1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 439 /* See draft-stevens-tcpca-spec-01 for discussion of the 440 * initialization of these values. 441 */ 442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 443 tp->snd_cwnd_clamp = ~0; 444 tp->mss_cache = TCP_MSS_DEFAULT; 445 446 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 447 tcp_assign_congestion_control(sk); 448 449 tp->tsoffset = 0; 450 tp->rack.reo_wnd_steps = 1; 451 452 sk->sk_write_space = sk_stream_write_space; 453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 454 455 icsk->icsk_sync_mss = tcp_sync_mss; 456 457 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 458 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 459 460 sk_sockets_allocated_inc(sk); 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 return sk_is_readable(sk); 485 } 486 487 /* 488 * Wait for a TCP event. 489 * 490 * Note that we don't need to lock the socket, as the upper poll layers 491 * take care of normal races (between the test and the event) and we don't 492 * go look at any of the socket buffers directly. 493 */ 494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 495 { 496 __poll_t mask; 497 struct sock *sk = sock->sk; 498 const struct tcp_sock *tp = tcp_sk(sk); 499 int state; 500 501 sock_poll_wait(file, sock, wait); 502 503 state = inet_sk_state_load(sk); 504 if (state == TCP_LISTEN) 505 return inet_csk_listen_poll(sk); 506 507 /* Socket is not locked. We are protected from async events 508 * by poll logic and correct handling of state changes 509 * made by other threads is impossible in any case. 510 */ 511 512 mask = 0; 513 514 /* 515 * EPOLLHUP is certainly not done right. But poll() doesn't 516 * have a notion of HUP in just one direction, and for a 517 * socket the read side is more interesting. 518 * 519 * Some poll() documentation says that EPOLLHUP is incompatible 520 * with the EPOLLOUT/POLLWR flags, so somebody should check this 521 * all. But careful, it tends to be safer to return too many 522 * bits than too few, and you can easily break real applications 523 * if you don't tell them that something has hung up! 524 * 525 * Check-me. 526 * 527 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 528 * our fs/select.c). It means that after we received EOF, 529 * poll always returns immediately, making impossible poll() on write() 530 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 531 * if and only if shutdown has been made in both directions. 532 * Actually, it is interesting to look how Solaris and DUX 533 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 534 * then we could set it on SND_SHUTDOWN. BTW examples given 535 * in Stevens' books assume exactly this behaviour, it explains 536 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 537 * 538 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 539 * blocking on fresh not-connected or disconnected socket. --ANK 540 */ 541 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 542 mask |= EPOLLHUP; 543 if (sk->sk_shutdown & RCV_SHUTDOWN) 544 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 545 546 /* Connected or passive Fast Open socket? */ 547 if (state != TCP_SYN_SENT && 548 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 549 int target = sock_rcvlowat(sk, 0, INT_MAX); 550 u16 urg_data = READ_ONCE(tp->urg_data); 551 552 if (unlikely(urg_data) && 553 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 554 !sock_flag(sk, SOCK_URGINLINE)) 555 target++; 556 557 if (tcp_stream_is_readable(sk, target)) 558 mask |= EPOLLIN | EPOLLRDNORM; 559 560 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 561 if (__sk_stream_is_writeable(sk, 1)) { 562 mask |= EPOLLOUT | EPOLLWRNORM; 563 } else { /* send SIGIO later */ 564 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 565 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 566 567 /* Race breaker. If space is freed after 568 * wspace test but before the flags are set, 569 * IO signal will be lost. Memory barrier 570 * pairs with the input side. 571 */ 572 smp_mb__after_atomic(); 573 if (__sk_stream_is_writeable(sk, 1)) 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 } 576 } else 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 579 if (urg_data & TCP_URG_VALID) 580 mask |= EPOLLPRI; 581 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 582 /* Active TCP fastopen socket with defer_connect 583 * Return EPOLLOUT so application can call write() 584 * in order for kernel to generate SYN+data 585 */ 586 mask |= EPOLLOUT | EPOLLWRNORM; 587 } 588 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 589 smp_rmb(); 590 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 591 mask |= EPOLLERR; 592 593 return mask; 594 } 595 EXPORT_SYMBOL(tcp_poll); 596 597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 int answ; 601 bool slow; 602 603 switch (cmd) { 604 case SIOCINQ: 605 if (sk->sk_state == TCP_LISTEN) 606 return -EINVAL; 607 608 slow = lock_sock_fast(sk); 609 answ = tcp_inq(sk); 610 unlock_sock_fast(sk, slow); 611 break; 612 case SIOCATMARK: 613 answ = READ_ONCE(tp->urg_data) && 614 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 615 break; 616 case SIOCOUTQ: 617 if (sk->sk_state == TCP_LISTEN) 618 return -EINVAL; 619 620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 621 answ = 0; 622 else 623 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 624 break; 625 case SIOCOUTQNSD: 626 if (sk->sk_state == TCP_LISTEN) 627 return -EINVAL; 628 629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 630 answ = 0; 631 else 632 answ = READ_ONCE(tp->write_seq) - 633 READ_ONCE(tp->snd_nxt); 634 break; 635 default: 636 return -ENOIOCTLCMD; 637 } 638 639 return put_user(answ, (int __user *)arg); 640 } 641 EXPORT_SYMBOL(tcp_ioctl); 642 643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 644 { 645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 646 tp->pushed_seq = tp->write_seq; 647 } 648 649 static inline bool forced_push(const struct tcp_sock *tp) 650 { 651 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 652 } 653 654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 655 { 656 struct tcp_sock *tp = tcp_sk(sk); 657 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 658 659 tcb->seq = tcb->end_seq = tp->write_seq; 660 tcb->tcp_flags = TCPHDR_ACK; 661 __skb_header_release(skb); 662 tcp_add_write_queue_tail(sk, skb); 663 sk_wmem_queued_add(sk, skb->truesize); 664 sk_mem_charge(sk, skb->truesize); 665 if (tp->nonagle & TCP_NAGLE_PUSH) 666 tp->nonagle &= ~TCP_NAGLE_PUSH; 667 668 tcp_slow_start_after_idle_check(sk); 669 } 670 671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 672 { 673 if (flags & MSG_OOB) 674 tp->snd_up = tp->write_seq; 675 } 676 677 /* If a not yet filled skb is pushed, do not send it if 678 * we have data packets in Qdisc or NIC queues : 679 * Because TX completion will happen shortly, it gives a chance 680 * to coalesce future sendmsg() payload into this skb, without 681 * need for a timer, and with no latency trade off. 682 * As packets containing data payload have a bigger truesize 683 * than pure acks (dataless) packets, the last checks prevent 684 * autocorking if we only have an ACK in Qdisc/NIC queues, 685 * or if TX completion was delayed after we processed ACK packet. 686 */ 687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 688 int size_goal) 689 { 690 return skb->len < size_goal && 691 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 692 !tcp_rtx_queue_empty(sk) && 693 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 694 tcp_skb_can_collapse_to(skb); 695 } 696 697 void tcp_push(struct sock *sk, int flags, int mss_now, 698 int nonagle, int size_goal) 699 { 700 struct tcp_sock *tp = tcp_sk(sk); 701 struct sk_buff *skb; 702 703 skb = tcp_write_queue_tail(sk); 704 if (!skb) 705 return; 706 if (!(flags & MSG_MORE) || forced_push(tp)) 707 tcp_mark_push(tp, skb); 708 709 tcp_mark_urg(tp, flags); 710 711 if (tcp_should_autocork(sk, skb, size_goal)) { 712 713 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 714 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 716 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 717 } 718 /* It is possible TX completion already happened 719 * before we set TSQ_THROTTLED. 720 */ 721 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 722 return; 723 } 724 725 if (flags & MSG_MORE) 726 nonagle = TCP_NAGLE_CORK; 727 728 __tcp_push_pending_frames(sk, mss_now, nonagle); 729 } 730 731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 732 unsigned int offset, size_t len) 733 { 734 struct tcp_splice_state *tss = rd_desc->arg.data; 735 int ret; 736 737 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 738 min(rd_desc->count, len), tss->flags); 739 if (ret > 0) 740 rd_desc->count -= ret; 741 return ret; 742 } 743 744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 745 { 746 /* Store TCP splice context information in read_descriptor_t. */ 747 read_descriptor_t rd_desc = { 748 .arg.data = tss, 749 .count = tss->len, 750 }; 751 752 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 753 } 754 755 /** 756 * tcp_splice_read - splice data from TCP socket to a pipe 757 * @sock: socket to splice from 758 * @ppos: position (not valid) 759 * @pipe: pipe to splice to 760 * @len: number of bytes to splice 761 * @flags: splice modifier flags 762 * 763 * Description: 764 * Will read pages from given socket and fill them into a pipe. 765 * 766 **/ 767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 768 struct pipe_inode_info *pipe, size_t len, 769 unsigned int flags) 770 { 771 struct sock *sk = sock->sk; 772 struct tcp_splice_state tss = { 773 .pipe = pipe, 774 .len = len, 775 .flags = flags, 776 }; 777 long timeo; 778 ssize_t spliced; 779 int ret; 780 781 sock_rps_record_flow(sk); 782 /* 783 * We can't seek on a socket input 784 */ 785 if (unlikely(*ppos)) 786 return -ESPIPE; 787 788 ret = spliced = 0; 789 790 lock_sock(sk); 791 792 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 793 while (tss.len) { 794 ret = __tcp_splice_read(sk, &tss); 795 if (ret < 0) 796 break; 797 else if (!ret) { 798 if (spliced) 799 break; 800 if (sock_flag(sk, SOCK_DONE)) 801 break; 802 if (sk->sk_err) { 803 ret = sock_error(sk); 804 break; 805 } 806 if (sk->sk_shutdown & RCV_SHUTDOWN) 807 break; 808 if (sk->sk_state == TCP_CLOSE) { 809 /* 810 * This occurs when user tries to read 811 * from never connected socket. 812 */ 813 ret = -ENOTCONN; 814 break; 815 } 816 if (!timeo) { 817 ret = -EAGAIN; 818 break; 819 } 820 /* if __tcp_splice_read() got nothing while we have 821 * an skb in receive queue, we do not want to loop. 822 * This might happen with URG data. 823 */ 824 if (!skb_queue_empty(&sk->sk_receive_queue)) 825 break; 826 sk_wait_data(sk, &timeo, NULL); 827 if (signal_pending(current)) { 828 ret = sock_intr_errno(timeo); 829 break; 830 } 831 continue; 832 } 833 tss.len -= ret; 834 spliced += ret; 835 836 if (!timeo) 837 break; 838 release_sock(sk); 839 lock_sock(sk); 840 841 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 842 (sk->sk_shutdown & RCV_SHUTDOWN) || 843 signal_pending(current)) 844 break; 845 } 846 847 release_sock(sk); 848 849 if (spliced) 850 return spliced; 851 852 return ret; 853 } 854 EXPORT_SYMBOL(tcp_splice_read); 855 856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 857 bool force_schedule) 858 { 859 struct sk_buff *skb; 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 897 898 /* We try hard to avoid divides here */ 899 size_goal = tp->gso_segs * mss_now; 900 if (unlikely(new_size_goal < size_goal || 901 new_size_goal >= size_goal + mss_now)) { 902 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 903 sk->sk_gso_max_segs); 904 size_goal = tp->gso_segs * mss_now; 905 } 906 907 return max(size_goal, mss_now); 908 } 909 910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 911 { 912 int mss_now; 913 914 mss_now = tcp_current_mss(sk); 915 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 916 917 return mss_now; 918 } 919 920 /* In some cases, both sendpage() and sendmsg() could have added 921 * an skb to the write queue, but failed adding payload on it. 922 * We need to remove it to consume less memory, but more 923 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 924 * users. 925 */ 926 void tcp_remove_empty_skb(struct sock *sk) 927 { 928 struct sk_buff *skb = tcp_write_queue_tail(sk); 929 930 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 931 tcp_unlink_write_queue(skb, sk); 932 if (tcp_write_queue_empty(sk)) 933 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 934 tcp_wmem_free_skb(sk, skb); 935 } 936 } 937 938 /* skb changing from pure zc to mixed, must charge zc */ 939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 940 { 941 if (unlikely(skb_zcopy_pure(skb))) { 942 u32 extra = skb->truesize - 943 SKB_TRUESIZE(skb_end_offset(skb)); 944 945 if (!sk_wmem_schedule(sk, extra)) 946 return -ENOMEM; 947 948 sk_mem_charge(sk, extra); 949 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 950 } 951 return 0; 952 } 953 954 955 static int tcp_wmem_schedule(struct sock *sk, int copy) 956 { 957 int left; 958 959 if (likely(sk_wmem_schedule(sk, copy))) 960 return copy; 961 962 /* We could be in trouble if we have nothing queued. 963 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 964 * to guarantee some progress. 965 */ 966 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 967 if (left > 0) 968 sk_forced_mem_schedule(sk, min(left, copy)); 969 return min(copy, sk->sk_forward_alloc); 970 } 971 972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 973 struct page *page, int offset, size_t *size) 974 { 975 struct sk_buff *skb = tcp_write_queue_tail(sk); 976 struct tcp_sock *tp = tcp_sk(sk); 977 bool can_coalesce; 978 int copy, i; 979 980 if (!skb || (copy = size_goal - skb->len) <= 0 || 981 !tcp_skb_can_collapse_to(skb)) { 982 new_segment: 983 if (!sk_stream_memory_free(sk)) 984 return NULL; 985 986 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 987 tcp_rtx_and_write_queues_empty(sk)); 988 if (!skb) 989 return NULL; 990 991 #ifdef CONFIG_TLS_DEVICE 992 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 993 #endif 994 tcp_skb_entail(sk, skb); 995 copy = size_goal; 996 } 997 998 if (copy > *size) 999 copy = *size; 1000 1001 i = skb_shinfo(skb)->nr_frags; 1002 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1003 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1004 tcp_mark_push(tp, skb); 1005 goto new_segment; 1006 } 1007 if (tcp_downgrade_zcopy_pure(sk, skb)) 1008 return NULL; 1009 1010 copy = tcp_wmem_schedule(sk, copy); 1011 if (!copy) 1012 return NULL; 1013 1014 if (can_coalesce) { 1015 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1016 } else { 1017 get_page(page); 1018 skb_fill_page_desc(skb, i, page, offset, copy); 1019 } 1020 1021 if (!(flags & MSG_NO_SHARED_FRAGS)) 1022 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1023 1024 skb->len += copy; 1025 skb->data_len += copy; 1026 skb->truesize += copy; 1027 sk_wmem_queued_add(sk, copy); 1028 sk_mem_charge(sk, copy); 1029 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1030 TCP_SKB_CB(skb)->end_seq += copy; 1031 tcp_skb_pcount_set(skb, 0); 1032 1033 *size = copy; 1034 return skb; 1035 } 1036 1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1038 size_t size, int flags) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 int mss_now, size_goal; 1042 int err; 1043 ssize_t copied; 1044 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1045 1046 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1047 WARN_ONCE(!sendpage_ok(page), 1048 "page must not be a Slab one and have page_count > 0")) 1049 return -EINVAL; 1050 1051 /* Wait for a connection to finish. One exception is TCP Fast Open 1052 * (passive side) where data is allowed to be sent before a connection 1053 * is fully established. 1054 */ 1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1056 !tcp_passive_fastopen(sk)) { 1057 err = sk_stream_wait_connect(sk, &timeo); 1058 if (err != 0) 1059 goto out_err; 1060 } 1061 1062 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1063 1064 mss_now = tcp_send_mss(sk, &size_goal, flags); 1065 copied = 0; 1066 1067 err = -EPIPE; 1068 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1069 goto out_err; 1070 1071 while (size > 0) { 1072 struct sk_buff *skb; 1073 size_t copy = size; 1074 1075 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1076 if (!skb) 1077 goto wait_for_space; 1078 1079 if (!copied) 1080 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1081 1082 copied += copy; 1083 offset += copy; 1084 size -= copy; 1085 if (!size) 1086 goto out; 1087 1088 if (skb->len < size_goal || (flags & MSG_OOB)) 1089 continue; 1090 1091 if (forced_push(tp)) { 1092 tcp_mark_push(tp, skb); 1093 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1094 } else if (skb == tcp_send_head(sk)) 1095 tcp_push_one(sk, mss_now); 1096 continue; 1097 1098 wait_for_space: 1099 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1100 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1101 TCP_NAGLE_PUSH, size_goal); 1102 1103 err = sk_stream_wait_memory(sk, &timeo); 1104 if (err != 0) 1105 goto do_error; 1106 1107 mss_now = tcp_send_mss(sk, &size_goal, flags); 1108 } 1109 1110 out: 1111 if (copied) { 1112 tcp_tx_timestamp(sk, sk->sk_tsflags); 1113 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1114 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1115 } 1116 return copied; 1117 1118 do_error: 1119 tcp_remove_empty_skb(sk); 1120 if (copied) 1121 goto out; 1122 out_err: 1123 /* make sure we wake any epoll edge trigger waiter */ 1124 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1125 sk->sk_write_space(sk); 1126 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1127 } 1128 return sk_stream_error(sk, flags, err); 1129 } 1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1131 1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1133 size_t size, int flags) 1134 { 1135 if (!(sk->sk_route_caps & NETIF_F_SG)) 1136 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1137 1138 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1139 1140 return do_tcp_sendpages(sk, page, offset, size, flags); 1141 } 1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1143 1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1145 size_t size, int flags) 1146 { 1147 int ret; 1148 1149 lock_sock(sk); 1150 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1151 release_sock(sk); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL(tcp_sendpage); 1156 1157 void tcp_free_fastopen_req(struct tcp_sock *tp) 1158 { 1159 if (tp->fastopen_req) { 1160 kfree(tp->fastopen_req); 1161 tp->fastopen_req = NULL; 1162 } 1163 } 1164 1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1166 int *copied, size_t size, 1167 struct ubuf_info *uarg) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 struct inet_sock *inet = inet_sk(sk); 1171 struct sockaddr *uaddr = msg->msg_name; 1172 int err, flags; 1173 1174 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1175 TFO_CLIENT_ENABLE) || 1176 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1177 uaddr->sa_family == AF_UNSPEC)) 1178 return -EOPNOTSUPP; 1179 if (tp->fastopen_req) 1180 return -EALREADY; /* Another Fast Open is in progress */ 1181 1182 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1183 sk->sk_allocation); 1184 if (unlikely(!tp->fastopen_req)) 1185 return -ENOBUFS; 1186 tp->fastopen_req->data = msg; 1187 tp->fastopen_req->size = size; 1188 tp->fastopen_req->uarg = uarg; 1189 1190 if (inet->defer_connect) { 1191 err = tcp_connect(sk); 1192 /* Same failure procedure as in tcp_v4/6_connect */ 1193 if (err) { 1194 tcp_set_state(sk, TCP_CLOSE); 1195 inet->inet_dport = 0; 1196 sk->sk_route_caps = 0; 1197 } 1198 } 1199 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1200 err = __inet_stream_connect(sk->sk_socket, uaddr, 1201 msg->msg_namelen, flags, 1); 1202 /* fastopen_req could already be freed in __inet_stream_connect 1203 * if the connection times out or gets rst 1204 */ 1205 if (tp->fastopen_req) { 1206 *copied = tp->fastopen_req->copied; 1207 tcp_free_fastopen_req(tp); 1208 inet->defer_connect = 0; 1209 } 1210 return err; 1211 } 1212 1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1214 { 1215 struct tcp_sock *tp = tcp_sk(sk); 1216 struct ubuf_info *uarg = NULL; 1217 struct sk_buff *skb; 1218 struct sockcm_cookie sockc; 1219 int flags, err, copied = 0; 1220 int mss_now = 0, size_goal, copied_syn = 0; 1221 int process_backlog = 0; 1222 bool zc = false; 1223 long timeo; 1224 1225 flags = msg->msg_flags; 1226 1227 if ((flags & MSG_ZEROCOPY) && size) { 1228 skb = tcp_write_queue_tail(sk); 1229 1230 if (msg->msg_ubuf) { 1231 uarg = msg->msg_ubuf; 1232 net_zcopy_get(uarg); 1233 zc = sk->sk_route_caps & NETIF_F_SG; 1234 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1235 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1236 if (!uarg) { 1237 err = -ENOBUFS; 1238 goto out_err; 1239 } 1240 zc = sk->sk_route_caps & NETIF_F_SG; 1241 if (!zc) 1242 uarg->zerocopy = 0; 1243 } 1244 } 1245 1246 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1247 !tp->repair) { 1248 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1249 if (err == -EINPROGRESS && copied_syn > 0) 1250 goto out; 1251 else if (err) 1252 goto out_err; 1253 } 1254 1255 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1256 1257 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1258 1259 /* Wait for a connection to finish. One exception is TCP Fast Open 1260 * (passive side) where data is allowed to be sent before a connection 1261 * is fully established. 1262 */ 1263 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1264 !tcp_passive_fastopen(sk)) { 1265 err = sk_stream_wait_connect(sk, &timeo); 1266 if (err != 0) 1267 goto do_error; 1268 } 1269 1270 if (unlikely(tp->repair)) { 1271 if (tp->repair_queue == TCP_RECV_QUEUE) { 1272 copied = tcp_send_rcvq(sk, msg, size); 1273 goto out_nopush; 1274 } 1275 1276 err = -EINVAL; 1277 if (tp->repair_queue == TCP_NO_QUEUE) 1278 goto out_err; 1279 1280 /* 'common' sending to sendq */ 1281 } 1282 1283 sockcm_init(&sockc, sk); 1284 if (msg->msg_controllen) { 1285 err = sock_cmsg_send(sk, msg, &sockc); 1286 if (unlikely(err)) { 1287 err = -EINVAL; 1288 goto out_err; 1289 } 1290 } 1291 1292 /* This should be in poll */ 1293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1294 1295 /* Ok commence sending. */ 1296 copied = 0; 1297 1298 restart: 1299 mss_now = tcp_send_mss(sk, &size_goal, flags); 1300 1301 err = -EPIPE; 1302 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1303 goto do_error; 1304 1305 while (msg_data_left(msg)) { 1306 int copy = 0; 1307 1308 skb = tcp_write_queue_tail(sk); 1309 if (skb) 1310 copy = size_goal - skb->len; 1311 1312 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1313 bool first_skb; 1314 1315 new_segment: 1316 if (!sk_stream_memory_free(sk)) 1317 goto wait_for_space; 1318 1319 if (unlikely(process_backlog >= 16)) { 1320 process_backlog = 0; 1321 if (sk_flush_backlog(sk)) 1322 goto restart; 1323 } 1324 first_skb = tcp_rtx_and_write_queues_empty(sk); 1325 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1326 first_skb); 1327 if (!skb) 1328 goto wait_for_space; 1329 1330 process_backlog++; 1331 1332 tcp_skb_entail(sk, skb); 1333 copy = size_goal; 1334 1335 /* All packets are restored as if they have 1336 * already been sent. skb_mstamp_ns isn't set to 1337 * avoid wrong rtt estimation. 1338 */ 1339 if (tp->repair) 1340 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1341 } 1342 1343 /* Try to append data to the end of skb. */ 1344 if (copy > msg_data_left(msg)) 1345 copy = msg_data_left(msg); 1346 1347 if (!zc) { 1348 bool merge = true; 1349 int i = skb_shinfo(skb)->nr_frags; 1350 struct page_frag *pfrag = sk_page_frag(sk); 1351 1352 if (!sk_page_frag_refill(sk, pfrag)) 1353 goto wait_for_space; 1354 1355 if (!skb_can_coalesce(skb, i, pfrag->page, 1356 pfrag->offset)) { 1357 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1358 tcp_mark_push(tp, skb); 1359 goto new_segment; 1360 } 1361 merge = false; 1362 } 1363 1364 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1365 1366 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1367 if (tcp_downgrade_zcopy_pure(sk, skb)) 1368 goto wait_for_space; 1369 skb_zcopy_downgrade_managed(skb); 1370 } 1371 1372 copy = tcp_wmem_schedule(sk, copy); 1373 if (!copy) 1374 goto wait_for_space; 1375 1376 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1377 pfrag->page, 1378 pfrag->offset, 1379 copy); 1380 if (err) 1381 goto do_error; 1382 1383 /* Update the skb. */ 1384 if (merge) { 1385 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1386 } else { 1387 skb_fill_page_desc(skb, i, pfrag->page, 1388 pfrag->offset, copy); 1389 page_ref_inc(pfrag->page); 1390 } 1391 pfrag->offset += copy; 1392 } else { 1393 /* First append to a fragless skb builds initial 1394 * pure zerocopy skb 1395 */ 1396 if (!skb->len) 1397 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1398 1399 if (!skb_zcopy_pure(skb)) { 1400 copy = tcp_wmem_schedule(sk, copy); 1401 if (!copy) 1402 goto wait_for_space; 1403 } 1404 1405 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1406 if (err == -EMSGSIZE || err == -EEXIST) { 1407 tcp_mark_push(tp, skb); 1408 goto new_segment; 1409 } 1410 if (err < 0) 1411 goto do_error; 1412 copy = err; 1413 } 1414 1415 if (!copied) 1416 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1417 1418 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1419 TCP_SKB_CB(skb)->end_seq += copy; 1420 tcp_skb_pcount_set(skb, 0); 1421 1422 copied += copy; 1423 if (!msg_data_left(msg)) { 1424 if (unlikely(flags & MSG_EOR)) 1425 TCP_SKB_CB(skb)->eor = 1; 1426 goto out; 1427 } 1428 1429 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1430 continue; 1431 1432 if (forced_push(tp)) { 1433 tcp_mark_push(tp, skb); 1434 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1435 } else if (skb == tcp_send_head(sk)) 1436 tcp_push_one(sk, mss_now); 1437 continue; 1438 1439 wait_for_space: 1440 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1441 if (copied) 1442 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1443 TCP_NAGLE_PUSH, size_goal); 1444 1445 err = sk_stream_wait_memory(sk, &timeo); 1446 if (err != 0) 1447 goto do_error; 1448 1449 mss_now = tcp_send_mss(sk, &size_goal, flags); 1450 } 1451 1452 out: 1453 if (copied) { 1454 tcp_tx_timestamp(sk, sockc.tsflags); 1455 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1456 } 1457 out_nopush: 1458 net_zcopy_put(uarg); 1459 return copied + copied_syn; 1460 1461 do_error: 1462 tcp_remove_empty_skb(sk); 1463 1464 if (copied + copied_syn) 1465 goto out; 1466 out_err: 1467 net_zcopy_put_abort(uarg, true); 1468 err = sk_stream_error(sk, flags, err); 1469 /* make sure we wake any epoll edge trigger waiter */ 1470 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1471 sk->sk_write_space(sk); 1472 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1473 } 1474 return err; 1475 } 1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1477 1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1479 { 1480 int ret; 1481 1482 lock_sock(sk); 1483 ret = tcp_sendmsg_locked(sk, msg, size); 1484 release_sock(sk); 1485 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(tcp_sendmsg); 1489 1490 /* 1491 * Handle reading urgent data. BSD has very simple semantics for 1492 * this, no blocking and very strange errors 8) 1493 */ 1494 1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1496 { 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 /* No URG data to read. */ 1500 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1501 tp->urg_data == TCP_URG_READ) 1502 return -EINVAL; /* Yes this is right ! */ 1503 1504 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1505 return -ENOTCONN; 1506 1507 if (tp->urg_data & TCP_URG_VALID) { 1508 int err = 0; 1509 char c = tp->urg_data; 1510 1511 if (!(flags & MSG_PEEK)) 1512 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1513 1514 /* Read urgent data. */ 1515 msg->msg_flags |= MSG_OOB; 1516 1517 if (len > 0) { 1518 if (!(flags & MSG_TRUNC)) 1519 err = memcpy_to_msg(msg, &c, 1); 1520 len = 1; 1521 } else 1522 msg->msg_flags |= MSG_TRUNC; 1523 1524 return err ? -EFAULT : len; 1525 } 1526 1527 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1528 return 0; 1529 1530 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1531 * the available implementations agree in this case: 1532 * this call should never block, independent of the 1533 * blocking state of the socket. 1534 * Mike <pall@rz.uni-karlsruhe.de> 1535 */ 1536 return -EAGAIN; 1537 } 1538 1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1540 { 1541 struct sk_buff *skb; 1542 int copied = 0, err = 0; 1543 1544 /* XXX -- need to support SO_PEEK_OFF */ 1545 1546 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1547 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1548 if (err) 1549 return err; 1550 copied += skb->len; 1551 } 1552 1553 skb_queue_walk(&sk->sk_write_queue, skb) { 1554 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1555 if (err) 1556 break; 1557 1558 copied += skb->len; 1559 } 1560 1561 return err ?: copied; 1562 } 1563 1564 /* Clean up the receive buffer for full frames taken by the user, 1565 * then send an ACK if necessary. COPIED is the number of bytes 1566 * tcp_recvmsg has given to the user so far, it speeds up the 1567 * calculation of whether or not we must ACK for the sake of 1568 * a window update. 1569 */ 1570 static void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1571 { 1572 struct tcp_sock *tp = tcp_sk(sk); 1573 bool time_to_ack = false; 1574 1575 if (inet_csk_ack_scheduled(sk)) { 1576 const struct inet_connection_sock *icsk = inet_csk(sk); 1577 1578 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1579 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1580 /* 1581 * If this read emptied read buffer, we send ACK, if 1582 * connection is not bidirectional, user drained 1583 * receive buffer and there was a small segment 1584 * in queue. 1585 */ 1586 (copied > 0 && 1587 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1588 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1589 !inet_csk_in_pingpong_mode(sk))) && 1590 !atomic_read(&sk->sk_rmem_alloc))) 1591 time_to_ack = true; 1592 } 1593 1594 /* We send an ACK if we can now advertise a non-zero window 1595 * which has been raised "significantly". 1596 * 1597 * Even if window raised up to infinity, do not send window open ACK 1598 * in states, where we will not receive more. It is useless. 1599 */ 1600 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1601 __u32 rcv_window_now = tcp_receive_window(tp); 1602 1603 /* Optimize, __tcp_select_window() is not cheap. */ 1604 if (2*rcv_window_now <= tp->window_clamp) { 1605 __u32 new_window = __tcp_select_window(sk); 1606 1607 /* Send ACK now, if this read freed lots of space 1608 * in our buffer. Certainly, new_window is new window. 1609 * We can advertise it now, if it is not less than current one. 1610 * "Lots" means "at least twice" here. 1611 */ 1612 if (new_window && new_window >= 2 * rcv_window_now) 1613 time_to_ack = true; 1614 } 1615 } 1616 if (time_to_ack) 1617 tcp_send_ack(sk); 1618 } 1619 1620 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1621 { 1622 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1623 struct tcp_sock *tp = tcp_sk(sk); 1624 1625 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1626 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1627 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1628 __tcp_cleanup_rbuf(sk, copied); 1629 } 1630 1631 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1632 { 1633 __skb_unlink(skb, &sk->sk_receive_queue); 1634 if (likely(skb->destructor == sock_rfree)) { 1635 sock_rfree(skb); 1636 skb->destructor = NULL; 1637 skb->sk = NULL; 1638 return skb_attempt_defer_free(skb); 1639 } 1640 __kfree_skb(skb); 1641 } 1642 1643 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1644 { 1645 struct sk_buff *skb; 1646 u32 offset; 1647 1648 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1649 offset = seq - TCP_SKB_CB(skb)->seq; 1650 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1651 pr_err_once("%s: found a SYN, please report !\n", __func__); 1652 offset--; 1653 } 1654 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1655 *off = offset; 1656 return skb; 1657 } 1658 /* This looks weird, but this can happen if TCP collapsing 1659 * splitted a fat GRO packet, while we released socket lock 1660 * in skb_splice_bits() 1661 */ 1662 tcp_eat_recv_skb(sk, skb); 1663 } 1664 return NULL; 1665 } 1666 EXPORT_SYMBOL(tcp_recv_skb); 1667 1668 /* 1669 * This routine provides an alternative to tcp_recvmsg() for routines 1670 * that would like to handle copying from skbuffs directly in 'sendfile' 1671 * fashion. 1672 * Note: 1673 * - It is assumed that the socket was locked by the caller. 1674 * - The routine does not block. 1675 * - At present, there is no support for reading OOB data 1676 * or for 'peeking' the socket using this routine 1677 * (although both would be easy to implement). 1678 */ 1679 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1680 sk_read_actor_t recv_actor) 1681 { 1682 struct sk_buff *skb; 1683 struct tcp_sock *tp = tcp_sk(sk); 1684 u32 seq = tp->copied_seq; 1685 u32 offset; 1686 int copied = 0; 1687 1688 if (sk->sk_state == TCP_LISTEN) 1689 return -ENOTCONN; 1690 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1691 if (offset < skb->len) { 1692 int used; 1693 size_t len; 1694 1695 len = skb->len - offset; 1696 /* Stop reading if we hit a patch of urgent data */ 1697 if (unlikely(tp->urg_data)) { 1698 u32 urg_offset = tp->urg_seq - seq; 1699 if (urg_offset < len) 1700 len = urg_offset; 1701 if (!len) 1702 break; 1703 } 1704 used = recv_actor(desc, skb, offset, len); 1705 if (used <= 0) { 1706 if (!copied) 1707 copied = used; 1708 break; 1709 } 1710 if (WARN_ON_ONCE(used > len)) 1711 used = len; 1712 seq += used; 1713 copied += used; 1714 offset += used; 1715 1716 /* If recv_actor drops the lock (e.g. TCP splice 1717 * receive) the skb pointer might be invalid when 1718 * getting here: tcp_collapse might have deleted it 1719 * while aggregating skbs from the socket queue. 1720 */ 1721 skb = tcp_recv_skb(sk, seq - 1, &offset); 1722 if (!skb) 1723 break; 1724 /* TCP coalescing might have appended data to the skb. 1725 * Try to splice more frags 1726 */ 1727 if (offset + 1 != skb->len) 1728 continue; 1729 } 1730 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1731 tcp_eat_recv_skb(sk, skb); 1732 ++seq; 1733 break; 1734 } 1735 tcp_eat_recv_skb(sk, skb); 1736 if (!desc->count) 1737 break; 1738 WRITE_ONCE(tp->copied_seq, seq); 1739 } 1740 WRITE_ONCE(tp->copied_seq, seq); 1741 1742 tcp_rcv_space_adjust(sk); 1743 1744 /* Clean up data we have read: This will do ACK frames. */ 1745 if (copied > 0) { 1746 tcp_recv_skb(sk, seq, &offset); 1747 tcp_cleanup_rbuf(sk, copied); 1748 } 1749 return copied; 1750 } 1751 EXPORT_SYMBOL(tcp_read_sock); 1752 1753 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1754 { 1755 struct tcp_sock *tp = tcp_sk(sk); 1756 u32 seq = tp->copied_seq; 1757 struct sk_buff *skb; 1758 int copied = 0; 1759 u32 offset; 1760 1761 if (sk->sk_state == TCP_LISTEN) 1762 return -ENOTCONN; 1763 1764 skb = tcp_recv_skb(sk, seq, &offset); 1765 if (!skb) 1766 return 0; 1767 1768 __skb_unlink(skb, &sk->sk_receive_queue); 1769 WARN_ON(!skb_set_owner_sk_safe(skb, sk)); 1770 copied = recv_actor(sk, skb); 1771 if (copied >= 0) { 1772 seq += copied; 1773 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1774 ++seq; 1775 } 1776 consume_skb(skb); 1777 WRITE_ONCE(tp->copied_seq, seq); 1778 1779 tcp_rcv_space_adjust(sk); 1780 1781 /* Clean up data we have read: This will do ACK frames. */ 1782 if (copied > 0) 1783 __tcp_cleanup_rbuf(sk, copied); 1784 1785 return copied; 1786 } 1787 EXPORT_SYMBOL(tcp_read_skb); 1788 1789 void tcp_read_done(struct sock *sk, size_t len) 1790 { 1791 struct tcp_sock *tp = tcp_sk(sk); 1792 u32 seq = tp->copied_seq; 1793 struct sk_buff *skb; 1794 size_t left; 1795 u32 offset; 1796 1797 if (sk->sk_state == TCP_LISTEN) 1798 return; 1799 1800 left = len; 1801 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1802 int used; 1803 1804 used = min_t(size_t, skb->len - offset, left); 1805 seq += used; 1806 left -= used; 1807 1808 if (skb->len > offset + used) 1809 break; 1810 1811 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1812 tcp_eat_recv_skb(sk, skb); 1813 ++seq; 1814 break; 1815 } 1816 tcp_eat_recv_skb(sk, skb); 1817 } 1818 WRITE_ONCE(tp->copied_seq, seq); 1819 1820 tcp_rcv_space_adjust(sk); 1821 1822 /* Clean up data we have read: This will do ACK frames. */ 1823 if (left != len) 1824 tcp_cleanup_rbuf(sk, len - left); 1825 } 1826 EXPORT_SYMBOL(tcp_read_done); 1827 1828 int tcp_peek_len(struct socket *sock) 1829 { 1830 return tcp_inq(sock->sk); 1831 } 1832 EXPORT_SYMBOL(tcp_peek_len); 1833 1834 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1835 int tcp_set_rcvlowat(struct sock *sk, int val) 1836 { 1837 int cap; 1838 1839 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1840 cap = sk->sk_rcvbuf >> 1; 1841 else 1842 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1843 val = min(val, cap); 1844 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1845 1846 /* Check if we need to signal EPOLLIN right now */ 1847 tcp_data_ready(sk); 1848 1849 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1850 return 0; 1851 1852 val <<= 1; 1853 if (val > sk->sk_rcvbuf) { 1854 WRITE_ONCE(sk->sk_rcvbuf, val); 1855 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1856 } 1857 return 0; 1858 } 1859 EXPORT_SYMBOL(tcp_set_rcvlowat); 1860 1861 void tcp_update_recv_tstamps(struct sk_buff *skb, 1862 struct scm_timestamping_internal *tss) 1863 { 1864 if (skb->tstamp) 1865 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1866 else 1867 tss->ts[0] = (struct timespec64) {0}; 1868 1869 if (skb_hwtstamps(skb)->hwtstamp) 1870 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1871 else 1872 tss->ts[2] = (struct timespec64) {0}; 1873 } 1874 1875 #ifdef CONFIG_MMU 1876 static const struct vm_operations_struct tcp_vm_ops = { 1877 }; 1878 1879 int tcp_mmap(struct file *file, struct socket *sock, 1880 struct vm_area_struct *vma) 1881 { 1882 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1883 return -EPERM; 1884 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1885 1886 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1887 vma->vm_flags |= VM_MIXEDMAP; 1888 1889 vma->vm_ops = &tcp_vm_ops; 1890 return 0; 1891 } 1892 EXPORT_SYMBOL(tcp_mmap); 1893 1894 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1895 u32 *offset_frag) 1896 { 1897 skb_frag_t *frag; 1898 1899 if (unlikely(offset_skb >= skb->len)) 1900 return NULL; 1901 1902 offset_skb -= skb_headlen(skb); 1903 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1904 return NULL; 1905 1906 frag = skb_shinfo(skb)->frags; 1907 while (offset_skb) { 1908 if (skb_frag_size(frag) > offset_skb) { 1909 *offset_frag = offset_skb; 1910 return frag; 1911 } 1912 offset_skb -= skb_frag_size(frag); 1913 ++frag; 1914 } 1915 *offset_frag = 0; 1916 return frag; 1917 } 1918 1919 static bool can_map_frag(const skb_frag_t *frag) 1920 { 1921 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1922 } 1923 1924 static int find_next_mappable_frag(const skb_frag_t *frag, 1925 int remaining_in_skb) 1926 { 1927 int offset = 0; 1928 1929 if (likely(can_map_frag(frag))) 1930 return 0; 1931 1932 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1933 offset += skb_frag_size(frag); 1934 ++frag; 1935 } 1936 return offset; 1937 } 1938 1939 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1940 struct tcp_zerocopy_receive *zc, 1941 struct sk_buff *skb, u32 offset) 1942 { 1943 u32 frag_offset, partial_frag_remainder = 0; 1944 int mappable_offset; 1945 skb_frag_t *frag; 1946 1947 /* worst case: skip to next skb. try to improve on this case below */ 1948 zc->recv_skip_hint = skb->len - offset; 1949 1950 /* Find the frag containing this offset (and how far into that frag) */ 1951 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1952 if (!frag) 1953 return; 1954 1955 if (frag_offset) { 1956 struct skb_shared_info *info = skb_shinfo(skb); 1957 1958 /* We read part of the last frag, must recvmsg() rest of skb. */ 1959 if (frag == &info->frags[info->nr_frags - 1]) 1960 return; 1961 1962 /* Else, we must at least read the remainder in this frag. */ 1963 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1964 zc->recv_skip_hint -= partial_frag_remainder; 1965 ++frag; 1966 } 1967 1968 /* partial_frag_remainder: If part way through a frag, must read rest. 1969 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1970 * in partial_frag_remainder. 1971 */ 1972 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1973 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1974 } 1975 1976 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1977 int flags, struct scm_timestamping_internal *tss, 1978 int *cmsg_flags); 1979 static int receive_fallback_to_copy(struct sock *sk, 1980 struct tcp_zerocopy_receive *zc, int inq, 1981 struct scm_timestamping_internal *tss) 1982 { 1983 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1984 struct msghdr msg = {}; 1985 struct iovec iov; 1986 int err; 1987 1988 zc->length = 0; 1989 zc->recv_skip_hint = 0; 1990 1991 if (copy_address != zc->copybuf_address) 1992 return -EINVAL; 1993 1994 err = import_single_range(READ, (void __user *)copy_address, 1995 inq, &iov, &msg.msg_iter); 1996 if (err) 1997 return err; 1998 1999 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 2000 tss, &zc->msg_flags); 2001 if (err < 0) 2002 return err; 2003 2004 zc->copybuf_len = err; 2005 if (likely(zc->copybuf_len)) { 2006 struct sk_buff *skb; 2007 u32 offset; 2008 2009 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 2010 if (skb) 2011 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 2012 } 2013 return 0; 2014 } 2015 2016 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 2017 struct sk_buff *skb, u32 copylen, 2018 u32 *offset, u32 *seq) 2019 { 2020 unsigned long copy_address = (unsigned long)zc->copybuf_address; 2021 struct msghdr msg = {}; 2022 struct iovec iov; 2023 int err; 2024 2025 if (copy_address != zc->copybuf_address) 2026 return -EINVAL; 2027 2028 err = import_single_range(READ, (void __user *)copy_address, 2029 copylen, &iov, &msg.msg_iter); 2030 if (err) 2031 return err; 2032 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 2033 if (err) 2034 return err; 2035 zc->recv_skip_hint -= copylen; 2036 *offset += copylen; 2037 *seq += copylen; 2038 return (__s32)copylen; 2039 } 2040 2041 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 2042 struct sock *sk, 2043 struct sk_buff *skb, 2044 u32 *seq, 2045 s32 copybuf_len, 2046 struct scm_timestamping_internal *tss) 2047 { 2048 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 2049 2050 if (!copylen) 2051 return 0; 2052 /* skb is null if inq < PAGE_SIZE. */ 2053 if (skb) { 2054 offset = *seq - TCP_SKB_CB(skb)->seq; 2055 } else { 2056 skb = tcp_recv_skb(sk, *seq, &offset); 2057 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2058 tcp_update_recv_tstamps(skb, tss); 2059 zc->msg_flags |= TCP_CMSG_TS; 2060 } 2061 } 2062 2063 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 2064 seq); 2065 return zc->copybuf_len < 0 ? 0 : copylen; 2066 } 2067 2068 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 2069 struct page **pending_pages, 2070 unsigned long pages_remaining, 2071 unsigned long *address, 2072 u32 *length, 2073 u32 *seq, 2074 struct tcp_zerocopy_receive *zc, 2075 u32 total_bytes_to_map, 2076 int err) 2077 { 2078 /* At least one page did not map. Try zapping if we skipped earlier. */ 2079 if (err == -EBUSY && 2080 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 2081 u32 maybe_zap_len; 2082 2083 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 2084 *length + /* Mapped or pending */ 2085 (pages_remaining * PAGE_SIZE); /* Failed map. */ 2086 zap_page_range(vma, *address, maybe_zap_len); 2087 err = 0; 2088 } 2089 2090 if (!err) { 2091 unsigned long leftover_pages = pages_remaining; 2092 int bytes_mapped; 2093 2094 /* We called zap_page_range, try to reinsert. */ 2095 err = vm_insert_pages(vma, *address, 2096 pending_pages, 2097 &pages_remaining); 2098 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2099 *seq += bytes_mapped; 2100 *address += bytes_mapped; 2101 } 2102 if (err) { 2103 /* Either we were unable to zap, OR we zapped, retried an 2104 * insert, and still had an issue. Either ways, pages_remaining 2105 * is the number of pages we were unable to map, and we unroll 2106 * some state we speculatively touched before. 2107 */ 2108 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2109 2110 *length -= bytes_not_mapped; 2111 zc->recv_skip_hint += bytes_not_mapped; 2112 } 2113 return err; 2114 } 2115 2116 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2117 struct page **pages, 2118 unsigned int pages_to_map, 2119 unsigned long *address, 2120 u32 *length, 2121 u32 *seq, 2122 struct tcp_zerocopy_receive *zc, 2123 u32 total_bytes_to_map) 2124 { 2125 unsigned long pages_remaining = pages_to_map; 2126 unsigned int pages_mapped; 2127 unsigned int bytes_mapped; 2128 int err; 2129 2130 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2131 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2132 bytes_mapped = PAGE_SIZE * pages_mapped; 2133 /* Even if vm_insert_pages fails, it may have partially succeeded in 2134 * mapping (some but not all of the pages). 2135 */ 2136 *seq += bytes_mapped; 2137 *address += bytes_mapped; 2138 2139 if (likely(!err)) 2140 return 0; 2141 2142 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2143 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2144 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2145 err); 2146 } 2147 2148 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2149 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2150 struct tcp_zerocopy_receive *zc, 2151 struct scm_timestamping_internal *tss) 2152 { 2153 unsigned long msg_control_addr; 2154 struct msghdr cmsg_dummy; 2155 2156 msg_control_addr = (unsigned long)zc->msg_control; 2157 cmsg_dummy.msg_control = (void *)msg_control_addr; 2158 cmsg_dummy.msg_controllen = 2159 (__kernel_size_t)zc->msg_controllen; 2160 cmsg_dummy.msg_flags = in_compat_syscall() 2161 ? MSG_CMSG_COMPAT : 0; 2162 cmsg_dummy.msg_control_is_user = true; 2163 zc->msg_flags = 0; 2164 if (zc->msg_control == msg_control_addr && 2165 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2166 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2167 zc->msg_control = (__u64) 2168 ((uintptr_t)cmsg_dummy.msg_control); 2169 zc->msg_controllen = 2170 (__u64)cmsg_dummy.msg_controllen; 2171 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2172 } 2173 } 2174 2175 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2176 static int tcp_zerocopy_receive(struct sock *sk, 2177 struct tcp_zerocopy_receive *zc, 2178 struct scm_timestamping_internal *tss) 2179 { 2180 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2181 unsigned long address = (unsigned long)zc->address; 2182 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2183 s32 copybuf_len = zc->copybuf_len; 2184 struct tcp_sock *tp = tcp_sk(sk); 2185 const skb_frag_t *frags = NULL; 2186 unsigned int pages_to_map = 0; 2187 struct vm_area_struct *vma; 2188 struct sk_buff *skb = NULL; 2189 u32 seq = tp->copied_seq; 2190 u32 total_bytes_to_map; 2191 int inq = tcp_inq(sk); 2192 int ret; 2193 2194 zc->copybuf_len = 0; 2195 zc->msg_flags = 0; 2196 2197 if (address & (PAGE_SIZE - 1) || address != zc->address) 2198 return -EINVAL; 2199 2200 if (sk->sk_state == TCP_LISTEN) 2201 return -ENOTCONN; 2202 2203 sock_rps_record_flow(sk); 2204 2205 if (inq && inq <= copybuf_len) 2206 return receive_fallback_to_copy(sk, zc, inq, tss); 2207 2208 if (inq < PAGE_SIZE) { 2209 zc->length = 0; 2210 zc->recv_skip_hint = inq; 2211 if (!inq && sock_flag(sk, SOCK_DONE)) 2212 return -EIO; 2213 return 0; 2214 } 2215 2216 mmap_read_lock(current->mm); 2217 2218 vma = vma_lookup(current->mm, address); 2219 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2220 mmap_read_unlock(current->mm); 2221 return -EINVAL; 2222 } 2223 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2224 avail_len = min_t(u32, vma_len, inq); 2225 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2226 if (total_bytes_to_map) { 2227 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2228 zap_page_range(vma, address, total_bytes_to_map); 2229 zc->length = total_bytes_to_map; 2230 zc->recv_skip_hint = 0; 2231 } else { 2232 zc->length = avail_len; 2233 zc->recv_skip_hint = avail_len; 2234 } 2235 ret = 0; 2236 while (length + PAGE_SIZE <= zc->length) { 2237 int mappable_offset; 2238 struct page *page; 2239 2240 if (zc->recv_skip_hint < PAGE_SIZE) { 2241 u32 offset_frag; 2242 2243 if (skb) { 2244 if (zc->recv_skip_hint > 0) 2245 break; 2246 skb = skb->next; 2247 offset = seq - TCP_SKB_CB(skb)->seq; 2248 } else { 2249 skb = tcp_recv_skb(sk, seq, &offset); 2250 } 2251 2252 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2253 tcp_update_recv_tstamps(skb, tss); 2254 zc->msg_flags |= TCP_CMSG_TS; 2255 } 2256 zc->recv_skip_hint = skb->len - offset; 2257 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2258 if (!frags || offset_frag) 2259 break; 2260 } 2261 2262 mappable_offset = find_next_mappable_frag(frags, 2263 zc->recv_skip_hint); 2264 if (mappable_offset) { 2265 zc->recv_skip_hint = mappable_offset; 2266 break; 2267 } 2268 page = skb_frag_page(frags); 2269 prefetchw(page); 2270 pages[pages_to_map++] = page; 2271 length += PAGE_SIZE; 2272 zc->recv_skip_hint -= PAGE_SIZE; 2273 frags++; 2274 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2275 zc->recv_skip_hint < PAGE_SIZE) { 2276 /* Either full batch, or we're about to go to next skb 2277 * (and we cannot unroll failed ops across skbs). 2278 */ 2279 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2280 pages_to_map, 2281 &address, &length, 2282 &seq, zc, 2283 total_bytes_to_map); 2284 if (ret) 2285 goto out; 2286 pages_to_map = 0; 2287 } 2288 } 2289 if (pages_to_map) { 2290 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2291 &address, &length, &seq, 2292 zc, total_bytes_to_map); 2293 } 2294 out: 2295 mmap_read_unlock(current->mm); 2296 /* Try to copy straggler data. */ 2297 if (!ret) 2298 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2299 2300 if (length + copylen) { 2301 WRITE_ONCE(tp->copied_seq, seq); 2302 tcp_rcv_space_adjust(sk); 2303 2304 /* Clean up data we have read: This will do ACK frames. */ 2305 tcp_recv_skb(sk, seq, &offset); 2306 tcp_cleanup_rbuf(sk, length + copylen); 2307 ret = 0; 2308 if (length == zc->length) 2309 zc->recv_skip_hint = 0; 2310 } else { 2311 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2312 ret = -EIO; 2313 } 2314 zc->length = length; 2315 return ret; 2316 } 2317 #endif 2318 2319 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2320 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2321 struct scm_timestamping_internal *tss) 2322 { 2323 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2324 bool has_timestamping = false; 2325 2326 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2327 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2328 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2329 if (new_tstamp) { 2330 struct __kernel_timespec kts = { 2331 .tv_sec = tss->ts[0].tv_sec, 2332 .tv_nsec = tss->ts[0].tv_nsec, 2333 }; 2334 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2335 sizeof(kts), &kts); 2336 } else { 2337 struct __kernel_old_timespec ts_old = { 2338 .tv_sec = tss->ts[0].tv_sec, 2339 .tv_nsec = tss->ts[0].tv_nsec, 2340 }; 2341 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2342 sizeof(ts_old), &ts_old); 2343 } 2344 } else { 2345 if (new_tstamp) { 2346 struct __kernel_sock_timeval stv = { 2347 .tv_sec = tss->ts[0].tv_sec, 2348 .tv_usec = tss->ts[0].tv_nsec / 1000, 2349 }; 2350 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2351 sizeof(stv), &stv); 2352 } else { 2353 struct __kernel_old_timeval tv = { 2354 .tv_sec = tss->ts[0].tv_sec, 2355 .tv_usec = tss->ts[0].tv_nsec / 1000, 2356 }; 2357 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2358 sizeof(tv), &tv); 2359 } 2360 } 2361 } 2362 2363 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2364 has_timestamping = true; 2365 else 2366 tss->ts[0] = (struct timespec64) {0}; 2367 } 2368 2369 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2370 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2371 has_timestamping = true; 2372 else 2373 tss->ts[2] = (struct timespec64) {0}; 2374 } 2375 2376 if (has_timestamping) { 2377 tss->ts[1] = (struct timespec64) {0}; 2378 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2379 put_cmsg_scm_timestamping64(msg, tss); 2380 else 2381 put_cmsg_scm_timestamping(msg, tss); 2382 } 2383 } 2384 2385 static int tcp_inq_hint(struct sock *sk) 2386 { 2387 const struct tcp_sock *tp = tcp_sk(sk); 2388 u32 copied_seq = READ_ONCE(tp->copied_seq); 2389 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2390 int inq; 2391 2392 inq = rcv_nxt - copied_seq; 2393 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2394 lock_sock(sk); 2395 inq = tp->rcv_nxt - tp->copied_seq; 2396 release_sock(sk); 2397 } 2398 /* After receiving a FIN, tell the user-space to continue reading 2399 * by returning a non-zero inq. 2400 */ 2401 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2402 inq = 1; 2403 return inq; 2404 } 2405 2406 /* 2407 * This routine copies from a sock struct into the user buffer. 2408 * 2409 * Technical note: in 2.3 we work on _locked_ socket, so that 2410 * tricks with *seq access order and skb->users are not required. 2411 * Probably, code can be easily improved even more. 2412 */ 2413 2414 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2415 int flags, struct scm_timestamping_internal *tss, 2416 int *cmsg_flags) 2417 { 2418 struct tcp_sock *tp = tcp_sk(sk); 2419 int copied = 0; 2420 u32 peek_seq; 2421 u32 *seq; 2422 unsigned long used; 2423 int err; 2424 int target; /* Read at least this many bytes */ 2425 long timeo; 2426 struct sk_buff *skb, *last; 2427 u32 urg_hole = 0; 2428 2429 err = -ENOTCONN; 2430 if (sk->sk_state == TCP_LISTEN) 2431 goto out; 2432 2433 if (tp->recvmsg_inq) { 2434 *cmsg_flags = TCP_CMSG_INQ; 2435 msg->msg_get_inq = 1; 2436 } 2437 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2438 2439 /* Urgent data needs to be handled specially. */ 2440 if (flags & MSG_OOB) 2441 goto recv_urg; 2442 2443 if (unlikely(tp->repair)) { 2444 err = -EPERM; 2445 if (!(flags & MSG_PEEK)) 2446 goto out; 2447 2448 if (tp->repair_queue == TCP_SEND_QUEUE) 2449 goto recv_sndq; 2450 2451 err = -EINVAL; 2452 if (tp->repair_queue == TCP_NO_QUEUE) 2453 goto out; 2454 2455 /* 'common' recv queue MSG_PEEK-ing */ 2456 } 2457 2458 seq = &tp->copied_seq; 2459 if (flags & MSG_PEEK) { 2460 peek_seq = tp->copied_seq; 2461 seq = &peek_seq; 2462 } 2463 2464 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2465 2466 do { 2467 u32 offset; 2468 2469 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2470 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2471 if (copied) 2472 break; 2473 if (signal_pending(current)) { 2474 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2475 break; 2476 } 2477 } 2478 2479 /* Next get a buffer. */ 2480 2481 last = skb_peek_tail(&sk->sk_receive_queue); 2482 skb_queue_walk(&sk->sk_receive_queue, skb) { 2483 last = skb; 2484 /* Now that we have two receive queues this 2485 * shouldn't happen. 2486 */ 2487 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2488 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2489 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2490 flags)) 2491 break; 2492 2493 offset = *seq - TCP_SKB_CB(skb)->seq; 2494 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2495 pr_err_once("%s: found a SYN, please report !\n", __func__); 2496 offset--; 2497 } 2498 if (offset < skb->len) 2499 goto found_ok_skb; 2500 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2501 goto found_fin_ok; 2502 WARN(!(flags & MSG_PEEK), 2503 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2504 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2505 } 2506 2507 /* Well, if we have backlog, try to process it now yet. */ 2508 2509 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2510 break; 2511 2512 if (copied) { 2513 if (!timeo || 2514 sk->sk_err || 2515 sk->sk_state == TCP_CLOSE || 2516 (sk->sk_shutdown & RCV_SHUTDOWN) || 2517 signal_pending(current)) 2518 break; 2519 } else { 2520 if (sock_flag(sk, SOCK_DONE)) 2521 break; 2522 2523 if (sk->sk_err) { 2524 copied = sock_error(sk); 2525 break; 2526 } 2527 2528 if (sk->sk_shutdown & RCV_SHUTDOWN) 2529 break; 2530 2531 if (sk->sk_state == TCP_CLOSE) { 2532 /* This occurs when user tries to read 2533 * from never connected socket. 2534 */ 2535 copied = -ENOTCONN; 2536 break; 2537 } 2538 2539 if (!timeo) { 2540 copied = -EAGAIN; 2541 break; 2542 } 2543 2544 if (signal_pending(current)) { 2545 copied = sock_intr_errno(timeo); 2546 break; 2547 } 2548 } 2549 2550 if (copied >= target) { 2551 /* Do not sleep, just process backlog. */ 2552 __sk_flush_backlog(sk); 2553 } else { 2554 tcp_cleanup_rbuf(sk, copied); 2555 sk_wait_data(sk, &timeo, last); 2556 } 2557 2558 if ((flags & MSG_PEEK) && 2559 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2560 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2561 current->comm, 2562 task_pid_nr(current)); 2563 peek_seq = tp->copied_seq; 2564 } 2565 continue; 2566 2567 found_ok_skb: 2568 /* Ok so how much can we use? */ 2569 used = skb->len - offset; 2570 if (len < used) 2571 used = len; 2572 2573 /* Do we have urgent data here? */ 2574 if (unlikely(tp->urg_data)) { 2575 u32 urg_offset = tp->urg_seq - *seq; 2576 if (urg_offset < used) { 2577 if (!urg_offset) { 2578 if (!sock_flag(sk, SOCK_URGINLINE)) { 2579 WRITE_ONCE(*seq, *seq + 1); 2580 urg_hole++; 2581 offset++; 2582 used--; 2583 if (!used) 2584 goto skip_copy; 2585 } 2586 } else 2587 used = urg_offset; 2588 } 2589 } 2590 2591 if (!(flags & MSG_TRUNC)) { 2592 err = skb_copy_datagram_msg(skb, offset, msg, used); 2593 if (err) { 2594 /* Exception. Bailout! */ 2595 if (!copied) 2596 copied = -EFAULT; 2597 break; 2598 } 2599 } 2600 2601 WRITE_ONCE(*seq, *seq + used); 2602 copied += used; 2603 len -= used; 2604 2605 tcp_rcv_space_adjust(sk); 2606 2607 skip_copy: 2608 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2609 WRITE_ONCE(tp->urg_data, 0); 2610 tcp_fast_path_check(sk); 2611 } 2612 2613 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2614 tcp_update_recv_tstamps(skb, tss); 2615 *cmsg_flags |= TCP_CMSG_TS; 2616 } 2617 2618 if (used + offset < skb->len) 2619 continue; 2620 2621 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2622 goto found_fin_ok; 2623 if (!(flags & MSG_PEEK)) 2624 tcp_eat_recv_skb(sk, skb); 2625 continue; 2626 2627 found_fin_ok: 2628 /* Process the FIN. */ 2629 WRITE_ONCE(*seq, *seq + 1); 2630 if (!(flags & MSG_PEEK)) 2631 tcp_eat_recv_skb(sk, skb); 2632 break; 2633 } while (len > 0); 2634 2635 /* According to UNIX98, msg_name/msg_namelen are ignored 2636 * on connected socket. I was just happy when found this 8) --ANK 2637 */ 2638 2639 /* Clean up data we have read: This will do ACK frames. */ 2640 tcp_cleanup_rbuf(sk, copied); 2641 return copied; 2642 2643 out: 2644 return err; 2645 2646 recv_urg: 2647 err = tcp_recv_urg(sk, msg, len, flags); 2648 goto out; 2649 2650 recv_sndq: 2651 err = tcp_peek_sndq(sk, msg, len); 2652 goto out; 2653 } 2654 2655 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2656 int *addr_len) 2657 { 2658 int cmsg_flags = 0, ret; 2659 struct scm_timestamping_internal tss; 2660 2661 if (unlikely(flags & MSG_ERRQUEUE)) 2662 return inet_recv_error(sk, msg, len, addr_len); 2663 2664 if (sk_can_busy_loop(sk) && 2665 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2666 sk->sk_state == TCP_ESTABLISHED) 2667 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2668 2669 lock_sock(sk); 2670 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2671 release_sock(sk); 2672 2673 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2674 if (cmsg_flags & TCP_CMSG_TS) 2675 tcp_recv_timestamp(msg, sk, &tss); 2676 if (msg->msg_get_inq) { 2677 msg->msg_inq = tcp_inq_hint(sk); 2678 if (cmsg_flags & TCP_CMSG_INQ) 2679 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2680 sizeof(msg->msg_inq), &msg->msg_inq); 2681 } 2682 } 2683 return ret; 2684 } 2685 EXPORT_SYMBOL(tcp_recvmsg); 2686 2687 void tcp_set_state(struct sock *sk, int state) 2688 { 2689 int oldstate = sk->sk_state; 2690 2691 /* We defined a new enum for TCP states that are exported in BPF 2692 * so as not force the internal TCP states to be frozen. The 2693 * following checks will detect if an internal state value ever 2694 * differs from the BPF value. If this ever happens, then we will 2695 * need to remap the internal value to the BPF value before calling 2696 * tcp_call_bpf_2arg. 2697 */ 2698 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2699 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2700 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2701 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2702 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2703 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2704 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2705 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2706 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2707 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2708 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2709 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2710 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2711 2712 /* bpf uapi header bpf.h defines an anonymous enum with values 2713 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2714 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2715 * But clang built vmlinux does not have this enum in DWARF 2716 * since clang removes the above code before generating IR/debuginfo. 2717 * Let us explicitly emit the type debuginfo to ensure the 2718 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2719 * regardless of which compiler is used. 2720 */ 2721 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2722 2723 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2724 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2725 2726 switch (state) { 2727 case TCP_ESTABLISHED: 2728 if (oldstate != TCP_ESTABLISHED) 2729 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2730 break; 2731 2732 case TCP_CLOSE: 2733 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2734 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2735 2736 sk->sk_prot->unhash(sk); 2737 if (inet_csk(sk)->icsk_bind_hash && 2738 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2739 inet_put_port(sk); 2740 fallthrough; 2741 default: 2742 if (oldstate == TCP_ESTABLISHED) 2743 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2744 } 2745 2746 /* Change state AFTER socket is unhashed to avoid closed 2747 * socket sitting in hash tables. 2748 */ 2749 inet_sk_state_store(sk, state); 2750 } 2751 EXPORT_SYMBOL_GPL(tcp_set_state); 2752 2753 /* 2754 * State processing on a close. This implements the state shift for 2755 * sending our FIN frame. Note that we only send a FIN for some 2756 * states. A shutdown() may have already sent the FIN, or we may be 2757 * closed. 2758 */ 2759 2760 static const unsigned char new_state[16] = { 2761 /* current state: new state: action: */ 2762 [0 /* (Invalid) */] = TCP_CLOSE, 2763 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2764 [TCP_SYN_SENT] = TCP_CLOSE, 2765 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2766 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2767 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2768 [TCP_TIME_WAIT] = TCP_CLOSE, 2769 [TCP_CLOSE] = TCP_CLOSE, 2770 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2771 [TCP_LAST_ACK] = TCP_LAST_ACK, 2772 [TCP_LISTEN] = TCP_CLOSE, 2773 [TCP_CLOSING] = TCP_CLOSING, 2774 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2775 }; 2776 2777 static int tcp_close_state(struct sock *sk) 2778 { 2779 int next = (int)new_state[sk->sk_state]; 2780 int ns = next & TCP_STATE_MASK; 2781 2782 tcp_set_state(sk, ns); 2783 2784 return next & TCP_ACTION_FIN; 2785 } 2786 2787 /* 2788 * Shutdown the sending side of a connection. Much like close except 2789 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2790 */ 2791 2792 void tcp_shutdown(struct sock *sk, int how) 2793 { 2794 /* We need to grab some memory, and put together a FIN, 2795 * and then put it into the queue to be sent. 2796 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2797 */ 2798 if (!(how & SEND_SHUTDOWN)) 2799 return; 2800 2801 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2802 if ((1 << sk->sk_state) & 2803 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2804 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2805 /* Clear out any half completed packets. FIN if needed. */ 2806 if (tcp_close_state(sk)) 2807 tcp_send_fin(sk); 2808 } 2809 } 2810 EXPORT_SYMBOL(tcp_shutdown); 2811 2812 int tcp_orphan_count_sum(void) 2813 { 2814 int i, total = 0; 2815 2816 for_each_possible_cpu(i) 2817 total += per_cpu(tcp_orphan_count, i); 2818 2819 return max(total, 0); 2820 } 2821 2822 static int tcp_orphan_cache; 2823 static struct timer_list tcp_orphan_timer; 2824 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2825 2826 static void tcp_orphan_update(struct timer_list *unused) 2827 { 2828 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2829 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2830 } 2831 2832 static bool tcp_too_many_orphans(int shift) 2833 { 2834 return READ_ONCE(tcp_orphan_cache) << shift > 2835 READ_ONCE(sysctl_tcp_max_orphans); 2836 } 2837 2838 bool tcp_check_oom(struct sock *sk, int shift) 2839 { 2840 bool too_many_orphans, out_of_socket_memory; 2841 2842 too_many_orphans = tcp_too_many_orphans(shift); 2843 out_of_socket_memory = tcp_out_of_memory(sk); 2844 2845 if (too_many_orphans) 2846 net_info_ratelimited("too many orphaned sockets\n"); 2847 if (out_of_socket_memory) 2848 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2849 return too_many_orphans || out_of_socket_memory; 2850 } 2851 2852 void __tcp_close(struct sock *sk, long timeout) 2853 { 2854 struct sk_buff *skb; 2855 int data_was_unread = 0; 2856 int state; 2857 2858 sk->sk_shutdown = SHUTDOWN_MASK; 2859 2860 if (sk->sk_state == TCP_LISTEN) { 2861 tcp_set_state(sk, TCP_CLOSE); 2862 2863 /* Special case. */ 2864 inet_csk_listen_stop(sk); 2865 2866 goto adjudge_to_death; 2867 } 2868 2869 /* We need to flush the recv. buffs. We do this only on the 2870 * descriptor close, not protocol-sourced closes, because the 2871 * reader process may not have drained the data yet! 2872 */ 2873 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2874 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2875 2876 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2877 len--; 2878 data_was_unread += len; 2879 __kfree_skb(skb); 2880 } 2881 2882 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2883 if (sk->sk_state == TCP_CLOSE) 2884 goto adjudge_to_death; 2885 2886 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2887 * data was lost. To witness the awful effects of the old behavior of 2888 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2889 * GET in an FTP client, suspend the process, wait for the client to 2890 * advertise a zero window, then kill -9 the FTP client, wheee... 2891 * Note: timeout is always zero in such a case. 2892 */ 2893 if (unlikely(tcp_sk(sk)->repair)) { 2894 sk->sk_prot->disconnect(sk, 0); 2895 } else if (data_was_unread) { 2896 /* Unread data was tossed, zap the connection. */ 2897 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2898 tcp_set_state(sk, TCP_CLOSE); 2899 tcp_send_active_reset(sk, sk->sk_allocation); 2900 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2901 /* Check zero linger _after_ checking for unread data. */ 2902 sk->sk_prot->disconnect(sk, 0); 2903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2904 } else if (tcp_close_state(sk)) { 2905 /* We FIN if the application ate all the data before 2906 * zapping the connection. 2907 */ 2908 2909 /* RED-PEN. Formally speaking, we have broken TCP state 2910 * machine. State transitions: 2911 * 2912 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2913 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2914 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2915 * 2916 * are legal only when FIN has been sent (i.e. in window), 2917 * rather than queued out of window. Purists blame. 2918 * 2919 * F.e. "RFC state" is ESTABLISHED, 2920 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2921 * 2922 * The visible declinations are that sometimes 2923 * we enter time-wait state, when it is not required really 2924 * (harmless), do not send active resets, when they are 2925 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2926 * they look as CLOSING or LAST_ACK for Linux) 2927 * Probably, I missed some more holelets. 2928 * --ANK 2929 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2930 * in a single packet! (May consider it later but will 2931 * probably need API support or TCP_CORK SYN-ACK until 2932 * data is written and socket is closed.) 2933 */ 2934 tcp_send_fin(sk); 2935 } 2936 2937 sk_stream_wait_close(sk, timeout); 2938 2939 adjudge_to_death: 2940 state = sk->sk_state; 2941 sock_hold(sk); 2942 sock_orphan(sk); 2943 2944 local_bh_disable(); 2945 bh_lock_sock(sk); 2946 /* remove backlog if any, without releasing ownership. */ 2947 __release_sock(sk); 2948 2949 this_cpu_inc(tcp_orphan_count); 2950 2951 /* Have we already been destroyed by a softirq or backlog? */ 2952 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2953 goto out; 2954 2955 /* This is a (useful) BSD violating of the RFC. There is a 2956 * problem with TCP as specified in that the other end could 2957 * keep a socket open forever with no application left this end. 2958 * We use a 1 minute timeout (about the same as BSD) then kill 2959 * our end. If they send after that then tough - BUT: long enough 2960 * that we won't make the old 4*rto = almost no time - whoops 2961 * reset mistake. 2962 * 2963 * Nope, it was not mistake. It is really desired behaviour 2964 * f.e. on http servers, when such sockets are useless, but 2965 * consume significant resources. Let's do it with special 2966 * linger2 option. --ANK 2967 */ 2968 2969 if (sk->sk_state == TCP_FIN_WAIT2) { 2970 struct tcp_sock *tp = tcp_sk(sk); 2971 if (tp->linger2 < 0) { 2972 tcp_set_state(sk, TCP_CLOSE); 2973 tcp_send_active_reset(sk, GFP_ATOMIC); 2974 __NET_INC_STATS(sock_net(sk), 2975 LINUX_MIB_TCPABORTONLINGER); 2976 } else { 2977 const int tmo = tcp_fin_time(sk); 2978 2979 if (tmo > TCP_TIMEWAIT_LEN) { 2980 inet_csk_reset_keepalive_timer(sk, 2981 tmo - TCP_TIMEWAIT_LEN); 2982 } else { 2983 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2984 goto out; 2985 } 2986 } 2987 } 2988 if (sk->sk_state != TCP_CLOSE) { 2989 if (tcp_check_oom(sk, 0)) { 2990 tcp_set_state(sk, TCP_CLOSE); 2991 tcp_send_active_reset(sk, GFP_ATOMIC); 2992 __NET_INC_STATS(sock_net(sk), 2993 LINUX_MIB_TCPABORTONMEMORY); 2994 } else if (!check_net(sock_net(sk))) { 2995 /* Not possible to send reset; just close */ 2996 tcp_set_state(sk, TCP_CLOSE); 2997 } 2998 } 2999 3000 if (sk->sk_state == TCP_CLOSE) { 3001 struct request_sock *req; 3002 3003 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 3004 lockdep_sock_is_held(sk)); 3005 /* We could get here with a non-NULL req if the socket is 3006 * aborted (e.g., closed with unread data) before 3WHS 3007 * finishes. 3008 */ 3009 if (req) 3010 reqsk_fastopen_remove(sk, req, false); 3011 inet_csk_destroy_sock(sk); 3012 } 3013 /* Otherwise, socket is reprieved until protocol close. */ 3014 3015 out: 3016 bh_unlock_sock(sk); 3017 local_bh_enable(); 3018 } 3019 3020 void tcp_close(struct sock *sk, long timeout) 3021 { 3022 lock_sock(sk); 3023 __tcp_close(sk, timeout); 3024 release_sock(sk); 3025 sock_put(sk); 3026 } 3027 EXPORT_SYMBOL(tcp_close); 3028 3029 /* These states need RST on ABORT according to RFC793 */ 3030 3031 static inline bool tcp_need_reset(int state) 3032 { 3033 return (1 << state) & 3034 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 3035 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 3036 } 3037 3038 static void tcp_rtx_queue_purge(struct sock *sk) 3039 { 3040 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 3041 3042 tcp_sk(sk)->highest_sack = NULL; 3043 while (p) { 3044 struct sk_buff *skb = rb_to_skb(p); 3045 3046 p = rb_next(p); 3047 /* Since we are deleting whole queue, no need to 3048 * list_del(&skb->tcp_tsorted_anchor) 3049 */ 3050 tcp_rtx_queue_unlink(skb, sk); 3051 tcp_wmem_free_skb(sk, skb); 3052 } 3053 } 3054 3055 void tcp_write_queue_purge(struct sock *sk) 3056 { 3057 struct sk_buff *skb; 3058 3059 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3060 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3061 tcp_skb_tsorted_anchor_cleanup(skb); 3062 tcp_wmem_free_skb(sk, skb); 3063 } 3064 tcp_rtx_queue_purge(sk); 3065 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3066 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3067 tcp_sk(sk)->packets_out = 0; 3068 inet_csk(sk)->icsk_backoff = 0; 3069 } 3070 3071 int tcp_disconnect(struct sock *sk, int flags) 3072 { 3073 struct inet_sock *inet = inet_sk(sk); 3074 struct inet_connection_sock *icsk = inet_csk(sk); 3075 struct tcp_sock *tp = tcp_sk(sk); 3076 int old_state = sk->sk_state; 3077 u32 seq; 3078 3079 if (old_state != TCP_CLOSE) 3080 tcp_set_state(sk, TCP_CLOSE); 3081 3082 /* ABORT function of RFC793 */ 3083 if (old_state == TCP_LISTEN) { 3084 inet_csk_listen_stop(sk); 3085 } else if (unlikely(tp->repair)) { 3086 sk->sk_err = ECONNABORTED; 3087 } else if (tcp_need_reset(old_state) || 3088 (tp->snd_nxt != tp->write_seq && 3089 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3090 /* The last check adjusts for discrepancy of Linux wrt. RFC 3091 * states 3092 */ 3093 tcp_send_active_reset(sk, gfp_any()); 3094 sk->sk_err = ECONNRESET; 3095 } else if (old_state == TCP_SYN_SENT) 3096 sk->sk_err = ECONNRESET; 3097 3098 tcp_clear_xmit_timers(sk); 3099 __skb_queue_purge(&sk->sk_receive_queue); 3100 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3101 WRITE_ONCE(tp->urg_data, 0); 3102 tcp_write_queue_purge(sk); 3103 tcp_fastopen_active_disable_ofo_check(sk); 3104 skb_rbtree_purge(&tp->out_of_order_queue); 3105 3106 inet->inet_dport = 0; 3107 3108 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 3109 inet_reset_saddr(sk); 3110 3111 sk->sk_shutdown = 0; 3112 sock_reset_flag(sk, SOCK_DONE); 3113 tp->srtt_us = 0; 3114 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3115 tp->rcv_rtt_last_tsecr = 0; 3116 3117 seq = tp->write_seq + tp->max_window + 2; 3118 if (!seq) 3119 seq = 1; 3120 WRITE_ONCE(tp->write_seq, seq); 3121 3122 icsk->icsk_backoff = 0; 3123 icsk->icsk_probes_out = 0; 3124 icsk->icsk_probes_tstamp = 0; 3125 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3126 icsk->icsk_rto_min = TCP_RTO_MIN; 3127 icsk->icsk_delack_max = TCP_DELACK_MAX; 3128 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3129 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3130 tp->snd_cwnd_cnt = 0; 3131 tp->window_clamp = 0; 3132 tp->delivered = 0; 3133 tp->delivered_ce = 0; 3134 if (icsk->icsk_ca_ops->release) 3135 icsk->icsk_ca_ops->release(sk); 3136 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3137 icsk->icsk_ca_initialized = 0; 3138 tcp_set_ca_state(sk, TCP_CA_Open); 3139 tp->is_sack_reneg = 0; 3140 tcp_clear_retrans(tp); 3141 tp->total_retrans = 0; 3142 inet_csk_delack_init(sk); 3143 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3144 * issue in __tcp_select_window() 3145 */ 3146 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3147 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3148 __sk_dst_reset(sk); 3149 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3150 tcp_saved_syn_free(tp); 3151 tp->compressed_ack = 0; 3152 tp->segs_in = 0; 3153 tp->segs_out = 0; 3154 tp->bytes_sent = 0; 3155 tp->bytes_acked = 0; 3156 tp->bytes_received = 0; 3157 tp->bytes_retrans = 0; 3158 tp->data_segs_in = 0; 3159 tp->data_segs_out = 0; 3160 tp->duplicate_sack[0].start_seq = 0; 3161 tp->duplicate_sack[0].end_seq = 0; 3162 tp->dsack_dups = 0; 3163 tp->reord_seen = 0; 3164 tp->retrans_out = 0; 3165 tp->sacked_out = 0; 3166 tp->tlp_high_seq = 0; 3167 tp->last_oow_ack_time = 0; 3168 /* There's a bubble in the pipe until at least the first ACK. */ 3169 tp->app_limited = ~0U; 3170 tp->rack.mstamp = 0; 3171 tp->rack.advanced = 0; 3172 tp->rack.reo_wnd_steps = 1; 3173 tp->rack.last_delivered = 0; 3174 tp->rack.reo_wnd_persist = 0; 3175 tp->rack.dsack_seen = 0; 3176 tp->syn_data_acked = 0; 3177 tp->rx_opt.saw_tstamp = 0; 3178 tp->rx_opt.dsack = 0; 3179 tp->rx_opt.num_sacks = 0; 3180 tp->rcv_ooopack = 0; 3181 3182 3183 /* Clean up fastopen related fields */ 3184 tcp_free_fastopen_req(tp); 3185 inet->defer_connect = 0; 3186 tp->fastopen_client_fail = 0; 3187 3188 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3189 3190 if (sk->sk_frag.page) { 3191 put_page(sk->sk_frag.page); 3192 sk->sk_frag.page = NULL; 3193 sk->sk_frag.offset = 0; 3194 } 3195 sk_error_report(sk); 3196 return 0; 3197 } 3198 EXPORT_SYMBOL(tcp_disconnect); 3199 3200 static inline bool tcp_can_repair_sock(const struct sock *sk) 3201 { 3202 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3203 (sk->sk_state != TCP_LISTEN); 3204 } 3205 3206 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3207 { 3208 struct tcp_repair_window opt; 3209 3210 if (!tp->repair) 3211 return -EPERM; 3212 3213 if (len != sizeof(opt)) 3214 return -EINVAL; 3215 3216 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3217 return -EFAULT; 3218 3219 if (opt.max_window < opt.snd_wnd) 3220 return -EINVAL; 3221 3222 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3223 return -EINVAL; 3224 3225 if (after(opt.rcv_wup, tp->rcv_nxt)) 3226 return -EINVAL; 3227 3228 tp->snd_wl1 = opt.snd_wl1; 3229 tp->snd_wnd = opt.snd_wnd; 3230 tp->max_window = opt.max_window; 3231 3232 tp->rcv_wnd = opt.rcv_wnd; 3233 tp->rcv_wup = opt.rcv_wup; 3234 3235 return 0; 3236 } 3237 3238 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3239 unsigned int len) 3240 { 3241 struct tcp_sock *tp = tcp_sk(sk); 3242 struct tcp_repair_opt opt; 3243 size_t offset = 0; 3244 3245 while (len >= sizeof(opt)) { 3246 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3247 return -EFAULT; 3248 3249 offset += sizeof(opt); 3250 len -= sizeof(opt); 3251 3252 switch (opt.opt_code) { 3253 case TCPOPT_MSS: 3254 tp->rx_opt.mss_clamp = opt.opt_val; 3255 tcp_mtup_init(sk); 3256 break; 3257 case TCPOPT_WINDOW: 3258 { 3259 u16 snd_wscale = opt.opt_val & 0xFFFF; 3260 u16 rcv_wscale = opt.opt_val >> 16; 3261 3262 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3263 return -EFBIG; 3264 3265 tp->rx_opt.snd_wscale = snd_wscale; 3266 tp->rx_opt.rcv_wscale = rcv_wscale; 3267 tp->rx_opt.wscale_ok = 1; 3268 } 3269 break; 3270 case TCPOPT_SACK_PERM: 3271 if (opt.opt_val != 0) 3272 return -EINVAL; 3273 3274 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3275 break; 3276 case TCPOPT_TIMESTAMP: 3277 if (opt.opt_val != 0) 3278 return -EINVAL; 3279 3280 tp->rx_opt.tstamp_ok = 1; 3281 break; 3282 } 3283 } 3284 3285 return 0; 3286 } 3287 3288 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3289 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3290 3291 static void tcp_enable_tx_delay(void) 3292 { 3293 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3294 static int __tcp_tx_delay_enabled = 0; 3295 3296 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3297 static_branch_enable(&tcp_tx_delay_enabled); 3298 pr_info("TCP_TX_DELAY enabled\n"); 3299 } 3300 } 3301 } 3302 3303 /* When set indicates to always queue non-full frames. Later the user clears 3304 * this option and we transmit any pending partial frames in the queue. This is 3305 * meant to be used alongside sendfile() to get properly filled frames when the 3306 * user (for example) must write out headers with a write() call first and then 3307 * use sendfile to send out the data parts. 3308 * 3309 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3310 * TCP_NODELAY. 3311 */ 3312 void __tcp_sock_set_cork(struct sock *sk, bool on) 3313 { 3314 struct tcp_sock *tp = tcp_sk(sk); 3315 3316 if (on) { 3317 tp->nonagle |= TCP_NAGLE_CORK; 3318 } else { 3319 tp->nonagle &= ~TCP_NAGLE_CORK; 3320 if (tp->nonagle & TCP_NAGLE_OFF) 3321 tp->nonagle |= TCP_NAGLE_PUSH; 3322 tcp_push_pending_frames(sk); 3323 } 3324 } 3325 3326 void tcp_sock_set_cork(struct sock *sk, bool on) 3327 { 3328 lock_sock(sk); 3329 __tcp_sock_set_cork(sk, on); 3330 release_sock(sk); 3331 } 3332 EXPORT_SYMBOL(tcp_sock_set_cork); 3333 3334 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3335 * remembered, but it is not activated until cork is cleared. 3336 * 3337 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3338 * even TCP_CORK for currently queued segments. 3339 */ 3340 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3341 { 3342 if (on) { 3343 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3344 tcp_push_pending_frames(sk); 3345 } else { 3346 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3347 } 3348 } 3349 3350 void tcp_sock_set_nodelay(struct sock *sk) 3351 { 3352 lock_sock(sk); 3353 __tcp_sock_set_nodelay(sk, true); 3354 release_sock(sk); 3355 } 3356 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3357 3358 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3359 { 3360 if (!val) { 3361 inet_csk_enter_pingpong_mode(sk); 3362 return; 3363 } 3364 3365 inet_csk_exit_pingpong_mode(sk); 3366 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3367 inet_csk_ack_scheduled(sk)) { 3368 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3369 tcp_cleanup_rbuf(sk, 1); 3370 if (!(val & 1)) 3371 inet_csk_enter_pingpong_mode(sk); 3372 } 3373 } 3374 3375 void tcp_sock_set_quickack(struct sock *sk, int val) 3376 { 3377 lock_sock(sk); 3378 __tcp_sock_set_quickack(sk, val); 3379 release_sock(sk); 3380 } 3381 EXPORT_SYMBOL(tcp_sock_set_quickack); 3382 3383 int tcp_sock_set_syncnt(struct sock *sk, int val) 3384 { 3385 if (val < 1 || val > MAX_TCP_SYNCNT) 3386 return -EINVAL; 3387 3388 lock_sock(sk); 3389 inet_csk(sk)->icsk_syn_retries = val; 3390 release_sock(sk); 3391 return 0; 3392 } 3393 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3394 3395 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3396 { 3397 lock_sock(sk); 3398 inet_csk(sk)->icsk_user_timeout = val; 3399 release_sock(sk); 3400 } 3401 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3402 3403 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3404 { 3405 struct tcp_sock *tp = tcp_sk(sk); 3406 3407 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3408 return -EINVAL; 3409 3410 tp->keepalive_time = val * HZ; 3411 if (sock_flag(sk, SOCK_KEEPOPEN) && 3412 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3413 u32 elapsed = keepalive_time_elapsed(tp); 3414 3415 if (tp->keepalive_time > elapsed) 3416 elapsed = tp->keepalive_time - elapsed; 3417 else 3418 elapsed = 0; 3419 inet_csk_reset_keepalive_timer(sk, elapsed); 3420 } 3421 3422 return 0; 3423 } 3424 3425 int tcp_sock_set_keepidle(struct sock *sk, int val) 3426 { 3427 int err; 3428 3429 lock_sock(sk); 3430 err = tcp_sock_set_keepidle_locked(sk, val); 3431 release_sock(sk); 3432 return err; 3433 } 3434 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3435 3436 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3437 { 3438 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3439 return -EINVAL; 3440 3441 lock_sock(sk); 3442 tcp_sk(sk)->keepalive_intvl = val * HZ; 3443 release_sock(sk); 3444 return 0; 3445 } 3446 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3447 3448 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3449 { 3450 if (val < 1 || val > MAX_TCP_KEEPCNT) 3451 return -EINVAL; 3452 3453 lock_sock(sk); 3454 tcp_sk(sk)->keepalive_probes = val; 3455 release_sock(sk); 3456 return 0; 3457 } 3458 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3459 3460 int tcp_set_window_clamp(struct sock *sk, int val) 3461 { 3462 struct tcp_sock *tp = tcp_sk(sk); 3463 3464 if (!val) { 3465 if (sk->sk_state != TCP_CLOSE) 3466 return -EINVAL; 3467 tp->window_clamp = 0; 3468 } else { 3469 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3470 SOCK_MIN_RCVBUF / 2 : val; 3471 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3472 } 3473 return 0; 3474 } 3475 3476 /* 3477 * Socket option code for TCP. 3478 */ 3479 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3480 sockptr_t optval, unsigned int optlen) 3481 { 3482 struct tcp_sock *tp = tcp_sk(sk); 3483 struct inet_connection_sock *icsk = inet_csk(sk); 3484 struct net *net = sock_net(sk); 3485 int val; 3486 int err = 0; 3487 3488 /* These are data/string values, all the others are ints */ 3489 switch (optname) { 3490 case TCP_CONGESTION: { 3491 char name[TCP_CA_NAME_MAX]; 3492 3493 if (optlen < 1) 3494 return -EINVAL; 3495 3496 val = strncpy_from_sockptr(name, optval, 3497 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3498 if (val < 0) 3499 return -EFAULT; 3500 name[val] = 0; 3501 3502 lock_sock(sk); 3503 err = tcp_set_congestion_control(sk, name, true, 3504 ns_capable(sock_net(sk)->user_ns, 3505 CAP_NET_ADMIN)); 3506 release_sock(sk); 3507 return err; 3508 } 3509 case TCP_ULP: { 3510 char name[TCP_ULP_NAME_MAX]; 3511 3512 if (optlen < 1) 3513 return -EINVAL; 3514 3515 val = strncpy_from_sockptr(name, optval, 3516 min_t(long, TCP_ULP_NAME_MAX - 1, 3517 optlen)); 3518 if (val < 0) 3519 return -EFAULT; 3520 name[val] = 0; 3521 3522 lock_sock(sk); 3523 err = tcp_set_ulp(sk, name); 3524 release_sock(sk); 3525 return err; 3526 } 3527 case TCP_FASTOPEN_KEY: { 3528 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3529 __u8 *backup_key = NULL; 3530 3531 /* Allow a backup key as well to facilitate key rotation 3532 * First key is the active one. 3533 */ 3534 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3535 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3536 return -EINVAL; 3537 3538 if (copy_from_sockptr(key, optval, optlen)) 3539 return -EFAULT; 3540 3541 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3542 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3543 3544 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3545 } 3546 default: 3547 /* fallthru */ 3548 break; 3549 } 3550 3551 if (optlen < sizeof(int)) 3552 return -EINVAL; 3553 3554 if (copy_from_sockptr(&val, optval, sizeof(val))) 3555 return -EFAULT; 3556 3557 lock_sock(sk); 3558 3559 switch (optname) { 3560 case TCP_MAXSEG: 3561 /* Values greater than interface MTU won't take effect. However 3562 * at the point when this call is done we typically don't yet 3563 * know which interface is going to be used 3564 */ 3565 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3566 err = -EINVAL; 3567 break; 3568 } 3569 tp->rx_opt.user_mss = val; 3570 break; 3571 3572 case TCP_NODELAY: 3573 __tcp_sock_set_nodelay(sk, val); 3574 break; 3575 3576 case TCP_THIN_LINEAR_TIMEOUTS: 3577 if (val < 0 || val > 1) 3578 err = -EINVAL; 3579 else 3580 tp->thin_lto = val; 3581 break; 3582 3583 case TCP_THIN_DUPACK: 3584 if (val < 0 || val > 1) 3585 err = -EINVAL; 3586 break; 3587 3588 case TCP_REPAIR: 3589 if (!tcp_can_repair_sock(sk)) 3590 err = -EPERM; 3591 else if (val == TCP_REPAIR_ON) { 3592 tp->repair = 1; 3593 sk->sk_reuse = SK_FORCE_REUSE; 3594 tp->repair_queue = TCP_NO_QUEUE; 3595 } else if (val == TCP_REPAIR_OFF) { 3596 tp->repair = 0; 3597 sk->sk_reuse = SK_NO_REUSE; 3598 tcp_send_window_probe(sk); 3599 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3600 tp->repair = 0; 3601 sk->sk_reuse = SK_NO_REUSE; 3602 } else 3603 err = -EINVAL; 3604 3605 break; 3606 3607 case TCP_REPAIR_QUEUE: 3608 if (!tp->repair) 3609 err = -EPERM; 3610 else if ((unsigned int)val < TCP_QUEUES_NR) 3611 tp->repair_queue = val; 3612 else 3613 err = -EINVAL; 3614 break; 3615 3616 case TCP_QUEUE_SEQ: 3617 if (sk->sk_state != TCP_CLOSE) { 3618 err = -EPERM; 3619 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3620 if (!tcp_rtx_queue_empty(sk)) 3621 err = -EPERM; 3622 else 3623 WRITE_ONCE(tp->write_seq, val); 3624 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3625 if (tp->rcv_nxt != tp->copied_seq) { 3626 err = -EPERM; 3627 } else { 3628 WRITE_ONCE(tp->rcv_nxt, val); 3629 WRITE_ONCE(tp->copied_seq, val); 3630 } 3631 } else { 3632 err = -EINVAL; 3633 } 3634 break; 3635 3636 case TCP_REPAIR_OPTIONS: 3637 if (!tp->repair) 3638 err = -EINVAL; 3639 else if (sk->sk_state == TCP_ESTABLISHED) 3640 err = tcp_repair_options_est(sk, optval, optlen); 3641 else 3642 err = -EPERM; 3643 break; 3644 3645 case TCP_CORK: 3646 __tcp_sock_set_cork(sk, val); 3647 break; 3648 3649 case TCP_KEEPIDLE: 3650 err = tcp_sock_set_keepidle_locked(sk, val); 3651 break; 3652 case TCP_KEEPINTVL: 3653 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3654 err = -EINVAL; 3655 else 3656 tp->keepalive_intvl = val * HZ; 3657 break; 3658 case TCP_KEEPCNT: 3659 if (val < 1 || val > MAX_TCP_KEEPCNT) 3660 err = -EINVAL; 3661 else 3662 tp->keepalive_probes = val; 3663 break; 3664 case TCP_SYNCNT: 3665 if (val < 1 || val > MAX_TCP_SYNCNT) 3666 err = -EINVAL; 3667 else 3668 icsk->icsk_syn_retries = val; 3669 break; 3670 3671 case TCP_SAVE_SYN: 3672 /* 0: disable, 1: enable, 2: start from ether_header */ 3673 if (val < 0 || val > 2) 3674 err = -EINVAL; 3675 else 3676 tp->save_syn = val; 3677 break; 3678 3679 case TCP_LINGER2: 3680 if (val < 0) 3681 tp->linger2 = -1; 3682 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3683 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3684 else 3685 tp->linger2 = val * HZ; 3686 break; 3687 3688 case TCP_DEFER_ACCEPT: 3689 /* Translate value in seconds to number of retransmits */ 3690 icsk->icsk_accept_queue.rskq_defer_accept = 3691 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3692 TCP_RTO_MAX / HZ); 3693 break; 3694 3695 case TCP_WINDOW_CLAMP: 3696 err = tcp_set_window_clamp(sk, val); 3697 break; 3698 3699 case TCP_QUICKACK: 3700 __tcp_sock_set_quickack(sk, val); 3701 break; 3702 3703 #ifdef CONFIG_TCP_MD5SIG 3704 case TCP_MD5SIG: 3705 case TCP_MD5SIG_EXT: 3706 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3707 break; 3708 #endif 3709 case TCP_USER_TIMEOUT: 3710 /* Cap the max time in ms TCP will retry or probe the window 3711 * before giving up and aborting (ETIMEDOUT) a connection. 3712 */ 3713 if (val < 0) 3714 err = -EINVAL; 3715 else 3716 icsk->icsk_user_timeout = val; 3717 break; 3718 3719 case TCP_FASTOPEN: 3720 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3721 TCPF_LISTEN))) { 3722 tcp_fastopen_init_key_once(net); 3723 3724 fastopen_queue_tune(sk, val); 3725 } else { 3726 err = -EINVAL; 3727 } 3728 break; 3729 case TCP_FASTOPEN_CONNECT: 3730 if (val > 1 || val < 0) { 3731 err = -EINVAL; 3732 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3733 TFO_CLIENT_ENABLE) { 3734 if (sk->sk_state == TCP_CLOSE) 3735 tp->fastopen_connect = val; 3736 else 3737 err = -EINVAL; 3738 } else { 3739 err = -EOPNOTSUPP; 3740 } 3741 break; 3742 case TCP_FASTOPEN_NO_COOKIE: 3743 if (val > 1 || val < 0) 3744 err = -EINVAL; 3745 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3746 err = -EINVAL; 3747 else 3748 tp->fastopen_no_cookie = val; 3749 break; 3750 case TCP_TIMESTAMP: 3751 if (!tp->repair) 3752 err = -EPERM; 3753 else 3754 tp->tsoffset = val - tcp_time_stamp_raw(); 3755 break; 3756 case TCP_REPAIR_WINDOW: 3757 err = tcp_repair_set_window(tp, optval, optlen); 3758 break; 3759 case TCP_NOTSENT_LOWAT: 3760 tp->notsent_lowat = val; 3761 sk->sk_write_space(sk); 3762 break; 3763 case TCP_INQ: 3764 if (val > 1 || val < 0) 3765 err = -EINVAL; 3766 else 3767 tp->recvmsg_inq = val; 3768 break; 3769 case TCP_TX_DELAY: 3770 if (val) 3771 tcp_enable_tx_delay(); 3772 tp->tcp_tx_delay = val; 3773 break; 3774 default: 3775 err = -ENOPROTOOPT; 3776 break; 3777 } 3778 3779 release_sock(sk); 3780 return err; 3781 } 3782 3783 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3784 unsigned int optlen) 3785 { 3786 const struct inet_connection_sock *icsk = inet_csk(sk); 3787 3788 if (level != SOL_TCP) 3789 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3790 optval, optlen); 3791 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3792 } 3793 EXPORT_SYMBOL(tcp_setsockopt); 3794 3795 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3796 struct tcp_info *info) 3797 { 3798 u64 stats[__TCP_CHRONO_MAX], total = 0; 3799 enum tcp_chrono i; 3800 3801 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3802 stats[i] = tp->chrono_stat[i - 1]; 3803 if (i == tp->chrono_type) 3804 stats[i] += tcp_jiffies32 - tp->chrono_start; 3805 stats[i] *= USEC_PER_SEC / HZ; 3806 total += stats[i]; 3807 } 3808 3809 info->tcpi_busy_time = total; 3810 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3811 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3812 } 3813 3814 /* Return information about state of tcp endpoint in API format. */ 3815 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3816 { 3817 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3818 const struct inet_connection_sock *icsk = inet_csk(sk); 3819 unsigned long rate; 3820 u32 now; 3821 u64 rate64; 3822 bool slow; 3823 3824 memset(info, 0, sizeof(*info)); 3825 if (sk->sk_type != SOCK_STREAM) 3826 return; 3827 3828 info->tcpi_state = inet_sk_state_load(sk); 3829 3830 /* Report meaningful fields for all TCP states, including listeners */ 3831 rate = READ_ONCE(sk->sk_pacing_rate); 3832 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3833 info->tcpi_pacing_rate = rate64; 3834 3835 rate = READ_ONCE(sk->sk_max_pacing_rate); 3836 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3837 info->tcpi_max_pacing_rate = rate64; 3838 3839 info->tcpi_reordering = tp->reordering; 3840 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3841 3842 if (info->tcpi_state == TCP_LISTEN) { 3843 /* listeners aliased fields : 3844 * tcpi_unacked -> Number of children ready for accept() 3845 * tcpi_sacked -> max backlog 3846 */ 3847 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3848 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3849 return; 3850 } 3851 3852 slow = lock_sock_fast(sk); 3853 3854 info->tcpi_ca_state = icsk->icsk_ca_state; 3855 info->tcpi_retransmits = icsk->icsk_retransmits; 3856 info->tcpi_probes = icsk->icsk_probes_out; 3857 info->tcpi_backoff = icsk->icsk_backoff; 3858 3859 if (tp->rx_opt.tstamp_ok) 3860 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3861 if (tcp_is_sack(tp)) 3862 info->tcpi_options |= TCPI_OPT_SACK; 3863 if (tp->rx_opt.wscale_ok) { 3864 info->tcpi_options |= TCPI_OPT_WSCALE; 3865 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3866 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3867 } 3868 3869 if (tp->ecn_flags & TCP_ECN_OK) 3870 info->tcpi_options |= TCPI_OPT_ECN; 3871 if (tp->ecn_flags & TCP_ECN_SEEN) 3872 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3873 if (tp->syn_data_acked) 3874 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3875 3876 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3877 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3878 info->tcpi_snd_mss = tp->mss_cache; 3879 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3880 3881 info->tcpi_unacked = tp->packets_out; 3882 info->tcpi_sacked = tp->sacked_out; 3883 3884 info->tcpi_lost = tp->lost_out; 3885 info->tcpi_retrans = tp->retrans_out; 3886 3887 now = tcp_jiffies32; 3888 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3889 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3890 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3891 3892 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3893 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3894 info->tcpi_rtt = tp->srtt_us >> 3; 3895 info->tcpi_rttvar = tp->mdev_us >> 2; 3896 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3897 info->tcpi_advmss = tp->advmss; 3898 3899 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3900 info->tcpi_rcv_space = tp->rcvq_space.space; 3901 3902 info->tcpi_total_retrans = tp->total_retrans; 3903 3904 info->tcpi_bytes_acked = tp->bytes_acked; 3905 info->tcpi_bytes_received = tp->bytes_received; 3906 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3907 tcp_get_info_chrono_stats(tp, info); 3908 3909 info->tcpi_segs_out = tp->segs_out; 3910 3911 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3912 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3913 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3914 3915 info->tcpi_min_rtt = tcp_min_rtt(tp); 3916 info->tcpi_data_segs_out = tp->data_segs_out; 3917 3918 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3919 rate64 = tcp_compute_delivery_rate(tp); 3920 if (rate64) 3921 info->tcpi_delivery_rate = rate64; 3922 info->tcpi_delivered = tp->delivered; 3923 info->tcpi_delivered_ce = tp->delivered_ce; 3924 info->tcpi_bytes_sent = tp->bytes_sent; 3925 info->tcpi_bytes_retrans = tp->bytes_retrans; 3926 info->tcpi_dsack_dups = tp->dsack_dups; 3927 info->tcpi_reord_seen = tp->reord_seen; 3928 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3929 info->tcpi_snd_wnd = tp->snd_wnd; 3930 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3931 unlock_sock_fast(sk, slow); 3932 } 3933 EXPORT_SYMBOL_GPL(tcp_get_info); 3934 3935 static size_t tcp_opt_stats_get_size(void) 3936 { 3937 return 3938 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3939 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3940 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3941 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3942 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3943 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3944 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3945 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3946 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3947 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3948 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3949 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3950 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3951 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3952 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3953 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3954 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3955 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3956 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3957 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3958 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3959 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3960 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3961 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3962 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3963 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3964 0; 3965 } 3966 3967 /* Returns TTL or hop limit of an incoming packet from skb. */ 3968 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3969 { 3970 if (skb->protocol == htons(ETH_P_IP)) 3971 return ip_hdr(skb)->ttl; 3972 else if (skb->protocol == htons(ETH_P_IPV6)) 3973 return ipv6_hdr(skb)->hop_limit; 3974 else 3975 return 0; 3976 } 3977 3978 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3979 const struct sk_buff *orig_skb, 3980 const struct sk_buff *ack_skb) 3981 { 3982 const struct tcp_sock *tp = tcp_sk(sk); 3983 struct sk_buff *stats; 3984 struct tcp_info info; 3985 unsigned long rate; 3986 u64 rate64; 3987 3988 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3989 if (!stats) 3990 return NULL; 3991 3992 tcp_get_info_chrono_stats(tp, &info); 3993 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3994 info.tcpi_busy_time, TCP_NLA_PAD); 3995 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3996 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3997 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3998 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3999 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 4000 tp->data_segs_out, TCP_NLA_PAD); 4001 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 4002 tp->total_retrans, TCP_NLA_PAD); 4003 4004 rate = READ_ONCE(sk->sk_pacing_rate); 4005 rate64 = (rate != ~0UL) ? rate : ~0ULL; 4006 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 4007 4008 rate64 = tcp_compute_delivery_rate(tp); 4009 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4010 4011 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4012 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4013 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4014 4015 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4016 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4017 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4018 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4019 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4020 4021 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4022 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4023 4024 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4025 TCP_NLA_PAD); 4026 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4027 TCP_NLA_PAD); 4028 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4029 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4030 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4031 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4032 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4033 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4034 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4035 TCP_NLA_PAD); 4036 if (ack_skb) 4037 nla_put_u8(stats, TCP_NLA_TTL, 4038 tcp_skb_ttl_or_hop_limit(ack_skb)); 4039 4040 return stats; 4041 } 4042 4043 static int do_tcp_getsockopt(struct sock *sk, int level, 4044 int optname, char __user *optval, int __user *optlen) 4045 { 4046 struct inet_connection_sock *icsk = inet_csk(sk); 4047 struct tcp_sock *tp = tcp_sk(sk); 4048 struct net *net = sock_net(sk); 4049 int val, len; 4050 4051 if (get_user(len, optlen)) 4052 return -EFAULT; 4053 4054 len = min_t(unsigned int, len, sizeof(int)); 4055 4056 if (len < 0) 4057 return -EINVAL; 4058 4059 switch (optname) { 4060 case TCP_MAXSEG: 4061 val = tp->mss_cache; 4062 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4063 val = tp->rx_opt.user_mss; 4064 if (tp->repair) 4065 val = tp->rx_opt.mss_clamp; 4066 break; 4067 case TCP_NODELAY: 4068 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4069 break; 4070 case TCP_CORK: 4071 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4072 break; 4073 case TCP_KEEPIDLE: 4074 val = keepalive_time_when(tp) / HZ; 4075 break; 4076 case TCP_KEEPINTVL: 4077 val = keepalive_intvl_when(tp) / HZ; 4078 break; 4079 case TCP_KEEPCNT: 4080 val = keepalive_probes(tp); 4081 break; 4082 case TCP_SYNCNT: 4083 val = icsk->icsk_syn_retries ? : 4084 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4085 break; 4086 case TCP_LINGER2: 4087 val = tp->linger2; 4088 if (val >= 0) 4089 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4090 break; 4091 case TCP_DEFER_ACCEPT: 4092 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4093 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4094 break; 4095 case TCP_WINDOW_CLAMP: 4096 val = tp->window_clamp; 4097 break; 4098 case TCP_INFO: { 4099 struct tcp_info info; 4100 4101 if (get_user(len, optlen)) 4102 return -EFAULT; 4103 4104 tcp_get_info(sk, &info); 4105 4106 len = min_t(unsigned int, len, sizeof(info)); 4107 if (put_user(len, optlen)) 4108 return -EFAULT; 4109 if (copy_to_user(optval, &info, len)) 4110 return -EFAULT; 4111 return 0; 4112 } 4113 case TCP_CC_INFO: { 4114 const struct tcp_congestion_ops *ca_ops; 4115 union tcp_cc_info info; 4116 size_t sz = 0; 4117 int attr; 4118 4119 if (get_user(len, optlen)) 4120 return -EFAULT; 4121 4122 ca_ops = icsk->icsk_ca_ops; 4123 if (ca_ops && ca_ops->get_info) 4124 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4125 4126 len = min_t(unsigned int, len, sz); 4127 if (put_user(len, optlen)) 4128 return -EFAULT; 4129 if (copy_to_user(optval, &info, len)) 4130 return -EFAULT; 4131 return 0; 4132 } 4133 case TCP_QUICKACK: 4134 val = !inet_csk_in_pingpong_mode(sk); 4135 break; 4136 4137 case TCP_CONGESTION: 4138 if (get_user(len, optlen)) 4139 return -EFAULT; 4140 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4141 if (put_user(len, optlen)) 4142 return -EFAULT; 4143 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4144 return -EFAULT; 4145 return 0; 4146 4147 case TCP_ULP: 4148 if (get_user(len, optlen)) 4149 return -EFAULT; 4150 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4151 if (!icsk->icsk_ulp_ops) { 4152 if (put_user(0, optlen)) 4153 return -EFAULT; 4154 return 0; 4155 } 4156 if (put_user(len, optlen)) 4157 return -EFAULT; 4158 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4159 return -EFAULT; 4160 return 0; 4161 4162 case TCP_FASTOPEN_KEY: { 4163 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4164 unsigned int key_len; 4165 4166 if (get_user(len, optlen)) 4167 return -EFAULT; 4168 4169 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4170 TCP_FASTOPEN_KEY_LENGTH; 4171 len = min_t(unsigned int, len, key_len); 4172 if (put_user(len, optlen)) 4173 return -EFAULT; 4174 if (copy_to_user(optval, key, len)) 4175 return -EFAULT; 4176 return 0; 4177 } 4178 case TCP_THIN_LINEAR_TIMEOUTS: 4179 val = tp->thin_lto; 4180 break; 4181 4182 case TCP_THIN_DUPACK: 4183 val = 0; 4184 break; 4185 4186 case TCP_REPAIR: 4187 val = tp->repair; 4188 break; 4189 4190 case TCP_REPAIR_QUEUE: 4191 if (tp->repair) 4192 val = tp->repair_queue; 4193 else 4194 return -EINVAL; 4195 break; 4196 4197 case TCP_REPAIR_WINDOW: { 4198 struct tcp_repair_window opt; 4199 4200 if (get_user(len, optlen)) 4201 return -EFAULT; 4202 4203 if (len != sizeof(opt)) 4204 return -EINVAL; 4205 4206 if (!tp->repair) 4207 return -EPERM; 4208 4209 opt.snd_wl1 = tp->snd_wl1; 4210 opt.snd_wnd = tp->snd_wnd; 4211 opt.max_window = tp->max_window; 4212 opt.rcv_wnd = tp->rcv_wnd; 4213 opt.rcv_wup = tp->rcv_wup; 4214 4215 if (copy_to_user(optval, &opt, len)) 4216 return -EFAULT; 4217 return 0; 4218 } 4219 case TCP_QUEUE_SEQ: 4220 if (tp->repair_queue == TCP_SEND_QUEUE) 4221 val = tp->write_seq; 4222 else if (tp->repair_queue == TCP_RECV_QUEUE) 4223 val = tp->rcv_nxt; 4224 else 4225 return -EINVAL; 4226 break; 4227 4228 case TCP_USER_TIMEOUT: 4229 val = icsk->icsk_user_timeout; 4230 break; 4231 4232 case TCP_FASTOPEN: 4233 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4234 break; 4235 4236 case TCP_FASTOPEN_CONNECT: 4237 val = tp->fastopen_connect; 4238 break; 4239 4240 case TCP_FASTOPEN_NO_COOKIE: 4241 val = tp->fastopen_no_cookie; 4242 break; 4243 4244 case TCP_TX_DELAY: 4245 val = tp->tcp_tx_delay; 4246 break; 4247 4248 case TCP_TIMESTAMP: 4249 val = tcp_time_stamp_raw() + tp->tsoffset; 4250 break; 4251 case TCP_NOTSENT_LOWAT: 4252 val = tp->notsent_lowat; 4253 break; 4254 case TCP_INQ: 4255 val = tp->recvmsg_inq; 4256 break; 4257 case TCP_SAVE_SYN: 4258 val = tp->save_syn; 4259 break; 4260 case TCP_SAVED_SYN: { 4261 if (get_user(len, optlen)) 4262 return -EFAULT; 4263 4264 lock_sock(sk); 4265 if (tp->saved_syn) { 4266 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4267 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4268 optlen)) { 4269 release_sock(sk); 4270 return -EFAULT; 4271 } 4272 release_sock(sk); 4273 return -EINVAL; 4274 } 4275 len = tcp_saved_syn_len(tp->saved_syn); 4276 if (put_user(len, optlen)) { 4277 release_sock(sk); 4278 return -EFAULT; 4279 } 4280 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4281 release_sock(sk); 4282 return -EFAULT; 4283 } 4284 tcp_saved_syn_free(tp); 4285 release_sock(sk); 4286 } else { 4287 release_sock(sk); 4288 len = 0; 4289 if (put_user(len, optlen)) 4290 return -EFAULT; 4291 } 4292 return 0; 4293 } 4294 #ifdef CONFIG_MMU 4295 case TCP_ZEROCOPY_RECEIVE: { 4296 struct scm_timestamping_internal tss; 4297 struct tcp_zerocopy_receive zc = {}; 4298 int err; 4299 4300 if (get_user(len, optlen)) 4301 return -EFAULT; 4302 if (len < 0 || 4303 len < offsetofend(struct tcp_zerocopy_receive, length)) 4304 return -EINVAL; 4305 if (unlikely(len > sizeof(zc))) { 4306 err = check_zeroed_user(optval + sizeof(zc), 4307 len - sizeof(zc)); 4308 if (err < 1) 4309 return err == 0 ? -EINVAL : err; 4310 len = sizeof(zc); 4311 if (put_user(len, optlen)) 4312 return -EFAULT; 4313 } 4314 if (copy_from_user(&zc, optval, len)) 4315 return -EFAULT; 4316 if (zc.reserved) 4317 return -EINVAL; 4318 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4319 return -EINVAL; 4320 lock_sock(sk); 4321 err = tcp_zerocopy_receive(sk, &zc, &tss); 4322 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4323 &zc, &len, err); 4324 release_sock(sk); 4325 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4326 goto zerocopy_rcv_cmsg; 4327 switch (len) { 4328 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4329 goto zerocopy_rcv_cmsg; 4330 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4331 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4332 case offsetofend(struct tcp_zerocopy_receive, flags): 4333 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4334 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4335 case offsetofend(struct tcp_zerocopy_receive, err): 4336 goto zerocopy_rcv_sk_err; 4337 case offsetofend(struct tcp_zerocopy_receive, inq): 4338 goto zerocopy_rcv_inq; 4339 case offsetofend(struct tcp_zerocopy_receive, length): 4340 default: 4341 goto zerocopy_rcv_out; 4342 } 4343 zerocopy_rcv_cmsg: 4344 if (zc.msg_flags & TCP_CMSG_TS) 4345 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4346 else 4347 zc.msg_flags = 0; 4348 zerocopy_rcv_sk_err: 4349 if (!err) 4350 zc.err = sock_error(sk); 4351 zerocopy_rcv_inq: 4352 zc.inq = tcp_inq_hint(sk); 4353 zerocopy_rcv_out: 4354 if (!err && copy_to_user(optval, &zc, len)) 4355 err = -EFAULT; 4356 return err; 4357 } 4358 #endif 4359 default: 4360 return -ENOPROTOOPT; 4361 } 4362 4363 if (put_user(len, optlen)) 4364 return -EFAULT; 4365 if (copy_to_user(optval, &val, len)) 4366 return -EFAULT; 4367 return 0; 4368 } 4369 4370 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4371 { 4372 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4373 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4374 */ 4375 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4376 return true; 4377 4378 return false; 4379 } 4380 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4381 4382 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4383 int __user *optlen) 4384 { 4385 struct inet_connection_sock *icsk = inet_csk(sk); 4386 4387 if (level != SOL_TCP) 4388 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4389 optval, optlen); 4390 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4391 } 4392 EXPORT_SYMBOL(tcp_getsockopt); 4393 4394 #ifdef CONFIG_TCP_MD5SIG 4395 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4396 static DEFINE_MUTEX(tcp_md5sig_mutex); 4397 static bool tcp_md5sig_pool_populated = false; 4398 4399 static void __tcp_alloc_md5sig_pool(void) 4400 { 4401 struct crypto_ahash *hash; 4402 int cpu; 4403 4404 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4405 if (IS_ERR(hash)) 4406 return; 4407 4408 for_each_possible_cpu(cpu) { 4409 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4410 struct ahash_request *req; 4411 4412 if (!scratch) { 4413 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4414 sizeof(struct tcphdr), 4415 GFP_KERNEL, 4416 cpu_to_node(cpu)); 4417 if (!scratch) 4418 return; 4419 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4420 } 4421 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4422 continue; 4423 4424 req = ahash_request_alloc(hash, GFP_KERNEL); 4425 if (!req) 4426 return; 4427 4428 ahash_request_set_callback(req, 0, NULL, NULL); 4429 4430 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4431 } 4432 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4433 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4434 */ 4435 smp_wmb(); 4436 tcp_md5sig_pool_populated = true; 4437 } 4438 4439 bool tcp_alloc_md5sig_pool(void) 4440 { 4441 if (unlikely(!tcp_md5sig_pool_populated)) { 4442 mutex_lock(&tcp_md5sig_mutex); 4443 4444 if (!tcp_md5sig_pool_populated) { 4445 __tcp_alloc_md5sig_pool(); 4446 if (tcp_md5sig_pool_populated) 4447 static_branch_inc(&tcp_md5_needed); 4448 } 4449 4450 mutex_unlock(&tcp_md5sig_mutex); 4451 } 4452 return tcp_md5sig_pool_populated; 4453 } 4454 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4455 4456 4457 /** 4458 * tcp_get_md5sig_pool - get md5sig_pool for this user 4459 * 4460 * We use percpu structure, so if we succeed, we exit with preemption 4461 * and BH disabled, to make sure another thread or softirq handling 4462 * wont try to get same context. 4463 */ 4464 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4465 { 4466 local_bh_disable(); 4467 4468 if (tcp_md5sig_pool_populated) { 4469 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4470 smp_rmb(); 4471 return this_cpu_ptr(&tcp_md5sig_pool); 4472 } 4473 local_bh_enable(); 4474 return NULL; 4475 } 4476 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4477 4478 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4479 const struct sk_buff *skb, unsigned int header_len) 4480 { 4481 struct scatterlist sg; 4482 const struct tcphdr *tp = tcp_hdr(skb); 4483 struct ahash_request *req = hp->md5_req; 4484 unsigned int i; 4485 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4486 skb_headlen(skb) - header_len : 0; 4487 const struct skb_shared_info *shi = skb_shinfo(skb); 4488 struct sk_buff *frag_iter; 4489 4490 sg_init_table(&sg, 1); 4491 4492 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4493 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4494 if (crypto_ahash_update(req)) 4495 return 1; 4496 4497 for (i = 0; i < shi->nr_frags; ++i) { 4498 const skb_frag_t *f = &shi->frags[i]; 4499 unsigned int offset = skb_frag_off(f); 4500 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4501 4502 sg_set_page(&sg, page, skb_frag_size(f), 4503 offset_in_page(offset)); 4504 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4505 if (crypto_ahash_update(req)) 4506 return 1; 4507 } 4508 4509 skb_walk_frags(skb, frag_iter) 4510 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4511 return 1; 4512 4513 return 0; 4514 } 4515 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4516 4517 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4518 { 4519 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4520 struct scatterlist sg; 4521 4522 sg_init_one(&sg, key->key, keylen); 4523 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4524 4525 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4526 return data_race(crypto_ahash_update(hp->md5_req)); 4527 } 4528 EXPORT_SYMBOL(tcp_md5_hash_key); 4529 4530 /* Called with rcu_read_lock() */ 4531 enum skb_drop_reason 4532 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4533 const void *saddr, const void *daddr, 4534 int family, int dif, int sdif) 4535 { 4536 /* 4537 * This gets called for each TCP segment that arrives 4538 * so we want to be efficient. 4539 * We have 3 drop cases: 4540 * o No MD5 hash and one expected. 4541 * o MD5 hash and we're not expecting one. 4542 * o MD5 hash and its wrong. 4543 */ 4544 const __u8 *hash_location = NULL; 4545 struct tcp_md5sig_key *hash_expected; 4546 const struct tcphdr *th = tcp_hdr(skb); 4547 struct tcp_sock *tp = tcp_sk(sk); 4548 int genhash, l3index; 4549 u8 newhash[16]; 4550 4551 /* sdif set, means packet ingressed via a device 4552 * in an L3 domain and dif is set to the l3mdev 4553 */ 4554 l3index = sdif ? dif : 0; 4555 4556 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4557 hash_location = tcp_parse_md5sig_option(th); 4558 4559 /* We've parsed the options - do we have a hash? */ 4560 if (!hash_expected && !hash_location) 4561 return SKB_NOT_DROPPED_YET; 4562 4563 if (hash_expected && !hash_location) { 4564 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4565 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4566 } 4567 4568 if (!hash_expected && hash_location) { 4569 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4570 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4571 } 4572 4573 /* Check the signature. 4574 * To support dual stack listeners, we need to handle 4575 * IPv4-mapped case. 4576 */ 4577 if (family == AF_INET) 4578 genhash = tcp_v4_md5_hash_skb(newhash, 4579 hash_expected, 4580 NULL, skb); 4581 else 4582 genhash = tp->af_specific->calc_md5_hash(newhash, 4583 hash_expected, 4584 NULL, skb); 4585 4586 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4587 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4588 if (family == AF_INET) { 4589 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4590 saddr, ntohs(th->source), 4591 daddr, ntohs(th->dest), 4592 genhash ? " tcp_v4_calc_md5_hash failed" 4593 : "", l3index); 4594 } else { 4595 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4596 genhash ? "failed" : "mismatch", 4597 saddr, ntohs(th->source), 4598 daddr, ntohs(th->dest), l3index); 4599 } 4600 return SKB_DROP_REASON_TCP_MD5FAILURE; 4601 } 4602 return SKB_NOT_DROPPED_YET; 4603 } 4604 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4605 4606 #endif 4607 4608 void tcp_done(struct sock *sk) 4609 { 4610 struct request_sock *req; 4611 4612 /* We might be called with a new socket, after 4613 * inet_csk_prepare_forced_close() has been called 4614 * so we can not use lockdep_sock_is_held(sk) 4615 */ 4616 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4617 4618 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4619 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4620 4621 tcp_set_state(sk, TCP_CLOSE); 4622 tcp_clear_xmit_timers(sk); 4623 if (req) 4624 reqsk_fastopen_remove(sk, req, false); 4625 4626 sk->sk_shutdown = SHUTDOWN_MASK; 4627 4628 if (!sock_flag(sk, SOCK_DEAD)) 4629 sk->sk_state_change(sk); 4630 else 4631 inet_csk_destroy_sock(sk); 4632 } 4633 EXPORT_SYMBOL_GPL(tcp_done); 4634 4635 int tcp_abort(struct sock *sk, int err) 4636 { 4637 int state = inet_sk_state_load(sk); 4638 4639 if (state == TCP_NEW_SYN_RECV) { 4640 struct request_sock *req = inet_reqsk(sk); 4641 4642 local_bh_disable(); 4643 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4644 local_bh_enable(); 4645 return 0; 4646 } 4647 if (state == TCP_TIME_WAIT) { 4648 struct inet_timewait_sock *tw = inet_twsk(sk); 4649 4650 refcount_inc(&tw->tw_refcnt); 4651 local_bh_disable(); 4652 inet_twsk_deschedule_put(tw); 4653 local_bh_enable(); 4654 return 0; 4655 } 4656 4657 /* Don't race with userspace socket closes such as tcp_close. */ 4658 lock_sock(sk); 4659 4660 if (sk->sk_state == TCP_LISTEN) { 4661 tcp_set_state(sk, TCP_CLOSE); 4662 inet_csk_listen_stop(sk); 4663 } 4664 4665 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4666 local_bh_disable(); 4667 bh_lock_sock(sk); 4668 4669 if (!sock_flag(sk, SOCK_DEAD)) { 4670 sk->sk_err = err; 4671 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4672 smp_wmb(); 4673 sk_error_report(sk); 4674 if (tcp_need_reset(sk->sk_state)) 4675 tcp_send_active_reset(sk, GFP_ATOMIC); 4676 tcp_done(sk); 4677 } 4678 4679 bh_unlock_sock(sk); 4680 local_bh_enable(); 4681 tcp_write_queue_purge(sk); 4682 release_sock(sk); 4683 return 0; 4684 } 4685 EXPORT_SYMBOL_GPL(tcp_abort); 4686 4687 extern struct tcp_congestion_ops tcp_reno; 4688 4689 static __initdata unsigned long thash_entries; 4690 static int __init set_thash_entries(char *str) 4691 { 4692 ssize_t ret; 4693 4694 if (!str) 4695 return 0; 4696 4697 ret = kstrtoul(str, 0, &thash_entries); 4698 if (ret) 4699 return 0; 4700 4701 return 1; 4702 } 4703 __setup("thash_entries=", set_thash_entries); 4704 4705 static void __init tcp_init_mem(void) 4706 { 4707 unsigned long limit = nr_free_buffer_pages() / 16; 4708 4709 limit = max(limit, 128UL); 4710 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4711 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4712 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4713 } 4714 4715 void __init tcp_init(void) 4716 { 4717 int max_rshare, max_wshare, cnt; 4718 unsigned long limit; 4719 unsigned int i; 4720 4721 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4722 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4723 sizeof_field(struct sk_buff, cb)); 4724 4725 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4726 4727 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4728 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4729 4730 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4731 thash_entries, 21, /* one slot per 2 MB*/ 4732 0, 64 * 1024); 4733 tcp_hashinfo.bind_bucket_cachep = 4734 kmem_cache_create("tcp_bind_bucket", 4735 sizeof(struct inet_bind_bucket), 0, 4736 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4737 SLAB_ACCOUNT, 4738 NULL); 4739 4740 /* Size and allocate the main established and bind bucket 4741 * hash tables. 4742 * 4743 * The methodology is similar to that of the buffer cache. 4744 */ 4745 tcp_hashinfo.ehash = 4746 alloc_large_system_hash("TCP established", 4747 sizeof(struct inet_ehash_bucket), 4748 thash_entries, 4749 17, /* one slot per 128 KB of memory */ 4750 0, 4751 NULL, 4752 &tcp_hashinfo.ehash_mask, 4753 0, 4754 thash_entries ? 0 : 512 * 1024); 4755 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4756 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4757 4758 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4759 panic("TCP: failed to alloc ehash_locks"); 4760 tcp_hashinfo.bhash = 4761 alloc_large_system_hash("TCP bind", 4762 sizeof(struct inet_bind_hashbucket), 4763 tcp_hashinfo.ehash_mask + 1, 4764 17, /* one slot per 128 KB of memory */ 4765 0, 4766 &tcp_hashinfo.bhash_size, 4767 NULL, 4768 0, 4769 64 * 1024); 4770 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4771 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4772 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4773 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4774 } 4775 4776 4777 cnt = tcp_hashinfo.ehash_mask + 1; 4778 sysctl_tcp_max_orphans = cnt / 2; 4779 4780 tcp_init_mem(); 4781 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4782 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4783 max_wshare = min(4UL*1024*1024, limit); 4784 max_rshare = min(6UL*1024*1024, limit); 4785 4786 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4787 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4788 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4789 4790 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4791 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4792 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4793 4794 pr_info("Hash tables configured (established %u bind %u)\n", 4795 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4796 4797 tcp_v4_init(); 4798 tcp_metrics_init(); 4799 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4800 tcp_tasklet_init(); 4801 mptcp_init(); 4802 } 4803