1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/inet_diag.h> 256 #include <linux/init.h> 257 #include <linux/fs.h> 258 #include <linux/skbuff.h> 259 #include <linux/scatterlist.h> 260 #include <linux/splice.h> 261 #include <linux/net.h> 262 #include <linux/socket.h> 263 #include <linux/random.h> 264 #include <linux/bootmem.h> 265 #include <linux/highmem.h> 266 #include <linux/swap.h> 267 #include <linux/cache.h> 268 #include <linux/err.h> 269 #include <linux/crypto.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286 int sysctl_tcp_min_tso_segs __read_mostly = 2; 287 288 int sysctl_tcp_autocorking __read_mostly = 1; 289 290 struct percpu_counter tcp_orphan_count; 291 EXPORT_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 int sysctl_tcp_wmem[3] __read_mostly; 295 int sysctl_tcp_rmem[3] __read_mostly; 296 297 EXPORT_SYMBOL(sysctl_tcp_mem); 298 EXPORT_SYMBOL(sysctl_tcp_rmem); 299 EXPORT_SYMBOL(sysctl_tcp_wmem); 300 301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 302 EXPORT_SYMBOL(tcp_memory_allocated); 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 int tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL(tcp_memory_pressure); 327 328 void tcp_enter_memory_pressure(struct sock *sk) 329 { 330 if (!tcp_memory_pressure) { 331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 332 tcp_memory_pressure = 1; 333 } 334 } 335 EXPORT_SYMBOL(tcp_enter_memory_pressure); 336 337 /* Convert seconds to retransmits based on initial and max timeout */ 338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 339 { 340 u8 res = 0; 341 342 if (seconds > 0) { 343 int period = timeout; 344 345 res = 1; 346 while (seconds > period && res < 255) { 347 res++; 348 timeout <<= 1; 349 if (timeout > rto_max) 350 timeout = rto_max; 351 period += timeout; 352 } 353 } 354 return res; 355 } 356 357 /* Convert retransmits to seconds based on initial and max timeout */ 358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 359 { 360 int period = 0; 361 362 if (retrans > 0) { 363 period = timeout; 364 while (--retrans) { 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return period; 372 } 373 374 /* Address-family independent initialization for a tcp_sock. 375 * 376 * NOTE: A lot of things set to zero explicitly by call to 377 * sk_alloc() so need not be done here. 378 */ 379 void tcp_init_sock(struct sock *sk) 380 { 381 struct inet_connection_sock *icsk = inet_csk(sk); 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 __skb_queue_head_init(&tp->out_of_order_queue); 385 tcp_init_xmit_timers(sk); 386 tcp_prequeue_init(tp); 387 INIT_LIST_HEAD(&tp->tsq_node); 388 389 icsk->icsk_rto = TCP_TIMEOUT_INIT; 390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 391 tp->rtt_min[0].rtt = ~0U; 392 393 /* So many TCP implementations out there (incorrectly) count the 394 * initial SYN frame in their delayed-ACK and congestion control 395 * algorithms that we must have the following bandaid to talk 396 * efficiently to them. -DaveM 397 */ 398 tp->snd_cwnd = TCP_INIT_CWND; 399 400 /* See draft-stevens-tcpca-spec-01 for discussion of the 401 * initialization of these values. 402 */ 403 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 404 tp->snd_cwnd_clamp = ~0; 405 tp->mss_cache = TCP_MSS_DEFAULT; 406 u64_stats_init(&tp->syncp); 407 408 tp->reordering = sysctl_tcp_reordering; 409 tcp_enable_early_retrans(tp); 410 tcp_assign_congestion_control(sk); 411 412 tp->tsoffset = 0; 413 414 sk->sk_state = TCP_CLOSE; 415 416 sk->sk_write_space = sk_stream_write_space; 417 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 418 419 icsk->icsk_sync_mss = tcp_sync_mss; 420 421 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 422 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 423 424 local_bh_disable(); 425 sock_update_memcg(sk); 426 sk_sockets_allocated_inc(sk); 427 local_bh_enable(); 428 } 429 EXPORT_SYMBOL(tcp_init_sock); 430 431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 432 { 433 if (sk->sk_tsflags) { 434 struct skb_shared_info *shinfo = skb_shinfo(skb); 435 436 sock_tx_timestamp(sk, &shinfo->tx_flags); 437 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 438 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 439 } 440 } 441 442 /* 443 * Wait for a TCP event. 444 * 445 * Note that we don't need to lock the socket, as the upper poll layers 446 * take care of normal races (between the test and the event) and we don't 447 * go look at any of the socket buffers directly. 448 */ 449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 450 { 451 unsigned int mask; 452 struct sock *sk = sock->sk; 453 const struct tcp_sock *tp = tcp_sk(sk); 454 int state; 455 456 sock_rps_record_flow(sk); 457 458 sock_poll_wait(file, sk_sleep(sk), wait); 459 460 state = sk_state_load(sk); 461 if (state == TCP_LISTEN) 462 return inet_csk_listen_poll(sk); 463 464 /* Socket is not locked. We are protected from async events 465 * by poll logic and correct handling of state changes 466 * made by other threads is impossible in any case. 467 */ 468 469 mask = 0; 470 471 /* 472 * POLLHUP is certainly not done right. But poll() doesn't 473 * have a notion of HUP in just one direction, and for a 474 * socket the read side is more interesting. 475 * 476 * Some poll() documentation says that POLLHUP is incompatible 477 * with the POLLOUT/POLLWR flags, so somebody should check this 478 * all. But careful, it tends to be safer to return too many 479 * bits than too few, and you can easily break real applications 480 * if you don't tell them that something has hung up! 481 * 482 * Check-me. 483 * 484 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 485 * our fs/select.c). It means that after we received EOF, 486 * poll always returns immediately, making impossible poll() on write() 487 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 488 * if and only if shutdown has been made in both directions. 489 * Actually, it is interesting to look how Solaris and DUX 490 * solve this dilemma. I would prefer, if POLLHUP were maskable, 491 * then we could set it on SND_SHUTDOWN. BTW examples given 492 * in Stevens' books assume exactly this behaviour, it explains 493 * why POLLHUP is incompatible with POLLOUT. --ANK 494 * 495 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 496 * blocking on fresh not-connected or disconnected socket. --ANK 497 */ 498 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 499 mask |= POLLHUP; 500 if (sk->sk_shutdown & RCV_SHUTDOWN) 501 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 502 503 /* Connected or passive Fast Open socket? */ 504 if (state != TCP_SYN_SENT && 505 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 506 int target = sock_rcvlowat(sk, 0, INT_MAX); 507 508 if (tp->urg_seq == tp->copied_seq && 509 !sock_flag(sk, SOCK_URGINLINE) && 510 tp->urg_data) 511 target++; 512 513 if (tp->rcv_nxt - tp->copied_seq >= target) 514 mask |= POLLIN | POLLRDNORM; 515 516 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 517 if (sk_stream_is_writeable(sk)) { 518 mask |= POLLOUT | POLLWRNORM; 519 } else { /* send SIGIO later */ 520 set_bit(SOCK_ASYNC_NOSPACE, 521 &sk->sk_socket->flags); 522 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 523 524 /* Race breaker. If space is freed after 525 * wspace test but before the flags are set, 526 * IO signal will be lost. Memory barrier 527 * pairs with the input side. 528 */ 529 smp_mb__after_atomic(); 530 if (sk_stream_is_writeable(sk)) 531 mask |= POLLOUT | POLLWRNORM; 532 } 533 } else 534 mask |= POLLOUT | POLLWRNORM; 535 536 if (tp->urg_data & TCP_URG_VALID) 537 mask |= POLLPRI; 538 } 539 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 540 smp_rmb(); 541 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 542 mask |= POLLERR; 543 544 return mask; 545 } 546 EXPORT_SYMBOL(tcp_poll); 547 548 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 549 { 550 struct tcp_sock *tp = tcp_sk(sk); 551 int answ; 552 bool slow; 553 554 switch (cmd) { 555 case SIOCINQ: 556 if (sk->sk_state == TCP_LISTEN) 557 return -EINVAL; 558 559 slow = lock_sock_fast(sk); 560 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 561 answ = 0; 562 else if (sock_flag(sk, SOCK_URGINLINE) || 563 !tp->urg_data || 564 before(tp->urg_seq, tp->copied_seq) || 565 !before(tp->urg_seq, tp->rcv_nxt)) { 566 567 answ = tp->rcv_nxt - tp->copied_seq; 568 569 /* Subtract 1, if FIN was received */ 570 if (answ && sock_flag(sk, SOCK_DONE)) 571 answ--; 572 } else 573 answ = tp->urg_seq - tp->copied_seq; 574 unlock_sock_fast(sk, slow); 575 break; 576 case SIOCATMARK: 577 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 578 break; 579 case SIOCOUTQ: 580 if (sk->sk_state == TCP_LISTEN) 581 return -EINVAL; 582 583 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 584 answ = 0; 585 else 586 answ = tp->write_seq - tp->snd_una; 587 break; 588 case SIOCOUTQNSD: 589 if (sk->sk_state == TCP_LISTEN) 590 return -EINVAL; 591 592 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 593 answ = 0; 594 else 595 answ = tp->write_seq - tp->snd_nxt; 596 break; 597 default: 598 return -ENOIOCTLCMD; 599 } 600 601 return put_user(answ, (int __user *)arg); 602 } 603 EXPORT_SYMBOL(tcp_ioctl); 604 605 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 606 { 607 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 608 tp->pushed_seq = tp->write_seq; 609 } 610 611 static inline bool forced_push(const struct tcp_sock *tp) 612 { 613 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 614 } 615 616 static void skb_entail(struct sock *sk, struct sk_buff *skb) 617 { 618 struct tcp_sock *tp = tcp_sk(sk); 619 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 620 621 skb->csum = 0; 622 tcb->seq = tcb->end_seq = tp->write_seq; 623 tcb->tcp_flags = TCPHDR_ACK; 624 tcb->sacked = 0; 625 __skb_header_release(skb); 626 tcp_add_write_queue_tail(sk, skb); 627 sk->sk_wmem_queued += skb->truesize; 628 sk_mem_charge(sk, skb->truesize); 629 if (tp->nonagle & TCP_NAGLE_PUSH) 630 tp->nonagle &= ~TCP_NAGLE_PUSH; 631 632 tcp_slow_start_after_idle_check(sk); 633 } 634 635 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 636 { 637 if (flags & MSG_OOB) 638 tp->snd_up = tp->write_seq; 639 } 640 641 /* If a not yet filled skb is pushed, do not send it if 642 * we have data packets in Qdisc or NIC queues : 643 * Because TX completion will happen shortly, it gives a chance 644 * to coalesce future sendmsg() payload into this skb, without 645 * need for a timer, and with no latency trade off. 646 * As packets containing data payload have a bigger truesize 647 * than pure acks (dataless) packets, the last checks prevent 648 * autocorking if we only have an ACK in Qdisc/NIC queues, 649 * or if TX completion was delayed after we processed ACK packet. 650 */ 651 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 652 int size_goal) 653 { 654 return skb->len < size_goal && 655 sysctl_tcp_autocorking && 656 skb != tcp_write_queue_head(sk) && 657 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 658 } 659 660 static void tcp_push(struct sock *sk, int flags, int mss_now, 661 int nonagle, int size_goal) 662 { 663 struct tcp_sock *tp = tcp_sk(sk); 664 struct sk_buff *skb; 665 666 if (!tcp_send_head(sk)) 667 return; 668 669 skb = tcp_write_queue_tail(sk); 670 if (!(flags & MSG_MORE) || forced_push(tp)) 671 tcp_mark_push(tp, skb); 672 673 tcp_mark_urg(tp, flags); 674 675 if (tcp_should_autocork(sk, skb, size_goal)) { 676 677 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 678 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 679 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 680 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 681 } 682 /* It is possible TX completion already happened 683 * before we set TSQ_THROTTLED. 684 */ 685 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 686 return; 687 } 688 689 if (flags & MSG_MORE) 690 nonagle = TCP_NAGLE_CORK; 691 692 __tcp_push_pending_frames(sk, mss_now, nonagle); 693 } 694 695 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 696 unsigned int offset, size_t len) 697 { 698 struct tcp_splice_state *tss = rd_desc->arg.data; 699 int ret; 700 701 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 702 min(rd_desc->count, len), tss->flags, 703 skb_socket_splice); 704 if (ret > 0) 705 rd_desc->count -= ret; 706 return ret; 707 } 708 709 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 710 { 711 /* Store TCP splice context information in read_descriptor_t. */ 712 read_descriptor_t rd_desc = { 713 .arg.data = tss, 714 .count = tss->len, 715 }; 716 717 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 718 } 719 720 /** 721 * tcp_splice_read - splice data from TCP socket to a pipe 722 * @sock: socket to splice from 723 * @ppos: position (not valid) 724 * @pipe: pipe to splice to 725 * @len: number of bytes to splice 726 * @flags: splice modifier flags 727 * 728 * Description: 729 * Will read pages from given socket and fill them into a pipe. 730 * 731 **/ 732 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 733 struct pipe_inode_info *pipe, size_t len, 734 unsigned int flags) 735 { 736 struct sock *sk = sock->sk; 737 struct tcp_splice_state tss = { 738 .pipe = pipe, 739 .len = len, 740 .flags = flags, 741 }; 742 long timeo; 743 ssize_t spliced; 744 int ret; 745 746 sock_rps_record_flow(sk); 747 /* 748 * We can't seek on a socket input 749 */ 750 if (unlikely(*ppos)) 751 return -ESPIPE; 752 753 ret = spliced = 0; 754 755 lock_sock(sk); 756 757 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 758 while (tss.len) { 759 ret = __tcp_splice_read(sk, &tss); 760 if (ret < 0) 761 break; 762 else if (!ret) { 763 if (spliced) 764 break; 765 if (sock_flag(sk, SOCK_DONE)) 766 break; 767 if (sk->sk_err) { 768 ret = sock_error(sk); 769 break; 770 } 771 if (sk->sk_shutdown & RCV_SHUTDOWN) 772 break; 773 if (sk->sk_state == TCP_CLOSE) { 774 /* 775 * This occurs when user tries to read 776 * from never connected socket. 777 */ 778 if (!sock_flag(sk, SOCK_DONE)) 779 ret = -ENOTCONN; 780 break; 781 } 782 if (!timeo) { 783 ret = -EAGAIN; 784 break; 785 } 786 sk_wait_data(sk, &timeo, NULL); 787 if (signal_pending(current)) { 788 ret = sock_intr_errno(timeo); 789 break; 790 } 791 continue; 792 } 793 tss.len -= ret; 794 spliced += ret; 795 796 if (!timeo) 797 break; 798 release_sock(sk); 799 lock_sock(sk); 800 801 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 802 (sk->sk_shutdown & RCV_SHUTDOWN) || 803 signal_pending(current)) 804 break; 805 } 806 807 release_sock(sk); 808 809 if (spliced) 810 return spliced; 811 812 return ret; 813 } 814 EXPORT_SYMBOL(tcp_splice_read); 815 816 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 817 bool force_schedule) 818 { 819 struct sk_buff *skb; 820 821 /* The TCP header must be at least 32-bit aligned. */ 822 size = ALIGN(size, 4); 823 824 if (unlikely(tcp_under_memory_pressure(sk))) 825 sk_mem_reclaim_partial(sk); 826 827 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 828 if (likely(skb)) { 829 bool mem_scheduled; 830 831 if (force_schedule) { 832 mem_scheduled = true; 833 sk_forced_mem_schedule(sk, skb->truesize); 834 } else { 835 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 836 } 837 if (likely(mem_scheduled)) { 838 skb_reserve(skb, sk->sk_prot->max_header); 839 /* 840 * Make sure that we have exactly size bytes 841 * available to the caller, no more, no less. 842 */ 843 skb->reserved_tailroom = skb->end - skb->tail - size; 844 return skb; 845 } 846 __kfree_skb(skb); 847 } else { 848 sk->sk_prot->enter_memory_pressure(sk); 849 sk_stream_moderate_sndbuf(sk); 850 } 851 return NULL; 852 } 853 854 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 855 int large_allowed) 856 { 857 struct tcp_sock *tp = tcp_sk(sk); 858 u32 new_size_goal, size_goal; 859 860 if (!large_allowed || !sk_can_gso(sk)) 861 return mss_now; 862 863 /* Note : tcp_tso_autosize() will eventually split this later */ 864 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 865 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 866 867 /* We try hard to avoid divides here */ 868 size_goal = tp->gso_segs * mss_now; 869 if (unlikely(new_size_goal < size_goal || 870 new_size_goal >= size_goal + mss_now)) { 871 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 872 sk->sk_gso_max_segs); 873 size_goal = tp->gso_segs * mss_now; 874 } 875 876 return max(size_goal, mss_now); 877 } 878 879 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 880 { 881 int mss_now; 882 883 mss_now = tcp_current_mss(sk); 884 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 885 886 return mss_now; 887 } 888 889 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 890 size_t size, int flags) 891 { 892 struct tcp_sock *tp = tcp_sk(sk); 893 int mss_now, size_goal; 894 int err; 895 ssize_t copied; 896 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 897 898 /* Wait for a connection to finish. One exception is TCP Fast Open 899 * (passive side) where data is allowed to be sent before a connection 900 * is fully established. 901 */ 902 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 903 !tcp_passive_fastopen(sk)) { 904 err = sk_stream_wait_connect(sk, &timeo); 905 if (err != 0) 906 goto out_err; 907 } 908 909 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 910 911 mss_now = tcp_send_mss(sk, &size_goal, flags); 912 copied = 0; 913 914 err = -EPIPE; 915 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 916 goto out_err; 917 918 while (size > 0) { 919 struct sk_buff *skb = tcp_write_queue_tail(sk); 920 int copy, i; 921 bool can_coalesce; 922 923 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 924 new_segment: 925 if (!sk_stream_memory_free(sk)) 926 goto wait_for_sndbuf; 927 928 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 929 skb_queue_empty(&sk->sk_write_queue)); 930 if (!skb) 931 goto wait_for_memory; 932 933 skb_entail(sk, skb); 934 copy = size_goal; 935 } 936 937 if (copy > size) 938 copy = size; 939 940 i = skb_shinfo(skb)->nr_frags; 941 can_coalesce = skb_can_coalesce(skb, i, page, offset); 942 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 943 tcp_mark_push(tp, skb); 944 goto new_segment; 945 } 946 if (!sk_wmem_schedule(sk, copy)) 947 goto wait_for_memory; 948 949 if (can_coalesce) { 950 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 951 } else { 952 get_page(page); 953 skb_fill_page_desc(skb, i, page, offset, copy); 954 } 955 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 956 957 skb->len += copy; 958 skb->data_len += copy; 959 skb->truesize += copy; 960 sk->sk_wmem_queued += copy; 961 sk_mem_charge(sk, copy); 962 skb->ip_summed = CHECKSUM_PARTIAL; 963 tp->write_seq += copy; 964 TCP_SKB_CB(skb)->end_seq += copy; 965 tcp_skb_pcount_set(skb, 0); 966 967 if (!copied) 968 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 969 970 copied += copy; 971 offset += copy; 972 size -= copy; 973 if (!size) { 974 tcp_tx_timestamp(sk, skb); 975 goto out; 976 } 977 978 if (skb->len < size_goal || (flags & MSG_OOB)) 979 continue; 980 981 if (forced_push(tp)) { 982 tcp_mark_push(tp, skb); 983 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 984 } else if (skb == tcp_send_head(sk)) 985 tcp_push_one(sk, mss_now); 986 continue; 987 988 wait_for_sndbuf: 989 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 990 wait_for_memory: 991 tcp_push(sk, flags & ~MSG_MORE, mss_now, 992 TCP_NAGLE_PUSH, size_goal); 993 994 err = sk_stream_wait_memory(sk, &timeo); 995 if (err != 0) 996 goto do_error; 997 998 mss_now = tcp_send_mss(sk, &size_goal, flags); 999 } 1000 1001 out: 1002 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 1003 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1004 return copied; 1005 1006 do_error: 1007 if (copied) 1008 goto out; 1009 out_err: 1010 /* make sure we wake any epoll edge trigger waiter */ 1011 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1012 sk->sk_write_space(sk); 1013 return sk_stream_error(sk, flags, err); 1014 } 1015 1016 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1017 size_t size, int flags) 1018 { 1019 ssize_t res; 1020 1021 if (!(sk->sk_route_caps & NETIF_F_SG) || 1022 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 1023 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1024 flags); 1025 1026 lock_sock(sk); 1027 res = do_tcp_sendpages(sk, page, offset, size, flags); 1028 release_sock(sk); 1029 return res; 1030 } 1031 EXPORT_SYMBOL(tcp_sendpage); 1032 1033 static inline int select_size(const struct sock *sk, bool sg) 1034 { 1035 const struct tcp_sock *tp = tcp_sk(sk); 1036 int tmp = tp->mss_cache; 1037 1038 if (sg) { 1039 if (sk_can_gso(sk)) { 1040 /* Small frames wont use a full page: 1041 * Payload will immediately follow tcp header. 1042 */ 1043 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1044 } else { 1045 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1046 1047 if (tmp >= pgbreak && 1048 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1049 tmp = pgbreak; 1050 } 1051 } 1052 1053 return tmp; 1054 } 1055 1056 void tcp_free_fastopen_req(struct tcp_sock *tp) 1057 { 1058 if (tp->fastopen_req) { 1059 kfree(tp->fastopen_req); 1060 tp->fastopen_req = NULL; 1061 } 1062 } 1063 1064 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1065 int *copied, size_t size) 1066 { 1067 struct tcp_sock *tp = tcp_sk(sk); 1068 int err, flags; 1069 1070 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1071 return -EOPNOTSUPP; 1072 if (tp->fastopen_req) 1073 return -EALREADY; /* Another Fast Open is in progress */ 1074 1075 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1076 sk->sk_allocation); 1077 if (unlikely(!tp->fastopen_req)) 1078 return -ENOBUFS; 1079 tp->fastopen_req->data = msg; 1080 tp->fastopen_req->size = size; 1081 1082 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1083 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1084 msg->msg_namelen, flags); 1085 *copied = tp->fastopen_req->copied; 1086 tcp_free_fastopen_req(tp); 1087 return err; 1088 } 1089 1090 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1091 { 1092 struct tcp_sock *tp = tcp_sk(sk); 1093 struct sk_buff *skb; 1094 int flags, err, copied = 0; 1095 int mss_now = 0, size_goal, copied_syn = 0; 1096 bool sg; 1097 long timeo; 1098 1099 lock_sock(sk); 1100 1101 flags = msg->msg_flags; 1102 if (flags & MSG_FASTOPEN) { 1103 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1104 if (err == -EINPROGRESS && copied_syn > 0) 1105 goto out; 1106 else if (err) 1107 goto out_err; 1108 } 1109 1110 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1111 1112 /* Wait for a connection to finish. One exception is TCP Fast Open 1113 * (passive side) where data is allowed to be sent before a connection 1114 * is fully established. 1115 */ 1116 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1117 !tcp_passive_fastopen(sk)) { 1118 err = sk_stream_wait_connect(sk, &timeo); 1119 if (err != 0) 1120 goto do_error; 1121 } 1122 1123 if (unlikely(tp->repair)) { 1124 if (tp->repair_queue == TCP_RECV_QUEUE) { 1125 copied = tcp_send_rcvq(sk, msg, size); 1126 goto out_nopush; 1127 } 1128 1129 err = -EINVAL; 1130 if (tp->repair_queue == TCP_NO_QUEUE) 1131 goto out_err; 1132 1133 /* 'common' sending to sendq */ 1134 } 1135 1136 /* This should be in poll */ 1137 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1138 1139 mss_now = tcp_send_mss(sk, &size_goal, flags); 1140 1141 /* Ok commence sending. */ 1142 copied = 0; 1143 1144 err = -EPIPE; 1145 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1146 goto out_err; 1147 1148 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1149 1150 while (msg_data_left(msg)) { 1151 int copy = 0; 1152 int max = size_goal; 1153 1154 skb = tcp_write_queue_tail(sk); 1155 if (tcp_send_head(sk)) { 1156 if (skb->ip_summed == CHECKSUM_NONE) 1157 max = mss_now; 1158 copy = max - skb->len; 1159 } 1160 1161 if (copy <= 0) { 1162 new_segment: 1163 /* Allocate new segment. If the interface is SG, 1164 * allocate skb fitting to single page. 1165 */ 1166 if (!sk_stream_memory_free(sk)) 1167 goto wait_for_sndbuf; 1168 1169 skb = sk_stream_alloc_skb(sk, 1170 select_size(sk, sg), 1171 sk->sk_allocation, 1172 skb_queue_empty(&sk->sk_write_queue)); 1173 if (!skb) 1174 goto wait_for_memory; 1175 1176 /* 1177 * Check whether we can use HW checksum. 1178 */ 1179 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1180 skb->ip_summed = CHECKSUM_PARTIAL; 1181 1182 skb_entail(sk, skb); 1183 copy = size_goal; 1184 max = size_goal; 1185 1186 /* All packets are restored as if they have 1187 * already been sent. skb_mstamp isn't set to 1188 * avoid wrong rtt estimation. 1189 */ 1190 if (tp->repair) 1191 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1192 } 1193 1194 /* Try to append data to the end of skb. */ 1195 if (copy > msg_data_left(msg)) 1196 copy = msg_data_left(msg); 1197 1198 /* Where to copy to? */ 1199 if (skb_availroom(skb) > 0) { 1200 /* We have some space in skb head. Superb! */ 1201 copy = min_t(int, copy, skb_availroom(skb)); 1202 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1203 if (err) 1204 goto do_fault; 1205 } else { 1206 bool merge = true; 1207 int i = skb_shinfo(skb)->nr_frags; 1208 struct page_frag *pfrag = sk_page_frag(sk); 1209 1210 if (!sk_page_frag_refill(sk, pfrag)) 1211 goto wait_for_memory; 1212 1213 if (!skb_can_coalesce(skb, i, pfrag->page, 1214 pfrag->offset)) { 1215 if (i == MAX_SKB_FRAGS || !sg) { 1216 tcp_mark_push(tp, skb); 1217 goto new_segment; 1218 } 1219 merge = false; 1220 } 1221 1222 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1223 1224 if (!sk_wmem_schedule(sk, copy)) 1225 goto wait_for_memory; 1226 1227 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1228 pfrag->page, 1229 pfrag->offset, 1230 copy); 1231 if (err) 1232 goto do_error; 1233 1234 /* Update the skb. */ 1235 if (merge) { 1236 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1237 } else { 1238 skb_fill_page_desc(skb, i, pfrag->page, 1239 pfrag->offset, copy); 1240 get_page(pfrag->page); 1241 } 1242 pfrag->offset += copy; 1243 } 1244 1245 if (!copied) 1246 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1247 1248 tp->write_seq += copy; 1249 TCP_SKB_CB(skb)->end_seq += copy; 1250 tcp_skb_pcount_set(skb, 0); 1251 1252 copied += copy; 1253 if (!msg_data_left(msg)) { 1254 tcp_tx_timestamp(sk, skb); 1255 goto out; 1256 } 1257 1258 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1259 continue; 1260 1261 if (forced_push(tp)) { 1262 tcp_mark_push(tp, skb); 1263 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1264 } else if (skb == tcp_send_head(sk)) 1265 tcp_push_one(sk, mss_now); 1266 continue; 1267 1268 wait_for_sndbuf: 1269 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1270 wait_for_memory: 1271 if (copied) 1272 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1273 TCP_NAGLE_PUSH, size_goal); 1274 1275 err = sk_stream_wait_memory(sk, &timeo); 1276 if (err != 0) 1277 goto do_error; 1278 1279 mss_now = tcp_send_mss(sk, &size_goal, flags); 1280 } 1281 1282 out: 1283 if (copied) 1284 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1285 out_nopush: 1286 release_sock(sk); 1287 return copied + copied_syn; 1288 1289 do_fault: 1290 if (!skb->len) { 1291 tcp_unlink_write_queue(skb, sk); 1292 /* It is the one place in all of TCP, except connection 1293 * reset, where we can be unlinking the send_head. 1294 */ 1295 tcp_check_send_head(sk, skb); 1296 sk_wmem_free_skb(sk, skb); 1297 } 1298 1299 do_error: 1300 if (copied + copied_syn) 1301 goto out; 1302 out_err: 1303 err = sk_stream_error(sk, flags, err); 1304 /* make sure we wake any epoll edge trigger waiter */ 1305 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1306 sk->sk_write_space(sk); 1307 release_sock(sk); 1308 return err; 1309 } 1310 EXPORT_SYMBOL(tcp_sendmsg); 1311 1312 /* 1313 * Handle reading urgent data. BSD has very simple semantics for 1314 * this, no blocking and very strange errors 8) 1315 */ 1316 1317 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1318 { 1319 struct tcp_sock *tp = tcp_sk(sk); 1320 1321 /* No URG data to read. */ 1322 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1323 tp->urg_data == TCP_URG_READ) 1324 return -EINVAL; /* Yes this is right ! */ 1325 1326 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1327 return -ENOTCONN; 1328 1329 if (tp->urg_data & TCP_URG_VALID) { 1330 int err = 0; 1331 char c = tp->urg_data; 1332 1333 if (!(flags & MSG_PEEK)) 1334 tp->urg_data = TCP_URG_READ; 1335 1336 /* Read urgent data. */ 1337 msg->msg_flags |= MSG_OOB; 1338 1339 if (len > 0) { 1340 if (!(flags & MSG_TRUNC)) 1341 err = memcpy_to_msg(msg, &c, 1); 1342 len = 1; 1343 } else 1344 msg->msg_flags |= MSG_TRUNC; 1345 1346 return err ? -EFAULT : len; 1347 } 1348 1349 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1350 return 0; 1351 1352 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1353 * the available implementations agree in this case: 1354 * this call should never block, independent of the 1355 * blocking state of the socket. 1356 * Mike <pall@rz.uni-karlsruhe.de> 1357 */ 1358 return -EAGAIN; 1359 } 1360 1361 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1362 { 1363 struct sk_buff *skb; 1364 int copied = 0, err = 0; 1365 1366 /* XXX -- need to support SO_PEEK_OFF */ 1367 1368 skb_queue_walk(&sk->sk_write_queue, skb) { 1369 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1370 if (err) 1371 break; 1372 1373 copied += skb->len; 1374 } 1375 1376 return err ?: copied; 1377 } 1378 1379 /* Clean up the receive buffer for full frames taken by the user, 1380 * then send an ACK if necessary. COPIED is the number of bytes 1381 * tcp_recvmsg has given to the user so far, it speeds up the 1382 * calculation of whether or not we must ACK for the sake of 1383 * a window update. 1384 */ 1385 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1386 { 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 bool time_to_ack = false; 1389 1390 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1391 1392 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1393 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1394 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1395 1396 if (inet_csk_ack_scheduled(sk)) { 1397 const struct inet_connection_sock *icsk = inet_csk(sk); 1398 /* Delayed ACKs frequently hit locked sockets during bulk 1399 * receive. */ 1400 if (icsk->icsk_ack.blocked || 1401 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1402 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1403 /* 1404 * If this read emptied read buffer, we send ACK, if 1405 * connection is not bidirectional, user drained 1406 * receive buffer and there was a small segment 1407 * in queue. 1408 */ 1409 (copied > 0 && 1410 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1411 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1412 !icsk->icsk_ack.pingpong)) && 1413 !atomic_read(&sk->sk_rmem_alloc))) 1414 time_to_ack = true; 1415 } 1416 1417 /* We send an ACK if we can now advertise a non-zero window 1418 * which has been raised "significantly". 1419 * 1420 * Even if window raised up to infinity, do not send window open ACK 1421 * in states, where we will not receive more. It is useless. 1422 */ 1423 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1424 __u32 rcv_window_now = tcp_receive_window(tp); 1425 1426 /* Optimize, __tcp_select_window() is not cheap. */ 1427 if (2*rcv_window_now <= tp->window_clamp) { 1428 __u32 new_window = __tcp_select_window(sk); 1429 1430 /* Send ACK now, if this read freed lots of space 1431 * in our buffer. Certainly, new_window is new window. 1432 * We can advertise it now, if it is not less than current one. 1433 * "Lots" means "at least twice" here. 1434 */ 1435 if (new_window && new_window >= 2 * rcv_window_now) 1436 time_to_ack = true; 1437 } 1438 } 1439 if (time_to_ack) 1440 tcp_send_ack(sk); 1441 } 1442 1443 static void tcp_prequeue_process(struct sock *sk) 1444 { 1445 struct sk_buff *skb; 1446 struct tcp_sock *tp = tcp_sk(sk); 1447 1448 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1449 1450 /* RX process wants to run with disabled BHs, though it is not 1451 * necessary */ 1452 local_bh_disable(); 1453 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1454 sk_backlog_rcv(sk, skb); 1455 local_bh_enable(); 1456 1457 /* Clear memory counter. */ 1458 tp->ucopy.memory = 0; 1459 } 1460 1461 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1462 { 1463 struct sk_buff *skb; 1464 u32 offset; 1465 1466 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1467 offset = seq - TCP_SKB_CB(skb)->seq; 1468 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1469 offset--; 1470 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1471 *off = offset; 1472 return skb; 1473 } 1474 /* This looks weird, but this can happen if TCP collapsing 1475 * splitted a fat GRO packet, while we released socket lock 1476 * in skb_splice_bits() 1477 */ 1478 sk_eat_skb(sk, skb); 1479 } 1480 return NULL; 1481 } 1482 1483 /* 1484 * This routine provides an alternative to tcp_recvmsg() for routines 1485 * that would like to handle copying from skbuffs directly in 'sendfile' 1486 * fashion. 1487 * Note: 1488 * - It is assumed that the socket was locked by the caller. 1489 * - The routine does not block. 1490 * - At present, there is no support for reading OOB data 1491 * or for 'peeking' the socket using this routine 1492 * (although both would be easy to implement). 1493 */ 1494 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1495 sk_read_actor_t recv_actor) 1496 { 1497 struct sk_buff *skb; 1498 struct tcp_sock *tp = tcp_sk(sk); 1499 u32 seq = tp->copied_seq; 1500 u32 offset; 1501 int copied = 0; 1502 1503 if (sk->sk_state == TCP_LISTEN) 1504 return -ENOTCONN; 1505 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1506 if (offset < skb->len) { 1507 int used; 1508 size_t len; 1509 1510 len = skb->len - offset; 1511 /* Stop reading if we hit a patch of urgent data */ 1512 if (tp->urg_data) { 1513 u32 urg_offset = tp->urg_seq - seq; 1514 if (urg_offset < len) 1515 len = urg_offset; 1516 if (!len) 1517 break; 1518 } 1519 used = recv_actor(desc, skb, offset, len); 1520 if (used <= 0) { 1521 if (!copied) 1522 copied = used; 1523 break; 1524 } else if (used <= len) { 1525 seq += used; 1526 copied += used; 1527 offset += used; 1528 } 1529 /* If recv_actor drops the lock (e.g. TCP splice 1530 * receive) the skb pointer might be invalid when 1531 * getting here: tcp_collapse might have deleted it 1532 * while aggregating skbs from the socket queue. 1533 */ 1534 skb = tcp_recv_skb(sk, seq - 1, &offset); 1535 if (!skb) 1536 break; 1537 /* TCP coalescing might have appended data to the skb. 1538 * Try to splice more frags 1539 */ 1540 if (offset + 1 != skb->len) 1541 continue; 1542 } 1543 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1544 sk_eat_skb(sk, skb); 1545 ++seq; 1546 break; 1547 } 1548 sk_eat_skb(sk, skb); 1549 if (!desc->count) 1550 break; 1551 tp->copied_seq = seq; 1552 } 1553 tp->copied_seq = seq; 1554 1555 tcp_rcv_space_adjust(sk); 1556 1557 /* Clean up data we have read: This will do ACK frames. */ 1558 if (copied > 0) { 1559 tcp_recv_skb(sk, seq, &offset); 1560 tcp_cleanup_rbuf(sk, copied); 1561 } 1562 return copied; 1563 } 1564 EXPORT_SYMBOL(tcp_read_sock); 1565 1566 /* 1567 * This routine copies from a sock struct into the user buffer. 1568 * 1569 * Technical note: in 2.3 we work on _locked_ socket, so that 1570 * tricks with *seq access order and skb->users are not required. 1571 * Probably, code can be easily improved even more. 1572 */ 1573 1574 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1575 int flags, int *addr_len) 1576 { 1577 struct tcp_sock *tp = tcp_sk(sk); 1578 int copied = 0; 1579 u32 peek_seq; 1580 u32 *seq; 1581 unsigned long used; 1582 int err; 1583 int target; /* Read at least this many bytes */ 1584 long timeo; 1585 struct task_struct *user_recv = NULL; 1586 struct sk_buff *skb, *last; 1587 u32 urg_hole = 0; 1588 1589 if (unlikely(flags & MSG_ERRQUEUE)) 1590 return inet_recv_error(sk, msg, len, addr_len); 1591 1592 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1593 (sk->sk_state == TCP_ESTABLISHED)) 1594 sk_busy_loop(sk, nonblock); 1595 1596 lock_sock(sk); 1597 1598 err = -ENOTCONN; 1599 if (sk->sk_state == TCP_LISTEN) 1600 goto out; 1601 1602 timeo = sock_rcvtimeo(sk, nonblock); 1603 1604 /* Urgent data needs to be handled specially. */ 1605 if (flags & MSG_OOB) 1606 goto recv_urg; 1607 1608 if (unlikely(tp->repair)) { 1609 err = -EPERM; 1610 if (!(flags & MSG_PEEK)) 1611 goto out; 1612 1613 if (tp->repair_queue == TCP_SEND_QUEUE) 1614 goto recv_sndq; 1615 1616 err = -EINVAL; 1617 if (tp->repair_queue == TCP_NO_QUEUE) 1618 goto out; 1619 1620 /* 'common' recv queue MSG_PEEK-ing */ 1621 } 1622 1623 seq = &tp->copied_seq; 1624 if (flags & MSG_PEEK) { 1625 peek_seq = tp->copied_seq; 1626 seq = &peek_seq; 1627 } 1628 1629 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1630 1631 do { 1632 u32 offset; 1633 1634 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1635 if (tp->urg_data && tp->urg_seq == *seq) { 1636 if (copied) 1637 break; 1638 if (signal_pending(current)) { 1639 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1640 break; 1641 } 1642 } 1643 1644 /* Next get a buffer. */ 1645 1646 last = skb_peek_tail(&sk->sk_receive_queue); 1647 skb_queue_walk(&sk->sk_receive_queue, skb) { 1648 last = skb; 1649 /* Now that we have two receive queues this 1650 * shouldn't happen. 1651 */ 1652 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1653 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1654 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1655 flags)) 1656 break; 1657 1658 offset = *seq - TCP_SKB_CB(skb)->seq; 1659 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1660 offset--; 1661 if (offset < skb->len) 1662 goto found_ok_skb; 1663 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1664 goto found_fin_ok; 1665 WARN(!(flags & MSG_PEEK), 1666 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1667 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1668 } 1669 1670 /* Well, if we have backlog, try to process it now yet. */ 1671 1672 if (copied >= target && !sk->sk_backlog.tail) 1673 break; 1674 1675 if (copied) { 1676 if (sk->sk_err || 1677 sk->sk_state == TCP_CLOSE || 1678 (sk->sk_shutdown & RCV_SHUTDOWN) || 1679 !timeo || 1680 signal_pending(current)) 1681 break; 1682 } else { 1683 if (sock_flag(sk, SOCK_DONE)) 1684 break; 1685 1686 if (sk->sk_err) { 1687 copied = sock_error(sk); 1688 break; 1689 } 1690 1691 if (sk->sk_shutdown & RCV_SHUTDOWN) 1692 break; 1693 1694 if (sk->sk_state == TCP_CLOSE) { 1695 if (!sock_flag(sk, SOCK_DONE)) { 1696 /* This occurs when user tries to read 1697 * from never connected socket. 1698 */ 1699 copied = -ENOTCONN; 1700 break; 1701 } 1702 break; 1703 } 1704 1705 if (!timeo) { 1706 copied = -EAGAIN; 1707 break; 1708 } 1709 1710 if (signal_pending(current)) { 1711 copied = sock_intr_errno(timeo); 1712 break; 1713 } 1714 } 1715 1716 tcp_cleanup_rbuf(sk, copied); 1717 1718 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1719 /* Install new reader */ 1720 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1721 user_recv = current; 1722 tp->ucopy.task = user_recv; 1723 tp->ucopy.msg = msg; 1724 } 1725 1726 tp->ucopy.len = len; 1727 1728 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1729 !(flags & (MSG_PEEK | MSG_TRUNC))); 1730 1731 /* Ugly... If prequeue is not empty, we have to 1732 * process it before releasing socket, otherwise 1733 * order will be broken at second iteration. 1734 * More elegant solution is required!!! 1735 * 1736 * Look: we have the following (pseudo)queues: 1737 * 1738 * 1. packets in flight 1739 * 2. backlog 1740 * 3. prequeue 1741 * 4. receive_queue 1742 * 1743 * Each queue can be processed only if the next ones 1744 * are empty. At this point we have empty receive_queue. 1745 * But prequeue _can_ be not empty after 2nd iteration, 1746 * when we jumped to start of loop because backlog 1747 * processing added something to receive_queue. 1748 * We cannot release_sock(), because backlog contains 1749 * packets arrived _after_ prequeued ones. 1750 * 1751 * Shortly, algorithm is clear --- to process all 1752 * the queues in order. We could make it more directly, 1753 * requeueing packets from backlog to prequeue, if 1754 * is not empty. It is more elegant, but eats cycles, 1755 * unfortunately. 1756 */ 1757 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1758 goto do_prequeue; 1759 1760 /* __ Set realtime policy in scheduler __ */ 1761 } 1762 1763 if (copied >= target) { 1764 /* Do not sleep, just process backlog. */ 1765 release_sock(sk); 1766 lock_sock(sk); 1767 } else { 1768 sk_wait_data(sk, &timeo, last); 1769 } 1770 1771 if (user_recv) { 1772 int chunk; 1773 1774 /* __ Restore normal policy in scheduler __ */ 1775 1776 chunk = len - tp->ucopy.len; 1777 if (chunk != 0) { 1778 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1779 len -= chunk; 1780 copied += chunk; 1781 } 1782 1783 if (tp->rcv_nxt == tp->copied_seq && 1784 !skb_queue_empty(&tp->ucopy.prequeue)) { 1785 do_prequeue: 1786 tcp_prequeue_process(sk); 1787 1788 chunk = len - tp->ucopy.len; 1789 if (chunk != 0) { 1790 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1791 len -= chunk; 1792 copied += chunk; 1793 } 1794 } 1795 } 1796 if ((flags & MSG_PEEK) && 1797 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1798 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1799 current->comm, 1800 task_pid_nr(current)); 1801 peek_seq = tp->copied_seq; 1802 } 1803 continue; 1804 1805 found_ok_skb: 1806 /* Ok so how much can we use? */ 1807 used = skb->len - offset; 1808 if (len < used) 1809 used = len; 1810 1811 /* Do we have urgent data here? */ 1812 if (tp->urg_data) { 1813 u32 urg_offset = tp->urg_seq - *seq; 1814 if (urg_offset < used) { 1815 if (!urg_offset) { 1816 if (!sock_flag(sk, SOCK_URGINLINE)) { 1817 ++*seq; 1818 urg_hole++; 1819 offset++; 1820 used--; 1821 if (!used) 1822 goto skip_copy; 1823 } 1824 } else 1825 used = urg_offset; 1826 } 1827 } 1828 1829 if (!(flags & MSG_TRUNC)) { 1830 err = skb_copy_datagram_msg(skb, offset, msg, used); 1831 if (err) { 1832 /* Exception. Bailout! */ 1833 if (!copied) 1834 copied = -EFAULT; 1835 break; 1836 } 1837 } 1838 1839 *seq += used; 1840 copied += used; 1841 len -= used; 1842 1843 tcp_rcv_space_adjust(sk); 1844 1845 skip_copy: 1846 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1847 tp->urg_data = 0; 1848 tcp_fast_path_check(sk); 1849 } 1850 if (used + offset < skb->len) 1851 continue; 1852 1853 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1854 goto found_fin_ok; 1855 if (!(flags & MSG_PEEK)) 1856 sk_eat_skb(sk, skb); 1857 continue; 1858 1859 found_fin_ok: 1860 /* Process the FIN. */ 1861 ++*seq; 1862 if (!(flags & MSG_PEEK)) 1863 sk_eat_skb(sk, skb); 1864 break; 1865 } while (len > 0); 1866 1867 if (user_recv) { 1868 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1869 int chunk; 1870 1871 tp->ucopy.len = copied > 0 ? len : 0; 1872 1873 tcp_prequeue_process(sk); 1874 1875 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1876 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1877 len -= chunk; 1878 copied += chunk; 1879 } 1880 } 1881 1882 tp->ucopy.task = NULL; 1883 tp->ucopy.len = 0; 1884 } 1885 1886 /* According to UNIX98, msg_name/msg_namelen are ignored 1887 * on connected socket. I was just happy when found this 8) --ANK 1888 */ 1889 1890 /* Clean up data we have read: This will do ACK frames. */ 1891 tcp_cleanup_rbuf(sk, copied); 1892 1893 release_sock(sk); 1894 return copied; 1895 1896 out: 1897 release_sock(sk); 1898 return err; 1899 1900 recv_urg: 1901 err = tcp_recv_urg(sk, msg, len, flags); 1902 goto out; 1903 1904 recv_sndq: 1905 err = tcp_peek_sndq(sk, msg, len); 1906 goto out; 1907 } 1908 EXPORT_SYMBOL(tcp_recvmsg); 1909 1910 void tcp_set_state(struct sock *sk, int state) 1911 { 1912 int oldstate = sk->sk_state; 1913 1914 switch (state) { 1915 case TCP_ESTABLISHED: 1916 if (oldstate != TCP_ESTABLISHED) 1917 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1918 break; 1919 1920 case TCP_CLOSE: 1921 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1922 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1923 1924 sk->sk_prot->unhash(sk); 1925 if (inet_csk(sk)->icsk_bind_hash && 1926 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1927 inet_put_port(sk); 1928 /* fall through */ 1929 default: 1930 if (oldstate == TCP_ESTABLISHED) 1931 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1932 } 1933 1934 /* Change state AFTER socket is unhashed to avoid closed 1935 * socket sitting in hash tables. 1936 */ 1937 sk_state_store(sk, state); 1938 1939 #ifdef STATE_TRACE 1940 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1941 #endif 1942 } 1943 EXPORT_SYMBOL_GPL(tcp_set_state); 1944 1945 /* 1946 * State processing on a close. This implements the state shift for 1947 * sending our FIN frame. Note that we only send a FIN for some 1948 * states. A shutdown() may have already sent the FIN, or we may be 1949 * closed. 1950 */ 1951 1952 static const unsigned char new_state[16] = { 1953 /* current state: new state: action: */ 1954 [0 /* (Invalid) */] = TCP_CLOSE, 1955 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1956 [TCP_SYN_SENT] = TCP_CLOSE, 1957 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1958 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1959 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1960 [TCP_TIME_WAIT] = TCP_CLOSE, 1961 [TCP_CLOSE] = TCP_CLOSE, 1962 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1963 [TCP_LAST_ACK] = TCP_LAST_ACK, 1964 [TCP_LISTEN] = TCP_CLOSE, 1965 [TCP_CLOSING] = TCP_CLOSING, 1966 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1967 }; 1968 1969 static int tcp_close_state(struct sock *sk) 1970 { 1971 int next = (int)new_state[sk->sk_state]; 1972 int ns = next & TCP_STATE_MASK; 1973 1974 tcp_set_state(sk, ns); 1975 1976 return next & TCP_ACTION_FIN; 1977 } 1978 1979 /* 1980 * Shutdown the sending side of a connection. Much like close except 1981 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1982 */ 1983 1984 void tcp_shutdown(struct sock *sk, int how) 1985 { 1986 /* We need to grab some memory, and put together a FIN, 1987 * and then put it into the queue to be sent. 1988 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1989 */ 1990 if (!(how & SEND_SHUTDOWN)) 1991 return; 1992 1993 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1994 if ((1 << sk->sk_state) & 1995 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1996 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1997 /* Clear out any half completed packets. FIN if needed. */ 1998 if (tcp_close_state(sk)) 1999 tcp_send_fin(sk); 2000 } 2001 } 2002 EXPORT_SYMBOL(tcp_shutdown); 2003 2004 bool tcp_check_oom(struct sock *sk, int shift) 2005 { 2006 bool too_many_orphans, out_of_socket_memory; 2007 2008 too_many_orphans = tcp_too_many_orphans(sk, shift); 2009 out_of_socket_memory = tcp_out_of_memory(sk); 2010 2011 if (too_many_orphans) 2012 net_info_ratelimited("too many orphaned sockets\n"); 2013 if (out_of_socket_memory) 2014 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2015 return too_many_orphans || out_of_socket_memory; 2016 } 2017 2018 void tcp_close(struct sock *sk, long timeout) 2019 { 2020 struct sk_buff *skb; 2021 int data_was_unread = 0; 2022 int state; 2023 2024 lock_sock(sk); 2025 sk->sk_shutdown = SHUTDOWN_MASK; 2026 2027 if (sk->sk_state == TCP_LISTEN) { 2028 tcp_set_state(sk, TCP_CLOSE); 2029 2030 /* Special case. */ 2031 inet_csk_listen_stop(sk); 2032 2033 goto adjudge_to_death; 2034 } 2035 2036 /* We need to flush the recv. buffs. We do this only on the 2037 * descriptor close, not protocol-sourced closes, because the 2038 * reader process may not have drained the data yet! 2039 */ 2040 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2041 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2042 2043 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2044 len--; 2045 data_was_unread += len; 2046 __kfree_skb(skb); 2047 } 2048 2049 sk_mem_reclaim(sk); 2050 2051 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2052 if (sk->sk_state == TCP_CLOSE) 2053 goto adjudge_to_death; 2054 2055 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2056 * data was lost. To witness the awful effects of the old behavior of 2057 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2058 * GET in an FTP client, suspend the process, wait for the client to 2059 * advertise a zero window, then kill -9 the FTP client, wheee... 2060 * Note: timeout is always zero in such a case. 2061 */ 2062 if (unlikely(tcp_sk(sk)->repair)) { 2063 sk->sk_prot->disconnect(sk, 0); 2064 } else if (data_was_unread) { 2065 /* Unread data was tossed, zap the connection. */ 2066 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2067 tcp_set_state(sk, TCP_CLOSE); 2068 tcp_send_active_reset(sk, sk->sk_allocation); 2069 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2070 /* Check zero linger _after_ checking for unread data. */ 2071 sk->sk_prot->disconnect(sk, 0); 2072 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2073 } else if (tcp_close_state(sk)) { 2074 /* We FIN if the application ate all the data before 2075 * zapping the connection. 2076 */ 2077 2078 /* RED-PEN. Formally speaking, we have broken TCP state 2079 * machine. State transitions: 2080 * 2081 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2082 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2083 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2084 * 2085 * are legal only when FIN has been sent (i.e. in window), 2086 * rather than queued out of window. Purists blame. 2087 * 2088 * F.e. "RFC state" is ESTABLISHED, 2089 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2090 * 2091 * The visible declinations are that sometimes 2092 * we enter time-wait state, when it is not required really 2093 * (harmless), do not send active resets, when they are 2094 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2095 * they look as CLOSING or LAST_ACK for Linux) 2096 * Probably, I missed some more holelets. 2097 * --ANK 2098 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2099 * in a single packet! (May consider it later but will 2100 * probably need API support or TCP_CORK SYN-ACK until 2101 * data is written and socket is closed.) 2102 */ 2103 tcp_send_fin(sk); 2104 } 2105 2106 sk_stream_wait_close(sk, timeout); 2107 2108 adjudge_to_death: 2109 state = sk->sk_state; 2110 sock_hold(sk); 2111 sock_orphan(sk); 2112 2113 /* It is the last release_sock in its life. It will remove backlog. */ 2114 release_sock(sk); 2115 2116 2117 /* Now socket is owned by kernel and we acquire BH lock 2118 to finish close. No need to check for user refs. 2119 */ 2120 local_bh_disable(); 2121 bh_lock_sock(sk); 2122 WARN_ON(sock_owned_by_user(sk)); 2123 2124 percpu_counter_inc(sk->sk_prot->orphan_count); 2125 2126 /* Have we already been destroyed by a softirq or backlog? */ 2127 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2128 goto out; 2129 2130 /* This is a (useful) BSD violating of the RFC. There is a 2131 * problem with TCP as specified in that the other end could 2132 * keep a socket open forever with no application left this end. 2133 * We use a 1 minute timeout (about the same as BSD) then kill 2134 * our end. If they send after that then tough - BUT: long enough 2135 * that we won't make the old 4*rto = almost no time - whoops 2136 * reset mistake. 2137 * 2138 * Nope, it was not mistake. It is really desired behaviour 2139 * f.e. on http servers, when such sockets are useless, but 2140 * consume significant resources. Let's do it with special 2141 * linger2 option. --ANK 2142 */ 2143 2144 if (sk->sk_state == TCP_FIN_WAIT2) { 2145 struct tcp_sock *tp = tcp_sk(sk); 2146 if (tp->linger2 < 0) { 2147 tcp_set_state(sk, TCP_CLOSE); 2148 tcp_send_active_reset(sk, GFP_ATOMIC); 2149 NET_INC_STATS_BH(sock_net(sk), 2150 LINUX_MIB_TCPABORTONLINGER); 2151 } else { 2152 const int tmo = tcp_fin_time(sk); 2153 2154 if (tmo > TCP_TIMEWAIT_LEN) { 2155 inet_csk_reset_keepalive_timer(sk, 2156 tmo - TCP_TIMEWAIT_LEN); 2157 } else { 2158 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2159 goto out; 2160 } 2161 } 2162 } 2163 if (sk->sk_state != TCP_CLOSE) { 2164 sk_mem_reclaim(sk); 2165 if (tcp_check_oom(sk, 0)) { 2166 tcp_set_state(sk, TCP_CLOSE); 2167 tcp_send_active_reset(sk, GFP_ATOMIC); 2168 NET_INC_STATS_BH(sock_net(sk), 2169 LINUX_MIB_TCPABORTONMEMORY); 2170 } 2171 } 2172 2173 if (sk->sk_state == TCP_CLOSE) { 2174 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2175 /* We could get here with a non-NULL req if the socket is 2176 * aborted (e.g., closed with unread data) before 3WHS 2177 * finishes. 2178 */ 2179 if (req) 2180 reqsk_fastopen_remove(sk, req, false); 2181 inet_csk_destroy_sock(sk); 2182 } 2183 /* Otherwise, socket is reprieved until protocol close. */ 2184 2185 out: 2186 bh_unlock_sock(sk); 2187 local_bh_enable(); 2188 sock_put(sk); 2189 } 2190 EXPORT_SYMBOL(tcp_close); 2191 2192 /* These states need RST on ABORT according to RFC793 */ 2193 2194 static inline bool tcp_need_reset(int state) 2195 { 2196 return (1 << state) & 2197 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2198 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2199 } 2200 2201 int tcp_disconnect(struct sock *sk, int flags) 2202 { 2203 struct inet_sock *inet = inet_sk(sk); 2204 struct inet_connection_sock *icsk = inet_csk(sk); 2205 struct tcp_sock *tp = tcp_sk(sk); 2206 int err = 0; 2207 int old_state = sk->sk_state; 2208 2209 if (old_state != TCP_CLOSE) 2210 tcp_set_state(sk, TCP_CLOSE); 2211 2212 /* ABORT function of RFC793 */ 2213 if (old_state == TCP_LISTEN) { 2214 inet_csk_listen_stop(sk); 2215 } else if (unlikely(tp->repair)) { 2216 sk->sk_err = ECONNABORTED; 2217 } else if (tcp_need_reset(old_state) || 2218 (tp->snd_nxt != tp->write_seq && 2219 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2220 /* The last check adjusts for discrepancy of Linux wrt. RFC 2221 * states 2222 */ 2223 tcp_send_active_reset(sk, gfp_any()); 2224 sk->sk_err = ECONNRESET; 2225 } else if (old_state == TCP_SYN_SENT) 2226 sk->sk_err = ECONNRESET; 2227 2228 tcp_clear_xmit_timers(sk); 2229 __skb_queue_purge(&sk->sk_receive_queue); 2230 tcp_write_queue_purge(sk); 2231 __skb_queue_purge(&tp->out_of_order_queue); 2232 2233 inet->inet_dport = 0; 2234 2235 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2236 inet_reset_saddr(sk); 2237 2238 sk->sk_shutdown = 0; 2239 sock_reset_flag(sk, SOCK_DONE); 2240 tp->srtt_us = 0; 2241 tp->write_seq += tp->max_window + 2; 2242 if (tp->write_seq == 0) 2243 tp->write_seq = 1; 2244 icsk->icsk_backoff = 0; 2245 tp->snd_cwnd = 2; 2246 icsk->icsk_probes_out = 0; 2247 tp->packets_out = 0; 2248 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2249 tp->snd_cwnd_cnt = 0; 2250 tp->window_clamp = 0; 2251 tcp_set_ca_state(sk, TCP_CA_Open); 2252 tcp_clear_retrans(tp); 2253 inet_csk_delack_init(sk); 2254 tcp_init_send_head(sk); 2255 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2256 __sk_dst_reset(sk); 2257 2258 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2259 2260 sk->sk_error_report(sk); 2261 return err; 2262 } 2263 EXPORT_SYMBOL(tcp_disconnect); 2264 2265 static inline bool tcp_can_repair_sock(const struct sock *sk) 2266 { 2267 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2268 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2269 } 2270 2271 static int tcp_repair_options_est(struct tcp_sock *tp, 2272 struct tcp_repair_opt __user *optbuf, unsigned int len) 2273 { 2274 struct tcp_repair_opt opt; 2275 2276 while (len >= sizeof(opt)) { 2277 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2278 return -EFAULT; 2279 2280 optbuf++; 2281 len -= sizeof(opt); 2282 2283 switch (opt.opt_code) { 2284 case TCPOPT_MSS: 2285 tp->rx_opt.mss_clamp = opt.opt_val; 2286 break; 2287 case TCPOPT_WINDOW: 2288 { 2289 u16 snd_wscale = opt.opt_val & 0xFFFF; 2290 u16 rcv_wscale = opt.opt_val >> 16; 2291 2292 if (snd_wscale > 14 || rcv_wscale > 14) 2293 return -EFBIG; 2294 2295 tp->rx_opt.snd_wscale = snd_wscale; 2296 tp->rx_opt.rcv_wscale = rcv_wscale; 2297 tp->rx_opt.wscale_ok = 1; 2298 } 2299 break; 2300 case TCPOPT_SACK_PERM: 2301 if (opt.opt_val != 0) 2302 return -EINVAL; 2303 2304 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2305 if (sysctl_tcp_fack) 2306 tcp_enable_fack(tp); 2307 break; 2308 case TCPOPT_TIMESTAMP: 2309 if (opt.opt_val != 0) 2310 return -EINVAL; 2311 2312 tp->rx_opt.tstamp_ok = 1; 2313 break; 2314 } 2315 } 2316 2317 return 0; 2318 } 2319 2320 /* 2321 * Socket option code for TCP. 2322 */ 2323 static int do_tcp_setsockopt(struct sock *sk, int level, 2324 int optname, char __user *optval, unsigned int optlen) 2325 { 2326 struct tcp_sock *tp = tcp_sk(sk); 2327 struct inet_connection_sock *icsk = inet_csk(sk); 2328 int val; 2329 int err = 0; 2330 2331 /* These are data/string values, all the others are ints */ 2332 switch (optname) { 2333 case TCP_CONGESTION: { 2334 char name[TCP_CA_NAME_MAX]; 2335 2336 if (optlen < 1) 2337 return -EINVAL; 2338 2339 val = strncpy_from_user(name, optval, 2340 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2341 if (val < 0) 2342 return -EFAULT; 2343 name[val] = 0; 2344 2345 lock_sock(sk); 2346 err = tcp_set_congestion_control(sk, name); 2347 release_sock(sk); 2348 return err; 2349 } 2350 default: 2351 /* fallthru */ 2352 break; 2353 } 2354 2355 if (optlen < sizeof(int)) 2356 return -EINVAL; 2357 2358 if (get_user(val, (int __user *)optval)) 2359 return -EFAULT; 2360 2361 lock_sock(sk); 2362 2363 switch (optname) { 2364 case TCP_MAXSEG: 2365 /* Values greater than interface MTU won't take effect. However 2366 * at the point when this call is done we typically don't yet 2367 * know which interface is going to be used */ 2368 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2369 err = -EINVAL; 2370 break; 2371 } 2372 tp->rx_opt.user_mss = val; 2373 break; 2374 2375 case TCP_NODELAY: 2376 if (val) { 2377 /* TCP_NODELAY is weaker than TCP_CORK, so that 2378 * this option on corked socket is remembered, but 2379 * it is not activated until cork is cleared. 2380 * 2381 * However, when TCP_NODELAY is set we make 2382 * an explicit push, which overrides even TCP_CORK 2383 * for currently queued segments. 2384 */ 2385 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2386 tcp_push_pending_frames(sk); 2387 } else { 2388 tp->nonagle &= ~TCP_NAGLE_OFF; 2389 } 2390 break; 2391 2392 case TCP_THIN_LINEAR_TIMEOUTS: 2393 if (val < 0 || val > 1) 2394 err = -EINVAL; 2395 else 2396 tp->thin_lto = val; 2397 break; 2398 2399 case TCP_THIN_DUPACK: 2400 if (val < 0 || val > 1) 2401 err = -EINVAL; 2402 else { 2403 tp->thin_dupack = val; 2404 if (tp->thin_dupack) 2405 tcp_disable_early_retrans(tp); 2406 } 2407 break; 2408 2409 case TCP_REPAIR: 2410 if (!tcp_can_repair_sock(sk)) 2411 err = -EPERM; 2412 else if (val == 1) { 2413 tp->repair = 1; 2414 sk->sk_reuse = SK_FORCE_REUSE; 2415 tp->repair_queue = TCP_NO_QUEUE; 2416 } else if (val == 0) { 2417 tp->repair = 0; 2418 sk->sk_reuse = SK_NO_REUSE; 2419 tcp_send_window_probe(sk); 2420 } else 2421 err = -EINVAL; 2422 2423 break; 2424 2425 case TCP_REPAIR_QUEUE: 2426 if (!tp->repair) 2427 err = -EPERM; 2428 else if (val < TCP_QUEUES_NR) 2429 tp->repair_queue = val; 2430 else 2431 err = -EINVAL; 2432 break; 2433 2434 case TCP_QUEUE_SEQ: 2435 if (sk->sk_state != TCP_CLOSE) 2436 err = -EPERM; 2437 else if (tp->repair_queue == TCP_SEND_QUEUE) 2438 tp->write_seq = val; 2439 else if (tp->repair_queue == TCP_RECV_QUEUE) 2440 tp->rcv_nxt = val; 2441 else 2442 err = -EINVAL; 2443 break; 2444 2445 case TCP_REPAIR_OPTIONS: 2446 if (!tp->repair) 2447 err = -EINVAL; 2448 else if (sk->sk_state == TCP_ESTABLISHED) 2449 err = tcp_repair_options_est(tp, 2450 (struct tcp_repair_opt __user *)optval, 2451 optlen); 2452 else 2453 err = -EPERM; 2454 break; 2455 2456 case TCP_CORK: 2457 /* When set indicates to always queue non-full frames. 2458 * Later the user clears this option and we transmit 2459 * any pending partial frames in the queue. This is 2460 * meant to be used alongside sendfile() to get properly 2461 * filled frames when the user (for example) must write 2462 * out headers with a write() call first and then use 2463 * sendfile to send out the data parts. 2464 * 2465 * TCP_CORK can be set together with TCP_NODELAY and it is 2466 * stronger than TCP_NODELAY. 2467 */ 2468 if (val) { 2469 tp->nonagle |= TCP_NAGLE_CORK; 2470 } else { 2471 tp->nonagle &= ~TCP_NAGLE_CORK; 2472 if (tp->nonagle&TCP_NAGLE_OFF) 2473 tp->nonagle |= TCP_NAGLE_PUSH; 2474 tcp_push_pending_frames(sk); 2475 } 2476 break; 2477 2478 case TCP_KEEPIDLE: 2479 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2480 err = -EINVAL; 2481 else { 2482 tp->keepalive_time = val * HZ; 2483 if (sock_flag(sk, SOCK_KEEPOPEN) && 2484 !((1 << sk->sk_state) & 2485 (TCPF_CLOSE | TCPF_LISTEN))) { 2486 u32 elapsed = keepalive_time_elapsed(tp); 2487 if (tp->keepalive_time > elapsed) 2488 elapsed = tp->keepalive_time - elapsed; 2489 else 2490 elapsed = 0; 2491 inet_csk_reset_keepalive_timer(sk, elapsed); 2492 } 2493 } 2494 break; 2495 case TCP_KEEPINTVL: 2496 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2497 err = -EINVAL; 2498 else 2499 tp->keepalive_intvl = val * HZ; 2500 break; 2501 case TCP_KEEPCNT: 2502 if (val < 1 || val > MAX_TCP_KEEPCNT) 2503 err = -EINVAL; 2504 else 2505 tp->keepalive_probes = val; 2506 break; 2507 case TCP_SYNCNT: 2508 if (val < 1 || val > MAX_TCP_SYNCNT) 2509 err = -EINVAL; 2510 else 2511 icsk->icsk_syn_retries = val; 2512 break; 2513 2514 case TCP_SAVE_SYN: 2515 if (val < 0 || val > 1) 2516 err = -EINVAL; 2517 else 2518 tp->save_syn = val; 2519 break; 2520 2521 case TCP_LINGER2: 2522 if (val < 0) 2523 tp->linger2 = -1; 2524 else if (val > sysctl_tcp_fin_timeout / HZ) 2525 tp->linger2 = 0; 2526 else 2527 tp->linger2 = val * HZ; 2528 break; 2529 2530 case TCP_DEFER_ACCEPT: 2531 /* Translate value in seconds to number of retransmits */ 2532 icsk->icsk_accept_queue.rskq_defer_accept = 2533 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2534 TCP_RTO_MAX / HZ); 2535 break; 2536 2537 case TCP_WINDOW_CLAMP: 2538 if (!val) { 2539 if (sk->sk_state != TCP_CLOSE) { 2540 err = -EINVAL; 2541 break; 2542 } 2543 tp->window_clamp = 0; 2544 } else 2545 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2546 SOCK_MIN_RCVBUF / 2 : val; 2547 break; 2548 2549 case TCP_QUICKACK: 2550 if (!val) { 2551 icsk->icsk_ack.pingpong = 1; 2552 } else { 2553 icsk->icsk_ack.pingpong = 0; 2554 if ((1 << sk->sk_state) & 2555 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2556 inet_csk_ack_scheduled(sk)) { 2557 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2558 tcp_cleanup_rbuf(sk, 1); 2559 if (!(val & 1)) 2560 icsk->icsk_ack.pingpong = 1; 2561 } 2562 } 2563 break; 2564 2565 #ifdef CONFIG_TCP_MD5SIG 2566 case TCP_MD5SIG: 2567 /* Read the IP->Key mappings from userspace */ 2568 err = tp->af_specific->md5_parse(sk, optval, optlen); 2569 break; 2570 #endif 2571 case TCP_USER_TIMEOUT: 2572 /* Cap the max time in ms TCP will retry or probe the window 2573 * before giving up and aborting (ETIMEDOUT) a connection. 2574 */ 2575 if (val < 0) 2576 err = -EINVAL; 2577 else 2578 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2579 break; 2580 2581 case TCP_FASTOPEN: 2582 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2583 TCPF_LISTEN))) { 2584 tcp_fastopen_init_key_once(true); 2585 2586 fastopen_queue_tune(sk, val); 2587 } else { 2588 err = -EINVAL; 2589 } 2590 break; 2591 case TCP_TIMESTAMP: 2592 if (!tp->repair) 2593 err = -EPERM; 2594 else 2595 tp->tsoffset = val - tcp_time_stamp; 2596 break; 2597 case TCP_NOTSENT_LOWAT: 2598 tp->notsent_lowat = val; 2599 sk->sk_write_space(sk); 2600 break; 2601 default: 2602 err = -ENOPROTOOPT; 2603 break; 2604 } 2605 2606 release_sock(sk); 2607 return err; 2608 } 2609 2610 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2611 unsigned int optlen) 2612 { 2613 const struct inet_connection_sock *icsk = inet_csk(sk); 2614 2615 if (level != SOL_TCP) 2616 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2617 optval, optlen); 2618 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2619 } 2620 EXPORT_SYMBOL(tcp_setsockopt); 2621 2622 #ifdef CONFIG_COMPAT 2623 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2624 char __user *optval, unsigned int optlen) 2625 { 2626 if (level != SOL_TCP) 2627 return inet_csk_compat_setsockopt(sk, level, optname, 2628 optval, optlen); 2629 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2630 } 2631 EXPORT_SYMBOL(compat_tcp_setsockopt); 2632 #endif 2633 2634 /* Return information about state of tcp endpoint in API format. */ 2635 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2636 { 2637 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2638 const struct inet_connection_sock *icsk = inet_csk(sk); 2639 u32 now = tcp_time_stamp; 2640 unsigned int start; 2641 u32 rate; 2642 2643 memset(info, 0, sizeof(*info)); 2644 if (sk->sk_type != SOCK_STREAM) 2645 return; 2646 2647 info->tcpi_state = sk_state_load(sk); 2648 2649 info->tcpi_ca_state = icsk->icsk_ca_state; 2650 info->tcpi_retransmits = icsk->icsk_retransmits; 2651 info->tcpi_probes = icsk->icsk_probes_out; 2652 info->tcpi_backoff = icsk->icsk_backoff; 2653 2654 if (tp->rx_opt.tstamp_ok) 2655 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2656 if (tcp_is_sack(tp)) 2657 info->tcpi_options |= TCPI_OPT_SACK; 2658 if (tp->rx_opt.wscale_ok) { 2659 info->tcpi_options |= TCPI_OPT_WSCALE; 2660 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2661 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2662 } 2663 2664 if (tp->ecn_flags & TCP_ECN_OK) 2665 info->tcpi_options |= TCPI_OPT_ECN; 2666 if (tp->ecn_flags & TCP_ECN_SEEN) 2667 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2668 if (tp->syn_data_acked) 2669 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2670 2671 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2672 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2673 info->tcpi_snd_mss = tp->mss_cache; 2674 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2675 2676 if (info->tcpi_state == TCP_LISTEN) { 2677 info->tcpi_unacked = sk->sk_ack_backlog; 2678 info->tcpi_sacked = sk->sk_max_ack_backlog; 2679 } else { 2680 info->tcpi_unacked = tp->packets_out; 2681 info->tcpi_sacked = tp->sacked_out; 2682 } 2683 info->tcpi_lost = tp->lost_out; 2684 info->tcpi_retrans = tp->retrans_out; 2685 info->tcpi_fackets = tp->fackets_out; 2686 2687 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2688 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2689 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2690 2691 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2692 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2693 info->tcpi_rtt = tp->srtt_us >> 3; 2694 info->tcpi_rttvar = tp->mdev_us >> 2; 2695 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2696 info->tcpi_snd_cwnd = tp->snd_cwnd; 2697 info->tcpi_advmss = tp->advmss; 2698 info->tcpi_reordering = tp->reordering; 2699 2700 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2701 info->tcpi_rcv_space = tp->rcvq_space.space; 2702 2703 info->tcpi_total_retrans = tp->total_retrans; 2704 2705 rate = READ_ONCE(sk->sk_pacing_rate); 2706 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL; 2707 2708 rate = READ_ONCE(sk->sk_max_pacing_rate); 2709 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL; 2710 2711 do { 2712 start = u64_stats_fetch_begin_irq(&tp->syncp); 2713 info->tcpi_bytes_acked = tp->bytes_acked; 2714 info->tcpi_bytes_received = tp->bytes_received; 2715 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2716 info->tcpi_segs_out = tp->segs_out; 2717 info->tcpi_segs_in = tp->segs_in; 2718 } 2719 EXPORT_SYMBOL_GPL(tcp_get_info); 2720 2721 static int do_tcp_getsockopt(struct sock *sk, int level, 2722 int optname, char __user *optval, int __user *optlen) 2723 { 2724 struct inet_connection_sock *icsk = inet_csk(sk); 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 int val, len; 2727 2728 if (get_user(len, optlen)) 2729 return -EFAULT; 2730 2731 len = min_t(unsigned int, len, sizeof(int)); 2732 2733 if (len < 0) 2734 return -EINVAL; 2735 2736 switch (optname) { 2737 case TCP_MAXSEG: 2738 val = tp->mss_cache; 2739 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2740 val = tp->rx_opt.user_mss; 2741 if (tp->repair) 2742 val = tp->rx_opt.mss_clamp; 2743 break; 2744 case TCP_NODELAY: 2745 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2746 break; 2747 case TCP_CORK: 2748 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2749 break; 2750 case TCP_KEEPIDLE: 2751 val = keepalive_time_when(tp) / HZ; 2752 break; 2753 case TCP_KEEPINTVL: 2754 val = keepalive_intvl_when(tp) / HZ; 2755 break; 2756 case TCP_KEEPCNT: 2757 val = keepalive_probes(tp); 2758 break; 2759 case TCP_SYNCNT: 2760 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2761 break; 2762 case TCP_LINGER2: 2763 val = tp->linger2; 2764 if (val >= 0) 2765 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2766 break; 2767 case TCP_DEFER_ACCEPT: 2768 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2769 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2770 break; 2771 case TCP_WINDOW_CLAMP: 2772 val = tp->window_clamp; 2773 break; 2774 case TCP_INFO: { 2775 struct tcp_info info; 2776 2777 if (get_user(len, optlen)) 2778 return -EFAULT; 2779 2780 tcp_get_info(sk, &info); 2781 2782 len = min_t(unsigned int, len, sizeof(info)); 2783 if (put_user(len, optlen)) 2784 return -EFAULT; 2785 if (copy_to_user(optval, &info, len)) 2786 return -EFAULT; 2787 return 0; 2788 } 2789 case TCP_CC_INFO: { 2790 const struct tcp_congestion_ops *ca_ops; 2791 union tcp_cc_info info; 2792 size_t sz = 0; 2793 int attr; 2794 2795 if (get_user(len, optlen)) 2796 return -EFAULT; 2797 2798 ca_ops = icsk->icsk_ca_ops; 2799 if (ca_ops && ca_ops->get_info) 2800 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2801 2802 len = min_t(unsigned int, len, sz); 2803 if (put_user(len, optlen)) 2804 return -EFAULT; 2805 if (copy_to_user(optval, &info, len)) 2806 return -EFAULT; 2807 return 0; 2808 } 2809 case TCP_QUICKACK: 2810 val = !icsk->icsk_ack.pingpong; 2811 break; 2812 2813 case TCP_CONGESTION: 2814 if (get_user(len, optlen)) 2815 return -EFAULT; 2816 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2817 if (put_user(len, optlen)) 2818 return -EFAULT; 2819 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2820 return -EFAULT; 2821 return 0; 2822 2823 case TCP_THIN_LINEAR_TIMEOUTS: 2824 val = tp->thin_lto; 2825 break; 2826 case TCP_THIN_DUPACK: 2827 val = tp->thin_dupack; 2828 break; 2829 2830 case TCP_REPAIR: 2831 val = tp->repair; 2832 break; 2833 2834 case TCP_REPAIR_QUEUE: 2835 if (tp->repair) 2836 val = tp->repair_queue; 2837 else 2838 return -EINVAL; 2839 break; 2840 2841 case TCP_QUEUE_SEQ: 2842 if (tp->repair_queue == TCP_SEND_QUEUE) 2843 val = tp->write_seq; 2844 else if (tp->repair_queue == TCP_RECV_QUEUE) 2845 val = tp->rcv_nxt; 2846 else 2847 return -EINVAL; 2848 break; 2849 2850 case TCP_USER_TIMEOUT: 2851 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2852 break; 2853 2854 case TCP_FASTOPEN: 2855 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2856 break; 2857 2858 case TCP_TIMESTAMP: 2859 val = tcp_time_stamp + tp->tsoffset; 2860 break; 2861 case TCP_NOTSENT_LOWAT: 2862 val = tp->notsent_lowat; 2863 break; 2864 case TCP_SAVE_SYN: 2865 val = tp->save_syn; 2866 break; 2867 case TCP_SAVED_SYN: { 2868 if (get_user(len, optlen)) 2869 return -EFAULT; 2870 2871 lock_sock(sk); 2872 if (tp->saved_syn) { 2873 if (len < tp->saved_syn[0]) { 2874 if (put_user(tp->saved_syn[0], optlen)) { 2875 release_sock(sk); 2876 return -EFAULT; 2877 } 2878 release_sock(sk); 2879 return -EINVAL; 2880 } 2881 len = tp->saved_syn[0]; 2882 if (put_user(len, optlen)) { 2883 release_sock(sk); 2884 return -EFAULT; 2885 } 2886 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 2887 release_sock(sk); 2888 return -EFAULT; 2889 } 2890 tcp_saved_syn_free(tp); 2891 release_sock(sk); 2892 } else { 2893 release_sock(sk); 2894 len = 0; 2895 if (put_user(len, optlen)) 2896 return -EFAULT; 2897 } 2898 return 0; 2899 } 2900 default: 2901 return -ENOPROTOOPT; 2902 } 2903 2904 if (put_user(len, optlen)) 2905 return -EFAULT; 2906 if (copy_to_user(optval, &val, len)) 2907 return -EFAULT; 2908 return 0; 2909 } 2910 2911 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2912 int __user *optlen) 2913 { 2914 struct inet_connection_sock *icsk = inet_csk(sk); 2915 2916 if (level != SOL_TCP) 2917 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2918 optval, optlen); 2919 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2920 } 2921 EXPORT_SYMBOL(tcp_getsockopt); 2922 2923 #ifdef CONFIG_COMPAT 2924 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2925 char __user *optval, int __user *optlen) 2926 { 2927 if (level != SOL_TCP) 2928 return inet_csk_compat_getsockopt(sk, level, optname, 2929 optval, optlen); 2930 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2931 } 2932 EXPORT_SYMBOL(compat_tcp_getsockopt); 2933 #endif 2934 2935 #ifdef CONFIG_TCP_MD5SIG 2936 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2937 static DEFINE_MUTEX(tcp_md5sig_mutex); 2938 static bool tcp_md5sig_pool_populated = false; 2939 2940 static void __tcp_alloc_md5sig_pool(void) 2941 { 2942 int cpu; 2943 2944 for_each_possible_cpu(cpu) { 2945 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) { 2946 struct crypto_hash *hash; 2947 2948 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2949 if (IS_ERR_OR_NULL(hash)) 2950 return; 2951 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash; 2952 } 2953 } 2954 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2955 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2956 */ 2957 smp_wmb(); 2958 tcp_md5sig_pool_populated = true; 2959 } 2960 2961 bool tcp_alloc_md5sig_pool(void) 2962 { 2963 if (unlikely(!tcp_md5sig_pool_populated)) { 2964 mutex_lock(&tcp_md5sig_mutex); 2965 2966 if (!tcp_md5sig_pool_populated) 2967 __tcp_alloc_md5sig_pool(); 2968 2969 mutex_unlock(&tcp_md5sig_mutex); 2970 } 2971 return tcp_md5sig_pool_populated; 2972 } 2973 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2974 2975 2976 /** 2977 * tcp_get_md5sig_pool - get md5sig_pool for this user 2978 * 2979 * We use percpu structure, so if we succeed, we exit with preemption 2980 * and BH disabled, to make sure another thread or softirq handling 2981 * wont try to get same context. 2982 */ 2983 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2984 { 2985 local_bh_disable(); 2986 2987 if (tcp_md5sig_pool_populated) { 2988 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 2989 smp_rmb(); 2990 return this_cpu_ptr(&tcp_md5sig_pool); 2991 } 2992 local_bh_enable(); 2993 return NULL; 2994 } 2995 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2996 2997 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2998 const struct tcphdr *th) 2999 { 3000 struct scatterlist sg; 3001 struct tcphdr hdr; 3002 int err; 3003 3004 /* We are not allowed to change tcphdr, make a local copy */ 3005 memcpy(&hdr, th, sizeof(hdr)); 3006 hdr.check = 0; 3007 3008 /* options aren't included in the hash */ 3009 sg_init_one(&sg, &hdr, sizeof(hdr)); 3010 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3011 return err; 3012 } 3013 EXPORT_SYMBOL(tcp_md5_hash_header); 3014 3015 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3016 const struct sk_buff *skb, unsigned int header_len) 3017 { 3018 struct scatterlist sg; 3019 const struct tcphdr *tp = tcp_hdr(skb); 3020 struct hash_desc *desc = &hp->md5_desc; 3021 unsigned int i; 3022 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3023 skb_headlen(skb) - header_len : 0; 3024 const struct skb_shared_info *shi = skb_shinfo(skb); 3025 struct sk_buff *frag_iter; 3026 3027 sg_init_table(&sg, 1); 3028 3029 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3030 if (crypto_hash_update(desc, &sg, head_data_len)) 3031 return 1; 3032 3033 for (i = 0; i < shi->nr_frags; ++i) { 3034 const struct skb_frag_struct *f = &shi->frags[i]; 3035 unsigned int offset = f->page_offset; 3036 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3037 3038 sg_set_page(&sg, page, skb_frag_size(f), 3039 offset_in_page(offset)); 3040 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3041 return 1; 3042 } 3043 3044 skb_walk_frags(skb, frag_iter) 3045 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3046 return 1; 3047 3048 return 0; 3049 } 3050 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3051 3052 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3053 { 3054 struct scatterlist sg; 3055 3056 sg_init_one(&sg, key->key, key->keylen); 3057 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3058 } 3059 EXPORT_SYMBOL(tcp_md5_hash_key); 3060 3061 #endif 3062 3063 void tcp_done(struct sock *sk) 3064 { 3065 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3066 3067 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3068 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3069 3070 tcp_set_state(sk, TCP_CLOSE); 3071 tcp_clear_xmit_timers(sk); 3072 if (req) 3073 reqsk_fastopen_remove(sk, req, false); 3074 3075 sk->sk_shutdown = SHUTDOWN_MASK; 3076 3077 if (!sock_flag(sk, SOCK_DEAD)) 3078 sk->sk_state_change(sk); 3079 else 3080 inet_csk_destroy_sock(sk); 3081 } 3082 EXPORT_SYMBOL_GPL(tcp_done); 3083 3084 extern struct tcp_congestion_ops tcp_reno; 3085 3086 static __initdata unsigned long thash_entries; 3087 static int __init set_thash_entries(char *str) 3088 { 3089 ssize_t ret; 3090 3091 if (!str) 3092 return 0; 3093 3094 ret = kstrtoul(str, 0, &thash_entries); 3095 if (ret) 3096 return 0; 3097 3098 return 1; 3099 } 3100 __setup("thash_entries=", set_thash_entries); 3101 3102 static void __init tcp_init_mem(void) 3103 { 3104 unsigned long limit = nr_free_buffer_pages() / 16; 3105 3106 limit = max(limit, 128UL); 3107 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3108 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3109 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3110 } 3111 3112 void __init tcp_init(void) 3113 { 3114 unsigned long limit; 3115 int max_rshare, max_wshare, cnt; 3116 unsigned int i; 3117 3118 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb)); 3119 3120 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3121 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3122 tcp_hashinfo.bind_bucket_cachep = 3123 kmem_cache_create("tcp_bind_bucket", 3124 sizeof(struct inet_bind_bucket), 0, 3125 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3126 3127 /* Size and allocate the main established and bind bucket 3128 * hash tables. 3129 * 3130 * The methodology is similar to that of the buffer cache. 3131 */ 3132 tcp_hashinfo.ehash = 3133 alloc_large_system_hash("TCP established", 3134 sizeof(struct inet_ehash_bucket), 3135 thash_entries, 3136 17, /* one slot per 128 KB of memory */ 3137 0, 3138 NULL, 3139 &tcp_hashinfo.ehash_mask, 3140 0, 3141 thash_entries ? 0 : 512 * 1024); 3142 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3143 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3144 3145 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3146 panic("TCP: failed to alloc ehash_locks"); 3147 tcp_hashinfo.bhash = 3148 alloc_large_system_hash("TCP bind", 3149 sizeof(struct inet_bind_hashbucket), 3150 tcp_hashinfo.ehash_mask + 1, 3151 17, /* one slot per 128 KB of memory */ 3152 0, 3153 &tcp_hashinfo.bhash_size, 3154 NULL, 3155 0, 3156 64 * 1024); 3157 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3158 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3159 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3160 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3161 } 3162 3163 3164 cnt = tcp_hashinfo.ehash_mask + 1; 3165 3166 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3167 sysctl_tcp_max_orphans = cnt / 2; 3168 sysctl_max_syn_backlog = max(128, cnt / 256); 3169 3170 tcp_init_mem(); 3171 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3172 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3173 max_wshare = min(4UL*1024*1024, limit); 3174 max_rshare = min(6UL*1024*1024, limit); 3175 3176 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3177 sysctl_tcp_wmem[1] = 16*1024; 3178 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3179 3180 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3181 sysctl_tcp_rmem[1] = 87380; 3182 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3183 3184 pr_info("Hash tables configured (established %u bind %u)\n", 3185 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3186 3187 tcp_metrics_init(); 3188 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3189 tcp_tasklet_init(); 3190 } 3191