1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 274 #include <net/icmp.h> 275 #include <net/inet_common.h> 276 #include <net/tcp.h> 277 #include <net/xfrm.h> 278 #include <net/ip.h> 279 #include <net/sock.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (tcp_memory_pressure) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!tcp_memory_pressure) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 tcp_init_xmit_timers(sk); 417 INIT_LIST_HEAD(&tp->tsq_node); 418 419 icsk->icsk_rto = TCP_TIMEOUT_INIT; 420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 422 423 /* So many TCP implementations out there (incorrectly) count the 424 * initial SYN frame in their delayed-ACK and congestion control 425 * algorithms that we must have the following bandaid to talk 426 * efficiently to them. -DaveM 427 */ 428 tp->snd_cwnd = TCP_INIT_CWND; 429 430 /* There's a bubble in the pipe until at least the first ACK. */ 431 tp->app_limited = ~0U; 432 433 /* See draft-stevens-tcpca-spec-01 for discussion of the 434 * initialization of these values. 435 */ 436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 437 tp->snd_cwnd_clamp = ~0; 438 tp->mss_cache = TCP_MSS_DEFAULT; 439 440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 441 tcp_assign_congestion_control(sk); 442 443 tp->tsoffset = 0; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 } 457 EXPORT_SYMBOL(tcp_init_sock); 458 459 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb) 460 { 461 if (tsflags && skb) { 462 struct skb_shared_info *shinfo = skb_shinfo(skb); 463 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 464 465 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 466 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 467 tcb->txstamp_ack = 1; 468 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 469 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 470 } 471 } 472 473 /* 474 * Wait for a TCP event. 475 * 476 * Note that we don't need to lock the socket, as the upper poll layers 477 * take care of normal races (between the test and the event) and we don't 478 * go look at any of the socket buffers directly. 479 */ 480 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 481 { 482 unsigned int mask; 483 struct sock *sk = sock->sk; 484 const struct tcp_sock *tp = tcp_sk(sk); 485 int state; 486 487 sock_rps_record_flow(sk); 488 489 sock_poll_wait(file, sk_sleep(sk), wait); 490 491 state = sk_state_load(sk); 492 if (state == TCP_LISTEN) 493 return inet_csk_listen_poll(sk); 494 495 /* Socket is not locked. We are protected from async events 496 * by poll logic and correct handling of state changes 497 * made by other threads is impossible in any case. 498 */ 499 500 mask = 0; 501 502 /* 503 * POLLHUP is certainly not done right. But poll() doesn't 504 * have a notion of HUP in just one direction, and for a 505 * socket the read side is more interesting. 506 * 507 * Some poll() documentation says that POLLHUP is incompatible 508 * with the POLLOUT/POLLWR flags, so somebody should check this 509 * all. But careful, it tends to be safer to return too many 510 * bits than too few, and you can easily break real applications 511 * if you don't tell them that something has hung up! 512 * 513 * Check-me. 514 * 515 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 516 * our fs/select.c). It means that after we received EOF, 517 * poll always returns immediately, making impossible poll() on write() 518 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 519 * if and only if shutdown has been made in both directions. 520 * Actually, it is interesting to look how Solaris and DUX 521 * solve this dilemma. I would prefer, if POLLHUP were maskable, 522 * then we could set it on SND_SHUTDOWN. BTW examples given 523 * in Stevens' books assume exactly this behaviour, it explains 524 * why POLLHUP is incompatible with POLLOUT. --ANK 525 * 526 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 527 * blocking on fresh not-connected or disconnected socket. --ANK 528 */ 529 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 530 mask |= POLLHUP; 531 if (sk->sk_shutdown & RCV_SHUTDOWN) 532 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 533 534 /* Connected or passive Fast Open socket? */ 535 if (state != TCP_SYN_SENT && 536 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 537 int target = sock_rcvlowat(sk, 0, INT_MAX); 538 539 if (tp->urg_seq == tp->copied_seq && 540 !sock_flag(sk, SOCK_URGINLINE) && 541 tp->urg_data) 542 target++; 543 544 if (tp->rcv_nxt - tp->copied_seq >= target) 545 mask |= POLLIN | POLLRDNORM; 546 547 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 548 if (sk_stream_is_writeable(sk)) { 549 mask |= POLLOUT | POLLWRNORM; 550 } else { /* send SIGIO later */ 551 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 552 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 553 554 /* Race breaker. If space is freed after 555 * wspace test but before the flags are set, 556 * IO signal will be lost. Memory barrier 557 * pairs with the input side. 558 */ 559 smp_mb__after_atomic(); 560 if (sk_stream_is_writeable(sk)) 561 mask |= POLLOUT | POLLWRNORM; 562 } 563 } else 564 mask |= POLLOUT | POLLWRNORM; 565 566 if (tp->urg_data & TCP_URG_VALID) 567 mask |= POLLPRI; 568 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 569 /* Active TCP fastopen socket with defer_connect 570 * Return POLLOUT so application can call write() 571 * in order for kernel to generate SYN+data 572 */ 573 mask |= POLLOUT | POLLWRNORM; 574 } 575 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 576 smp_rmb(); 577 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 578 mask |= POLLERR; 579 580 return mask; 581 } 582 EXPORT_SYMBOL(tcp_poll); 583 584 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 585 { 586 struct tcp_sock *tp = tcp_sk(sk); 587 int answ; 588 bool slow; 589 590 switch (cmd) { 591 case SIOCINQ: 592 if (sk->sk_state == TCP_LISTEN) 593 return -EINVAL; 594 595 slow = lock_sock_fast(sk); 596 answ = tcp_inq(sk); 597 unlock_sock_fast(sk, slow); 598 break; 599 case SIOCATMARK: 600 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 601 break; 602 case SIOCOUTQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 607 answ = 0; 608 else 609 answ = tp->write_seq - tp->snd_una; 610 break; 611 case SIOCOUTQNSD: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 616 answ = 0; 617 else 618 answ = tp->write_seq - tp->snd_nxt; 619 break; 620 default: 621 return -ENOIOCTLCMD; 622 } 623 624 return put_user(answ, (int __user *)arg); 625 } 626 EXPORT_SYMBOL(tcp_ioctl); 627 628 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 629 { 630 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 631 tp->pushed_seq = tp->write_seq; 632 } 633 634 static inline bool forced_push(const struct tcp_sock *tp) 635 { 636 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 637 } 638 639 static void skb_entail(struct sock *sk, struct sk_buff *skb) 640 { 641 struct tcp_sock *tp = tcp_sk(sk); 642 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 643 644 skb->csum = 0; 645 tcb->seq = tcb->end_seq = tp->write_seq; 646 tcb->tcp_flags = TCPHDR_ACK; 647 tcb->sacked = 0; 648 __skb_header_release(skb); 649 tcp_add_write_queue_tail(sk, skb); 650 sk->sk_wmem_queued += skb->truesize; 651 sk_mem_charge(sk, skb->truesize); 652 if (tp->nonagle & TCP_NAGLE_PUSH) 653 tp->nonagle &= ~TCP_NAGLE_PUSH; 654 655 tcp_slow_start_after_idle_check(sk); 656 } 657 658 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 659 { 660 if (flags & MSG_OOB) 661 tp->snd_up = tp->write_seq; 662 } 663 664 /* If a not yet filled skb is pushed, do not send it if 665 * we have data packets in Qdisc or NIC queues : 666 * Because TX completion will happen shortly, it gives a chance 667 * to coalesce future sendmsg() payload into this skb, without 668 * need for a timer, and with no latency trade off. 669 * As packets containing data payload have a bigger truesize 670 * than pure acks (dataless) packets, the last checks prevent 671 * autocorking if we only have an ACK in Qdisc/NIC queues, 672 * or if TX completion was delayed after we processed ACK packet. 673 */ 674 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 675 int size_goal) 676 { 677 return skb->len < size_goal && 678 sysctl_tcp_autocorking && 679 skb != tcp_write_queue_head(sk) && 680 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 681 } 682 683 static void tcp_push(struct sock *sk, int flags, int mss_now, 684 int nonagle, int size_goal) 685 { 686 struct tcp_sock *tp = tcp_sk(sk); 687 struct sk_buff *skb; 688 689 if (!tcp_send_head(sk)) 690 return; 691 692 skb = tcp_write_queue_tail(sk); 693 if (!(flags & MSG_MORE) || forced_push(tp)) 694 tcp_mark_push(tp, skb); 695 696 tcp_mark_urg(tp, flags); 697 698 if (tcp_should_autocork(sk, skb, size_goal)) { 699 700 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 701 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 703 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 704 } 705 /* It is possible TX completion already happened 706 * before we set TSQ_THROTTLED. 707 */ 708 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 709 return; 710 } 711 712 if (flags & MSG_MORE) 713 nonagle = TCP_NAGLE_CORK; 714 715 __tcp_push_pending_frames(sk, mss_now, nonagle); 716 } 717 718 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 719 unsigned int offset, size_t len) 720 { 721 struct tcp_splice_state *tss = rd_desc->arg.data; 722 int ret; 723 724 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 725 min(rd_desc->count, len), tss->flags); 726 if (ret > 0) 727 rd_desc->count -= ret; 728 return ret; 729 } 730 731 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 732 { 733 /* Store TCP splice context information in read_descriptor_t. */ 734 read_descriptor_t rd_desc = { 735 .arg.data = tss, 736 .count = tss->len, 737 }; 738 739 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 740 } 741 742 /** 743 * tcp_splice_read - splice data from TCP socket to a pipe 744 * @sock: socket to splice from 745 * @ppos: position (not valid) 746 * @pipe: pipe to splice to 747 * @len: number of bytes to splice 748 * @flags: splice modifier flags 749 * 750 * Description: 751 * Will read pages from given socket and fill them into a pipe. 752 * 753 **/ 754 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 755 struct pipe_inode_info *pipe, size_t len, 756 unsigned int flags) 757 { 758 struct sock *sk = sock->sk; 759 struct tcp_splice_state tss = { 760 .pipe = pipe, 761 .len = len, 762 .flags = flags, 763 }; 764 long timeo; 765 ssize_t spliced; 766 int ret; 767 768 sock_rps_record_flow(sk); 769 /* 770 * We can't seek on a socket input 771 */ 772 if (unlikely(*ppos)) 773 return -ESPIPE; 774 775 ret = spliced = 0; 776 777 lock_sock(sk); 778 779 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 780 while (tss.len) { 781 ret = __tcp_splice_read(sk, &tss); 782 if (ret < 0) 783 break; 784 else if (!ret) { 785 if (spliced) 786 break; 787 if (sock_flag(sk, SOCK_DONE)) 788 break; 789 if (sk->sk_err) { 790 ret = sock_error(sk); 791 break; 792 } 793 if (sk->sk_shutdown & RCV_SHUTDOWN) 794 break; 795 if (sk->sk_state == TCP_CLOSE) { 796 /* 797 * This occurs when user tries to read 798 * from never connected socket. 799 */ 800 if (!sock_flag(sk, SOCK_DONE)) 801 ret = -ENOTCONN; 802 break; 803 } 804 if (!timeo) { 805 ret = -EAGAIN; 806 break; 807 } 808 /* if __tcp_splice_read() got nothing while we have 809 * an skb in receive queue, we do not want to loop. 810 * This might happen with URG data. 811 */ 812 if (!skb_queue_empty(&sk->sk_receive_queue)) 813 break; 814 sk_wait_data(sk, &timeo, NULL); 815 if (signal_pending(current)) { 816 ret = sock_intr_errno(timeo); 817 break; 818 } 819 continue; 820 } 821 tss.len -= ret; 822 spliced += ret; 823 824 if (!timeo) 825 break; 826 release_sock(sk); 827 lock_sock(sk); 828 829 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 830 (sk->sk_shutdown & RCV_SHUTDOWN) || 831 signal_pending(current)) 832 break; 833 } 834 835 release_sock(sk); 836 837 if (spliced) 838 return spliced; 839 840 return ret; 841 } 842 EXPORT_SYMBOL(tcp_splice_read); 843 844 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 845 bool force_schedule) 846 { 847 struct sk_buff *skb; 848 849 /* The TCP header must be at least 32-bit aligned. */ 850 size = ALIGN(size, 4); 851 852 if (unlikely(tcp_under_memory_pressure(sk))) 853 sk_mem_reclaim_partial(sk); 854 855 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 856 if (likely(skb)) { 857 bool mem_scheduled; 858 859 if (force_schedule) { 860 mem_scheduled = true; 861 sk_forced_mem_schedule(sk, skb->truesize); 862 } else { 863 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 864 } 865 if (likely(mem_scheduled)) { 866 skb_reserve(skb, sk->sk_prot->max_header); 867 /* 868 * Make sure that we have exactly size bytes 869 * available to the caller, no more, no less. 870 */ 871 skb->reserved_tailroom = skb->end - skb->tail - size; 872 return skb; 873 } 874 __kfree_skb(skb); 875 } else { 876 sk->sk_prot->enter_memory_pressure(sk); 877 sk_stream_moderate_sndbuf(sk); 878 } 879 return NULL; 880 } 881 882 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 883 int large_allowed) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 u32 new_size_goal, size_goal; 887 888 if (!large_allowed || !sk_can_gso(sk)) 889 return mss_now; 890 891 /* Note : tcp_tso_autosize() will eventually split this later */ 892 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 893 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 894 895 /* We try hard to avoid divides here */ 896 size_goal = tp->gso_segs * mss_now; 897 if (unlikely(new_size_goal < size_goal || 898 new_size_goal >= size_goal + mss_now)) { 899 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 900 sk->sk_gso_max_segs); 901 size_goal = tp->gso_segs * mss_now; 902 } 903 904 return max(size_goal, mss_now); 905 } 906 907 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 908 { 909 int mss_now; 910 911 mss_now = tcp_current_mss(sk); 912 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 913 914 return mss_now; 915 } 916 917 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 918 size_t size, int flags) 919 { 920 struct tcp_sock *tp = tcp_sk(sk); 921 int mss_now, size_goal; 922 int err; 923 ssize_t copied; 924 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 925 926 /* Wait for a connection to finish. One exception is TCP Fast Open 927 * (passive side) where data is allowed to be sent before a connection 928 * is fully established. 929 */ 930 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 931 !tcp_passive_fastopen(sk)) { 932 err = sk_stream_wait_connect(sk, &timeo); 933 if (err != 0) 934 goto out_err; 935 } 936 937 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 938 939 mss_now = tcp_send_mss(sk, &size_goal, flags); 940 copied = 0; 941 942 err = -EPIPE; 943 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 944 goto out_err; 945 946 while (size > 0) { 947 struct sk_buff *skb = tcp_write_queue_tail(sk); 948 int copy, i; 949 bool can_coalesce; 950 951 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 || 952 !tcp_skb_can_collapse_to(skb)) { 953 new_segment: 954 if (!sk_stream_memory_free(sk)) 955 goto wait_for_sndbuf; 956 957 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 958 skb_queue_empty(&sk->sk_write_queue)); 959 if (!skb) 960 goto wait_for_memory; 961 962 skb_entail(sk, skb); 963 copy = size_goal; 964 } 965 966 if (copy > size) 967 copy = size; 968 969 i = skb_shinfo(skb)->nr_frags; 970 can_coalesce = skb_can_coalesce(skb, i, page, offset); 971 if (!can_coalesce && i >= sysctl_max_skb_frags) { 972 tcp_mark_push(tp, skb); 973 goto new_segment; 974 } 975 if (!sk_wmem_schedule(sk, copy)) 976 goto wait_for_memory; 977 978 if (can_coalesce) { 979 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 980 } else { 981 get_page(page); 982 skb_fill_page_desc(skb, i, page, offset, copy); 983 } 984 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 985 986 skb->len += copy; 987 skb->data_len += copy; 988 skb->truesize += copy; 989 sk->sk_wmem_queued += copy; 990 sk_mem_charge(sk, copy); 991 skb->ip_summed = CHECKSUM_PARTIAL; 992 tp->write_seq += copy; 993 TCP_SKB_CB(skb)->end_seq += copy; 994 tcp_skb_pcount_set(skb, 0); 995 996 if (!copied) 997 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 998 999 copied += copy; 1000 offset += copy; 1001 size -= copy; 1002 if (!size) 1003 goto out; 1004 1005 if (skb->len < size_goal || (flags & MSG_OOB)) 1006 continue; 1007 1008 if (forced_push(tp)) { 1009 tcp_mark_push(tp, skb); 1010 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1011 } else if (skb == tcp_send_head(sk)) 1012 tcp_push_one(sk, mss_now); 1013 continue; 1014 1015 wait_for_sndbuf: 1016 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1017 wait_for_memory: 1018 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1019 TCP_NAGLE_PUSH, size_goal); 1020 1021 err = sk_stream_wait_memory(sk, &timeo); 1022 if (err != 0) 1023 goto do_error; 1024 1025 mss_now = tcp_send_mss(sk, &size_goal, flags); 1026 } 1027 1028 out: 1029 if (copied) { 1030 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk)); 1031 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1032 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1033 } 1034 return copied; 1035 1036 do_error: 1037 if (copied) 1038 goto out; 1039 out_err: 1040 /* make sure we wake any epoll edge trigger waiter */ 1041 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1042 err == -EAGAIN)) { 1043 sk->sk_write_space(sk); 1044 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1045 } 1046 return sk_stream_error(sk, flags, err); 1047 } 1048 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1049 1050 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1051 size_t size, int flags) 1052 { 1053 if (!(sk->sk_route_caps & NETIF_F_SG) || 1054 !sk_check_csum_caps(sk)) 1055 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1056 1057 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1058 1059 return do_tcp_sendpages(sk, page, offset, size, flags); 1060 } 1061 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1062 1063 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1064 size_t size, int flags) 1065 { 1066 int ret; 1067 1068 lock_sock(sk); 1069 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1070 release_sock(sk); 1071 1072 return ret; 1073 } 1074 EXPORT_SYMBOL(tcp_sendpage); 1075 1076 /* Do not bother using a page frag for very small frames. 1077 * But use this heuristic only for the first skb in write queue. 1078 * 1079 * Having no payload in skb->head allows better SACK shifting 1080 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1081 * write queue has less skbs. 1082 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1083 * This also speeds up tso_fragment(), since it wont fallback 1084 * to tcp_fragment(). 1085 */ 1086 static int linear_payload_sz(bool first_skb) 1087 { 1088 if (first_skb) 1089 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1090 return 0; 1091 } 1092 1093 static int select_size(const struct sock *sk, bool sg, bool first_skb) 1094 { 1095 const struct tcp_sock *tp = tcp_sk(sk); 1096 int tmp = tp->mss_cache; 1097 1098 if (sg) { 1099 if (sk_can_gso(sk)) { 1100 tmp = linear_payload_sz(first_skb); 1101 } else { 1102 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1103 1104 if (tmp >= pgbreak && 1105 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1106 tmp = pgbreak; 1107 } 1108 } 1109 1110 return tmp; 1111 } 1112 1113 void tcp_free_fastopen_req(struct tcp_sock *tp) 1114 { 1115 if (tp->fastopen_req) { 1116 kfree(tp->fastopen_req); 1117 tp->fastopen_req = NULL; 1118 } 1119 } 1120 1121 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1122 int *copied, size_t size) 1123 { 1124 struct tcp_sock *tp = tcp_sk(sk); 1125 struct inet_sock *inet = inet_sk(sk); 1126 struct sockaddr *uaddr = msg->msg_name; 1127 int err, flags; 1128 1129 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1130 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1131 uaddr->sa_family == AF_UNSPEC)) 1132 return -EOPNOTSUPP; 1133 if (tp->fastopen_req) 1134 return -EALREADY; /* Another Fast Open is in progress */ 1135 1136 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1137 sk->sk_allocation); 1138 if (unlikely(!tp->fastopen_req)) 1139 return -ENOBUFS; 1140 tp->fastopen_req->data = msg; 1141 tp->fastopen_req->size = size; 1142 1143 if (inet->defer_connect) { 1144 err = tcp_connect(sk); 1145 /* Same failure procedure as in tcp_v4/6_connect */ 1146 if (err) { 1147 tcp_set_state(sk, TCP_CLOSE); 1148 inet->inet_dport = 0; 1149 sk->sk_route_caps = 0; 1150 } 1151 } 1152 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1153 err = __inet_stream_connect(sk->sk_socket, uaddr, 1154 msg->msg_namelen, flags, 1); 1155 /* fastopen_req could already be freed in __inet_stream_connect 1156 * if the connection times out or gets rst 1157 */ 1158 if (tp->fastopen_req) { 1159 *copied = tp->fastopen_req->copied; 1160 tcp_free_fastopen_req(tp); 1161 inet->defer_connect = 0; 1162 } 1163 return err; 1164 } 1165 1166 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1167 { 1168 struct tcp_sock *tp = tcp_sk(sk); 1169 struct ubuf_info *uarg = NULL; 1170 struct sk_buff *skb; 1171 struct sockcm_cookie sockc; 1172 int flags, err, copied = 0; 1173 int mss_now = 0, size_goal, copied_syn = 0; 1174 bool process_backlog = false; 1175 bool sg; 1176 long timeo; 1177 1178 flags = msg->msg_flags; 1179 1180 if (flags & MSG_ZEROCOPY && size) { 1181 if (sk->sk_state != TCP_ESTABLISHED) { 1182 err = -EINVAL; 1183 goto out_err; 1184 } 1185 1186 skb = tcp_send_head(sk) ? tcp_write_queue_tail(sk) : NULL; 1187 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1188 if (!uarg) { 1189 err = -ENOBUFS; 1190 goto out_err; 1191 } 1192 1193 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG)) 1194 uarg->zerocopy = 0; 1195 } 1196 1197 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) { 1198 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1199 if (err == -EINPROGRESS && copied_syn > 0) 1200 goto out; 1201 else if (err) 1202 goto out_err; 1203 } 1204 1205 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1206 1207 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1208 1209 /* Wait for a connection to finish. One exception is TCP Fast Open 1210 * (passive side) where data is allowed to be sent before a connection 1211 * is fully established. 1212 */ 1213 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1214 !tcp_passive_fastopen(sk)) { 1215 err = sk_stream_wait_connect(sk, &timeo); 1216 if (err != 0) 1217 goto do_error; 1218 } 1219 1220 if (unlikely(tp->repair)) { 1221 if (tp->repair_queue == TCP_RECV_QUEUE) { 1222 copied = tcp_send_rcvq(sk, msg, size); 1223 goto out_nopush; 1224 } 1225 1226 err = -EINVAL; 1227 if (tp->repair_queue == TCP_NO_QUEUE) 1228 goto out_err; 1229 1230 /* 'common' sending to sendq */ 1231 } 1232 1233 sockc.tsflags = sk->sk_tsflags; 1234 if (msg->msg_controllen) { 1235 err = sock_cmsg_send(sk, msg, &sockc); 1236 if (unlikely(err)) { 1237 err = -EINVAL; 1238 goto out_err; 1239 } 1240 } 1241 1242 /* This should be in poll */ 1243 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1244 1245 /* Ok commence sending. */ 1246 copied = 0; 1247 1248 restart: 1249 mss_now = tcp_send_mss(sk, &size_goal, flags); 1250 1251 err = -EPIPE; 1252 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1253 goto do_error; 1254 1255 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1256 1257 while (msg_data_left(msg)) { 1258 int copy = 0; 1259 int max = size_goal; 1260 1261 skb = tcp_write_queue_tail(sk); 1262 if (tcp_send_head(sk)) { 1263 if (skb->ip_summed == CHECKSUM_NONE) 1264 max = mss_now; 1265 copy = max - skb->len; 1266 } 1267 1268 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1269 bool first_skb; 1270 1271 new_segment: 1272 /* Allocate new segment. If the interface is SG, 1273 * allocate skb fitting to single page. 1274 */ 1275 if (!sk_stream_memory_free(sk)) 1276 goto wait_for_sndbuf; 1277 1278 if (process_backlog && sk_flush_backlog(sk)) { 1279 process_backlog = false; 1280 goto restart; 1281 } 1282 first_skb = skb_queue_empty(&sk->sk_write_queue); 1283 skb = sk_stream_alloc_skb(sk, 1284 select_size(sk, sg, first_skb), 1285 sk->sk_allocation, 1286 first_skb); 1287 if (!skb) 1288 goto wait_for_memory; 1289 1290 process_backlog = true; 1291 /* 1292 * Check whether we can use HW checksum. 1293 */ 1294 if (sk_check_csum_caps(sk)) 1295 skb->ip_summed = CHECKSUM_PARTIAL; 1296 1297 skb_entail(sk, skb); 1298 copy = size_goal; 1299 max = size_goal; 1300 1301 /* All packets are restored as if they have 1302 * already been sent. skb_mstamp isn't set to 1303 * avoid wrong rtt estimation. 1304 */ 1305 if (tp->repair) 1306 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1307 } 1308 1309 /* Try to append data to the end of skb. */ 1310 if (copy > msg_data_left(msg)) 1311 copy = msg_data_left(msg); 1312 1313 /* Where to copy to? */ 1314 if (skb_availroom(skb) > 0) { 1315 /* We have some space in skb head. Superb! */ 1316 copy = min_t(int, copy, skb_availroom(skb)); 1317 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1318 if (err) 1319 goto do_fault; 1320 } else if (!uarg || !uarg->zerocopy) { 1321 bool merge = true; 1322 int i = skb_shinfo(skb)->nr_frags; 1323 struct page_frag *pfrag = sk_page_frag(sk); 1324 1325 if (!sk_page_frag_refill(sk, pfrag)) 1326 goto wait_for_memory; 1327 1328 if (!skb_can_coalesce(skb, i, pfrag->page, 1329 pfrag->offset)) { 1330 if (i >= sysctl_max_skb_frags || !sg) { 1331 tcp_mark_push(tp, skb); 1332 goto new_segment; 1333 } 1334 merge = false; 1335 } 1336 1337 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1338 1339 if (!sk_wmem_schedule(sk, copy)) 1340 goto wait_for_memory; 1341 1342 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1343 pfrag->page, 1344 pfrag->offset, 1345 copy); 1346 if (err) 1347 goto do_error; 1348 1349 /* Update the skb. */ 1350 if (merge) { 1351 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1352 } else { 1353 skb_fill_page_desc(skb, i, pfrag->page, 1354 pfrag->offset, copy); 1355 page_ref_inc(pfrag->page); 1356 } 1357 pfrag->offset += copy; 1358 } else { 1359 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1360 if (err == -EMSGSIZE || err == -EEXIST) 1361 goto new_segment; 1362 if (err < 0) 1363 goto do_error; 1364 copy = err; 1365 } 1366 1367 if (!copied) 1368 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1369 1370 tp->write_seq += copy; 1371 TCP_SKB_CB(skb)->end_seq += copy; 1372 tcp_skb_pcount_set(skb, 0); 1373 1374 copied += copy; 1375 if (!msg_data_left(msg)) { 1376 if (unlikely(flags & MSG_EOR)) 1377 TCP_SKB_CB(skb)->eor = 1; 1378 goto out; 1379 } 1380 1381 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1382 continue; 1383 1384 if (forced_push(tp)) { 1385 tcp_mark_push(tp, skb); 1386 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1387 } else if (skb == tcp_send_head(sk)) 1388 tcp_push_one(sk, mss_now); 1389 continue; 1390 1391 wait_for_sndbuf: 1392 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1393 wait_for_memory: 1394 if (copied) 1395 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1396 TCP_NAGLE_PUSH, size_goal); 1397 1398 err = sk_stream_wait_memory(sk, &timeo); 1399 if (err != 0) 1400 goto do_error; 1401 1402 mss_now = tcp_send_mss(sk, &size_goal, flags); 1403 } 1404 1405 out: 1406 if (copied) { 1407 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk)); 1408 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1409 } 1410 out_nopush: 1411 sock_zerocopy_put(uarg); 1412 return copied + copied_syn; 1413 1414 do_fault: 1415 if (!skb->len) { 1416 tcp_unlink_write_queue(skb, sk); 1417 /* It is the one place in all of TCP, except connection 1418 * reset, where we can be unlinking the send_head. 1419 */ 1420 tcp_check_send_head(sk, skb); 1421 sk_wmem_free_skb(sk, skb); 1422 } 1423 1424 do_error: 1425 if (copied + copied_syn) 1426 goto out; 1427 out_err: 1428 sock_zerocopy_put_abort(uarg); 1429 err = sk_stream_error(sk, flags, err); 1430 /* make sure we wake any epoll edge trigger waiter */ 1431 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1432 err == -EAGAIN)) { 1433 sk->sk_write_space(sk); 1434 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1435 } 1436 return err; 1437 } 1438 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1439 1440 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1441 { 1442 int ret; 1443 1444 lock_sock(sk); 1445 ret = tcp_sendmsg_locked(sk, msg, size); 1446 release_sock(sk); 1447 1448 return ret; 1449 } 1450 EXPORT_SYMBOL(tcp_sendmsg); 1451 1452 /* 1453 * Handle reading urgent data. BSD has very simple semantics for 1454 * this, no blocking and very strange errors 8) 1455 */ 1456 1457 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1458 { 1459 struct tcp_sock *tp = tcp_sk(sk); 1460 1461 /* No URG data to read. */ 1462 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1463 tp->urg_data == TCP_URG_READ) 1464 return -EINVAL; /* Yes this is right ! */ 1465 1466 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1467 return -ENOTCONN; 1468 1469 if (tp->urg_data & TCP_URG_VALID) { 1470 int err = 0; 1471 char c = tp->urg_data; 1472 1473 if (!(flags & MSG_PEEK)) 1474 tp->urg_data = TCP_URG_READ; 1475 1476 /* Read urgent data. */ 1477 msg->msg_flags |= MSG_OOB; 1478 1479 if (len > 0) { 1480 if (!(flags & MSG_TRUNC)) 1481 err = memcpy_to_msg(msg, &c, 1); 1482 len = 1; 1483 } else 1484 msg->msg_flags |= MSG_TRUNC; 1485 1486 return err ? -EFAULT : len; 1487 } 1488 1489 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1490 return 0; 1491 1492 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1493 * the available implementations agree in this case: 1494 * this call should never block, independent of the 1495 * blocking state of the socket. 1496 * Mike <pall@rz.uni-karlsruhe.de> 1497 */ 1498 return -EAGAIN; 1499 } 1500 1501 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1502 { 1503 struct sk_buff *skb; 1504 int copied = 0, err = 0; 1505 1506 /* XXX -- need to support SO_PEEK_OFF */ 1507 1508 skb_queue_walk(&sk->sk_write_queue, skb) { 1509 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1510 if (err) 1511 break; 1512 1513 copied += skb->len; 1514 } 1515 1516 return err ?: copied; 1517 } 1518 1519 /* Clean up the receive buffer for full frames taken by the user, 1520 * then send an ACK if necessary. COPIED is the number of bytes 1521 * tcp_recvmsg has given to the user so far, it speeds up the 1522 * calculation of whether or not we must ACK for the sake of 1523 * a window update. 1524 */ 1525 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1526 { 1527 struct tcp_sock *tp = tcp_sk(sk); 1528 bool time_to_ack = false; 1529 1530 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1531 1532 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1533 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1534 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1535 1536 if (inet_csk_ack_scheduled(sk)) { 1537 const struct inet_connection_sock *icsk = inet_csk(sk); 1538 /* Delayed ACKs frequently hit locked sockets during bulk 1539 * receive. */ 1540 if (icsk->icsk_ack.blocked || 1541 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1542 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1543 /* 1544 * If this read emptied read buffer, we send ACK, if 1545 * connection is not bidirectional, user drained 1546 * receive buffer and there was a small segment 1547 * in queue. 1548 */ 1549 (copied > 0 && 1550 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1552 !icsk->icsk_ack.pingpong)) && 1553 !atomic_read(&sk->sk_rmem_alloc))) 1554 time_to_ack = true; 1555 } 1556 1557 /* We send an ACK if we can now advertise a non-zero window 1558 * which has been raised "significantly". 1559 * 1560 * Even if window raised up to infinity, do not send window open ACK 1561 * in states, where we will not receive more. It is useless. 1562 */ 1563 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1564 __u32 rcv_window_now = tcp_receive_window(tp); 1565 1566 /* Optimize, __tcp_select_window() is not cheap. */ 1567 if (2*rcv_window_now <= tp->window_clamp) { 1568 __u32 new_window = __tcp_select_window(sk); 1569 1570 /* Send ACK now, if this read freed lots of space 1571 * in our buffer. Certainly, new_window is new window. 1572 * We can advertise it now, if it is not less than current one. 1573 * "Lots" means "at least twice" here. 1574 */ 1575 if (new_window && new_window >= 2 * rcv_window_now) 1576 time_to_ack = true; 1577 } 1578 } 1579 if (time_to_ack) 1580 tcp_send_ack(sk); 1581 } 1582 1583 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1584 { 1585 struct sk_buff *skb; 1586 u32 offset; 1587 1588 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1589 offset = seq - TCP_SKB_CB(skb)->seq; 1590 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1591 pr_err_once("%s: found a SYN, please report !\n", __func__); 1592 offset--; 1593 } 1594 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1595 *off = offset; 1596 return skb; 1597 } 1598 /* This looks weird, but this can happen if TCP collapsing 1599 * splitted a fat GRO packet, while we released socket lock 1600 * in skb_splice_bits() 1601 */ 1602 sk_eat_skb(sk, skb); 1603 } 1604 return NULL; 1605 } 1606 1607 /* 1608 * This routine provides an alternative to tcp_recvmsg() for routines 1609 * that would like to handle copying from skbuffs directly in 'sendfile' 1610 * fashion. 1611 * Note: 1612 * - It is assumed that the socket was locked by the caller. 1613 * - The routine does not block. 1614 * - At present, there is no support for reading OOB data 1615 * or for 'peeking' the socket using this routine 1616 * (although both would be easy to implement). 1617 */ 1618 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1619 sk_read_actor_t recv_actor) 1620 { 1621 struct sk_buff *skb; 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 u32 seq = tp->copied_seq; 1624 u32 offset; 1625 int copied = 0; 1626 1627 if (sk->sk_state == TCP_LISTEN) 1628 return -ENOTCONN; 1629 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1630 if (offset < skb->len) { 1631 int used; 1632 size_t len; 1633 1634 len = skb->len - offset; 1635 /* Stop reading if we hit a patch of urgent data */ 1636 if (tp->urg_data) { 1637 u32 urg_offset = tp->urg_seq - seq; 1638 if (urg_offset < len) 1639 len = urg_offset; 1640 if (!len) 1641 break; 1642 } 1643 used = recv_actor(desc, skb, offset, len); 1644 if (used <= 0) { 1645 if (!copied) 1646 copied = used; 1647 break; 1648 } else if (used <= len) { 1649 seq += used; 1650 copied += used; 1651 offset += used; 1652 } 1653 /* If recv_actor drops the lock (e.g. TCP splice 1654 * receive) the skb pointer might be invalid when 1655 * getting here: tcp_collapse might have deleted it 1656 * while aggregating skbs from the socket queue. 1657 */ 1658 skb = tcp_recv_skb(sk, seq - 1, &offset); 1659 if (!skb) 1660 break; 1661 /* TCP coalescing might have appended data to the skb. 1662 * Try to splice more frags 1663 */ 1664 if (offset + 1 != skb->len) 1665 continue; 1666 } 1667 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1668 sk_eat_skb(sk, skb); 1669 ++seq; 1670 break; 1671 } 1672 sk_eat_skb(sk, skb); 1673 if (!desc->count) 1674 break; 1675 tp->copied_seq = seq; 1676 } 1677 tp->copied_seq = seq; 1678 1679 tcp_rcv_space_adjust(sk); 1680 1681 /* Clean up data we have read: This will do ACK frames. */ 1682 if (copied > 0) { 1683 tcp_recv_skb(sk, seq, &offset); 1684 tcp_cleanup_rbuf(sk, copied); 1685 } 1686 return copied; 1687 } 1688 EXPORT_SYMBOL(tcp_read_sock); 1689 1690 int tcp_peek_len(struct socket *sock) 1691 { 1692 return tcp_inq(sock->sk); 1693 } 1694 EXPORT_SYMBOL(tcp_peek_len); 1695 1696 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1697 struct scm_timestamping *tss) 1698 { 1699 if (skb->tstamp) 1700 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1701 else 1702 tss->ts[0] = (struct timespec) {0}; 1703 1704 if (skb_hwtstamps(skb)->hwtstamp) 1705 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1706 else 1707 tss->ts[2] = (struct timespec) {0}; 1708 } 1709 1710 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1711 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1712 struct scm_timestamping *tss) 1713 { 1714 struct timeval tv; 1715 bool has_timestamping = false; 1716 1717 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1718 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1719 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1721 sizeof(tss->ts[0]), &tss->ts[0]); 1722 } else { 1723 tv.tv_sec = tss->ts[0].tv_sec; 1724 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1725 1726 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1727 sizeof(tv), &tv); 1728 } 1729 } 1730 1731 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1732 has_timestamping = true; 1733 else 1734 tss->ts[0] = (struct timespec) {0}; 1735 } 1736 1737 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1738 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1739 has_timestamping = true; 1740 else 1741 tss->ts[2] = (struct timespec) {0}; 1742 } 1743 1744 if (has_timestamping) { 1745 tss->ts[1] = (struct timespec) {0}; 1746 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1747 sizeof(*tss), tss); 1748 } 1749 } 1750 1751 /* 1752 * This routine copies from a sock struct into the user buffer. 1753 * 1754 * Technical note: in 2.3 we work on _locked_ socket, so that 1755 * tricks with *seq access order and skb->users are not required. 1756 * Probably, code can be easily improved even more. 1757 */ 1758 1759 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1760 int flags, int *addr_len) 1761 { 1762 struct tcp_sock *tp = tcp_sk(sk); 1763 int copied = 0; 1764 u32 peek_seq; 1765 u32 *seq; 1766 unsigned long used; 1767 int err; 1768 int target; /* Read at least this many bytes */ 1769 long timeo; 1770 struct sk_buff *skb, *last; 1771 u32 urg_hole = 0; 1772 struct scm_timestamping tss; 1773 bool has_tss = false; 1774 1775 if (unlikely(flags & MSG_ERRQUEUE)) 1776 return inet_recv_error(sk, msg, len, addr_len); 1777 1778 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1779 (sk->sk_state == TCP_ESTABLISHED)) 1780 sk_busy_loop(sk, nonblock); 1781 1782 lock_sock(sk); 1783 1784 err = -ENOTCONN; 1785 if (sk->sk_state == TCP_LISTEN) 1786 goto out; 1787 1788 timeo = sock_rcvtimeo(sk, nonblock); 1789 1790 /* Urgent data needs to be handled specially. */ 1791 if (flags & MSG_OOB) 1792 goto recv_urg; 1793 1794 if (unlikely(tp->repair)) { 1795 err = -EPERM; 1796 if (!(flags & MSG_PEEK)) 1797 goto out; 1798 1799 if (tp->repair_queue == TCP_SEND_QUEUE) 1800 goto recv_sndq; 1801 1802 err = -EINVAL; 1803 if (tp->repair_queue == TCP_NO_QUEUE) 1804 goto out; 1805 1806 /* 'common' recv queue MSG_PEEK-ing */ 1807 } 1808 1809 seq = &tp->copied_seq; 1810 if (flags & MSG_PEEK) { 1811 peek_seq = tp->copied_seq; 1812 seq = &peek_seq; 1813 } 1814 1815 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1816 1817 do { 1818 u32 offset; 1819 1820 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1821 if (tp->urg_data && tp->urg_seq == *seq) { 1822 if (copied) 1823 break; 1824 if (signal_pending(current)) { 1825 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1826 break; 1827 } 1828 } 1829 1830 /* Next get a buffer. */ 1831 1832 last = skb_peek_tail(&sk->sk_receive_queue); 1833 skb_queue_walk(&sk->sk_receive_queue, skb) { 1834 last = skb; 1835 /* Now that we have two receive queues this 1836 * shouldn't happen. 1837 */ 1838 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1839 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1840 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1841 flags)) 1842 break; 1843 1844 offset = *seq - TCP_SKB_CB(skb)->seq; 1845 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1846 pr_err_once("%s: found a SYN, please report !\n", __func__); 1847 offset--; 1848 } 1849 if (offset < skb->len) 1850 goto found_ok_skb; 1851 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1852 goto found_fin_ok; 1853 WARN(!(flags & MSG_PEEK), 1854 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1855 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1856 } 1857 1858 /* Well, if we have backlog, try to process it now yet. */ 1859 1860 if (copied >= target && !sk->sk_backlog.tail) 1861 break; 1862 1863 if (copied) { 1864 if (sk->sk_err || 1865 sk->sk_state == TCP_CLOSE || 1866 (sk->sk_shutdown & RCV_SHUTDOWN) || 1867 !timeo || 1868 signal_pending(current)) 1869 break; 1870 } else { 1871 if (sock_flag(sk, SOCK_DONE)) 1872 break; 1873 1874 if (sk->sk_err) { 1875 copied = sock_error(sk); 1876 break; 1877 } 1878 1879 if (sk->sk_shutdown & RCV_SHUTDOWN) 1880 break; 1881 1882 if (sk->sk_state == TCP_CLOSE) { 1883 if (!sock_flag(sk, SOCK_DONE)) { 1884 /* This occurs when user tries to read 1885 * from never connected socket. 1886 */ 1887 copied = -ENOTCONN; 1888 break; 1889 } 1890 break; 1891 } 1892 1893 if (!timeo) { 1894 copied = -EAGAIN; 1895 break; 1896 } 1897 1898 if (signal_pending(current)) { 1899 copied = sock_intr_errno(timeo); 1900 break; 1901 } 1902 } 1903 1904 tcp_cleanup_rbuf(sk, copied); 1905 1906 if (copied >= target) { 1907 /* Do not sleep, just process backlog. */ 1908 release_sock(sk); 1909 lock_sock(sk); 1910 } else { 1911 sk_wait_data(sk, &timeo, last); 1912 } 1913 1914 if ((flags & MSG_PEEK) && 1915 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1916 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1917 current->comm, 1918 task_pid_nr(current)); 1919 peek_seq = tp->copied_seq; 1920 } 1921 continue; 1922 1923 found_ok_skb: 1924 /* Ok so how much can we use? */ 1925 used = skb->len - offset; 1926 if (len < used) 1927 used = len; 1928 1929 /* Do we have urgent data here? */ 1930 if (tp->urg_data) { 1931 u32 urg_offset = tp->urg_seq - *seq; 1932 if (urg_offset < used) { 1933 if (!urg_offset) { 1934 if (!sock_flag(sk, SOCK_URGINLINE)) { 1935 ++*seq; 1936 urg_hole++; 1937 offset++; 1938 used--; 1939 if (!used) 1940 goto skip_copy; 1941 } 1942 } else 1943 used = urg_offset; 1944 } 1945 } 1946 1947 if (!(flags & MSG_TRUNC)) { 1948 err = skb_copy_datagram_msg(skb, offset, msg, used); 1949 if (err) { 1950 /* Exception. Bailout! */ 1951 if (!copied) 1952 copied = -EFAULT; 1953 break; 1954 } 1955 } 1956 1957 *seq += used; 1958 copied += used; 1959 len -= used; 1960 1961 tcp_rcv_space_adjust(sk); 1962 1963 skip_copy: 1964 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1965 tp->urg_data = 0; 1966 tcp_fast_path_check(sk); 1967 } 1968 if (used + offset < skb->len) 1969 continue; 1970 1971 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1972 tcp_update_recv_tstamps(skb, &tss); 1973 has_tss = true; 1974 } 1975 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1976 goto found_fin_ok; 1977 if (!(flags & MSG_PEEK)) 1978 sk_eat_skb(sk, skb); 1979 continue; 1980 1981 found_fin_ok: 1982 /* Process the FIN. */ 1983 ++*seq; 1984 if (!(flags & MSG_PEEK)) 1985 sk_eat_skb(sk, skb); 1986 break; 1987 } while (len > 0); 1988 1989 /* According to UNIX98, msg_name/msg_namelen are ignored 1990 * on connected socket. I was just happy when found this 8) --ANK 1991 */ 1992 1993 if (has_tss) 1994 tcp_recv_timestamp(msg, sk, &tss); 1995 1996 /* Clean up data we have read: This will do ACK frames. */ 1997 tcp_cleanup_rbuf(sk, copied); 1998 1999 release_sock(sk); 2000 return copied; 2001 2002 out: 2003 release_sock(sk); 2004 return err; 2005 2006 recv_urg: 2007 err = tcp_recv_urg(sk, msg, len, flags); 2008 goto out; 2009 2010 recv_sndq: 2011 err = tcp_peek_sndq(sk, msg, len); 2012 goto out; 2013 } 2014 EXPORT_SYMBOL(tcp_recvmsg); 2015 2016 void tcp_set_state(struct sock *sk, int state) 2017 { 2018 int oldstate = sk->sk_state; 2019 2020 switch (state) { 2021 case TCP_ESTABLISHED: 2022 if (oldstate != TCP_ESTABLISHED) 2023 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2024 break; 2025 2026 case TCP_CLOSE: 2027 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2028 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2029 2030 sk->sk_prot->unhash(sk); 2031 if (inet_csk(sk)->icsk_bind_hash && 2032 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2033 inet_put_port(sk); 2034 /* fall through */ 2035 default: 2036 if (oldstate == TCP_ESTABLISHED) 2037 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2038 } 2039 2040 /* Change state AFTER socket is unhashed to avoid closed 2041 * socket sitting in hash tables. 2042 */ 2043 sk_state_store(sk, state); 2044 2045 #ifdef STATE_TRACE 2046 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2047 #endif 2048 } 2049 EXPORT_SYMBOL_GPL(tcp_set_state); 2050 2051 /* 2052 * State processing on a close. This implements the state shift for 2053 * sending our FIN frame. Note that we only send a FIN for some 2054 * states. A shutdown() may have already sent the FIN, or we may be 2055 * closed. 2056 */ 2057 2058 static const unsigned char new_state[16] = { 2059 /* current state: new state: action: */ 2060 [0 /* (Invalid) */] = TCP_CLOSE, 2061 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2062 [TCP_SYN_SENT] = TCP_CLOSE, 2063 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2064 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2065 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2066 [TCP_TIME_WAIT] = TCP_CLOSE, 2067 [TCP_CLOSE] = TCP_CLOSE, 2068 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2069 [TCP_LAST_ACK] = TCP_LAST_ACK, 2070 [TCP_LISTEN] = TCP_CLOSE, 2071 [TCP_CLOSING] = TCP_CLOSING, 2072 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2073 }; 2074 2075 static int tcp_close_state(struct sock *sk) 2076 { 2077 int next = (int)new_state[sk->sk_state]; 2078 int ns = next & TCP_STATE_MASK; 2079 2080 tcp_set_state(sk, ns); 2081 2082 return next & TCP_ACTION_FIN; 2083 } 2084 2085 /* 2086 * Shutdown the sending side of a connection. Much like close except 2087 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2088 */ 2089 2090 void tcp_shutdown(struct sock *sk, int how) 2091 { 2092 /* We need to grab some memory, and put together a FIN, 2093 * and then put it into the queue to be sent. 2094 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2095 */ 2096 if (!(how & SEND_SHUTDOWN)) 2097 return; 2098 2099 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2100 if ((1 << sk->sk_state) & 2101 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2102 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2103 /* Clear out any half completed packets. FIN if needed. */ 2104 if (tcp_close_state(sk)) 2105 tcp_send_fin(sk); 2106 } 2107 } 2108 EXPORT_SYMBOL(tcp_shutdown); 2109 2110 bool tcp_check_oom(struct sock *sk, int shift) 2111 { 2112 bool too_many_orphans, out_of_socket_memory; 2113 2114 too_many_orphans = tcp_too_many_orphans(sk, shift); 2115 out_of_socket_memory = tcp_out_of_memory(sk); 2116 2117 if (too_many_orphans) 2118 net_info_ratelimited("too many orphaned sockets\n"); 2119 if (out_of_socket_memory) 2120 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2121 return too_many_orphans || out_of_socket_memory; 2122 } 2123 2124 void tcp_close(struct sock *sk, long timeout) 2125 { 2126 struct sk_buff *skb; 2127 int data_was_unread = 0; 2128 int state; 2129 2130 lock_sock(sk); 2131 sk->sk_shutdown = SHUTDOWN_MASK; 2132 2133 if (sk->sk_state == TCP_LISTEN) { 2134 tcp_set_state(sk, TCP_CLOSE); 2135 2136 /* Special case. */ 2137 inet_csk_listen_stop(sk); 2138 2139 goto adjudge_to_death; 2140 } 2141 2142 /* We need to flush the recv. buffs. We do this only on the 2143 * descriptor close, not protocol-sourced closes, because the 2144 * reader process may not have drained the data yet! 2145 */ 2146 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2147 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2148 2149 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2150 len--; 2151 data_was_unread += len; 2152 __kfree_skb(skb); 2153 } 2154 2155 sk_mem_reclaim(sk); 2156 2157 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2158 if (sk->sk_state == TCP_CLOSE) 2159 goto adjudge_to_death; 2160 2161 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2162 * data was lost. To witness the awful effects of the old behavior of 2163 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2164 * GET in an FTP client, suspend the process, wait for the client to 2165 * advertise a zero window, then kill -9 the FTP client, wheee... 2166 * Note: timeout is always zero in such a case. 2167 */ 2168 if (unlikely(tcp_sk(sk)->repair)) { 2169 sk->sk_prot->disconnect(sk, 0); 2170 } else if (data_was_unread) { 2171 /* Unread data was tossed, zap the connection. */ 2172 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2173 tcp_set_state(sk, TCP_CLOSE); 2174 tcp_send_active_reset(sk, sk->sk_allocation); 2175 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2176 /* Check zero linger _after_ checking for unread data. */ 2177 sk->sk_prot->disconnect(sk, 0); 2178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2179 } else if (tcp_close_state(sk)) { 2180 /* We FIN if the application ate all the data before 2181 * zapping the connection. 2182 */ 2183 2184 /* RED-PEN. Formally speaking, we have broken TCP state 2185 * machine. State transitions: 2186 * 2187 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2188 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2189 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2190 * 2191 * are legal only when FIN has been sent (i.e. in window), 2192 * rather than queued out of window. Purists blame. 2193 * 2194 * F.e. "RFC state" is ESTABLISHED, 2195 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2196 * 2197 * The visible declinations are that sometimes 2198 * we enter time-wait state, when it is not required really 2199 * (harmless), do not send active resets, when they are 2200 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2201 * they look as CLOSING or LAST_ACK for Linux) 2202 * Probably, I missed some more holelets. 2203 * --ANK 2204 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2205 * in a single packet! (May consider it later but will 2206 * probably need API support or TCP_CORK SYN-ACK until 2207 * data is written and socket is closed.) 2208 */ 2209 tcp_send_fin(sk); 2210 } 2211 2212 sk_stream_wait_close(sk, timeout); 2213 2214 adjudge_to_death: 2215 state = sk->sk_state; 2216 sock_hold(sk); 2217 sock_orphan(sk); 2218 2219 /* It is the last release_sock in its life. It will remove backlog. */ 2220 release_sock(sk); 2221 2222 2223 /* Now socket is owned by kernel and we acquire BH lock 2224 * to finish close. No need to check for user refs. 2225 */ 2226 local_bh_disable(); 2227 bh_lock_sock(sk); 2228 WARN_ON(sock_owned_by_user(sk)); 2229 2230 percpu_counter_inc(sk->sk_prot->orphan_count); 2231 2232 /* Have we already been destroyed by a softirq or backlog? */ 2233 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2234 goto out; 2235 2236 /* This is a (useful) BSD violating of the RFC. There is a 2237 * problem with TCP as specified in that the other end could 2238 * keep a socket open forever with no application left this end. 2239 * We use a 1 minute timeout (about the same as BSD) then kill 2240 * our end. If they send after that then tough - BUT: long enough 2241 * that we won't make the old 4*rto = almost no time - whoops 2242 * reset mistake. 2243 * 2244 * Nope, it was not mistake. It is really desired behaviour 2245 * f.e. on http servers, when such sockets are useless, but 2246 * consume significant resources. Let's do it with special 2247 * linger2 option. --ANK 2248 */ 2249 2250 if (sk->sk_state == TCP_FIN_WAIT2) { 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 if (tp->linger2 < 0) { 2253 tcp_set_state(sk, TCP_CLOSE); 2254 tcp_send_active_reset(sk, GFP_ATOMIC); 2255 __NET_INC_STATS(sock_net(sk), 2256 LINUX_MIB_TCPABORTONLINGER); 2257 } else { 2258 const int tmo = tcp_fin_time(sk); 2259 2260 if (tmo > TCP_TIMEWAIT_LEN) { 2261 inet_csk_reset_keepalive_timer(sk, 2262 tmo - TCP_TIMEWAIT_LEN); 2263 } else { 2264 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2265 goto out; 2266 } 2267 } 2268 } 2269 if (sk->sk_state != TCP_CLOSE) { 2270 sk_mem_reclaim(sk); 2271 if (tcp_check_oom(sk, 0)) { 2272 tcp_set_state(sk, TCP_CLOSE); 2273 tcp_send_active_reset(sk, GFP_ATOMIC); 2274 __NET_INC_STATS(sock_net(sk), 2275 LINUX_MIB_TCPABORTONMEMORY); 2276 } 2277 } 2278 2279 if (sk->sk_state == TCP_CLOSE) { 2280 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2281 /* We could get here with a non-NULL req if the socket is 2282 * aborted (e.g., closed with unread data) before 3WHS 2283 * finishes. 2284 */ 2285 if (req) 2286 reqsk_fastopen_remove(sk, req, false); 2287 inet_csk_destroy_sock(sk); 2288 } 2289 /* Otherwise, socket is reprieved until protocol close. */ 2290 2291 out: 2292 bh_unlock_sock(sk); 2293 local_bh_enable(); 2294 sock_put(sk); 2295 } 2296 EXPORT_SYMBOL(tcp_close); 2297 2298 /* These states need RST on ABORT according to RFC793 */ 2299 2300 static inline bool tcp_need_reset(int state) 2301 { 2302 return (1 << state) & 2303 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2304 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2305 } 2306 2307 int tcp_disconnect(struct sock *sk, int flags) 2308 { 2309 struct inet_sock *inet = inet_sk(sk); 2310 struct inet_connection_sock *icsk = inet_csk(sk); 2311 struct tcp_sock *tp = tcp_sk(sk); 2312 int err = 0; 2313 int old_state = sk->sk_state; 2314 2315 if (old_state != TCP_CLOSE) 2316 tcp_set_state(sk, TCP_CLOSE); 2317 2318 /* ABORT function of RFC793 */ 2319 if (old_state == TCP_LISTEN) { 2320 inet_csk_listen_stop(sk); 2321 } else if (unlikely(tp->repair)) { 2322 sk->sk_err = ECONNABORTED; 2323 } else if (tcp_need_reset(old_state) || 2324 (tp->snd_nxt != tp->write_seq && 2325 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2326 /* The last check adjusts for discrepancy of Linux wrt. RFC 2327 * states 2328 */ 2329 tcp_send_active_reset(sk, gfp_any()); 2330 sk->sk_err = ECONNRESET; 2331 } else if (old_state == TCP_SYN_SENT) 2332 sk->sk_err = ECONNRESET; 2333 2334 tcp_clear_xmit_timers(sk); 2335 __skb_queue_purge(&sk->sk_receive_queue); 2336 tcp_write_queue_purge(sk); 2337 tcp_fastopen_active_disable_ofo_check(sk); 2338 skb_rbtree_purge(&tp->out_of_order_queue); 2339 2340 inet->inet_dport = 0; 2341 2342 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2343 inet_reset_saddr(sk); 2344 2345 sk->sk_shutdown = 0; 2346 sock_reset_flag(sk, SOCK_DONE); 2347 tp->srtt_us = 0; 2348 tp->write_seq += tp->max_window + 2; 2349 if (tp->write_seq == 0) 2350 tp->write_seq = 1; 2351 icsk->icsk_backoff = 0; 2352 tp->snd_cwnd = 2; 2353 icsk->icsk_probes_out = 0; 2354 tp->packets_out = 0; 2355 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2356 tp->snd_cwnd_cnt = 0; 2357 tp->window_clamp = 0; 2358 tcp_set_ca_state(sk, TCP_CA_Open); 2359 tcp_clear_retrans(tp); 2360 inet_csk_delack_init(sk); 2361 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2362 * issue in __tcp_select_window() 2363 */ 2364 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2365 tcp_init_send_head(sk); 2366 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2367 __sk_dst_reset(sk); 2368 dst_release(sk->sk_rx_dst); 2369 sk->sk_rx_dst = NULL; 2370 tcp_saved_syn_free(tp); 2371 2372 /* Clean up fastopen related fields */ 2373 tcp_free_fastopen_req(tp); 2374 inet->defer_connect = 0; 2375 2376 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2377 2378 sk->sk_error_report(sk); 2379 return err; 2380 } 2381 EXPORT_SYMBOL(tcp_disconnect); 2382 2383 static inline bool tcp_can_repair_sock(const struct sock *sk) 2384 { 2385 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2386 (sk->sk_state != TCP_LISTEN); 2387 } 2388 2389 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2390 { 2391 struct tcp_repair_window opt; 2392 2393 if (!tp->repair) 2394 return -EPERM; 2395 2396 if (len != sizeof(opt)) 2397 return -EINVAL; 2398 2399 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2400 return -EFAULT; 2401 2402 if (opt.max_window < opt.snd_wnd) 2403 return -EINVAL; 2404 2405 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2406 return -EINVAL; 2407 2408 if (after(opt.rcv_wup, tp->rcv_nxt)) 2409 return -EINVAL; 2410 2411 tp->snd_wl1 = opt.snd_wl1; 2412 tp->snd_wnd = opt.snd_wnd; 2413 tp->max_window = opt.max_window; 2414 2415 tp->rcv_wnd = opt.rcv_wnd; 2416 tp->rcv_wup = opt.rcv_wup; 2417 2418 return 0; 2419 } 2420 2421 static int tcp_repair_options_est(struct sock *sk, 2422 struct tcp_repair_opt __user *optbuf, unsigned int len) 2423 { 2424 struct tcp_sock *tp = tcp_sk(sk); 2425 struct tcp_repair_opt opt; 2426 2427 while (len >= sizeof(opt)) { 2428 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2429 return -EFAULT; 2430 2431 optbuf++; 2432 len -= sizeof(opt); 2433 2434 switch (opt.opt_code) { 2435 case TCPOPT_MSS: 2436 tp->rx_opt.mss_clamp = opt.opt_val; 2437 tcp_mtup_init(sk); 2438 break; 2439 case TCPOPT_WINDOW: 2440 { 2441 u16 snd_wscale = opt.opt_val & 0xFFFF; 2442 u16 rcv_wscale = opt.opt_val >> 16; 2443 2444 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2445 return -EFBIG; 2446 2447 tp->rx_opt.snd_wscale = snd_wscale; 2448 tp->rx_opt.rcv_wscale = rcv_wscale; 2449 tp->rx_opt.wscale_ok = 1; 2450 } 2451 break; 2452 case TCPOPT_SACK_PERM: 2453 if (opt.opt_val != 0) 2454 return -EINVAL; 2455 2456 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2457 if (sysctl_tcp_fack) 2458 tcp_enable_fack(tp); 2459 break; 2460 case TCPOPT_TIMESTAMP: 2461 if (opt.opt_val != 0) 2462 return -EINVAL; 2463 2464 tp->rx_opt.tstamp_ok = 1; 2465 break; 2466 } 2467 } 2468 2469 return 0; 2470 } 2471 2472 /* 2473 * Socket option code for TCP. 2474 */ 2475 static int do_tcp_setsockopt(struct sock *sk, int level, 2476 int optname, char __user *optval, unsigned int optlen) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 struct inet_connection_sock *icsk = inet_csk(sk); 2480 struct net *net = sock_net(sk); 2481 int val; 2482 int err = 0; 2483 2484 /* These are data/string values, all the others are ints */ 2485 switch (optname) { 2486 case TCP_CONGESTION: { 2487 char name[TCP_CA_NAME_MAX]; 2488 2489 if (optlen < 1) 2490 return -EINVAL; 2491 2492 val = strncpy_from_user(name, optval, 2493 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2494 if (val < 0) 2495 return -EFAULT; 2496 name[val] = 0; 2497 2498 lock_sock(sk); 2499 err = tcp_set_congestion_control(sk, name, true, true); 2500 release_sock(sk); 2501 return err; 2502 } 2503 case TCP_ULP: { 2504 char name[TCP_ULP_NAME_MAX]; 2505 2506 if (optlen < 1) 2507 return -EINVAL; 2508 2509 val = strncpy_from_user(name, optval, 2510 min_t(long, TCP_ULP_NAME_MAX - 1, 2511 optlen)); 2512 if (val < 0) 2513 return -EFAULT; 2514 name[val] = 0; 2515 2516 lock_sock(sk); 2517 err = tcp_set_ulp(sk, name); 2518 release_sock(sk); 2519 return err; 2520 } 2521 default: 2522 /* fallthru */ 2523 break; 2524 } 2525 2526 if (optlen < sizeof(int)) 2527 return -EINVAL; 2528 2529 if (get_user(val, (int __user *)optval)) 2530 return -EFAULT; 2531 2532 lock_sock(sk); 2533 2534 switch (optname) { 2535 case TCP_MAXSEG: 2536 /* Values greater than interface MTU won't take effect. However 2537 * at the point when this call is done we typically don't yet 2538 * know which interface is going to be used 2539 */ 2540 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2541 err = -EINVAL; 2542 break; 2543 } 2544 tp->rx_opt.user_mss = val; 2545 break; 2546 2547 case TCP_NODELAY: 2548 if (val) { 2549 /* TCP_NODELAY is weaker than TCP_CORK, so that 2550 * this option on corked socket is remembered, but 2551 * it is not activated until cork is cleared. 2552 * 2553 * However, when TCP_NODELAY is set we make 2554 * an explicit push, which overrides even TCP_CORK 2555 * for currently queued segments. 2556 */ 2557 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2558 tcp_push_pending_frames(sk); 2559 } else { 2560 tp->nonagle &= ~TCP_NAGLE_OFF; 2561 } 2562 break; 2563 2564 case TCP_THIN_LINEAR_TIMEOUTS: 2565 if (val < 0 || val > 1) 2566 err = -EINVAL; 2567 else 2568 tp->thin_lto = val; 2569 break; 2570 2571 case TCP_THIN_DUPACK: 2572 if (val < 0 || val > 1) 2573 err = -EINVAL; 2574 break; 2575 2576 case TCP_REPAIR: 2577 if (!tcp_can_repair_sock(sk)) 2578 err = -EPERM; 2579 else if (val == 1) { 2580 tp->repair = 1; 2581 sk->sk_reuse = SK_FORCE_REUSE; 2582 tp->repair_queue = TCP_NO_QUEUE; 2583 } else if (val == 0) { 2584 tp->repair = 0; 2585 sk->sk_reuse = SK_NO_REUSE; 2586 tcp_send_window_probe(sk); 2587 } else 2588 err = -EINVAL; 2589 2590 break; 2591 2592 case TCP_REPAIR_QUEUE: 2593 if (!tp->repair) 2594 err = -EPERM; 2595 else if (val < TCP_QUEUES_NR) 2596 tp->repair_queue = val; 2597 else 2598 err = -EINVAL; 2599 break; 2600 2601 case TCP_QUEUE_SEQ: 2602 if (sk->sk_state != TCP_CLOSE) 2603 err = -EPERM; 2604 else if (tp->repair_queue == TCP_SEND_QUEUE) 2605 tp->write_seq = val; 2606 else if (tp->repair_queue == TCP_RECV_QUEUE) 2607 tp->rcv_nxt = val; 2608 else 2609 err = -EINVAL; 2610 break; 2611 2612 case TCP_REPAIR_OPTIONS: 2613 if (!tp->repair) 2614 err = -EINVAL; 2615 else if (sk->sk_state == TCP_ESTABLISHED) 2616 err = tcp_repair_options_est(sk, 2617 (struct tcp_repair_opt __user *)optval, 2618 optlen); 2619 else 2620 err = -EPERM; 2621 break; 2622 2623 case TCP_CORK: 2624 /* When set indicates to always queue non-full frames. 2625 * Later the user clears this option and we transmit 2626 * any pending partial frames in the queue. This is 2627 * meant to be used alongside sendfile() to get properly 2628 * filled frames when the user (for example) must write 2629 * out headers with a write() call first and then use 2630 * sendfile to send out the data parts. 2631 * 2632 * TCP_CORK can be set together with TCP_NODELAY and it is 2633 * stronger than TCP_NODELAY. 2634 */ 2635 if (val) { 2636 tp->nonagle |= TCP_NAGLE_CORK; 2637 } else { 2638 tp->nonagle &= ~TCP_NAGLE_CORK; 2639 if (tp->nonagle&TCP_NAGLE_OFF) 2640 tp->nonagle |= TCP_NAGLE_PUSH; 2641 tcp_push_pending_frames(sk); 2642 } 2643 break; 2644 2645 case TCP_KEEPIDLE: 2646 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2647 err = -EINVAL; 2648 else { 2649 tp->keepalive_time = val * HZ; 2650 if (sock_flag(sk, SOCK_KEEPOPEN) && 2651 !((1 << sk->sk_state) & 2652 (TCPF_CLOSE | TCPF_LISTEN))) { 2653 u32 elapsed = keepalive_time_elapsed(tp); 2654 if (tp->keepalive_time > elapsed) 2655 elapsed = tp->keepalive_time - elapsed; 2656 else 2657 elapsed = 0; 2658 inet_csk_reset_keepalive_timer(sk, elapsed); 2659 } 2660 } 2661 break; 2662 case TCP_KEEPINTVL: 2663 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2664 err = -EINVAL; 2665 else 2666 tp->keepalive_intvl = val * HZ; 2667 break; 2668 case TCP_KEEPCNT: 2669 if (val < 1 || val > MAX_TCP_KEEPCNT) 2670 err = -EINVAL; 2671 else 2672 tp->keepalive_probes = val; 2673 break; 2674 case TCP_SYNCNT: 2675 if (val < 1 || val > MAX_TCP_SYNCNT) 2676 err = -EINVAL; 2677 else 2678 icsk->icsk_syn_retries = val; 2679 break; 2680 2681 case TCP_SAVE_SYN: 2682 if (val < 0 || val > 1) 2683 err = -EINVAL; 2684 else 2685 tp->save_syn = val; 2686 break; 2687 2688 case TCP_LINGER2: 2689 if (val < 0) 2690 tp->linger2 = -1; 2691 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2692 tp->linger2 = 0; 2693 else 2694 tp->linger2 = val * HZ; 2695 break; 2696 2697 case TCP_DEFER_ACCEPT: 2698 /* Translate value in seconds to number of retransmits */ 2699 icsk->icsk_accept_queue.rskq_defer_accept = 2700 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2701 TCP_RTO_MAX / HZ); 2702 break; 2703 2704 case TCP_WINDOW_CLAMP: 2705 if (!val) { 2706 if (sk->sk_state != TCP_CLOSE) { 2707 err = -EINVAL; 2708 break; 2709 } 2710 tp->window_clamp = 0; 2711 } else 2712 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2713 SOCK_MIN_RCVBUF / 2 : val; 2714 break; 2715 2716 case TCP_QUICKACK: 2717 if (!val) { 2718 icsk->icsk_ack.pingpong = 1; 2719 } else { 2720 icsk->icsk_ack.pingpong = 0; 2721 if ((1 << sk->sk_state) & 2722 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2723 inet_csk_ack_scheduled(sk)) { 2724 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2725 tcp_cleanup_rbuf(sk, 1); 2726 if (!(val & 1)) 2727 icsk->icsk_ack.pingpong = 1; 2728 } 2729 } 2730 break; 2731 2732 #ifdef CONFIG_TCP_MD5SIG 2733 case TCP_MD5SIG: 2734 case TCP_MD5SIG_EXT: 2735 /* Read the IP->Key mappings from userspace */ 2736 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2737 break; 2738 #endif 2739 case TCP_USER_TIMEOUT: 2740 /* Cap the max time in ms TCP will retry or probe the window 2741 * before giving up and aborting (ETIMEDOUT) a connection. 2742 */ 2743 if (val < 0) 2744 err = -EINVAL; 2745 else 2746 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2747 break; 2748 2749 case TCP_FASTOPEN: 2750 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2751 TCPF_LISTEN))) { 2752 tcp_fastopen_init_key_once(true); 2753 2754 fastopen_queue_tune(sk, val); 2755 } else { 2756 err = -EINVAL; 2757 } 2758 break; 2759 case TCP_FASTOPEN_CONNECT: 2760 if (val > 1 || val < 0) { 2761 err = -EINVAL; 2762 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2763 if (sk->sk_state == TCP_CLOSE) 2764 tp->fastopen_connect = val; 2765 else 2766 err = -EINVAL; 2767 } else { 2768 err = -EOPNOTSUPP; 2769 } 2770 break; 2771 case TCP_TIMESTAMP: 2772 if (!tp->repair) 2773 err = -EPERM; 2774 else 2775 tp->tsoffset = val - tcp_time_stamp_raw(); 2776 break; 2777 case TCP_REPAIR_WINDOW: 2778 err = tcp_repair_set_window(tp, optval, optlen); 2779 break; 2780 case TCP_NOTSENT_LOWAT: 2781 tp->notsent_lowat = val; 2782 sk->sk_write_space(sk); 2783 break; 2784 default: 2785 err = -ENOPROTOOPT; 2786 break; 2787 } 2788 2789 release_sock(sk); 2790 return err; 2791 } 2792 2793 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2794 unsigned int optlen) 2795 { 2796 const struct inet_connection_sock *icsk = inet_csk(sk); 2797 2798 if (level != SOL_TCP) 2799 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2800 optval, optlen); 2801 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2802 } 2803 EXPORT_SYMBOL(tcp_setsockopt); 2804 2805 #ifdef CONFIG_COMPAT 2806 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2807 char __user *optval, unsigned int optlen) 2808 { 2809 if (level != SOL_TCP) 2810 return inet_csk_compat_setsockopt(sk, level, optname, 2811 optval, optlen); 2812 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2813 } 2814 EXPORT_SYMBOL(compat_tcp_setsockopt); 2815 #endif 2816 2817 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 2818 struct tcp_info *info) 2819 { 2820 u64 stats[__TCP_CHRONO_MAX], total = 0; 2821 enum tcp_chrono i; 2822 2823 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 2824 stats[i] = tp->chrono_stat[i - 1]; 2825 if (i == tp->chrono_type) 2826 stats[i] += tcp_jiffies32 - tp->chrono_start; 2827 stats[i] *= USEC_PER_SEC / HZ; 2828 total += stats[i]; 2829 } 2830 2831 info->tcpi_busy_time = total; 2832 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 2833 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 2834 } 2835 2836 /* Return information about state of tcp endpoint in API format. */ 2837 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2838 { 2839 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2840 const struct inet_connection_sock *icsk = inet_csk(sk); 2841 u32 now; 2842 u64 rate64; 2843 bool slow; 2844 u32 rate; 2845 2846 memset(info, 0, sizeof(*info)); 2847 if (sk->sk_type != SOCK_STREAM) 2848 return; 2849 2850 info->tcpi_state = sk_state_load(sk); 2851 2852 /* Report meaningful fields for all TCP states, including listeners */ 2853 rate = READ_ONCE(sk->sk_pacing_rate); 2854 rate64 = rate != ~0U ? rate : ~0ULL; 2855 info->tcpi_pacing_rate = rate64; 2856 2857 rate = READ_ONCE(sk->sk_max_pacing_rate); 2858 rate64 = rate != ~0U ? rate : ~0ULL; 2859 info->tcpi_max_pacing_rate = rate64; 2860 2861 info->tcpi_reordering = tp->reordering; 2862 info->tcpi_snd_cwnd = tp->snd_cwnd; 2863 2864 if (info->tcpi_state == TCP_LISTEN) { 2865 /* listeners aliased fields : 2866 * tcpi_unacked -> Number of children ready for accept() 2867 * tcpi_sacked -> max backlog 2868 */ 2869 info->tcpi_unacked = sk->sk_ack_backlog; 2870 info->tcpi_sacked = sk->sk_max_ack_backlog; 2871 return; 2872 } 2873 2874 slow = lock_sock_fast(sk); 2875 2876 info->tcpi_ca_state = icsk->icsk_ca_state; 2877 info->tcpi_retransmits = icsk->icsk_retransmits; 2878 info->tcpi_probes = icsk->icsk_probes_out; 2879 info->tcpi_backoff = icsk->icsk_backoff; 2880 2881 if (tp->rx_opt.tstamp_ok) 2882 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2883 if (tcp_is_sack(tp)) 2884 info->tcpi_options |= TCPI_OPT_SACK; 2885 if (tp->rx_opt.wscale_ok) { 2886 info->tcpi_options |= TCPI_OPT_WSCALE; 2887 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2888 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2889 } 2890 2891 if (tp->ecn_flags & TCP_ECN_OK) 2892 info->tcpi_options |= TCPI_OPT_ECN; 2893 if (tp->ecn_flags & TCP_ECN_SEEN) 2894 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2895 if (tp->syn_data_acked) 2896 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2897 2898 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2899 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2900 info->tcpi_snd_mss = tp->mss_cache; 2901 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2902 2903 info->tcpi_unacked = tp->packets_out; 2904 info->tcpi_sacked = tp->sacked_out; 2905 2906 info->tcpi_lost = tp->lost_out; 2907 info->tcpi_retrans = tp->retrans_out; 2908 info->tcpi_fackets = tp->fackets_out; 2909 2910 now = tcp_jiffies32; 2911 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2912 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2913 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2914 2915 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2916 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2917 info->tcpi_rtt = tp->srtt_us >> 3; 2918 info->tcpi_rttvar = tp->mdev_us >> 2; 2919 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2920 info->tcpi_advmss = tp->advmss; 2921 2922 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 2923 info->tcpi_rcv_space = tp->rcvq_space.space; 2924 2925 info->tcpi_total_retrans = tp->total_retrans; 2926 2927 info->tcpi_bytes_acked = tp->bytes_acked; 2928 info->tcpi_bytes_received = tp->bytes_received; 2929 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 2930 tcp_get_info_chrono_stats(tp, info); 2931 2932 info->tcpi_segs_out = tp->segs_out; 2933 info->tcpi_segs_in = tp->segs_in; 2934 2935 info->tcpi_min_rtt = tcp_min_rtt(tp); 2936 info->tcpi_data_segs_in = tp->data_segs_in; 2937 info->tcpi_data_segs_out = tp->data_segs_out; 2938 2939 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 2940 rate64 = tcp_compute_delivery_rate(tp); 2941 if (rate64) 2942 info->tcpi_delivery_rate = rate64; 2943 unlock_sock_fast(sk, slow); 2944 } 2945 EXPORT_SYMBOL_GPL(tcp_get_info); 2946 2947 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 2948 { 2949 const struct tcp_sock *tp = tcp_sk(sk); 2950 struct sk_buff *stats; 2951 struct tcp_info info; 2952 u64 rate64; 2953 u32 rate; 2954 2955 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 2956 3 * nla_total_size(sizeof(u32)) + 2957 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 2958 if (!stats) 2959 return NULL; 2960 2961 tcp_get_info_chrono_stats(tp, &info); 2962 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 2963 info.tcpi_busy_time, TCP_NLA_PAD); 2964 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 2965 info.tcpi_rwnd_limited, TCP_NLA_PAD); 2966 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 2967 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 2968 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 2969 tp->data_segs_out, TCP_NLA_PAD); 2970 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 2971 tp->total_retrans, TCP_NLA_PAD); 2972 2973 rate = READ_ONCE(sk->sk_pacing_rate); 2974 rate64 = rate != ~0U ? rate : ~0ULL; 2975 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 2976 2977 rate64 = tcp_compute_delivery_rate(tp); 2978 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 2979 2980 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 2981 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 2982 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 2983 2984 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 2985 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 2986 return stats; 2987 } 2988 2989 static int do_tcp_getsockopt(struct sock *sk, int level, 2990 int optname, char __user *optval, int __user *optlen) 2991 { 2992 struct inet_connection_sock *icsk = inet_csk(sk); 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 struct net *net = sock_net(sk); 2995 int val, len; 2996 2997 if (get_user(len, optlen)) 2998 return -EFAULT; 2999 3000 len = min_t(unsigned int, len, sizeof(int)); 3001 3002 if (len < 0) 3003 return -EINVAL; 3004 3005 switch (optname) { 3006 case TCP_MAXSEG: 3007 val = tp->mss_cache; 3008 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3009 val = tp->rx_opt.user_mss; 3010 if (tp->repair) 3011 val = tp->rx_opt.mss_clamp; 3012 break; 3013 case TCP_NODELAY: 3014 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3015 break; 3016 case TCP_CORK: 3017 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3018 break; 3019 case TCP_KEEPIDLE: 3020 val = keepalive_time_when(tp) / HZ; 3021 break; 3022 case TCP_KEEPINTVL: 3023 val = keepalive_intvl_when(tp) / HZ; 3024 break; 3025 case TCP_KEEPCNT: 3026 val = keepalive_probes(tp); 3027 break; 3028 case TCP_SYNCNT: 3029 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3030 break; 3031 case TCP_LINGER2: 3032 val = tp->linger2; 3033 if (val >= 0) 3034 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3035 break; 3036 case TCP_DEFER_ACCEPT: 3037 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3038 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3039 break; 3040 case TCP_WINDOW_CLAMP: 3041 val = tp->window_clamp; 3042 break; 3043 case TCP_INFO: { 3044 struct tcp_info info; 3045 3046 if (get_user(len, optlen)) 3047 return -EFAULT; 3048 3049 tcp_get_info(sk, &info); 3050 3051 len = min_t(unsigned int, len, sizeof(info)); 3052 if (put_user(len, optlen)) 3053 return -EFAULT; 3054 if (copy_to_user(optval, &info, len)) 3055 return -EFAULT; 3056 return 0; 3057 } 3058 case TCP_CC_INFO: { 3059 const struct tcp_congestion_ops *ca_ops; 3060 union tcp_cc_info info; 3061 size_t sz = 0; 3062 int attr; 3063 3064 if (get_user(len, optlen)) 3065 return -EFAULT; 3066 3067 ca_ops = icsk->icsk_ca_ops; 3068 if (ca_ops && ca_ops->get_info) 3069 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3070 3071 len = min_t(unsigned int, len, sz); 3072 if (put_user(len, optlen)) 3073 return -EFAULT; 3074 if (copy_to_user(optval, &info, len)) 3075 return -EFAULT; 3076 return 0; 3077 } 3078 case TCP_QUICKACK: 3079 val = !icsk->icsk_ack.pingpong; 3080 break; 3081 3082 case TCP_CONGESTION: 3083 if (get_user(len, optlen)) 3084 return -EFAULT; 3085 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3086 if (put_user(len, optlen)) 3087 return -EFAULT; 3088 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3089 return -EFAULT; 3090 return 0; 3091 3092 case TCP_ULP: 3093 if (get_user(len, optlen)) 3094 return -EFAULT; 3095 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3096 if (!icsk->icsk_ulp_ops) { 3097 if (put_user(0, optlen)) 3098 return -EFAULT; 3099 return 0; 3100 } 3101 if (put_user(len, optlen)) 3102 return -EFAULT; 3103 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3104 return -EFAULT; 3105 return 0; 3106 3107 case TCP_THIN_LINEAR_TIMEOUTS: 3108 val = tp->thin_lto; 3109 break; 3110 3111 case TCP_THIN_DUPACK: 3112 val = 0; 3113 break; 3114 3115 case TCP_REPAIR: 3116 val = tp->repair; 3117 break; 3118 3119 case TCP_REPAIR_QUEUE: 3120 if (tp->repair) 3121 val = tp->repair_queue; 3122 else 3123 return -EINVAL; 3124 break; 3125 3126 case TCP_REPAIR_WINDOW: { 3127 struct tcp_repair_window opt; 3128 3129 if (get_user(len, optlen)) 3130 return -EFAULT; 3131 3132 if (len != sizeof(opt)) 3133 return -EINVAL; 3134 3135 if (!tp->repair) 3136 return -EPERM; 3137 3138 opt.snd_wl1 = tp->snd_wl1; 3139 opt.snd_wnd = tp->snd_wnd; 3140 opt.max_window = tp->max_window; 3141 opt.rcv_wnd = tp->rcv_wnd; 3142 opt.rcv_wup = tp->rcv_wup; 3143 3144 if (copy_to_user(optval, &opt, len)) 3145 return -EFAULT; 3146 return 0; 3147 } 3148 case TCP_QUEUE_SEQ: 3149 if (tp->repair_queue == TCP_SEND_QUEUE) 3150 val = tp->write_seq; 3151 else if (tp->repair_queue == TCP_RECV_QUEUE) 3152 val = tp->rcv_nxt; 3153 else 3154 return -EINVAL; 3155 break; 3156 3157 case TCP_USER_TIMEOUT: 3158 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3159 break; 3160 3161 case TCP_FASTOPEN: 3162 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3163 break; 3164 3165 case TCP_FASTOPEN_CONNECT: 3166 val = tp->fastopen_connect; 3167 break; 3168 3169 case TCP_TIMESTAMP: 3170 val = tcp_time_stamp_raw() + tp->tsoffset; 3171 break; 3172 case TCP_NOTSENT_LOWAT: 3173 val = tp->notsent_lowat; 3174 break; 3175 case TCP_SAVE_SYN: 3176 val = tp->save_syn; 3177 break; 3178 case TCP_SAVED_SYN: { 3179 if (get_user(len, optlen)) 3180 return -EFAULT; 3181 3182 lock_sock(sk); 3183 if (tp->saved_syn) { 3184 if (len < tp->saved_syn[0]) { 3185 if (put_user(tp->saved_syn[0], optlen)) { 3186 release_sock(sk); 3187 return -EFAULT; 3188 } 3189 release_sock(sk); 3190 return -EINVAL; 3191 } 3192 len = tp->saved_syn[0]; 3193 if (put_user(len, optlen)) { 3194 release_sock(sk); 3195 return -EFAULT; 3196 } 3197 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3198 release_sock(sk); 3199 return -EFAULT; 3200 } 3201 tcp_saved_syn_free(tp); 3202 release_sock(sk); 3203 } else { 3204 release_sock(sk); 3205 len = 0; 3206 if (put_user(len, optlen)) 3207 return -EFAULT; 3208 } 3209 return 0; 3210 } 3211 default: 3212 return -ENOPROTOOPT; 3213 } 3214 3215 if (put_user(len, optlen)) 3216 return -EFAULT; 3217 if (copy_to_user(optval, &val, len)) 3218 return -EFAULT; 3219 return 0; 3220 } 3221 3222 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3223 int __user *optlen) 3224 { 3225 struct inet_connection_sock *icsk = inet_csk(sk); 3226 3227 if (level != SOL_TCP) 3228 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3229 optval, optlen); 3230 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3231 } 3232 EXPORT_SYMBOL(tcp_getsockopt); 3233 3234 #ifdef CONFIG_COMPAT 3235 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3236 char __user *optval, int __user *optlen) 3237 { 3238 if (level != SOL_TCP) 3239 return inet_csk_compat_getsockopt(sk, level, optname, 3240 optval, optlen); 3241 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3242 } 3243 EXPORT_SYMBOL(compat_tcp_getsockopt); 3244 #endif 3245 3246 #ifdef CONFIG_TCP_MD5SIG 3247 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3248 static DEFINE_MUTEX(tcp_md5sig_mutex); 3249 static bool tcp_md5sig_pool_populated = false; 3250 3251 static void __tcp_alloc_md5sig_pool(void) 3252 { 3253 struct crypto_ahash *hash; 3254 int cpu; 3255 3256 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3257 if (IS_ERR(hash)) 3258 return; 3259 3260 for_each_possible_cpu(cpu) { 3261 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3262 struct ahash_request *req; 3263 3264 if (!scratch) { 3265 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3266 sizeof(struct tcphdr), 3267 GFP_KERNEL, 3268 cpu_to_node(cpu)); 3269 if (!scratch) 3270 return; 3271 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3272 } 3273 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3274 continue; 3275 3276 req = ahash_request_alloc(hash, GFP_KERNEL); 3277 if (!req) 3278 return; 3279 3280 ahash_request_set_callback(req, 0, NULL, NULL); 3281 3282 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3283 } 3284 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3285 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3286 */ 3287 smp_wmb(); 3288 tcp_md5sig_pool_populated = true; 3289 } 3290 3291 bool tcp_alloc_md5sig_pool(void) 3292 { 3293 if (unlikely(!tcp_md5sig_pool_populated)) { 3294 mutex_lock(&tcp_md5sig_mutex); 3295 3296 if (!tcp_md5sig_pool_populated) 3297 __tcp_alloc_md5sig_pool(); 3298 3299 mutex_unlock(&tcp_md5sig_mutex); 3300 } 3301 return tcp_md5sig_pool_populated; 3302 } 3303 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3304 3305 3306 /** 3307 * tcp_get_md5sig_pool - get md5sig_pool for this user 3308 * 3309 * We use percpu structure, so if we succeed, we exit with preemption 3310 * and BH disabled, to make sure another thread or softirq handling 3311 * wont try to get same context. 3312 */ 3313 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3314 { 3315 local_bh_disable(); 3316 3317 if (tcp_md5sig_pool_populated) { 3318 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3319 smp_rmb(); 3320 return this_cpu_ptr(&tcp_md5sig_pool); 3321 } 3322 local_bh_enable(); 3323 return NULL; 3324 } 3325 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3326 3327 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3328 const struct sk_buff *skb, unsigned int header_len) 3329 { 3330 struct scatterlist sg; 3331 const struct tcphdr *tp = tcp_hdr(skb); 3332 struct ahash_request *req = hp->md5_req; 3333 unsigned int i; 3334 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3335 skb_headlen(skb) - header_len : 0; 3336 const struct skb_shared_info *shi = skb_shinfo(skb); 3337 struct sk_buff *frag_iter; 3338 3339 sg_init_table(&sg, 1); 3340 3341 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3342 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3343 if (crypto_ahash_update(req)) 3344 return 1; 3345 3346 for (i = 0; i < shi->nr_frags; ++i) { 3347 const struct skb_frag_struct *f = &shi->frags[i]; 3348 unsigned int offset = f->page_offset; 3349 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3350 3351 sg_set_page(&sg, page, skb_frag_size(f), 3352 offset_in_page(offset)); 3353 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3354 if (crypto_ahash_update(req)) 3355 return 1; 3356 } 3357 3358 skb_walk_frags(skb, frag_iter) 3359 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3360 return 1; 3361 3362 return 0; 3363 } 3364 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3365 3366 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3367 { 3368 struct scatterlist sg; 3369 3370 sg_init_one(&sg, key->key, key->keylen); 3371 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3372 return crypto_ahash_update(hp->md5_req); 3373 } 3374 EXPORT_SYMBOL(tcp_md5_hash_key); 3375 3376 #endif 3377 3378 void tcp_done(struct sock *sk) 3379 { 3380 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3381 3382 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3383 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3384 3385 tcp_set_state(sk, TCP_CLOSE); 3386 tcp_clear_xmit_timers(sk); 3387 if (req) 3388 reqsk_fastopen_remove(sk, req, false); 3389 3390 sk->sk_shutdown = SHUTDOWN_MASK; 3391 3392 if (!sock_flag(sk, SOCK_DEAD)) 3393 sk->sk_state_change(sk); 3394 else 3395 inet_csk_destroy_sock(sk); 3396 } 3397 EXPORT_SYMBOL_GPL(tcp_done); 3398 3399 int tcp_abort(struct sock *sk, int err) 3400 { 3401 if (!sk_fullsock(sk)) { 3402 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3403 struct request_sock *req = inet_reqsk(sk); 3404 3405 local_bh_disable(); 3406 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3407 req); 3408 local_bh_enable(); 3409 return 0; 3410 } 3411 return -EOPNOTSUPP; 3412 } 3413 3414 /* Don't race with userspace socket closes such as tcp_close. */ 3415 lock_sock(sk); 3416 3417 if (sk->sk_state == TCP_LISTEN) { 3418 tcp_set_state(sk, TCP_CLOSE); 3419 inet_csk_listen_stop(sk); 3420 } 3421 3422 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3423 local_bh_disable(); 3424 bh_lock_sock(sk); 3425 3426 if (!sock_flag(sk, SOCK_DEAD)) { 3427 sk->sk_err = err; 3428 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3429 smp_wmb(); 3430 sk->sk_error_report(sk); 3431 if (tcp_need_reset(sk->sk_state)) 3432 tcp_send_active_reset(sk, GFP_ATOMIC); 3433 tcp_done(sk); 3434 } 3435 3436 bh_unlock_sock(sk); 3437 local_bh_enable(); 3438 release_sock(sk); 3439 return 0; 3440 } 3441 EXPORT_SYMBOL_GPL(tcp_abort); 3442 3443 extern struct tcp_congestion_ops tcp_reno; 3444 3445 static __initdata unsigned long thash_entries; 3446 static int __init set_thash_entries(char *str) 3447 { 3448 ssize_t ret; 3449 3450 if (!str) 3451 return 0; 3452 3453 ret = kstrtoul(str, 0, &thash_entries); 3454 if (ret) 3455 return 0; 3456 3457 return 1; 3458 } 3459 __setup("thash_entries=", set_thash_entries); 3460 3461 static void __init tcp_init_mem(void) 3462 { 3463 unsigned long limit = nr_free_buffer_pages() / 16; 3464 3465 limit = max(limit, 128UL); 3466 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3467 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3468 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3469 } 3470 3471 void __init tcp_init(void) 3472 { 3473 int max_rshare, max_wshare, cnt; 3474 unsigned long limit; 3475 unsigned int i; 3476 3477 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3478 FIELD_SIZEOF(struct sk_buff, cb)); 3479 3480 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3481 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3482 inet_hashinfo_init(&tcp_hashinfo); 3483 tcp_hashinfo.bind_bucket_cachep = 3484 kmem_cache_create("tcp_bind_bucket", 3485 sizeof(struct inet_bind_bucket), 0, 3486 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3487 3488 /* Size and allocate the main established and bind bucket 3489 * hash tables. 3490 * 3491 * The methodology is similar to that of the buffer cache. 3492 */ 3493 tcp_hashinfo.ehash = 3494 alloc_large_system_hash("TCP established", 3495 sizeof(struct inet_ehash_bucket), 3496 thash_entries, 3497 17, /* one slot per 128 KB of memory */ 3498 0, 3499 NULL, 3500 &tcp_hashinfo.ehash_mask, 3501 0, 3502 thash_entries ? 0 : 512 * 1024); 3503 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3504 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3505 3506 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3507 panic("TCP: failed to alloc ehash_locks"); 3508 tcp_hashinfo.bhash = 3509 alloc_large_system_hash("TCP bind", 3510 sizeof(struct inet_bind_hashbucket), 3511 tcp_hashinfo.ehash_mask + 1, 3512 17, /* one slot per 128 KB of memory */ 3513 0, 3514 &tcp_hashinfo.bhash_size, 3515 NULL, 3516 0, 3517 64 * 1024); 3518 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3519 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3520 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3521 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3522 } 3523 3524 3525 cnt = tcp_hashinfo.ehash_mask + 1; 3526 sysctl_tcp_max_orphans = cnt / 2; 3527 3528 tcp_init_mem(); 3529 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3530 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3531 max_wshare = min(4UL*1024*1024, limit); 3532 max_rshare = min(6UL*1024*1024, limit); 3533 3534 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3535 sysctl_tcp_wmem[1] = 16*1024; 3536 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3537 3538 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3539 sysctl_tcp_rmem[1] = 87380; 3540 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3541 3542 pr_info("Hash tables configured (established %u bind %u)\n", 3543 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3544 3545 tcp_v4_init(); 3546 tcp_metrics_init(); 3547 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3548 tcp_tasklet_init(); 3549 } 3550