xref: /openbmc/linux/net/ipv4/tcp.c (revision 61f4d204)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 	tcp_scaling_ratio_init(sk);
461 
462 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 	sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466 
467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 	struct sk_buff *skb = tcp_write_queue_tail(sk);
470 
471 	if (tsflags && skb) {
472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
473 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474 
475 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 			tcb->txstamp_ack = 1;
478 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 	}
481 }
482 
483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 	if (tcp_epollin_ready(sk, target))
486 		return true;
487 	return sk_is_readable(sk);
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	u8 shutdown;
503 	int state;
504 
505 	sock_poll_wait(file, sock, wait);
506 
507 	state = inet_sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * EPOLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that EPOLLHUP is incompatible
524 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	shutdown = READ_ONCE(sk->sk_shutdown);
546 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 		u16 urg_data = READ_ONCE(tp->urg_data);
556 
557 		if (unlikely(urg_data) &&
558 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE))
560 			target++;
561 
562 		if (tcp_stream_is_readable(sk, target))
563 			mask |= EPOLLIN | EPOLLRDNORM;
564 
565 		if (!(shutdown & SEND_SHUTDOWN)) {
566 			if (__sk_stream_is_writeable(sk, 1)) {
567 				mask |= EPOLLOUT | EPOLLWRNORM;
568 			} else {  /* send SIGIO later */
569 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571 
572 				/* Race breaker. If space is freed after
573 				 * wspace test but before the flags are set,
574 				 * IO signal will be lost. Memory barrier
575 				 * pairs with the input side.
576 				 */
577 				smp_mb__after_atomic();
578 				if (__sk_stream_is_writeable(sk, 1))
579 					mask |= EPOLLOUT | EPOLLWRNORM;
580 			}
581 		} else
582 			mask |= EPOLLOUT | EPOLLWRNORM;
583 
584 		if (urg_data & TCP_URG_VALID)
585 			mask |= EPOLLPRI;
586 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
587 		/* Active TCP fastopen socket with defer_connect
588 		 * Return EPOLLOUT so application can call write()
589 		 * in order for kernel to generate SYN+data
590 		 */
591 		mask |= EPOLLOUT | EPOLLWRNORM;
592 	}
593 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
594 	smp_rmb();
595 	if (READ_ONCE(sk->sk_err) ||
596 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
597 		mask |= EPOLLERR;
598 
599 	return mask;
600 }
601 EXPORT_SYMBOL(tcp_poll);
602 
603 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	int answ;
607 	bool slow;
608 
609 	switch (cmd) {
610 	case SIOCINQ:
611 		if (sk->sk_state == TCP_LISTEN)
612 			return -EINVAL;
613 
614 		slow = lock_sock_fast(sk);
615 		answ = tcp_inq(sk);
616 		unlock_sock_fast(sk, slow);
617 		break;
618 	case SIOCATMARK:
619 		answ = READ_ONCE(tp->urg_data) &&
620 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
621 		break;
622 	case SIOCOUTQ:
623 		if (sk->sk_state == TCP_LISTEN)
624 			return -EINVAL;
625 
626 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
627 			answ = 0;
628 		else
629 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
630 		break;
631 	case SIOCOUTQNSD:
632 		if (sk->sk_state == TCP_LISTEN)
633 			return -EINVAL;
634 
635 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
636 			answ = 0;
637 		else
638 			answ = READ_ONCE(tp->write_seq) -
639 			       READ_ONCE(tp->snd_nxt);
640 		break;
641 	default:
642 		return -ENOIOCTLCMD;
643 	}
644 
645 	*karg = answ;
646 	return 0;
647 }
648 EXPORT_SYMBOL(tcp_ioctl);
649 
650 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
651 {
652 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
653 	tp->pushed_seq = tp->write_seq;
654 }
655 
656 static inline bool forced_push(const struct tcp_sock *tp)
657 {
658 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
659 }
660 
661 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
662 {
663 	struct tcp_sock *tp = tcp_sk(sk);
664 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
665 
666 	tcb->seq     = tcb->end_seq = tp->write_seq;
667 	tcb->tcp_flags = TCPHDR_ACK;
668 	__skb_header_release(skb);
669 	tcp_add_write_queue_tail(sk, skb);
670 	sk_wmem_queued_add(sk, skb->truesize);
671 	sk_mem_charge(sk, skb->truesize);
672 	if (tp->nonagle & TCP_NAGLE_PUSH)
673 		tp->nonagle &= ~TCP_NAGLE_PUSH;
674 
675 	tcp_slow_start_after_idle_check(sk);
676 }
677 
678 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
679 {
680 	if (flags & MSG_OOB)
681 		tp->snd_up = tp->write_seq;
682 }
683 
684 /* If a not yet filled skb is pushed, do not send it if
685  * we have data packets in Qdisc or NIC queues :
686  * Because TX completion will happen shortly, it gives a chance
687  * to coalesce future sendmsg() payload into this skb, without
688  * need for a timer, and with no latency trade off.
689  * As packets containing data payload have a bigger truesize
690  * than pure acks (dataless) packets, the last checks prevent
691  * autocorking if we only have an ACK in Qdisc/NIC queues,
692  * or if TX completion was delayed after we processed ACK packet.
693  */
694 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
695 				int size_goal)
696 {
697 	return skb->len < size_goal &&
698 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
699 	       !tcp_rtx_queue_empty(sk) &&
700 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
701 	       tcp_skb_can_collapse_to(skb);
702 }
703 
704 void tcp_push(struct sock *sk, int flags, int mss_now,
705 	      int nonagle, int size_goal)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	struct sk_buff *skb;
709 
710 	skb = tcp_write_queue_tail(sk);
711 	if (!skb)
712 		return;
713 	if (!(flags & MSG_MORE) || forced_push(tp))
714 		tcp_mark_push(tp, skb);
715 
716 	tcp_mark_urg(tp, flags);
717 
718 	if (tcp_should_autocork(sk, skb, size_goal)) {
719 
720 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
721 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 		}
725 		/* It is possible TX completion already happened
726 		 * before we set TSQ_THROTTLED.
727 		 */
728 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 			return;
730 	}
731 
732 	if (flags & MSG_MORE)
733 		nonagle = TCP_NAGLE_CORK;
734 
735 	__tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737 
738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 				unsigned int offset, size_t len)
740 {
741 	struct tcp_splice_state *tss = rd_desc->arg.data;
742 	int ret;
743 
744 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 			      min(rd_desc->count, len), tss->flags);
746 	if (ret > 0)
747 		rd_desc->count -= ret;
748 	return ret;
749 }
750 
751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 	/* Store TCP splice context information in read_descriptor_t. */
754 	read_descriptor_t rd_desc = {
755 		.arg.data = tss,
756 		.count	  = tss->len,
757 	};
758 
759 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761 
762 /**
763  *  tcp_splice_read - splice data from TCP socket to a pipe
764  * @sock:	socket to splice from
765  * @ppos:	position (not valid)
766  * @pipe:	pipe to splice to
767  * @len:	number of bytes to splice
768  * @flags:	splice modifier flags
769  *
770  * Description:
771  *    Will read pages from given socket and fill them into a pipe.
772  *
773  **/
774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 			struct pipe_inode_info *pipe, size_t len,
776 			unsigned int flags)
777 {
778 	struct sock *sk = sock->sk;
779 	struct tcp_splice_state tss = {
780 		.pipe = pipe,
781 		.len = len,
782 		.flags = flags,
783 	};
784 	long timeo;
785 	ssize_t spliced;
786 	int ret;
787 
788 	sock_rps_record_flow(sk);
789 	/*
790 	 * We can't seek on a socket input
791 	 */
792 	if (unlikely(*ppos))
793 		return -ESPIPE;
794 
795 	ret = spliced = 0;
796 
797 	lock_sock(sk);
798 
799 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 	while (tss.len) {
801 		ret = __tcp_splice_read(sk, &tss);
802 		if (ret < 0)
803 			break;
804 		else if (!ret) {
805 			if (spliced)
806 				break;
807 			if (sock_flag(sk, SOCK_DONE))
808 				break;
809 			if (sk->sk_err) {
810 				ret = sock_error(sk);
811 				break;
812 			}
813 			if (sk->sk_shutdown & RCV_SHUTDOWN)
814 				break;
815 			if (sk->sk_state == TCP_CLOSE) {
816 				/*
817 				 * This occurs when user tries to read
818 				 * from never connected socket.
819 				 */
820 				ret = -ENOTCONN;
821 				break;
822 			}
823 			if (!timeo) {
824 				ret = -EAGAIN;
825 				break;
826 			}
827 			/* if __tcp_splice_read() got nothing while we have
828 			 * an skb in receive queue, we do not want to loop.
829 			 * This might happen with URG data.
830 			 */
831 			if (!skb_queue_empty(&sk->sk_receive_queue))
832 				break;
833 			sk_wait_data(sk, &timeo, NULL);
834 			if (signal_pending(current)) {
835 				ret = sock_intr_errno(timeo);
836 				break;
837 			}
838 			continue;
839 		}
840 		tss.len -= ret;
841 		spliced += ret;
842 
843 		if (!tss.len || !timeo)
844 			break;
845 		release_sock(sk);
846 		lock_sock(sk);
847 
848 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
849 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
850 		    signal_pending(current))
851 			break;
852 	}
853 
854 	release_sock(sk);
855 
856 	if (spliced)
857 		return spliced;
858 
859 	return ret;
860 }
861 EXPORT_SYMBOL(tcp_splice_read);
862 
863 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
864 				     bool force_schedule)
865 {
866 	struct sk_buff *skb;
867 
868 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
869 	if (likely(skb)) {
870 		bool mem_scheduled;
871 
872 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
873 		if (force_schedule) {
874 			mem_scheduled = true;
875 			sk_forced_mem_schedule(sk, skb->truesize);
876 		} else {
877 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
878 		}
879 		if (likely(mem_scheduled)) {
880 			skb_reserve(skb, MAX_TCP_HEADER);
881 			skb->ip_summed = CHECKSUM_PARTIAL;
882 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
883 			return skb;
884 		}
885 		__kfree_skb(skb);
886 	} else {
887 		sk->sk_prot->enter_memory_pressure(sk);
888 		sk_stream_moderate_sndbuf(sk);
889 	}
890 	return NULL;
891 }
892 
893 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
894 				       int large_allowed)
895 {
896 	struct tcp_sock *tp = tcp_sk(sk);
897 	u32 new_size_goal, size_goal;
898 
899 	if (!large_allowed)
900 		return mss_now;
901 
902 	/* Note : tcp_tso_autosize() will eventually split this later */
903 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
904 
905 	/* We try hard to avoid divides here */
906 	size_goal = tp->gso_segs * mss_now;
907 	if (unlikely(new_size_goal < size_goal ||
908 		     new_size_goal >= size_goal + mss_now)) {
909 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
910 				     sk->sk_gso_max_segs);
911 		size_goal = tp->gso_segs * mss_now;
912 	}
913 
914 	return max(size_goal, mss_now);
915 }
916 
917 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
918 {
919 	int mss_now;
920 
921 	mss_now = tcp_current_mss(sk);
922 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
923 
924 	return mss_now;
925 }
926 
927 /* In some cases, both sendmsg() could have added an skb to the write queue,
928  * but failed adding payload on it.  We need to remove it to consume less
929  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
930  * epoll() users.
931  */
932 void tcp_remove_empty_skb(struct sock *sk)
933 {
934 	struct sk_buff *skb = tcp_write_queue_tail(sk);
935 
936 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
937 		tcp_unlink_write_queue(skb, sk);
938 		if (tcp_write_queue_empty(sk))
939 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
940 		tcp_wmem_free_skb(sk, skb);
941 	}
942 }
943 
944 /* skb changing from pure zc to mixed, must charge zc */
945 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
946 {
947 	if (unlikely(skb_zcopy_pure(skb))) {
948 		u32 extra = skb->truesize -
949 			    SKB_TRUESIZE(skb_end_offset(skb));
950 
951 		if (!sk_wmem_schedule(sk, extra))
952 			return -ENOMEM;
953 
954 		sk_mem_charge(sk, extra);
955 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
956 	}
957 	return 0;
958 }
959 
960 
961 int tcp_wmem_schedule(struct sock *sk, int copy)
962 {
963 	int left;
964 
965 	if (likely(sk_wmem_schedule(sk, copy)))
966 		return copy;
967 
968 	/* We could be in trouble if we have nothing queued.
969 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
970 	 * to guarantee some progress.
971 	 */
972 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
973 	if (left > 0)
974 		sk_forced_mem_schedule(sk, min(left, copy));
975 	return min(copy, sk->sk_forward_alloc);
976 }
977 
978 void tcp_free_fastopen_req(struct tcp_sock *tp)
979 {
980 	if (tp->fastopen_req) {
981 		kfree(tp->fastopen_req);
982 		tp->fastopen_req = NULL;
983 	}
984 }
985 
986 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
987 			 size_t size, struct ubuf_info *uarg)
988 {
989 	struct tcp_sock *tp = tcp_sk(sk);
990 	struct inet_sock *inet = inet_sk(sk);
991 	struct sockaddr *uaddr = msg->msg_name;
992 	int err, flags;
993 
994 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
995 	      TFO_CLIENT_ENABLE) ||
996 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
997 	     uaddr->sa_family == AF_UNSPEC))
998 		return -EOPNOTSUPP;
999 	if (tp->fastopen_req)
1000 		return -EALREADY; /* Another Fast Open is in progress */
1001 
1002 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1003 				   sk->sk_allocation);
1004 	if (unlikely(!tp->fastopen_req))
1005 		return -ENOBUFS;
1006 	tp->fastopen_req->data = msg;
1007 	tp->fastopen_req->size = size;
1008 	tp->fastopen_req->uarg = uarg;
1009 
1010 	if (inet->defer_connect) {
1011 		err = tcp_connect(sk);
1012 		/* Same failure procedure as in tcp_v4/6_connect */
1013 		if (err) {
1014 			tcp_set_state(sk, TCP_CLOSE);
1015 			inet->inet_dport = 0;
1016 			sk->sk_route_caps = 0;
1017 		}
1018 	}
1019 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1020 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1021 				    msg->msg_namelen, flags, 1);
1022 	/* fastopen_req could already be freed in __inet_stream_connect
1023 	 * if the connection times out or gets rst
1024 	 */
1025 	if (tp->fastopen_req) {
1026 		*copied = tp->fastopen_req->copied;
1027 		tcp_free_fastopen_req(tp);
1028 		inet->defer_connect = 0;
1029 	}
1030 	return err;
1031 }
1032 
1033 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1034 {
1035 	struct tcp_sock *tp = tcp_sk(sk);
1036 	struct ubuf_info *uarg = NULL;
1037 	struct sk_buff *skb;
1038 	struct sockcm_cookie sockc;
1039 	int flags, err, copied = 0;
1040 	int mss_now = 0, size_goal, copied_syn = 0;
1041 	int process_backlog = 0;
1042 	int zc = 0;
1043 	long timeo;
1044 
1045 	flags = msg->msg_flags;
1046 
1047 	if ((flags & MSG_ZEROCOPY) && size) {
1048 		if (msg->msg_ubuf) {
1049 			uarg = msg->msg_ubuf;
1050 			if (sk->sk_route_caps & NETIF_F_SG)
1051 				zc = MSG_ZEROCOPY;
1052 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1053 			skb = tcp_write_queue_tail(sk);
1054 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1055 			if (!uarg) {
1056 				err = -ENOBUFS;
1057 				goto out_err;
1058 			}
1059 			if (sk->sk_route_caps & NETIF_F_SG)
1060 				zc = MSG_ZEROCOPY;
1061 			else
1062 				uarg_to_msgzc(uarg)->zerocopy = 0;
1063 		}
1064 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1065 		if (sk->sk_route_caps & NETIF_F_SG)
1066 			zc = MSG_SPLICE_PAGES;
1067 	}
1068 
1069 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1070 	    !tp->repair) {
1071 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1072 		if (err == -EINPROGRESS && copied_syn > 0)
1073 			goto out;
1074 		else if (err)
1075 			goto out_err;
1076 	}
1077 
1078 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1079 
1080 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1081 
1082 	/* Wait for a connection to finish. One exception is TCP Fast Open
1083 	 * (passive side) where data is allowed to be sent before a connection
1084 	 * is fully established.
1085 	 */
1086 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1087 	    !tcp_passive_fastopen(sk)) {
1088 		err = sk_stream_wait_connect(sk, &timeo);
1089 		if (err != 0)
1090 			goto do_error;
1091 	}
1092 
1093 	if (unlikely(tp->repair)) {
1094 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1095 			copied = tcp_send_rcvq(sk, msg, size);
1096 			goto out_nopush;
1097 		}
1098 
1099 		err = -EINVAL;
1100 		if (tp->repair_queue == TCP_NO_QUEUE)
1101 			goto out_err;
1102 
1103 		/* 'common' sending to sendq */
1104 	}
1105 
1106 	sockcm_init(&sockc, sk);
1107 	if (msg->msg_controllen) {
1108 		err = sock_cmsg_send(sk, msg, &sockc);
1109 		if (unlikely(err)) {
1110 			err = -EINVAL;
1111 			goto out_err;
1112 		}
1113 	}
1114 
1115 	/* This should be in poll */
1116 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1117 
1118 	/* Ok commence sending. */
1119 	copied = 0;
1120 
1121 restart:
1122 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1123 
1124 	err = -EPIPE;
1125 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1126 		goto do_error;
1127 
1128 	while (msg_data_left(msg)) {
1129 		ssize_t copy = 0;
1130 
1131 		skb = tcp_write_queue_tail(sk);
1132 		if (skb)
1133 			copy = size_goal - skb->len;
1134 
1135 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1136 			bool first_skb;
1137 
1138 new_segment:
1139 			if (!sk_stream_memory_free(sk))
1140 				goto wait_for_space;
1141 
1142 			if (unlikely(process_backlog >= 16)) {
1143 				process_backlog = 0;
1144 				if (sk_flush_backlog(sk))
1145 					goto restart;
1146 			}
1147 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1148 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1149 						   first_skb);
1150 			if (!skb)
1151 				goto wait_for_space;
1152 
1153 			process_backlog++;
1154 
1155 			tcp_skb_entail(sk, skb);
1156 			copy = size_goal;
1157 
1158 			/* All packets are restored as if they have
1159 			 * already been sent. skb_mstamp_ns isn't set to
1160 			 * avoid wrong rtt estimation.
1161 			 */
1162 			if (tp->repair)
1163 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1164 		}
1165 
1166 		/* Try to append data to the end of skb. */
1167 		if (copy > msg_data_left(msg))
1168 			copy = msg_data_left(msg);
1169 
1170 		if (zc == 0) {
1171 			bool merge = true;
1172 			int i = skb_shinfo(skb)->nr_frags;
1173 			struct page_frag *pfrag = sk_page_frag(sk);
1174 
1175 			if (!sk_page_frag_refill(sk, pfrag))
1176 				goto wait_for_space;
1177 
1178 			if (!skb_can_coalesce(skb, i, pfrag->page,
1179 					      pfrag->offset)) {
1180 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1181 					tcp_mark_push(tp, skb);
1182 					goto new_segment;
1183 				}
1184 				merge = false;
1185 			}
1186 
1187 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1188 
1189 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1190 				if (tcp_downgrade_zcopy_pure(sk, skb))
1191 					goto wait_for_space;
1192 				skb_zcopy_downgrade_managed(skb);
1193 			}
1194 
1195 			copy = tcp_wmem_schedule(sk, copy);
1196 			if (!copy)
1197 				goto wait_for_space;
1198 
1199 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1200 						       pfrag->page,
1201 						       pfrag->offset,
1202 						       copy);
1203 			if (err)
1204 				goto do_error;
1205 
1206 			/* Update the skb. */
1207 			if (merge) {
1208 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1209 			} else {
1210 				skb_fill_page_desc(skb, i, pfrag->page,
1211 						   pfrag->offset, copy);
1212 				page_ref_inc(pfrag->page);
1213 			}
1214 			pfrag->offset += copy;
1215 		} else if (zc == MSG_ZEROCOPY)  {
1216 			/* First append to a fragless skb builds initial
1217 			 * pure zerocopy skb
1218 			 */
1219 			if (!skb->len)
1220 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1221 
1222 			if (!skb_zcopy_pure(skb)) {
1223 				copy = tcp_wmem_schedule(sk, copy);
1224 				if (!copy)
1225 					goto wait_for_space;
1226 			}
1227 
1228 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1229 			if (err == -EMSGSIZE || err == -EEXIST) {
1230 				tcp_mark_push(tp, skb);
1231 				goto new_segment;
1232 			}
1233 			if (err < 0)
1234 				goto do_error;
1235 			copy = err;
1236 		} else if (zc == MSG_SPLICE_PAGES) {
1237 			/* Splice in data if we can; copy if we can't. */
1238 			if (tcp_downgrade_zcopy_pure(sk, skb))
1239 				goto wait_for_space;
1240 			copy = tcp_wmem_schedule(sk, copy);
1241 			if (!copy)
1242 				goto wait_for_space;
1243 
1244 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1245 						   sk->sk_allocation);
1246 			if (err < 0) {
1247 				if (err == -EMSGSIZE) {
1248 					tcp_mark_push(tp, skb);
1249 					goto new_segment;
1250 				}
1251 				goto do_error;
1252 			}
1253 			copy = err;
1254 
1255 			if (!(flags & MSG_NO_SHARED_FRAGS))
1256 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1257 
1258 			sk_wmem_queued_add(sk, copy);
1259 			sk_mem_charge(sk, copy);
1260 		}
1261 
1262 		if (!copied)
1263 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1264 
1265 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1266 		TCP_SKB_CB(skb)->end_seq += copy;
1267 		tcp_skb_pcount_set(skb, 0);
1268 
1269 		copied += copy;
1270 		if (!msg_data_left(msg)) {
1271 			if (unlikely(flags & MSG_EOR))
1272 				TCP_SKB_CB(skb)->eor = 1;
1273 			goto out;
1274 		}
1275 
1276 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1277 			continue;
1278 
1279 		if (forced_push(tp)) {
1280 			tcp_mark_push(tp, skb);
1281 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1282 		} else if (skb == tcp_send_head(sk))
1283 			tcp_push_one(sk, mss_now);
1284 		continue;
1285 
1286 wait_for_space:
1287 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1288 		if (copied)
1289 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1290 				 TCP_NAGLE_PUSH, size_goal);
1291 
1292 		err = sk_stream_wait_memory(sk, &timeo);
1293 		if (err != 0)
1294 			goto do_error;
1295 
1296 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1297 	}
1298 
1299 out:
1300 	if (copied) {
1301 		tcp_tx_timestamp(sk, sockc.tsflags);
1302 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1303 	}
1304 out_nopush:
1305 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1306 	if (uarg && !msg->msg_ubuf)
1307 		net_zcopy_put(uarg);
1308 	return copied + copied_syn;
1309 
1310 do_error:
1311 	tcp_remove_empty_skb(sk);
1312 
1313 	if (copied + copied_syn)
1314 		goto out;
1315 out_err:
1316 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1317 	if (uarg && !msg->msg_ubuf)
1318 		net_zcopy_put_abort(uarg, true);
1319 	err = sk_stream_error(sk, flags, err);
1320 	/* make sure we wake any epoll edge trigger waiter */
1321 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1322 		sk->sk_write_space(sk);
1323 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1324 	}
1325 	return err;
1326 }
1327 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1328 
1329 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1330 {
1331 	int ret;
1332 
1333 	lock_sock(sk);
1334 	ret = tcp_sendmsg_locked(sk, msg, size);
1335 	release_sock(sk);
1336 
1337 	return ret;
1338 }
1339 EXPORT_SYMBOL(tcp_sendmsg);
1340 
1341 void tcp_splice_eof(struct socket *sock)
1342 {
1343 	struct sock *sk = sock->sk;
1344 	struct tcp_sock *tp = tcp_sk(sk);
1345 	int mss_now, size_goal;
1346 
1347 	if (!tcp_write_queue_tail(sk))
1348 		return;
1349 
1350 	lock_sock(sk);
1351 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1352 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1353 	release_sock(sk);
1354 }
1355 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1356 
1357 /*
1358  *	Handle reading urgent data. BSD has very simple semantics for
1359  *	this, no blocking and very strange errors 8)
1360  */
1361 
1362 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1363 {
1364 	struct tcp_sock *tp = tcp_sk(sk);
1365 
1366 	/* No URG data to read. */
1367 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1368 	    tp->urg_data == TCP_URG_READ)
1369 		return -EINVAL;	/* Yes this is right ! */
1370 
1371 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1372 		return -ENOTCONN;
1373 
1374 	if (tp->urg_data & TCP_URG_VALID) {
1375 		int err = 0;
1376 		char c = tp->urg_data;
1377 
1378 		if (!(flags & MSG_PEEK))
1379 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1380 
1381 		/* Read urgent data. */
1382 		msg->msg_flags |= MSG_OOB;
1383 
1384 		if (len > 0) {
1385 			if (!(flags & MSG_TRUNC))
1386 				err = memcpy_to_msg(msg, &c, 1);
1387 			len = 1;
1388 		} else
1389 			msg->msg_flags |= MSG_TRUNC;
1390 
1391 		return err ? -EFAULT : len;
1392 	}
1393 
1394 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1395 		return 0;
1396 
1397 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1398 	 * the available implementations agree in this case:
1399 	 * this call should never block, independent of the
1400 	 * blocking state of the socket.
1401 	 * Mike <pall@rz.uni-karlsruhe.de>
1402 	 */
1403 	return -EAGAIN;
1404 }
1405 
1406 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1407 {
1408 	struct sk_buff *skb;
1409 	int copied = 0, err = 0;
1410 
1411 	/* XXX -- need to support SO_PEEK_OFF */
1412 
1413 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1414 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1415 		if (err)
1416 			return err;
1417 		copied += skb->len;
1418 	}
1419 
1420 	skb_queue_walk(&sk->sk_write_queue, skb) {
1421 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1422 		if (err)
1423 			break;
1424 
1425 		copied += skb->len;
1426 	}
1427 
1428 	return err ?: copied;
1429 }
1430 
1431 /* Clean up the receive buffer for full frames taken by the user,
1432  * then send an ACK if necessary.  COPIED is the number of bytes
1433  * tcp_recvmsg has given to the user so far, it speeds up the
1434  * calculation of whether or not we must ACK for the sake of
1435  * a window update.
1436  */
1437 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1438 {
1439 	struct tcp_sock *tp = tcp_sk(sk);
1440 	bool time_to_ack = false;
1441 
1442 	if (inet_csk_ack_scheduled(sk)) {
1443 		const struct inet_connection_sock *icsk = inet_csk(sk);
1444 
1445 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1446 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1447 		    /*
1448 		     * If this read emptied read buffer, we send ACK, if
1449 		     * connection is not bidirectional, user drained
1450 		     * receive buffer and there was a small segment
1451 		     * in queue.
1452 		     */
1453 		    (copied > 0 &&
1454 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1455 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1456 		       !inet_csk_in_pingpong_mode(sk))) &&
1457 		      !atomic_read(&sk->sk_rmem_alloc)))
1458 			time_to_ack = true;
1459 	}
1460 
1461 	/* We send an ACK if we can now advertise a non-zero window
1462 	 * which has been raised "significantly".
1463 	 *
1464 	 * Even if window raised up to infinity, do not send window open ACK
1465 	 * in states, where we will not receive more. It is useless.
1466 	 */
1467 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1468 		__u32 rcv_window_now = tcp_receive_window(tp);
1469 
1470 		/* Optimize, __tcp_select_window() is not cheap. */
1471 		if (2*rcv_window_now <= tp->window_clamp) {
1472 			__u32 new_window = __tcp_select_window(sk);
1473 
1474 			/* Send ACK now, if this read freed lots of space
1475 			 * in our buffer. Certainly, new_window is new window.
1476 			 * We can advertise it now, if it is not less than current one.
1477 			 * "Lots" means "at least twice" here.
1478 			 */
1479 			if (new_window && new_window >= 2 * rcv_window_now)
1480 				time_to_ack = true;
1481 		}
1482 	}
1483 	if (time_to_ack)
1484 		tcp_send_ack(sk);
1485 }
1486 
1487 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1488 {
1489 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1490 	struct tcp_sock *tp = tcp_sk(sk);
1491 
1492 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1493 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1494 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1495 	__tcp_cleanup_rbuf(sk, copied);
1496 }
1497 
1498 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1499 {
1500 	__skb_unlink(skb, &sk->sk_receive_queue);
1501 	if (likely(skb->destructor == sock_rfree)) {
1502 		sock_rfree(skb);
1503 		skb->destructor = NULL;
1504 		skb->sk = NULL;
1505 		return skb_attempt_defer_free(skb);
1506 	}
1507 	__kfree_skb(skb);
1508 }
1509 
1510 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1511 {
1512 	struct sk_buff *skb;
1513 	u32 offset;
1514 
1515 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1516 		offset = seq - TCP_SKB_CB(skb)->seq;
1517 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1518 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1519 			offset--;
1520 		}
1521 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1522 			*off = offset;
1523 			return skb;
1524 		}
1525 		/* This looks weird, but this can happen if TCP collapsing
1526 		 * splitted a fat GRO packet, while we released socket lock
1527 		 * in skb_splice_bits()
1528 		 */
1529 		tcp_eat_recv_skb(sk, skb);
1530 	}
1531 	return NULL;
1532 }
1533 EXPORT_SYMBOL(tcp_recv_skb);
1534 
1535 /*
1536  * This routine provides an alternative to tcp_recvmsg() for routines
1537  * that would like to handle copying from skbuffs directly in 'sendfile'
1538  * fashion.
1539  * Note:
1540  *	- It is assumed that the socket was locked by the caller.
1541  *	- The routine does not block.
1542  *	- At present, there is no support for reading OOB data
1543  *	  or for 'peeking' the socket using this routine
1544  *	  (although both would be easy to implement).
1545  */
1546 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1547 		  sk_read_actor_t recv_actor)
1548 {
1549 	struct sk_buff *skb;
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 	u32 seq = tp->copied_seq;
1552 	u32 offset;
1553 	int copied = 0;
1554 
1555 	if (sk->sk_state == TCP_LISTEN)
1556 		return -ENOTCONN;
1557 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1558 		if (offset < skb->len) {
1559 			int used;
1560 			size_t len;
1561 
1562 			len = skb->len - offset;
1563 			/* Stop reading if we hit a patch of urgent data */
1564 			if (unlikely(tp->urg_data)) {
1565 				u32 urg_offset = tp->urg_seq - seq;
1566 				if (urg_offset < len)
1567 					len = urg_offset;
1568 				if (!len)
1569 					break;
1570 			}
1571 			used = recv_actor(desc, skb, offset, len);
1572 			if (used <= 0) {
1573 				if (!copied)
1574 					copied = used;
1575 				break;
1576 			}
1577 			if (WARN_ON_ONCE(used > len))
1578 				used = len;
1579 			seq += used;
1580 			copied += used;
1581 			offset += used;
1582 
1583 			/* If recv_actor drops the lock (e.g. TCP splice
1584 			 * receive) the skb pointer might be invalid when
1585 			 * getting here: tcp_collapse might have deleted it
1586 			 * while aggregating skbs from the socket queue.
1587 			 */
1588 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1589 			if (!skb)
1590 				break;
1591 			/* TCP coalescing might have appended data to the skb.
1592 			 * Try to splice more frags
1593 			 */
1594 			if (offset + 1 != skb->len)
1595 				continue;
1596 		}
1597 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1598 			tcp_eat_recv_skb(sk, skb);
1599 			++seq;
1600 			break;
1601 		}
1602 		tcp_eat_recv_skb(sk, skb);
1603 		if (!desc->count)
1604 			break;
1605 		WRITE_ONCE(tp->copied_seq, seq);
1606 	}
1607 	WRITE_ONCE(tp->copied_seq, seq);
1608 
1609 	tcp_rcv_space_adjust(sk);
1610 
1611 	/* Clean up data we have read: This will do ACK frames. */
1612 	if (copied > 0) {
1613 		tcp_recv_skb(sk, seq, &offset);
1614 		tcp_cleanup_rbuf(sk, copied);
1615 	}
1616 	return copied;
1617 }
1618 EXPORT_SYMBOL(tcp_read_sock);
1619 
1620 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1621 {
1622 	struct tcp_sock *tp = tcp_sk(sk);
1623 	u32 seq = tp->copied_seq;
1624 	struct sk_buff *skb;
1625 	int copied = 0;
1626 	u32 offset;
1627 
1628 	if (sk->sk_state == TCP_LISTEN)
1629 		return -ENOTCONN;
1630 
1631 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1632 		u8 tcp_flags;
1633 		int used;
1634 
1635 		__skb_unlink(skb, &sk->sk_receive_queue);
1636 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1637 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1638 		used = recv_actor(sk, skb);
1639 		if (used < 0) {
1640 			if (!copied)
1641 				copied = used;
1642 			break;
1643 		}
1644 		seq += used;
1645 		copied += used;
1646 
1647 		if (tcp_flags & TCPHDR_FIN) {
1648 			++seq;
1649 			break;
1650 		}
1651 	}
1652 	return copied;
1653 }
1654 EXPORT_SYMBOL(tcp_read_skb);
1655 
1656 void tcp_read_done(struct sock *sk, size_t len)
1657 {
1658 	struct tcp_sock *tp = tcp_sk(sk);
1659 	u32 seq = tp->copied_seq;
1660 	struct sk_buff *skb;
1661 	size_t left;
1662 	u32 offset;
1663 
1664 	if (sk->sk_state == TCP_LISTEN)
1665 		return;
1666 
1667 	left = len;
1668 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1669 		int used;
1670 
1671 		used = min_t(size_t, skb->len - offset, left);
1672 		seq += used;
1673 		left -= used;
1674 
1675 		if (skb->len > offset + used)
1676 			break;
1677 
1678 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1679 			tcp_eat_recv_skb(sk, skb);
1680 			++seq;
1681 			break;
1682 		}
1683 		tcp_eat_recv_skb(sk, skb);
1684 	}
1685 	WRITE_ONCE(tp->copied_seq, seq);
1686 
1687 	tcp_rcv_space_adjust(sk);
1688 
1689 	/* Clean up data we have read: This will do ACK frames. */
1690 	if (left != len)
1691 		tcp_cleanup_rbuf(sk, len - left);
1692 }
1693 EXPORT_SYMBOL(tcp_read_done);
1694 
1695 int tcp_peek_len(struct socket *sock)
1696 {
1697 	return tcp_inq(sock->sk);
1698 }
1699 EXPORT_SYMBOL(tcp_peek_len);
1700 
1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1702 int tcp_set_rcvlowat(struct sock *sk, int val)
1703 {
1704 	int space, cap;
1705 
1706 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 		cap = sk->sk_rcvbuf >> 1;
1708 	else
1709 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1710 	val = min(val, cap);
1711 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1712 
1713 	/* Check if we need to signal EPOLLIN right now */
1714 	tcp_data_ready(sk);
1715 
1716 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1717 		return 0;
1718 
1719 	space = tcp_space_from_win(sk, val);
1720 	if (space > sk->sk_rcvbuf) {
1721 		WRITE_ONCE(sk->sk_rcvbuf, space);
1722 		tcp_sk(sk)->window_clamp = val;
1723 	}
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(tcp_set_rcvlowat);
1727 
1728 void tcp_update_recv_tstamps(struct sk_buff *skb,
1729 			     struct scm_timestamping_internal *tss)
1730 {
1731 	if (skb->tstamp)
1732 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1733 	else
1734 		tss->ts[0] = (struct timespec64) {0};
1735 
1736 	if (skb_hwtstamps(skb)->hwtstamp)
1737 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1738 	else
1739 		tss->ts[2] = (struct timespec64) {0};
1740 }
1741 
1742 #ifdef CONFIG_MMU
1743 const struct vm_operations_struct tcp_vm_ops = {
1744 };
1745 
1746 int tcp_mmap(struct file *file, struct socket *sock,
1747 	     struct vm_area_struct *vma)
1748 {
1749 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1750 		return -EPERM;
1751 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1752 
1753 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1754 	vm_flags_set(vma, VM_MIXEDMAP);
1755 
1756 	vma->vm_ops = &tcp_vm_ops;
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(tcp_mmap);
1760 
1761 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1762 				       u32 *offset_frag)
1763 {
1764 	skb_frag_t *frag;
1765 
1766 	if (unlikely(offset_skb >= skb->len))
1767 		return NULL;
1768 
1769 	offset_skb -= skb_headlen(skb);
1770 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1771 		return NULL;
1772 
1773 	frag = skb_shinfo(skb)->frags;
1774 	while (offset_skb) {
1775 		if (skb_frag_size(frag) > offset_skb) {
1776 			*offset_frag = offset_skb;
1777 			return frag;
1778 		}
1779 		offset_skb -= skb_frag_size(frag);
1780 		++frag;
1781 	}
1782 	*offset_frag = 0;
1783 	return frag;
1784 }
1785 
1786 static bool can_map_frag(const skb_frag_t *frag)
1787 {
1788 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1789 }
1790 
1791 static int find_next_mappable_frag(const skb_frag_t *frag,
1792 				   int remaining_in_skb)
1793 {
1794 	int offset = 0;
1795 
1796 	if (likely(can_map_frag(frag)))
1797 		return 0;
1798 
1799 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1800 		offset += skb_frag_size(frag);
1801 		++frag;
1802 	}
1803 	return offset;
1804 }
1805 
1806 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1807 					  struct tcp_zerocopy_receive *zc,
1808 					  struct sk_buff *skb, u32 offset)
1809 {
1810 	u32 frag_offset, partial_frag_remainder = 0;
1811 	int mappable_offset;
1812 	skb_frag_t *frag;
1813 
1814 	/* worst case: skip to next skb. try to improve on this case below */
1815 	zc->recv_skip_hint = skb->len - offset;
1816 
1817 	/* Find the frag containing this offset (and how far into that frag) */
1818 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1819 	if (!frag)
1820 		return;
1821 
1822 	if (frag_offset) {
1823 		struct skb_shared_info *info = skb_shinfo(skb);
1824 
1825 		/* We read part of the last frag, must recvmsg() rest of skb. */
1826 		if (frag == &info->frags[info->nr_frags - 1])
1827 			return;
1828 
1829 		/* Else, we must at least read the remainder in this frag. */
1830 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1831 		zc->recv_skip_hint -= partial_frag_remainder;
1832 		++frag;
1833 	}
1834 
1835 	/* partial_frag_remainder: If part way through a frag, must read rest.
1836 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1837 	 * in partial_frag_remainder.
1838 	 */
1839 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1840 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1841 }
1842 
1843 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1844 			      int flags, struct scm_timestamping_internal *tss,
1845 			      int *cmsg_flags);
1846 static int receive_fallback_to_copy(struct sock *sk,
1847 				    struct tcp_zerocopy_receive *zc, int inq,
1848 				    struct scm_timestamping_internal *tss)
1849 {
1850 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1851 	struct msghdr msg = {};
1852 	struct iovec iov;
1853 	int err;
1854 
1855 	zc->length = 0;
1856 	zc->recv_skip_hint = 0;
1857 
1858 	if (copy_address != zc->copybuf_address)
1859 		return -EINVAL;
1860 
1861 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1862 				  inq, &iov, &msg.msg_iter);
1863 	if (err)
1864 		return err;
1865 
1866 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1867 				 tss, &zc->msg_flags);
1868 	if (err < 0)
1869 		return err;
1870 
1871 	zc->copybuf_len = err;
1872 	if (likely(zc->copybuf_len)) {
1873 		struct sk_buff *skb;
1874 		u32 offset;
1875 
1876 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1877 		if (skb)
1878 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1879 	}
1880 	return 0;
1881 }
1882 
1883 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1884 				   struct sk_buff *skb, u32 copylen,
1885 				   u32 *offset, u32 *seq)
1886 {
1887 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1888 	struct msghdr msg = {};
1889 	struct iovec iov;
1890 	int err;
1891 
1892 	if (copy_address != zc->copybuf_address)
1893 		return -EINVAL;
1894 
1895 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1896 				  copylen, &iov, &msg.msg_iter);
1897 	if (err)
1898 		return err;
1899 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1900 	if (err)
1901 		return err;
1902 	zc->recv_skip_hint -= copylen;
1903 	*offset += copylen;
1904 	*seq += copylen;
1905 	return (__s32)copylen;
1906 }
1907 
1908 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1909 				  struct sock *sk,
1910 				  struct sk_buff *skb,
1911 				  u32 *seq,
1912 				  s32 copybuf_len,
1913 				  struct scm_timestamping_internal *tss)
1914 {
1915 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1916 
1917 	if (!copylen)
1918 		return 0;
1919 	/* skb is null if inq < PAGE_SIZE. */
1920 	if (skb) {
1921 		offset = *seq - TCP_SKB_CB(skb)->seq;
1922 	} else {
1923 		skb = tcp_recv_skb(sk, *seq, &offset);
1924 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1925 			tcp_update_recv_tstamps(skb, tss);
1926 			zc->msg_flags |= TCP_CMSG_TS;
1927 		}
1928 	}
1929 
1930 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1931 						  seq);
1932 	return zc->copybuf_len < 0 ? 0 : copylen;
1933 }
1934 
1935 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1936 					      struct page **pending_pages,
1937 					      unsigned long pages_remaining,
1938 					      unsigned long *address,
1939 					      u32 *length,
1940 					      u32 *seq,
1941 					      struct tcp_zerocopy_receive *zc,
1942 					      u32 total_bytes_to_map,
1943 					      int err)
1944 {
1945 	/* At least one page did not map. Try zapping if we skipped earlier. */
1946 	if (err == -EBUSY &&
1947 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1948 		u32 maybe_zap_len;
1949 
1950 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1951 				*length + /* Mapped or pending */
1952 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1953 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1954 		err = 0;
1955 	}
1956 
1957 	if (!err) {
1958 		unsigned long leftover_pages = pages_remaining;
1959 		int bytes_mapped;
1960 
1961 		/* We called zap_page_range_single, try to reinsert. */
1962 		err = vm_insert_pages(vma, *address,
1963 				      pending_pages,
1964 				      &pages_remaining);
1965 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1966 		*seq += bytes_mapped;
1967 		*address += bytes_mapped;
1968 	}
1969 	if (err) {
1970 		/* Either we were unable to zap, OR we zapped, retried an
1971 		 * insert, and still had an issue. Either ways, pages_remaining
1972 		 * is the number of pages we were unable to map, and we unroll
1973 		 * some state we speculatively touched before.
1974 		 */
1975 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1976 
1977 		*length -= bytes_not_mapped;
1978 		zc->recv_skip_hint += bytes_not_mapped;
1979 	}
1980 	return err;
1981 }
1982 
1983 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1984 					struct page **pages,
1985 					unsigned int pages_to_map,
1986 					unsigned long *address,
1987 					u32 *length,
1988 					u32 *seq,
1989 					struct tcp_zerocopy_receive *zc,
1990 					u32 total_bytes_to_map)
1991 {
1992 	unsigned long pages_remaining = pages_to_map;
1993 	unsigned int pages_mapped;
1994 	unsigned int bytes_mapped;
1995 	int err;
1996 
1997 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1998 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1999 	bytes_mapped = PAGE_SIZE * pages_mapped;
2000 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2001 	 * mapping (some but not all of the pages).
2002 	 */
2003 	*seq += bytes_mapped;
2004 	*address += bytes_mapped;
2005 
2006 	if (likely(!err))
2007 		return 0;
2008 
2009 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2010 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2011 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2012 		err);
2013 }
2014 
2015 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2016 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2017 				      struct tcp_zerocopy_receive *zc,
2018 				      struct scm_timestamping_internal *tss)
2019 {
2020 	unsigned long msg_control_addr;
2021 	struct msghdr cmsg_dummy;
2022 
2023 	msg_control_addr = (unsigned long)zc->msg_control;
2024 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2025 	cmsg_dummy.msg_controllen =
2026 		(__kernel_size_t)zc->msg_controllen;
2027 	cmsg_dummy.msg_flags = in_compat_syscall()
2028 		? MSG_CMSG_COMPAT : 0;
2029 	cmsg_dummy.msg_control_is_user = true;
2030 	zc->msg_flags = 0;
2031 	if (zc->msg_control == msg_control_addr &&
2032 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2033 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2034 		zc->msg_control = (__u64)
2035 			((uintptr_t)cmsg_dummy.msg_control_user);
2036 		zc->msg_controllen =
2037 			(__u64)cmsg_dummy.msg_controllen;
2038 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2039 	}
2040 }
2041 
2042 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2043 					   unsigned long address,
2044 					   bool *mmap_locked)
2045 {
2046 	struct vm_area_struct *vma = NULL;
2047 
2048 #ifdef CONFIG_PER_VMA_LOCK
2049 	vma = lock_vma_under_rcu(mm, address);
2050 #endif
2051 	if (vma) {
2052 		if (!vma_is_tcp(vma)) {
2053 			vma_end_read(vma);
2054 			return NULL;
2055 		}
2056 		*mmap_locked = false;
2057 		return vma;
2058 	}
2059 
2060 	mmap_read_lock(mm);
2061 	vma = vma_lookup(mm, address);
2062 	if (!vma || !vma_is_tcp(vma)) {
2063 		mmap_read_unlock(mm);
2064 		return NULL;
2065 	}
2066 	*mmap_locked = true;
2067 	return vma;
2068 }
2069 
2070 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2071 static int tcp_zerocopy_receive(struct sock *sk,
2072 				struct tcp_zerocopy_receive *zc,
2073 				struct scm_timestamping_internal *tss)
2074 {
2075 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2076 	unsigned long address = (unsigned long)zc->address;
2077 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2078 	s32 copybuf_len = zc->copybuf_len;
2079 	struct tcp_sock *tp = tcp_sk(sk);
2080 	const skb_frag_t *frags = NULL;
2081 	unsigned int pages_to_map = 0;
2082 	struct vm_area_struct *vma;
2083 	struct sk_buff *skb = NULL;
2084 	u32 seq = tp->copied_seq;
2085 	u32 total_bytes_to_map;
2086 	int inq = tcp_inq(sk);
2087 	bool mmap_locked;
2088 	int ret;
2089 
2090 	zc->copybuf_len = 0;
2091 	zc->msg_flags = 0;
2092 
2093 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2094 		return -EINVAL;
2095 
2096 	if (sk->sk_state == TCP_LISTEN)
2097 		return -ENOTCONN;
2098 
2099 	sock_rps_record_flow(sk);
2100 
2101 	if (inq && inq <= copybuf_len)
2102 		return receive_fallback_to_copy(sk, zc, inq, tss);
2103 
2104 	if (inq < PAGE_SIZE) {
2105 		zc->length = 0;
2106 		zc->recv_skip_hint = inq;
2107 		if (!inq && sock_flag(sk, SOCK_DONE))
2108 			return -EIO;
2109 		return 0;
2110 	}
2111 
2112 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2113 	if (!vma)
2114 		return -EINVAL;
2115 
2116 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2117 	avail_len = min_t(u32, vma_len, inq);
2118 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2119 	if (total_bytes_to_map) {
2120 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2121 			zap_page_range_single(vma, address, total_bytes_to_map,
2122 					      NULL);
2123 		zc->length = total_bytes_to_map;
2124 		zc->recv_skip_hint = 0;
2125 	} else {
2126 		zc->length = avail_len;
2127 		zc->recv_skip_hint = avail_len;
2128 	}
2129 	ret = 0;
2130 	while (length + PAGE_SIZE <= zc->length) {
2131 		int mappable_offset;
2132 		struct page *page;
2133 
2134 		if (zc->recv_skip_hint < PAGE_SIZE) {
2135 			u32 offset_frag;
2136 
2137 			if (skb) {
2138 				if (zc->recv_skip_hint > 0)
2139 					break;
2140 				skb = skb->next;
2141 				offset = seq - TCP_SKB_CB(skb)->seq;
2142 			} else {
2143 				skb = tcp_recv_skb(sk, seq, &offset);
2144 			}
2145 
2146 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2147 				tcp_update_recv_tstamps(skb, tss);
2148 				zc->msg_flags |= TCP_CMSG_TS;
2149 			}
2150 			zc->recv_skip_hint = skb->len - offset;
2151 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2152 			if (!frags || offset_frag)
2153 				break;
2154 		}
2155 
2156 		mappable_offset = find_next_mappable_frag(frags,
2157 							  zc->recv_skip_hint);
2158 		if (mappable_offset) {
2159 			zc->recv_skip_hint = mappable_offset;
2160 			break;
2161 		}
2162 		page = skb_frag_page(frags);
2163 		prefetchw(page);
2164 		pages[pages_to_map++] = page;
2165 		length += PAGE_SIZE;
2166 		zc->recv_skip_hint -= PAGE_SIZE;
2167 		frags++;
2168 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2169 		    zc->recv_skip_hint < PAGE_SIZE) {
2170 			/* Either full batch, or we're about to go to next skb
2171 			 * (and we cannot unroll failed ops across skbs).
2172 			 */
2173 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2174 							   pages_to_map,
2175 							   &address, &length,
2176 							   &seq, zc,
2177 							   total_bytes_to_map);
2178 			if (ret)
2179 				goto out;
2180 			pages_to_map = 0;
2181 		}
2182 	}
2183 	if (pages_to_map) {
2184 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2185 						   &address, &length, &seq,
2186 						   zc, total_bytes_to_map);
2187 	}
2188 out:
2189 	if (mmap_locked)
2190 		mmap_read_unlock(current->mm);
2191 	else
2192 		vma_end_read(vma);
2193 	/* Try to copy straggler data. */
2194 	if (!ret)
2195 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2196 
2197 	if (length + copylen) {
2198 		WRITE_ONCE(tp->copied_seq, seq);
2199 		tcp_rcv_space_adjust(sk);
2200 
2201 		/* Clean up data we have read: This will do ACK frames. */
2202 		tcp_recv_skb(sk, seq, &offset);
2203 		tcp_cleanup_rbuf(sk, length + copylen);
2204 		ret = 0;
2205 		if (length == zc->length)
2206 			zc->recv_skip_hint = 0;
2207 	} else {
2208 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2209 			ret = -EIO;
2210 	}
2211 	zc->length = length;
2212 	return ret;
2213 }
2214 #endif
2215 
2216 /* Similar to __sock_recv_timestamp, but does not require an skb */
2217 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2218 			struct scm_timestamping_internal *tss)
2219 {
2220 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2221 	bool has_timestamping = false;
2222 
2223 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2224 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2225 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2226 				if (new_tstamp) {
2227 					struct __kernel_timespec kts = {
2228 						.tv_sec = tss->ts[0].tv_sec,
2229 						.tv_nsec = tss->ts[0].tv_nsec,
2230 					};
2231 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2232 						 sizeof(kts), &kts);
2233 				} else {
2234 					struct __kernel_old_timespec ts_old = {
2235 						.tv_sec = tss->ts[0].tv_sec,
2236 						.tv_nsec = tss->ts[0].tv_nsec,
2237 					};
2238 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2239 						 sizeof(ts_old), &ts_old);
2240 				}
2241 			} else {
2242 				if (new_tstamp) {
2243 					struct __kernel_sock_timeval stv = {
2244 						.tv_sec = tss->ts[0].tv_sec,
2245 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2246 					};
2247 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2248 						 sizeof(stv), &stv);
2249 				} else {
2250 					struct __kernel_old_timeval tv = {
2251 						.tv_sec = tss->ts[0].tv_sec,
2252 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2253 					};
2254 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2255 						 sizeof(tv), &tv);
2256 				}
2257 			}
2258 		}
2259 
2260 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2261 			has_timestamping = true;
2262 		else
2263 			tss->ts[0] = (struct timespec64) {0};
2264 	}
2265 
2266 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2267 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2268 			has_timestamping = true;
2269 		else
2270 			tss->ts[2] = (struct timespec64) {0};
2271 	}
2272 
2273 	if (has_timestamping) {
2274 		tss->ts[1] = (struct timespec64) {0};
2275 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2276 			put_cmsg_scm_timestamping64(msg, tss);
2277 		else
2278 			put_cmsg_scm_timestamping(msg, tss);
2279 	}
2280 }
2281 
2282 static int tcp_inq_hint(struct sock *sk)
2283 {
2284 	const struct tcp_sock *tp = tcp_sk(sk);
2285 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2286 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2287 	int inq;
2288 
2289 	inq = rcv_nxt - copied_seq;
2290 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2291 		lock_sock(sk);
2292 		inq = tp->rcv_nxt - tp->copied_seq;
2293 		release_sock(sk);
2294 	}
2295 	/* After receiving a FIN, tell the user-space to continue reading
2296 	 * by returning a non-zero inq.
2297 	 */
2298 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2299 		inq = 1;
2300 	return inq;
2301 }
2302 
2303 /*
2304  *	This routine copies from a sock struct into the user buffer.
2305  *
2306  *	Technical note: in 2.3 we work on _locked_ socket, so that
2307  *	tricks with *seq access order and skb->users are not required.
2308  *	Probably, code can be easily improved even more.
2309  */
2310 
2311 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2312 			      int flags, struct scm_timestamping_internal *tss,
2313 			      int *cmsg_flags)
2314 {
2315 	struct tcp_sock *tp = tcp_sk(sk);
2316 	int copied = 0;
2317 	u32 peek_seq;
2318 	u32 *seq;
2319 	unsigned long used;
2320 	int err;
2321 	int target;		/* Read at least this many bytes */
2322 	long timeo;
2323 	struct sk_buff *skb, *last;
2324 	u32 urg_hole = 0;
2325 
2326 	err = -ENOTCONN;
2327 	if (sk->sk_state == TCP_LISTEN)
2328 		goto out;
2329 
2330 	if (tp->recvmsg_inq) {
2331 		*cmsg_flags = TCP_CMSG_INQ;
2332 		msg->msg_get_inq = 1;
2333 	}
2334 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2335 
2336 	/* Urgent data needs to be handled specially. */
2337 	if (flags & MSG_OOB)
2338 		goto recv_urg;
2339 
2340 	if (unlikely(tp->repair)) {
2341 		err = -EPERM;
2342 		if (!(flags & MSG_PEEK))
2343 			goto out;
2344 
2345 		if (tp->repair_queue == TCP_SEND_QUEUE)
2346 			goto recv_sndq;
2347 
2348 		err = -EINVAL;
2349 		if (tp->repair_queue == TCP_NO_QUEUE)
2350 			goto out;
2351 
2352 		/* 'common' recv queue MSG_PEEK-ing */
2353 	}
2354 
2355 	seq = &tp->copied_seq;
2356 	if (flags & MSG_PEEK) {
2357 		peek_seq = tp->copied_seq;
2358 		seq = &peek_seq;
2359 	}
2360 
2361 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2362 
2363 	do {
2364 		u32 offset;
2365 
2366 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2367 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2368 			if (copied)
2369 				break;
2370 			if (signal_pending(current)) {
2371 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2372 				break;
2373 			}
2374 		}
2375 
2376 		/* Next get a buffer. */
2377 
2378 		last = skb_peek_tail(&sk->sk_receive_queue);
2379 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2380 			last = skb;
2381 			/* Now that we have two receive queues this
2382 			 * shouldn't happen.
2383 			 */
2384 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2385 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2386 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2387 				 flags))
2388 				break;
2389 
2390 			offset = *seq - TCP_SKB_CB(skb)->seq;
2391 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2392 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2393 				offset--;
2394 			}
2395 			if (offset < skb->len)
2396 				goto found_ok_skb;
2397 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2398 				goto found_fin_ok;
2399 			WARN(!(flags & MSG_PEEK),
2400 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2401 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2402 		}
2403 
2404 		/* Well, if we have backlog, try to process it now yet. */
2405 
2406 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2407 			break;
2408 
2409 		if (copied) {
2410 			if (!timeo ||
2411 			    sk->sk_err ||
2412 			    sk->sk_state == TCP_CLOSE ||
2413 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2414 			    signal_pending(current))
2415 				break;
2416 		} else {
2417 			if (sock_flag(sk, SOCK_DONE))
2418 				break;
2419 
2420 			if (sk->sk_err) {
2421 				copied = sock_error(sk);
2422 				break;
2423 			}
2424 
2425 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2426 				break;
2427 
2428 			if (sk->sk_state == TCP_CLOSE) {
2429 				/* This occurs when user tries to read
2430 				 * from never connected socket.
2431 				 */
2432 				copied = -ENOTCONN;
2433 				break;
2434 			}
2435 
2436 			if (!timeo) {
2437 				copied = -EAGAIN;
2438 				break;
2439 			}
2440 
2441 			if (signal_pending(current)) {
2442 				copied = sock_intr_errno(timeo);
2443 				break;
2444 			}
2445 		}
2446 
2447 		if (copied >= target) {
2448 			/* Do not sleep, just process backlog. */
2449 			__sk_flush_backlog(sk);
2450 		} else {
2451 			tcp_cleanup_rbuf(sk, copied);
2452 			sk_wait_data(sk, &timeo, last);
2453 		}
2454 
2455 		if ((flags & MSG_PEEK) &&
2456 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2457 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2458 					    current->comm,
2459 					    task_pid_nr(current));
2460 			peek_seq = tp->copied_seq;
2461 		}
2462 		continue;
2463 
2464 found_ok_skb:
2465 		/* Ok so how much can we use? */
2466 		used = skb->len - offset;
2467 		if (len < used)
2468 			used = len;
2469 
2470 		/* Do we have urgent data here? */
2471 		if (unlikely(tp->urg_data)) {
2472 			u32 urg_offset = tp->urg_seq - *seq;
2473 			if (urg_offset < used) {
2474 				if (!urg_offset) {
2475 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2476 						WRITE_ONCE(*seq, *seq + 1);
2477 						urg_hole++;
2478 						offset++;
2479 						used--;
2480 						if (!used)
2481 							goto skip_copy;
2482 					}
2483 				} else
2484 					used = urg_offset;
2485 			}
2486 		}
2487 
2488 		if (!(flags & MSG_TRUNC)) {
2489 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2490 			if (err) {
2491 				/* Exception. Bailout! */
2492 				if (!copied)
2493 					copied = -EFAULT;
2494 				break;
2495 			}
2496 		}
2497 
2498 		WRITE_ONCE(*seq, *seq + used);
2499 		copied += used;
2500 		len -= used;
2501 
2502 		tcp_rcv_space_adjust(sk);
2503 
2504 skip_copy:
2505 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2506 			WRITE_ONCE(tp->urg_data, 0);
2507 			tcp_fast_path_check(sk);
2508 		}
2509 
2510 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2511 			tcp_update_recv_tstamps(skb, tss);
2512 			*cmsg_flags |= TCP_CMSG_TS;
2513 		}
2514 
2515 		if (used + offset < skb->len)
2516 			continue;
2517 
2518 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2519 			goto found_fin_ok;
2520 		if (!(flags & MSG_PEEK))
2521 			tcp_eat_recv_skb(sk, skb);
2522 		continue;
2523 
2524 found_fin_ok:
2525 		/* Process the FIN. */
2526 		WRITE_ONCE(*seq, *seq + 1);
2527 		if (!(flags & MSG_PEEK))
2528 			tcp_eat_recv_skb(sk, skb);
2529 		break;
2530 	} while (len > 0);
2531 
2532 	/* According to UNIX98, msg_name/msg_namelen are ignored
2533 	 * on connected socket. I was just happy when found this 8) --ANK
2534 	 */
2535 
2536 	/* Clean up data we have read: This will do ACK frames. */
2537 	tcp_cleanup_rbuf(sk, copied);
2538 	return copied;
2539 
2540 out:
2541 	return err;
2542 
2543 recv_urg:
2544 	err = tcp_recv_urg(sk, msg, len, flags);
2545 	goto out;
2546 
2547 recv_sndq:
2548 	err = tcp_peek_sndq(sk, msg, len);
2549 	goto out;
2550 }
2551 
2552 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2553 		int *addr_len)
2554 {
2555 	int cmsg_flags = 0, ret;
2556 	struct scm_timestamping_internal tss;
2557 
2558 	if (unlikely(flags & MSG_ERRQUEUE))
2559 		return inet_recv_error(sk, msg, len, addr_len);
2560 
2561 	if (sk_can_busy_loop(sk) &&
2562 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2563 	    sk->sk_state == TCP_ESTABLISHED)
2564 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2565 
2566 	lock_sock(sk);
2567 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2568 	release_sock(sk);
2569 
2570 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2571 		if (cmsg_flags & TCP_CMSG_TS)
2572 			tcp_recv_timestamp(msg, sk, &tss);
2573 		if (msg->msg_get_inq) {
2574 			msg->msg_inq = tcp_inq_hint(sk);
2575 			if (cmsg_flags & TCP_CMSG_INQ)
2576 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2577 					 sizeof(msg->msg_inq), &msg->msg_inq);
2578 		}
2579 	}
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL(tcp_recvmsg);
2583 
2584 void tcp_set_state(struct sock *sk, int state)
2585 {
2586 	int oldstate = sk->sk_state;
2587 
2588 	/* We defined a new enum for TCP states that are exported in BPF
2589 	 * so as not force the internal TCP states to be frozen. The
2590 	 * following checks will detect if an internal state value ever
2591 	 * differs from the BPF value. If this ever happens, then we will
2592 	 * need to remap the internal value to the BPF value before calling
2593 	 * tcp_call_bpf_2arg.
2594 	 */
2595 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2596 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2597 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2598 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2599 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2600 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2601 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2602 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2603 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2604 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2605 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2606 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2607 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2608 
2609 	/* bpf uapi header bpf.h defines an anonymous enum with values
2610 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2611 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2612 	 * But clang built vmlinux does not have this enum in DWARF
2613 	 * since clang removes the above code before generating IR/debuginfo.
2614 	 * Let us explicitly emit the type debuginfo to ensure the
2615 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2616 	 * regardless of which compiler is used.
2617 	 */
2618 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2619 
2620 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2621 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2622 
2623 	switch (state) {
2624 	case TCP_ESTABLISHED:
2625 		if (oldstate != TCP_ESTABLISHED)
2626 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2627 		break;
2628 
2629 	case TCP_CLOSE:
2630 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2631 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2632 
2633 		sk->sk_prot->unhash(sk);
2634 		if (inet_csk(sk)->icsk_bind_hash &&
2635 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2636 			inet_put_port(sk);
2637 		fallthrough;
2638 	default:
2639 		if (oldstate == TCP_ESTABLISHED)
2640 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2641 	}
2642 
2643 	/* Change state AFTER socket is unhashed to avoid closed
2644 	 * socket sitting in hash tables.
2645 	 */
2646 	inet_sk_state_store(sk, state);
2647 }
2648 EXPORT_SYMBOL_GPL(tcp_set_state);
2649 
2650 /*
2651  *	State processing on a close. This implements the state shift for
2652  *	sending our FIN frame. Note that we only send a FIN for some
2653  *	states. A shutdown() may have already sent the FIN, or we may be
2654  *	closed.
2655  */
2656 
2657 static const unsigned char new_state[16] = {
2658   /* current state:        new state:      action:	*/
2659   [0 /* (Invalid) */]	= TCP_CLOSE,
2660   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2661   [TCP_SYN_SENT]	= TCP_CLOSE,
2662   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2663   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2664   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2665   [TCP_TIME_WAIT]	= TCP_CLOSE,
2666   [TCP_CLOSE]		= TCP_CLOSE,
2667   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2668   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2669   [TCP_LISTEN]		= TCP_CLOSE,
2670   [TCP_CLOSING]		= TCP_CLOSING,
2671   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2672 };
2673 
2674 static int tcp_close_state(struct sock *sk)
2675 {
2676 	int next = (int)new_state[sk->sk_state];
2677 	int ns = next & TCP_STATE_MASK;
2678 
2679 	tcp_set_state(sk, ns);
2680 
2681 	return next & TCP_ACTION_FIN;
2682 }
2683 
2684 /*
2685  *	Shutdown the sending side of a connection. Much like close except
2686  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2687  */
2688 
2689 void tcp_shutdown(struct sock *sk, int how)
2690 {
2691 	/*	We need to grab some memory, and put together a FIN,
2692 	 *	and then put it into the queue to be sent.
2693 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2694 	 */
2695 	if (!(how & SEND_SHUTDOWN))
2696 		return;
2697 
2698 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2699 	if ((1 << sk->sk_state) &
2700 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2701 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2702 		/* Clear out any half completed packets.  FIN if needed. */
2703 		if (tcp_close_state(sk))
2704 			tcp_send_fin(sk);
2705 	}
2706 }
2707 EXPORT_SYMBOL(tcp_shutdown);
2708 
2709 int tcp_orphan_count_sum(void)
2710 {
2711 	int i, total = 0;
2712 
2713 	for_each_possible_cpu(i)
2714 		total += per_cpu(tcp_orphan_count, i);
2715 
2716 	return max(total, 0);
2717 }
2718 
2719 static int tcp_orphan_cache;
2720 static struct timer_list tcp_orphan_timer;
2721 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2722 
2723 static void tcp_orphan_update(struct timer_list *unused)
2724 {
2725 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2726 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2727 }
2728 
2729 static bool tcp_too_many_orphans(int shift)
2730 {
2731 	return READ_ONCE(tcp_orphan_cache) << shift >
2732 		READ_ONCE(sysctl_tcp_max_orphans);
2733 }
2734 
2735 bool tcp_check_oom(struct sock *sk, int shift)
2736 {
2737 	bool too_many_orphans, out_of_socket_memory;
2738 
2739 	too_many_orphans = tcp_too_many_orphans(shift);
2740 	out_of_socket_memory = tcp_out_of_memory(sk);
2741 
2742 	if (too_many_orphans)
2743 		net_info_ratelimited("too many orphaned sockets\n");
2744 	if (out_of_socket_memory)
2745 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2746 	return too_many_orphans || out_of_socket_memory;
2747 }
2748 
2749 void __tcp_close(struct sock *sk, long timeout)
2750 {
2751 	struct sk_buff *skb;
2752 	int data_was_unread = 0;
2753 	int state;
2754 
2755 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2756 
2757 	if (sk->sk_state == TCP_LISTEN) {
2758 		tcp_set_state(sk, TCP_CLOSE);
2759 
2760 		/* Special case. */
2761 		inet_csk_listen_stop(sk);
2762 
2763 		goto adjudge_to_death;
2764 	}
2765 
2766 	/*  We need to flush the recv. buffs.  We do this only on the
2767 	 *  descriptor close, not protocol-sourced closes, because the
2768 	 *  reader process may not have drained the data yet!
2769 	 */
2770 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2771 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2772 
2773 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2774 			len--;
2775 		data_was_unread += len;
2776 		__kfree_skb(skb);
2777 	}
2778 
2779 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2780 	if (sk->sk_state == TCP_CLOSE)
2781 		goto adjudge_to_death;
2782 
2783 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2784 	 * data was lost. To witness the awful effects of the old behavior of
2785 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2786 	 * GET in an FTP client, suspend the process, wait for the client to
2787 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2788 	 * Note: timeout is always zero in such a case.
2789 	 */
2790 	if (unlikely(tcp_sk(sk)->repair)) {
2791 		sk->sk_prot->disconnect(sk, 0);
2792 	} else if (data_was_unread) {
2793 		/* Unread data was tossed, zap the connection. */
2794 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2795 		tcp_set_state(sk, TCP_CLOSE);
2796 		tcp_send_active_reset(sk, sk->sk_allocation);
2797 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2798 		/* Check zero linger _after_ checking for unread data. */
2799 		sk->sk_prot->disconnect(sk, 0);
2800 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2801 	} else if (tcp_close_state(sk)) {
2802 		/* We FIN if the application ate all the data before
2803 		 * zapping the connection.
2804 		 */
2805 
2806 		/* RED-PEN. Formally speaking, we have broken TCP state
2807 		 * machine. State transitions:
2808 		 *
2809 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2810 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2811 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2812 		 *
2813 		 * are legal only when FIN has been sent (i.e. in window),
2814 		 * rather than queued out of window. Purists blame.
2815 		 *
2816 		 * F.e. "RFC state" is ESTABLISHED,
2817 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2818 		 *
2819 		 * The visible declinations are that sometimes
2820 		 * we enter time-wait state, when it is not required really
2821 		 * (harmless), do not send active resets, when they are
2822 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2823 		 * they look as CLOSING or LAST_ACK for Linux)
2824 		 * Probably, I missed some more holelets.
2825 		 * 						--ANK
2826 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2827 		 * in a single packet! (May consider it later but will
2828 		 * probably need API support or TCP_CORK SYN-ACK until
2829 		 * data is written and socket is closed.)
2830 		 */
2831 		tcp_send_fin(sk);
2832 	}
2833 
2834 	sk_stream_wait_close(sk, timeout);
2835 
2836 adjudge_to_death:
2837 	state = sk->sk_state;
2838 	sock_hold(sk);
2839 	sock_orphan(sk);
2840 
2841 	local_bh_disable();
2842 	bh_lock_sock(sk);
2843 	/* remove backlog if any, without releasing ownership. */
2844 	__release_sock(sk);
2845 
2846 	this_cpu_inc(tcp_orphan_count);
2847 
2848 	/* Have we already been destroyed by a softirq or backlog? */
2849 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2850 		goto out;
2851 
2852 	/*	This is a (useful) BSD violating of the RFC. There is a
2853 	 *	problem with TCP as specified in that the other end could
2854 	 *	keep a socket open forever with no application left this end.
2855 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2856 	 *	our end. If they send after that then tough - BUT: long enough
2857 	 *	that we won't make the old 4*rto = almost no time - whoops
2858 	 *	reset mistake.
2859 	 *
2860 	 *	Nope, it was not mistake. It is really desired behaviour
2861 	 *	f.e. on http servers, when such sockets are useless, but
2862 	 *	consume significant resources. Let's do it with special
2863 	 *	linger2	option.					--ANK
2864 	 */
2865 
2866 	if (sk->sk_state == TCP_FIN_WAIT2) {
2867 		struct tcp_sock *tp = tcp_sk(sk);
2868 		if (tp->linger2 < 0) {
2869 			tcp_set_state(sk, TCP_CLOSE);
2870 			tcp_send_active_reset(sk, GFP_ATOMIC);
2871 			__NET_INC_STATS(sock_net(sk),
2872 					LINUX_MIB_TCPABORTONLINGER);
2873 		} else {
2874 			const int tmo = tcp_fin_time(sk);
2875 
2876 			if (tmo > TCP_TIMEWAIT_LEN) {
2877 				inet_csk_reset_keepalive_timer(sk,
2878 						tmo - TCP_TIMEWAIT_LEN);
2879 			} else {
2880 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2881 				goto out;
2882 			}
2883 		}
2884 	}
2885 	if (sk->sk_state != TCP_CLOSE) {
2886 		if (tcp_check_oom(sk, 0)) {
2887 			tcp_set_state(sk, TCP_CLOSE);
2888 			tcp_send_active_reset(sk, GFP_ATOMIC);
2889 			__NET_INC_STATS(sock_net(sk),
2890 					LINUX_MIB_TCPABORTONMEMORY);
2891 		} else if (!check_net(sock_net(sk))) {
2892 			/* Not possible to send reset; just close */
2893 			tcp_set_state(sk, TCP_CLOSE);
2894 		}
2895 	}
2896 
2897 	if (sk->sk_state == TCP_CLOSE) {
2898 		struct request_sock *req;
2899 
2900 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2901 						lockdep_sock_is_held(sk));
2902 		/* We could get here with a non-NULL req if the socket is
2903 		 * aborted (e.g., closed with unread data) before 3WHS
2904 		 * finishes.
2905 		 */
2906 		if (req)
2907 			reqsk_fastopen_remove(sk, req, false);
2908 		inet_csk_destroy_sock(sk);
2909 	}
2910 	/* Otherwise, socket is reprieved until protocol close. */
2911 
2912 out:
2913 	bh_unlock_sock(sk);
2914 	local_bh_enable();
2915 }
2916 
2917 void tcp_close(struct sock *sk, long timeout)
2918 {
2919 	lock_sock(sk);
2920 	__tcp_close(sk, timeout);
2921 	release_sock(sk);
2922 	sock_put(sk);
2923 }
2924 EXPORT_SYMBOL(tcp_close);
2925 
2926 /* These states need RST on ABORT according to RFC793 */
2927 
2928 static inline bool tcp_need_reset(int state)
2929 {
2930 	return (1 << state) &
2931 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2932 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2933 }
2934 
2935 static void tcp_rtx_queue_purge(struct sock *sk)
2936 {
2937 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2938 
2939 	tcp_sk(sk)->highest_sack = NULL;
2940 	while (p) {
2941 		struct sk_buff *skb = rb_to_skb(p);
2942 
2943 		p = rb_next(p);
2944 		/* Since we are deleting whole queue, no need to
2945 		 * list_del(&skb->tcp_tsorted_anchor)
2946 		 */
2947 		tcp_rtx_queue_unlink(skb, sk);
2948 		tcp_wmem_free_skb(sk, skb);
2949 	}
2950 }
2951 
2952 void tcp_write_queue_purge(struct sock *sk)
2953 {
2954 	struct sk_buff *skb;
2955 
2956 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2957 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2958 		tcp_skb_tsorted_anchor_cleanup(skb);
2959 		tcp_wmem_free_skb(sk, skb);
2960 	}
2961 	tcp_rtx_queue_purge(sk);
2962 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2963 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2964 	tcp_sk(sk)->packets_out = 0;
2965 	inet_csk(sk)->icsk_backoff = 0;
2966 }
2967 
2968 int tcp_disconnect(struct sock *sk, int flags)
2969 {
2970 	struct inet_sock *inet = inet_sk(sk);
2971 	struct inet_connection_sock *icsk = inet_csk(sk);
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 	int old_state = sk->sk_state;
2974 	u32 seq;
2975 
2976 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2977 	 * or inet_wait_for_connect().
2978 	 */
2979 	if (sk->sk_wait_pending)
2980 		return -EBUSY;
2981 
2982 	if (old_state != TCP_CLOSE)
2983 		tcp_set_state(sk, TCP_CLOSE);
2984 
2985 	/* ABORT function of RFC793 */
2986 	if (old_state == TCP_LISTEN) {
2987 		inet_csk_listen_stop(sk);
2988 	} else if (unlikely(tp->repair)) {
2989 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2990 	} else if (tcp_need_reset(old_state) ||
2991 		   (tp->snd_nxt != tp->write_seq &&
2992 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2993 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2994 		 * states
2995 		 */
2996 		tcp_send_active_reset(sk, gfp_any());
2997 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2998 	} else if (old_state == TCP_SYN_SENT)
2999 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3000 
3001 	tcp_clear_xmit_timers(sk);
3002 	__skb_queue_purge(&sk->sk_receive_queue);
3003 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3004 	WRITE_ONCE(tp->urg_data, 0);
3005 	tcp_write_queue_purge(sk);
3006 	tcp_fastopen_active_disable_ofo_check(sk);
3007 	skb_rbtree_purge(&tp->out_of_order_queue);
3008 
3009 	inet->inet_dport = 0;
3010 
3011 	inet_bhash2_reset_saddr(sk);
3012 
3013 	WRITE_ONCE(sk->sk_shutdown, 0);
3014 	sock_reset_flag(sk, SOCK_DONE);
3015 	tp->srtt_us = 0;
3016 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3017 	tp->rcv_rtt_last_tsecr = 0;
3018 
3019 	seq = tp->write_seq + tp->max_window + 2;
3020 	if (!seq)
3021 		seq = 1;
3022 	WRITE_ONCE(tp->write_seq, seq);
3023 
3024 	icsk->icsk_backoff = 0;
3025 	icsk->icsk_probes_out = 0;
3026 	icsk->icsk_probes_tstamp = 0;
3027 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3028 	icsk->icsk_rto_min = TCP_RTO_MIN;
3029 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3030 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3031 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3032 	tp->snd_cwnd_cnt = 0;
3033 	tp->is_cwnd_limited = 0;
3034 	tp->max_packets_out = 0;
3035 	tp->window_clamp = 0;
3036 	tp->delivered = 0;
3037 	tp->delivered_ce = 0;
3038 	if (icsk->icsk_ca_ops->release)
3039 		icsk->icsk_ca_ops->release(sk);
3040 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3041 	icsk->icsk_ca_initialized = 0;
3042 	tcp_set_ca_state(sk, TCP_CA_Open);
3043 	tp->is_sack_reneg = 0;
3044 	tcp_clear_retrans(tp);
3045 	tp->total_retrans = 0;
3046 	inet_csk_delack_init(sk);
3047 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3048 	 * issue in __tcp_select_window()
3049 	 */
3050 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3051 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3052 	__sk_dst_reset(sk);
3053 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3054 	tcp_saved_syn_free(tp);
3055 	tp->compressed_ack = 0;
3056 	tp->segs_in = 0;
3057 	tp->segs_out = 0;
3058 	tp->bytes_sent = 0;
3059 	tp->bytes_acked = 0;
3060 	tp->bytes_received = 0;
3061 	tp->bytes_retrans = 0;
3062 	tp->data_segs_in = 0;
3063 	tp->data_segs_out = 0;
3064 	tp->duplicate_sack[0].start_seq = 0;
3065 	tp->duplicate_sack[0].end_seq = 0;
3066 	tp->dsack_dups = 0;
3067 	tp->reord_seen = 0;
3068 	tp->retrans_out = 0;
3069 	tp->sacked_out = 0;
3070 	tp->tlp_high_seq = 0;
3071 	tp->last_oow_ack_time = 0;
3072 	tp->plb_rehash = 0;
3073 	/* There's a bubble in the pipe until at least the first ACK. */
3074 	tp->app_limited = ~0U;
3075 	tp->rate_app_limited = 1;
3076 	tp->rack.mstamp = 0;
3077 	tp->rack.advanced = 0;
3078 	tp->rack.reo_wnd_steps = 1;
3079 	tp->rack.last_delivered = 0;
3080 	tp->rack.reo_wnd_persist = 0;
3081 	tp->rack.dsack_seen = 0;
3082 	tp->syn_data_acked = 0;
3083 	tp->rx_opt.saw_tstamp = 0;
3084 	tp->rx_opt.dsack = 0;
3085 	tp->rx_opt.num_sacks = 0;
3086 	tp->rcv_ooopack = 0;
3087 
3088 
3089 	/* Clean up fastopen related fields */
3090 	tcp_free_fastopen_req(tp);
3091 	inet->defer_connect = 0;
3092 	tp->fastopen_client_fail = 0;
3093 
3094 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3095 
3096 	if (sk->sk_frag.page) {
3097 		put_page(sk->sk_frag.page);
3098 		sk->sk_frag.page = NULL;
3099 		sk->sk_frag.offset = 0;
3100 	}
3101 	sk_error_report(sk);
3102 	return 0;
3103 }
3104 EXPORT_SYMBOL(tcp_disconnect);
3105 
3106 static inline bool tcp_can_repair_sock(const struct sock *sk)
3107 {
3108 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3109 		(sk->sk_state != TCP_LISTEN);
3110 }
3111 
3112 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3113 {
3114 	struct tcp_repair_window opt;
3115 
3116 	if (!tp->repair)
3117 		return -EPERM;
3118 
3119 	if (len != sizeof(opt))
3120 		return -EINVAL;
3121 
3122 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3123 		return -EFAULT;
3124 
3125 	if (opt.max_window < opt.snd_wnd)
3126 		return -EINVAL;
3127 
3128 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3129 		return -EINVAL;
3130 
3131 	if (after(opt.rcv_wup, tp->rcv_nxt))
3132 		return -EINVAL;
3133 
3134 	tp->snd_wl1	= opt.snd_wl1;
3135 	tp->snd_wnd	= opt.snd_wnd;
3136 	tp->max_window	= opt.max_window;
3137 
3138 	tp->rcv_wnd	= opt.rcv_wnd;
3139 	tp->rcv_wup	= opt.rcv_wup;
3140 
3141 	return 0;
3142 }
3143 
3144 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3145 		unsigned int len)
3146 {
3147 	struct tcp_sock *tp = tcp_sk(sk);
3148 	struct tcp_repair_opt opt;
3149 	size_t offset = 0;
3150 
3151 	while (len >= sizeof(opt)) {
3152 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3153 			return -EFAULT;
3154 
3155 		offset += sizeof(opt);
3156 		len -= sizeof(opt);
3157 
3158 		switch (opt.opt_code) {
3159 		case TCPOPT_MSS:
3160 			tp->rx_opt.mss_clamp = opt.opt_val;
3161 			tcp_mtup_init(sk);
3162 			break;
3163 		case TCPOPT_WINDOW:
3164 			{
3165 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3166 				u16 rcv_wscale = opt.opt_val >> 16;
3167 
3168 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3169 					return -EFBIG;
3170 
3171 				tp->rx_opt.snd_wscale = snd_wscale;
3172 				tp->rx_opt.rcv_wscale = rcv_wscale;
3173 				tp->rx_opt.wscale_ok = 1;
3174 			}
3175 			break;
3176 		case TCPOPT_SACK_PERM:
3177 			if (opt.opt_val != 0)
3178 				return -EINVAL;
3179 
3180 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3181 			break;
3182 		case TCPOPT_TIMESTAMP:
3183 			if (opt.opt_val != 0)
3184 				return -EINVAL;
3185 
3186 			tp->rx_opt.tstamp_ok = 1;
3187 			break;
3188 		}
3189 	}
3190 
3191 	return 0;
3192 }
3193 
3194 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3195 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3196 
3197 static void tcp_enable_tx_delay(void)
3198 {
3199 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3200 		static int __tcp_tx_delay_enabled = 0;
3201 
3202 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3203 			static_branch_enable(&tcp_tx_delay_enabled);
3204 			pr_info("TCP_TX_DELAY enabled\n");
3205 		}
3206 	}
3207 }
3208 
3209 /* When set indicates to always queue non-full frames.  Later the user clears
3210  * this option and we transmit any pending partial frames in the queue.  This is
3211  * meant to be used alongside sendfile() to get properly filled frames when the
3212  * user (for example) must write out headers with a write() call first and then
3213  * use sendfile to send out the data parts.
3214  *
3215  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3216  * TCP_NODELAY.
3217  */
3218 void __tcp_sock_set_cork(struct sock *sk, bool on)
3219 {
3220 	struct tcp_sock *tp = tcp_sk(sk);
3221 
3222 	if (on) {
3223 		tp->nonagle |= TCP_NAGLE_CORK;
3224 	} else {
3225 		tp->nonagle &= ~TCP_NAGLE_CORK;
3226 		if (tp->nonagle & TCP_NAGLE_OFF)
3227 			tp->nonagle |= TCP_NAGLE_PUSH;
3228 		tcp_push_pending_frames(sk);
3229 	}
3230 }
3231 
3232 void tcp_sock_set_cork(struct sock *sk, bool on)
3233 {
3234 	lock_sock(sk);
3235 	__tcp_sock_set_cork(sk, on);
3236 	release_sock(sk);
3237 }
3238 EXPORT_SYMBOL(tcp_sock_set_cork);
3239 
3240 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3241  * remembered, but it is not activated until cork is cleared.
3242  *
3243  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3244  * even TCP_CORK for currently queued segments.
3245  */
3246 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3247 {
3248 	if (on) {
3249 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3250 		tcp_push_pending_frames(sk);
3251 	} else {
3252 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3253 	}
3254 }
3255 
3256 void tcp_sock_set_nodelay(struct sock *sk)
3257 {
3258 	lock_sock(sk);
3259 	__tcp_sock_set_nodelay(sk, true);
3260 	release_sock(sk);
3261 }
3262 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3263 
3264 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3265 {
3266 	if (!val) {
3267 		inet_csk_enter_pingpong_mode(sk);
3268 		return;
3269 	}
3270 
3271 	inet_csk_exit_pingpong_mode(sk);
3272 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3273 	    inet_csk_ack_scheduled(sk)) {
3274 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3275 		tcp_cleanup_rbuf(sk, 1);
3276 		if (!(val & 1))
3277 			inet_csk_enter_pingpong_mode(sk);
3278 	}
3279 }
3280 
3281 void tcp_sock_set_quickack(struct sock *sk, int val)
3282 {
3283 	lock_sock(sk);
3284 	__tcp_sock_set_quickack(sk, val);
3285 	release_sock(sk);
3286 }
3287 EXPORT_SYMBOL(tcp_sock_set_quickack);
3288 
3289 int tcp_sock_set_syncnt(struct sock *sk, int val)
3290 {
3291 	if (val < 1 || val > MAX_TCP_SYNCNT)
3292 		return -EINVAL;
3293 
3294 	lock_sock(sk);
3295 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3296 	release_sock(sk);
3297 	return 0;
3298 }
3299 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3300 
3301 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3302 {
3303 	lock_sock(sk);
3304 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3305 	release_sock(sk);
3306 }
3307 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3308 
3309 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3310 {
3311 	struct tcp_sock *tp = tcp_sk(sk);
3312 
3313 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3314 		return -EINVAL;
3315 
3316 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3317 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3318 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3319 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3320 		u32 elapsed = keepalive_time_elapsed(tp);
3321 
3322 		if (tp->keepalive_time > elapsed)
3323 			elapsed = tp->keepalive_time - elapsed;
3324 		else
3325 			elapsed = 0;
3326 		inet_csk_reset_keepalive_timer(sk, elapsed);
3327 	}
3328 
3329 	return 0;
3330 }
3331 
3332 int tcp_sock_set_keepidle(struct sock *sk, int val)
3333 {
3334 	int err;
3335 
3336 	lock_sock(sk);
3337 	err = tcp_sock_set_keepidle_locked(sk, val);
3338 	release_sock(sk);
3339 	return err;
3340 }
3341 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3342 
3343 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3344 {
3345 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3346 		return -EINVAL;
3347 
3348 	lock_sock(sk);
3349 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3350 	release_sock(sk);
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3354 
3355 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3356 {
3357 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3358 		return -EINVAL;
3359 
3360 	lock_sock(sk);
3361 	/* Paired with READ_ONCE() in keepalive_probes() */
3362 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3363 	release_sock(sk);
3364 	return 0;
3365 }
3366 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3367 
3368 int tcp_set_window_clamp(struct sock *sk, int val)
3369 {
3370 	struct tcp_sock *tp = tcp_sk(sk);
3371 
3372 	if (!val) {
3373 		if (sk->sk_state != TCP_CLOSE)
3374 			return -EINVAL;
3375 		tp->window_clamp = 0;
3376 	} else {
3377 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3378 			SOCK_MIN_RCVBUF / 2 : val;
3379 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3380 	}
3381 	return 0;
3382 }
3383 
3384 /*
3385  *	Socket option code for TCP.
3386  */
3387 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3388 		      sockptr_t optval, unsigned int optlen)
3389 {
3390 	struct tcp_sock *tp = tcp_sk(sk);
3391 	struct inet_connection_sock *icsk = inet_csk(sk);
3392 	struct net *net = sock_net(sk);
3393 	int val;
3394 	int err = 0;
3395 
3396 	/* These are data/string values, all the others are ints */
3397 	switch (optname) {
3398 	case TCP_CONGESTION: {
3399 		char name[TCP_CA_NAME_MAX];
3400 
3401 		if (optlen < 1)
3402 			return -EINVAL;
3403 
3404 		val = strncpy_from_sockptr(name, optval,
3405 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3406 		if (val < 0)
3407 			return -EFAULT;
3408 		name[val] = 0;
3409 
3410 		sockopt_lock_sock(sk);
3411 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3412 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3413 								    CAP_NET_ADMIN));
3414 		sockopt_release_sock(sk);
3415 		return err;
3416 	}
3417 	case TCP_ULP: {
3418 		char name[TCP_ULP_NAME_MAX];
3419 
3420 		if (optlen < 1)
3421 			return -EINVAL;
3422 
3423 		val = strncpy_from_sockptr(name, optval,
3424 					min_t(long, TCP_ULP_NAME_MAX - 1,
3425 					      optlen));
3426 		if (val < 0)
3427 			return -EFAULT;
3428 		name[val] = 0;
3429 
3430 		sockopt_lock_sock(sk);
3431 		err = tcp_set_ulp(sk, name);
3432 		sockopt_release_sock(sk);
3433 		return err;
3434 	}
3435 	case TCP_FASTOPEN_KEY: {
3436 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3437 		__u8 *backup_key = NULL;
3438 
3439 		/* Allow a backup key as well to facilitate key rotation
3440 		 * First key is the active one.
3441 		 */
3442 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3443 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3444 			return -EINVAL;
3445 
3446 		if (copy_from_sockptr(key, optval, optlen))
3447 			return -EFAULT;
3448 
3449 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3450 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3451 
3452 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3453 	}
3454 	default:
3455 		/* fallthru */
3456 		break;
3457 	}
3458 
3459 	if (optlen < sizeof(int))
3460 		return -EINVAL;
3461 
3462 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3463 		return -EFAULT;
3464 
3465 	sockopt_lock_sock(sk);
3466 
3467 	switch (optname) {
3468 	case TCP_MAXSEG:
3469 		/* Values greater than interface MTU won't take effect. However
3470 		 * at the point when this call is done we typically don't yet
3471 		 * know which interface is going to be used
3472 		 */
3473 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3474 			err = -EINVAL;
3475 			break;
3476 		}
3477 		tp->rx_opt.user_mss = val;
3478 		break;
3479 
3480 	case TCP_NODELAY:
3481 		__tcp_sock_set_nodelay(sk, val);
3482 		break;
3483 
3484 	case TCP_THIN_LINEAR_TIMEOUTS:
3485 		if (val < 0 || val > 1)
3486 			err = -EINVAL;
3487 		else
3488 			tp->thin_lto = val;
3489 		break;
3490 
3491 	case TCP_THIN_DUPACK:
3492 		if (val < 0 || val > 1)
3493 			err = -EINVAL;
3494 		break;
3495 
3496 	case TCP_REPAIR:
3497 		if (!tcp_can_repair_sock(sk))
3498 			err = -EPERM;
3499 		else if (val == TCP_REPAIR_ON) {
3500 			tp->repair = 1;
3501 			sk->sk_reuse = SK_FORCE_REUSE;
3502 			tp->repair_queue = TCP_NO_QUEUE;
3503 		} else if (val == TCP_REPAIR_OFF) {
3504 			tp->repair = 0;
3505 			sk->sk_reuse = SK_NO_REUSE;
3506 			tcp_send_window_probe(sk);
3507 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3508 			tp->repair = 0;
3509 			sk->sk_reuse = SK_NO_REUSE;
3510 		} else
3511 			err = -EINVAL;
3512 
3513 		break;
3514 
3515 	case TCP_REPAIR_QUEUE:
3516 		if (!tp->repair)
3517 			err = -EPERM;
3518 		else if ((unsigned int)val < TCP_QUEUES_NR)
3519 			tp->repair_queue = val;
3520 		else
3521 			err = -EINVAL;
3522 		break;
3523 
3524 	case TCP_QUEUE_SEQ:
3525 		if (sk->sk_state != TCP_CLOSE) {
3526 			err = -EPERM;
3527 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3528 			if (!tcp_rtx_queue_empty(sk))
3529 				err = -EPERM;
3530 			else
3531 				WRITE_ONCE(tp->write_seq, val);
3532 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3533 			if (tp->rcv_nxt != tp->copied_seq) {
3534 				err = -EPERM;
3535 			} else {
3536 				WRITE_ONCE(tp->rcv_nxt, val);
3537 				WRITE_ONCE(tp->copied_seq, val);
3538 			}
3539 		} else {
3540 			err = -EINVAL;
3541 		}
3542 		break;
3543 
3544 	case TCP_REPAIR_OPTIONS:
3545 		if (!tp->repair)
3546 			err = -EINVAL;
3547 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3548 			err = tcp_repair_options_est(sk, optval, optlen);
3549 		else
3550 			err = -EPERM;
3551 		break;
3552 
3553 	case TCP_CORK:
3554 		__tcp_sock_set_cork(sk, val);
3555 		break;
3556 
3557 	case TCP_KEEPIDLE:
3558 		err = tcp_sock_set_keepidle_locked(sk, val);
3559 		break;
3560 	case TCP_KEEPINTVL:
3561 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3562 			err = -EINVAL;
3563 		else
3564 			WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3565 		break;
3566 	case TCP_KEEPCNT:
3567 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3568 			err = -EINVAL;
3569 		else
3570 			WRITE_ONCE(tp->keepalive_probes, val);
3571 		break;
3572 	case TCP_SYNCNT:
3573 		if (val < 1 || val > MAX_TCP_SYNCNT)
3574 			err = -EINVAL;
3575 		else
3576 			WRITE_ONCE(icsk->icsk_syn_retries, val);
3577 		break;
3578 
3579 	case TCP_SAVE_SYN:
3580 		/* 0: disable, 1: enable, 2: start from ether_header */
3581 		if (val < 0 || val > 2)
3582 			err = -EINVAL;
3583 		else
3584 			tp->save_syn = val;
3585 		break;
3586 
3587 	case TCP_LINGER2:
3588 		if (val < 0)
3589 			WRITE_ONCE(tp->linger2, -1);
3590 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3591 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3592 		else
3593 			WRITE_ONCE(tp->linger2, val * HZ);
3594 		break;
3595 
3596 	case TCP_DEFER_ACCEPT:
3597 		/* Translate value in seconds to number of retransmits */
3598 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3599 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3600 					   TCP_RTO_MAX / HZ));
3601 		break;
3602 
3603 	case TCP_WINDOW_CLAMP:
3604 		err = tcp_set_window_clamp(sk, val);
3605 		break;
3606 
3607 	case TCP_QUICKACK:
3608 		__tcp_sock_set_quickack(sk, val);
3609 		break;
3610 
3611 #ifdef CONFIG_TCP_MD5SIG
3612 	case TCP_MD5SIG:
3613 	case TCP_MD5SIG_EXT:
3614 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3615 		break;
3616 #endif
3617 	case TCP_USER_TIMEOUT:
3618 		/* Cap the max time in ms TCP will retry or probe the window
3619 		 * before giving up and aborting (ETIMEDOUT) a connection.
3620 		 */
3621 		if (val < 0)
3622 			err = -EINVAL;
3623 		else
3624 			WRITE_ONCE(icsk->icsk_user_timeout, val);
3625 		break;
3626 
3627 	case TCP_FASTOPEN:
3628 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3629 		    TCPF_LISTEN))) {
3630 			tcp_fastopen_init_key_once(net);
3631 
3632 			fastopen_queue_tune(sk, val);
3633 		} else {
3634 			err = -EINVAL;
3635 		}
3636 		break;
3637 	case TCP_FASTOPEN_CONNECT:
3638 		if (val > 1 || val < 0) {
3639 			err = -EINVAL;
3640 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3641 			   TFO_CLIENT_ENABLE) {
3642 			if (sk->sk_state == TCP_CLOSE)
3643 				tp->fastopen_connect = val;
3644 			else
3645 				err = -EINVAL;
3646 		} else {
3647 			err = -EOPNOTSUPP;
3648 		}
3649 		break;
3650 	case TCP_FASTOPEN_NO_COOKIE:
3651 		if (val > 1 || val < 0)
3652 			err = -EINVAL;
3653 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3654 			err = -EINVAL;
3655 		else
3656 			tp->fastopen_no_cookie = val;
3657 		break;
3658 	case TCP_TIMESTAMP:
3659 		if (!tp->repair)
3660 			err = -EPERM;
3661 		else
3662 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3663 		break;
3664 	case TCP_REPAIR_WINDOW:
3665 		err = tcp_repair_set_window(tp, optval, optlen);
3666 		break;
3667 	case TCP_NOTSENT_LOWAT:
3668 		WRITE_ONCE(tp->notsent_lowat, val);
3669 		sk->sk_write_space(sk);
3670 		break;
3671 	case TCP_INQ:
3672 		if (val > 1 || val < 0)
3673 			err = -EINVAL;
3674 		else
3675 			tp->recvmsg_inq = val;
3676 		break;
3677 	case TCP_TX_DELAY:
3678 		if (val)
3679 			tcp_enable_tx_delay();
3680 		WRITE_ONCE(tp->tcp_tx_delay, val);
3681 		break;
3682 	default:
3683 		err = -ENOPROTOOPT;
3684 		break;
3685 	}
3686 
3687 	sockopt_release_sock(sk);
3688 	return err;
3689 }
3690 
3691 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3692 		   unsigned int optlen)
3693 {
3694 	const struct inet_connection_sock *icsk = inet_csk(sk);
3695 
3696 	if (level != SOL_TCP)
3697 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3698 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3699 								optval, optlen);
3700 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3701 }
3702 EXPORT_SYMBOL(tcp_setsockopt);
3703 
3704 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3705 				      struct tcp_info *info)
3706 {
3707 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3708 	enum tcp_chrono i;
3709 
3710 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3711 		stats[i] = tp->chrono_stat[i - 1];
3712 		if (i == tp->chrono_type)
3713 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3714 		stats[i] *= USEC_PER_SEC / HZ;
3715 		total += stats[i];
3716 	}
3717 
3718 	info->tcpi_busy_time = total;
3719 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3720 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3721 }
3722 
3723 /* Return information about state of tcp endpoint in API format. */
3724 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3725 {
3726 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3727 	const struct inet_connection_sock *icsk = inet_csk(sk);
3728 	unsigned long rate;
3729 	u32 now;
3730 	u64 rate64;
3731 	bool slow;
3732 
3733 	memset(info, 0, sizeof(*info));
3734 	if (sk->sk_type != SOCK_STREAM)
3735 		return;
3736 
3737 	info->tcpi_state = inet_sk_state_load(sk);
3738 
3739 	/* Report meaningful fields for all TCP states, including listeners */
3740 	rate = READ_ONCE(sk->sk_pacing_rate);
3741 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3742 	info->tcpi_pacing_rate = rate64;
3743 
3744 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3745 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3746 	info->tcpi_max_pacing_rate = rate64;
3747 
3748 	info->tcpi_reordering = tp->reordering;
3749 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3750 
3751 	if (info->tcpi_state == TCP_LISTEN) {
3752 		/* listeners aliased fields :
3753 		 * tcpi_unacked -> Number of children ready for accept()
3754 		 * tcpi_sacked  -> max backlog
3755 		 */
3756 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3757 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3758 		return;
3759 	}
3760 
3761 	slow = lock_sock_fast(sk);
3762 
3763 	info->tcpi_ca_state = icsk->icsk_ca_state;
3764 	info->tcpi_retransmits = icsk->icsk_retransmits;
3765 	info->tcpi_probes = icsk->icsk_probes_out;
3766 	info->tcpi_backoff = icsk->icsk_backoff;
3767 
3768 	if (tp->rx_opt.tstamp_ok)
3769 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3770 	if (tcp_is_sack(tp))
3771 		info->tcpi_options |= TCPI_OPT_SACK;
3772 	if (tp->rx_opt.wscale_ok) {
3773 		info->tcpi_options |= TCPI_OPT_WSCALE;
3774 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3775 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3776 	}
3777 
3778 	if (tp->ecn_flags & TCP_ECN_OK)
3779 		info->tcpi_options |= TCPI_OPT_ECN;
3780 	if (tp->ecn_flags & TCP_ECN_SEEN)
3781 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3782 	if (tp->syn_data_acked)
3783 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3784 
3785 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3786 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3787 	info->tcpi_snd_mss = tp->mss_cache;
3788 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3789 
3790 	info->tcpi_unacked = tp->packets_out;
3791 	info->tcpi_sacked = tp->sacked_out;
3792 
3793 	info->tcpi_lost = tp->lost_out;
3794 	info->tcpi_retrans = tp->retrans_out;
3795 
3796 	now = tcp_jiffies32;
3797 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3798 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3799 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3800 
3801 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3802 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3803 	info->tcpi_rtt = tp->srtt_us >> 3;
3804 	info->tcpi_rttvar = tp->mdev_us >> 2;
3805 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3806 	info->tcpi_advmss = tp->advmss;
3807 
3808 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3809 	info->tcpi_rcv_space = tp->rcvq_space.space;
3810 
3811 	info->tcpi_total_retrans = tp->total_retrans;
3812 
3813 	info->tcpi_bytes_acked = tp->bytes_acked;
3814 	info->tcpi_bytes_received = tp->bytes_received;
3815 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3816 	tcp_get_info_chrono_stats(tp, info);
3817 
3818 	info->tcpi_segs_out = tp->segs_out;
3819 
3820 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3821 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3822 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3823 
3824 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3825 	info->tcpi_data_segs_out = tp->data_segs_out;
3826 
3827 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3828 	rate64 = tcp_compute_delivery_rate(tp);
3829 	if (rate64)
3830 		info->tcpi_delivery_rate = rate64;
3831 	info->tcpi_delivered = tp->delivered;
3832 	info->tcpi_delivered_ce = tp->delivered_ce;
3833 	info->tcpi_bytes_sent = tp->bytes_sent;
3834 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3835 	info->tcpi_dsack_dups = tp->dsack_dups;
3836 	info->tcpi_reord_seen = tp->reord_seen;
3837 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3838 	info->tcpi_snd_wnd = tp->snd_wnd;
3839 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3840 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3841 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3842 	unlock_sock_fast(sk, slow);
3843 }
3844 EXPORT_SYMBOL_GPL(tcp_get_info);
3845 
3846 static size_t tcp_opt_stats_get_size(void)
3847 {
3848 	return
3849 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3850 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3851 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3852 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3853 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3854 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3855 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3856 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3858 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3859 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3860 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3862 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3863 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3865 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3866 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3867 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3868 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3869 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3870 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3871 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3872 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3873 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3874 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3875 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3876 		0;
3877 }
3878 
3879 /* Returns TTL or hop limit of an incoming packet from skb. */
3880 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3881 {
3882 	if (skb->protocol == htons(ETH_P_IP))
3883 		return ip_hdr(skb)->ttl;
3884 	else if (skb->protocol == htons(ETH_P_IPV6))
3885 		return ipv6_hdr(skb)->hop_limit;
3886 	else
3887 		return 0;
3888 }
3889 
3890 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3891 					       const struct sk_buff *orig_skb,
3892 					       const struct sk_buff *ack_skb)
3893 {
3894 	const struct tcp_sock *tp = tcp_sk(sk);
3895 	struct sk_buff *stats;
3896 	struct tcp_info info;
3897 	unsigned long rate;
3898 	u64 rate64;
3899 
3900 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3901 	if (!stats)
3902 		return NULL;
3903 
3904 	tcp_get_info_chrono_stats(tp, &info);
3905 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3906 			  info.tcpi_busy_time, TCP_NLA_PAD);
3907 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3908 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3909 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3910 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3911 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3912 			  tp->data_segs_out, TCP_NLA_PAD);
3913 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3914 			  tp->total_retrans, TCP_NLA_PAD);
3915 
3916 	rate = READ_ONCE(sk->sk_pacing_rate);
3917 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3918 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3919 
3920 	rate64 = tcp_compute_delivery_rate(tp);
3921 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3922 
3923 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3924 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3925 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3926 
3927 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3928 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3929 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3930 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3931 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3932 
3933 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3934 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3935 
3936 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3937 			  TCP_NLA_PAD);
3938 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3939 			  TCP_NLA_PAD);
3940 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3941 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3942 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3943 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3944 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3945 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3946 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3947 			  TCP_NLA_PAD);
3948 	if (ack_skb)
3949 		nla_put_u8(stats, TCP_NLA_TTL,
3950 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3951 
3952 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3953 	return stats;
3954 }
3955 
3956 int do_tcp_getsockopt(struct sock *sk, int level,
3957 		      int optname, sockptr_t optval, sockptr_t optlen)
3958 {
3959 	struct inet_connection_sock *icsk = inet_csk(sk);
3960 	struct tcp_sock *tp = tcp_sk(sk);
3961 	struct net *net = sock_net(sk);
3962 	int val, len;
3963 
3964 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3965 		return -EFAULT;
3966 
3967 	len = min_t(unsigned int, len, sizeof(int));
3968 
3969 	if (len < 0)
3970 		return -EINVAL;
3971 
3972 	switch (optname) {
3973 	case TCP_MAXSEG:
3974 		val = tp->mss_cache;
3975 		if (tp->rx_opt.user_mss &&
3976 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3977 			val = tp->rx_opt.user_mss;
3978 		if (tp->repair)
3979 			val = tp->rx_opt.mss_clamp;
3980 		break;
3981 	case TCP_NODELAY:
3982 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3983 		break;
3984 	case TCP_CORK:
3985 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3986 		break;
3987 	case TCP_KEEPIDLE:
3988 		val = keepalive_time_when(tp) / HZ;
3989 		break;
3990 	case TCP_KEEPINTVL:
3991 		val = keepalive_intvl_when(tp) / HZ;
3992 		break;
3993 	case TCP_KEEPCNT:
3994 		val = keepalive_probes(tp);
3995 		break;
3996 	case TCP_SYNCNT:
3997 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3998 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3999 		break;
4000 	case TCP_LINGER2:
4001 		val = READ_ONCE(tp->linger2);
4002 		if (val >= 0)
4003 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4004 		break;
4005 	case TCP_DEFER_ACCEPT:
4006 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4007 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4008 				      TCP_RTO_MAX / HZ);
4009 		break;
4010 	case TCP_WINDOW_CLAMP:
4011 		val = tp->window_clamp;
4012 		break;
4013 	case TCP_INFO: {
4014 		struct tcp_info info;
4015 
4016 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4017 			return -EFAULT;
4018 
4019 		tcp_get_info(sk, &info);
4020 
4021 		len = min_t(unsigned int, len, sizeof(info));
4022 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4023 			return -EFAULT;
4024 		if (copy_to_sockptr(optval, &info, len))
4025 			return -EFAULT;
4026 		return 0;
4027 	}
4028 	case TCP_CC_INFO: {
4029 		const struct tcp_congestion_ops *ca_ops;
4030 		union tcp_cc_info info;
4031 		size_t sz = 0;
4032 		int attr;
4033 
4034 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4035 			return -EFAULT;
4036 
4037 		ca_ops = icsk->icsk_ca_ops;
4038 		if (ca_ops && ca_ops->get_info)
4039 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4040 
4041 		len = min_t(unsigned int, len, sz);
4042 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4043 			return -EFAULT;
4044 		if (copy_to_sockptr(optval, &info, len))
4045 			return -EFAULT;
4046 		return 0;
4047 	}
4048 	case TCP_QUICKACK:
4049 		val = !inet_csk_in_pingpong_mode(sk);
4050 		break;
4051 
4052 	case TCP_CONGESTION:
4053 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4054 			return -EFAULT;
4055 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4056 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4057 			return -EFAULT;
4058 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4059 			return -EFAULT;
4060 		return 0;
4061 
4062 	case TCP_ULP:
4063 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4064 			return -EFAULT;
4065 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4066 		if (!icsk->icsk_ulp_ops) {
4067 			len = 0;
4068 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4069 				return -EFAULT;
4070 			return 0;
4071 		}
4072 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4073 			return -EFAULT;
4074 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4075 			return -EFAULT;
4076 		return 0;
4077 
4078 	case TCP_FASTOPEN_KEY: {
4079 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4080 		unsigned int key_len;
4081 
4082 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4083 			return -EFAULT;
4084 
4085 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4086 				TCP_FASTOPEN_KEY_LENGTH;
4087 		len = min_t(unsigned int, len, key_len);
4088 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4089 			return -EFAULT;
4090 		if (copy_to_sockptr(optval, key, len))
4091 			return -EFAULT;
4092 		return 0;
4093 	}
4094 	case TCP_THIN_LINEAR_TIMEOUTS:
4095 		val = tp->thin_lto;
4096 		break;
4097 
4098 	case TCP_THIN_DUPACK:
4099 		val = 0;
4100 		break;
4101 
4102 	case TCP_REPAIR:
4103 		val = tp->repair;
4104 		break;
4105 
4106 	case TCP_REPAIR_QUEUE:
4107 		if (tp->repair)
4108 			val = tp->repair_queue;
4109 		else
4110 			return -EINVAL;
4111 		break;
4112 
4113 	case TCP_REPAIR_WINDOW: {
4114 		struct tcp_repair_window opt;
4115 
4116 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4117 			return -EFAULT;
4118 
4119 		if (len != sizeof(opt))
4120 			return -EINVAL;
4121 
4122 		if (!tp->repair)
4123 			return -EPERM;
4124 
4125 		opt.snd_wl1	= tp->snd_wl1;
4126 		opt.snd_wnd	= tp->snd_wnd;
4127 		opt.max_window	= tp->max_window;
4128 		opt.rcv_wnd	= tp->rcv_wnd;
4129 		opt.rcv_wup	= tp->rcv_wup;
4130 
4131 		if (copy_to_sockptr(optval, &opt, len))
4132 			return -EFAULT;
4133 		return 0;
4134 	}
4135 	case TCP_QUEUE_SEQ:
4136 		if (tp->repair_queue == TCP_SEND_QUEUE)
4137 			val = tp->write_seq;
4138 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4139 			val = tp->rcv_nxt;
4140 		else
4141 			return -EINVAL;
4142 		break;
4143 
4144 	case TCP_USER_TIMEOUT:
4145 		val = READ_ONCE(icsk->icsk_user_timeout);
4146 		break;
4147 
4148 	case TCP_FASTOPEN:
4149 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4150 		break;
4151 
4152 	case TCP_FASTOPEN_CONNECT:
4153 		val = tp->fastopen_connect;
4154 		break;
4155 
4156 	case TCP_FASTOPEN_NO_COOKIE:
4157 		val = tp->fastopen_no_cookie;
4158 		break;
4159 
4160 	case TCP_TX_DELAY:
4161 		val = READ_ONCE(tp->tcp_tx_delay);
4162 		break;
4163 
4164 	case TCP_TIMESTAMP:
4165 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4166 		break;
4167 	case TCP_NOTSENT_LOWAT:
4168 		val = READ_ONCE(tp->notsent_lowat);
4169 		break;
4170 	case TCP_INQ:
4171 		val = tp->recvmsg_inq;
4172 		break;
4173 	case TCP_SAVE_SYN:
4174 		val = tp->save_syn;
4175 		break;
4176 	case TCP_SAVED_SYN: {
4177 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4178 			return -EFAULT;
4179 
4180 		sockopt_lock_sock(sk);
4181 		if (tp->saved_syn) {
4182 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4183 				len = tcp_saved_syn_len(tp->saved_syn);
4184 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4185 					sockopt_release_sock(sk);
4186 					return -EFAULT;
4187 				}
4188 				sockopt_release_sock(sk);
4189 				return -EINVAL;
4190 			}
4191 			len = tcp_saved_syn_len(tp->saved_syn);
4192 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4193 				sockopt_release_sock(sk);
4194 				return -EFAULT;
4195 			}
4196 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4197 				sockopt_release_sock(sk);
4198 				return -EFAULT;
4199 			}
4200 			tcp_saved_syn_free(tp);
4201 			sockopt_release_sock(sk);
4202 		} else {
4203 			sockopt_release_sock(sk);
4204 			len = 0;
4205 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4206 				return -EFAULT;
4207 		}
4208 		return 0;
4209 	}
4210 #ifdef CONFIG_MMU
4211 	case TCP_ZEROCOPY_RECEIVE: {
4212 		struct scm_timestamping_internal tss;
4213 		struct tcp_zerocopy_receive zc = {};
4214 		int err;
4215 
4216 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4217 			return -EFAULT;
4218 		if (len < 0 ||
4219 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4220 			return -EINVAL;
4221 		if (unlikely(len > sizeof(zc))) {
4222 			err = check_zeroed_sockptr(optval, sizeof(zc),
4223 						   len - sizeof(zc));
4224 			if (err < 1)
4225 				return err == 0 ? -EINVAL : err;
4226 			len = sizeof(zc);
4227 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4228 				return -EFAULT;
4229 		}
4230 		if (copy_from_sockptr(&zc, optval, len))
4231 			return -EFAULT;
4232 		if (zc.reserved)
4233 			return -EINVAL;
4234 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4235 			return -EINVAL;
4236 		sockopt_lock_sock(sk);
4237 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4238 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4239 							  &zc, &len, err);
4240 		sockopt_release_sock(sk);
4241 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4242 			goto zerocopy_rcv_cmsg;
4243 		switch (len) {
4244 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4245 			goto zerocopy_rcv_cmsg;
4246 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4247 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4248 		case offsetofend(struct tcp_zerocopy_receive, flags):
4249 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4250 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4251 		case offsetofend(struct tcp_zerocopy_receive, err):
4252 			goto zerocopy_rcv_sk_err;
4253 		case offsetofend(struct tcp_zerocopy_receive, inq):
4254 			goto zerocopy_rcv_inq;
4255 		case offsetofend(struct tcp_zerocopy_receive, length):
4256 		default:
4257 			goto zerocopy_rcv_out;
4258 		}
4259 zerocopy_rcv_cmsg:
4260 		if (zc.msg_flags & TCP_CMSG_TS)
4261 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4262 		else
4263 			zc.msg_flags = 0;
4264 zerocopy_rcv_sk_err:
4265 		if (!err)
4266 			zc.err = sock_error(sk);
4267 zerocopy_rcv_inq:
4268 		zc.inq = tcp_inq_hint(sk);
4269 zerocopy_rcv_out:
4270 		if (!err && copy_to_sockptr(optval, &zc, len))
4271 			err = -EFAULT;
4272 		return err;
4273 	}
4274 #endif
4275 	default:
4276 		return -ENOPROTOOPT;
4277 	}
4278 
4279 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4280 		return -EFAULT;
4281 	if (copy_to_sockptr(optval, &val, len))
4282 		return -EFAULT;
4283 	return 0;
4284 }
4285 
4286 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4287 {
4288 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4289 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4290 	 */
4291 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4292 		return true;
4293 
4294 	return false;
4295 }
4296 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4297 
4298 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4299 		   int __user *optlen)
4300 {
4301 	struct inet_connection_sock *icsk = inet_csk(sk);
4302 
4303 	if (level != SOL_TCP)
4304 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4305 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4306 								optval, optlen);
4307 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4308 				 USER_SOCKPTR(optlen));
4309 }
4310 EXPORT_SYMBOL(tcp_getsockopt);
4311 
4312 #ifdef CONFIG_TCP_MD5SIG
4313 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4314 static DEFINE_MUTEX(tcp_md5sig_mutex);
4315 static bool tcp_md5sig_pool_populated = false;
4316 
4317 static void __tcp_alloc_md5sig_pool(void)
4318 {
4319 	struct crypto_ahash *hash;
4320 	int cpu;
4321 
4322 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4323 	if (IS_ERR(hash))
4324 		return;
4325 
4326 	for_each_possible_cpu(cpu) {
4327 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4328 		struct ahash_request *req;
4329 
4330 		if (!scratch) {
4331 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4332 					       sizeof(struct tcphdr),
4333 					       GFP_KERNEL,
4334 					       cpu_to_node(cpu));
4335 			if (!scratch)
4336 				return;
4337 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4338 		}
4339 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4340 			continue;
4341 
4342 		req = ahash_request_alloc(hash, GFP_KERNEL);
4343 		if (!req)
4344 			return;
4345 
4346 		ahash_request_set_callback(req, 0, NULL, NULL);
4347 
4348 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4349 	}
4350 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4351 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4352 	 */
4353 	smp_wmb();
4354 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4355 	 * and tcp_get_md5sig_pool().
4356 	*/
4357 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4358 }
4359 
4360 bool tcp_alloc_md5sig_pool(void)
4361 {
4362 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4363 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4364 		mutex_lock(&tcp_md5sig_mutex);
4365 
4366 		if (!tcp_md5sig_pool_populated)
4367 			__tcp_alloc_md5sig_pool();
4368 
4369 		mutex_unlock(&tcp_md5sig_mutex);
4370 	}
4371 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4372 	return READ_ONCE(tcp_md5sig_pool_populated);
4373 }
4374 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4375 
4376 
4377 /**
4378  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4379  *
4380  *	We use percpu structure, so if we succeed, we exit with preemption
4381  *	and BH disabled, to make sure another thread or softirq handling
4382  *	wont try to get same context.
4383  */
4384 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4385 {
4386 	local_bh_disable();
4387 
4388 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4389 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4390 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4391 		smp_rmb();
4392 		return this_cpu_ptr(&tcp_md5sig_pool);
4393 	}
4394 	local_bh_enable();
4395 	return NULL;
4396 }
4397 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4398 
4399 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4400 			  const struct sk_buff *skb, unsigned int header_len)
4401 {
4402 	struct scatterlist sg;
4403 	const struct tcphdr *tp = tcp_hdr(skb);
4404 	struct ahash_request *req = hp->md5_req;
4405 	unsigned int i;
4406 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4407 					   skb_headlen(skb) - header_len : 0;
4408 	const struct skb_shared_info *shi = skb_shinfo(skb);
4409 	struct sk_buff *frag_iter;
4410 
4411 	sg_init_table(&sg, 1);
4412 
4413 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4414 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4415 	if (crypto_ahash_update(req))
4416 		return 1;
4417 
4418 	for (i = 0; i < shi->nr_frags; ++i) {
4419 		const skb_frag_t *f = &shi->frags[i];
4420 		unsigned int offset = skb_frag_off(f);
4421 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4422 
4423 		sg_set_page(&sg, page, skb_frag_size(f),
4424 			    offset_in_page(offset));
4425 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4426 		if (crypto_ahash_update(req))
4427 			return 1;
4428 	}
4429 
4430 	skb_walk_frags(skb, frag_iter)
4431 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4432 			return 1;
4433 
4434 	return 0;
4435 }
4436 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4437 
4438 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4439 {
4440 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4441 	struct scatterlist sg;
4442 
4443 	sg_init_one(&sg, key->key, keylen);
4444 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4445 
4446 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4447 	return data_race(crypto_ahash_update(hp->md5_req));
4448 }
4449 EXPORT_SYMBOL(tcp_md5_hash_key);
4450 
4451 /* Called with rcu_read_lock() */
4452 enum skb_drop_reason
4453 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4454 		     const void *saddr, const void *daddr,
4455 		     int family, int dif, int sdif)
4456 {
4457 	/*
4458 	 * This gets called for each TCP segment that arrives
4459 	 * so we want to be efficient.
4460 	 * We have 3 drop cases:
4461 	 * o No MD5 hash and one expected.
4462 	 * o MD5 hash and we're not expecting one.
4463 	 * o MD5 hash and its wrong.
4464 	 */
4465 	const __u8 *hash_location = NULL;
4466 	struct tcp_md5sig_key *hash_expected;
4467 	const struct tcphdr *th = tcp_hdr(skb);
4468 	const struct tcp_sock *tp = tcp_sk(sk);
4469 	int genhash, l3index;
4470 	u8 newhash[16];
4471 
4472 	/* sdif set, means packet ingressed via a device
4473 	 * in an L3 domain and dif is set to the l3mdev
4474 	 */
4475 	l3index = sdif ? dif : 0;
4476 
4477 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4478 	hash_location = tcp_parse_md5sig_option(th);
4479 
4480 	/* We've parsed the options - do we have a hash? */
4481 	if (!hash_expected && !hash_location)
4482 		return SKB_NOT_DROPPED_YET;
4483 
4484 	if (hash_expected && !hash_location) {
4485 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4486 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4487 	}
4488 
4489 	if (!hash_expected && hash_location) {
4490 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4491 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4492 	}
4493 
4494 	/* Check the signature.
4495 	 * To support dual stack listeners, we need to handle
4496 	 * IPv4-mapped case.
4497 	 */
4498 	if (family == AF_INET)
4499 		genhash = tcp_v4_md5_hash_skb(newhash,
4500 					      hash_expected,
4501 					      NULL, skb);
4502 	else
4503 		genhash = tp->af_specific->calc_md5_hash(newhash,
4504 							 hash_expected,
4505 							 NULL, skb);
4506 
4507 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4508 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4509 		if (family == AF_INET) {
4510 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4511 					saddr, ntohs(th->source),
4512 					daddr, ntohs(th->dest),
4513 					genhash ? " tcp_v4_calc_md5_hash failed"
4514 					: "", l3index);
4515 		} else {
4516 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4517 					genhash ? "failed" : "mismatch",
4518 					saddr, ntohs(th->source),
4519 					daddr, ntohs(th->dest), l3index);
4520 		}
4521 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4522 	}
4523 	return SKB_NOT_DROPPED_YET;
4524 }
4525 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4526 
4527 #endif
4528 
4529 void tcp_done(struct sock *sk)
4530 {
4531 	struct request_sock *req;
4532 
4533 	/* We might be called with a new socket, after
4534 	 * inet_csk_prepare_forced_close() has been called
4535 	 * so we can not use lockdep_sock_is_held(sk)
4536 	 */
4537 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4538 
4539 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4540 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4541 
4542 	tcp_set_state(sk, TCP_CLOSE);
4543 	tcp_clear_xmit_timers(sk);
4544 	if (req)
4545 		reqsk_fastopen_remove(sk, req, false);
4546 
4547 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4548 
4549 	if (!sock_flag(sk, SOCK_DEAD))
4550 		sk->sk_state_change(sk);
4551 	else
4552 		inet_csk_destroy_sock(sk);
4553 }
4554 EXPORT_SYMBOL_GPL(tcp_done);
4555 
4556 int tcp_abort(struct sock *sk, int err)
4557 {
4558 	int state = inet_sk_state_load(sk);
4559 
4560 	if (state == TCP_NEW_SYN_RECV) {
4561 		struct request_sock *req = inet_reqsk(sk);
4562 
4563 		local_bh_disable();
4564 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4565 		local_bh_enable();
4566 		return 0;
4567 	}
4568 	if (state == TCP_TIME_WAIT) {
4569 		struct inet_timewait_sock *tw = inet_twsk(sk);
4570 
4571 		refcount_inc(&tw->tw_refcnt);
4572 		local_bh_disable();
4573 		inet_twsk_deschedule_put(tw);
4574 		local_bh_enable();
4575 		return 0;
4576 	}
4577 
4578 	/* BPF context ensures sock locking. */
4579 	if (!has_current_bpf_ctx())
4580 		/* Don't race with userspace socket closes such as tcp_close. */
4581 		lock_sock(sk);
4582 
4583 	if (sk->sk_state == TCP_LISTEN) {
4584 		tcp_set_state(sk, TCP_CLOSE);
4585 		inet_csk_listen_stop(sk);
4586 	}
4587 
4588 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4589 	local_bh_disable();
4590 	bh_lock_sock(sk);
4591 
4592 	if (!sock_flag(sk, SOCK_DEAD)) {
4593 		WRITE_ONCE(sk->sk_err, err);
4594 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4595 		smp_wmb();
4596 		sk_error_report(sk);
4597 		if (tcp_need_reset(sk->sk_state))
4598 			tcp_send_active_reset(sk, GFP_ATOMIC);
4599 		tcp_done(sk);
4600 	}
4601 
4602 	bh_unlock_sock(sk);
4603 	local_bh_enable();
4604 	tcp_write_queue_purge(sk);
4605 	if (!has_current_bpf_ctx())
4606 		release_sock(sk);
4607 	return 0;
4608 }
4609 EXPORT_SYMBOL_GPL(tcp_abort);
4610 
4611 extern struct tcp_congestion_ops tcp_reno;
4612 
4613 static __initdata unsigned long thash_entries;
4614 static int __init set_thash_entries(char *str)
4615 {
4616 	ssize_t ret;
4617 
4618 	if (!str)
4619 		return 0;
4620 
4621 	ret = kstrtoul(str, 0, &thash_entries);
4622 	if (ret)
4623 		return 0;
4624 
4625 	return 1;
4626 }
4627 __setup("thash_entries=", set_thash_entries);
4628 
4629 static void __init tcp_init_mem(void)
4630 {
4631 	unsigned long limit = nr_free_buffer_pages() / 16;
4632 
4633 	limit = max(limit, 128UL);
4634 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4635 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4636 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4637 }
4638 
4639 void __init tcp_init(void)
4640 {
4641 	int max_rshare, max_wshare, cnt;
4642 	unsigned long limit;
4643 	unsigned int i;
4644 
4645 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4646 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4647 		     sizeof_field(struct sk_buff, cb));
4648 
4649 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4650 
4651 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4652 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4653 
4654 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4655 			    thash_entries, 21,  /* one slot per 2 MB*/
4656 			    0, 64 * 1024);
4657 	tcp_hashinfo.bind_bucket_cachep =
4658 		kmem_cache_create("tcp_bind_bucket",
4659 				  sizeof(struct inet_bind_bucket), 0,
4660 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4661 				  SLAB_ACCOUNT,
4662 				  NULL);
4663 	tcp_hashinfo.bind2_bucket_cachep =
4664 		kmem_cache_create("tcp_bind2_bucket",
4665 				  sizeof(struct inet_bind2_bucket), 0,
4666 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4667 				  SLAB_ACCOUNT,
4668 				  NULL);
4669 
4670 	/* Size and allocate the main established and bind bucket
4671 	 * hash tables.
4672 	 *
4673 	 * The methodology is similar to that of the buffer cache.
4674 	 */
4675 	tcp_hashinfo.ehash =
4676 		alloc_large_system_hash("TCP established",
4677 					sizeof(struct inet_ehash_bucket),
4678 					thash_entries,
4679 					17, /* one slot per 128 KB of memory */
4680 					0,
4681 					NULL,
4682 					&tcp_hashinfo.ehash_mask,
4683 					0,
4684 					thash_entries ? 0 : 512 * 1024);
4685 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4686 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4687 
4688 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4689 		panic("TCP: failed to alloc ehash_locks");
4690 	tcp_hashinfo.bhash =
4691 		alloc_large_system_hash("TCP bind",
4692 					2 * sizeof(struct inet_bind_hashbucket),
4693 					tcp_hashinfo.ehash_mask + 1,
4694 					17, /* one slot per 128 KB of memory */
4695 					0,
4696 					&tcp_hashinfo.bhash_size,
4697 					NULL,
4698 					0,
4699 					64 * 1024);
4700 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4701 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4702 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4703 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4704 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4705 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4706 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4707 	}
4708 
4709 	tcp_hashinfo.pernet = false;
4710 
4711 	cnt = tcp_hashinfo.ehash_mask + 1;
4712 	sysctl_tcp_max_orphans = cnt / 2;
4713 
4714 	tcp_init_mem();
4715 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4716 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4717 	max_wshare = min(4UL*1024*1024, limit);
4718 	max_rshare = min(6UL*1024*1024, limit);
4719 
4720 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4721 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4722 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4723 
4724 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4725 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4726 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4727 
4728 	pr_info("Hash tables configured (established %u bind %u)\n",
4729 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4730 
4731 	tcp_v4_init();
4732 	tcp_metrics_init();
4733 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4734 	tcp_tasklet_init();
4735 	mptcp_init();
4736 }
4737