1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 587 /* Active TCP fastopen socket with defer_connect 588 * Return EPOLLOUT so application can call write() 589 * in order for kernel to generate SYN+data 590 */ 591 mask |= EPOLLOUT | EPOLLWRNORM; 592 } 593 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 594 smp_rmb(); 595 if (READ_ONCE(sk->sk_err) || 596 !skb_queue_empty_lockless(&sk->sk_error_queue)) 597 mask |= EPOLLERR; 598 599 return mask; 600 } 601 EXPORT_SYMBOL(tcp_poll); 602 603 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 int answ; 607 bool slow; 608 609 switch (cmd) { 610 case SIOCINQ: 611 if (sk->sk_state == TCP_LISTEN) 612 return -EINVAL; 613 614 slow = lock_sock_fast(sk); 615 answ = tcp_inq(sk); 616 unlock_sock_fast(sk, slow); 617 break; 618 case SIOCATMARK: 619 answ = READ_ONCE(tp->urg_data) && 620 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 621 break; 622 case SIOCOUTQ: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 630 break; 631 case SIOCOUTQNSD: 632 if (sk->sk_state == TCP_LISTEN) 633 return -EINVAL; 634 635 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 636 answ = 0; 637 else 638 answ = READ_ONCE(tp->write_seq) - 639 READ_ONCE(tp->snd_nxt); 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 *karg = answ; 646 return 0; 647 } 648 EXPORT_SYMBOL(tcp_ioctl); 649 650 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 651 { 652 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 653 tp->pushed_seq = tp->write_seq; 654 } 655 656 static inline bool forced_push(const struct tcp_sock *tp) 657 { 658 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 659 } 660 661 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 662 { 663 struct tcp_sock *tp = tcp_sk(sk); 664 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 665 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 __skb_header_release(skb); 669 tcp_add_write_queue_tail(sk, skb); 670 sk_wmem_queued_add(sk, skb->truesize); 671 sk_mem_charge(sk, skb->truesize); 672 if (tp->nonagle & TCP_NAGLE_PUSH) 673 tp->nonagle &= ~TCP_NAGLE_PUSH; 674 675 tcp_slow_start_after_idle_check(sk); 676 } 677 678 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 679 { 680 if (flags & MSG_OOB) 681 tp->snd_up = tp->write_seq; 682 } 683 684 /* If a not yet filled skb is pushed, do not send it if 685 * we have data packets in Qdisc or NIC queues : 686 * Because TX completion will happen shortly, it gives a chance 687 * to coalesce future sendmsg() payload into this skb, without 688 * need for a timer, and with no latency trade off. 689 * As packets containing data payload have a bigger truesize 690 * than pure acks (dataless) packets, the last checks prevent 691 * autocorking if we only have an ACK in Qdisc/NIC queues, 692 * or if TX completion was delayed after we processed ACK packet. 693 */ 694 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 695 int size_goal) 696 { 697 return skb->len < size_goal && 698 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 699 !tcp_rtx_queue_empty(sk) && 700 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 701 tcp_skb_can_collapse_to(skb); 702 } 703 704 void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!tss.len || !timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 869 if (likely(skb)) { 870 bool mem_scheduled; 871 872 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 873 if (force_schedule) { 874 mem_scheduled = true; 875 sk_forced_mem_schedule(sk, skb->truesize); 876 } else { 877 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 878 } 879 if (likely(mem_scheduled)) { 880 skb_reserve(skb, MAX_TCP_HEADER); 881 skb->ip_summed = CHECKSUM_PARTIAL; 882 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 883 return skb; 884 } 885 __kfree_skb(skb); 886 } else { 887 sk->sk_prot->enter_memory_pressure(sk); 888 sk_stream_moderate_sndbuf(sk); 889 } 890 return NULL; 891 } 892 893 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 894 int large_allowed) 895 { 896 struct tcp_sock *tp = tcp_sk(sk); 897 u32 new_size_goal, size_goal; 898 899 if (!large_allowed) 900 return mss_now; 901 902 /* Note : tcp_tso_autosize() will eventually split this later */ 903 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 904 905 /* We try hard to avoid divides here */ 906 size_goal = tp->gso_segs * mss_now; 907 if (unlikely(new_size_goal < size_goal || 908 new_size_goal >= size_goal + mss_now)) { 909 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 910 sk->sk_gso_max_segs); 911 size_goal = tp->gso_segs * mss_now; 912 } 913 914 return max(size_goal, mss_now); 915 } 916 917 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 918 { 919 int mss_now; 920 921 mss_now = tcp_current_mss(sk); 922 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 923 924 return mss_now; 925 } 926 927 /* In some cases, both sendmsg() could have added an skb to the write queue, 928 * but failed adding payload on it. We need to remove it to consume less 929 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 930 * epoll() users. 931 */ 932 void tcp_remove_empty_skb(struct sock *sk) 933 { 934 struct sk_buff *skb = tcp_write_queue_tail(sk); 935 936 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 937 tcp_unlink_write_queue(skb, sk); 938 if (tcp_write_queue_empty(sk)) 939 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 940 tcp_wmem_free_skb(sk, skb); 941 } 942 } 943 944 /* skb changing from pure zc to mixed, must charge zc */ 945 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 946 { 947 if (unlikely(skb_zcopy_pure(skb))) { 948 u32 extra = skb->truesize - 949 SKB_TRUESIZE(skb_end_offset(skb)); 950 951 if (!sk_wmem_schedule(sk, extra)) 952 return -ENOMEM; 953 954 sk_mem_charge(sk, extra); 955 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 956 } 957 return 0; 958 } 959 960 961 int tcp_wmem_schedule(struct sock *sk, int copy) 962 { 963 int left; 964 965 if (likely(sk_wmem_schedule(sk, copy))) 966 return copy; 967 968 /* We could be in trouble if we have nothing queued. 969 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 970 * to guarantee some progress. 971 */ 972 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 973 if (left > 0) 974 sk_forced_mem_schedule(sk, min(left, copy)); 975 return min(copy, sk->sk_forward_alloc); 976 } 977 978 void tcp_free_fastopen_req(struct tcp_sock *tp) 979 { 980 if (tp->fastopen_req) { 981 kfree(tp->fastopen_req); 982 tp->fastopen_req = NULL; 983 } 984 } 985 986 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 987 size_t size, struct ubuf_info *uarg) 988 { 989 struct tcp_sock *tp = tcp_sk(sk); 990 struct inet_sock *inet = inet_sk(sk); 991 struct sockaddr *uaddr = msg->msg_name; 992 int err, flags; 993 994 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 995 TFO_CLIENT_ENABLE) || 996 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 997 uaddr->sa_family == AF_UNSPEC)) 998 return -EOPNOTSUPP; 999 if (tp->fastopen_req) 1000 return -EALREADY; /* Another Fast Open is in progress */ 1001 1002 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1003 sk->sk_allocation); 1004 if (unlikely(!tp->fastopen_req)) 1005 return -ENOBUFS; 1006 tp->fastopen_req->data = msg; 1007 tp->fastopen_req->size = size; 1008 tp->fastopen_req->uarg = uarg; 1009 1010 if (inet->defer_connect) { 1011 err = tcp_connect(sk); 1012 /* Same failure procedure as in tcp_v4/6_connect */ 1013 if (err) { 1014 tcp_set_state(sk, TCP_CLOSE); 1015 inet->inet_dport = 0; 1016 sk->sk_route_caps = 0; 1017 } 1018 } 1019 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1020 err = __inet_stream_connect(sk->sk_socket, uaddr, 1021 msg->msg_namelen, flags, 1); 1022 /* fastopen_req could already be freed in __inet_stream_connect 1023 * if the connection times out or gets rst 1024 */ 1025 if (tp->fastopen_req) { 1026 *copied = tp->fastopen_req->copied; 1027 tcp_free_fastopen_req(tp); 1028 inet->defer_connect = 0; 1029 } 1030 return err; 1031 } 1032 1033 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1034 { 1035 struct tcp_sock *tp = tcp_sk(sk); 1036 struct ubuf_info *uarg = NULL; 1037 struct sk_buff *skb; 1038 struct sockcm_cookie sockc; 1039 int flags, err, copied = 0; 1040 int mss_now = 0, size_goal, copied_syn = 0; 1041 int process_backlog = 0; 1042 int zc = 0; 1043 long timeo; 1044 1045 flags = msg->msg_flags; 1046 1047 if ((flags & MSG_ZEROCOPY) && size) { 1048 if (msg->msg_ubuf) { 1049 uarg = msg->msg_ubuf; 1050 if (sk->sk_route_caps & NETIF_F_SG) 1051 zc = MSG_ZEROCOPY; 1052 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1053 skb = tcp_write_queue_tail(sk); 1054 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1055 if (!uarg) { 1056 err = -ENOBUFS; 1057 goto out_err; 1058 } 1059 if (sk->sk_route_caps & NETIF_F_SG) 1060 zc = MSG_ZEROCOPY; 1061 else 1062 uarg_to_msgzc(uarg)->zerocopy = 0; 1063 } 1064 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1065 if (sk->sk_route_caps & NETIF_F_SG) 1066 zc = MSG_SPLICE_PAGES; 1067 } 1068 1069 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1070 !tp->repair) { 1071 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1072 if (err == -EINPROGRESS && copied_syn > 0) 1073 goto out; 1074 else if (err) 1075 goto out_err; 1076 } 1077 1078 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1079 1080 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1081 1082 /* Wait for a connection to finish. One exception is TCP Fast Open 1083 * (passive side) where data is allowed to be sent before a connection 1084 * is fully established. 1085 */ 1086 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1087 !tcp_passive_fastopen(sk)) { 1088 err = sk_stream_wait_connect(sk, &timeo); 1089 if (err != 0) 1090 goto do_error; 1091 } 1092 1093 if (unlikely(tp->repair)) { 1094 if (tp->repair_queue == TCP_RECV_QUEUE) { 1095 copied = tcp_send_rcvq(sk, msg, size); 1096 goto out_nopush; 1097 } 1098 1099 err = -EINVAL; 1100 if (tp->repair_queue == TCP_NO_QUEUE) 1101 goto out_err; 1102 1103 /* 'common' sending to sendq */ 1104 } 1105 1106 sockcm_init(&sockc, sk); 1107 if (msg->msg_controllen) { 1108 err = sock_cmsg_send(sk, msg, &sockc); 1109 if (unlikely(err)) { 1110 err = -EINVAL; 1111 goto out_err; 1112 } 1113 } 1114 1115 /* This should be in poll */ 1116 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1117 1118 /* Ok commence sending. */ 1119 copied = 0; 1120 1121 restart: 1122 mss_now = tcp_send_mss(sk, &size_goal, flags); 1123 1124 err = -EPIPE; 1125 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1126 goto do_error; 1127 1128 while (msg_data_left(msg)) { 1129 ssize_t copy = 0; 1130 1131 skb = tcp_write_queue_tail(sk); 1132 if (skb) 1133 copy = size_goal - skb->len; 1134 1135 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1136 bool first_skb; 1137 1138 new_segment: 1139 if (!sk_stream_memory_free(sk)) 1140 goto wait_for_space; 1141 1142 if (unlikely(process_backlog >= 16)) { 1143 process_backlog = 0; 1144 if (sk_flush_backlog(sk)) 1145 goto restart; 1146 } 1147 first_skb = tcp_rtx_and_write_queues_empty(sk); 1148 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1149 first_skb); 1150 if (!skb) 1151 goto wait_for_space; 1152 1153 process_backlog++; 1154 1155 tcp_skb_entail(sk, skb); 1156 copy = size_goal; 1157 1158 /* All packets are restored as if they have 1159 * already been sent. skb_mstamp_ns isn't set to 1160 * avoid wrong rtt estimation. 1161 */ 1162 if (tp->repair) 1163 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1164 } 1165 1166 /* Try to append data to the end of skb. */ 1167 if (copy > msg_data_left(msg)) 1168 copy = msg_data_left(msg); 1169 1170 if (zc == 0) { 1171 bool merge = true; 1172 int i = skb_shinfo(skb)->nr_frags; 1173 struct page_frag *pfrag = sk_page_frag(sk); 1174 1175 if (!sk_page_frag_refill(sk, pfrag)) 1176 goto wait_for_space; 1177 1178 if (!skb_can_coalesce(skb, i, pfrag->page, 1179 pfrag->offset)) { 1180 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1181 tcp_mark_push(tp, skb); 1182 goto new_segment; 1183 } 1184 merge = false; 1185 } 1186 1187 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1188 1189 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1190 if (tcp_downgrade_zcopy_pure(sk, skb)) 1191 goto wait_for_space; 1192 skb_zcopy_downgrade_managed(skb); 1193 } 1194 1195 copy = tcp_wmem_schedule(sk, copy); 1196 if (!copy) 1197 goto wait_for_space; 1198 1199 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1200 pfrag->page, 1201 pfrag->offset, 1202 copy); 1203 if (err) 1204 goto do_error; 1205 1206 /* Update the skb. */ 1207 if (merge) { 1208 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1209 } else { 1210 skb_fill_page_desc(skb, i, pfrag->page, 1211 pfrag->offset, copy); 1212 page_ref_inc(pfrag->page); 1213 } 1214 pfrag->offset += copy; 1215 } else if (zc == MSG_ZEROCOPY) { 1216 /* First append to a fragless skb builds initial 1217 * pure zerocopy skb 1218 */ 1219 if (!skb->len) 1220 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1221 1222 if (!skb_zcopy_pure(skb)) { 1223 copy = tcp_wmem_schedule(sk, copy); 1224 if (!copy) 1225 goto wait_for_space; 1226 } 1227 1228 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1229 if (err == -EMSGSIZE || err == -EEXIST) { 1230 tcp_mark_push(tp, skb); 1231 goto new_segment; 1232 } 1233 if (err < 0) 1234 goto do_error; 1235 copy = err; 1236 } else if (zc == MSG_SPLICE_PAGES) { 1237 /* Splice in data if we can; copy if we can't. */ 1238 if (tcp_downgrade_zcopy_pure(sk, skb)) 1239 goto wait_for_space; 1240 copy = tcp_wmem_schedule(sk, copy); 1241 if (!copy) 1242 goto wait_for_space; 1243 1244 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1245 sk->sk_allocation); 1246 if (err < 0) { 1247 if (err == -EMSGSIZE) { 1248 tcp_mark_push(tp, skb); 1249 goto new_segment; 1250 } 1251 goto do_error; 1252 } 1253 copy = err; 1254 1255 if (!(flags & MSG_NO_SHARED_FRAGS)) 1256 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1257 1258 sk_wmem_queued_add(sk, copy); 1259 sk_mem_charge(sk, copy); 1260 } 1261 1262 if (!copied) 1263 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1264 1265 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1266 TCP_SKB_CB(skb)->end_seq += copy; 1267 tcp_skb_pcount_set(skb, 0); 1268 1269 copied += copy; 1270 if (!msg_data_left(msg)) { 1271 if (unlikely(flags & MSG_EOR)) 1272 TCP_SKB_CB(skb)->eor = 1; 1273 goto out; 1274 } 1275 1276 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1277 continue; 1278 1279 if (forced_push(tp)) { 1280 tcp_mark_push(tp, skb); 1281 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1282 } else if (skb == tcp_send_head(sk)) 1283 tcp_push_one(sk, mss_now); 1284 continue; 1285 1286 wait_for_space: 1287 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1288 if (copied) 1289 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1290 TCP_NAGLE_PUSH, size_goal); 1291 1292 err = sk_stream_wait_memory(sk, &timeo); 1293 if (err != 0) 1294 goto do_error; 1295 1296 mss_now = tcp_send_mss(sk, &size_goal, flags); 1297 } 1298 1299 out: 1300 if (copied) { 1301 tcp_tx_timestamp(sk, sockc.tsflags); 1302 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1303 } 1304 out_nopush: 1305 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1306 if (uarg && !msg->msg_ubuf) 1307 net_zcopy_put(uarg); 1308 return copied + copied_syn; 1309 1310 do_error: 1311 tcp_remove_empty_skb(sk); 1312 1313 if (copied + copied_syn) 1314 goto out; 1315 out_err: 1316 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1317 if (uarg && !msg->msg_ubuf) 1318 net_zcopy_put_abort(uarg, true); 1319 err = sk_stream_error(sk, flags, err); 1320 /* make sure we wake any epoll edge trigger waiter */ 1321 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1322 sk->sk_write_space(sk); 1323 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1324 } 1325 return err; 1326 } 1327 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1328 1329 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1330 { 1331 int ret; 1332 1333 lock_sock(sk); 1334 ret = tcp_sendmsg_locked(sk, msg, size); 1335 release_sock(sk); 1336 1337 return ret; 1338 } 1339 EXPORT_SYMBOL(tcp_sendmsg); 1340 1341 void tcp_splice_eof(struct socket *sock) 1342 { 1343 struct sock *sk = sock->sk; 1344 struct tcp_sock *tp = tcp_sk(sk); 1345 int mss_now, size_goal; 1346 1347 if (!tcp_write_queue_tail(sk)) 1348 return; 1349 1350 lock_sock(sk); 1351 mss_now = tcp_send_mss(sk, &size_goal, 0); 1352 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1353 release_sock(sk); 1354 } 1355 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1356 1357 /* 1358 * Handle reading urgent data. BSD has very simple semantics for 1359 * this, no blocking and very strange errors 8) 1360 */ 1361 1362 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1363 { 1364 struct tcp_sock *tp = tcp_sk(sk); 1365 1366 /* No URG data to read. */ 1367 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1368 tp->urg_data == TCP_URG_READ) 1369 return -EINVAL; /* Yes this is right ! */ 1370 1371 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1372 return -ENOTCONN; 1373 1374 if (tp->urg_data & TCP_URG_VALID) { 1375 int err = 0; 1376 char c = tp->urg_data; 1377 1378 if (!(flags & MSG_PEEK)) 1379 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1380 1381 /* Read urgent data. */ 1382 msg->msg_flags |= MSG_OOB; 1383 1384 if (len > 0) { 1385 if (!(flags & MSG_TRUNC)) 1386 err = memcpy_to_msg(msg, &c, 1); 1387 len = 1; 1388 } else 1389 msg->msg_flags |= MSG_TRUNC; 1390 1391 return err ? -EFAULT : len; 1392 } 1393 1394 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1395 return 0; 1396 1397 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1398 * the available implementations agree in this case: 1399 * this call should never block, independent of the 1400 * blocking state of the socket. 1401 * Mike <pall@rz.uni-karlsruhe.de> 1402 */ 1403 return -EAGAIN; 1404 } 1405 1406 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1407 { 1408 struct sk_buff *skb; 1409 int copied = 0, err = 0; 1410 1411 /* XXX -- need to support SO_PEEK_OFF */ 1412 1413 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1414 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1415 if (err) 1416 return err; 1417 copied += skb->len; 1418 } 1419 1420 skb_queue_walk(&sk->sk_write_queue, skb) { 1421 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1422 if (err) 1423 break; 1424 1425 copied += skb->len; 1426 } 1427 1428 return err ?: copied; 1429 } 1430 1431 /* Clean up the receive buffer for full frames taken by the user, 1432 * then send an ACK if necessary. COPIED is the number of bytes 1433 * tcp_recvmsg has given to the user so far, it speeds up the 1434 * calculation of whether or not we must ACK for the sake of 1435 * a window update. 1436 */ 1437 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1438 { 1439 struct tcp_sock *tp = tcp_sk(sk); 1440 bool time_to_ack = false; 1441 1442 if (inet_csk_ack_scheduled(sk)) { 1443 const struct inet_connection_sock *icsk = inet_csk(sk); 1444 1445 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1446 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1447 /* 1448 * If this read emptied read buffer, we send ACK, if 1449 * connection is not bidirectional, user drained 1450 * receive buffer and there was a small segment 1451 * in queue. 1452 */ 1453 (copied > 0 && 1454 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1455 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1456 !inet_csk_in_pingpong_mode(sk))) && 1457 !atomic_read(&sk->sk_rmem_alloc))) 1458 time_to_ack = true; 1459 } 1460 1461 /* We send an ACK if we can now advertise a non-zero window 1462 * which has been raised "significantly". 1463 * 1464 * Even if window raised up to infinity, do not send window open ACK 1465 * in states, where we will not receive more. It is useless. 1466 */ 1467 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1468 __u32 rcv_window_now = tcp_receive_window(tp); 1469 1470 /* Optimize, __tcp_select_window() is not cheap. */ 1471 if (2*rcv_window_now <= tp->window_clamp) { 1472 __u32 new_window = __tcp_select_window(sk); 1473 1474 /* Send ACK now, if this read freed lots of space 1475 * in our buffer. Certainly, new_window is new window. 1476 * We can advertise it now, if it is not less than current one. 1477 * "Lots" means "at least twice" here. 1478 */ 1479 if (new_window && new_window >= 2 * rcv_window_now) 1480 time_to_ack = true; 1481 } 1482 } 1483 if (time_to_ack) 1484 tcp_send_ack(sk); 1485 } 1486 1487 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1488 { 1489 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1490 struct tcp_sock *tp = tcp_sk(sk); 1491 1492 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1493 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1494 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1495 __tcp_cleanup_rbuf(sk, copied); 1496 } 1497 1498 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1499 { 1500 __skb_unlink(skb, &sk->sk_receive_queue); 1501 if (likely(skb->destructor == sock_rfree)) { 1502 sock_rfree(skb); 1503 skb->destructor = NULL; 1504 skb->sk = NULL; 1505 return skb_attempt_defer_free(skb); 1506 } 1507 __kfree_skb(skb); 1508 } 1509 1510 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1511 { 1512 struct sk_buff *skb; 1513 u32 offset; 1514 1515 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1516 offset = seq - TCP_SKB_CB(skb)->seq; 1517 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1518 pr_err_once("%s: found a SYN, please report !\n", __func__); 1519 offset--; 1520 } 1521 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1522 *off = offset; 1523 return skb; 1524 } 1525 /* This looks weird, but this can happen if TCP collapsing 1526 * splitted a fat GRO packet, while we released socket lock 1527 * in skb_splice_bits() 1528 */ 1529 tcp_eat_recv_skb(sk, skb); 1530 } 1531 return NULL; 1532 } 1533 EXPORT_SYMBOL(tcp_recv_skb); 1534 1535 /* 1536 * This routine provides an alternative to tcp_recvmsg() for routines 1537 * that would like to handle copying from skbuffs directly in 'sendfile' 1538 * fashion. 1539 * Note: 1540 * - It is assumed that the socket was locked by the caller. 1541 * - The routine does not block. 1542 * - At present, there is no support for reading OOB data 1543 * or for 'peeking' the socket using this routine 1544 * (although both would be easy to implement). 1545 */ 1546 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1547 sk_read_actor_t recv_actor) 1548 { 1549 struct sk_buff *skb; 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 u32 seq = tp->copied_seq; 1552 u32 offset; 1553 int copied = 0; 1554 1555 if (sk->sk_state == TCP_LISTEN) 1556 return -ENOTCONN; 1557 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1558 if (offset < skb->len) { 1559 int used; 1560 size_t len; 1561 1562 len = skb->len - offset; 1563 /* Stop reading if we hit a patch of urgent data */ 1564 if (unlikely(tp->urg_data)) { 1565 u32 urg_offset = tp->urg_seq - seq; 1566 if (urg_offset < len) 1567 len = urg_offset; 1568 if (!len) 1569 break; 1570 } 1571 used = recv_actor(desc, skb, offset, len); 1572 if (used <= 0) { 1573 if (!copied) 1574 copied = used; 1575 break; 1576 } 1577 if (WARN_ON_ONCE(used > len)) 1578 used = len; 1579 seq += used; 1580 copied += used; 1581 offset += used; 1582 1583 /* If recv_actor drops the lock (e.g. TCP splice 1584 * receive) the skb pointer might be invalid when 1585 * getting here: tcp_collapse might have deleted it 1586 * while aggregating skbs from the socket queue. 1587 */ 1588 skb = tcp_recv_skb(sk, seq - 1, &offset); 1589 if (!skb) 1590 break; 1591 /* TCP coalescing might have appended data to the skb. 1592 * Try to splice more frags 1593 */ 1594 if (offset + 1 != skb->len) 1595 continue; 1596 } 1597 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1598 tcp_eat_recv_skb(sk, skb); 1599 ++seq; 1600 break; 1601 } 1602 tcp_eat_recv_skb(sk, skb); 1603 if (!desc->count) 1604 break; 1605 WRITE_ONCE(tp->copied_seq, seq); 1606 } 1607 WRITE_ONCE(tp->copied_seq, seq); 1608 1609 tcp_rcv_space_adjust(sk); 1610 1611 /* Clean up data we have read: This will do ACK frames. */ 1612 if (copied > 0) { 1613 tcp_recv_skb(sk, seq, &offset); 1614 tcp_cleanup_rbuf(sk, copied); 1615 } 1616 return copied; 1617 } 1618 EXPORT_SYMBOL(tcp_read_sock); 1619 1620 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1621 { 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 u32 seq = tp->copied_seq; 1624 struct sk_buff *skb; 1625 int copied = 0; 1626 u32 offset; 1627 1628 if (sk->sk_state == TCP_LISTEN) 1629 return -ENOTCONN; 1630 1631 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1632 u8 tcp_flags; 1633 int used; 1634 1635 __skb_unlink(skb, &sk->sk_receive_queue); 1636 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1637 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1638 used = recv_actor(sk, skb); 1639 if (used < 0) { 1640 if (!copied) 1641 copied = used; 1642 break; 1643 } 1644 seq += used; 1645 copied += used; 1646 1647 if (tcp_flags & TCPHDR_FIN) { 1648 ++seq; 1649 break; 1650 } 1651 } 1652 return copied; 1653 } 1654 EXPORT_SYMBOL(tcp_read_skb); 1655 1656 void tcp_read_done(struct sock *sk, size_t len) 1657 { 1658 struct tcp_sock *tp = tcp_sk(sk); 1659 u32 seq = tp->copied_seq; 1660 struct sk_buff *skb; 1661 size_t left; 1662 u32 offset; 1663 1664 if (sk->sk_state == TCP_LISTEN) 1665 return; 1666 1667 left = len; 1668 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1669 int used; 1670 1671 used = min_t(size_t, skb->len - offset, left); 1672 seq += used; 1673 left -= used; 1674 1675 if (skb->len > offset + used) 1676 break; 1677 1678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1679 tcp_eat_recv_skb(sk, skb); 1680 ++seq; 1681 break; 1682 } 1683 tcp_eat_recv_skb(sk, skb); 1684 } 1685 WRITE_ONCE(tp->copied_seq, seq); 1686 1687 tcp_rcv_space_adjust(sk); 1688 1689 /* Clean up data we have read: This will do ACK frames. */ 1690 if (left != len) 1691 tcp_cleanup_rbuf(sk, len - left); 1692 } 1693 EXPORT_SYMBOL(tcp_read_done); 1694 1695 int tcp_peek_len(struct socket *sock) 1696 { 1697 return tcp_inq(sock->sk); 1698 } 1699 EXPORT_SYMBOL(tcp_peek_len); 1700 1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1702 int tcp_set_rcvlowat(struct sock *sk, int val) 1703 { 1704 int space, cap; 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 cap = sk->sk_rcvbuf >> 1; 1708 else 1709 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1710 val = min(val, cap); 1711 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1712 1713 /* Check if we need to signal EPOLLIN right now */ 1714 tcp_data_ready(sk); 1715 1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1717 return 0; 1718 1719 space = tcp_space_from_win(sk, val); 1720 if (space > sk->sk_rcvbuf) { 1721 WRITE_ONCE(sk->sk_rcvbuf, space); 1722 tcp_sk(sk)->window_clamp = val; 1723 } 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(tcp_set_rcvlowat); 1727 1728 void tcp_update_recv_tstamps(struct sk_buff *skb, 1729 struct scm_timestamping_internal *tss) 1730 { 1731 if (skb->tstamp) 1732 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1733 else 1734 tss->ts[0] = (struct timespec64) {0}; 1735 1736 if (skb_hwtstamps(skb)->hwtstamp) 1737 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1738 else 1739 tss->ts[2] = (struct timespec64) {0}; 1740 } 1741 1742 #ifdef CONFIG_MMU 1743 const struct vm_operations_struct tcp_vm_ops = { 1744 }; 1745 1746 int tcp_mmap(struct file *file, struct socket *sock, 1747 struct vm_area_struct *vma) 1748 { 1749 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1750 return -EPERM; 1751 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1752 1753 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1754 vm_flags_set(vma, VM_MIXEDMAP); 1755 1756 vma->vm_ops = &tcp_vm_ops; 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(tcp_mmap); 1760 1761 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1762 u32 *offset_frag) 1763 { 1764 skb_frag_t *frag; 1765 1766 if (unlikely(offset_skb >= skb->len)) 1767 return NULL; 1768 1769 offset_skb -= skb_headlen(skb); 1770 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1771 return NULL; 1772 1773 frag = skb_shinfo(skb)->frags; 1774 while (offset_skb) { 1775 if (skb_frag_size(frag) > offset_skb) { 1776 *offset_frag = offset_skb; 1777 return frag; 1778 } 1779 offset_skb -= skb_frag_size(frag); 1780 ++frag; 1781 } 1782 *offset_frag = 0; 1783 return frag; 1784 } 1785 1786 static bool can_map_frag(const skb_frag_t *frag) 1787 { 1788 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1789 } 1790 1791 static int find_next_mappable_frag(const skb_frag_t *frag, 1792 int remaining_in_skb) 1793 { 1794 int offset = 0; 1795 1796 if (likely(can_map_frag(frag))) 1797 return 0; 1798 1799 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1800 offset += skb_frag_size(frag); 1801 ++frag; 1802 } 1803 return offset; 1804 } 1805 1806 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1807 struct tcp_zerocopy_receive *zc, 1808 struct sk_buff *skb, u32 offset) 1809 { 1810 u32 frag_offset, partial_frag_remainder = 0; 1811 int mappable_offset; 1812 skb_frag_t *frag; 1813 1814 /* worst case: skip to next skb. try to improve on this case below */ 1815 zc->recv_skip_hint = skb->len - offset; 1816 1817 /* Find the frag containing this offset (and how far into that frag) */ 1818 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1819 if (!frag) 1820 return; 1821 1822 if (frag_offset) { 1823 struct skb_shared_info *info = skb_shinfo(skb); 1824 1825 /* We read part of the last frag, must recvmsg() rest of skb. */ 1826 if (frag == &info->frags[info->nr_frags - 1]) 1827 return; 1828 1829 /* Else, we must at least read the remainder in this frag. */ 1830 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1831 zc->recv_skip_hint -= partial_frag_remainder; 1832 ++frag; 1833 } 1834 1835 /* partial_frag_remainder: If part way through a frag, must read rest. 1836 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1837 * in partial_frag_remainder. 1838 */ 1839 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1840 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1841 } 1842 1843 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1844 int flags, struct scm_timestamping_internal *tss, 1845 int *cmsg_flags); 1846 static int receive_fallback_to_copy(struct sock *sk, 1847 struct tcp_zerocopy_receive *zc, int inq, 1848 struct scm_timestamping_internal *tss) 1849 { 1850 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1851 struct msghdr msg = {}; 1852 struct iovec iov; 1853 int err; 1854 1855 zc->length = 0; 1856 zc->recv_skip_hint = 0; 1857 1858 if (copy_address != zc->copybuf_address) 1859 return -EINVAL; 1860 1861 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1862 inq, &iov, &msg.msg_iter); 1863 if (err) 1864 return err; 1865 1866 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1867 tss, &zc->msg_flags); 1868 if (err < 0) 1869 return err; 1870 1871 zc->copybuf_len = err; 1872 if (likely(zc->copybuf_len)) { 1873 struct sk_buff *skb; 1874 u32 offset; 1875 1876 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1877 if (skb) 1878 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1879 } 1880 return 0; 1881 } 1882 1883 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1884 struct sk_buff *skb, u32 copylen, 1885 u32 *offset, u32 *seq) 1886 { 1887 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1888 struct msghdr msg = {}; 1889 struct iovec iov; 1890 int err; 1891 1892 if (copy_address != zc->copybuf_address) 1893 return -EINVAL; 1894 1895 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1896 copylen, &iov, &msg.msg_iter); 1897 if (err) 1898 return err; 1899 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1900 if (err) 1901 return err; 1902 zc->recv_skip_hint -= copylen; 1903 *offset += copylen; 1904 *seq += copylen; 1905 return (__s32)copylen; 1906 } 1907 1908 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1909 struct sock *sk, 1910 struct sk_buff *skb, 1911 u32 *seq, 1912 s32 copybuf_len, 1913 struct scm_timestamping_internal *tss) 1914 { 1915 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1916 1917 if (!copylen) 1918 return 0; 1919 /* skb is null if inq < PAGE_SIZE. */ 1920 if (skb) { 1921 offset = *seq - TCP_SKB_CB(skb)->seq; 1922 } else { 1923 skb = tcp_recv_skb(sk, *seq, &offset); 1924 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1925 tcp_update_recv_tstamps(skb, tss); 1926 zc->msg_flags |= TCP_CMSG_TS; 1927 } 1928 } 1929 1930 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1931 seq); 1932 return zc->copybuf_len < 0 ? 0 : copylen; 1933 } 1934 1935 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1936 struct page **pending_pages, 1937 unsigned long pages_remaining, 1938 unsigned long *address, 1939 u32 *length, 1940 u32 *seq, 1941 struct tcp_zerocopy_receive *zc, 1942 u32 total_bytes_to_map, 1943 int err) 1944 { 1945 /* At least one page did not map. Try zapping if we skipped earlier. */ 1946 if (err == -EBUSY && 1947 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1948 u32 maybe_zap_len; 1949 1950 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1951 *length + /* Mapped or pending */ 1952 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1953 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1954 err = 0; 1955 } 1956 1957 if (!err) { 1958 unsigned long leftover_pages = pages_remaining; 1959 int bytes_mapped; 1960 1961 /* We called zap_page_range_single, try to reinsert. */ 1962 err = vm_insert_pages(vma, *address, 1963 pending_pages, 1964 &pages_remaining); 1965 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1966 *seq += bytes_mapped; 1967 *address += bytes_mapped; 1968 } 1969 if (err) { 1970 /* Either we were unable to zap, OR we zapped, retried an 1971 * insert, and still had an issue. Either ways, pages_remaining 1972 * is the number of pages we were unable to map, and we unroll 1973 * some state we speculatively touched before. 1974 */ 1975 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1976 1977 *length -= bytes_not_mapped; 1978 zc->recv_skip_hint += bytes_not_mapped; 1979 } 1980 return err; 1981 } 1982 1983 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1984 struct page **pages, 1985 unsigned int pages_to_map, 1986 unsigned long *address, 1987 u32 *length, 1988 u32 *seq, 1989 struct tcp_zerocopy_receive *zc, 1990 u32 total_bytes_to_map) 1991 { 1992 unsigned long pages_remaining = pages_to_map; 1993 unsigned int pages_mapped; 1994 unsigned int bytes_mapped; 1995 int err; 1996 1997 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1998 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1999 bytes_mapped = PAGE_SIZE * pages_mapped; 2000 /* Even if vm_insert_pages fails, it may have partially succeeded in 2001 * mapping (some but not all of the pages). 2002 */ 2003 *seq += bytes_mapped; 2004 *address += bytes_mapped; 2005 2006 if (likely(!err)) 2007 return 0; 2008 2009 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2010 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2011 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2012 err); 2013 } 2014 2015 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2016 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2017 struct tcp_zerocopy_receive *zc, 2018 struct scm_timestamping_internal *tss) 2019 { 2020 unsigned long msg_control_addr; 2021 struct msghdr cmsg_dummy; 2022 2023 msg_control_addr = (unsigned long)zc->msg_control; 2024 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2025 cmsg_dummy.msg_controllen = 2026 (__kernel_size_t)zc->msg_controllen; 2027 cmsg_dummy.msg_flags = in_compat_syscall() 2028 ? MSG_CMSG_COMPAT : 0; 2029 cmsg_dummy.msg_control_is_user = true; 2030 zc->msg_flags = 0; 2031 if (zc->msg_control == msg_control_addr && 2032 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2033 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2034 zc->msg_control = (__u64) 2035 ((uintptr_t)cmsg_dummy.msg_control_user); 2036 zc->msg_controllen = 2037 (__u64)cmsg_dummy.msg_controllen; 2038 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2039 } 2040 } 2041 2042 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2043 unsigned long address, 2044 bool *mmap_locked) 2045 { 2046 struct vm_area_struct *vma = NULL; 2047 2048 #ifdef CONFIG_PER_VMA_LOCK 2049 vma = lock_vma_under_rcu(mm, address); 2050 #endif 2051 if (vma) { 2052 if (!vma_is_tcp(vma)) { 2053 vma_end_read(vma); 2054 return NULL; 2055 } 2056 *mmap_locked = false; 2057 return vma; 2058 } 2059 2060 mmap_read_lock(mm); 2061 vma = vma_lookup(mm, address); 2062 if (!vma || !vma_is_tcp(vma)) { 2063 mmap_read_unlock(mm); 2064 return NULL; 2065 } 2066 *mmap_locked = true; 2067 return vma; 2068 } 2069 2070 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2071 static int tcp_zerocopy_receive(struct sock *sk, 2072 struct tcp_zerocopy_receive *zc, 2073 struct scm_timestamping_internal *tss) 2074 { 2075 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2076 unsigned long address = (unsigned long)zc->address; 2077 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2078 s32 copybuf_len = zc->copybuf_len; 2079 struct tcp_sock *tp = tcp_sk(sk); 2080 const skb_frag_t *frags = NULL; 2081 unsigned int pages_to_map = 0; 2082 struct vm_area_struct *vma; 2083 struct sk_buff *skb = NULL; 2084 u32 seq = tp->copied_seq; 2085 u32 total_bytes_to_map; 2086 int inq = tcp_inq(sk); 2087 bool mmap_locked; 2088 int ret; 2089 2090 zc->copybuf_len = 0; 2091 zc->msg_flags = 0; 2092 2093 if (address & (PAGE_SIZE - 1) || address != zc->address) 2094 return -EINVAL; 2095 2096 if (sk->sk_state == TCP_LISTEN) 2097 return -ENOTCONN; 2098 2099 sock_rps_record_flow(sk); 2100 2101 if (inq && inq <= copybuf_len) 2102 return receive_fallback_to_copy(sk, zc, inq, tss); 2103 2104 if (inq < PAGE_SIZE) { 2105 zc->length = 0; 2106 zc->recv_skip_hint = inq; 2107 if (!inq && sock_flag(sk, SOCK_DONE)) 2108 return -EIO; 2109 return 0; 2110 } 2111 2112 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2113 if (!vma) 2114 return -EINVAL; 2115 2116 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2117 avail_len = min_t(u32, vma_len, inq); 2118 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2119 if (total_bytes_to_map) { 2120 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2121 zap_page_range_single(vma, address, total_bytes_to_map, 2122 NULL); 2123 zc->length = total_bytes_to_map; 2124 zc->recv_skip_hint = 0; 2125 } else { 2126 zc->length = avail_len; 2127 zc->recv_skip_hint = avail_len; 2128 } 2129 ret = 0; 2130 while (length + PAGE_SIZE <= zc->length) { 2131 int mappable_offset; 2132 struct page *page; 2133 2134 if (zc->recv_skip_hint < PAGE_SIZE) { 2135 u32 offset_frag; 2136 2137 if (skb) { 2138 if (zc->recv_skip_hint > 0) 2139 break; 2140 skb = skb->next; 2141 offset = seq - TCP_SKB_CB(skb)->seq; 2142 } else { 2143 skb = tcp_recv_skb(sk, seq, &offset); 2144 } 2145 2146 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2147 tcp_update_recv_tstamps(skb, tss); 2148 zc->msg_flags |= TCP_CMSG_TS; 2149 } 2150 zc->recv_skip_hint = skb->len - offset; 2151 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2152 if (!frags || offset_frag) 2153 break; 2154 } 2155 2156 mappable_offset = find_next_mappable_frag(frags, 2157 zc->recv_skip_hint); 2158 if (mappable_offset) { 2159 zc->recv_skip_hint = mappable_offset; 2160 break; 2161 } 2162 page = skb_frag_page(frags); 2163 prefetchw(page); 2164 pages[pages_to_map++] = page; 2165 length += PAGE_SIZE; 2166 zc->recv_skip_hint -= PAGE_SIZE; 2167 frags++; 2168 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2169 zc->recv_skip_hint < PAGE_SIZE) { 2170 /* Either full batch, or we're about to go to next skb 2171 * (and we cannot unroll failed ops across skbs). 2172 */ 2173 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2174 pages_to_map, 2175 &address, &length, 2176 &seq, zc, 2177 total_bytes_to_map); 2178 if (ret) 2179 goto out; 2180 pages_to_map = 0; 2181 } 2182 } 2183 if (pages_to_map) { 2184 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2185 &address, &length, &seq, 2186 zc, total_bytes_to_map); 2187 } 2188 out: 2189 if (mmap_locked) 2190 mmap_read_unlock(current->mm); 2191 else 2192 vma_end_read(vma); 2193 /* Try to copy straggler data. */ 2194 if (!ret) 2195 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2196 2197 if (length + copylen) { 2198 WRITE_ONCE(tp->copied_seq, seq); 2199 tcp_rcv_space_adjust(sk); 2200 2201 /* Clean up data we have read: This will do ACK frames. */ 2202 tcp_recv_skb(sk, seq, &offset); 2203 tcp_cleanup_rbuf(sk, length + copylen); 2204 ret = 0; 2205 if (length == zc->length) 2206 zc->recv_skip_hint = 0; 2207 } else { 2208 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2209 ret = -EIO; 2210 } 2211 zc->length = length; 2212 return ret; 2213 } 2214 #endif 2215 2216 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2217 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2218 struct scm_timestamping_internal *tss) 2219 { 2220 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2221 bool has_timestamping = false; 2222 2223 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2224 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2225 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2226 if (new_tstamp) { 2227 struct __kernel_timespec kts = { 2228 .tv_sec = tss->ts[0].tv_sec, 2229 .tv_nsec = tss->ts[0].tv_nsec, 2230 }; 2231 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2232 sizeof(kts), &kts); 2233 } else { 2234 struct __kernel_old_timespec ts_old = { 2235 .tv_sec = tss->ts[0].tv_sec, 2236 .tv_nsec = tss->ts[0].tv_nsec, 2237 }; 2238 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2239 sizeof(ts_old), &ts_old); 2240 } 2241 } else { 2242 if (new_tstamp) { 2243 struct __kernel_sock_timeval stv = { 2244 .tv_sec = tss->ts[0].tv_sec, 2245 .tv_usec = tss->ts[0].tv_nsec / 1000, 2246 }; 2247 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2248 sizeof(stv), &stv); 2249 } else { 2250 struct __kernel_old_timeval tv = { 2251 .tv_sec = tss->ts[0].tv_sec, 2252 .tv_usec = tss->ts[0].tv_nsec / 1000, 2253 }; 2254 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2255 sizeof(tv), &tv); 2256 } 2257 } 2258 } 2259 2260 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2261 has_timestamping = true; 2262 else 2263 tss->ts[0] = (struct timespec64) {0}; 2264 } 2265 2266 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2267 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2268 has_timestamping = true; 2269 else 2270 tss->ts[2] = (struct timespec64) {0}; 2271 } 2272 2273 if (has_timestamping) { 2274 tss->ts[1] = (struct timespec64) {0}; 2275 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2276 put_cmsg_scm_timestamping64(msg, tss); 2277 else 2278 put_cmsg_scm_timestamping(msg, tss); 2279 } 2280 } 2281 2282 static int tcp_inq_hint(struct sock *sk) 2283 { 2284 const struct tcp_sock *tp = tcp_sk(sk); 2285 u32 copied_seq = READ_ONCE(tp->copied_seq); 2286 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2287 int inq; 2288 2289 inq = rcv_nxt - copied_seq; 2290 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2291 lock_sock(sk); 2292 inq = tp->rcv_nxt - tp->copied_seq; 2293 release_sock(sk); 2294 } 2295 /* After receiving a FIN, tell the user-space to continue reading 2296 * by returning a non-zero inq. 2297 */ 2298 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2299 inq = 1; 2300 return inq; 2301 } 2302 2303 /* 2304 * This routine copies from a sock struct into the user buffer. 2305 * 2306 * Technical note: in 2.3 we work on _locked_ socket, so that 2307 * tricks with *seq access order and skb->users are not required. 2308 * Probably, code can be easily improved even more. 2309 */ 2310 2311 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2312 int flags, struct scm_timestamping_internal *tss, 2313 int *cmsg_flags) 2314 { 2315 struct tcp_sock *tp = tcp_sk(sk); 2316 int copied = 0; 2317 u32 peek_seq; 2318 u32 *seq; 2319 unsigned long used; 2320 int err; 2321 int target; /* Read at least this many bytes */ 2322 long timeo; 2323 struct sk_buff *skb, *last; 2324 u32 urg_hole = 0; 2325 2326 err = -ENOTCONN; 2327 if (sk->sk_state == TCP_LISTEN) 2328 goto out; 2329 2330 if (tp->recvmsg_inq) { 2331 *cmsg_flags = TCP_CMSG_INQ; 2332 msg->msg_get_inq = 1; 2333 } 2334 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2335 2336 /* Urgent data needs to be handled specially. */ 2337 if (flags & MSG_OOB) 2338 goto recv_urg; 2339 2340 if (unlikely(tp->repair)) { 2341 err = -EPERM; 2342 if (!(flags & MSG_PEEK)) 2343 goto out; 2344 2345 if (tp->repair_queue == TCP_SEND_QUEUE) 2346 goto recv_sndq; 2347 2348 err = -EINVAL; 2349 if (tp->repair_queue == TCP_NO_QUEUE) 2350 goto out; 2351 2352 /* 'common' recv queue MSG_PEEK-ing */ 2353 } 2354 2355 seq = &tp->copied_seq; 2356 if (flags & MSG_PEEK) { 2357 peek_seq = tp->copied_seq; 2358 seq = &peek_seq; 2359 } 2360 2361 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2362 2363 do { 2364 u32 offset; 2365 2366 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2367 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2368 if (copied) 2369 break; 2370 if (signal_pending(current)) { 2371 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2372 break; 2373 } 2374 } 2375 2376 /* Next get a buffer. */ 2377 2378 last = skb_peek_tail(&sk->sk_receive_queue); 2379 skb_queue_walk(&sk->sk_receive_queue, skb) { 2380 last = skb; 2381 /* Now that we have two receive queues this 2382 * shouldn't happen. 2383 */ 2384 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2385 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2386 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2387 flags)) 2388 break; 2389 2390 offset = *seq - TCP_SKB_CB(skb)->seq; 2391 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2392 pr_err_once("%s: found a SYN, please report !\n", __func__); 2393 offset--; 2394 } 2395 if (offset < skb->len) 2396 goto found_ok_skb; 2397 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2398 goto found_fin_ok; 2399 WARN(!(flags & MSG_PEEK), 2400 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2401 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2402 } 2403 2404 /* Well, if we have backlog, try to process it now yet. */ 2405 2406 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2407 break; 2408 2409 if (copied) { 2410 if (!timeo || 2411 sk->sk_err || 2412 sk->sk_state == TCP_CLOSE || 2413 (sk->sk_shutdown & RCV_SHUTDOWN) || 2414 signal_pending(current)) 2415 break; 2416 } else { 2417 if (sock_flag(sk, SOCK_DONE)) 2418 break; 2419 2420 if (sk->sk_err) { 2421 copied = sock_error(sk); 2422 break; 2423 } 2424 2425 if (sk->sk_shutdown & RCV_SHUTDOWN) 2426 break; 2427 2428 if (sk->sk_state == TCP_CLOSE) { 2429 /* This occurs when user tries to read 2430 * from never connected socket. 2431 */ 2432 copied = -ENOTCONN; 2433 break; 2434 } 2435 2436 if (!timeo) { 2437 copied = -EAGAIN; 2438 break; 2439 } 2440 2441 if (signal_pending(current)) { 2442 copied = sock_intr_errno(timeo); 2443 break; 2444 } 2445 } 2446 2447 if (copied >= target) { 2448 /* Do not sleep, just process backlog. */ 2449 __sk_flush_backlog(sk); 2450 } else { 2451 tcp_cleanup_rbuf(sk, copied); 2452 sk_wait_data(sk, &timeo, last); 2453 } 2454 2455 if ((flags & MSG_PEEK) && 2456 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2457 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2458 current->comm, 2459 task_pid_nr(current)); 2460 peek_seq = tp->copied_seq; 2461 } 2462 continue; 2463 2464 found_ok_skb: 2465 /* Ok so how much can we use? */ 2466 used = skb->len - offset; 2467 if (len < used) 2468 used = len; 2469 2470 /* Do we have urgent data here? */ 2471 if (unlikely(tp->urg_data)) { 2472 u32 urg_offset = tp->urg_seq - *seq; 2473 if (urg_offset < used) { 2474 if (!urg_offset) { 2475 if (!sock_flag(sk, SOCK_URGINLINE)) { 2476 WRITE_ONCE(*seq, *seq + 1); 2477 urg_hole++; 2478 offset++; 2479 used--; 2480 if (!used) 2481 goto skip_copy; 2482 } 2483 } else 2484 used = urg_offset; 2485 } 2486 } 2487 2488 if (!(flags & MSG_TRUNC)) { 2489 err = skb_copy_datagram_msg(skb, offset, msg, used); 2490 if (err) { 2491 /* Exception. Bailout! */ 2492 if (!copied) 2493 copied = -EFAULT; 2494 break; 2495 } 2496 } 2497 2498 WRITE_ONCE(*seq, *seq + used); 2499 copied += used; 2500 len -= used; 2501 2502 tcp_rcv_space_adjust(sk); 2503 2504 skip_copy: 2505 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2506 WRITE_ONCE(tp->urg_data, 0); 2507 tcp_fast_path_check(sk); 2508 } 2509 2510 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2511 tcp_update_recv_tstamps(skb, tss); 2512 *cmsg_flags |= TCP_CMSG_TS; 2513 } 2514 2515 if (used + offset < skb->len) 2516 continue; 2517 2518 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2519 goto found_fin_ok; 2520 if (!(flags & MSG_PEEK)) 2521 tcp_eat_recv_skb(sk, skb); 2522 continue; 2523 2524 found_fin_ok: 2525 /* Process the FIN. */ 2526 WRITE_ONCE(*seq, *seq + 1); 2527 if (!(flags & MSG_PEEK)) 2528 tcp_eat_recv_skb(sk, skb); 2529 break; 2530 } while (len > 0); 2531 2532 /* According to UNIX98, msg_name/msg_namelen are ignored 2533 * on connected socket. I was just happy when found this 8) --ANK 2534 */ 2535 2536 /* Clean up data we have read: This will do ACK frames. */ 2537 tcp_cleanup_rbuf(sk, copied); 2538 return copied; 2539 2540 out: 2541 return err; 2542 2543 recv_urg: 2544 err = tcp_recv_urg(sk, msg, len, flags); 2545 goto out; 2546 2547 recv_sndq: 2548 err = tcp_peek_sndq(sk, msg, len); 2549 goto out; 2550 } 2551 2552 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2553 int *addr_len) 2554 { 2555 int cmsg_flags = 0, ret; 2556 struct scm_timestamping_internal tss; 2557 2558 if (unlikely(flags & MSG_ERRQUEUE)) 2559 return inet_recv_error(sk, msg, len, addr_len); 2560 2561 if (sk_can_busy_loop(sk) && 2562 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2563 sk->sk_state == TCP_ESTABLISHED) 2564 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2565 2566 lock_sock(sk); 2567 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2568 release_sock(sk); 2569 2570 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2571 if (cmsg_flags & TCP_CMSG_TS) 2572 tcp_recv_timestamp(msg, sk, &tss); 2573 if (msg->msg_get_inq) { 2574 msg->msg_inq = tcp_inq_hint(sk); 2575 if (cmsg_flags & TCP_CMSG_INQ) 2576 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2577 sizeof(msg->msg_inq), &msg->msg_inq); 2578 } 2579 } 2580 return ret; 2581 } 2582 EXPORT_SYMBOL(tcp_recvmsg); 2583 2584 void tcp_set_state(struct sock *sk, int state) 2585 { 2586 int oldstate = sk->sk_state; 2587 2588 /* We defined a new enum for TCP states that are exported in BPF 2589 * so as not force the internal TCP states to be frozen. The 2590 * following checks will detect if an internal state value ever 2591 * differs from the BPF value. If this ever happens, then we will 2592 * need to remap the internal value to the BPF value before calling 2593 * tcp_call_bpf_2arg. 2594 */ 2595 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2596 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2597 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2598 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2599 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2600 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2601 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2602 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2603 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2604 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2605 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2606 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2607 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2608 2609 /* bpf uapi header bpf.h defines an anonymous enum with values 2610 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2611 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2612 * But clang built vmlinux does not have this enum in DWARF 2613 * since clang removes the above code before generating IR/debuginfo. 2614 * Let us explicitly emit the type debuginfo to ensure the 2615 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2616 * regardless of which compiler is used. 2617 */ 2618 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2619 2620 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2621 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2622 2623 switch (state) { 2624 case TCP_ESTABLISHED: 2625 if (oldstate != TCP_ESTABLISHED) 2626 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2627 break; 2628 2629 case TCP_CLOSE: 2630 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2631 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2632 2633 sk->sk_prot->unhash(sk); 2634 if (inet_csk(sk)->icsk_bind_hash && 2635 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2636 inet_put_port(sk); 2637 fallthrough; 2638 default: 2639 if (oldstate == TCP_ESTABLISHED) 2640 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2641 } 2642 2643 /* Change state AFTER socket is unhashed to avoid closed 2644 * socket sitting in hash tables. 2645 */ 2646 inet_sk_state_store(sk, state); 2647 } 2648 EXPORT_SYMBOL_GPL(tcp_set_state); 2649 2650 /* 2651 * State processing on a close. This implements the state shift for 2652 * sending our FIN frame. Note that we only send a FIN for some 2653 * states. A shutdown() may have already sent the FIN, or we may be 2654 * closed. 2655 */ 2656 2657 static const unsigned char new_state[16] = { 2658 /* current state: new state: action: */ 2659 [0 /* (Invalid) */] = TCP_CLOSE, 2660 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2661 [TCP_SYN_SENT] = TCP_CLOSE, 2662 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2663 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2664 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2665 [TCP_TIME_WAIT] = TCP_CLOSE, 2666 [TCP_CLOSE] = TCP_CLOSE, 2667 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2668 [TCP_LAST_ACK] = TCP_LAST_ACK, 2669 [TCP_LISTEN] = TCP_CLOSE, 2670 [TCP_CLOSING] = TCP_CLOSING, 2671 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2672 }; 2673 2674 static int tcp_close_state(struct sock *sk) 2675 { 2676 int next = (int)new_state[sk->sk_state]; 2677 int ns = next & TCP_STATE_MASK; 2678 2679 tcp_set_state(sk, ns); 2680 2681 return next & TCP_ACTION_FIN; 2682 } 2683 2684 /* 2685 * Shutdown the sending side of a connection. Much like close except 2686 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2687 */ 2688 2689 void tcp_shutdown(struct sock *sk, int how) 2690 { 2691 /* We need to grab some memory, and put together a FIN, 2692 * and then put it into the queue to be sent. 2693 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2694 */ 2695 if (!(how & SEND_SHUTDOWN)) 2696 return; 2697 2698 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2699 if ((1 << sk->sk_state) & 2700 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2701 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2702 /* Clear out any half completed packets. FIN if needed. */ 2703 if (tcp_close_state(sk)) 2704 tcp_send_fin(sk); 2705 } 2706 } 2707 EXPORT_SYMBOL(tcp_shutdown); 2708 2709 int tcp_orphan_count_sum(void) 2710 { 2711 int i, total = 0; 2712 2713 for_each_possible_cpu(i) 2714 total += per_cpu(tcp_orphan_count, i); 2715 2716 return max(total, 0); 2717 } 2718 2719 static int tcp_orphan_cache; 2720 static struct timer_list tcp_orphan_timer; 2721 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2722 2723 static void tcp_orphan_update(struct timer_list *unused) 2724 { 2725 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2726 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2727 } 2728 2729 static bool tcp_too_many_orphans(int shift) 2730 { 2731 return READ_ONCE(tcp_orphan_cache) << shift > 2732 READ_ONCE(sysctl_tcp_max_orphans); 2733 } 2734 2735 bool tcp_check_oom(struct sock *sk, int shift) 2736 { 2737 bool too_many_orphans, out_of_socket_memory; 2738 2739 too_many_orphans = tcp_too_many_orphans(shift); 2740 out_of_socket_memory = tcp_out_of_memory(sk); 2741 2742 if (too_many_orphans) 2743 net_info_ratelimited("too many orphaned sockets\n"); 2744 if (out_of_socket_memory) 2745 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2746 return too_many_orphans || out_of_socket_memory; 2747 } 2748 2749 void __tcp_close(struct sock *sk, long timeout) 2750 { 2751 struct sk_buff *skb; 2752 int data_was_unread = 0; 2753 int state; 2754 2755 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2756 2757 if (sk->sk_state == TCP_LISTEN) { 2758 tcp_set_state(sk, TCP_CLOSE); 2759 2760 /* Special case. */ 2761 inet_csk_listen_stop(sk); 2762 2763 goto adjudge_to_death; 2764 } 2765 2766 /* We need to flush the recv. buffs. We do this only on the 2767 * descriptor close, not protocol-sourced closes, because the 2768 * reader process may not have drained the data yet! 2769 */ 2770 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2771 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2772 2773 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2774 len--; 2775 data_was_unread += len; 2776 __kfree_skb(skb); 2777 } 2778 2779 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2780 if (sk->sk_state == TCP_CLOSE) 2781 goto adjudge_to_death; 2782 2783 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2784 * data was lost. To witness the awful effects of the old behavior of 2785 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2786 * GET in an FTP client, suspend the process, wait for the client to 2787 * advertise a zero window, then kill -9 the FTP client, wheee... 2788 * Note: timeout is always zero in such a case. 2789 */ 2790 if (unlikely(tcp_sk(sk)->repair)) { 2791 sk->sk_prot->disconnect(sk, 0); 2792 } else if (data_was_unread) { 2793 /* Unread data was tossed, zap the connection. */ 2794 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2795 tcp_set_state(sk, TCP_CLOSE); 2796 tcp_send_active_reset(sk, sk->sk_allocation); 2797 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2798 /* Check zero linger _after_ checking for unread data. */ 2799 sk->sk_prot->disconnect(sk, 0); 2800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2801 } else if (tcp_close_state(sk)) { 2802 /* We FIN if the application ate all the data before 2803 * zapping the connection. 2804 */ 2805 2806 /* RED-PEN. Formally speaking, we have broken TCP state 2807 * machine. State transitions: 2808 * 2809 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2810 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2811 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2812 * 2813 * are legal only when FIN has been sent (i.e. in window), 2814 * rather than queued out of window. Purists blame. 2815 * 2816 * F.e. "RFC state" is ESTABLISHED, 2817 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2818 * 2819 * The visible declinations are that sometimes 2820 * we enter time-wait state, when it is not required really 2821 * (harmless), do not send active resets, when they are 2822 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2823 * they look as CLOSING or LAST_ACK for Linux) 2824 * Probably, I missed some more holelets. 2825 * --ANK 2826 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2827 * in a single packet! (May consider it later but will 2828 * probably need API support or TCP_CORK SYN-ACK until 2829 * data is written and socket is closed.) 2830 */ 2831 tcp_send_fin(sk); 2832 } 2833 2834 sk_stream_wait_close(sk, timeout); 2835 2836 adjudge_to_death: 2837 state = sk->sk_state; 2838 sock_hold(sk); 2839 sock_orphan(sk); 2840 2841 local_bh_disable(); 2842 bh_lock_sock(sk); 2843 /* remove backlog if any, without releasing ownership. */ 2844 __release_sock(sk); 2845 2846 this_cpu_inc(tcp_orphan_count); 2847 2848 /* Have we already been destroyed by a softirq or backlog? */ 2849 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2850 goto out; 2851 2852 /* This is a (useful) BSD violating of the RFC. There is a 2853 * problem with TCP as specified in that the other end could 2854 * keep a socket open forever with no application left this end. 2855 * We use a 1 minute timeout (about the same as BSD) then kill 2856 * our end. If they send after that then tough - BUT: long enough 2857 * that we won't make the old 4*rto = almost no time - whoops 2858 * reset mistake. 2859 * 2860 * Nope, it was not mistake. It is really desired behaviour 2861 * f.e. on http servers, when such sockets are useless, but 2862 * consume significant resources. Let's do it with special 2863 * linger2 option. --ANK 2864 */ 2865 2866 if (sk->sk_state == TCP_FIN_WAIT2) { 2867 struct tcp_sock *tp = tcp_sk(sk); 2868 if (tp->linger2 < 0) { 2869 tcp_set_state(sk, TCP_CLOSE); 2870 tcp_send_active_reset(sk, GFP_ATOMIC); 2871 __NET_INC_STATS(sock_net(sk), 2872 LINUX_MIB_TCPABORTONLINGER); 2873 } else { 2874 const int tmo = tcp_fin_time(sk); 2875 2876 if (tmo > TCP_TIMEWAIT_LEN) { 2877 inet_csk_reset_keepalive_timer(sk, 2878 tmo - TCP_TIMEWAIT_LEN); 2879 } else { 2880 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2881 goto out; 2882 } 2883 } 2884 } 2885 if (sk->sk_state != TCP_CLOSE) { 2886 if (tcp_check_oom(sk, 0)) { 2887 tcp_set_state(sk, TCP_CLOSE); 2888 tcp_send_active_reset(sk, GFP_ATOMIC); 2889 __NET_INC_STATS(sock_net(sk), 2890 LINUX_MIB_TCPABORTONMEMORY); 2891 } else if (!check_net(sock_net(sk))) { 2892 /* Not possible to send reset; just close */ 2893 tcp_set_state(sk, TCP_CLOSE); 2894 } 2895 } 2896 2897 if (sk->sk_state == TCP_CLOSE) { 2898 struct request_sock *req; 2899 2900 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2901 lockdep_sock_is_held(sk)); 2902 /* We could get here with a non-NULL req if the socket is 2903 * aborted (e.g., closed with unread data) before 3WHS 2904 * finishes. 2905 */ 2906 if (req) 2907 reqsk_fastopen_remove(sk, req, false); 2908 inet_csk_destroy_sock(sk); 2909 } 2910 /* Otherwise, socket is reprieved until protocol close. */ 2911 2912 out: 2913 bh_unlock_sock(sk); 2914 local_bh_enable(); 2915 } 2916 2917 void tcp_close(struct sock *sk, long timeout) 2918 { 2919 lock_sock(sk); 2920 __tcp_close(sk, timeout); 2921 release_sock(sk); 2922 sock_put(sk); 2923 } 2924 EXPORT_SYMBOL(tcp_close); 2925 2926 /* These states need RST on ABORT according to RFC793 */ 2927 2928 static inline bool tcp_need_reset(int state) 2929 { 2930 return (1 << state) & 2931 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2932 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2933 } 2934 2935 static void tcp_rtx_queue_purge(struct sock *sk) 2936 { 2937 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2938 2939 tcp_sk(sk)->highest_sack = NULL; 2940 while (p) { 2941 struct sk_buff *skb = rb_to_skb(p); 2942 2943 p = rb_next(p); 2944 /* Since we are deleting whole queue, no need to 2945 * list_del(&skb->tcp_tsorted_anchor) 2946 */ 2947 tcp_rtx_queue_unlink(skb, sk); 2948 tcp_wmem_free_skb(sk, skb); 2949 } 2950 } 2951 2952 void tcp_write_queue_purge(struct sock *sk) 2953 { 2954 struct sk_buff *skb; 2955 2956 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2957 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2958 tcp_skb_tsorted_anchor_cleanup(skb); 2959 tcp_wmem_free_skb(sk, skb); 2960 } 2961 tcp_rtx_queue_purge(sk); 2962 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2963 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2964 tcp_sk(sk)->packets_out = 0; 2965 inet_csk(sk)->icsk_backoff = 0; 2966 } 2967 2968 int tcp_disconnect(struct sock *sk, int flags) 2969 { 2970 struct inet_sock *inet = inet_sk(sk); 2971 struct inet_connection_sock *icsk = inet_csk(sk); 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 int old_state = sk->sk_state; 2974 u32 seq; 2975 2976 /* Deny disconnect if other threads are blocked in sk_wait_event() 2977 * or inet_wait_for_connect(). 2978 */ 2979 if (sk->sk_wait_pending) 2980 return -EBUSY; 2981 2982 if (old_state != TCP_CLOSE) 2983 tcp_set_state(sk, TCP_CLOSE); 2984 2985 /* ABORT function of RFC793 */ 2986 if (old_state == TCP_LISTEN) { 2987 inet_csk_listen_stop(sk); 2988 } else if (unlikely(tp->repair)) { 2989 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2990 } else if (tcp_need_reset(old_state) || 2991 (tp->snd_nxt != tp->write_seq && 2992 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2993 /* The last check adjusts for discrepancy of Linux wrt. RFC 2994 * states 2995 */ 2996 tcp_send_active_reset(sk, gfp_any()); 2997 WRITE_ONCE(sk->sk_err, ECONNRESET); 2998 } else if (old_state == TCP_SYN_SENT) 2999 WRITE_ONCE(sk->sk_err, ECONNRESET); 3000 3001 tcp_clear_xmit_timers(sk); 3002 __skb_queue_purge(&sk->sk_receive_queue); 3003 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3004 WRITE_ONCE(tp->urg_data, 0); 3005 tcp_write_queue_purge(sk); 3006 tcp_fastopen_active_disable_ofo_check(sk); 3007 skb_rbtree_purge(&tp->out_of_order_queue); 3008 3009 inet->inet_dport = 0; 3010 3011 inet_bhash2_reset_saddr(sk); 3012 3013 WRITE_ONCE(sk->sk_shutdown, 0); 3014 sock_reset_flag(sk, SOCK_DONE); 3015 tp->srtt_us = 0; 3016 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3017 tp->rcv_rtt_last_tsecr = 0; 3018 3019 seq = tp->write_seq + tp->max_window + 2; 3020 if (!seq) 3021 seq = 1; 3022 WRITE_ONCE(tp->write_seq, seq); 3023 3024 icsk->icsk_backoff = 0; 3025 icsk->icsk_probes_out = 0; 3026 icsk->icsk_probes_tstamp = 0; 3027 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3028 icsk->icsk_rto_min = TCP_RTO_MIN; 3029 icsk->icsk_delack_max = TCP_DELACK_MAX; 3030 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3031 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3032 tp->snd_cwnd_cnt = 0; 3033 tp->is_cwnd_limited = 0; 3034 tp->max_packets_out = 0; 3035 tp->window_clamp = 0; 3036 tp->delivered = 0; 3037 tp->delivered_ce = 0; 3038 if (icsk->icsk_ca_ops->release) 3039 icsk->icsk_ca_ops->release(sk); 3040 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3041 icsk->icsk_ca_initialized = 0; 3042 tcp_set_ca_state(sk, TCP_CA_Open); 3043 tp->is_sack_reneg = 0; 3044 tcp_clear_retrans(tp); 3045 tp->total_retrans = 0; 3046 inet_csk_delack_init(sk); 3047 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3048 * issue in __tcp_select_window() 3049 */ 3050 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3051 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3052 __sk_dst_reset(sk); 3053 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3054 tcp_saved_syn_free(tp); 3055 tp->compressed_ack = 0; 3056 tp->segs_in = 0; 3057 tp->segs_out = 0; 3058 tp->bytes_sent = 0; 3059 tp->bytes_acked = 0; 3060 tp->bytes_received = 0; 3061 tp->bytes_retrans = 0; 3062 tp->data_segs_in = 0; 3063 tp->data_segs_out = 0; 3064 tp->duplicate_sack[0].start_seq = 0; 3065 tp->duplicate_sack[0].end_seq = 0; 3066 tp->dsack_dups = 0; 3067 tp->reord_seen = 0; 3068 tp->retrans_out = 0; 3069 tp->sacked_out = 0; 3070 tp->tlp_high_seq = 0; 3071 tp->last_oow_ack_time = 0; 3072 tp->plb_rehash = 0; 3073 /* There's a bubble in the pipe until at least the first ACK. */ 3074 tp->app_limited = ~0U; 3075 tp->rate_app_limited = 1; 3076 tp->rack.mstamp = 0; 3077 tp->rack.advanced = 0; 3078 tp->rack.reo_wnd_steps = 1; 3079 tp->rack.last_delivered = 0; 3080 tp->rack.reo_wnd_persist = 0; 3081 tp->rack.dsack_seen = 0; 3082 tp->syn_data_acked = 0; 3083 tp->rx_opt.saw_tstamp = 0; 3084 tp->rx_opt.dsack = 0; 3085 tp->rx_opt.num_sacks = 0; 3086 tp->rcv_ooopack = 0; 3087 3088 3089 /* Clean up fastopen related fields */ 3090 tcp_free_fastopen_req(tp); 3091 inet->defer_connect = 0; 3092 tp->fastopen_client_fail = 0; 3093 3094 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3095 3096 if (sk->sk_frag.page) { 3097 put_page(sk->sk_frag.page); 3098 sk->sk_frag.page = NULL; 3099 sk->sk_frag.offset = 0; 3100 } 3101 sk_error_report(sk); 3102 return 0; 3103 } 3104 EXPORT_SYMBOL(tcp_disconnect); 3105 3106 static inline bool tcp_can_repair_sock(const struct sock *sk) 3107 { 3108 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3109 (sk->sk_state != TCP_LISTEN); 3110 } 3111 3112 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3113 { 3114 struct tcp_repair_window opt; 3115 3116 if (!tp->repair) 3117 return -EPERM; 3118 3119 if (len != sizeof(opt)) 3120 return -EINVAL; 3121 3122 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3123 return -EFAULT; 3124 3125 if (opt.max_window < opt.snd_wnd) 3126 return -EINVAL; 3127 3128 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3129 return -EINVAL; 3130 3131 if (after(opt.rcv_wup, tp->rcv_nxt)) 3132 return -EINVAL; 3133 3134 tp->snd_wl1 = opt.snd_wl1; 3135 tp->snd_wnd = opt.snd_wnd; 3136 tp->max_window = opt.max_window; 3137 3138 tp->rcv_wnd = opt.rcv_wnd; 3139 tp->rcv_wup = opt.rcv_wup; 3140 3141 return 0; 3142 } 3143 3144 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3145 unsigned int len) 3146 { 3147 struct tcp_sock *tp = tcp_sk(sk); 3148 struct tcp_repair_opt opt; 3149 size_t offset = 0; 3150 3151 while (len >= sizeof(opt)) { 3152 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3153 return -EFAULT; 3154 3155 offset += sizeof(opt); 3156 len -= sizeof(opt); 3157 3158 switch (opt.opt_code) { 3159 case TCPOPT_MSS: 3160 tp->rx_opt.mss_clamp = opt.opt_val; 3161 tcp_mtup_init(sk); 3162 break; 3163 case TCPOPT_WINDOW: 3164 { 3165 u16 snd_wscale = opt.opt_val & 0xFFFF; 3166 u16 rcv_wscale = opt.opt_val >> 16; 3167 3168 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3169 return -EFBIG; 3170 3171 tp->rx_opt.snd_wscale = snd_wscale; 3172 tp->rx_opt.rcv_wscale = rcv_wscale; 3173 tp->rx_opt.wscale_ok = 1; 3174 } 3175 break; 3176 case TCPOPT_SACK_PERM: 3177 if (opt.opt_val != 0) 3178 return -EINVAL; 3179 3180 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3181 break; 3182 case TCPOPT_TIMESTAMP: 3183 if (opt.opt_val != 0) 3184 return -EINVAL; 3185 3186 tp->rx_opt.tstamp_ok = 1; 3187 break; 3188 } 3189 } 3190 3191 return 0; 3192 } 3193 3194 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3195 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3196 3197 static void tcp_enable_tx_delay(void) 3198 { 3199 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3200 static int __tcp_tx_delay_enabled = 0; 3201 3202 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3203 static_branch_enable(&tcp_tx_delay_enabled); 3204 pr_info("TCP_TX_DELAY enabled\n"); 3205 } 3206 } 3207 } 3208 3209 /* When set indicates to always queue non-full frames. Later the user clears 3210 * this option and we transmit any pending partial frames in the queue. This is 3211 * meant to be used alongside sendfile() to get properly filled frames when the 3212 * user (for example) must write out headers with a write() call first and then 3213 * use sendfile to send out the data parts. 3214 * 3215 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3216 * TCP_NODELAY. 3217 */ 3218 void __tcp_sock_set_cork(struct sock *sk, bool on) 3219 { 3220 struct tcp_sock *tp = tcp_sk(sk); 3221 3222 if (on) { 3223 tp->nonagle |= TCP_NAGLE_CORK; 3224 } else { 3225 tp->nonagle &= ~TCP_NAGLE_CORK; 3226 if (tp->nonagle & TCP_NAGLE_OFF) 3227 tp->nonagle |= TCP_NAGLE_PUSH; 3228 tcp_push_pending_frames(sk); 3229 } 3230 } 3231 3232 void tcp_sock_set_cork(struct sock *sk, bool on) 3233 { 3234 lock_sock(sk); 3235 __tcp_sock_set_cork(sk, on); 3236 release_sock(sk); 3237 } 3238 EXPORT_SYMBOL(tcp_sock_set_cork); 3239 3240 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3241 * remembered, but it is not activated until cork is cleared. 3242 * 3243 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3244 * even TCP_CORK for currently queued segments. 3245 */ 3246 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3247 { 3248 if (on) { 3249 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3250 tcp_push_pending_frames(sk); 3251 } else { 3252 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3253 } 3254 } 3255 3256 void tcp_sock_set_nodelay(struct sock *sk) 3257 { 3258 lock_sock(sk); 3259 __tcp_sock_set_nodelay(sk, true); 3260 release_sock(sk); 3261 } 3262 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3263 3264 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3265 { 3266 if (!val) { 3267 inet_csk_enter_pingpong_mode(sk); 3268 return; 3269 } 3270 3271 inet_csk_exit_pingpong_mode(sk); 3272 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3273 inet_csk_ack_scheduled(sk)) { 3274 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3275 tcp_cleanup_rbuf(sk, 1); 3276 if (!(val & 1)) 3277 inet_csk_enter_pingpong_mode(sk); 3278 } 3279 } 3280 3281 void tcp_sock_set_quickack(struct sock *sk, int val) 3282 { 3283 lock_sock(sk); 3284 __tcp_sock_set_quickack(sk, val); 3285 release_sock(sk); 3286 } 3287 EXPORT_SYMBOL(tcp_sock_set_quickack); 3288 3289 int tcp_sock_set_syncnt(struct sock *sk, int val) 3290 { 3291 if (val < 1 || val > MAX_TCP_SYNCNT) 3292 return -EINVAL; 3293 3294 lock_sock(sk); 3295 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3296 release_sock(sk); 3297 return 0; 3298 } 3299 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3300 3301 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3302 { 3303 lock_sock(sk); 3304 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3305 release_sock(sk); 3306 } 3307 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3308 3309 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3310 { 3311 struct tcp_sock *tp = tcp_sk(sk); 3312 3313 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3314 return -EINVAL; 3315 3316 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3317 WRITE_ONCE(tp->keepalive_time, val * HZ); 3318 if (sock_flag(sk, SOCK_KEEPOPEN) && 3319 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3320 u32 elapsed = keepalive_time_elapsed(tp); 3321 3322 if (tp->keepalive_time > elapsed) 3323 elapsed = tp->keepalive_time - elapsed; 3324 else 3325 elapsed = 0; 3326 inet_csk_reset_keepalive_timer(sk, elapsed); 3327 } 3328 3329 return 0; 3330 } 3331 3332 int tcp_sock_set_keepidle(struct sock *sk, int val) 3333 { 3334 int err; 3335 3336 lock_sock(sk); 3337 err = tcp_sock_set_keepidle_locked(sk, val); 3338 release_sock(sk); 3339 return err; 3340 } 3341 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3342 3343 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3344 { 3345 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3346 return -EINVAL; 3347 3348 lock_sock(sk); 3349 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3350 release_sock(sk); 3351 return 0; 3352 } 3353 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3354 3355 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3356 { 3357 if (val < 1 || val > MAX_TCP_KEEPCNT) 3358 return -EINVAL; 3359 3360 lock_sock(sk); 3361 /* Paired with READ_ONCE() in keepalive_probes() */ 3362 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3363 release_sock(sk); 3364 return 0; 3365 } 3366 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3367 3368 int tcp_set_window_clamp(struct sock *sk, int val) 3369 { 3370 struct tcp_sock *tp = tcp_sk(sk); 3371 3372 if (!val) { 3373 if (sk->sk_state != TCP_CLOSE) 3374 return -EINVAL; 3375 tp->window_clamp = 0; 3376 } else { 3377 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3378 SOCK_MIN_RCVBUF / 2 : val; 3379 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3380 } 3381 return 0; 3382 } 3383 3384 /* 3385 * Socket option code for TCP. 3386 */ 3387 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3388 sockptr_t optval, unsigned int optlen) 3389 { 3390 struct tcp_sock *tp = tcp_sk(sk); 3391 struct inet_connection_sock *icsk = inet_csk(sk); 3392 struct net *net = sock_net(sk); 3393 int val; 3394 int err = 0; 3395 3396 /* These are data/string values, all the others are ints */ 3397 switch (optname) { 3398 case TCP_CONGESTION: { 3399 char name[TCP_CA_NAME_MAX]; 3400 3401 if (optlen < 1) 3402 return -EINVAL; 3403 3404 val = strncpy_from_sockptr(name, optval, 3405 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3406 if (val < 0) 3407 return -EFAULT; 3408 name[val] = 0; 3409 3410 sockopt_lock_sock(sk); 3411 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3412 sockopt_ns_capable(sock_net(sk)->user_ns, 3413 CAP_NET_ADMIN)); 3414 sockopt_release_sock(sk); 3415 return err; 3416 } 3417 case TCP_ULP: { 3418 char name[TCP_ULP_NAME_MAX]; 3419 3420 if (optlen < 1) 3421 return -EINVAL; 3422 3423 val = strncpy_from_sockptr(name, optval, 3424 min_t(long, TCP_ULP_NAME_MAX - 1, 3425 optlen)); 3426 if (val < 0) 3427 return -EFAULT; 3428 name[val] = 0; 3429 3430 sockopt_lock_sock(sk); 3431 err = tcp_set_ulp(sk, name); 3432 sockopt_release_sock(sk); 3433 return err; 3434 } 3435 case TCP_FASTOPEN_KEY: { 3436 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3437 __u8 *backup_key = NULL; 3438 3439 /* Allow a backup key as well to facilitate key rotation 3440 * First key is the active one. 3441 */ 3442 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3443 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3444 return -EINVAL; 3445 3446 if (copy_from_sockptr(key, optval, optlen)) 3447 return -EFAULT; 3448 3449 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3450 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3451 3452 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3453 } 3454 default: 3455 /* fallthru */ 3456 break; 3457 } 3458 3459 if (optlen < sizeof(int)) 3460 return -EINVAL; 3461 3462 if (copy_from_sockptr(&val, optval, sizeof(val))) 3463 return -EFAULT; 3464 3465 sockopt_lock_sock(sk); 3466 3467 switch (optname) { 3468 case TCP_MAXSEG: 3469 /* Values greater than interface MTU won't take effect. However 3470 * at the point when this call is done we typically don't yet 3471 * know which interface is going to be used 3472 */ 3473 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3474 err = -EINVAL; 3475 break; 3476 } 3477 tp->rx_opt.user_mss = val; 3478 break; 3479 3480 case TCP_NODELAY: 3481 __tcp_sock_set_nodelay(sk, val); 3482 break; 3483 3484 case TCP_THIN_LINEAR_TIMEOUTS: 3485 if (val < 0 || val > 1) 3486 err = -EINVAL; 3487 else 3488 tp->thin_lto = val; 3489 break; 3490 3491 case TCP_THIN_DUPACK: 3492 if (val < 0 || val > 1) 3493 err = -EINVAL; 3494 break; 3495 3496 case TCP_REPAIR: 3497 if (!tcp_can_repair_sock(sk)) 3498 err = -EPERM; 3499 else if (val == TCP_REPAIR_ON) { 3500 tp->repair = 1; 3501 sk->sk_reuse = SK_FORCE_REUSE; 3502 tp->repair_queue = TCP_NO_QUEUE; 3503 } else if (val == TCP_REPAIR_OFF) { 3504 tp->repair = 0; 3505 sk->sk_reuse = SK_NO_REUSE; 3506 tcp_send_window_probe(sk); 3507 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3508 tp->repair = 0; 3509 sk->sk_reuse = SK_NO_REUSE; 3510 } else 3511 err = -EINVAL; 3512 3513 break; 3514 3515 case TCP_REPAIR_QUEUE: 3516 if (!tp->repair) 3517 err = -EPERM; 3518 else if ((unsigned int)val < TCP_QUEUES_NR) 3519 tp->repair_queue = val; 3520 else 3521 err = -EINVAL; 3522 break; 3523 3524 case TCP_QUEUE_SEQ: 3525 if (sk->sk_state != TCP_CLOSE) { 3526 err = -EPERM; 3527 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3528 if (!tcp_rtx_queue_empty(sk)) 3529 err = -EPERM; 3530 else 3531 WRITE_ONCE(tp->write_seq, val); 3532 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3533 if (tp->rcv_nxt != tp->copied_seq) { 3534 err = -EPERM; 3535 } else { 3536 WRITE_ONCE(tp->rcv_nxt, val); 3537 WRITE_ONCE(tp->copied_seq, val); 3538 } 3539 } else { 3540 err = -EINVAL; 3541 } 3542 break; 3543 3544 case TCP_REPAIR_OPTIONS: 3545 if (!tp->repair) 3546 err = -EINVAL; 3547 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3548 err = tcp_repair_options_est(sk, optval, optlen); 3549 else 3550 err = -EPERM; 3551 break; 3552 3553 case TCP_CORK: 3554 __tcp_sock_set_cork(sk, val); 3555 break; 3556 3557 case TCP_KEEPIDLE: 3558 err = tcp_sock_set_keepidle_locked(sk, val); 3559 break; 3560 case TCP_KEEPINTVL: 3561 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3562 err = -EINVAL; 3563 else 3564 WRITE_ONCE(tp->keepalive_intvl, val * HZ); 3565 break; 3566 case TCP_KEEPCNT: 3567 if (val < 1 || val > MAX_TCP_KEEPCNT) 3568 err = -EINVAL; 3569 else 3570 WRITE_ONCE(tp->keepalive_probes, val); 3571 break; 3572 case TCP_SYNCNT: 3573 if (val < 1 || val > MAX_TCP_SYNCNT) 3574 err = -EINVAL; 3575 else 3576 WRITE_ONCE(icsk->icsk_syn_retries, val); 3577 break; 3578 3579 case TCP_SAVE_SYN: 3580 /* 0: disable, 1: enable, 2: start from ether_header */ 3581 if (val < 0 || val > 2) 3582 err = -EINVAL; 3583 else 3584 tp->save_syn = val; 3585 break; 3586 3587 case TCP_LINGER2: 3588 if (val < 0) 3589 WRITE_ONCE(tp->linger2, -1); 3590 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3591 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3592 else 3593 WRITE_ONCE(tp->linger2, val * HZ); 3594 break; 3595 3596 case TCP_DEFER_ACCEPT: 3597 /* Translate value in seconds to number of retransmits */ 3598 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3599 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3600 TCP_RTO_MAX / HZ)); 3601 break; 3602 3603 case TCP_WINDOW_CLAMP: 3604 err = tcp_set_window_clamp(sk, val); 3605 break; 3606 3607 case TCP_QUICKACK: 3608 __tcp_sock_set_quickack(sk, val); 3609 break; 3610 3611 #ifdef CONFIG_TCP_MD5SIG 3612 case TCP_MD5SIG: 3613 case TCP_MD5SIG_EXT: 3614 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3615 break; 3616 #endif 3617 case TCP_USER_TIMEOUT: 3618 /* Cap the max time in ms TCP will retry or probe the window 3619 * before giving up and aborting (ETIMEDOUT) a connection. 3620 */ 3621 if (val < 0) 3622 err = -EINVAL; 3623 else 3624 WRITE_ONCE(icsk->icsk_user_timeout, val); 3625 break; 3626 3627 case TCP_FASTOPEN: 3628 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3629 TCPF_LISTEN))) { 3630 tcp_fastopen_init_key_once(net); 3631 3632 fastopen_queue_tune(sk, val); 3633 } else { 3634 err = -EINVAL; 3635 } 3636 break; 3637 case TCP_FASTOPEN_CONNECT: 3638 if (val > 1 || val < 0) { 3639 err = -EINVAL; 3640 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3641 TFO_CLIENT_ENABLE) { 3642 if (sk->sk_state == TCP_CLOSE) 3643 tp->fastopen_connect = val; 3644 else 3645 err = -EINVAL; 3646 } else { 3647 err = -EOPNOTSUPP; 3648 } 3649 break; 3650 case TCP_FASTOPEN_NO_COOKIE: 3651 if (val > 1 || val < 0) 3652 err = -EINVAL; 3653 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3654 err = -EINVAL; 3655 else 3656 tp->fastopen_no_cookie = val; 3657 break; 3658 case TCP_TIMESTAMP: 3659 if (!tp->repair) 3660 err = -EPERM; 3661 else 3662 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3663 break; 3664 case TCP_REPAIR_WINDOW: 3665 err = tcp_repair_set_window(tp, optval, optlen); 3666 break; 3667 case TCP_NOTSENT_LOWAT: 3668 WRITE_ONCE(tp->notsent_lowat, val); 3669 sk->sk_write_space(sk); 3670 break; 3671 case TCP_INQ: 3672 if (val > 1 || val < 0) 3673 err = -EINVAL; 3674 else 3675 tp->recvmsg_inq = val; 3676 break; 3677 case TCP_TX_DELAY: 3678 if (val) 3679 tcp_enable_tx_delay(); 3680 WRITE_ONCE(tp->tcp_tx_delay, val); 3681 break; 3682 default: 3683 err = -ENOPROTOOPT; 3684 break; 3685 } 3686 3687 sockopt_release_sock(sk); 3688 return err; 3689 } 3690 3691 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3692 unsigned int optlen) 3693 { 3694 const struct inet_connection_sock *icsk = inet_csk(sk); 3695 3696 if (level != SOL_TCP) 3697 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3698 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3699 optval, optlen); 3700 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3701 } 3702 EXPORT_SYMBOL(tcp_setsockopt); 3703 3704 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3705 struct tcp_info *info) 3706 { 3707 u64 stats[__TCP_CHRONO_MAX], total = 0; 3708 enum tcp_chrono i; 3709 3710 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3711 stats[i] = tp->chrono_stat[i - 1]; 3712 if (i == tp->chrono_type) 3713 stats[i] += tcp_jiffies32 - tp->chrono_start; 3714 stats[i] *= USEC_PER_SEC / HZ; 3715 total += stats[i]; 3716 } 3717 3718 info->tcpi_busy_time = total; 3719 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3720 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3721 } 3722 3723 /* Return information about state of tcp endpoint in API format. */ 3724 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3725 { 3726 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3727 const struct inet_connection_sock *icsk = inet_csk(sk); 3728 unsigned long rate; 3729 u32 now; 3730 u64 rate64; 3731 bool slow; 3732 3733 memset(info, 0, sizeof(*info)); 3734 if (sk->sk_type != SOCK_STREAM) 3735 return; 3736 3737 info->tcpi_state = inet_sk_state_load(sk); 3738 3739 /* Report meaningful fields for all TCP states, including listeners */ 3740 rate = READ_ONCE(sk->sk_pacing_rate); 3741 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3742 info->tcpi_pacing_rate = rate64; 3743 3744 rate = READ_ONCE(sk->sk_max_pacing_rate); 3745 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3746 info->tcpi_max_pacing_rate = rate64; 3747 3748 info->tcpi_reordering = tp->reordering; 3749 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3750 3751 if (info->tcpi_state == TCP_LISTEN) { 3752 /* listeners aliased fields : 3753 * tcpi_unacked -> Number of children ready for accept() 3754 * tcpi_sacked -> max backlog 3755 */ 3756 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3757 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3758 return; 3759 } 3760 3761 slow = lock_sock_fast(sk); 3762 3763 info->tcpi_ca_state = icsk->icsk_ca_state; 3764 info->tcpi_retransmits = icsk->icsk_retransmits; 3765 info->tcpi_probes = icsk->icsk_probes_out; 3766 info->tcpi_backoff = icsk->icsk_backoff; 3767 3768 if (tp->rx_opt.tstamp_ok) 3769 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3770 if (tcp_is_sack(tp)) 3771 info->tcpi_options |= TCPI_OPT_SACK; 3772 if (tp->rx_opt.wscale_ok) { 3773 info->tcpi_options |= TCPI_OPT_WSCALE; 3774 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3775 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3776 } 3777 3778 if (tp->ecn_flags & TCP_ECN_OK) 3779 info->tcpi_options |= TCPI_OPT_ECN; 3780 if (tp->ecn_flags & TCP_ECN_SEEN) 3781 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3782 if (tp->syn_data_acked) 3783 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3784 3785 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3786 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3787 info->tcpi_snd_mss = tp->mss_cache; 3788 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3789 3790 info->tcpi_unacked = tp->packets_out; 3791 info->tcpi_sacked = tp->sacked_out; 3792 3793 info->tcpi_lost = tp->lost_out; 3794 info->tcpi_retrans = tp->retrans_out; 3795 3796 now = tcp_jiffies32; 3797 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3798 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3799 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3800 3801 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3802 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3803 info->tcpi_rtt = tp->srtt_us >> 3; 3804 info->tcpi_rttvar = tp->mdev_us >> 2; 3805 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3806 info->tcpi_advmss = tp->advmss; 3807 3808 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3809 info->tcpi_rcv_space = tp->rcvq_space.space; 3810 3811 info->tcpi_total_retrans = tp->total_retrans; 3812 3813 info->tcpi_bytes_acked = tp->bytes_acked; 3814 info->tcpi_bytes_received = tp->bytes_received; 3815 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3816 tcp_get_info_chrono_stats(tp, info); 3817 3818 info->tcpi_segs_out = tp->segs_out; 3819 3820 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3821 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3822 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3823 3824 info->tcpi_min_rtt = tcp_min_rtt(tp); 3825 info->tcpi_data_segs_out = tp->data_segs_out; 3826 3827 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3828 rate64 = tcp_compute_delivery_rate(tp); 3829 if (rate64) 3830 info->tcpi_delivery_rate = rate64; 3831 info->tcpi_delivered = tp->delivered; 3832 info->tcpi_delivered_ce = tp->delivered_ce; 3833 info->tcpi_bytes_sent = tp->bytes_sent; 3834 info->tcpi_bytes_retrans = tp->bytes_retrans; 3835 info->tcpi_dsack_dups = tp->dsack_dups; 3836 info->tcpi_reord_seen = tp->reord_seen; 3837 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3838 info->tcpi_snd_wnd = tp->snd_wnd; 3839 info->tcpi_rcv_wnd = tp->rcv_wnd; 3840 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3841 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3842 unlock_sock_fast(sk, slow); 3843 } 3844 EXPORT_SYMBOL_GPL(tcp_get_info); 3845 3846 static size_t tcp_opt_stats_get_size(void) 3847 { 3848 return 3849 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3850 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3851 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3853 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3854 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3855 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3856 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3859 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3860 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3862 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3863 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3865 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3866 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3867 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3868 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3869 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3870 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3871 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3872 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3873 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3874 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3875 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3876 0; 3877 } 3878 3879 /* Returns TTL or hop limit of an incoming packet from skb. */ 3880 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3881 { 3882 if (skb->protocol == htons(ETH_P_IP)) 3883 return ip_hdr(skb)->ttl; 3884 else if (skb->protocol == htons(ETH_P_IPV6)) 3885 return ipv6_hdr(skb)->hop_limit; 3886 else 3887 return 0; 3888 } 3889 3890 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3891 const struct sk_buff *orig_skb, 3892 const struct sk_buff *ack_skb) 3893 { 3894 const struct tcp_sock *tp = tcp_sk(sk); 3895 struct sk_buff *stats; 3896 struct tcp_info info; 3897 unsigned long rate; 3898 u64 rate64; 3899 3900 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3901 if (!stats) 3902 return NULL; 3903 3904 tcp_get_info_chrono_stats(tp, &info); 3905 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3906 info.tcpi_busy_time, TCP_NLA_PAD); 3907 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3908 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3909 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3910 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3911 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3912 tp->data_segs_out, TCP_NLA_PAD); 3913 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3914 tp->total_retrans, TCP_NLA_PAD); 3915 3916 rate = READ_ONCE(sk->sk_pacing_rate); 3917 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3918 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3919 3920 rate64 = tcp_compute_delivery_rate(tp); 3921 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3922 3923 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3924 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3925 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3926 3927 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3928 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3929 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3930 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3931 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3932 3933 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3934 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3935 3936 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3937 TCP_NLA_PAD); 3938 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3939 TCP_NLA_PAD); 3940 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3941 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3942 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3943 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3944 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3945 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3946 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3947 TCP_NLA_PAD); 3948 if (ack_skb) 3949 nla_put_u8(stats, TCP_NLA_TTL, 3950 tcp_skb_ttl_or_hop_limit(ack_skb)); 3951 3952 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3953 return stats; 3954 } 3955 3956 int do_tcp_getsockopt(struct sock *sk, int level, 3957 int optname, sockptr_t optval, sockptr_t optlen) 3958 { 3959 struct inet_connection_sock *icsk = inet_csk(sk); 3960 struct tcp_sock *tp = tcp_sk(sk); 3961 struct net *net = sock_net(sk); 3962 int val, len; 3963 3964 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3965 return -EFAULT; 3966 3967 len = min_t(unsigned int, len, sizeof(int)); 3968 3969 if (len < 0) 3970 return -EINVAL; 3971 3972 switch (optname) { 3973 case TCP_MAXSEG: 3974 val = tp->mss_cache; 3975 if (tp->rx_opt.user_mss && 3976 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3977 val = tp->rx_opt.user_mss; 3978 if (tp->repair) 3979 val = tp->rx_opt.mss_clamp; 3980 break; 3981 case TCP_NODELAY: 3982 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3983 break; 3984 case TCP_CORK: 3985 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3986 break; 3987 case TCP_KEEPIDLE: 3988 val = keepalive_time_when(tp) / HZ; 3989 break; 3990 case TCP_KEEPINTVL: 3991 val = keepalive_intvl_when(tp) / HZ; 3992 break; 3993 case TCP_KEEPCNT: 3994 val = keepalive_probes(tp); 3995 break; 3996 case TCP_SYNCNT: 3997 val = READ_ONCE(icsk->icsk_syn_retries) ? : 3998 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3999 break; 4000 case TCP_LINGER2: 4001 val = READ_ONCE(tp->linger2); 4002 if (val >= 0) 4003 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4004 break; 4005 case TCP_DEFER_ACCEPT: 4006 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4007 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4008 TCP_RTO_MAX / HZ); 4009 break; 4010 case TCP_WINDOW_CLAMP: 4011 val = tp->window_clamp; 4012 break; 4013 case TCP_INFO: { 4014 struct tcp_info info; 4015 4016 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4017 return -EFAULT; 4018 4019 tcp_get_info(sk, &info); 4020 4021 len = min_t(unsigned int, len, sizeof(info)); 4022 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4023 return -EFAULT; 4024 if (copy_to_sockptr(optval, &info, len)) 4025 return -EFAULT; 4026 return 0; 4027 } 4028 case TCP_CC_INFO: { 4029 const struct tcp_congestion_ops *ca_ops; 4030 union tcp_cc_info info; 4031 size_t sz = 0; 4032 int attr; 4033 4034 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4035 return -EFAULT; 4036 4037 ca_ops = icsk->icsk_ca_ops; 4038 if (ca_ops && ca_ops->get_info) 4039 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4040 4041 len = min_t(unsigned int, len, sz); 4042 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4043 return -EFAULT; 4044 if (copy_to_sockptr(optval, &info, len)) 4045 return -EFAULT; 4046 return 0; 4047 } 4048 case TCP_QUICKACK: 4049 val = !inet_csk_in_pingpong_mode(sk); 4050 break; 4051 4052 case TCP_CONGESTION: 4053 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4054 return -EFAULT; 4055 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4056 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4057 return -EFAULT; 4058 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4059 return -EFAULT; 4060 return 0; 4061 4062 case TCP_ULP: 4063 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4064 return -EFAULT; 4065 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4066 if (!icsk->icsk_ulp_ops) { 4067 len = 0; 4068 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4069 return -EFAULT; 4070 return 0; 4071 } 4072 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4073 return -EFAULT; 4074 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4075 return -EFAULT; 4076 return 0; 4077 4078 case TCP_FASTOPEN_KEY: { 4079 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4080 unsigned int key_len; 4081 4082 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4083 return -EFAULT; 4084 4085 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4086 TCP_FASTOPEN_KEY_LENGTH; 4087 len = min_t(unsigned int, len, key_len); 4088 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4089 return -EFAULT; 4090 if (copy_to_sockptr(optval, key, len)) 4091 return -EFAULT; 4092 return 0; 4093 } 4094 case TCP_THIN_LINEAR_TIMEOUTS: 4095 val = tp->thin_lto; 4096 break; 4097 4098 case TCP_THIN_DUPACK: 4099 val = 0; 4100 break; 4101 4102 case TCP_REPAIR: 4103 val = tp->repair; 4104 break; 4105 4106 case TCP_REPAIR_QUEUE: 4107 if (tp->repair) 4108 val = tp->repair_queue; 4109 else 4110 return -EINVAL; 4111 break; 4112 4113 case TCP_REPAIR_WINDOW: { 4114 struct tcp_repair_window opt; 4115 4116 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4117 return -EFAULT; 4118 4119 if (len != sizeof(opt)) 4120 return -EINVAL; 4121 4122 if (!tp->repair) 4123 return -EPERM; 4124 4125 opt.snd_wl1 = tp->snd_wl1; 4126 opt.snd_wnd = tp->snd_wnd; 4127 opt.max_window = tp->max_window; 4128 opt.rcv_wnd = tp->rcv_wnd; 4129 opt.rcv_wup = tp->rcv_wup; 4130 4131 if (copy_to_sockptr(optval, &opt, len)) 4132 return -EFAULT; 4133 return 0; 4134 } 4135 case TCP_QUEUE_SEQ: 4136 if (tp->repair_queue == TCP_SEND_QUEUE) 4137 val = tp->write_seq; 4138 else if (tp->repair_queue == TCP_RECV_QUEUE) 4139 val = tp->rcv_nxt; 4140 else 4141 return -EINVAL; 4142 break; 4143 4144 case TCP_USER_TIMEOUT: 4145 val = READ_ONCE(icsk->icsk_user_timeout); 4146 break; 4147 4148 case TCP_FASTOPEN: 4149 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4150 break; 4151 4152 case TCP_FASTOPEN_CONNECT: 4153 val = tp->fastopen_connect; 4154 break; 4155 4156 case TCP_FASTOPEN_NO_COOKIE: 4157 val = tp->fastopen_no_cookie; 4158 break; 4159 4160 case TCP_TX_DELAY: 4161 val = READ_ONCE(tp->tcp_tx_delay); 4162 break; 4163 4164 case TCP_TIMESTAMP: 4165 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4166 break; 4167 case TCP_NOTSENT_LOWAT: 4168 val = READ_ONCE(tp->notsent_lowat); 4169 break; 4170 case TCP_INQ: 4171 val = tp->recvmsg_inq; 4172 break; 4173 case TCP_SAVE_SYN: 4174 val = tp->save_syn; 4175 break; 4176 case TCP_SAVED_SYN: { 4177 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4178 return -EFAULT; 4179 4180 sockopt_lock_sock(sk); 4181 if (tp->saved_syn) { 4182 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4183 len = tcp_saved_syn_len(tp->saved_syn); 4184 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4185 sockopt_release_sock(sk); 4186 return -EFAULT; 4187 } 4188 sockopt_release_sock(sk); 4189 return -EINVAL; 4190 } 4191 len = tcp_saved_syn_len(tp->saved_syn); 4192 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4193 sockopt_release_sock(sk); 4194 return -EFAULT; 4195 } 4196 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4197 sockopt_release_sock(sk); 4198 return -EFAULT; 4199 } 4200 tcp_saved_syn_free(tp); 4201 sockopt_release_sock(sk); 4202 } else { 4203 sockopt_release_sock(sk); 4204 len = 0; 4205 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4206 return -EFAULT; 4207 } 4208 return 0; 4209 } 4210 #ifdef CONFIG_MMU 4211 case TCP_ZEROCOPY_RECEIVE: { 4212 struct scm_timestamping_internal tss; 4213 struct tcp_zerocopy_receive zc = {}; 4214 int err; 4215 4216 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4217 return -EFAULT; 4218 if (len < 0 || 4219 len < offsetofend(struct tcp_zerocopy_receive, length)) 4220 return -EINVAL; 4221 if (unlikely(len > sizeof(zc))) { 4222 err = check_zeroed_sockptr(optval, sizeof(zc), 4223 len - sizeof(zc)); 4224 if (err < 1) 4225 return err == 0 ? -EINVAL : err; 4226 len = sizeof(zc); 4227 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4228 return -EFAULT; 4229 } 4230 if (copy_from_sockptr(&zc, optval, len)) 4231 return -EFAULT; 4232 if (zc.reserved) 4233 return -EINVAL; 4234 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4235 return -EINVAL; 4236 sockopt_lock_sock(sk); 4237 err = tcp_zerocopy_receive(sk, &zc, &tss); 4238 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4239 &zc, &len, err); 4240 sockopt_release_sock(sk); 4241 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4242 goto zerocopy_rcv_cmsg; 4243 switch (len) { 4244 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4245 goto zerocopy_rcv_cmsg; 4246 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4247 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4248 case offsetofend(struct tcp_zerocopy_receive, flags): 4249 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4250 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4251 case offsetofend(struct tcp_zerocopy_receive, err): 4252 goto zerocopy_rcv_sk_err; 4253 case offsetofend(struct tcp_zerocopy_receive, inq): 4254 goto zerocopy_rcv_inq; 4255 case offsetofend(struct tcp_zerocopy_receive, length): 4256 default: 4257 goto zerocopy_rcv_out; 4258 } 4259 zerocopy_rcv_cmsg: 4260 if (zc.msg_flags & TCP_CMSG_TS) 4261 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4262 else 4263 zc.msg_flags = 0; 4264 zerocopy_rcv_sk_err: 4265 if (!err) 4266 zc.err = sock_error(sk); 4267 zerocopy_rcv_inq: 4268 zc.inq = tcp_inq_hint(sk); 4269 zerocopy_rcv_out: 4270 if (!err && copy_to_sockptr(optval, &zc, len)) 4271 err = -EFAULT; 4272 return err; 4273 } 4274 #endif 4275 default: 4276 return -ENOPROTOOPT; 4277 } 4278 4279 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4280 return -EFAULT; 4281 if (copy_to_sockptr(optval, &val, len)) 4282 return -EFAULT; 4283 return 0; 4284 } 4285 4286 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4287 { 4288 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4289 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4290 */ 4291 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4292 return true; 4293 4294 return false; 4295 } 4296 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4297 4298 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4299 int __user *optlen) 4300 { 4301 struct inet_connection_sock *icsk = inet_csk(sk); 4302 4303 if (level != SOL_TCP) 4304 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4305 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4306 optval, optlen); 4307 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4308 USER_SOCKPTR(optlen)); 4309 } 4310 EXPORT_SYMBOL(tcp_getsockopt); 4311 4312 #ifdef CONFIG_TCP_MD5SIG 4313 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4314 static DEFINE_MUTEX(tcp_md5sig_mutex); 4315 static bool tcp_md5sig_pool_populated = false; 4316 4317 static void __tcp_alloc_md5sig_pool(void) 4318 { 4319 struct crypto_ahash *hash; 4320 int cpu; 4321 4322 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4323 if (IS_ERR(hash)) 4324 return; 4325 4326 for_each_possible_cpu(cpu) { 4327 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4328 struct ahash_request *req; 4329 4330 if (!scratch) { 4331 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4332 sizeof(struct tcphdr), 4333 GFP_KERNEL, 4334 cpu_to_node(cpu)); 4335 if (!scratch) 4336 return; 4337 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4338 } 4339 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4340 continue; 4341 4342 req = ahash_request_alloc(hash, GFP_KERNEL); 4343 if (!req) 4344 return; 4345 4346 ahash_request_set_callback(req, 0, NULL, NULL); 4347 4348 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4349 } 4350 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4351 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4352 */ 4353 smp_wmb(); 4354 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4355 * and tcp_get_md5sig_pool(). 4356 */ 4357 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4358 } 4359 4360 bool tcp_alloc_md5sig_pool(void) 4361 { 4362 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4363 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4364 mutex_lock(&tcp_md5sig_mutex); 4365 4366 if (!tcp_md5sig_pool_populated) 4367 __tcp_alloc_md5sig_pool(); 4368 4369 mutex_unlock(&tcp_md5sig_mutex); 4370 } 4371 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4372 return READ_ONCE(tcp_md5sig_pool_populated); 4373 } 4374 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4375 4376 4377 /** 4378 * tcp_get_md5sig_pool - get md5sig_pool for this user 4379 * 4380 * We use percpu structure, so if we succeed, we exit with preemption 4381 * and BH disabled, to make sure another thread or softirq handling 4382 * wont try to get same context. 4383 */ 4384 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4385 { 4386 local_bh_disable(); 4387 4388 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4389 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4390 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4391 smp_rmb(); 4392 return this_cpu_ptr(&tcp_md5sig_pool); 4393 } 4394 local_bh_enable(); 4395 return NULL; 4396 } 4397 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4398 4399 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4400 const struct sk_buff *skb, unsigned int header_len) 4401 { 4402 struct scatterlist sg; 4403 const struct tcphdr *tp = tcp_hdr(skb); 4404 struct ahash_request *req = hp->md5_req; 4405 unsigned int i; 4406 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4407 skb_headlen(skb) - header_len : 0; 4408 const struct skb_shared_info *shi = skb_shinfo(skb); 4409 struct sk_buff *frag_iter; 4410 4411 sg_init_table(&sg, 1); 4412 4413 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4414 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4415 if (crypto_ahash_update(req)) 4416 return 1; 4417 4418 for (i = 0; i < shi->nr_frags; ++i) { 4419 const skb_frag_t *f = &shi->frags[i]; 4420 unsigned int offset = skb_frag_off(f); 4421 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4422 4423 sg_set_page(&sg, page, skb_frag_size(f), 4424 offset_in_page(offset)); 4425 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4426 if (crypto_ahash_update(req)) 4427 return 1; 4428 } 4429 4430 skb_walk_frags(skb, frag_iter) 4431 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4432 return 1; 4433 4434 return 0; 4435 } 4436 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4437 4438 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4439 { 4440 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4441 struct scatterlist sg; 4442 4443 sg_init_one(&sg, key->key, keylen); 4444 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4445 4446 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4447 return data_race(crypto_ahash_update(hp->md5_req)); 4448 } 4449 EXPORT_SYMBOL(tcp_md5_hash_key); 4450 4451 /* Called with rcu_read_lock() */ 4452 enum skb_drop_reason 4453 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4454 const void *saddr, const void *daddr, 4455 int family, int dif, int sdif) 4456 { 4457 /* 4458 * This gets called for each TCP segment that arrives 4459 * so we want to be efficient. 4460 * We have 3 drop cases: 4461 * o No MD5 hash and one expected. 4462 * o MD5 hash and we're not expecting one. 4463 * o MD5 hash and its wrong. 4464 */ 4465 const __u8 *hash_location = NULL; 4466 struct tcp_md5sig_key *hash_expected; 4467 const struct tcphdr *th = tcp_hdr(skb); 4468 const struct tcp_sock *tp = tcp_sk(sk); 4469 int genhash, l3index; 4470 u8 newhash[16]; 4471 4472 /* sdif set, means packet ingressed via a device 4473 * in an L3 domain and dif is set to the l3mdev 4474 */ 4475 l3index = sdif ? dif : 0; 4476 4477 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4478 hash_location = tcp_parse_md5sig_option(th); 4479 4480 /* We've parsed the options - do we have a hash? */ 4481 if (!hash_expected && !hash_location) 4482 return SKB_NOT_DROPPED_YET; 4483 4484 if (hash_expected && !hash_location) { 4485 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4486 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4487 } 4488 4489 if (!hash_expected && hash_location) { 4490 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4491 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4492 } 4493 4494 /* Check the signature. 4495 * To support dual stack listeners, we need to handle 4496 * IPv4-mapped case. 4497 */ 4498 if (family == AF_INET) 4499 genhash = tcp_v4_md5_hash_skb(newhash, 4500 hash_expected, 4501 NULL, skb); 4502 else 4503 genhash = tp->af_specific->calc_md5_hash(newhash, 4504 hash_expected, 4505 NULL, skb); 4506 4507 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4508 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4509 if (family == AF_INET) { 4510 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4511 saddr, ntohs(th->source), 4512 daddr, ntohs(th->dest), 4513 genhash ? " tcp_v4_calc_md5_hash failed" 4514 : "", l3index); 4515 } else { 4516 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4517 genhash ? "failed" : "mismatch", 4518 saddr, ntohs(th->source), 4519 daddr, ntohs(th->dest), l3index); 4520 } 4521 return SKB_DROP_REASON_TCP_MD5FAILURE; 4522 } 4523 return SKB_NOT_DROPPED_YET; 4524 } 4525 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4526 4527 #endif 4528 4529 void tcp_done(struct sock *sk) 4530 { 4531 struct request_sock *req; 4532 4533 /* We might be called with a new socket, after 4534 * inet_csk_prepare_forced_close() has been called 4535 * so we can not use lockdep_sock_is_held(sk) 4536 */ 4537 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4538 4539 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4540 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4541 4542 tcp_set_state(sk, TCP_CLOSE); 4543 tcp_clear_xmit_timers(sk); 4544 if (req) 4545 reqsk_fastopen_remove(sk, req, false); 4546 4547 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4548 4549 if (!sock_flag(sk, SOCK_DEAD)) 4550 sk->sk_state_change(sk); 4551 else 4552 inet_csk_destroy_sock(sk); 4553 } 4554 EXPORT_SYMBOL_GPL(tcp_done); 4555 4556 int tcp_abort(struct sock *sk, int err) 4557 { 4558 int state = inet_sk_state_load(sk); 4559 4560 if (state == TCP_NEW_SYN_RECV) { 4561 struct request_sock *req = inet_reqsk(sk); 4562 4563 local_bh_disable(); 4564 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4565 local_bh_enable(); 4566 return 0; 4567 } 4568 if (state == TCP_TIME_WAIT) { 4569 struct inet_timewait_sock *tw = inet_twsk(sk); 4570 4571 refcount_inc(&tw->tw_refcnt); 4572 local_bh_disable(); 4573 inet_twsk_deschedule_put(tw); 4574 local_bh_enable(); 4575 return 0; 4576 } 4577 4578 /* BPF context ensures sock locking. */ 4579 if (!has_current_bpf_ctx()) 4580 /* Don't race with userspace socket closes such as tcp_close. */ 4581 lock_sock(sk); 4582 4583 if (sk->sk_state == TCP_LISTEN) { 4584 tcp_set_state(sk, TCP_CLOSE); 4585 inet_csk_listen_stop(sk); 4586 } 4587 4588 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4589 local_bh_disable(); 4590 bh_lock_sock(sk); 4591 4592 if (!sock_flag(sk, SOCK_DEAD)) { 4593 WRITE_ONCE(sk->sk_err, err); 4594 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4595 smp_wmb(); 4596 sk_error_report(sk); 4597 if (tcp_need_reset(sk->sk_state)) 4598 tcp_send_active_reset(sk, GFP_ATOMIC); 4599 tcp_done(sk); 4600 } 4601 4602 bh_unlock_sock(sk); 4603 local_bh_enable(); 4604 tcp_write_queue_purge(sk); 4605 if (!has_current_bpf_ctx()) 4606 release_sock(sk); 4607 return 0; 4608 } 4609 EXPORT_SYMBOL_GPL(tcp_abort); 4610 4611 extern struct tcp_congestion_ops tcp_reno; 4612 4613 static __initdata unsigned long thash_entries; 4614 static int __init set_thash_entries(char *str) 4615 { 4616 ssize_t ret; 4617 4618 if (!str) 4619 return 0; 4620 4621 ret = kstrtoul(str, 0, &thash_entries); 4622 if (ret) 4623 return 0; 4624 4625 return 1; 4626 } 4627 __setup("thash_entries=", set_thash_entries); 4628 4629 static void __init tcp_init_mem(void) 4630 { 4631 unsigned long limit = nr_free_buffer_pages() / 16; 4632 4633 limit = max(limit, 128UL); 4634 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4635 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4636 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4637 } 4638 4639 void __init tcp_init(void) 4640 { 4641 int max_rshare, max_wshare, cnt; 4642 unsigned long limit; 4643 unsigned int i; 4644 4645 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4646 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4647 sizeof_field(struct sk_buff, cb)); 4648 4649 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4650 4651 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4652 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4653 4654 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4655 thash_entries, 21, /* one slot per 2 MB*/ 4656 0, 64 * 1024); 4657 tcp_hashinfo.bind_bucket_cachep = 4658 kmem_cache_create("tcp_bind_bucket", 4659 sizeof(struct inet_bind_bucket), 0, 4660 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4661 SLAB_ACCOUNT, 4662 NULL); 4663 tcp_hashinfo.bind2_bucket_cachep = 4664 kmem_cache_create("tcp_bind2_bucket", 4665 sizeof(struct inet_bind2_bucket), 0, 4666 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4667 SLAB_ACCOUNT, 4668 NULL); 4669 4670 /* Size and allocate the main established and bind bucket 4671 * hash tables. 4672 * 4673 * The methodology is similar to that of the buffer cache. 4674 */ 4675 tcp_hashinfo.ehash = 4676 alloc_large_system_hash("TCP established", 4677 sizeof(struct inet_ehash_bucket), 4678 thash_entries, 4679 17, /* one slot per 128 KB of memory */ 4680 0, 4681 NULL, 4682 &tcp_hashinfo.ehash_mask, 4683 0, 4684 thash_entries ? 0 : 512 * 1024); 4685 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4686 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4687 4688 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4689 panic("TCP: failed to alloc ehash_locks"); 4690 tcp_hashinfo.bhash = 4691 alloc_large_system_hash("TCP bind", 4692 2 * sizeof(struct inet_bind_hashbucket), 4693 tcp_hashinfo.ehash_mask + 1, 4694 17, /* one slot per 128 KB of memory */ 4695 0, 4696 &tcp_hashinfo.bhash_size, 4697 NULL, 4698 0, 4699 64 * 1024); 4700 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4701 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4702 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4703 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4704 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4705 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4706 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4707 } 4708 4709 tcp_hashinfo.pernet = false; 4710 4711 cnt = tcp_hashinfo.ehash_mask + 1; 4712 sysctl_tcp_max_orphans = cnt / 2; 4713 4714 tcp_init_mem(); 4715 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4716 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4717 max_wshare = min(4UL*1024*1024, limit); 4718 max_rshare = min(6UL*1024*1024, limit); 4719 4720 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4721 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4722 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4723 4724 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4725 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4726 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4727 4728 pr_info("Hash tables configured (established %u bind %u)\n", 4729 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4730 4731 tcp_v4_init(); 4732 tcp_metrics_init(); 4733 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4734 tcp_tasklet_init(); 4735 mptcp_init(); 4736 } 4737