1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/netdma.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286 int sysctl_tcp_min_tso_segs __read_mostly = 2; 287 288 struct percpu_counter tcp_orphan_count; 289 EXPORT_SYMBOL_GPL(tcp_orphan_count); 290 291 int sysctl_tcp_wmem[3] __read_mostly; 292 int sysctl_tcp_rmem[3] __read_mostly; 293 294 EXPORT_SYMBOL(sysctl_tcp_rmem); 295 EXPORT_SYMBOL(sysctl_tcp_wmem); 296 297 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 298 EXPORT_SYMBOL(tcp_memory_allocated); 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 int tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 if (!tcp_memory_pressure) { 327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 328 tcp_memory_pressure = 1; 329 } 330 } 331 EXPORT_SYMBOL(tcp_enter_memory_pressure); 332 333 /* Convert seconds to retransmits based on initial and max timeout */ 334 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 335 { 336 u8 res = 0; 337 338 if (seconds > 0) { 339 int period = timeout; 340 341 res = 1; 342 while (seconds > period && res < 255) { 343 res++; 344 timeout <<= 1; 345 if (timeout > rto_max) 346 timeout = rto_max; 347 period += timeout; 348 } 349 } 350 return res; 351 } 352 353 /* Convert retransmits to seconds based on initial and max timeout */ 354 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 355 { 356 int period = 0; 357 358 if (retrans > 0) { 359 period = timeout; 360 while (--retrans) { 361 timeout <<= 1; 362 if (timeout > rto_max) 363 timeout = rto_max; 364 period += timeout; 365 } 366 } 367 return period; 368 } 369 370 /* Address-family independent initialization for a tcp_sock. 371 * 372 * NOTE: A lot of things set to zero explicitly by call to 373 * sk_alloc() so need not be done here. 374 */ 375 void tcp_init_sock(struct sock *sk) 376 { 377 struct inet_connection_sock *icsk = inet_csk(sk); 378 struct tcp_sock *tp = tcp_sk(sk); 379 380 skb_queue_head_init(&tp->out_of_order_queue); 381 tcp_init_xmit_timers(sk); 382 tcp_prequeue_init(tp); 383 INIT_LIST_HEAD(&tp->tsq_node); 384 385 icsk->icsk_rto = TCP_TIMEOUT_INIT; 386 tp->mdev = TCP_TIMEOUT_INIT; 387 388 /* So many TCP implementations out there (incorrectly) count the 389 * initial SYN frame in their delayed-ACK and congestion control 390 * algorithms that we must have the following bandaid to talk 391 * efficiently to them. -DaveM 392 */ 393 tp->snd_cwnd = TCP_INIT_CWND; 394 395 /* See draft-stevens-tcpca-spec-01 for discussion of the 396 * initialization of these values. 397 */ 398 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 399 tp->snd_cwnd_clamp = ~0; 400 tp->mss_cache = TCP_MSS_DEFAULT; 401 402 tp->reordering = sysctl_tcp_reordering; 403 tcp_enable_early_retrans(tp); 404 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 405 406 tp->tsoffset = 0; 407 408 sk->sk_state = TCP_CLOSE; 409 410 sk->sk_write_space = sk_stream_write_space; 411 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 412 413 icsk->icsk_sync_mss = tcp_sync_mss; 414 415 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 416 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 417 418 local_bh_disable(); 419 sock_update_memcg(sk); 420 sk_sockets_allocated_inc(sk); 421 local_bh_enable(); 422 } 423 EXPORT_SYMBOL(tcp_init_sock); 424 425 /* 426 * Wait for a TCP event. 427 * 428 * Note that we don't need to lock the socket, as the upper poll layers 429 * take care of normal races (between the test and the event) and we don't 430 * go look at any of the socket buffers directly. 431 */ 432 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 433 { 434 unsigned int mask; 435 struct sock *sk = sock->sk; 436 const struct tcp_sock *tp = tcp_sk(sk); 437 438 sock_rps_record_flow(sk); 439 440 sock_poll_wait(file, sk_sleep(sk), wait); 441 if (sk->sk_state == TCP_LISTEN) 442 return inet_csk_listen_poll(sk); 443 444 /* Socket is not locked. We are protected from async events 445 * by poll logic and correct handling of state changes 446 * made by other threads is impossible in any case. 447 */ 448 449 mask = 0; 450 451 /* 452 * POLLHUP is certainly not done right. But poll() doesn't 453 * have a notion of HUP in just one direction, and for a 454 * socket the read side is more interesting. 455 * 456 * Some poll() documentation says that POLLHUP is incompatible 457 * with the POLLOUT/POLLWR flags, so somebody should check this 458 * all. But careful, it tends to be safer to return too many 459 * bits than too few, and you can easily break real applications 460 * if you don't tell them that something has hung up! 461 * 462 * Check-me. 463 * 464 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 465 * our fs/select.c). It means that after we received EOF, 466 * poll always returns immediately, making impossible poll() on write() 467 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 468 * if and only if shutdown has been made in both directions. 469 * Actually, it is interesting to look how Solaris and DUX 470 * solve this dilemma. I would prefer, if POLLHUP were maskable, 471 * then we could set it on SND_SHUTDOWN. BTW examples given 472 * in Stevens' books assume exactly this behaviour, it explains 473 * why POLLHUP is incompatible with POLLOUT. --ANK 474 * 475 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 476 * blocking on fresh not-connected or disconnected socket. --ANK 477 */ 478 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 479 mask |= POLLHUP; 480 if (sk->sk_shutdown & RCV_SHUTDOWN) 481 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 482 483 /* Connected or passive Fast Open socket? */ 484 if (sk->sk_state != TCP_SYN_SENT && 485 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 486 int target = sock_rcvlowat(sk, 0, INT_MAX); 487 488 if (tp->urg_seq == tp->copied_seq && 489 !sock_flag(sk, SOCK_URGINLINE) && 490 tp->urg_data) 491 target++; 492 493 /* Potential race condition. If read of tp below will 494 * escape above sk->sk_state, we can be illegally awaken 495 * in SYN_* states. */ 496 if (tp->rcv_nxt - tp->copied_seq >= target) 497 mask |= POLLIN | POLLRDNORM; 498 499 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 500 if (sk_stream_is_writeable(sk)) { 501 mask |= POLLOUT | POLLWRNORM; 502 } else { /* send SIGIO later */ 503 set_bit(SOCK_ASYNC_NOSPACE, 504 &sk->sk_socket->flags); 505 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 506 507 /* Race breaker. If space is freed after 508 * wspace test but before the flags are set, 509 * IO signal will be lost. 510 */ 511 if (sk_stream_is_writeable(sk)) 512 mask |= POLLOUT | POLLWRNORM; 513 } 514 } else 515 mask |= POLLOUT | POLLWRNORM; 516 517 if (tp->urg_data & TCP_URG_VALID) 518 mask |= POLLPRI; 519 } 520 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 521 smp_rmb(); 522 if (sk->sk_err) 523 mask |= POLLERR; 524 525 return mask; 526 } 527 EXPORT_SYMBOL(tcp_poll); 528 529 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 530 { 531 struct tcp_sock *tp = tcp_sk(sk); 532 int answ; 533 bool slow; 534 535 switch (cmd) { 536 case SIOCINQ: 537 if (sk->sk_state == TCP_LISTEN) 538 return -EINVAL; 539 540 slow = lock_sock_fast(sk); 541 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 542 answ = 0; 543 else if (sock_flag(sk, SOCK_URGINLINE) || 544 !tp->urg_data || 545 before(tp->urg_seq, tp->copied_seq) || 546 !before(tp->urg_seq, tp->rcv_nxt)) { 547 548 answ = tp->rcv_nxt - tp->copied_seq; 549 550 /* Subtract 1, if FIN was received */ 551 if (answ && sock_flag(sk, SOCK_DONE)) 552 answ--; 553 } else 554 answ = tp->urg_seq - tp->copied_seq; 555 unlock_sock_fast(sk, slow); 556 break; 557 case SIOCATMARK: 558 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 559 break; 560 case SIOCOUTQ: 561 if (sk->sk_state == TCP_LISTEN) 562 return -EINVAL; 563 564 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 565 answ = 0; 566 else 567 answ = tp->write_seq - tp->snd_una; 568 break; 569 case SIOCOUTQNSD: 570 if (sk->sk_state == TCP_LISTEN) 571 return -EINVAL; 572 573 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 574 answ = 0; 575 else 576 answ = tp->write_seq - tp->snd_nxt; 577 break; 578 default: 579 return -ENOIOCTLCMD; 580 } 581 582 return put_user(answ, (int __user *)arg); 583 } 584 EXPORT_SYMBOL(tcp_ioctl); 585 586 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 587 { 588 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 589 tp->pushed_seq = tp->write_seq; 590 } 591 592 static inline bool forced_push(const struct tcp_sock *tp) 593 { 594 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 595 } 596 597 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 598 { 599 struct tcp_sock *tp = tcp_sk(sk); 600 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 601 602 skb->csum = 0; 603 tcb->seq = tcb->end_seq = tp->write_seq; 604 tcb->tcp_flags = TCPHDR_ACK; 605 tcb->sacked = 0; 606 skb_header_release(skb); 607 tcp_add_write_queue_tail(sk, skb); 608 sk->sk_wmem_queued += skb->truesize; 609 sk_mem_charge(sk, skb->truesize); 610 if (tp->nonagle & TCP_NAGLE_PUSH) 611 tp->nonagle &= ~TCP_NAGLE_PUSH; 612 } 613 614 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 615 { 616 if (flags & MSG_OOB) 617 tp->snd_up = tp->write_seq; 618 } 619 620 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 621 int nonagle) 622 { 623 if (tcp_send_head(sk)) { 624 struct tcp_sock *tp = tcp_sk(sk); 625 626 if (!(flags & MSG_MORE) || forced_push(tp)) 627 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 628 629 tcp_mark_urg(tp, flags); 630 __tcp_push_pending_frames(sk, mss_now, 631 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 632 } 633 } 634 635 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 636 unsigned int offset, size_t len) 637 { 638 struct tcp_splice_state *tss = rd_desc->arg.data; 639 int ret; 640 641 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 642 tss->flags); 643 if (ret > 0) 644 rd_desc->count -= ret; 645 return ret; 646 } 647 648 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 649 { 650 /* Store TCP splice context information in read_descriptor_t. */ 651 read_descriptor_t rd_desc = { 652 .arg.data = tss, 653 .count = tss->len, 654 }; 655 656 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 657 } 658 659 /** 660 * tcp_splice_read - splice data from TCP socket to a pipe 661 * @sock: socket to splice from 662 * @ppos: position (not valid) 663 * @pipe: pipe to splice to 664 * @len: number of bytes to splice 665 * @flags: splice modifier flags 666 * 667 * Description: 668 * Will read pages from given socket and fill them into a pipe. 669 * 670 **/ 671 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 672 struct pipe_inode_info *pipe, size_t len, 673 unsigned int flags) 674 { 675 struct sock *sk = sock->sk; 676 struct tcp_splice_state tss = { 677 .pipe = pipe, 678 .len = len, 679 .flags = flags, 680 }; 681 long timeo; 682 ssize_t spliced; 683 int ret; 684 685 sock_rps_record_flow(sk); 686 /* 687 * We can't seek on a socket input 688 */ 689 if (unlikely(*ppos)) 690 return -ESPIPE; 691 692 ret = spliced = 0; 693 694 lock_sock(sk); 695 696 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 697 while (tss.len) { 698 ret = __tcp_splice_read(sk, &tss); 699 if (ret < 0) 700 break; 701 else if (!ret) { 702 if (spliced) 703 break; 704 if (sock_flag(sk, SOCK_DONE)) 705 break; 706 if (sk->sk_err) { 707 ret = sock_error(sk); 708 break; 709 } 710 if (sk->sk_shutdown & RCV_SHUTDOWN) 711 break; 712 if (sk->sk_state == TCP_CLOSE) { 713 /* 714 * This occurs when user tries to read 715 * from never connected socket. 716 */ 717 if (!sock_flag(sk, SOCK_DONE)) 718 ret = -ENOTCONN; 719 break; 720 } 721 if (!timeo) { 722 ret = -EAGAIN; 723 break; 724 } 725 sk_wait_data(sk, &timeo); 726 if (signal_pending(current)) { 727 ret = sock_intr_errno(timeo); 728 break; 729 } 730 continue; 731 } 732 tss.len -= ret; 733 spliced += ret; 734 735 if (!timeo) 736 break; 737 release_sock(sk); 738 lock_sock(sk); 739 740 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 741 (sk->sk_shutdown & RCV_SHUTDOWN) || 742 signal_pending(current)) 743 break; 744 } 745 746 release_sock(sk); 747 748 if (spliced) 749 return spliced; 750 751 return ret; 752 } 753 EXPORT_SYMBOL(tcp_splice_read); 754 755 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 756 { 757 struct sk_buff *skb; 758 759 /* The TCP header must be at least 32-bit aligned. */ 760 size = ALIGN(size, 4); 761 762 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 763 if (skb) { 764 if (sk_wmem_schedule(sk, skb->truesize)) { 765 skb_reserve(skb, sk->sk_prot->max_header); 766 /* 767 * Make sure that we have exactly size bytes 768 * available to the caller, no more, no less. 769 */ 770 skb->reserved_tailroom = skb->end - skb->tail - size; 771 return skb; 772 } 773 __kfree_skb(skb); 774 } else { 775 sk->sk_prot->enter_memory_pressure(sk); 776 sk_stream_moderate_sndbuf(sk); 777 } 778 return NULL; 779 } 780 781 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 782 int large_allowed) 783 { 784 struct tcp_sock *tp = tcp_sk(sk); 785 u32 xmit_size_goal, old_size_goal; 786 787 xmit_size_goal = mss_now; 788 789 if (large_allowed && sk_can_gso(sk)) { 790 u32 gso_size, hlen; 791 792 /* Maybe we should/could use sk->sk_prot->max_header here ? */ 793 hlen = inet_csk(sk)->icsk_af_ops->net_header_len + 794 inet_csk(sk)->icsk_ext_hdr_len + 795 tp->tcp_header_len; 796 797 /* Goal is to send at least one packet per ms, 798 * not one big TSO packet every 100 ms. 799 * This preserves ACK clocking and is consistent 800 * with tcp_tso_should_defer() heuristic. 801 */ 802 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC); 803 gso_size = max_t(u32, gso_size, 804 sysctl_tcp_min_tso_segs * mss_now); 805 806 xmit_size_goal = min_t(u32, gso_size, 807 sk->sk_gso_max_size - 1 - hlen); 808 809 /* TSQ : try to have at least two segments in flight 810 * (one in NIC TX ring, another in Qdisc) 811 */ 812 xmit_size_goal = min_t(u32, xmit_size_goal, 813 sysctl_tcp_limit_output_bytes >> 1); 814 815 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 816 817 /* We try hard to avoid divides here */ 818 old_size_goal = tp->xmit_size_goal_segs * mss_now; 819 820 if (likely(old_size_goal <= xmit_size_goal && 821 old_size_goal + mss_now > xmit_size_goal)) { 822 xmit_size_goal = old_size_goal; 823 } else { 824 tp->xmit_size_goal_segs = 825 min_t(u16, xmit_size_goal / mss_now, 826 sk->sk_gso_max_segs); 827 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 828 } 829 } 830 831 return max(xmit_size_goal, mss_now); 832 } 833 834 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 835 { 836 int mss_now; 837 838 mss_now = tcp_current_mss(sk); 839 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 840 841 return mss_now; 842 } 843 844 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 845 size_t size, int flags) 846 { 847 struct tcp_sock *tp = tcp_sk(sk); 848 int mss_now, size_goal; 849 int err; 850 ssize_t copied; 851 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 852 853 /* Wait for a connection to finish. One exception is TCP Fast Open 854 * (passive side) where data is allowed to be sent before a connection 855 * is fully established. 856 */ 857 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 858 !tcp_passive_fastopen(sk)) { 859 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 860 goto out_err; 861 } 862 863 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 864 865 mss_now = tcp_send_mss(sk, &size_goal, flags); 866 copied = 0; 867 868 err = -EPIPE; 869 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 870 goto out_err; 871 872 while (size > 0) { 873 struct sk_buff *skb = tcp_write_queue_tail(sk); 874 int copy, i; 875 bool can_coalesce; 876 877 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 878 new_segment: 879 if (!sk_stream_memory_free(sk)) 880 goto wait_for_sndbuf; 881 882 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 883 if (!skb) 884 goto wait_for_memory; 885 886 skb_entail(sk, skb); 887 copy = size_goal; 888 } 889 890 if (copy > size) 891 copy = size; 892 893 i = skb_shinfo(skb)->nr_frags; 894 can_coalesce = skb_can_coalesce(skb, i, page, offset); 895 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 896 tcp_mark_push(tp, skb); 897 goto new_segment; 898 } 899 if (!sk_wmem_schedule(sk, copy)) 900 goto wait_for_memory; 901 902 if (can_coalesce) { 903 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 904 } else { 905 get_page(page); 906 skb_fill_page_desc(skb, i, page, offset, copy); 907 } 908 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 909 910 skb->len += copy; 911 skb->data_len += copy; 912 skb->truesize += copy; 913 sk->sk_wmem_queued += copy; 914 sk_mem_charge(sk, copy); 915 skb->ip_summed = CHECKSUM_PARTIAL; 916 tp->write_seq += copy; 917 TCP_SKB_CB(skb)->end_seq += copy; 918 skb_shinfo(skb)->gso_segs = 0; 919 920 if (!copied) 921 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 922 923 copied += copy; 924 offset += copy; 925 if (!(size -= copy)) 926 goto out; 927 928 if (skb->len < size_goal || (flags & MSG_OOB)) 929 continue; 930 931 if (forced_push(tp)) { 932 tcp_mark_push(tp, skb); 933 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 934 } else if (skb == tcp_send_head(sk)) 935 tcp_push_one(sk, mss_now); 936 continue; 937 938 wait_for_sndbuf: 939 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 940 wait_for_memory: 941 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 942 943 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 944 goto do_error; 945 946 mss_now = tcp_send_mss(sk, &size_goal, flags); 947 } 948 949 out: 950 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 951 tcp_push(sk, flags, mss_now, tp->nonagle); 952 return copied; 953 954 do_error: 955 if (copied) 956 goto out; 957 out_err: 958 return sk_stream_error(sk, flags, err); 959 } 960 961 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 962 size_t size, int flags) 963 { 964 ssize_t res; 965 966 if (!(sk->sk_route_caps & NETIF_F_SG) || 967 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 968 return sock_no_sendpage(sk->sk_socket, page, offset, size, 969 flags); 970 971 lock_sock(sk); 972 res = do_tcp_sendpages(sk, page, offset, size, flags); 973 release_sock(sk); 974 return res; 975 } 976 EXPORT_SYMBOL(tcp_sendpage); 977 978 static inline int select_size(const struct sock *sk, bool sg) 979 { 980 const struct tcp_sock *tp = tcp_sk(sk); 981 int tmp = tp->mss_cache; 982 983 if (sg) { 984 if (sk_can_gso(sk)) { 985 /* Small frames wont use a full page: 986 * Payload will immediately follow tcp header. 987 */ 988 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 989 } else { 990 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 991 992 if (tmp >= pgbreak && 993 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 994 tmp = pgbreak; 995 } 996 } 997 998 return tmp; 999 } 1000 1001 void tcp_free_fastopen_req(struct tcp_sock *tp) 1002 { 1003 if (tp->fastopen_req != NULL) { 1004 kfree(tp->fastopen_req); 1005 tp->fastopen_req = NULL; 1006 } 1007 } 1008 1009 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size) 1010 { 1011 struct tcp_sock *tp = tcp_sk(sk); 1012 int err, flags; 1013 1014 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1015 return -EOPNOTSUPP; 1016 if (tp->fastopen_req != NULL) 1017 return -EALREADY; /* Another Fast Open is in progress */ 1018 1019 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1020 sk->sk_allocation); 1021 if (unlikely(tp->fastopen_req == NULL)) 1022 return -ENOBUFS; 1023 tp->fastopen_req->data = msg; 1024 1025 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1026 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1027 msg->msg_namelen, flags); 1028 *size = tp->fastopen_req->copied; 1029 tcp_free_fastopen_req(tp); 1030 return err; 1031 } 1032 1033 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1034 size_t size) 1035 { 1036 struct iovec *iov; 1037 struct tcp_sock *tp = tcp_sk(sk); 1038 struct sk_buff *skb; 1039 int iovlen, flags, err, copied = 0; 1040 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1041 bool sg; 1042 long timeo; 1043 1044 lock_sock(sk); 1045 1046 flags = msg->msg_flags; 1047 if (flags & MSG_FASTOPEN) { 1048 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn); 1049 if (err == -EINPROGRESS && copied_syn > 0) 1050 goto out; 1051 else if (err) 1052 goto out_err; 1053 offset = copied_syn; 1054 } 1055 1056 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1057 1058 /* Wait for a connection to finish. One exception is TCP Fast Open 1059 * (passive side) where data is allowed to be sent before a connection 1060 * is fully established. 1061 */ 1062 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1063 !tcp_passive_fastopen(sk)) { 1064 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1065 goto do_error; 1066 } 1067 1068 if (unlikely(tp->repair)) { 1069 if (tp->repair_queue == TCP_RECV_QUEUE) { 1070 copied = tcp_send_rcvq(sk, msg, size); 1071 goto out; 1072 } 1073 1074 err = -EINVAL; 1075 if (tp->repair_queue == TCP_NO_QUEUE) 1076 goto out_err; 1077 1078 /* 'common' sending to sendq */ 1079 } 1080 1081 /* This should be in poll */ 1082 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1083 1084 mss_now = tcp_send_mss(sk, &size_goal, flags); 1085 1086 /* Ok commence sending. */ 1087 iovlen = msg->msg_iovlen; 1088 iov = msg->msg_iov; 1089 copied = 0; 1090 1091 err = -EPIPE; 1092 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1093 goto out_err; 1094 1095 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1096 1097 while (--iovlen >= 0) { 1098 size_t seglen = iov->iov_len; 1099 unsigned char __user *from = iov->iov_base; 1100 1101 iov++; 1102 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1103 if (offset >= seglen) { 1104 offset -= seglen; 1105 continue; 1106 } 1107 seglen -= offset; 1108 from += offset; 1109 offset = 0; 1110 } 1111 1112 while (seglen > 0) { 1113 int copy = 0; 1114 int max = size_goal; 1115 1116 skb = tcp_write_queue_tail(sk); 1117 if (tcp_send_head(sk)) { 1118 if (skb->ip_summed == CHECKSUM_NONE) 1119 max = mss_now; 1120 copy = max - skb->len; 1121 } 1122 1123 if (copy <= 0) { 1124 new_segment: 1125 /* Allocate new segment. If the interface is SG, 1126 * allocate skb fitting to single page. 1127 */ 1128 if (!sk_stream_memory_free(sk)) 1129 goto wait_for_sndbuf; 1130 1131 skb = sk_stream_alloc_skb(sk, 1132 select_size(sk, sg), 1133 sk->sk_allocation); 1134 if (!skb) 1135 goto wait_for_memory; 1136 1137 /* 1138 * All packets are restored as if they have 1139 * already been sent. 1140 */ 1141 if (tp->repair) 1142 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1143 1144 /* 1145 * Check whether we can use HW checksum. 1146 */ 1147 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1148 skb->ip_summed = CHECKSUM_PARTIAL; 1149 1150 skb_entail(sk, skb); 1151 copy = size_goal; 1152 max = size_goal; 1153 } 1154 1155 /* Try to append data to the end of skb. */ 1156 if (copy > seglen) 1157 copy = seglen; 1158 1159 /* Where to copy to? */ 1160 if (skb_availroom(skb) > 0) { 1161 /* We have some space in skb head. Superb! */ 1162 copy = min_t(int, copy, skb_availroom(skb)); 1163 err = skb_add_data_nocache(sk, skb, from, copy); 1164 if (err) 1165 goto do_fault; 1166 } else { 1167 bool merge = true; 1168 int i = skb_shinfo(skb)->nr_frags; 1169 struct page_frag *pfrag = sk_page_frag(sk); 1170 1171 if (!sk_page_frag_refill(sk, pfrag)) 1172 goto wait_for_memory; 1173 1174 if (!skb_can_coalesce(skb, i, pfrag->page, 1175 pfrag->offset)) { 1176 if (i == MAX_SKB_FRAGS || !sg) { 1177 tcp_mark_push(tp, skb); 1178 goto new_segment; 1179 } 1180 merge = false; 1181 } 1182 1183 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1184 1185 if (!sk_wmem_schedule(sk, copy)) 1186 goto wait_for_memory; 1187 1188 err = skb_copy_to_page_nocache(sk, from, skb, 1189 pfrag->page, 1190 pfrag->offset, 1191 copy); 1192 if (err) 1193 goto do_error; 1194 1195 /* Update the skb. */ 1196 if (merge) { 1197 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1198 } else { 1199 skb_fill_page_desc(skb, i, pfrag->page, 1200 pfrag->offset, copy); 1201 get_page(pfrag->page); 1202 } 1203 pfrag->offset += copy; 1204 } 1205 1206 if (!copied) 1207 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1208 1209 tp->write_seq += copy; 1210 TCP_SKB_CB(skb)->end_seq += copy; 1211 skb_shinfo(skb)->gso_segs = 0; 1212 1213 from += copy; 1214 copied += copy; 1215 if ((seglen -= copy) == 0 && iovlen == 0) 1216 goto out; 1217 1218 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1219 continue; 1220 1221 if (forced_push(tp)) { 1222 tcp_mark_push(tp, skb); 1223 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1224 } else if (skb == tcp_send_head(sk)) 1225 tcp_push_one(sk, mss_now); 1226 continue; 1227 1228 wait_for_sndbuf: 1229 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1230 wait_for_memory: 1231 if (copied) 1232 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1233 1234 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1235 goto do_error; 1236 1237 mss_now = tcp_send_mss(sk, &size_goal, flags); 1238 } 1239 } 1240 1241 out: 1242 if (copied) 1243 tcp_push(sk, flags, mss_now, tp->nonagle); 1244 release_sock(sk); 1245 return copied + copied_syn; 1246 1247 do_fault: 1248 if (!skb->len) { 1249 tcp_unlink_write_queue(skb, sk); 1250 /* It is the one place in all of TCP, except connection 1251 * reset, where we can be unlinking the send_head. 1252 */ 1253 tcp_check_send_head(sk, skb); 1254 sk_wmem_free_skb(sk, skb); 1255 } 1256 1257 do_error: 1258 if (copied + copied_syn) 1259 goto out; 1260 out_err: 1261 err = sk_stream_error(sk, flags, err); 1262 release_sock(sk); 1263 return err; 1264 } 1265 EXPORT_SYMBOL(tcp_sendmsg); 1266 1267 /* 1268 * Handle reading urgent data. BSD has very simple semantics for 1269 * this, no blocking and very strange errors 8) 1270 */ 1271 1272 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1273 { 1274 struct tcp_sock *tp = tcp_sk(sk); 1275 1276 /* No URG data to read. */ 1277 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1278 tp->urg_data == TCP_URG_READ) 1279 return -EINVAL; /* Yes this is right ! */ 1280 1281 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1282 return -ENOTCONN; 1283 1284 if (tp->urg_data & TCP_URG_VALID) { 1285 int err = 0; 1286 char c = tp->urg_data; 1287 1288 if (!(flags & MSG_PEEK)) 1289 tp->urg_data = TCP_URG_READ; 1290 1291 /* Read urgent data. */ 1292 msg->msg_flags |= MSG_OOB; 1293 1294 if (len > 0) { 1295 if (!(flags & MSG_TRUNC)) 1296 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1297 len = 1; 1298 } else 1299 msg->msg_flags |= MSG_TRUNC; 1300 1301 return err ? -EFAULT : len; 1302 } 1303 1304 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1305 return 0; 1306 1307 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1308 * the available implementations agree in this case: 1309 * this call should never block, independent of the 1310 * blocking state of the socket. 1311 * Mike <pall@rz.uni-karlsruhe.de> 1312 */ 1313 return -EAGAIN; 1314 } 1315 1316 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1317 { 1318 struct sk_buff *skb; 1319 int copied = 0, err = 0; 1320 1321 /* XXX -- need to support SO_PEEK_OFF */ 1322 1323 skb_queue_walk(&sk->sk_write_queue, skb) { 1324 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1325 if (err) 1326 break; 1327 1328 copied += skb->len; 1329 } 1330 1331 return err ?: copied; 1332 } 1333 1334 /* Clean up the receive buffer for full frames taken by the user, 1335 * then send an ACK if necessary. COPIED is the number of bytes 1336 * tcp_recvmsg has given to the user so far, it speeds up the 1337 * calculation of whether or not we must ACK for the sake of 1338 * a window update. 1339 */ 1340 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1341 { 1342 struct tcp_sock *tp = tcp_sk(sk); 1343 bool time_to_ack = false; 1344 1345 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1346 1347 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1348 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1349 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1350 1351 if (inet_csk_ack_scheduled(sk)) { 1352 const struct inet_connection_sock *icsk = inet_csk(sk); 1353 /* Delayed ACKs frequently hit locked sockets during bulk 1354 * receive. */ 1355 if (icsk->icsk_ack.blocked || 1356 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1357 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1358 /* 1359 * If this read emptied read buffer, we send ACK, if 1360 * connection is not bidirectional, user drained 1361 * receive buffer and there was a small segment 1362 * in queue. 1363 */ 1364 (copied > 0 && 1365 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1366 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1367 !icsk->icsk_ack.pingpong)) && 1368 !atomic_read(&sk->sk_rmem_alloc))) 1369 time_to_ack = true; 1370 } 1371 1372 /* We send an ACK if we can now advertise a non-zero window 1373 * which has been raised "significantly". 1374 * 1375 * Even if window raised up to infinity, do not send window open ACK 1376 * in states, where we will not receive more. It is useless. 1377 */ 1378 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1379 __u32 rcv_window_now = tcp_receive_window(tp); 1380 1381 /* Optimize, __tcp_select_window() is not cheap. */ 1382 if (2*rcv_window_now <= tp->window_clamp) { 1383 __u32 new_window = __tcp_select_window(sk); 1384 1385 /* Send ACK now, if this read freed lots of space 1386 * in our buffer. Certainly, new_window is new window. 1387 * We can advertise it now, if it is not less than current one. 1388 * "Lots" means "at least twice" here. 1389 */ 1390 if (new_window && new_window >= 2 * rcv_window_now) 1391 time_to_ack = true; 1392 } 1393 } 1394 if (time_to_ack) 1395 tcp_send_ack(sk); 1396 } 1397 1398 static void tcp_prequeue_process(struct sock *sk) 1399 { 1400 struct sk_buff *skb; 1401 struct tcp_sock *tp = tcp_sk(sk); 1402 1403 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1404 1405 /* RX process wants to run with disabled BHs, though it is not 1406 * necessary */ 1407 local_bh_disable(); 1408 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1409 sk_backlog_rcv(sk, skb); 1410 local_bh_enable(); 1411 1412 /* Clear memory counter. */ 1413 tp->ucopy.memory = 0; 1414 } 1415 1416 #ifdef CONFIG_NET_DMA 1417 static void tcp_service_net_dma(struct sock *sk, bool wait) 1418 { 1419 dma_cookie_t done, used; 1420 dma_cookie_t last_issued; 1421 struct tcp_sock *tp = tcp_sk(sk); 1422 1423 if (!tp->ucopy.dma_chan) 1424 return; 1425 1426 last_issued = tp->ucopy.dma_cookie; 1427 dma_async_issue_pending(tp->ucopy.dma_chan); 1428 1429 do { 1430 if (dma_async_is_tx_complete(tp->ucopy.dma_chan, 1431 last_issued, &done, 1432 &used) == DMA_SUCCESS) { 1433 /* Safe to free early-copied skbs now */ 1434 __skb_queue_purge(&sk->sk_async_wait_queue); 1435 break; 1436 } else { 1437 struct sk_buff *skb; 1438 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1439 (dma_async_is_complete(skb->dma_cookie, done, 1440 used) == DMA_SUCCESS)) { 1441 __skb_dequeue(&sk->sk_async_wait_queue); 1442 kfree_skb(skb); 1443 } 1444 } 1445 } while (wait); 1446 } 1447 #endif 1448 1449 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1450 { 1451 struct sk_buff *skb; 1452 u32 offset; 1453 1454 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1455 offset = seq - TCP_SKB_CB(skb)->seq; 1456 if (tcp_hdr(skb)->syn) 1457 offset--; 1458 if (offset < skb->len || tcp_hdr(skb)->fin) { 1459 *off = offset; 1460 return skb; 1461 } 1462 /* This looks weird, but this can happen if TCP collapsing 1463 * splitted a fat GRO packet, while we released socket lock 1464 * in skb_splice_bits() 1465 */ 1466 sk_eat_skb(sk, skb, false); 1467 } 1468 return NULL; 1469 } 1470 1471 /* 1472 * This routine provides an alternative to tcp_recvmsg() for routines 1473 * that would like to handle copying from skbuffs directly in 'sendfile' 1474 * fashion. 1475 * Note: 1476 * - It is assumed that the socket was locked by the caller. 1477 * - The routine does not block. 1478 * - At present, there is no support for reading OOB data 1479 * or for 'peeking' the socket using this routine 1480 * (although both would be easy to implement). 1481 */ 1482 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1483 sk_read_actor_t recv_actor) 1484 { 1485 struct sk_buff *skb; 1486 struct tcp_sock *tp = tcp_sk(sk); 1487 u32 seq = tp->copied_seq; 1488 u32 offset; 1489 int copied = 0; 1490 1491 if (sk->sk_state == TCP_LISTEN) 1492 return -ENOTCONN; 1493 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1494 if (offset < skb->len) { 1495 int used; 1496 size_t len; 1497 1498 len = skb->len - offset; 1499 /* Stop reading if we hit a patch of urgent data */ 1500 if (tp->urg_data) { 1501 u32 urg_offset = tp->urg_seq - seq; 1502 if (urg_offset < len) 1503 len = urg_offset; 1504 if (!len) 1505 break; 1506 } 1507 used = recv_actor(desc, skb, offset, len); 1508 if (used <= 0) { 1509 if (!copied) 1510 copied = used; 1511 break; 1512 } else if (used <= len) { 1513 seq += used; 1514 copied += used; 1515 offset += used; 1516 } 1517 /* If recv_actor drops the lock (e.g. TCP splice 1518 * receive) the skb pointer might be invalid when 1519 * getting here: tcp_collapse might have deleted it 1520 * while aggregating skbs from the socket queue. 1521 */ 1522 skb = tcp_recv_skb(sk, seq - 1, &offset); 1523 if (!skb) 1524 break; 1525 /* TCP coalescing might have appended data to the skb. 1526 * Try to splice more frags 1527 */ 1528 if (offset + 1 != skb->len) 1529 continue; 1530 } 1531 if (tcp_hdr(skb)->fin) { 1532 sk_eat_skb(sk, skb, false); 1533 ++seq; 1534 break; 1535 } 1536 sk_eat_skb(sk, skb, false); 1537 if (!desc->count) 1538 break; 1539 tp->copied_seq = seq; 1540 } 1541 tp->copied_seq = seq; 1542 1543 tcp_rcv_space_adjust(sk); 1544 1545 /* Clean up data we have read: This will do ACK frames. */ 1546 if (copied > 0) { 1547 tcp_recv_skb(sk, seq, &offset); 1548 tcp_cleanup_rbuf(sk, copied); 1549 } 1550 return copied; 1551 } 1552 EXPORT_SYMBOL(tcp_read_sock); 1553 1554 /* 1555 * This routine copies from a sock struct into the user buffer. 1556 * 1557 * Technical note: in 2.3 we work on _locked_ socket, so that 1558 * tricks with *seq access order and skb->users are not required. 1559 * Probably, code can be easily improved even more. 1560 */ 1561 1562 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1563 size_t len, int nonblock, int flags, int *addr_len) 1564 { 1565 struct tcp_sock *tp = tcp_sk(sk); 1566 int copied = 0; 1567 u32 peek_seq; 1568 u32 *seq; 1569 unsigned long used; 1570 int err; 1571 int target; /* Read at least this many bytes */ 1572 long timeo; 1573 struct task_struct *user_recv = NULL; 1574 bool copied_early = false; 1575 struct sk_buff *skb; 1576 u32 urg_hole = 0; 1577 1578 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1579 (sk->sk_state == TCP_ESTABLISHED)) 1580 sk_busy_loop(sk, nonblock); 1581 1582 lock_sock(sk); 1583 1584 err = -ENOTCONN; 1585 if (sk->sk_state == TCP_LISTEN) 1586 goto out; 1587 1588 timeo = sock_rcvtimeo(sk, nonblock); 1589 1590 /* Urgent data needs to be handled specially. */ 1591 if (flags & MSG_OOB) 1592 goto recv_urg; 1593 1594 if (unlikely(tp->repair)) { 1595 err = -EPERM; 1596 if (!(flags & MSG_PEEK)) 1597 goto out; 1598 1599 if (tp->repair_queue == TCP_SEND_QUEUE) 1600 goto recv_sndq; 1601 1602 err = -EINVAL; 1603 if (tp->repair_queue == TCP_NO_QUEUE) 1604 goto out; 1605 1606 /* 'common' recv queue MSG_PEEK-ing */ 1607 } 1608 1609 seq = &tp->copied_seq; 1610 if (flags & MSG_PEEK) { 1611 peek_seq = tp->copied_seq; 1612 seq = &peek_seq; 1613 } 1614 1615 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1616 1617 #ifdef CONFIG_NET_DMA 1618 tp->ucopy.dma_chan = NULL; 1619 preempt_disable(); 1620 skb = skb_peek_tail(&sk->sk_receive_queue); 1621 { 1622 int available = 0; 1623 1624 if (skb) 1625 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1626 if ((available < target) && 1627 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1628 !sysctl_tcp_low_latency && 1629 net_dma_find_channel()) { 1630 preempt_enable_no_resched(); 1631 tp->ucopy.pinned_list = 1632 dma_pin_iovec_pages(msg->msg_iov, len); 1633 } else { 1634 preempt_enable_no_resched(); 1635 } 1636 } 1637 #endif 1638 1639 do { 1640 u32 offset; 1641 1642 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1643 if (tp->urg_data && tp->urg_seq == *seq) { 1644 if (copied) 1645 break; 1646 if (signal_pending(current)) { 1647 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1648 break; 1649 } 1650 } 1651 1652 /* Next get a buffer. */ 1653 1654 skb_queue_walk(&sk->sk_receive_queue, skb) { 1655 /* Now that we have two receive queues this 1656 * shouldn't happen. 1657 */ 1658 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1659 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1660 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1661 flags)) 1662 break; 1663 1664 offset = *seq - TCP_SKB_CB(skb)->seq; 1665 if (tcp_hdr(skb)->syn) 1666 offset--; 1667 if (offset < skb->len) 1668 goto found_ok_skb; 1669 if (tcp_hdr(skb)->fin) 1670 goto found_fin_ok; 1671 WARN(!(flags & MSG_PEEK), 1672 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1673 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1674 } 1675 1676 /* Well, if we have backlog, try to process it now yet. */ 1677 1678 if (copied >= target && !sk->sk_backlog.tail) 1679 break; 1680 1681 if (copied) { 1682 if (sk->sk_err || 1683 sk->sk_state == TCP_CLOSE || 1684 (sk->sk_shutdown & RCV_SHUTDOWN) || 1685 !timeo || 1686 signal_pending(current)) 1687 break; 1688 } else { 1689 if (sock_flag(sk, SOCK_DONE)) 1690 break; 1691 1692 if (sk->sk_err) { 1693 copied = sock_error(sk); 1694 break; 1695 } 1696 1697 if (sk->sk_shutdown & RCV_SHUTDOWN) 1698 break; 1699 1700 if (sk->sk_state == TCP_CLOSE) { 1701 if (!sock_flag(sk, SOCK_DONE)) { 1702 /* This occurs when user tries to read 1703 * from never connected socket. 1704 */ 1705 copied = -ENOTCONN; 1706 break; 1707 } 1708 break; 1709 } 1710 1711 if (!timeo) { 1712 copied = -EAGAIN; 1713 break; 1714 } 1715 1716 if (signal_pending(current)) { 1717 copied = sock_intr_errno(timeo); 1718 break; 1719 } 1720 } 1721 1722 tcp_cleanup_rbuf(sk, copied); 1723 1724 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1725 /* Install new reader */ 1726 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1727 user_recv = current; 1728 tp->ucopy.task = user_recv; 1729 tp->ucopy.iov = msg->msg_iov; 1730 } 1731 1732 tp->ucopy.len = len; 1733 1734 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1735 !(flags & (MSG_PEEK | MSG_TRUNC))); 1736 1737 /* Ugly... If prequeue is not empty, we have to 1738 * process it before releasing socket, otherwise 1739 * order will be broken at second iteration. 1740 * More elegant solution is required!!! 1741 * 1742 * Look: we have the following (pseudo)queues: 1743 * 1744 * 1. packets in flight 1745 * 2. backlog 1746 * 3. prequeue 1747 * 4. receive_queue 1748 * 1749 * Each queue can be processed only if the next ones 1750 * are empty. At this point we have empty receive_queue. 1751 * But prequeue _can_ be not empty after 2nd iteration, 1752 * when we jumped to start of loop because backlog 1753 * processing added something to receive_queue. 1754 * We cannot release_sock(), because backlog contains 1755 * packets arrived _after_ prequeued ones. 1756 * 1757 * Shortly, algorithm is clear --- to process all 1758 * the queues in order. We could make it more directly, 1759 * requeueing packets from backlog to prequeue, if 1760 * is not empty. It is more elegant, but eats cycles, 1761 * unfortunately. 1762 */ 1763 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1764 goto do_prequeue; 1765 1766 /* __ Set realtime policy in scheduler __ */ 1767 } 1768 1769 #ifdef CONFIG_NET_DMA 1770 if (tp->ucopy.dma_chan) { 1771 if (tp->rcv_wnd == 0 && 1772 !skb_queue_empty(&sk->sk_async_wait_queue)) { 1773 tcp_service_net_dma(sk, true); 1774 tcp_cleanup_rbuf(sk, copied); 1775 } else 1776 dma_async_issue_pending(tp->ucopy.dma_chan); 1777 } 1778 #endif 1779 if (copied >= target) { 1780 /* Do not sleep, just process backlog. */ 1781 release_sock(sk); 1782 lock_sock(sk); 1783 } else 1784 sk_wait_data(sk, &timeo); 1785 1786 #ifdef CONFIG_NET_DMA 1787 tcp_service_net_dma(sk, false); /* Don't block */ 1788 tp->ucopy.wakeup = 0; 1789 #endif 1790 1791 if (user_recv) { 1792 int chunk; 1793 1794 /* __ Restore normal policy in scheduler __ */ 1795 1796 if ((chunk = len - tp->ucopy.len) != 0) { 1797 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1798 len -= chunk; 1799 copied += chunk; 1800 } 1801 1802 if (tp->rcv_nxt == tp->copied_seq && 1803 !skb_queue_empty(&tp->ucopy.prequeue)) { 1804 do_prequeue: 1805 tcp_prequeue_process(sk); 1806 1807 if ((chunk = len - tp->ucopy.len) != 0) { 1808 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1809 len -= chunk; 1810 copied += chunk; 1811 } 1812 } 1813 } 1814 if ((flags & MSG_PEEK) && 1815 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1816 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1817 current->comm, 1818 task_pid_nr(current)); 1819 peek_seq = tp->copied_seq; 1820 } 1821 continue; 1822 1823 found_ok_skb: 1824 /* Ok so how much can we use? */ 1825 used = skb->len - offset; 1826 if (len < used) 1827 used = len; 1828 1829 /* Do we have urgent data here? */ 1830 if (tp->urg_data) { 1831 u32 urg_offset = tp->urg_seq - *seq; 1832 if (urg_offset < used) { 1833 if (!urg_offset) { 1834 if (!sock_flag(sk, SOCK_URGINLINE)) { 1835 ++*seq; 1836 urg_hole++; 1837 offset++; 1838 used--; 1839 if (!used) 1840 goto skip_copy; 1841 } 1842 } else 1843 used = urg_offset; 1844 } 1845 } 1846 1847 if (!(flags & MSG_TRUNC)) { 1848 #ifdef CONFIG_NET_DMA 1849 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1850 tp->ucopy.dma_chan = net_dma_find_channel(); 1851 1852 if (tp->ucopy.dma_chan) { 1853 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1854 tp->ucopy.dma_chan, skb, offset, 1855 msg->msg_iov, used, 1856 tp->ucopy.pinned_list); 1857 1858 if (tp->ucopy.dma_cookie < 0) { 1859 1860 pr_alert("%s: dma_cookie < 0\n", 1861 __func__); 1862 1863 /* Exception. Bailout! */ 1864 if (!copied) 1865 copied = -EFAULT; 1866 break; 1867 } 1868 1869 dma_async_issue_pending(tp->ucopy.dma_chan); 1870 1871 if ((offset + used) == skb->len) 1872 copied_early = true; 1873 1874 } else 1875 #endif 1876 { 1877 err = skb_copy_datagram_iovec(skb, offset, 1878 msg->msg_iov, used); 1879 if (err) { 1880 /* Exception. Bailout! */ 1881 if (!copied) 1882 copied = -EFAULT; 1883 break; 1884 } 1885 } 1886 } 1887 1888 *seq += used; 1889 copied += used; 1890 len -= used; 1891 1892 tcp_rcv_space_adjust(sk); 1893 1894 skip_copy: 1895 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1896 tp->urg_data = 0; 1897 tcp_fast_path_check(sk); 1898 } 1899 if (used + offset < skb->len) 1900 continue; 1901 1902 if (tcp_hdr(skb)->fin) 1903 goto found_fin_ok; 1904 if (!(flags & MSG_PEEK)) { 1905 sk_eat_skb(sk, skb, copied_early); 1906 copied_early = false; 1907 } 1908 continue; 1909 1910 found_fin_ok: 1911 /* Process the FIN. */ 1912 ++*seq; 1913 if (!(flags & MSG_PEEK)) { 1914 sk_eat_skb(sk, skb, copied_early); 1915 copied_early = false; 1916 } 1917 break; 1918 } while (len > 0); 1919 1920 if (user_recv) { 1921 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1922 int chunk; 1923 1924 tp->ucopy.len = copied > 0 ? len : 0; 1925 1926 tcp_prequeue_process(sk); 1927 1928 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1929 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1930 len -= chunk; 1931 copied += chunk; 1932 } 1933 } 1934 1935 tp->ucopy.task = NULL; 1936 tp->ucopy.len = 0; 1937 } 1938 1939 #ifdef CONFIG_NET_DMA 1940 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1941 tp->ucopy.dma_chan = NULL; 1942 1943 if (tp->ucopy.pinned_list) { 1944 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1945 tp->ucopy.pinned_list = NULL; 1946 } 1947 #endif 1948 1949 /* According to UNIX98, msg_name/msg_namelen are ignored 1950 * on connected socket. I was just happy when found this 8) --ANK 1951 */ 1952 1953 /* Clean up data we have read: This will do ACK frames. */ 1954 tcp_cleanup_rbuf(sk, copied); 1955 1956 release_sock(sk); 1957 return copied; 1958 1959 out: 1960 release_sock(sk); 1961 return err; 1962 1963 recv_urg: 1964 err = tcp_recv_urg(sk, msg, len, flags); 1965 goto out; 1966 1967 recv_sndq: 1968 err = tcp_peek_sndq(sk, msg, len); 1969 goto out; 1970 } 1971 EXPORT_SYMBOL(tcp_recvmsg); 1972 1973 void tcp_set_state(struct sock *sk, int state) 1974 { 1975 int oldstate = sk->sk_state; 1976 1977 switch (state) { 1978 case TCP_ESTABLISHED: 1979 if (oldstate != TCP_ESTABLISHED) 1980 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1981 break; 1982 1983 case TCP_CLOSE: 1984 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1985 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1986 1987 sk->sk_prot->unhash(sk); 1988 if (inet_csk(sk)->icsk_bind_hash && 1989 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1990 inet_put_port(sk); 1991 /* fall through */ 1992 default: 1993 if (oldstate == TCP_ESTABLISHED) 1994 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1995 } 1996 1997 /* Change state AFTER socket is unhashed to avoid closed 1998 * socket sitting in hash tables. 1999 */ 2000 sk->sk_state = state; 2001 2002 #ifdef STATE_TRACE 2003 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2004 #endif 2005 } 2006 EXPORT_SYMBOL_GPL(tcp_set_state); 2007 2008 /* 2009 * State processing on a close. This implements the state shift for 2010 * sending our FIN frame. Note that we only send a FIN for some 2011 * states. A shutdown() may have already sent the FIN, or we may be 2012 * closed. 2013 */ 2014 2015 static const unsigned char new_state[16] = { 2016 /* current state: new state: action: */ 2017 /* (Invalid) */ TCP_CLOSE, 2018 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2019 /* TCP_SYN_SENT */ TCP_CLOSE, 2020 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2021 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 2022 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 2023 /* TCP_TIME_WAIT */ TCP_CLOSE, 2024 /* TCP_CLOSE */ TCP_CLOSE, 2025 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 2026 /* TCP_LAST_ACK */ TCP_LAST_ACK, 2027 /* TCP_LISTEN */ TCP_CLOSE, 2028 /* TCP_CLOSING */ TCP_CLOSING, 2029 }; 2030 2031 static int tcp_close_state(struct sock *sk) 2032 { 2033 int next = (int)new_state[sk->sk_state]; 2034 int ns = next & TCP_STATE_MASK; 2035 2036 tcp_set_state(sk, ns); 2037 2038 return next & TCP_ACTION_FIN; 2039 } 2040 2041 /* 2042 * Shutdown the sending side of a connection. Much like close except 2043 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2044 */ 2045 2046 void tcp_shutdown(struct sock *sk, int how) 2047 { 2048 /* We need to grab some memory, and put together a FIN, 2049 * and then put it into the queue to be sent. 2050 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2051 */ 2052 if (!(how & SEND_SHUTDOWN)) 2053 return; 2054 2055 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2056 if ((1 << sk->sk_state) & 2057 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2058 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2059 /* Clear out any half completed packets. FIN if needed. */ 2060 if (tcp_close_state(sk)) 2061 tcp_send_fin(sk); 2062 } 2063 } 2064 EXPORT_SYMBOL(tcp_shutdown); 2065 2066 bool tcp_check_oom(struct sock *sk, int shift) 2067 { 2068 bool too_many_orphans, out_of_socket_memory; 2069 2070 too_many_orphans = tcp_too_many_orphans(sk, shift); 2071 out_of_socket_memory = tcp_out_of_memory(sk); 2072 2073 if (too_many_orphans) 2074 net_info_ratelimited("too many orphaned sockets\n"); 2075 if (out_of_socket_memory) 2076 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2077 return too_many_orphans || out_of_socket_memory; 2078 } 2079 2080 void tcp_close(struct sock *sk, long timeout) 2081 { 2082 struct sk_buff *skb; 2083 int data_was_unread = 0; 2084 int state; 2085 2086 lock_sock(sk); 2087 sk->sk_shutdown = SHUTDOWN_MASK; 2088 2089 if (sk->sk_state == TCP_LISTEN) { 2090 tcp_set_state(sk, TCP_CLOSE); 2091 2092 /* Special case. */ 2093 inet_csk_listen_stop(sk); 2094 2095 goto adjudge_to_death; 2096 } 2097 2098 /* We need to flush the recv. buffs. We do this only on the 2099 * descriptor close, not protocol-sourced closes, because the 2100 * reader process may not have drained the data yet! 2101 */ 2102 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2103 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2104 tcp_hdr(skb)->fin; 2105 data_was_unread += len; 2106 __kfree_skb(skb); 2107 } 2108 2109 sk_mem_reclaim(sk); 2110 2111 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2112 if (sk->sk_state == TCP_CLOSE) 2113 goto adjudge_to_death; 2114 2115 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2116 * data was lost. To witness the awful effects of the old behavior of 2117 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2118 * GET in an FTP client, suspend the process, wait for the client to 2119 * advertise a zero window, then kill -9 the FTP client, wheee... 2120 * Note: timeout is always zero in such a case. 2121 */ 2122 if (unlikely(tcp_sk(sk)->repair)) { 2123 sk->sk_prot->disconnect(sk, 0); 2124 } else if (data_was_unread) { 2125 /* Unread data was tossed, zap the connection. */ 2126 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2127 tcp_set_state(sk, TCP_CLOSE); 2128 tcp_send_active_reset(sk, sk->sk_allocation); 2129 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2130 /* Check zero linger _after_ checking for unread data. */ 2131 sk->sk_prot->disconnect(sk, 0); 2132 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2133 } else if (tcp_close_state(sk)) { 2134 /* We FIN if the application ate all the data before 2135 * zapping the connection. 2136 */ 2137 2138 /* RED-PEN. Formally speaking, we have broken TCP state 2139 * machine. State transitions: 2140 * 2141 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2142 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2143 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2144 * 2145 * are legal only when FIN has been sent (i.e. in window), 2146 * rather than queued out of window. Purists blame. 2147 * 2148 * F.e. "RFC state" is ESTABLISHED, 2149 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2150 * 2151 * The visible declinations are that sometimes 2152 * we enter time-wait state, when it is not required really 2153 * (harmless), do not send active resets, when they are 2154 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2155 * they look as CLOSING or LAST_ACK for Linux) 2156 * Probably, I missed some more holelets. 2157 * --ANK 2158 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2159 * in a single packet! (May consider it later but will 2160 * probably need API support or TCP_CORK SYN-ACK until 2161 * data is written and socket is closed.) 2162 */ 2163 tcp_send_fin(sk); 2164 } 2165 2166 sk_stream_wait_close(sk, timeout); 2167 2168 adjudge_to_death: 2169 state = sk->sk_state; 2170 sock_hold(sk); 2171 sock_orphan(sk); 2172 2173 /* It is the last release_sock in its life. It will remove backlog. */ 2174 release_sock(sk); 2175 2176 2177 /* Now socket is owned by kernel and we acquire BH lock 2178 to finish close. No need to check for user refs. 2179 */ 2180 local_bh_disable(); 2181 bh_lock_sock(sk); 2182 WARN_ON(sock_owned_by_user(sk)); 2183 2184 percpu_counter_inc(sk->sk_prot->orphan_count); 2185 2186 /* Have we already been destroyed by a softirq or backlog? */ 2187 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2188 goto out; 2189 2190 /* This is a (useful) BSD violating of the RFC. There is a 2191 * problem with TCP as specified in that the other end could 2192 * keep a socket open forever with no application left this end. 2193 * We use a 3 minute timeout (about the same as BSD) then kill 2194 * our end. If they send after that then tough - BUT: long enough 2195 * that we won't make the old 4*rto = almost no time - whoops 2196 * reset mistake. 2197 * 2198 * Nope, it was not mistake. It is really desired behaviour 2199 * f.e. on http servers, when such sockets are useless, but 2200 * consume significant resources. Let's do it with special 2201 * linger2 option. --ANK 2202 */ 2203 2204 if (sk->sk_state == TCP_FIN_WAIT2) { 2205 struct tcp_sock *tp = tcp_sk(sk); 2206 if (tp->linger2 < 0) { 2207 tcp_set_state(sk, TCP_CLOSE); 2208 tcp_send_active_reset(sk, GFP_ATOMIC); 2209 NET_INC_STATS_BH(sock_net(sk), 2210 LINUX_MIB_TCPABORTONLINGER); 2211 } else { 2212 const int tmo = tcp_fin_time(sk); 2213 2214 if (tmo > TCP_TIMEWAIT_LEN) { 2215 inet_csk_reset_keepalive_timer(sk, 2216 tmo - TCP_TIMEWAIT_LEN); 2217 } else { 2218 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2219 goto out; 2220 } 2221 } 2222 } 2223 if (sk->sk_state != TCP_CLOSE) { 2224 sk_mem_reclaim(sk); 2225 if (tcp_check_oom(sk, 0)) { 2226 tcp_set_state(sk, TCP_CLOSE); 2227 tcp_send_active_reset(sk, GFP_ATOMIC); 2228 NET_INC_STATS_BH(sock_net(sk), 2229 LINUX_MIB_TCPABORTONMEMORY); 2230 } 2231 } 2232 2233 if (sk->sk_state == TCP_CLOSE) { 2234 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2235 /* We could get here with a non-NULL req if the socket is 2236 * aborted (e.g., closed with unread data) before 3WHS 2237 * finishes. 2238 */ 2239 if (req != NULL) 2240 reqsk_fastopen_remove(sk, req, false); 2241 inet_csk_destroy_sock(sk); 2242 } 2243 /* Otherwise, socket is reprieved until protocol close. */ 2244 2245 out: 2246 bh_unlock_sock(sk); 2247 local_bh_enable(); 2248 sock_put(sk); 2249 } 2250 EXPORT_SYMBOL(tcp_close); 2251 2252 /* These states need RST on ABORT according to RFC793 */ 2253 2254 static inline bool tcp_need_reset(int state) 2255 { 2256 return (1 << state) & 2257 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2258 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2259 } 2260 2261 int tcp_disconnect(struct sock *sk, int flags) 2262 { 2263 struct inet_sock *inet = inet_sk(sk); 2264 struct inet_connection_sock *icsk = inet_csk(sk); 2265 struct tcp_sock *tp = tcp_sk(sk); 2266 int err = 0; 2267 int old_state = sk->sk_state; 2268 2269 if (old_state != TCP_CLOSE) 2270 tcp_set_state(sk, TCP_CLOSE); 2271 2272 /* ABORT function of RFC793 */ 2273 if (old_state == TCP_LISTEN) { 2274 inet_csk_listen_stop(sk); 2275 } else if (unlikely(tp->repair)) { 2276 sk->sk_err = ECONNABORTED; 2277 } else if (tcp_need_reset(old_state) || 2278 (tp->snd_nxt != tp->write_seq && 2279 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2280 /* The last check adjusts for discrepancy of Linux wrt. RFC 2281 * states 2282 */ 2283 tcp_send_active_reset(sk, gfp_any()); 2284 sk->sk_err = ECONNRESET; 2285 } else if (old_state == TCP_SYN_SENT) 2286 sk->sk_err = ECONNRESET; 2287 2288 tcp_clear_xmit_timers(sk); 2289 __skb_queue_purge(&sk->sk_receive_queue); 2290 tcp_write_queue_purge(sk); 2291 __skb_queue_purge(&tp->out_of_order_queue); 2292 #ifdef CONFIG_NET_DMA 2293 __skb_queue_purge(&sk->sk_async_wait_queue); 2294 #endif 2295 2296 inet->inet_dport = 0; 2297 2298 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2299 inet_reset_saddr(sk); 2300 2301 sk->sk_shutdown = 0; 2302 sock_reset_flag(sk, SOCK_DONE); 2303 tp->srtt = 0; 2304 if ((tp->write_seq += tp->max_window + 2) == 0) 2305 tp->write_seq = 1; 2306 icsk->icsk_backoff = 0; 2307 tp->snd_cwnd = 2; 2308 icsk->icsk_probes_out = 0; 2309 tp->packets_out = 0; 2310 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2311 tp->snd_cwnd_cnt = 0; 2312 tp->window_clamp = 0; 2313 tcp_set_ca_state(sk, TCP_CA_Open); 2314 tcp_clear_retrans(tp); 2315 inet_csk_delack_init(sk); 2316 tcp_init_send_head(sk); 2317 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2318 __sk_dst_reset(sk); 2319 2320 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2321 2322 sk->sk_error_report(sk); 2323 return err; 2324 } 2325 EXPORT_SYMBOL(tcp_disconnect); 2326 2327 void tcp_sock_destruct(struct sock *sk) 2328 { 2329 inet_sock_destruct(sk); 2330 2331 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2332 } 2333 2334 static inline bool tcp_can_repair_sock(const struct sock *sk) 2335 { 2336 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2337 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2338 } 2339 2340 static int tcp_repair_options_est(struct tcp_sock *tp, 2341 struct tcp_repair_opt __user *optbuf, unsigned int len) 2342 { 2343 struct tcp_repair_opt opt; 2344 2345 while (len >= sizeof(opt)) { 2346 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2347 return -EFAULT; 2348 2349 optbuf++; 2350 len -= sizeof(opt); 2351 2352 switch (opt.opt_code) { 2353 case TCPOPT_MSS: 2354 tp->rx_opt.mss_clamp = opt.opt_val; 2355 break; 2356 case TCPOPT_WINDOW: 2357 { 2358 u16 snd_wscale = opt.opt_val & 0xFFFF; 2359 u16 rcv_wscale = opt.opt_val >> 16; 2360 2361 if (snd_wscale > 14 || rcv_wscale > 14) 2362 return -EFBIG; 2363 2364 tp->rx_opt.snd_wscale = snd_wscale; 2365 tp->rx_opt.rcv_wscale = rcv_wscale; 2366 tp->rx_opt.wscale_ok = 1; 2367 } 2368 break; 2369 case TCPOPT_SACK_PERM: 2370 if (opt.opt_val != 0) 2371 return -EINVAL; 2372 2373 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2374 if (sysctl_tcp_fack) 2375 tcp_enable_fack(tp); 2376 break; 2377 case TCPOPT_TIMESTAMP: 2378 if (opt.opt_val != 0) 2379 return -EINVAL; 2380 2381 tp->rx_opt.tstamp_ok = 1; 2382 break; 2383 } 2384 } 2385 2386 return 0; 2387 } 2388 2389 /* 2390 * Socket option code for TCP. 2391 */ 2392 static int do_tcp_setsockopt(struct sock *sk, int level, 2393 int optname, char __user *optval, unsigned int optlen) 2394 { 2395 struct tcp_sock *tp = tcp_sk(sk); 2396 struct inet_connection_sock *icsk = inet_csk(sk); 2397 int val; 2398 int err = 0; 2399 2400 /* These are data/string values, all the others are ints */ 2401 switch (optname) { 2402 case TCP_CONGESTION: { 2403 char name[TCP_CA_NAME_MAX]; 2404 2405 if (optlen < 1) 2406 return -EINVAL; 2407 2408 val = strncpy_from_user(name, optval, 2409 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2410 if (val < 0) 2411 return -EFAULT; 2412 name[val] = 0; 2413 2414 lock_sock(sk); 2415 err = tcp_set_congestion_control(sk, name); 2416 release_sock(sk); 2417 return err; 2418 } 2419 default: 2420 /* fallthru */ 2421 break; 2422 } 2423 2424 if (optlen < sizeof(int)) 2425 return -EINVAL; 2426 2427 if (get_user(val, (int __user *)optval)) 2428 return -EFAULT; 2429 2430 lock_sock(sk); 2431 2432 switch (optname) { 2433 case TCP_MAXSEG: 2434 /* Values greater than interface MTU won't take effect. However 2435 * at the point when this call is done we typically don't yet 2436 * know which interface is going to be used */ 2437 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2438 err = -EINVAL; 2439 break; 2440 } 2441 tp->rx_opt.user_mss = val; 2442 break; 2443 2444 case TCP_NODELAY: 2445 if (val) { 2446 /* TCP_NODELAY is weaker than TCP_CORK, so that 2447 * this option on corked socket is remembered, but 2448 * it is not activated until cork is cleared. 2449 * 2450 * However, when TCP_NODELAY is set we make 2451 * an explicit push, which overrides even TCP_CORK 2452 * for currently queued segments. 2453 */ 2454 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2455 tcp_push_pending_frames(sk); 2456 } else { 2457 tp->nonagle &= ~TCP_NAGLE_OFF; 2458 } 2459 break; 2460 2461 case TCP_THIN_LINEAR_TIMEOUTS: 2462 if (val < 0 || val > 1) 2463 err = -EINVAL; 2464 else 2465 tp->thin_lto = val; 2466 break; 2467 2468 case TCP_THIN_DUPACK: 2469 if (val < 0 || val > 1) 2470 err = -EINVAL; 2471 else { 2472 tp->thin_dupack = val; 2473 if (tp->thin_dupack) 2474 tcp_disable_early_retrans(tp); 2475 } 2476 break; 2477 2478 case TCP_REPAIR: 2479 if (!tcp_can_repair_sock(sk)) 2480 err = -EPERM; 2481 else if (val == 1) { 2482 tp->repair = 1; 2483 sk->sk_reuse = SK_FORCE_REUSE; 2484 tp->repair_queue = TCP_NO_QUEUE; 2485 } else if (val == 0) { 2486 tp->repair = 0; 2487 sk->sk_reuse = SK_NO_REUSE; 2488 tcp_send_window_probe(sk); 2489 } else 2490 err = -EINVAL; 2491 2492 break; 2493 2494 case TCP_REPAIR_QUEUE: 2495 if (!tp->repair) 2496 err = -EPERM; 2497 else if (val < TCP_QUEUES_NR) 2498 tp->repair_queue = val; 2499 else 2500 err = -EINVAL; 2501 break; 2502 2503 case TCP_QUEUE_SEQ: 2504 if (sk->sk_state != TCP_CLOSE) 2505 err = -EPERM; 2506 else if (tp->repair_queue == TCP_SEND_QUEUE) 2507 tp->write_seq = val; 2508 else if (tp->repair_queue == TCP_RECV_QUEUE) 2509 tp->rcv_nxt = val; 2510 else 2511 err = -EINVAL; 2512 break; 2513 2514 case TCP_REPAIR_OPTIONS: 2515 if (!tp->repair) 2516 err = -EINVAL; 2517 else if (sk->sk_state == TCP_ESTABLISHED) 2518 err = tcp_repair_options_est(tp, 2519 (struct tcp_repair_opt __user *)optval, 2520 optlen); 2521 else 2522 err = -EPERM; 2523 break; 2524 2525 case TCP_CORK: 2526 /* When set indicates to always queue non-full frames. 2527 * Later the user clears this option and we transmit 2528 * any pending partial frames in the queue. This is 2529 * meant to be used alongside sendfile() to get properly 2530 * filled frames when the user (for example) must write 2531 * out headers with a write() call first and then use 2532 * sendfile to send out the data parts. 2533 * 2534 * TCP_CORK can be set together with TCP_NODELAY and it is 2535 * stronger than TCP_NODELAY. 2536 */ 2537 if (val) { 2538 tp->nonagle |= TCP_NAGLE_CORK; 2539 } else { 2540 tp->nonagle &= ~TCP_NAGLE_CORK; 2541 if (tp->nonagle&TCP_NAGLE_OFF) 2542 tp->nonagle |= TCP_NAGLE_PUSH; 2543 tcp_push_pending_frames(sk); 2544 } 2545 break; 2546 2547 case TCP_KEEPIDLE: 2548 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2549 err = -EINVAL; 2550 else { 2551 tp->keepalive_time = val * HZ; 2552 if (sock_flag(sk, SOCK_KEEPOPEN) && 2553 !((1 << sk->sk_state) & 2554 (TCPF_CLOSE | TCPF_LISTEN))) { 2555 u32 elapsed = keepalive_time_elapsed(tp); 2556 if (tp->keepalive_time > elapsed) 2557 elapsed = tp->keepalive_time - elapsed; 2558 else 2559 elapsed = 0; 2560 inet_csk_reset_keepalive_timer(sk, elapsed); 2561 } 2562 } 2563 break; 2564 case TCP_KEEPINTVL: 2565 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2566 err = -EINVAL; 2567 else 2568 tp->keepalive_intvl = val * HZ; 2569 break; 2570 case TCP_KEEPCNT: 2571 if (val < 1 || val > MAX_TCP_KEEPCNT) 2572 err = -EINVAL; 2573 else 2574 tp->keepalive_probes = val; 2575 break; 2576 case TCP_SYNCNT: 2577 if (val < 1 || val > MAX_TCP_SYNCNT) 2578 err = -EINVAL; 2579 else 2580 icsk->icsk_syn_retries = val; 2581 break; 2582 2583 case TCP_LINGER2: 2584 if (val < 0) 2585 tp->linger2 = -1; 2586 else if (val > sysctl_tcp_fin_timeout / HZ) 2587 tp->linger2 = 0; 2588 else 2589 tp->linger2 = val * HZ; 2590 break; 2591 2592 case TCP_DEFER_ACCEPT: 2593 /* Translate value in seconds to number of retransmits */ 2594 icsk->icsk_accept_queue.rskq_defer_accept = 2595 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2596 TCP_RTO_MAX / HZ); 2597 break; 2598 2599 case TCP_WINDOW_CLAMP: 2600 if (!val) { 2601 if (sk->sk_state != TCP_CLOSE) { 2602 err = -EINVAL; 2603 break; 2604 } 2605 tp->window_clamp = 0; 2606 } else 2607 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2608 SOCK_MIN_RCVBUF / 2 : val; 2609 break; 2610 2611 case TCP_QUICKACK: 2612 if (!val) { 2613 icsk->icsk_ack.pingpong = 1; 2614 } else { 2615 icsk->icsk_ack.pingpong = 0; 2616 if ((1 << sk->sk_state) & 2617 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2618 inet_csk_ack_scheduled(sk)) { 2619 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2620 tcp_cleanup_rbuf(sk, 1); 2621 if (!(val & 1)) 2622 icsk->icsk_ack.pingpong = 1; 2623 } 2624 } 2625 break; 2626 2627 #ifdef CONFIG_TCP_MD5SIG 2628 case TCP_MD5SIG: 2629 /* Read the IP->Key mappings from userspace */ 2630 err = tp->af_specific->md5_parse(sk, optval, optlen); 2631 break; 2632 #endif 2633 case TCP_USER_TIMEOUT: 2634 /* Cap the max timeout in ms TCP will retry/retrans 2635 * before giving up and aborting (ETIMEDOUT) a connection. 2636 */ 2637 if (val < 0) 2638 err = -EINVAL; 2639 else 2640 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2641 break; 2642 2643 case TCP_FASTOPEN: 2644 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2645 TCPF_LISTEN))) 2646 err = fastopen_init_queue(sk, val); 2647 else 2648 err = -EINVAL; 2649 break; 2650 case TCP_TIMESTAMP: 2651 if (!tp->repair) 2652 err = -EPERM; 2653 else 2654 tp->tsoffset = val - tcp_time_stamp; 2655 break; 2656 case TCP_NOTSENT_LOWAT: 2657 tp->notsent_lowat = val; 2658 sk->sk_write_space(sk); 2659 break; 2660 default: 2661 err = -ENOPROTOOPT; 2662 break; 2663 } 2664 2665 release_sock(sk); 2666 return err; 2667 } 2668 2669 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2670 unsigned int optlen) 2671 { 2672 const struct inet_connection_sock *icsk = inet_csk(sk); 2673 2674 if (level != SOL_TCP) 2675 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2676 optval, optlen); 2677 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2678 } 2679 EXPORT_SYMBOL(tcp_setsockopt); 2680 2681 #ifdef CONFIG_COMPAT 2682 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2683 char __user *optval, unsigned int optlen) 2684 { 2685 if (level != SOL_TCP) 2686 return inet_csk_compat_setsockopt(sk, level, optname, 2687 optval, optlen); 2688 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2689 } 2690 EXPORT_SYMBOL(compat_tcp_setsockopt); 2691 #endif 2692 2693 /* Return information about state of tcp endpoint in API format. */ 2694 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2695 { 2696 const struct tcp_sock *tp = tcp_sk(sk); 2697 const struct inet_connection_sock *icsk = inet_csk(sk); 2698 u32 now = tcp_time_stamp; 2699 2700 memset(info, 0, sizeof(*info)); 2701 2702 info->tcpi_state = sk->sk_state; 2703 info->tcpi_ca_state = icsk->icsk_ca_state; 2704 info->tcpi_retransmits = icsk->icsk_retransmits; 2705 info->tcpi_probes = icsk->icsk_probes_out; 2706 info->tcpi_backoff = icsk->icsk_backoff; 2707 2708 if (tp->rx_opt.tstamp_ok) 2709 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2710 if (tcp_is_sack(tp)) 2711 info->tcpi_options |= TCPI_OPT_SACK; 2712 if (tp->rx_opt.wscale_ok) { 2713 info->tcpi_options |= TCPI_OPT_WSCALE; 2714 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2715 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2716 } 2717 2718 if (tp->ecn_flags & TCP_ECN_OK) 2719 info->tcpi_options |= TCPI_OPT_ECN; 2720 if (tp->ecn_flags & TCP_ECN_SEEN) 2721 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2722 if (tp->syn_data_acked) 2723 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2724 2725 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2726 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2727 info->tcpi_snd_mss = tp->mss_cache; 2728 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2729 2730 if (sk->sk_state == TCP_LISTEN) { 2731 info->tcpi_unacked = sk->sk_ack_backlog; 2732 info->tcpi_sacked = sk->sk_max_ack_backlog; 2733 } else { 2734 info->tcpi_unacked = tp->packets_out; 2735 info->tcpi_sacked = tp->sacked_out; 2736 } 2737 info->tcpi_lost = tp->lost_out; 2738 info->tcpi_retrans = tp->retrans_out; 2739 info->tcpi_fackets = tp->fackets_out; 2740 2741 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2742 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2743 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2744 2745 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2746 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2747 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2748 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2749 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2750 info->tcpi_snd_cwnd = tp->snd_cwnd; 2751 info->tcpi_advmss = tp->advmss; 2752 info->tcpi_reordering = tp->reordering; 2753 2754 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2755 info->tcpi_rcv_space = tp->rcvq_space.space; 2756 2757 info->tcpi_total_retrans = tp->total_retrans; 2758 } 2759 EXPORT_SYMBOL_GPL(tcp_get_info); 2760 2761 static int do_tcp_getsockopt(struct sock *sk, int level, 2762 int optname, char __user *optval, int __user *optlen) 2763 { 2764 struct inet_connection_sock *icsk = inet_csk(sk); 2765 struct tcp_sock *tp = tcp_sk(sk); 2766 int val, len; 2767 2768 if (get_user(len, optlen)) 2769 return -EFAULT; 2770 2771 len = min_t(unsigned int, len, sizeof(int)); 2772 2773 if (len < 0) 2774 return -EINVAL; 2775 2776 switch (optname) { 2777 case TCP_MAXSEG: 2778 val = tp->mss_cache; 2779 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2780 val = tp->rx_opt.user_mss; 2781 if (tp->repair) 2782 val = tp->rx_opt.mss_clamp; 2783 break; 2784 case TCP_NODELAY: 2785 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2786 break; 2787 case TCP_CORK: 2788 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2789 break; 2790 case TCP_KEEPIDLE: 2791 val = keepalive_time_when(tp) / HZ; 2792 break; 2793 case TCP_KEEPINTVL: 2794 val = keepalive_intvl_when(tp) / HZ; 2795 break; 2796 case TCP_KEEPCNT: 2797 val = keepalive_probes(tp); 2798 break; 2799 case TCP_SYNCNT: 2800 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2801 break; 2802 case TCP_LINGER2: 2803 val = tp->linger2; 2804 if (val >= 0) 2805 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2806 break; 2807 case TCP_DEFER_ACCEPT: 2808 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2809 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2810 break; 2811 case TCP_WINDOW_CLAMP: 2812 val = tp->window_clamp; 2813 break; 2814 case TCP_INFO: { 2815 struct tcp_info info; 2816 2817 if (get_user(len, optlen)) 2818 return -EFAULT; 2819 2820 tcp_get_info(sk, &info); 2821 2822 len = min_t(unsigned int, len, sizeof(info)); 2823 if (put_user(len, optlen)) 2824 return -EFAULT; 2825 if (copy_to_user(optval, &info, len)) 2826 return -EFAULT; 2827 return 0; 2828 } 2829 case TCP_QUICKACK: 2830 val = !icsk->icsk_ack.pingpong; 2831 break; 2832 2833 case TCP_CONGESTION: 2834 if (get_user(len, optlen)) 2835 return -EFAULT; 2836 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2837 if (put_user(len, optlen)) 2838 return -EFAULT; 2839 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2840 return -EFAULT; 2841 return 0; 2842 2843 case TCP_THIN_LINEAR_TIMEOUTS: 2844 val = tp->thin_lto; 2845 break; 2846 case TCP_THIN_DUPACK: 2847 val = tp->thin_dupack; 2848 break; 2849 2850 case TCP_REPAIR: 2851 val = tp->repair; 2852 break; 2853 2854 case TCP_REPAIR_QUEUE: 2855 if (tp->repair) 2856 val = tp->repair_queue; 2857 else 2858 return -EINVAL; 2859 break; 2860 2861 case TCP_QUEUE_SEQ: 2862 if (tp->repair_queue == TCP_SEND_QUEUE) 2863 val = tp->write_seq; 2864 else if (tp->repair_queue == TCP_RECV_QUEUE) 2865 val = tp->rcv_nxt; 2866 else 2867 return -EINVAL; 2868 break; 2869 2870 case TCP_USER_TIMEOUT: 2871 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2872 break; 2873 case TCP_TIMESTAMP: 2874 val = tcp_time_stamp + tp->tsoffset; 2875 break; 2876 case TCP_NOTSENT_LOWAT: 2877 val = tp->notsent_lowat; 2878 break; 2879 default: 2880 return -ENOPROTOOPT; 2881 } 2882 2883 if (put_user(len, optlen)) 2884 return -EFAULT; 2885 if (copy_to_user(optval, &val, len)) 2886 return -EFAULT; 2887 return 0; 2888 } 2889 2890 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2891 int __user *optlen) 2892 { 2893 struct inet_connection_sock *icsk = inet_csk(sk); 2894 2895 if (level != SOL_TCP) 2896 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2897 optval, optlen); 2898 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2899 } 2900 EXPORT_SYMBOL(tcp_getsockopt); 2901 2902 #ifdef CONFIG_COMPAT 2903 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2904 char __user *optval, int __user *optlen) 2905 { 2906 if (level != SOL_TCP) 2907 return inet_csk_compat_getsockopt(sk, level, optname, 2908 optval, optlen); 2909 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2910 } 2911 EXPORT_SYMBOL(compat_tcp_getsockopt); 2912 #endif 2913 2914 #ifdef CONFIG_TCP_MD5SIG 2915 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool __read_mostly; 2916 static DEFINE_MUTEX(tcp_md5sig_mutex); 2917 2918 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2919 { 2920 int cpu; 2921 2922 for_each_possible_cpu(cpu) { 2923 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2924 2925 if (p->md5_desc.tfm) 2926 crypto_free_hash(p->md5_desc.tfm); 2927 } 2928 free_percpu(pool); 2929 } 2930 2931 static void __tcp_alloc_md5sig_pool(void) 2932 { 2933 int cpu; 2934 struct tcp_md5sig_pool __percpu *pool; 2935 2936 pool = alloc_percpu(struct tcp_md5sig_pool); 2937 if (!pool) 2938 return; 2939 2940 for_each_possible_cpu(cpu) { 2941 struct crypto_hash *hash; 2942 2943 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2944 if (IS_ERR_OR_NULL(hash)) 2945 goto out_free; 2946 2947 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 2948 } 2949 /* before setting tcp_md5sig_pool, we must commit all writes 2950 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool() 2951 */ 2952 smp_wmb(); 2953 tcp_md5sig_pool = pool; 2954 return; 2955 out_free: 2956 __tcp_free_md5sig_pool(pool); 2957 } 2958 2959 bool tcp_alloc_md5sig_pool(void) 2960 { 2961 if (unlikely(!tcp_md5sig_pool)) { 2962 mutex_lock(&tcp_md5sig_mutex); 2963 2964 if (!tcp_md5sig_pool) 2965 __tcp_alloc_md5sig_pool(); 2966 2967 mutex_unlock(&tcp_md5sig_mutex); 2968 } 2969 return tcp_md5sig_pool != NULL; 2970 } 2971 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2972 2973 2974 /** 2975 * tcp_get_md5sig_pool - get md5sig_pool for this user 2976 * 2977 * We use percpu structure, so if we succeed, we exit with preemption 2978 * and BH disabled, to make sure another thread or softirq handling 2979 * wont try to get same context. 2980 */ 2981 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2982 { 2983 struct tcp_md5sig_pool __percpu *p; 2984 2985 local_bh_disable(); 2986 p = ACCESS_ONCE(tcp_md5sig_pool); 2987 if (p) 2988 return __this_cpu_ptr(p); 2989 2990 local_bh_enable(); 2991 return NULL; 2992 } 2993 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2994 2995 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2996 const struct tcphdr *th) 2997 { 2998 struct scatterlist sg; 2999 struct tcphdr hdr; 3000 int err; 3001 3002 /* We are not allowed to change tcphdr, make a local copy */ 3003 memcpy(&hdr, th, sizeof(hdr)); 3004 hdr.check = 0; 3005 3006 /* options aren't included in the hash */ 3007 sg_init_one(&sg, &hdr, sizeof(hdr)); 3008 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3009 return err; 3010 } 3011 EXPORT_SYMBOL(tcp_md5_hash_header); 3012 3013 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3014 const struct sk_buff *skb, unsigned int header_len) 3015 { 3016 struct scatterlist sg; 3017 const struct tcphdr *tp = tcp_hdr(skb); 3018 struct hash_desc *desc = &hp->md5_desc; 3019 unsigned int i; 3020 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3021 skb_headlen(skb) - header_len : 0; 3022 const struct skb_shared_info *shi = skb_shinfo(skb); 3023 struct sk_buff *frag_iter; 3024 3025 sg_init_table(&sg, 1); 3026 3027 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3028 if (crypto_hash_update(desc, &sg, head_data_len)) 3029 return 1; 3030 3031 for (i = 0; i < shi->nr_frags; ++i) { 3032 const struct skb_frag_struct *f = &shi->frags[i]; 3033 unsigned int offset = f->page_offset; 3034 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3035 3036 sg_set_page(&sg, page, skb_frag_size(f), 3037 offset_in_page(offset)); 3038 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3039 return 1; 3040 } 3041 3042 skb_walk_frags(skb, frag_iter) 3043 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3044 return 1; 3045 3046 return 0; 3047 } 3048 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3049 3050 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3051 { 3052 struct scatterlist sg; 3053 3054 sg_init_one(&sg, key->key, key->keylen); 3055 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3056 } 3057 EXPORT_SYMBOL(tcp_md5_hash_key); 3058 3059 #endif 3060 3061 void tcp_done(struct sock *sk) 3062 { 3063 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3064 3065 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3066 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3067 3068 tcp_set_state(sk, TCP_CLOSE); 3069 tcp_clear_xmit_timers(sk); 3070 if (req != NULL) 3071 reqsk_fastopen_remove(sk, req, false); 3072 3073 sk->sk_shutdown = SHUTDOWN_MASK; 3074 3075 if (!sock_flag(sk, SOCK_DEAD)) 3076 sk->sk_state_change(sk); 3077 else 3078 inet_csk_destroy_sock(sk); 3079 } 3080 EXPORT_SYMBOL_GPL(tcp_done); 3081 3082 extern struct tcp_congestion_ops tcp_reno; 3083 3084 static __initdata unsigned long thash_entries; 3085 static int __init set_thash_entries(char *str) 3086 { 3087 ssize_t ret; 3088 3089 if (!str) 3090 return 0; 3091 3092 ret = kstrtoul(str, 0, &thash_entries); 3093 if (ret) 3094 return 0; 3095 3096 return 1; 3097 } 3098 __setup("thash_entries=", set_thash_entries); 3099 3100 void tcp_init_mem(struct net *net) 3101 { 3102 unsigned long limit = nr_free_buffer_pages() / 8; 3103 limit = max(limit, 128UL); 3104 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3105 net->ipv4.sysctl_tcp_mem[1] = limit; 3106 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3107 } 3108 3109 void __init tcp_init(void) 3110 { 3111 struct sk_buff *skb = NULL; 3112 unsigned long limit; 3113 int max_rshare, max_wshare, cnt; 3114 unsigned int i; 3115 3116 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3117 3118 percpu_counter_init(&tcp_sockets_allocated, 0); 3119 percpu_counter_init(&tcp_orphan_count, 0); 3120 tcp_hashinfo.bind_bucket_cachep = 3121 kmem_cache_create("tcp_bind_bucket", 3122 sizeof(struct inet_bind_bucket), 0, 3123 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3124 3125 /* Size and allocate the main established and bind bucket 3126 * hash tables. 3127 * 3128 * The methodology is similar to that of the buffer cache. 3129 */ 3130 tcp_hashinfo.ehash = 3131 alloc_large_system_hash("TCP established", 3132 sizeof(struct inet_ehash_bucket), 3133 thash_entries, 3134 17, /* one slot per 128 KB of memory */ 3135 0, 3136 NULL, 3137 &tcp_hashinfo.ehash_mask, 3138 0, 3139 thash_entries ? 0 : 512 * 1024); 3140 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3141 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3142 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3143 } 3144 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3145 panic("TCP: failed to alloc ehash_locks"); 3146 tcp_hashinfo.bhash = 3147 alloc_large_system_hash("TCP bind", 3148 sizeof(struct inet_bind_hashbucket), 3149 tcp_hashinfo.ehash_mask + 1, 3150 17, /* one slot per 128 KB of memory */ 3151 0, 3152 &tcp_hashinfo.bhash_size, 3153 NULL, 3154 0, 3155 64 * 1024); 3156 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3157 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3158 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3159 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3160 } 3161 3162 3163 cnt = tcp_hashinfo.ehash_mask + 1; 3164 3165 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3166 sysctl_tcp_max_orphans = cnt / 2; 3167 sysctl_max_syn_backlog = max(128, cnt / 256); 3168 3169 tcp_init_mem(&init_net); 3170 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3171 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3172 max_wshare = min(4UL*1024*1024, limit); 3173 max_rshare = min(6UL*1024*1024, limit); 3174 3175 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3176 sysctl_tcp_wmem[1] = 16*1024; 3177 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3178 3179 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3180 sysctl_tcp_rmem[1] = 87380; 3181 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3182 3183 pr_info("Hash tables configured (established %u bind %u)\n", 3184 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3185 3186 tcp_metrics_init(); 3187 3188 tcp_register_congestion_control(&tcp_reno); 3189 3190 tcp_tasklet_init(); 3191 } 3192