1291 } else { 1292 struct sk_buff *skb; 1293 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1294 (dma_async_is_complete(skb->dma_cookie, done, 1295 used) == DMA_SUCCESS)) { 1296 __skb_dequeue(&sk->sk_async_wait_queue); 1297 kfree_skb(skb); 1298 } 1299 } 1300 } while (wait); 1301 } 1302 #endif 1303 1304 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1305 { 1306 struct sk_buff *skb; 1307 u32 offset; 1308 1309 skb_queue_walk(&sk->sk_receive_queue, skb) { 1310 offset = seq - TCP_SKB_CB(skb)->seq; 1311 if (tcp_hdr(skb)->syn) 1312 offset--; 1313 if (offset < skb->len || tcp_hdr(skb)->fin) { 1314 *off = offset; 1315 return skb; 1316 } 1317 } 1318 return NULL; 1319 } 1320 1321 /* 1322 * This routine provides an alternative to tcp_recvmsg() for routines 1323 * that would like to handle copying from skbuffs directly in 'sendfile' 1324 * fashion. 1325 * Note: 1326 * - It is assumed that the socket was locked by the caller. 1327 * - The routine does not block. 1328 * - At present, there is no support for reading OOB data 1329 * or for 'peeking' the socket using this routine 1330 * (although both would be easy to implement). 1331 */ 1332 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1333 sk_read_actor_t recv_actor) 1334 { 1335 struct sk_buff *skb; 1336 struct tcp_sock *tp = tcp_sk(sk); 1337 u32 seq = tp->copied_seq; 1338 u32 offset; 1339 int copied = 0; 1340 1341 if (sk->sk_state == TCP_LISTEN) 1342 return -ENOTCONN; 1343 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1344 if (offset < skb->len) { 1345 int used; 1346 size_t len; 1347 1348 len = skb->len - offset; 1349 /* Stop reading if we hit a patch of urgent data */ 1350 if (tp->urg_data) { 1351 u32 urg_offset = tp->urg_seq - seq; 1352 if (urg_offset < len) 1353 len = urg_offset; 1354 if (!len) 1355 break; 1356 } 1357 used = recv_actor(desc, skb, offset, len); 1358 if (used < 0) { 1359 if (!copied) 1360 copied = used; 1361 break; 1362 } else if (used <= len) { 1363 seq += used; 1364 copied += used; 1365 offset += used; 1366 } 1367 /* 1368 * If recv_actor drops the lock (e.g. TCP splice 1369 * receive) the skb pointer might be invalid when 1370 * getting here: tcp_collapse might have deleted it 1371 * while aggregating skbs from the socket queue. 1372 */ 1373 skb = tcp_recv_skb(sk, seq-1, &offset); 1374 if (!skb || (offset+1 != skb->len)) 1375 break; 1376 } 1377 if (tcp_hdr(skb)->fin) { 1378 sk_eat_skb(sk, skb, 0); 1379 ++seq; 1380 break; 1381 } 1382 sk_eat_skb(sk, skb, 0); 1383 if (!desc->count) 1384 break; 1385 tp->copied_seq = seq; 1386 } 1387 tp->copied_seq = seq; 1388 1389 tcp_rcv_space_adjust(sk); 1390 1391 /* Clean up data we have read: This will do ACK frames. */ 1392 if (copied > 0) 1393 tcp_cleanup_rbuf(sk, copied); 1394 return copied; 1395 } 1396 EXPORT_SYMBOL(tcp_read_sock); 1397 1398 /* 1399 * This routine copies from a sock struct into the user buffer. 1400 * 1401 * Technical note: in 2.3 we work on _locked_ socket, so that 1402 * tricks with *seq access order and skb->users are not required. 1403 * Probably, code can be easily improved even more. 1404 */ 1405 1406 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1407 size_t len, int nonblock, int flags, int *addr_len) 1408 { 1409 struct tcp_sock *tp = tcp_sk(sk); 1410 int copied = 0; 1411 u32 peek_seq; 1412 u32 *seq; 1413 unsigned long used; 1414 int err; 1415 int target; /* Read at least this many bytes */ 1416 long timeo; 1417 struct task_struct *user_recv = NULL; 1418 int copied_early = 0; 1419 struct sk_buff *skb; 1420 u32 urg_hole = 0; 1421 1422 lock_sock(sk); 1423 1424 err = -ENOTCONN; 1425 if (sk->sk_state == TCP_LISTEN) 1426 goto out; 1427 1428 timeo = sock_rcvtimeo(sk, nonblock); 1429 1430 /* Urgent data needs to be handled specially. */ 1431 if (flags & MSG_OOB) 1432 goto recv_urg; 1433 1434 seq = &tp->copied_seq; 1435 if (flags & MSG_PEEK) { 1436 peek_seq = tp->copied_seq; 1437 seq = &peek_seq; 1438 } 1439 1440 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1441 1442 #ifdef CONFIG_NET_DMA 1443 tp->ucopy.dma_chan = NULL; 1444 preempt_disable(); 1445 skb = skb_peek_tail(&sk->sk_receive_queue); 1446 { 1447 int available = 0; 1448 1449 if (skb) 1450 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1451 if ((available < target) && 1452 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1453 !sysctl_tcp_low_latency && 1454 net_dma_find_channel()) { 1455 preempt_enable_no_resched(); 1456 tp->ucopy.pinned_list = 1457 dma_pin_iovec_pages(msg->msg_iov, len); 1458 } else { 1459 preempt_enable_no_resched(); 1460 } 1461 } 1462 #endif 1463 1464 do { 1465 u32 offset; 1466 1467 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1468 if (tp->urg_data && tp->urg_seq == *seq) { 1469 if (copied) 1470 break; 1471 if (signal_pending(current)) { 1472 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1473 break; 1474 } 1475 } 1476 1477 /* Next get a buffer. */ 1478 1479 skb_queue_walk(&sk->sk_receive_queue, skb) { 1480 /* Now that we have two receive queues this 1481 * shouldn't happen. 1482 */ 1483 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1484 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1485 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1486 flags)) 1487 break; 1488 1489 offset = *seq - TCP_SKB_CB(skb)->seq; 1490 if (tcp_hdr(skb)->syn) 1491 offset--; 1492 if (offset < skb->len) 1493 goto found_ok_skb; 1494 if (tcp_hdr(skb)->fin) 1495 goto found_fin_ok; 1496 WARN(!(flags & MSG_PEEK), 1497 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1498 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1499 } 1500 1501 /* Well, if we have backlog, try to process it now yet. */ 1502 1503 if (copied >= target && !sk->sk_backlog.tail) 1504 break; 1505 1506 if (copied) { 1507 if (sk->sk_err || 1508 sk->sk_state == TCP_CLOSE || 1509 (sk->sk_shutdown & RCV_SHUTDOWN) || 1510 !timeo || 1511 signal_pending(current)) 1512 break; 1513 } else { 1514 if (sock_flag(sk, SOCK_DONE)) 1515 break; 1516 1517 if (sk->sk_err) { 1518 copied = sock_error(sk); 1519 break; 1520 } 1521 1522 if (sk->sk_shutdown & RCV_SHUTDOWN) 1523 break; 1524 1525 if (sk->sk_state == TCP_CLOSE) { 1526 if (!sock_flag(sk, SOCK_DONE)) { 1527 /* This occurs when user tries to read 1528 * from never connected socket. 1529 */ 1530 copied = -ENOTCONN; 1531 break; 1532 } 1533 break; 1534 } 1535 1536 if (!timeo) { 1537 copied = -EAGAIN; 1538 break; 1539 } 1540 1541 if (signal_pending(current)) { 1542 copied = sock_intr_errno(timeo); 1543 break; 1544 } 1545 } 1546 1547 tcp_cleanup_rbuf(sk, copied); 1548 1549 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1550 /* Install new reader */ 1551 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1552 user_recv = current; 1553 tp->ucopy.task = user_recv; 1554 tp->ucopy.iov = msg->msg_iov; 1555 } 1556 1557 tp->ucopy.len = len; 1558 1559 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1560 !(flags & (MSG_PEEK | MSG_TRUNC))); 1561 1562 /* Ugly... If prequeue is not empty, we have to 1563 * process it before releasing socket, otherwise 1564 * order will be broken at second iteration. 1565 * More elegant solution is required!!! 1566 * 1567 * Look: we have the following (pseudo)queues: 1568 * 1569 * 1. packets in flight 1570 * 2. backlog 1571 * 3. prequeue 1572 * 4. receive_queue 1573 * 1574 * Each queue can be processed only if the next ones 1575 * are empty. At this point we have empty receive_queue. 1576 * But prequeue _can_ be not empty after 2nd iteration, 1577 * when we jumped to start of loop because backlog 1578 * processing added something to receive_queue. 1579 * We cannot release_sock(), because backlog contains 1580 * packets arrived _after_ prequeued ones. 1581 * 1582 * Shortly, algorithm is clear --- to process all 1583 * the queues in order. We could make it more directly, 1584 * requeueing packets from backlog to prequeue, if 1585 * is not empty. It is more elegant, but eats cycles, 1586 * unfortunately. 1587 */ 1588 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1589 goto do_prequeue; 1590 1591 /* __ Set realtime policy in scheduler __ */ 1592 } 1593 1594 #ifdef CONFIG_NET_DMA 1595 if (tp->ucopy.dma_chan) 1596 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1597 #endif 1598 if (copied >= target) { 1599 /* Do not sleep, just process backlog. */ 1600 release_sock(sk); 1601 lock_sock(sk); 1602 } else 1603 sk_wait_data(sk, &timeo); 1604 1605 #ifdef CONFIG_NET_DMA 1606 tcp_service_net_dma(sk, false); /* Don't block */ 1607 tp->ucopy.wakeup = 0; 1608 #endif 1609 1610 if (user_recv) { 1611 int chunk; 1612 1613 /* __ Restore normal policy in scheduler __ */ 1614 1615 if ((chunk = len - tp->ucopy.len) != 0) { 1616 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1617 len -= chunk; 1618 copied += chunk; 1619 } 1620 1621 if (tp->rcv_nxt == tp->copied_seq && 1622 !skb_queue_empty(&tp->ucopy.prequeue)) { 1623 do_prequeue: 1624 tcp_prequeue_process(sk); 1625 1626 if ((chunk = len - tp->ucopy.len) != 0) { 1627 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1628 len -= chunk; 1629 copied += chunk; 1630 } 1631 } 1632 } 1633 if ((flags & MSG_PEEK) && 1634 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1635 if (net_ratelimit()) 1636 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1637 current->comm, task_pid_nr(current)); 1638 peek_seq = tp->copied_seq; 1639 } 1640 continue; 1641 1642 found_ok_skb: 1643 /* Ok so how much can we use? */ 1644 used = skb->len - offset; 1645 if (len < used) 1646 used = len; 1647 1648 /* Do we have urgent data here? */ 1649 if (tp->urg_data) { 1650 u32 urg_offset = tp->urg_seq - *seq; 1651 if (urg_offset < used) { 1652 if (!urg_offset) { 1653 if (!sock_flag(sk, SOCK_URGINLINE)) { 1654 ++*seq; 1655 urg_hole++; 1656 offset++; 1657 used--; 1658 if (!used) 1659 goto skip_copy; 1660 } 1661 } else 1662 used = urg_offset; 1663 } 1664 } 1665 1666 if (!(flags & MSG_TRUNC)) { 1667 #ifdef CONFIG_NET_DMA 1668 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1669 tp->ucopy.dma_chan = net_dma_find_channel(); 1670 1671 if (tp->ucopy.dma_chan) { 1672 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1673 tp->ucopy.dma_chan, skb, offset, 1674 msg->msg_iov, used, 1675 tp->ucopy.pinned_list); 1676 1677 if (tp->ucopy.dma_cookie < 0) { 1678 1679 pr_alert("%s: dma_cookie < 0\n", 1680 __func__); 1681 1682 /* Exception. Bailout! */ 1683 if (!copied) 1684 copied = -EFAULT; 1685 break; 1686 } 1687 1688 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1689 1690 if ((offset + used) == skb->len) 1691 copied_early = 1; 1692 1693 } else 1694 #endif 1695 { 1696 err = skb_copy_datagram_iovec(skb, offset, 1697 msg->msg_iov, used); 1698 if (err) { 1699 /* Exception. Bailout! */ 1700 if (!copied) 1701 copied = -EFAULT; 1702 break; 1703 } 1704 } 1705 } 1706 1707 *seq += used; 1708 copied += used; 1709 len -= used; 1710 1711 tcp_rcv_space_adjust(sk); 1712 1713 skip_copy: 1714 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1715 tp->urg_data = 0; 1716 tcp_fast_path_check(sk); 1717 } 1718 if (used + offset < skb->len) 1719 continue; 1720 1721 if (tcp_hdr(skb)->fin) 1722 goto found_fin_ok; 1723 if (!(flags & MSG_PEEK)) { 1724 sk_eat_skb(sk, skb, copied_early); 1725 copied_early = 0; 1726 } 1727 continue; 1728 1729 found_fin_ok: 1730 /* Process the FIN. */ 1731 ++*seq; 1732 if (!(flags & MSG_PEEK)) { 1733 sk_eat_skb(sk, skb, copied_early); 1734 copied_early = 0; 1735 } 1736 break; 1737 } while (len > 0); 1738 1739 if (user_recv) { 1740 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1741 int chunk; 1742 1743 tp->ucopy.len = copied > 0 ? len : 0; 1744 1745 tcp_prequeue_process(sk); 1746 1747 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1748 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1749 len -= chunk; 1750 copied += chunk; 1751 } 1752 } 1753 1754 tp->ucopy.task = NULL; 1755 tp->ucopy.len = 0; 1756 } 1757 1758 #ifdef CONFIG_NET_DMA 1759 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1760 tp->ucopy.dma_chan = NULL; 1761 1762 if (tp->ucopy.pinned_list) { 1763 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1764 tp->ucopy.pinned_list = NULL; 1765 } 1766 #endif 1767 1768 /* According to UNIX98, msg_name/msg_namelen are ignored 1769 * on connected socket. I was just happy when found this 8) --ANK 1770 */ 1771 1772 /* Clean up data we have read: This will do ACK frames. */ 1773 tcp_cleanup_rbuf(sk, copied); 1774 1775 release_sock(sk); 1776 return copied; 1777 1778 out: 1779 release_sock(sk); 1780 return err; 1781 1782 recv_urg: 1783 err = tcp_recv_urg(sk, msg, len, flags); 1784 goto out; 1785 } 1786 EXPORT_SYMBOL(tcp_recvmsg); 1787 1788 void tcp_set_state(struct sock *sk, int state) 1789 { 1790 int oldstate = sk->sk_state; 1791 1792 switch (state) { 1793 case TCP_ESTABLISHED: 1794 if (oldstate != TCP_ESTABLISHED) 1795 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1796 break; 1797 1798 case TCP_CLOSE: 1799 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1800 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1801 1802 sk->sk_prot->unhash(sk); 1803 if (inet_csk(sk)->icsk_bind_hash && 1804 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1805 inet_put_port(sk); 1806 /* fall through */ 1807 default: 1808 if (oldstate == TCP_ESTABLISHED) 1809 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1810 } 1811 1812 /* Change state AFTER socket is unhashed to avoid closed 1813 * socket sitting in hash tables. 1814 */ 1815 sk->sk_state = state; 1816 1817 #ifdef STATE_TRACE 1818 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1819 #endif 1820 } 1821 EXPORT_SYMBOL_GPL(tcp_set_state); 1822 1823 /* 1824 * State processing on a close. This implements the state shift for 1825 * sending our FIN frame. Note that we only send a FIN for some 1826 * states. A shutdown() may have already sent the FIN, or we may be 1827 * closed. 1828 */ 1829 1830 static const unsigned char new_state[16] = { 1831 /* current state: new state: action: */ 1832 /* (Invalid) */ TCP_CLOSE, 1833 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1834 /* TCP_SYN_SENT */ TCP_CLOSE, 1835 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1836 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1837 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1838 /* TCP_TIME_WAIT */ TCP_CLOSE, 1839 /* TCP_CLOSE */ TCP_CLOSE, 1840 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1841 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1842 /* TCP_LISTEN */ TCP_CLOSE, 1843 /* TCP_CLOSING */ TCP_CLOSING, 1844 }; 1845 1846 static int tcp_close_state(struct sock *sk) 1847 { 1848 int next = (int)new_state[sk->sk_state]; 1849 int ns = next & TCP_STATE_MASK; 1850 1851 tcp_set_state(sk, ns); 1852 1853 return next & TCP_ACTION_FIN; 1854 } 1855 1856 /* 1857 * Shutdown the sending side of a connection. Much like close except 1858 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1859 */ 1860 1861 void tcp_shutdown(struct sock *sk, int how) 1862 { 1863 /* We need to grab some memory, and put together a FIN, 1864 * and then put it into the queue to be sent. 1865 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1866 */ 1867 if (!(how & SEND_SHUTDOWN)) 1868 return; 1869 1870 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1871 if ((1 << sk->sk_state) & 1872 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1873 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1874 /* Clear out any half completed packets. FIN if needed. */ 1875 if (tcp_close_state(sk)) 1876 tcp_send_fin(sk); 1877 } 1878 } 1879 EXPORT_SYMBOL(tcp_shutdown); 1880 1881 bool tcp_check_oom(struct sock *sk, int shift) 1882 { 1883 bool too_many_orphans, out_of_socket_memory; 1884 1885 too_many_orphans = tcp_too_many_orphans(sk, shift); 1886 out_of_socket_memory = tcp_out_of_memory(sk); 1887 1888 if (too_many_orphans && net_ratelimit()) 1889 pr_info("too many orphaned sockets\n"); 1890 if (out_of_socket_memory && net_ratelimit()) 1891 pr_info("out of memory -- consider tuning tcp_mem\n"); 1892 return too_many_orphans || out_of_socket_memory; 1893 } 1894 1895 void tcp_close(struct sock *sk, long timeout) 1896 { 1897 struct sk_buff *skb; 1898 int data_was_unread = 0; 1899 int state; 1900 1901 lock_sock(sk); 1902 sk->sk_shutdown = SHUTDOWN_MASK; 1903 1904 if (sk->sk_state == TCP_LISTEN) { 1905 tcp_set_state(sk, TCP_CLOSE); 1906 1907 /* Special case. */ 1908 inet_csk_listen_stop(sk); 1909 1910 goto adjudge_to_death; 1911 } 1912 1913 /* We need to flush the recv. buffs. We do this only on the 1914 * descriptor close, not protocol-sourced closes, because the 1915 * reader process may not have drained the data yet! 1916 */ 1917 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1918 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1919 tcp_hdr(skb)->fin; 1920 data_was_unread += len; 1921 __kfree_skb(skb); 1922 } 1923 1924 sk_mem_reclaim(sk); 1925 1926 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 1927 if (sk->sk_state == TCP_CLOSE) 1928 goto adjudge_to_death; 1929 1930 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1931 * data was lost. To witness the awful effects of the old behavior of 1932 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1933 * GET in an FTP client, suspend the process, wait for the client to 1934 * advertise a zero window, then kill -9 the FTP client, wheee... 1935 * Note: timeout is always zero in such a case. 1936 */ 1937 if (data_was_unread) { 1938 /* Unread data was tossed, zap the connection. */ 1939 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1940 tcp_set_state(sk, TCP_CLOSE); 1941 tcp_send_active_reset(sk, sk->sk_allocation); 1942 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1943 /* Check zero linger _after_ checking for unread data. */ 1944 sk->sk_prot->disconnect(sk, 0); 1945 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1946 } else if (tcp_close_state(sk)) { 1947 /* We FIN if the application ate all the data before 1948 * zapping the connection. 1949 */ 1950 1951 /* RED-PEN. Formally speaking, we have broken TCP state 1952 * machine. State transitions: 1953 * 1954 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1955 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1956 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1957 * 1958 * are legal only when FIN has been sent (i.e. in window), 1959 * rather than queued out of window. Purists blame. 1960 * 1961 * F.e. "RFC state" is ESTABLISHED, 1962 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1963 * 1964 * The visible declinations are that sometimes 1965 * we enter time-wait state, when it is not required really 1966 * (harmless), do not send active resets, when they are 1967 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1968 * they look as CLOSING or LAST_ACK for Linux) 1969 * Probably, I missed some more holelets. 1970 * --ANK 1971 */ 1972 tcp_send_fin(sk); 1973 } 1974 1975 sk_stream_wait_close(sk, timeout); 1976 1977 adjudge_to_death: 1978 state = sk->sk_state; 1979 sock_hold(sk); 1980 sock_orphan(sk); 1981 1982 /* It is the last release_sock in its life. It will remove backlog. */ 1983 release_sock(sk); 1984 1985 1986 /* Now socket is owned by kernel and we acquire BH lock 1987 to finish close. No need to check for user refs. 1988 */ 1989 local_bh_disable(); 1990 bh_lock_sock(sk); 1991 WARN_ON(sock_owned_by_user(sk)); 1992 1993 percpu_counter_inc(sk->sk_prot->orphan_count); 1994 1995 /* Have we already been destroyed by a softirq or backlog? */ 1996 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1997 goto out; 1998 1999 /* This is a (useful) BSD violating of the RFC. There is a 2000 * problem with TCP as specified in that the other end could 2001 * keep a socket open forever with no application left this end. 2002 * We use a 3 minute timeout (about the same as BSD) then kill 2003 * our end. If they send after that then tough - BUT: long enough 2004 * that we won't make the old 4*rto = almost no time - whoops 2005 * reset mistake. 2006 * 2007 * Nope, it was not mistake. It is really desired behaviour 2008 * f.e. on http servers, when such sockets are useless, but 2009 * consume significant resources. Let's do it with special 2010 * linger2 option. --ANK 2011 */ 2012 2013 if (sk->sk_state == TCP_FIN_WAIT2) { 2014 struct tcp_sock *tp = tcp_sk(sk); 2015 if (tp->linger2 < 0) { 2016 tcp_set_state(sk, TCP_CLOSE); 2017 tcp_send_active_reset(sk, GFP_ATOMIC); 2018 NET_INC_STATS_BH(sock_net(sk), 2019 LINUX_MIB_TCPABORTONLINGER); 2020 } else { 2021 const int tmo = tcp_fin_time(sk); 2022 2023 if (tmo > TCP_TIMEWAIT_LEN) { 2024 inet_csk_reset_keepalive_timer(sk, 2025 tmo - TCP_TIMEWAIT_LEN); 2026 } else { 2027 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2028 goto out; 2029 } 2030 } 2031 } 2032 if (sk->sk_state != TCP_CLOSE) { 2033 sk_mem_reclaim(sk); 2034 if (tcp_check_oom(sk, 0)) { 2035 tcp_set_state(sk, TCP_CLOSE); 2036 tcp_send_active_reset(sk, GFP_ATOMIC); 2037 NET_INC_STATS_BH(sock_net(sk), 2038 LINUX_MIB_TCPABORTONMEMORY); 2039 } 2040 } 2041 2042 if (sk->sk_state == TCP_CLOSE) 2043 inet_csk_destroy_sock(sk); 2044 /* Otherwise, socket is reprieved until protocol close. */ 2045 2046 out: 2047 bh_unlock_sock(sk); 2048 local_bh_enable(); 2049 sock_put(sk); 2050 } 2051 EXPORT_SYMBOL(tcp_close); 2052 2053 /* These states need RST on ABORT according to RFC793 */ 2054 2055 static inline int tcp_need_reset(int state) 2056 { 2057 return (1 << state) & 2058 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2059 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2060 } 2061 2062 int tcp_disconnect(struct sock *sk, int flags) 2063 { 2064 struct inet_sock *inet = inet_sk(sk); 2065 struct inet_connection_sock *icsk = inet_csk(sk); 2066 struct tcp_sock *tp = tcp_sk(sk); 2067 int err = 0; 2068 int old_state = sk->sk_state; 2069 2070 if (old_state != TCP_CLOSE) 2071 tcp_set_state(sk, TCP_CLOSE); 2072 2073 /* ABORT function of RFC793 */ 2074 if (old_state == TCP_LISTEN) { 2075 inet_csk_listen_stop(sk); 2076 } else if (tcp_need_reset(old_state) || 2077 (tp->snd_nxt != tp->write_seq && 2078 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2079 /* The last check adjusts for discrepancy of Linux wrt. RFC 2080 * states 2081 */ 2082 tcp_send_active_reset(sk, gfp_any()); 2083 sk->sk_err = ECONNRESET; 2084 } else if (old_state == TCP_SYN_SENT) 2085 sk->sk_err = ECONNRESET; 2086 2087 tcp_clear_xmit_timers(sk); 2088 __skb_queue_purge(&sk->sk_receive_queue); 2089 tcp_write_queue_purge(sk); 2090 __skb_queue_purge(&tp->out_of_order_queue); 2091 #ifdef CONFIG_NET_DMA 2092 __skb_queue_purge(&sk->sk_async_wait_queue); 2093 #endif 2094 2095 inet->inet_dport = 0; 2096 2097 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2098 inet_reset_saddr(sk); 2099 2100 sk->sk_shutdown = 0; 2101 sock_reset_flag(sk, SOCK_DONE); 2102 tp->srtt = 0; 2103 if ((tp->write_seq += tp->max_window + 2) == 0) 2104 tp->write_seq = 1; 2105 icsk->icsk_backoff = 0; 2106 tp->snd_cwnd = 2; 2107 icsk->icsk_probes_out = 0; 2108 tp->packets_out = 0; 2109 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2110 tp->snd_cwnd_cnt = 0; 2111 tp->bytes_acked = 0; 2112 tp->window_clamp = 0; 2113 tcp_set_ca_state(sk, TCP_CA_Open); 2114 tcp_clear_retrans(tp); 2115 inet_csk_delack_init(sk); 2116 tcp_init_send_head(sk); 2117 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2118 __sk_dst_reset(sk); 2119 2120 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2121 2122 sk->sk_error_report(sk); 2123 return err; 2124 } 2125 EXPORT_SYMBOL(tcp_disconnect); 2126 2127 /* 2128 * Socket option code for TCP. 2129 */ 2130 static int do_tcp_setsockopt(struct sock *sk, int level, 2131 int optname, char __user *optval, unsigned int optlen) 2132 { 2133 struct tcp_sock *tp = tcp_sk(sk); 2134 struct inet_connection_sock *icsk = inet_csk(sk); 2135 int val; 2136 int err = 0; 2137 2138 /* These are data/string values, all the others are ints */ 2139 switch (optname) { 2140 case TCP_CONGESTION: { 2141 char name[TCP_CA_NAME_MAX]; 2142 2143 if (optlen < 1) 2144 return -EINVAL; 2145 2146 val = strncpy_from_user(name, optval, 2147 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2148 if (val < 0) 2149 return -EFAULT; 2150 name[val] = 0; 2151 2152 lock_sock(sk); 2153 err = tcp_set_congestion_control(sk, name); 2154 release_sock(sk); 2155 return err; 2156 } 2157 case TCP_COOKIE_TRANSACTIONS: { 2158 struct tcp_cookie_transactions ctd; 2159 struct tcp_cookie_values *cvp = NULL; 2160 2161 if (sizeof(ctd) > optlen) 2162 return -EINVAL; 2163 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2164 return -EFAULT; 2165 2166 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2167 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2168 return -EINVAL; 2169 2170 if (ctd.tcpct_cookie_desired == 0) { 2171 /* default to global value */ 2172 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2173 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2174 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2175 return -EINVAL; 2176 } 2177 2178 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2179 /* Supercedes all other values */ 2180 lock_sock(sk); 2181 if (tp->cookie_values != NULL) { 2182 kref_put(&tp->cookie_values->kref, 2183 tcp_cookie_values_release); 2184 tp->cookie_values = NULL; 2185 } 2186 tp->rx_opt.cookie_in_always = 0; /* false */ 2187 tp->rx_opt.cookie_out_never = 1; /* true */ 2188 release_sock(sk); 2189 return err; 2190 } 2191 2192 /* Allocate ancillary memory before locking. 2193 */ 2194 if (ctd.tcpct_used > 0 || 2195 (tp->cookie_values == NULL && 2196 (sysctl_tcp_cookie_size > 0 || 2197 ctd.tcpct_cookie_desired > 0 || 2198 ctd.tcpct_s_data_desired > 0))) { 2199 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2200 GFP_KERNEL); 2201 if (cvp == NULL) 2202 return -ENOMEM; 2203 2204 kref_init(&cvp->kref); 2205 } 2206 lock_sock(sk); 2207 tp->rx_opt.cookie_in_always = 2208 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2209 tp->rx_opt.cookie_out_never = 0; /* false */ 2210 2211 if (tp->cookie_values != NULL) { 2212 if (cvp != NULL) { 2213 /* Changed values are recorded by a changed 2214 * pointer, ensuring the cookie will differ, 2215 * without separately hashing each value later. 2216 */ 2217 kref_put(&tp->cookie_values->kref, 2218 tcp_cookie_values_release); 2219 } else { 2220 cvp = tp->cookie_values; 2221 } 2222 } 2223 2224 if (cvp != NULL) { 2225 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2226 2227 if (ctd.tcpct_used > 0) { 2228 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2229 ctd.tcpct_used); 2230 cvp->s_data_desired = ctd.tcpct_used; 2231 cvp->s_data_constant = 1; /* true */ 2232 } else { 2233 /* No constant payload data. */ 2234 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2235 cvp->s_data_constant = 0; /* false */ 2236 } 2237 2238 tp->cookie_values = cvp; 2239 } 2240 release_sock(sk); 2241 return err; 2242 } 2243 default: 2244 /* fallthru */ 2245 break; 2246 } 2247 2248 if (optlen < sizeof(int)) 2249 return -EINVAL; 2250 2251 if (get_user(val, (int __user *)optval)) 2252 return -EFAULT; 2253 2254 lock_sock(sk); 2255 2256 switch (optname) { 2257 case TCP_MAXSEG: 2258 /* Values greater than interface MTU won't take effect. However 2259 * at the point when this call is done we typically don't yet 2260 * know which interface is going to be used */ 2261 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2262 err = -EINVAL; 2263 break; 2264 } 2265 tp->rx_opt.user_mss = val; 2266 break; 2267 2268 case TCP_NODELAY: 2269 if (val) { 2270 /* TCP_NODELAY is weaker than TCP_CORK, so that 2271 * this option on corked socket is remembered, but 2272 * it is not activated until cork is cleared. 2273 * 2274 * However, when TCP_NODELAY is set we make 2275 * an explicit push, which overrides even TCP_CORK 2276 * for currently queued segments. 2277 */ 2278 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2279 tcp_push_pending_frames(sk); 2280 } else { 2281 tp->nonagle &= ~TCP_NAGLE_OFF; 2282 } 2283 break; 2284 2285 case TCP_THIN_LINEAR_TIMEOUTS: 2286 if (val < 0 || val > 1) 2287 err = -EINVAL; 2288 else 2289 tp->thin_lto = val; 2290 break; 2291 2292 case TCP_THIN_DUPACK: 2293 if (val < 0 || val > 1) 2294 err = -EINVAL; 2295 else 2296 tp->thin_dupack = val; 2297 break; 2298 2299 case TCP_CORK: 2300 /* When set indicates to always queue non-full frames. 2301 * Later the user clears this option and we transmit 2302 * any pending partial frames in the queue. This is 2303 * meant to be used alongside sendfile() to get properly 2304 * filled frames when the user (for example) must write 2305 * out headers with a write() call first and then use 2306 * sendfile to send out the data parts. 2307 * 2308 * TCP_CORK can be set together with TCP_NODELAY and it is 2309 * stronger than TCP_NODELAY. 2310 */ 2311 if (val) { 2312 tp->nonagle |= TCP_NAGLE_CORK; 2313 } else { 2314 tp->nonagle &= ~TCP_NAGLE_CORK; 2315 if (tp->nonagle&TCP_NAGLE_OFF) 2316 tp->nonagle |= TCP_NAGLE_PUSH; 2317 tcp_push_pending_frames(sk); 2318 } 2319 break; 2320 2321 case TCP_KEEPIDLE: 2322 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2323 err = -EINVAL; 2324 else { 2325 tp->keepalive_time = val * HZ; 2326 if (sock_flag(sk, SOCK_KEEPOPEN) && 2327 !((1 << sk->sk_state) & 2328 (TCPF_CLOSE | TCPF_LISTEN))) { 2329 u32 elapsed = keepalive_time_elapsed(tp); 2330 if (tp->keepalive_time > elapsed) 2331 elapsed = tp->keepalive_time - elapsed; 2332 else 2333 elapsed = 0; 2334 inet_csk_reset_keepalive_timer(sk, elapsed); 2335 } 2336 } 2337 break; 2338 case TCP_KEEPINTVL: 2339 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2340 err = -EINVAL; 2341 else 2342 tp->keepalive_intvl = val * HZ; 2343 break; 2344 case TCP_KEEPCNT: 2345 if (val < 1 || val > MAX_TCP_KEEPCNT) 2346 err = -EINVAL; 2347 else 2348 tp->keepalive_probes = val; 2349 break; 2350 case TCP_SYNCNT: 2351 if (val < 1 || val > MAX_TCP_SYNCNT) 2352 err = -EINVAL; 2353 else 2354 icsk->icsk_syn_retries = val; 2355 break; 2356 2357 case TCP_LINGER2: 2358 if (val < 0) 2359 tp->linger2 = -1; 2360 else if (val > sysctl_tcp_fin_timeout / HZ) 2361 tp->linger2 = 0; 2362 else 2363 tp->linger2 = val * HZ; 2364 break; 2365 2366 case TCP_DEFER_ACCEPT: 2367 /* Translate value in seconds to number of retransmits */ 2368 icsk->icsk_accept_queue.rskq_defer_accept = 2369 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2370 TCP_RTO_MAX / HZ); 2371 break; 2372 2373 case TCP_WINDOW_CLAMP: 2374 if (!val) { 2375 if (sk->sk_state != TCP_CLOSE) { 2376 err = -EINVAL; 2377 break; 2378 } 2379 tp->window_clamp = 0; 2380 } else 2381 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2382 SOCK_MIN_RCVBUF / 2 : val; 2383 break; 2384 2385 case TCP_QUICKACK: 2386 if (!val) { 2387 icsk->icsk_ack.pingpong = 1; 2388 } else { 2389 icsk->icsk_ack.pingpong = 0; 2390 if ((1 << sk->sk_state) & 2391 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2392 inet_csk_ack_scheduled(sk)) { 2393 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2394 tcp_cleanup_rbuf(sk, 1); 2395 if (!(val & 1)) 2396 icsk->icsk_ack.pingpong = 1; 2397 } 2398 } 2399 break; 2400 2401 #ifdef CONFIG_TCP_MD5SIG 2402 case TCP_MD5SIG: 2403 /* Read the IP->Key mappings from userspace */ 2404 err = tp->af_specific->md5_parse(sk, optval, optlen); 2405 break; 2406 #endif 2407 case TCP_USER_TIMEOUT: 2408 /* Cap the max timeout in ms TCP will retry/retrans 2409 * before giving up and aborting (ETIMEDOUT) a connection. 2410 */ 2411 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2412 break; 2413 default: 2414 err = -ENOPROTOOPT; 2415 break; 2416 } 2417 2418 release_sock(sk); 2419 return err; 2420 } 2421 2422 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2423 unsigned int optlen) 2424 { 2425 const struct inet_connection_sock *icsk = inet_csk(sk); 2426 2427 if (level != SOL_TCP) 2428 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2429 optval, optlen); 2430 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2431 } 2432 EXPORT_SYMBOL(tcp_setsockopt); 2433 2434 #ifdef CONFIG_COMPAT 2435 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2436 char __user *optval, unsigned int optlen) 2437 { 2438 if (level != SOL_TCP) 2439 return inet_csk_compat_setsockopt(sk, level, optname, 2440 optval, optlen); 2441 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2442 } 2443 EXPORT_SYMBOL(compat_tcp_setsockopt); 2444 #endif 2445 2446 /* Return information about state of tcp endpoint in API format. */ 2447 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2448 { 2449 const struct tcp_sock *tp = tcp_sk(sk); 2450 const struct inet_connection_sock *icsk = inet_csk(sk); 2451 u32 now = tcp_time_stamp; 2452 2453 memset(info, 0, sizeof(*info)); 2454 2455 info->tcpi_state = sk->sk_state; 2456 info->tcpi_ca_state = icsk->icsk_ca_state; 2457 info->tcpi_retransmits = icsk->icsk_retransmits; 2458 info->tcpi_probes = icsk->icsk_probes_out; 2459 info->tcpi_backoff = icsk->icsk_backoff; 2460 2461 if (tp->rx_opt.tstamp_ok) 2462 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2463 if (tcp_is_sack(tp)) 2464 info->tcpi_options |= TCPI_OPT_SACK; 2465 if (tp->rx_opt.wscale_ok) { 2466 info->tcpi_options |= TCPI_OPT_WSCALE; 2467 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2468 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2469 } 2470 2471 if (tp->ecn_flags & TCP_ECN_OK) 2472 info->tcpi_options |= TCPI_OPT_ECN; 2473 if (tp->ecn_flags & TCP_ECN_SEEN) 2474 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2475 2476 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2477 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2478 info->tcpi_snd_mss = tp->mss_cache; 2479 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2480 2481 if (sk->sk_state == TCP_LISTEN) { 2482 info->tcpi_unacked = sk->sk_ack_backlog; 2483 info->tcpi_sacked = sk->sk_max_ack_backlog; 2484 } else { 2485 info->tcpi_unacked = tp->packets_out; 2486 info->tcpi_sacked = tp->sacked_out; 2487 } 2488 info->tcpi_lost = tp->lost_out; 2489 info->tcpi_retrans = tp->retrans_out; 2490 info->tcpi_fackets = tp->fackets_out; 2491 2492 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2493 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2494 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2495 2496 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2497 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2498 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2499 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2500 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2501 info->tcpi_snd_cwnd = tp->snd_cwnd; 2502 info->tcpi_advmss = tp->advmss; 2503 info->tcpi_reordering = tp->reordering; 2504 2505 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2506 info->tcpi_rcv_space = tp->rcvq_space.space; 2507 2508 info->tcpi_total_retrans = tp->total_retrans; 2509 } 2510 EXPORT_SYMBOL_GPL(tcp_get_info); 2511 2512 static int do_tcp_getsockopt(struct sock *sk, int level, 2513 int optname, char __user *optval, int __user *optlen) 2514 { 2515 struct inet_connection_sock *icsk = inet_csk(sk); 2516 struct tcp_sock *tp = tcp_sk(sk); 2517 int val, len; 2518 2519 if (get_user(len, optlen)) 2520 return -EFAULT; 2521 2522 len = min_t(unsigned int, len, sizeof(int)); 2523 2524 if (len < 0) 2525 return -EINVAL; 2526 2527 switch (optname) { 2528 case TCP_MAXSEG: 2529 val = tp->mss_cache; 2530 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2531 val = tp->rx_opt.user_mss; 2532 break; 2533 case TCP_NODELAY: 2534 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2535 break; 2536 case TCP_CORK: 2537 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2538 break; 2539 case TCP_KEEPIDLE: 2540 val = keepalive_time_when(tp) / HZ; 2541 break; 2542 case TCP_KEEPINTVL: 2543 val = keepalive_intvl_when(tp) / HZ; 2544 break; 2545 case TCP_KEEPCNT: 2546 val = keepalive_probes(tp); 2547 break; 2548 case TCP_SYNCNT: 2549 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2550 break; 2551 case TCP_LINGER2: 2552 val = tp->linger2; 2553 if (val >= 0) 2554 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2555 break; 2556 case TCP_DEFER_ACCEPT: 2557 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2558 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2559 break; 2560 case TCP_WINDOW_CLAMP: 2561 val = tp->window_clamp; 2562 break; 2563 case TCP_INFO: { 2564 struct tcp_info info; 2565 2566 if (get_user(len, optlen)) 2567 return -EFAULT; 2568 2569 tcp_get_info(sk, &info); 2570 2571 len = min_t(unsigned int, len, sizeof(info)); 2572 if (put_user(len, optlen)) 2573 return -EFAULT; 2574 if (copy_to_user(optval, &info, len)) 2575 return -EFAULT; 2576 return 0; 2577 } 2578 case TCP_QUICKACK: 2579 val = !icsk->icsk_ack.pingpong; 2580 break; 2581 2582 case TCP_CONGESTION: 2583 if (get_user(len, optlen)) 2584 return -EFAULT; 2585 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2586 if (put_user(len, optlen)) 2587 return -EFAULT; 2588 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2589 return -EFAULT; 2590 return 0; 2591 2592 case TCP_COOKIE_TRANSACTIONS: { 2593 struct tcp_cookie_transactions ctd; 2594 struct tcp_cookie_values *cvp = tp->cookie_values; 2595 2596 if (get_user(len, optlen)) 2597 return -EFAULT; 2598 if (len < sizeof(ctd)) 2599 return -EINVAL; 2600 2601 memset(&ctd, 0, sizeof(ctd)); 2602 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2603 TCP_COOKIE_IN_ALWAYS : 0) 2604 | (tp->rx_opt.cookie_out_never ? 2605 TCP_COOKIE_OUT_NEVER : 0); 2606 2607 if (cvp != NULL) { 2608 ctd.tcpct_flags |= (cvp->s_data_in ? 2609 TCP_S_DATA_IN : 0) 2610 | (cvp->s_data_out ? 2611 TCP_S_DATA_OUT : 0); 2612 2613 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2614 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2615 2616 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2617 cvp->cookie_pair_size); 2618 ctd.tcpct_used = cvp->cookie_pair_size; 2619 } 2620 2621 if (put_user(sizeof(ctd), optlen)) 2622 return -EFAULT; 2623 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2624 return -EFAULT; 2625 return 0; 2626 } 2627 case TCP_THIN_LINEAR_TIMEOUTS: 2628 val = tp->thin_lto; 2629 break; 2630 case TCP_THIN_DUPACK: 2631 val = tp->thin_dupack; 2632 break; 2633 2634 case TCP_USER_TIMEOUT: 2635 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2636 break; 2637 default: 2638 return -ENOPROTOOPT; 2639 } 2640 2641 if (put_user(len, optlen)) 2642 return -EFAULT; 2643 if (copy_to_user(optval, &val, len)) 2644 return -EFAULT; 2645 return 0; 2646 } 2647 2648 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2649 int __user *optlen) 2650 { 2651 struct inet_connection_sock *icsk = inet_csk(sk); 2652 2653 if (level != SOL_TCP) 2654 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2655 optval, optlen); 2656 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2657 } 2658 EXPORT_SYMBOL(tcp_getsockopt); 2659 2660 #ifdef CONFIG_COMPAT 2661 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2662 char __user *optval, int __user *optlen) 2663 { 2664 if (level != SOL_TCP) 2665 return inet_csk_compat_getsockopt(sk, level, optname, 2666 optval, optlen); 2667 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2668 } 2669 EXPORT_SYMBOL(compat_tcp_getsockopt); 2670 #endif 2671 2672 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, 2673 netdev_features_t features) 2674 { 2675 struct sk_buff *segs = ERR_PTR(-EINVAL); 2676 struct tcphdr *th; 2677 unsigned thlen; 2678 unsigned int seq; 2679 __be32 delta; 2680 unsigned int oldlen; 2681 unsigned int mss; 2682 2683 if (!pskb_may_pull(skb, sizeof(*th))) 2684 goto out; 2685 2686 th = tcp_hdr(skb); 2687 thlen = th->doff * 4; 2688 if (thlen < sizeof(*th)) 2689 goto out; 2690 2691 if (!pskb_may_pull(skb, thlen)) 2692 goto out; 2693 2694 oldlen = (u16)~skb->len; 2695 __skb_pull(skb, thlen); 2696 2697 mss = skb_shinfo(skb)->gso_size; 2698 if (unlikely(skb->len <= mss)) 2699 goto out; 2700 2701 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2702 /* Packet is from an untrusted source, reset gso_segs. */ 2703 int type = skb_shinfo(skb)->gso_type; 2704 2705 if (unlikely(type & 2706 ~(SKB_GSO_TCPV4 | 2707 SKB_GSO_DODGY | 2708 SKB_GSO_TCP_ECN | 2709 SKB_GSO_TCPV6 | 2710 0) || 2711 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2712 goto out; 2713 2714 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2715 2716 segs = NULL; 2717 goto out; 2718 } 2719 2720 segs = skb_segment(skb, features); 2721 if (IS_ERR(segs)) 2722 goto out; 2723 2724 delta = htonl(oldlen + (thlen + mss)); 2725 2726 skb = segs; 2727 th = tcp_hdr(skb); 2728 seq = ntohl(th->seq); 2729 2730 do { 2731 th->fin = th->psh = 0; 2732 2733 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2734 (__force u32)delta)); 2735 if (skb->ip_summed != CHECKSUM_PARTIAL) 2736 th->check = 2737 csum_fold(csum_partial(skb_transport_header(skb), 2738 thlen, skb->csum)); 2739 2740 seq += mss; 2741 skb = skb->next; 2742 th = tcp_hdr(skb); 2743 2744 th->seq = htonl(seq); 2745 th->cwr = 0; 2746 } while (skb->next); 2747 2748 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2749 skb->data_len); 2750 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2751 (__force u32)delta)); 2752 if (skb->ip_summed != CHECKSUM_PARTIAL) 2753 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2754 thlen, skb->csum)); 2755 2756 out: 2757 return segs; 2758 } 2759 EXPORT_SYMBOL(tcp_tso_segment); 2760 2761 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2762 { 2763 struct sk_buff **pp = NULL; 2764 struct sk_buff *p; 2765 struct tcphdr *th; 2766 struct tcphdr *th2; 2767 unsigned int len; 2768 unsigned int thlen; 2769 __be32 flags; 2770 unsigned int mss = 1; 2771 unsigned int hlen; 2772 unsigned int off; 2773 int flush = 1; 2774 int i; 2775 2776 off = skb_gro_offset(skb); 2777 hlen = off + sizeof(*th); 2778 th = skb_gro_header_fast(skb, off); 2779 if (skb_gro_header_hard(skb, hlen)) { 2780 th = skb_gro_header_slow(skb, hlen, off); 2781 if (unlikely(!th)) 2782 goto out; 2783 } 2784 2785 thlen = th->doff * 4; 2786 if (thlen < sizeof(*th)) 2787 goto out; 2788 2789 hlen = off + thlen; 2790 if (skb_gro_header_hard(skb, hlen)) { 2791 th = skb_gro_header_slow(skb, hlen, off); 2792 if (unlikely(!th)) 2793 goto out; 2794 } 2795 2796 skb_gro_pull(skb, thlen); 2797 2798 len = skb_gro_len(skb); 2799 flags = tcp_flag_word(th); 2800 2801 for (; (p = *head); head = &p->next) { 2802 if (!NAPI_GRO_CB(p)->same_flow) 2803 continue; 2804 2805 th2 = tcp_hdr(p); 2806 2807 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 2808 NAPI_GRO_CB(p)->same_flow = 0; 2809 continue; 2810 } 2811 2812 goto found; 2813 } 2814 2815 goto out_check_final; 2816 2817 found: 2818 flush = NAPI_GRO_CB(p)->flush; 2819 flush |= (__force int)(flags & TCP_FLAG_CWR); 2820 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 2821 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 2822 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 2823 for (i = sizeof(*th); i < thlen; i += 4) 2824 flush |= *(u32 *)((u8 *)th + i) ^ 2825 *(u32 *)((u8 *)th2 + i); 2826 2827 mss = skb_shinfo(p)->gso_size; 2828 2829 flush |= (len - 1) >= mss; 2830 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2831 2832 if (flush || skb_gro_receive(head, skb)) { 2833 mss = 1; 2834 goto out_check_final; 2835 } 2836 2837 p = *head; 2838 th2 = tcp_hdr(p); 2839 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2840 2841 out_check_final: 2842 flush = len < mss; 2843 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 2844 TCP_FLAG_RST | TCP_FLAG_SYN | 2845 TCP_FLAG_FIN)); 2846 2847 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2848 pp = head; 2849 2850 out: 2851 NAPI_GRO_CB(skb)->flush |= flush; 2852 2853 return pp; 2854 } 2855 EXPORT_SYMBOL(tcp_gro_receive); 2856 2857 int tcp_gro_complete(struct sk_buff *skb) 2858 { 2859 struct tcphdr *th = tcp_hdr(skb); 2860 2861 skb->csum_start = skb_transport_header(skb) - skb->head; 2862 skb->csum_offset = offsetof(struct tcphdr, check); 2863 skb->ip_summed = CHECKSUM_PARTIAL; 2864 2865 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2866 2867 if (th->cwr) 2868 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2869 2870 return 0; 2871 } 2872 EXPORT_SYMBOL(tcp_gro_complete); 2873 2874 #ifdef CONFIG_TCP_MD5SIG 2875 static unsigned long tcp_md5sig_users; 2876 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 2877 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2878 2879 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2880 { 2881 int cpu; 2882 2883 for_each_possible_cpu(cpu) { 2884 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2885 2886 if (p->md5_desc.tfm) 2887 crypto_free_hash(p->md5_desc.tfm); 2888 } 2889 free_percpu(pool); 2890 } 2891 2892 void tcp_free_md5sig_pool(void) 2893 { 2894 struct tcp_md5sig_pool __percpu *pool = NULL; 2895 2896 spin_lock_bh(&tcp_md5sig_pool_lock); 2897 if (--tcp_md5sig_users == 0) { 2898 pool = tcp_md5sig_pool; 2899 tcp_md5sig_pool = NULL; 2900 } 2901 spin_unlock_bh(&tcp_md5sig_pool_lock); 2902 if (pool) 2903 __tcp_free_md5sig_pool(pool); 2904 } 2905 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2906 2907 static struct tcp_md5sig_pool __percpu * 2908 __tcp_alloc_md5sig_pool(struct sock *sk) 2909 { 2910 int cpu; 2911 struct tcp_md5sig_pool __percpu *pool; 2912 2913 pool = alloc_percpu(struct tcp_md5sig_pool); 2914 if (!pool) 2915 return NULL; 2916 2917 for_each_possible_cpu(cpu) { 2918 struct crypto_hash *hash; 2919 2920 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2921 if (!hash || IS_ERR(hash)) 2922 goto out_free; 2923 2924 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 2925 } 2926 return pool; 2927 out_free: 2928 __tcp_free_md5sig_pool(pool); 2929 return NULL; 2930 } 2931 2932 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 2933 { 2934 struct tcp_md5sig_pool __percpu *pool; 2935 int alloc = 0; 2936 2937 retry: 2938 spin_lock_bh(&tcp_md5sig_pool_lock); 2939 pool = tcp_md5sig_pool; 2940 if (tcp_md5sig_users++ == 0) { 2941 alloc = 1; 2942 spin_unlock_bh(&tcp_md5sig_pool_lock); 2943 } else if (!pool) { 2944 tcp_md5sig_users--; 2945 spin_unlock_bh(&tcp_md5sig_pool_lock); 2946 cpu_relax(); 2947 goto retry; 2948 } else 2949 spin_unlock_bh(&tcp_md5sig_pool_lock); 2950 2951 if (alloc) { 2952 /* we cannot hold spinlock here because this may sleep. */ 2953 struct tcp_md5sig_pool __percpu *p; 2954 2955 p = __tcp_alloc_md5sig_pool(sk); 2956 spin_lock_bh(&tcp_md5sig_pool_lock); 2957 if (!p) { 2958 tcp_md5sig_users--; 2959 spin_unlock_bh(&tcp_md5sig_pool_lock); 2960 return NULL; 2961 } 2962 pool = tcp_md5sig_pool; 2963 if (pool) { 2964 /* oops, it has already been assigned. */ 2965 spin_unlock_bh(&tcp_md5sig_pool_lock); 2966 __tcp_free_md5sig_pool(p); 2967 } else { 2968 tcp_md5sig_pool = pool = p; 2969 spin_unlock_bh(&tcp_md5sig_pool_lock); 2970 } 2971 } 2972 return pool; 2973 } 2974 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2975 2976 2977 /** 2978 * tcp_get_md5sig_pool - get md5sig_pool for this user 2979 * 2980 * We use percpu structure, so if we succeed, we exit with preemption 2981 * and BH disabled, to make sure another thread or softirq handling 2982 * wont try to get same context. 2983 */ 2984 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2985 { 2986 struct tcp_md5sig_pool __percpu *p; 2987 2988 local_bh_disable(); 2989 2990 spin_lock(&tcp_md5sig_pool_lock); 2991 p = tcp_md5sig_pool; 2992 if (p) 2993 tcp_md5sig_users++; 2994 spin_unlock(&tcp_md5sig_pool_lock); 2995 2996 if (p) 2997 return this_cpu_ptr(p); 2998 2999 local_bh_enable(); 3000 return NULL; 3001 } 3002 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3003 3004 void tcp_put_md5sig_pool(void) 3005 { 3006 local_bh_enable(); 3007 tcp_free_md5sig_pool(); 3008 } 3009 EXPORT_SYMBOL(tcp_put_md5sig_pool); 3010 3011 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3012 const struct tcphdr *th) 3013 { 3014 struct scatterlist sg; 3015 struct tcphdr hdr; 3016 int err; 3017 3018 /* We are not allowed to change tcphdr, make a local copy */ 3019 memcpy(&hdr, th, sizeof(hdr)); 3020 hdr.check = 0; 3021 3022 /* options aren't included in the hash */ 3023 sg_init_one(&sg, &hdr, sizeof(hdr)); 3024 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3025 return err; 3026 } 3027 EXPORT_SYMBOL(tcp_md5_hash_header); 3028 3029 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3030 const struct sk_buff *skb, unsigned int header_len) 3031 { 3032 struct scatterlist sg; 3033 const struct tcphdr *tp = tcp_hdr(skb); 3034 struct hash_desc *desc = &hp->md5_desc; 3035 unsigned i; 3036 const unsigned head_data_len = skb_headlen(skb) > header_len ? 3037 skb_headlen(skb) - header_len : 0; 3038 const struct skb_shared_info *shi = skb_shinfo(skb); 3039 struct sk_buff *frag_iter; 3040 3041 sg_init_table(&sg, 1); 3042 3043 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3044 if (crypto_hash_update(desc, &sg, head_data_len)) 3045 return 1; 3046 3047 for (i = 0; i < shi->nr_frags; ++i) { 3048 const struct skb_frag_struct *f = &shi->frags[i]; 3049 struct page *page = skb_frag_page(f); 3050 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); 3051 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3052 return 1; 3053 } 3054 3055 skb_walk_frags(skb, frag_iter) 3056 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3057 return 1; 3058 3059 return 0; 3060 } 3061 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3062 3063 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3064 { 3065 struct scatterlist sg; 3066 3067 sg_init_one(&sg, key->key, key->keylen); 3068 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3069 } 3070 EXPORT_SYMBOL(tcp_md5_hash_key); 3071 3072 #endif 3073 3074 /** 3075 * Each Responder maintains up to two secret values concurrently for 3076 * efficient secret rollover. Each secret value has 4 states: 3077 * 3078 * Generating. (tcp_secret_generating != tcp_secret_primary) 3079 * Generates new Responder-Cookies, but not yet used for primary 3080 * verification. This is a short-term state, typically lasting only 3081 * one round trip time (RTT). 3082 * 3083 * Primary. (tcp_secret_generating == tcp_secret_primary) 3084 * Used both for generation and primary verification. 3085 * 3086 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3087 * Used for verification, until the first failure that can be 3088 * verified by the newer Generating secret. At that time, this 3089 * cookie's state is changed to Secondary, and the Generating 3090 * cookie's state is changed to Primary. This is a short-term state, 3091 * typically lasting only one round trip time (RTT). 3092 * 3093 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3094 * Used for secondary verification, after primary verification 3095 * failures. This state lasts no more than twice the Maximum Segment 3096 * Lifetime (2MSL). Then, the secret is discarded. 3097 */ 3098 struct tcp_cookie_secret { 3099 /* The secret is divided into two parts. The digest part is the 3100 * equivalent of previously hashing a secret and saving the state, 3101 * and serves as an initialization vector (IV). The message part 3102 * serves as the trailing secret. 3103 */ 3104 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3105 unsigned long expires; 3106 }; 3107 3108 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3109 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3110 #define TCP_SECRET_LIFE (HZ * 600) 3111 3112 static struct tcp_cookie_secret tcp_secret_one; 3113 static struct tcp_cookie_secret tcp_secret_two; 3114 3115 /* Essentially a circular list, without dynamic allocation. */ 3116 static struct tcp_cookie_secret *tcp_secret_generating; 3117 static struct tcp_cookie_secret *tcp_secret_primary; 3118 static struct tcp_cookie_secret *tcp_secret_retiring; 3119 static struct tcp_cookie_secret *tcp_secret_secondary; 3120 3121 static DEFINE_SPINLOCK(tcp_secret_locker); 3122 3123 /* Select a pseudo-random word in the cookie workspace. 3124 */ 3125 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3126 { 3127 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3128 } 3129 3130 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3131 * Called in softirq context. 3132 * Returns: 0 for success. 3133 */ 3134 int tcp_cookie_generator(u32 *bakery) 3135 { 3136 unsigned long jiffy = jiffies; 3137 3138 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3139 spin_lock_bh(&tcp_secret_locker); 3140 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3141 /* refreshed by another */ 3142 memcpy(bakery, 3143 &tcp_secret_generating->secrets[0], 3144 COOKIE_WORKSPACE_WORDS); 3145 } else { 3146 /* still needs refreshing */ 3147 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3148 3149 /* The first time, paranoia assumes that the 3150 * randomization function isn't as strong. But, 3151 * this secret initialization is delayed until 3152 * the last possible moment (packet arrival). 3153 * Although that time is observable, it is 3154 * unpredictably variable. Mash in the most 3155 * volatile clock bits available, and expire the 3156 * secret extra quickly. 3157 */ 3158 if (unlikely(tcp_secret_primary->expires == 3159 tcp_secret_secondary->expires)) { 3160 struct timespec tv; 3161 3162 getnstimeofday(&tv); 3163 bakery[COOKIE_DIGEST_WORDS+0] ^= 3164 (u32)tv.tv_nsec; 3165 3166 tcp_secret_secondary->expires = jiffy 3167 + TCP_SECRET_1MSL 3168 + (0x0f & tcp_cookie_work(bakery, 0)); 3169 } else { 3170 tcp_secret_secondary->expires = jiffy 3171 + TCP_SECRET_LIFE 3172 + (0xff & tcp_cookie_work(bakery, 1)); 3173 tcp_secret_primary->expires = jiffy 3174 + TCP_SECRET_2MSL 3175 + (0x1f & tcp_cookie_work(bakery, 2)); 3176 } 3177 memcpy(&tcp_secret_secondary->secrets[0], 3178 bakery, COOKIE_WORKSPACE_WORDS); 3179 3180 rcu_assign_pointer(tcp_secret_generating, 3181 tcp_secret_secondary); 3182 rcu_assign_pointer(tcp_secret_retiring, 3183 tcp_secret_primary); 3184 /* 3185 * Neither call_rcu() nor synchronize_rcu() needed. 3186 * Retiring data is not freed. It is replaced after 3187 * further (locked) pointer updates, and a quiet time 3188 * (minimum 1MSL, maximum LIFE - 2MSL). 3189 */ 3190 } 3191 spin_unlock_bh(&tcp_secret_locker); 3192 } else { 3193 rcu_read_lock_bh(); 3194 memcpy(bakery, 3195 &rcu_dereference(tcp_secret_generating)->secrets[0], 3196 COOKIE_WORKSPACE_WORDS); 3197 rcu_read_unlock_bh(); 3198 } 3199 return 0; 3200 } 3201 EXPORT_SYMBOL(tcp_cookie_generator); 3202 3203 void tcp_done(struct sock *sk) 3204 { 3205 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3206 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3207 3208 tcp_set_state(sk, TCP_CLOSE); 3209 tcp_clear_xmit_timers(sk); 3210 3211 sk->sk_shutdown = SHUTDOWN_MASK; 3212 3213 if (!sock_flag(sk, SOCK_DEAD)) 3214 sk->sk_state_change(sk); 3215 else 3216 inet_csk_destroy_sock(sk); 3217 } 3218 EXPORT_SYMBOL_GPL(tcp_done); 3219 3220 extern struct tcp_congestion_ops tcp_reno; 3221 3222 static __initdata unsigned long thash_entries; 3223 static int __init set_thash_entries(char *str) 3224 { 3225 if (!str) 3226 return 0; 3227 thash_entries = simple_strtoul(str, &str, 0); 3228 return 1; 3229 } 3230 __setup("thash_entries=", set_thash_entries); 3231 3232 void tcp_init_mem(struct net *net) 3233 { 3234 unsigned long limit = nr_free_buffer_pages() / 8; 3235 limit = max(limit, 128UL); 3236 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3237 net->ipv4.sysctl_tcp_mem[1] = limit; 3238 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3239 } 3240 3241 void __init tcp_init(void) 3242 { 3243 struct sk_buff *skb = NULL; 3244 unsigned long limit; 3245 int max_rshare, max_wshare, cnt; 3246 unsigned int i; 3247 unsigned long jiffy = jiffies; 3248 3249 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3250 3251 percpu_counter_init(&tcp_sockets_allocated, 0); 3252 percpu_counter_init(&tcp_orphan_count, 0); 3253 tcp_hashinfo.bind_bucket_cachep = 3254 kmem_cache_create("tcp_bind_bucket", 3255 sizeof(struct inet_bind_bucket), 0, 3256 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3257 3258 /* Size and allocate the main established and bind bucket 3259 * hash tables. 3260 * 3261 * The methodology is similar to that of the buffer cache. 3262 */ 3263 tcp_hashinfo.ehash = 3264 alloc_large_system_hash("TCP established", 3265 sizeof(struct inet_ehash_bucket), 3266 thash_entries, 3267 (totalram_pages >= 128 * 1024) ? 3268 13 : 15, 3269 0, 3270 NULL, 3271 &tcp_hashinfo.ehash_mask, 3272 thash_entries ? 0 : 512 * 1024); 3273 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3274 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3275 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3276 } 3277 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3278 panic("TCP: failed to alloc ehash_locks"); 3279 tcp_hashinfo.bhash = 3280 alloc_large_system_hash("TCP bind", 3281 sizeof(struct inet_bind_hashbucket), 3282 tcp_hashinfo.ehash_mask + 1, 3283 (totalram_pages >= 128 * 1024) ? 3284 13 : 15, 3285 0, 3286 &tcp_hashinfo.bhash_size, 3287 NULL, 3288 64 * 1024); 3289 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3290 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3291 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3292 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3293 } 3294 3295 3296 cnt = tcp_hashinfo.ehash_mask + 1; 3297 3298 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3299 sysctl_tcp_max_orphans = cnt / 2; 3300 sysctl_max_syn_backlog = max(128, cnt / 256); 3301 3302 tcp_init_mem(&init_net); 3303 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3304 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3305 max_wshare = min(4UL*1024*1024, limit); 3306 max_rshare = min(6UL*1024*1024, limit); 3307 3308 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3309 sysctl_tcp_wmem[1] = 16*1024; 3310 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3311 3312 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3313 sysctl_tcp_rmem[1] = 87380; 3314 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3315 3316 pr_info("Hash tables configured (established %u bind %u)\n", 3317 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3318 3319 tcp_register_congestion_control(&tcp_reno); 3320 3321 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3322 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3323 tcp_secret_one.expires = jiffy; /* past due */ 3324 tcp_secret_two.expires = jiffy; /* past due */ 3325 tcp_secret_generating = &tcp_secret_one; 3326 tcp_secret_primary = &tcp_secret_one; 3327 tcp_secret_retiring = &tcp_secret_two; 3328 tcp_secret_secondary = &tcp_secret_two; 3329 } 3330