1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 #include <linux/btf.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/mptcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <linux/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 /* Track pending CMSGs. */ 285 enum { 286 TCP_CMSG_INQ = 1, 287 TCP_CMSG_TS = 2 288 }; 289 290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 EXPORT_SYMBOL(sysctl_tcp_mem); 295 296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 297 EXPORT_SYMBOL(tcp_memory_allocated); 298 299 #if IS_ENABLED(CONFIG_SMC) 300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 301 EXPORT_SYMBOL(tcp_have_smc); 302 #endif 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 unsigned long tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 327 328 void tcp_enter_memory_pressure(struct sock *sk) 329 { 330 unsigned long val; 331 332 if (READ_ONCE(tcp_memory_pressure)) 333 return; 334 val = jiffies; 335 336 if (!val) 337 val--; 338 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 340 } 341 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 342 343 void tcp_leave_memory_pressure(struct sock *sk) 344 { 345 unsigned long val; 346 347 if (!READ_ONCE(tcp_memory_pressure)) 348 return; 349 val = xchg(&tcp_memory_pressure, 0); 350 if (val) 351 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 352 jiffies_to_msecs(jiffies - val)); 353 } 354 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 355 356 /* Convert seconds to retransmits based on initial and max timeout */ 357 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 358 { 359 u8 res = 0; 360 361 if (seconds > 0) { 362 int period = timeout; 363 364 res = 1; 365 while (seconds > period && res < 255) { 366 res++; 367 timeout <<= 1; 368 if (timeout > rto_max) 369 timeout = rto_max; 370 period += timeout; 371 } 372 } 373 return res; 374 } 375 376 /* Convert retransmits to seconds based on initial and max timeout */ 377 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 378 { 379 int period = 0; 380 381 if (retrans > 0) { 382 period = timeout; 383 while (--retrans) { 384 timeout <<= 1; 385 if (timeout > rto_max) 386 timeout = rto_max; 387 period += timeout; 388 } 389 } 390 return period; 391 } 392 393 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 394 { 395 u32 rate = READ_ONCE(tp->rate_delivered); 396 u32 intv = READ_ONCE(tp->rate_interval_us); 397 u64 rate64 = 0; 398 399 if (rate && intv) { 400 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 401 do_div(rate64, intv); 402 } 403 return rate64; 404 } 405 406 /* Address-family independent initialization for a tcp_sock. 407 * 408 * NOTE: A lot of things set to zero explicitly by call to 409 * sk_alloc() so need not be done here. 410 */ 411 void tcp_init_sock(struct sock *sk) 412 { 413 struct inet_connection_sock *icsk = inet_csk(sk); 414 struct tcp_sock *tp = tcp_sk(sk); 415 416 tp->out_of_order_queue = RB_ROOT; 417 sk->tcp_rtx_queue = RB_ROOT; 418 tcp_init_xmit_timers(sk); 419 INIT_LIST_HEAD(&tp->tsq_node); 420 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 421 422 icsk->icsk_rto = TCP_TIMEOUT_INIT; 423 icsk->icsk_rto_min = TCP_RTO_MIN; 424 icsk->icsk_delack_max = TCP_DELACK_MAX; 425 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 426 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 427 428 /* So many TCP implementations out there (incorrectly) count the 429 * initial SYN frame in their delayed-ACK and congestion control 430 * algorithms that we must have the following bandaid to talk 431 * efficiently to them. -DaveM 432 */ 433 tp->snd_cwnd = TCP_INIT_CWND; 434 435 /* There's a bubble in the pipe until at least the first ACK. */ 436 tp->app_limited = ~0U; 437 438 /* See draft-stevens-tcpca-spec-01 for discussion of the 439 * initialization of these values. 440 */ 441 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 442 tp->snd_cwnd_clamp = ~0; 443 tp->mss_cache = TCP_MSS_DEFAULT; 444 445 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 446 tcp_assign_congestion_control(sk); 447 448 tp->tsoffset = 0; 449 tp->rack.reo_wnd_steps = 1; 450 451 sk->sk_write_space = sk_stream_write_space; 452 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 453 454 icsk->icsk_sync_mss = tcp_sync_mss; 455 456 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 457 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 458 459 sk_sockets_allocated_inc(sk); 460 sk->sk_route_forced_caps = NETIF_F_GSO; 461 } 462 EXPORT_SYMBOL(tcp_init_sock); 463 464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 465 { 466 struct sk_buff *skb = tcp_write_queue_tail(sk); 467 468 if (tsflags && skb) { 469 struct skb_shared_info *shinfo = skb_shinfo(skb); 470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 471 472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 473 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 474 tcb->txstamp_ack = 1; 475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 477 } 478 } 479 480 static bool tcp_stream_is_readable(struct sock *sk, int target) 481 { 482 if (tcp_epollin_ready(sk, target)) 483 return true; 484 485 if (sk->sk_prot->stream_memory_read) 486 return sk->sk_prot->stream_memory_read(sk); 487 return false; 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 int state; 503 504 sock_poll_wait(file, sock, wait); 505 506 state = inet_sk_state_load(sk); 507 if (state == TCP_LISTEN) 508 return inet_csk_listen_poll(sk); 509 510 /* Socket is not locked. We are protected from async events 511 * by poll logic and correct handling of state changes 512 * made by other threads is impossible in any case. 513 */ 514 515 mask = 0; 516 517 /* 518 * EPOLLHUP is certainly not done right. But poll() doesn't 519 * have a notion of HUP in just one direction, and for a 520 * socket the read side is more interesting. 521 * 522 * Some poll() documentation says that EPOLLHUP is incompatible 523 * with the EPOLLOUT/POLLWR flags, so somebody should check this 524 * all. But careful, it tends to be safer to return too many 525 * bits than too few, and you can easily break real applications 526 * if you don't tell them that something has hung up! 527 * 528 * Check-me. 529 * 530 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 531 * our fs/select.c). It means that after we received EOF, 532 * poll always returns immediately, making impossible poll() on write() 533 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 534 * if and only if shutdown has been made in both directions. 535 * Actually, it is interesting to look how Solaris and DUX 536 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 537 * then we could set it on SND_SHUTDOWN. BTW examples given 538 * in Stevens' books assume exactly this behaviour, it explains 539 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 540 * 541 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 542 * blocking on fresh not-connected or disconnected socket. --ANK 543 */ 544 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 545 mask |= EPOLLHUP; 546 if (sk->sk_shutdown & RCV_SHUTDOWN) 547 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 548 549 /* Connected or passive Fast Open socket? */ 550 if (state != TCP_SYN_SENT && 551 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 552 int target = sock_rcvlowat(sk, 0, INT_MAX); 553 554 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 555 !sock_flag(sk, SOCK_URGINLINE) && 556 tp->urg_data) 557 target++; 558 559 if (tcp_stream_is_readable(sk, target)) 560 mask |= EPOLLIN | EPOLLRDNORM; 561 562 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 563 if (__sk_stream_is_writeable(sk, 1)) { 564 mask |= EPOLLOUT | EPOLLWRNORM; 565 } else { /* send SIGIO later */ 566 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 567 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 568 569 /* Race breaker. If space is freed after 570 * wspace test but before the flags are set, 571 * IO signal will be lost. Memory barrier 572 * pairs with the input side. 573 */ 574 smp_mb__after_atomic(); 575 if (__sk_stream_is_writeable(sk, 1)) 576 mask |= EPOLLOUT | EPOLLWRNORM; 577 } 578 } else 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 581 if (tp->urg_data & TCP_URG_VALID) 582 mask |= EPOLLPRI; 583 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 584 /* Active TCP fastopen socket with defer_connect 585 * Return EPOLLOUT so application can call write() 586 * in order for kernel to generate SYN+data 587 */ 588 mask |= EPOLLOUT | EPOLLWRNORM; 589 } 590 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 591 smp_rmb(); 592 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 593 mask |= EPOLLERR; 594 595 return mask; 596 } 597 EXPORT_SYMBOL(tcp_poll); 598 599 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 600 { 601 struct tcp_sock *tp = tcp_sk(sk); 602 int answ; 603 bool slow; 604 605 switch (cmd) { 606 case SIOCINQ: 607 if (sk->sk_state == TCP_LISTEN) 608 return -EINVAL; 609 610 slow = lock_sock_fast(sk); 611 answ = tcp_inq(sk); 612 unlock_sock_fast(sk, slow); 613 break; 614 case SIOCATMARK: 615 answ = tp->urg_data && 616 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 617 break; 618 case SIOCOUTQ: 619 if (sk->sk_state == TCP_LISTEN) 620 return -EINVAL; 621 622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 623 answ = 0; 624 else 625 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 626 break; 627 case SIOCOUTQNSD: 628 if (sk->sk_state == TCP_LISTEN) 629 return -EINVAL; 630 631 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 632 answ = 0; 633 else 634 answ = READ_ONCE(tp->write_seq) - 635 READ_ONCE(tp->snd_nxt); 636 break; 637 default: 638 return -ENOIOCTLCMD; 639 } 640 641 return put_user(answ, (int __user *)arg); 642 } 643 EXPORT_SYMBOL(tcp_ioctl); 644 645 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 646 { 647 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 648 tp->pushed_seq = tp->write_seq; 649 } 650 651 static inline bool forced_push(const struct tcp_sock *tp) 652 { 653 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 654 } 655 656 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 657 { 658 struct tcp_sock *tp = tcp_sk(sk); 659 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 660 661 skb->csum = 0; 662 tcb->seq = tcb->end_seq = tp->write_seq; 663 tcb->tcp_flags = TCPHDR_ACK; 664 tcb->sacked = 0; 665 __skb_header_release(skb); 666 tcp_add_write_queue_tail(sk, skb); 667 sk_wmem_queued_add(sk, skb->truesize); 668 sk_mem_charge(sk, skb->truesize); 669 if (tp->nonagle & TCP_NAGLE_PUSH) 670 tp->nonagle &= ~TCP_NAGLE_PUSH; 671 672 tcp_slow_start_after_idle_check(sk); 673 } 674 675 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 676 { 677 if (flags & MSG_OOB) 678 tp->snd_up = tp->write_seq; 679 } 680 681 /* If a not yet filled skb is pushed, do not send it if 682 * we have data packets in Qdisc or NIC queues : 683 * Because TX completion will happen shortly, it gives a chance 684 * to coalesce future sendmsg() payload into this skb, without 685 * need for a timer, and with no latency trade off. 686 * As packets containing data payload have a bigger truesize 687 * than pure acks (dataless) packets, the last checks prevent 688 * autocorking if we only have an ACK in Qdisc/NIC queues, 689 * or if TX completion was delayed after we processed ACK packet. 690 */ 691 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 692 int size_goal) 693 { 694 return skb->len < size_goal && 695 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 696 !tcp_rtx_queue_empty(sk) && 697 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 698 } 699 700 void tcp_push(struct sock *sk, int flags, int mss_now, 701 int nonagle, int size_goal) 702 { 703 struct tcp_sock *tp = tcp_sk(sk); 704 struct sk_buff *skb; 705 706 skb = tcp_write_queue_tail(sk); 707 if (!skb) 708 return; 709 if (!(flags & MSG_MORE) || forced_push(tp)) 710 tcp_mark_push(tp, skb); 711 712 tcp_mark_urg(tp, flags); 713 714 if (tcp_should_autocork(sk, skb, size_goal)) { 715 716 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 717 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 719 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 720 } 721 /* It is possible TX completion already happened 722 * before we set TSQ_THROTTLED. 723 */ 724 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 725 return; 726 } 727 728 if (flags & MSG_MORE) 729 nonagle = TCP_NAGLE_CORK; 730 731 __tcp_push_pending_frames(sk, mss_now, nonagle); 732 } 733 734 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 735 unsigned int offset, size_t len) 736 { 737 struct tcp_splice_state *tss = rd_desc->arg.data; 738 int ret; 739 740 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 741 min(rd_desc->count, len), tss->flags); 742 if (ret > 0) 743 rd_desc->count -= ret; 744 return ret; 745 } 746 747 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 748 { 749 /* Store TCP splice context information in read_descriptor_t. */ 750 read_descriptor_t rd_desc = { 751 .arg.data = tss, 752 .count = tss->len, 753 }; 754 755 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 756 } 757 758 /** 759 * tcp_splice_read - splice data from TCP socket to a pipe 760 * @sock: socket to splice from 761 * @ppos: position (not valid) 762 * @pipe: pipe to splice to 763 * @len: number of bytes to splice 764 * @flags: splice modifier flags 765 * 766 * Description: 767 * Will read pages from given socket and fill them into a pipe. 768 * 769 **/ 770 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 771 struct pipe_inode_info *pipe, size_t len, 772 unsigned int flags) 773 { 774 struct sock *sk = sock->sk; 775 struct tcp_splice_state tss = { 776 .pipe = pipe, 777 .len = len, 778 .flags = flags, 779 }; 780 long timeo; 781 ssize_t spliced; 782 int ret; 783 784 sock_rps_record_flow(sk); 785 /* 786 * We can't seek on a socket input 787 */ 788 if (unlikely(*ppos)) 789 return -ESPIPE; 790 791 ret = spliced = 0; 792 793 lock_sock(sk); 794 795 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 796 while (tss.len) { 797 ret = __tcp_splice_read(sk, &tss); 798 if (ret < 0) 799 break; 800 else if (!ret) { 801 if (spliced) 802 break; 803 if (sock_flag(sk, SOCK_DONE)) 804 break; 805 if (sk->sk_err) { 806 ret = sock_error(sk); 807 break; 808 } 809 if (sk->sk_shutdown & RCV_SHUTDOWN) 810 break; 811 if (sk->sk_state == TCP_CLOSE) { 812 /* 813 * This occurs when user tries to read 814 * from never connected socket. 815 */ 816 ret = -ENOTCONN; 817 break; 818 } 819 if (!timeo) { 820 ret = -EAGAIN; 821 break; 822 } 823 /* if __tcp_splice_read() got nothing while we have 824 * an skb in receive queue, we do not want to loop. 825 * This might happen with URG data. 826 */ 827 if (!skb_queue_empty(&sk->sk_receive_queue)) 828 break; 829 sk_wait_data(sk, &timeo, NULL); 830 if (signal_pending(current)) { 831 ret = sock_intr_errno(timeo); 832 break; 833 } 834 continue; 835 } 836 tss.len -= ret; 837 spliced += ret; 838 839 if (!timeo) 840 break; 841 release_sock(sk); 842 lock_sock(sk); 843 844 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 845 (sk->sk_shutdown & RCV_SHUTDOWN) || 846 signal_pending(current)) 847 break; 848 } 849 850 release_sock(sk); 851 852 if (spliced) 853 return spliced; 854 855 return ret; 856 } 857 EXPORT_SYMBOL(tcp_splice_read); 858 859 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 860 bool force_schedule) 861 { 862 struct sk_buff *skb; 863 864 /* The TCP header must be at least 32-bit aligned. */ 865 size = ALIGN(size, 4); 866 867 if (unlikely(tcp_under_memory_pressure(sk))) 868 sk_mem_reclaim_partial(sk); 869 870 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 871 if (likely(skb)) { 872 bool mem_scheduled; 873 874 if (force_schedule) { 875 mem_scheduled = true; 876 sk_forced_mem_schedule(sk, skb->truesize); 877 } else { 878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 879 } 880 if (likely(mem_scheduled)) { 881 skb_reserve(skb, sk->sk_prot->max_header); 882 /* 883 * Make sure that we have exactly size bytes 884 * available to the caller, no more, no less. 885 */ 886 skb->reserved_tailroom = skb->end - skb->tail - size; 887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 888 return skb; 889 } 890 __kfree_skb(skb); 891 } else { 892 sk->sk_prot->enter_memory_pressure(sk); 893 sk_stream_moderate_sndbuf(sk); 894 } 895 return NULL; 896 } 897 898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 899 int large_allowed) 900 { 901 struct tcp_sock *tp = tcp_sk(sk); 902 u32 new_size_goal, size_goal; 903 904 if (!large_allowed) 905 return mss_now; 906 907 /* Note : tcp_tso_autosize() will eventually split this later */ 908 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 909 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 910 911 /* We try hard to avoid divides here */ 912 size_goal = tp->gso_segs * mss_now; 913 if (unlikely(new_size_goal < size_goal || 914 new_size_goal >= size_goal + mss_now)) { 915 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 916 sk->sk_gso_max_segs); 917 size_goal = tp->gso_segs * mss_now; 918 } 919 920 return max(size_goal, mss_now); 921 } 922 923 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 924 { 925 int mss_now; 926 927 mss_now = tcp_current_mss(sk); 928 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 929 930 return mss_now; 931 } 932 933 /* In some cases, both sendpage() and sendmsg() could have added 934 * an skb to the write queue, but failed adding payload on it. 935 * We need to remove it to consume less memory, but more 936 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 937 * users. 938 */ 939 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 940 { 941 if (skb && !skb->len) { 942 tcp_unlink_write_queue(skb, sk); 943 if (tcp_write_queue_empty(sk)) 944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 945 sk_wmem_free_skb(sk, skb); 946 } 947 } 948 949 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 950 struct page *page, int offset, size_t *size) 951 { 952 struct sk_buff *skb = tcp_write_queue_tail(sk); 953 struct tcp_sock *tp = tcp_sk(sk); 954 bool can_coalesce; 955 int copy, i; 956 957 if (!skb || (copy = size_goal - skb->len) <= 0 || 958 !tcp_skb_can_collapse_to(skb)) { 959 new_segment: 960 if (!sk_stream_memory_free(sk)) 961 return NULL; 962 963 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 964 tcp_rtx_and_write_queues_empty(sk)); 965 if (!skb) 966 return NULL; 967 968 #ifdef CONFIG_TLS_DEVICE 969 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 970 #endif 971 tcp_skb_entail(sk, skb); 972 copy = size_goal; 973 } 974 975 if (copy > *size) 976 copy = *size; 977 978 i = skb_shinfo(skb)->nr_frags; 979 can_coalesce = skb_can_coalesce(skb, i, page, offset); 980 if (!can_coalesce && i >= sysctl_max_skb_frags) { 981 tcp_mark_push(tp, skb); 982 goto new_segment; 983 } 984 if (!sk_wmem_schedule(sk, copy)) 985 return NULL; 986 987 if (can_coalesce) { 988 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 989 } else { 990 get_page(page); 991 skb_fill_page_desc(skb, i, page, offset, copy); 992 } 993 994 if (!(flags & MSG_NO_SHARED_FRAGS)) 995 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 996 997 skb->len += copy; 998 skb->data_len += copy; 999 skb->truesize += copy; 1000 sk_wmem_queued_add(sk, copy); 1001 sk_mem_charge(sk, copy); 1002 skb->ip_summed = CHECKSUM_PARTIAL; 1003 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1004 TCP_SKB_CB(skb)->end_seq += copy; 1005 tcp_skb_pcount_set(skb, 0); 1006 1007 *size = copy; 1008 return skb; 1009 } 1010 1011 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1012 size_t size, int flags) 1013 { 1014 struct tcp_sock *tp = tcp_sk(sk); 1015 int mss_now, size_goal; 1016 int err; 1017 ssize_t copied; 1018 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1019 1020 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1021 WARN_ONCE(!sendpage_ok(page), 1022 "page must not be a Slab one and have page_count > 0")) 1023 return -EINVAL; 1024 1025 /* Wait for a connection to finish. One exception is TCP Fast Open 1026 * (passive side) where data is allowed to be sent before a connection 1027 * is fully established. 1028 */ 1029 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1030 !tcp_passive_fastopen(sk)) { 1031 err = sk_stream_wait_connect(sk, &timeo); 1032 if (err != 0) 1033 goto out_err; 1034 } 1035 1036 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1037 1038 mss_now = tcp_send_mss(sk, &size_goal, flags); 1039 copied = 0; 1040 1041 err = -EPIPE; 1042 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1043 goto out_err; 1044 1045 while (size > 0) { 1046 struct sk_buff *skb; 1047 size_t copy = size; 1048 1049 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1050 if (!skb) 1051 goto wait_for_space; 1052 1053 if (!copied) 1054 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1055 1056 copied += copy; 1057 offset += copy; 1058 size -= copy; 1059 if (!size) 1060 goto out; 1061 1062 if (skb->len < size_goal || (flags & MSG_OOB)) 1063 continue; 1064 1065 if (forced_push(tp)) { 1066 tcp_mark_push(tp, skb); 1067 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1068 } else if (skb == tcp_send_head(sk)) 1069 tcp_push_one(sk, mss_now); 1070 continue; 1071 1072 wait_for_space: 1073 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1074 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1075 TCP_NAGLE_PUSH, size_goal); 1076 1077 err = sk_stream_wait_memory(sk, &timeo); 1078 if (err != 0) 1079 goto do_error; 1080 1081 mss_now = tcp_send_mss(sk, &size_goal, flags); 1082 } 1083 1084 out: 1085 if (copied) { 1086 tcp_tx_timestamp(sk, sk->sk_tsflags); 1087 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1088 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1089 } 1090 return copied; 1091 1092 do_error: 1093 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1094 if (copied) 1095 goto out; 1096 out_err: 1097 /* make sure we wake any epoll edge trigger waiter */ 1098 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1099 sk->sk_write_space(sk); 1100 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1101 } 1102 return sk_stream_error(sk, flags, err); 1103 } 1104 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1105 1106 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1107 size_t size, int flags) 1108 { 1109 if (!(sk->sk_route_caps & NETIF_F_SG)) 1110 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1111 1112 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1113 1114 return do_tcp_sendpages(sk, page, offset, size, flags); 1115 } 1116 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1117 1118 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1119 size_t size, int flags) 1120 { 1121 int ret; 1122 1123 lock_sock(sk); 1124 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1125 release_sock(sk); 1126 1127 return ret; 1128 } 1129 EXPORT_SYMBOL(tcp_sendpage); 1130 1131 void tcp_free_fastopen_req(struct tcp_sock *tp) 1132 { 1133 if (tp->fastopen_req) { 1134 kfree(tp->fastopen_req); 1135 tp->fastopen_req = NULL; 1136 } 1137 } 1138 1139 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1140 int *copied, size_t size, 1141 struct ubuf_info *uarg) 1142 { 1143 struct tcp_sock *tp = tcp_sk(sk); 1144 struct inet_sock *inet = inet_sk(sk); 1145 struct sockaddr *uaddr = msg->msg_name; 1146 int err, flags; 1147 1148 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1149 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1150 uaddr->sa_family == AF_UNSPEC)) 1151 return -EOPNOTSUPP; 1152 if (tp->fastopen_req) 1153 return -EALREADY; /* Another Fast Open is in progress */ 1154 1155 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1156 sk->sk_allocation); 1157 if (unlikely(!tp->fastopen_req)) 1158 return -ENOBUFS; 1159 tp->fastopen_req->data = msg; 1160 tp->fastopen_req->size = size; 1161 tp->fastopen_req->uarg = uarg; 1162 1163 if (inet->defer_connect) { 1164 err = tcp_connect(sk); 1165 /* Same failure procedure as in tcp_v4/6_connect */ 1166 if (err) { 1167 tcp_set_state(sk, TCP_CLOSE); 1168 inet->inet_dport = 0; 1169 sk->sk_route_caps = 0; 1170 } 1171 } 1172 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1173 err = __inet_stream_connect(sk->sk_socket, uaddr, 1174 msg->msg_namelen, flags, 1); 1175 /* fastopen_req could already be freed in __inet_stream_connect 1176 * if the connection times out or gets rst 1177 */ 1178 if (tp->fastopen_req) { 1179 *copied = tp->fastopen_req->copied; 1180 tcp_free_fastopen_req(tp); 1181 inet->defer_connect = 0; 1182 } 1183 return err; 1184 } 1185 1186 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1187 { 1188 struct tcp_sock *tp = tcp_sk(sk); 1189 struct ubuf_info *uarg = NULL; 1190 struct sk_buff *skb; 1191 struct sockcm_cookie sockc; 1192 int flags, err, copied = 0; 1193 int mss_now = 0, size_goal, copied_syn = 0; 1194 int process_backlog = 0; 1195 bool zc = false; 1196 long timeo; 1197 1198 flags = msg->msg_flags; 1199 1200 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1201 skb = tcp_write_queue_tail(sk); 1202 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1203 if (!uarg) { 1204 err = -ENOBUFS; 1205 goto out_err; 1206 } 1207 1208 zc = sk->sk_route_caps & NETIF_F_SG; 1209 if (!zc) 1210 uarg->zerocopy = 0; 1211 } 1212 1213 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1214 !tp->repair) { 1215 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1216 if (err == -EINPROGRESS && copied_syn > 0) 1217 goto out; 1218 else if (err) 1219 goto out_err; 1220 } 1221 1222 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1223 1224 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1225 1226 /* Wait for a connection to finish. One exception is TCP Fast Open 1227 * (passive side) where data is allowed to be sent before a connection 1228 * is fully established. 1229 */ 1230 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1231 !tcp_passive_fastopen(sk)) { 1232 err = sk_stream_wait_connect(sk, &timeo); 1233 if (err != 0) 1234 goto do_error; 1235 } 1236 1237 if (unlikely(tp->repair)) { 1238 if (tp->repair_queue == TCP_RECV_QUEUE) { 1239 copied = tcp_send_rcvq(sk, msg, size); 1240 goto out_nopush; 1241 } 1242 1243 err = -EINVAL; 1244 if (tp->repair_queue == TCP_NO_QUEUE) 1245 goto out_err; 1246 1247 /* 'common' sending to sendq */ 1248 } 1249 1250 sockcm_init(&sockc, sk); 1251 if (msg->msg_controllen) { 1252 err = sock_cmsg_send(sk, msg, &sockc); 1253 if (unlikely(err)) { 1254 err = -EINVAL; 1255 goto out_err; 1256 } 1257 } 1258 1259 /* This should be in poll */ 1260 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1261 1262 /* Ok commence sending. */ 1263 copied = 0; 1264 1265 restart: 1266 mss_now = tcp_send_mss(sk, &size_goal, flags); 1267 1268 err = -EPIPE; 1269 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1270 goto do_error; 1271 1272 while (msg_data_left(msg)) { 1273 int copy = 0; 1274 1275 skb = tcp_write_queue_tail(sk); 1276 if (skb) 1277 copy = size_goal - skb->len; 1278 1279 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1280 bool first_skb; 1281 1282 new_segment: 1283 if (!sk_stream_memory_free(sk)) 1284 goto wait_for_space; 1285 1286 if (unlikely(process_backlog >= 16)) { 1287 process_backlog = 0; 1288 if (sk_flush_backlog(sk)) 1289 goto restart; 1290 } 1291 first_skb = tcp_rtx_and_write_queues_empty(sk); 1292 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1293 first_skb); 1294 if (!skb) 1295 goto wait_for_space; 1296 1297 process_backlog++; 1298 skb->ip_summed = CHECKSUM_PARTIAL; 1299 1300 tcp_skb_entail(sk, skb); 1301 copy = size_goal; 1302 1303 /* All packets are restored as if they have 1304 * already been sent. skb_mstamp_ns isn't set to 1305 * avoid wrong rtt estimation. 1306 */ 1307 if (tp->repair) 1308 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1309 } 1310 1311 /* Try to append data to the end of skb. */ 1312 if (copy > msg_data_left(msg)) 1313 copy = msg_data_left(msg); 1314 1315 /* Where to copy to? */ 1316 if (skb_availroom(skb) > 0 && !zc) { 1317 /* We have some space in skb head. Superb! */ 1318 copy = min_t(int, copy, skb_availroom(skb)); 1319 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1320 if (err) 1321 goto do_fault; 1322 } else if (!zc) { 1323 bool merge = true; 1324 int i = skb_shinfo(skb)->nr_frags; 1325 struct page_frag *pfrag = sk_page_frag(sk); 1326 1327 if (!sk_page_frag_refill(sk, pfrag)) 1328 goto wait_for_space; 1329 1330 if (!skb_can_coalesce(skb, i, pfrag->page, 1331 pfrag->offset)) { 1332 if (i >= sysctl_max_skb_frags) { 1333 tcp_mark_push(tp, skb); 1334 goto new_segment; 1335 } 1336 merge = false; 1337 } 1338 1339 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1340 1341 if (!sk_wmem_schedule(sk, copy)) 1342 goto wait_for_space; 1343 1344 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1345 pfrag->page, 1346 pfrag->offset, 1347 copy); 1348 if (err) 1349 goto do_error; 1350 1351 /* Update the skb. */ 1352 if (merge) { 1353 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1354 } else { 1355 skb_fill_page_desc(skb, i, pfrag->page, 1356 pfrag->offset, copy); 1357 page_ref_inc(pfrag->page); 1358 } 1359 pfrag->offset += copy; 1360 } else { 1361 if (!sk_wmem_schedule(sk, copy)) 1362 goto wait_for_space; 1363 1364 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1365 if (err == -EMSGSIZE || err == -EEXIST) { 1366 tcp_mark_push(tp, skb); 1367 goto new_segment; 1368 } 1369 if (err < 0) 1370 goto do_error; 1371 copy = err; 1372 } 1373 1374 if (!copied) 1375 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1376 1377 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1378 TCP_SKB_CB(skb)->end_seq += copy; 1379 tcp_skb_pcount_set(skb, 0); 1380 1381 copied += copy; 1382 if (!msg_data_left(msg)) { 1383 if (unlikely(flags & MSG_EOR)) 1384 TCP_SKB_CB(skb)->eor = 1; 1385 goto out; 1386 } 1387 1388 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1389 continue; 1390 1391 if (forced_push(tp)) { 1392 tcp_mark_push(tp, skb); 1393 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1394 } else if (skb == tcp_send_head(sk)) 1395 tcp_push_one(sk, mss_now); 1396 continue; 1397 1398 wait_for_space: 1399 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1400 if (copied) 1401 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1402 TCP_NAGLE_PUSH, size_goal); 1403 1404 err = sk_stream_wait_memory(sk, &timeo); 1405 if (err != 0) 1406 goto do_error; 1407 1408 mss_now = tcp_send_mss(sk, &size_goal, flags); 1409 } 1410 1411 out: 1412 if (copied) { 1413 tcp_tx_timestamp(sk, sockc.tsflags); 1414 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1415 } 1416 out_nopush: 1417 net_zcopy_put(uarg); 1418 return copied + copied_syn; 1419 1420 do_error: 1421 skb = tcp_write_queue_tail(sk); 1422 do_fault: 1423 tcp_remove_empty_skb(sk, skb); 1424 1425 if (copied + copied_syn) 1426 goto out; 1427 out_err: 1428 net_zcopy_put_abort(uarg, true); 1429 err = sk_stream_error(sk, flags, err); 1430 /* make sure we wake any epoll edge trigger waiter */ 1431 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1432 sk->sk_write_space(sk); 1433 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1434 } 1435 return err; 1436 } 1437 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1438 1439 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1440 { 1441 int ret; 1442 1443 lock_sock(sk); 1444 ret = tcp_sendmsg_locked(sk, msg, size); 1445 release_sock(sk); 1446 1447 return ret; 1448 } 1449 EXPORT_SYMBOL(tcp_sendmsg); 1450 1451 /* 1452 * Handle reading urgent data. BSD has very simple semantics for 1453 * this, no blocking and very strange errors 8) 1454 */ 1455 1456 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1457 { 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 1460 /* No URG data to read. */ 1461 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1462 tp->urg_data == TCP_URG_READ) 1463 return -EINVAL; /* Yes this is right ! */ 1464 1465 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1466 return -ENOTCONN; 1467 1468 if (tp->urg_data & TCP_URG_VALID) { 1469 int err = 0; 1470 char c = tp->urg_data; 1471 1472 if (!(flags & MSG_PEEK)) 1473 tp->urg_data = TCP_URG_READ; 1474 1475 /* Read urgent data. */ 1476 msg->msg_flags |= MSG_OOB; 1477 1478 if (len > 0) { 1479 if (!(flags & MSG_TRUNC)) 1480 err = memcpy_to_msg(msg, &c, 1); 1481 len = 1; 1482 } else 1483 msg->msg_flags |= MSG_TRUNC; 1484 1485 return err ? -EFAULT : len; 1486 } 1487 1488 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1489 return 0; 1490 1491 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1492 * the available implementations agree in this case: 1493 * this call should never block, independent of the 1494 * blocking state of the socket. 1495 * Mike <pall@rz.uni-karlsruhe.de> 1496 */ 1497 return -EAGAIN; 1498 } 1499 1500 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1501 { 1502 struct sk_buff *skb; 1503 int copied = 0, err = 0; 1504 1505 /* XXX -- need to support SO_PEEK_OFF */ 1506 1507 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1508 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1509 if (err) 1510 return err; 1511 copied += skb->len; 1512 } 1513 1514 skb_queue_walk(&sk->sk_write_queue, skb) { 1515 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1516 if (err) 1517 break; 1518 1519 copied += skb->len; 1520 } 1521 1522 return err ?: copied; 1523 } 1524 1525 /* Clean up the receive buffer for full frames taken by the user, 1526 * then send an ACK if necessary. COPIED is the number of bytes 1527 * tcp_recvmsg has given to the user so far, it speeds up the 1528 * calculation of whether or not we must ACK for the sake of 1529 * a window update. 1530 */ 1531 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1532 { 1533 struct tcp_sock *tp = tcp_sk(sk); 1534 bool time_to_ack = false; 1535 1536 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1537 1538 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1539 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1540 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1541 1542 if (inet_csk_ack_scheduled(sk)) { 1543 const struct inet_connection_sock *icsk = inet_csk(sk); 1544 1545 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1546 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1547 /* 1548 * If this read emptied read buffer, we send ACK, if 1549 * connection is not bidirectional, user drained 1550 * receive buffer and there was a small segment 1551 * in queue. 1552 */ 1553 (copied > 0 && 1554 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1555 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1556 !inet_csk_in_pingpong_mode(sk))) && 1557 !atomic_read(&sk->sk_rmem_alloc))) 1558 time_to_ack = true; 1559 } 1560 1561 /* We send an ACK if we can now advertise a non-zero window 1562 * which has been raised "significantly". 1563 * 1564 * Even if window raised up to infinity, do not send window open ACK 1565 * in states, where we will not receive more. It is useless. 1566 */ 1567 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1568 __u32 rcv_window_now = tcp_receive_window(tp); 1569 1570 /* Optimize, __tcp_select_window() is not cheap. */ 1571 if (2*rcv_window_now <= tp->window_clamp) { 1572 __u32 new_window = __tcp_select_window(sk); 1573 1574 /* Send ACK now, if this read freed lots of space 1575 * in our buffer. Certainly, new_window is new window. 1576 * We can advertise it now, if it is not less than current one. 1577 * "Lots" means "at least twice" here. 1578 */ 1579 if (new_window && new_window >= 2 * rcv_window_now) 1580 time_to_ack = true; 1581 } 1582 } 1583 if (time_to_ack) 1584 tcp_send_ack(sk); 1585 } 1586 1587 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1588 { 1589 struct sk_buff *skb; 1590 u32 offset; 1591 1592 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1593 offset = seq - TCP_SKB_CB(skb)->seq; 1594 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1595 pr_err_once("%s: found a SYN, please report !\n", __func__); 1596 offset--; 1597 } 1598 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1599 *off = offset; 1600 return skb; 1601 } 1602 /* This looks weird, but this can happen if TCP collapsing 1603 * splitted a fat GRO packet, while we released socket lock 1604 * in skb_splice_bits() 1605 */ 1606 sk_eat_skb(sk, skb); 1607 } 1608 return NULL; 1609 } 1610 1611 /* 1612 * This routine provides an alternative to tcp_recvmsg() for routines 1613 * that would like to handle copying from skbuffs directly in 'sendfile' 1614 * fashion. 1615 * Note: 1616 * - It is assumed that the socket was locked by the caller. 1617 * - The routine does not block. 1618 * - At present, there is no support for reading OOB data 1619 * or for 'peeking' the socket using this routine 1620 * (although both would be easy to implement). 1621 */ 1622 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1623 sk_read_actor_t recv_actor) 1624 { 1625 struct sk_buff *skb; 1626 struct tcp_sock *tp = tcp_sk(sk); 1627 u32 seq = tp->copied_seq; 1628 u32 offset; 1629 int copied = 0; 1630 1631 if (sk->sk_state == TCP_LISTEN) 1632 return -ENOTCONN; 1633 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1634 if (offset < skb->len) { 1635 int used; 1636 size_t len; 1637 1638 len = skb->len - offset; 1639 /* Stop reading if we hit a patch of urgent data */ 1640 if (tp->urg_data) { 1641 u32 urg_offset = tp->urg_seq - seq; 1642 if (urg_offset < len) 1643 len = urg_offset; 1644 if (!len) 1645 break; 1646 } 1647 used = recv_actor(desc, skb, offset, len); 1648 if (used <= 0) { 1649 if (!copied) 1650 copied = used; 1651 break; 1652 } else if (used <= len) { 1653 seq += used; 1654 copied += used; 1655 offset += used; 1656 } 1657 /* If recv_actor drops the lock (e.g. TCP splice 1658 * receive) the skb pointer might be invalid when 1659 * getting here: tcp_collapse might have deleted it 1660 * while aggregating skbs from the socket queue. 1661 */ 1662 skb = tcp_recv_skb(sk, seq - 1, &offset); 1663 if (!skb) 1664 break; 1665 /* TCP coalescing might have appended data to the skb. 1666 * Try to splice more frags 1667 */ 1668 if (offset + 1 != skb->len) 1669 continue; 1670 } 1671 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1672 sk_eat_skb(sk, skb); 1673 ++seq; 1674 break; 1675 } 1676 sk_eat_skb(sk, skb); 1677 if (!desc->count) 1678 break; 1679 WRITE_ONCE(tp->copied_seq, seq); 1680 } 1681 WRITE_ONCE(tp->copied_seq, seq); 1682 1683 tcp_rcv_space_adjust(sk); 1684 1685 /* Clean up data we have read: This will do ACK frames. */ 1686 if (copied > 0) { 1687 tcp_recv_skb(sk, seq, &offset); 1688 tcp_cleanup_rbuf(sk, copied); 1689 } 1690 return copied; 1691 } 1692 EXPORT_SYMBOL(tcp_read_sock); 1693 1694 int tcp_peek_len(struct socket *sock) 1695 { 1696 return tcp_inq(sock->sk); 1697 } 1698 EXPORT_SYMBOL(tcp_peek_len); 1699 1700 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1701 int tcp_set_rcvlowat(struct sock *sk, int val) 1702 { 1703 int cap; 1704 1705 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1706 cap = sk->sk_rcvbuf >> 1; 1707 else 1708 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1709 val = min(val, cap); 1710 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1711 1712 /* Check if we need to signal EPOLLIN right now */ 1713 tcp_data_ready(sk); 1714 1715 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1716 return 0; 1717 1718 val <<= 1; 1719 if (val > sk->sk_rcvbuf) { 1720 WRITE_ONCE(sk->sk_rcvbuf, val); 1721 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1722 } 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(tcp_set_rcvlowat); 1726 1727 void tcp_update_recv_tstamps(struct sk_buff *skb, 1728 struct scm_timestamping_internal *tss) 1729 { 1730 if (skb->tstamp) 1731 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1732 else 1733 tss->ts[0] = (struct timespec64) {0}; 1734 1735 if (skb_hwtstamps(skb)->hwtstamp) 1736 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1737 else 1738 tss->ts[2] = (struct timespec64) {0}; 1739 } 1740 1741 #ifdef CONFIG_MMU 1742 static const struct vm_operations_struct tcp_vm_ops = { 1743 }; 1744 1745 int tcp_mmap(struct file *file, struct socket *sock, 1746 struct vm_area_struct *vma) 1747 { 1748 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1749 return -EPERM; 1750 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1751 1752 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1753 vma->vm_flags |= VM_MIXEDMAP; 1754 1755 vma->vm_ops = &tcp_vm_ops; 1756 return 0; 1757 } 1758 EXPORT_SYMBOL(tcp_mmap); 1759 1760 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1761 u32 *offset_frag) 1762 { 1763 skb_frag_t *frag; 1764 1765 offset_skb -= skb_headlen(skb); 1766 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1767 return NULL; 1768 1769 frag = skb_shinfo(skb)->frags; 1770 while (offset_skb) { 1771 if (skb_frag_size(frag) > offset_skb) { 1772 *offset_frag = offset_skb; 1773 return frag; 1774 } 1775 offset_skb -= skb_frag_size(frag); 1776 ++frag; 1777 } 1778 *offset_frag = 0; 1779 return frag; 1780 } 1781 1782 static bool can_map_frag(const skb_frag_t *frag) 1783 { 1784 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1785 } 1786 1787 static int find_next_mappable_frag(const skb_frag_t *frag, 1788 int remaining_in_skb) 1789 { 1790 int offset = 0; 1791 1792 if (likely(can_map_frag(frag))) 1793 return 0; 1794 1795 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1796 offset += skb_frag_size(frag); 1797 ++frag; 1798 } 1799 return offset; 1800 } 1801 1802 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1803 struct tcp_zerocopy_receive *zc, 1804 struct sk_buff *skb, u32 offset) 1805 { 1806 u32 frag_offset, partial_frag_remainder = 0; 1807 int mappable_offset; 1808 skb_frag_t *frag; 1809 1810 /* worst case: skip to next skb. try to improve on this case below */ 1811 zc->recv_skip_hint = skb->len - offset; 1812 1813 /* Find the frag containing this offset (and how far into that frag) */ 1814 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1815 if (!frag) 1816 return; 1817 1818 if (frag_offset) { 1819 struct skb_shared_info *info = skb_shinfo(skb); 1820 1821 /* We read part of the last frag, must recvmsg() rest of skb. */ 1822 if (frag == &info->frags[info->nr_frags - 1]) 1823 return; 1824 1825 /* Else, we must at least read the remainder in this frag. */ 1826 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1827 zc->recv_skip_hint -= partial_frag_remainder; 1828 ++frag; 1829 } 1830 1831 /* partial_frag_remainder: If part way through a frag, must read rest. 1832 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1833 * in partial_frag_remainder. 1834 */ 1835 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1836 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1837 } 1838 1839 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1840 int nonblock, int flags, 1841 struct scm_timestamping_internal *tss, 1842 int *cmsg_flags); 1843 static int receive_fallback_to_copy(struct sock *sk, 1844 struct tcp_zerocopy_receive *zc, int inq, 1845 struct scm_timestamping_internal *tss) 1846 { 1847 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1848 struct msghdr msg = {}; 1849 struct iovec iov; 1850 int err; 1851 1852 zc->length = 0; 1853 zc->recv_skip_hint = 0; 1854 1855 if (copy_address != zc->copybuf_address) 1856 return -EINVAL; 1857 1858 err = import_single_range(READ, (void __user *)copy_address, 1859 inq, &iov, &msg.msg_iter); 1860 if (err) 1861 return err; 1862 1863 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1864 tss, &zc->msg_flags); 1865 if (err < 0) 1866 return err; 1867 1868 zc->copybuf_len = err; 1869 if (likely(zc->copybuf_len)) { 1870 struct sk_buff *skb; 1871 u32 offset; 1872 1873 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1874 if (skb) 1875 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1876 } 1877 return 0; 1878 } 1879 1880 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1881 struct sk_buff *skb, u32 copylen, 1882 u32 *offset, u32 *seq) 1883 { 1884 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1885 struct msghdr msg = {}; 1886 struct iovec iov; 1887 int err; 1888 1889 if (copy_address != zc->copybuf_address) 1890 return -EINVAL; 1891 1892 err = import_single_range(READ, (void __user *)copy_address, 1893 copylen, &iov, &msg.msg_iter); 1894 if (err) 1895 return err; 1896 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1897 if (err) 1898 return err; 1899 zc->recv_skip_hint -= copylen; 1900 *offset += copylen; 1901 *seq += copylen; 1902 return (__s32)copylen; 1903 } 1904 1905 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1906 struct sock *sk, 1907 struct sk_buff *skb, 1908 u32 *seq, 1909 s32 copybuf_len, 1910 struct scm_timestamping_internal *tss) 1911 { 1912 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1913 1914 if (!copylen) 1915 return 0; 1916 /* skb is null if inq < PAGE_SIZE. */ 1917 if (skb) { 1918 offset = *seq - TCP_SKB_CB(skb)->seq; 1919 } else { 1920 skb = tcp_recv_skb(sk, *seq, &offset); 1921 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1922 tcp_update_recv_tstamps(skb, tss); 1923 zc->msg_flags |= TCP_CMSG_TS; 1924 } 1925 } 1926 1927 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1928 seq); 1929 return zc->copybuf_len < 0 ? 0 : copylen; 1930 } 1931 1932 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1933 struct page **pending_pages, 1934 unsigned long pages_remaining, 1935 unsigned long *address, 1936 u32 *length, 1937 u32 *seq, 1938 struct tcp_zerocopy_receive *zc, 1939 u32 total_bytes_to_map, 1940 int err) 1941 { 1942 /* At least one page did not map. Try zapping if we skipped earlier. */ 1943 if (err == -EBUSY && 1944 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1945 u32 maybe_zap_len; 1946 1947 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1948 *length + /* Mapped or pending */ 1949 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1950 zap_page_range(vma, *address, maybe_zap_len); 1951 err = 0; 1952 } 1953 1954 if (!err) { 1955 unsigned long leftover_pages = pages_remaining; 1956 int bytes_mapped; 1957 1958 /* We called zap_page_range, try to reinsert. */ 1959 err = vm_insert_pages(vma, *address, 1960 pending_pages, 1961 &pages_remaining); 1962 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1963 *seq += bytes_mapped; 1964 *address += bytes_mapped; 1965 } 1966 if (err) { 1967 /* Either we were unable to zap, OR we zapped, retried an 1968 * insert, and still had an issue. Either ways, pages_remaining 1969 * is the number of pages we were unable to map, and we unroll 1970 * some state we speculatively touched before. 1971 */ 1972 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1973 1974 *length -= bytes_not_mapped; 1975 zc->recv_skip_hint += bytes_not_mapped; 1976 } 1977 return err; 1978 } 1979 1980 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1981 struct page **pages, 1982 unsigned int pages_to_map, 1983 unsigned long *address, 1984 u32 *length, 1985 u32 *seq, 1986 struct tcp_zerocopy_receive *zc, 1987 u32 total_bytes_to_map) 1988 { 1989 unsigned long pages_remaining = pages_to_map; 1990 unsigned int pages_mapped; 1991 unsigned int bytes_mapped; 1992 int err; 1993 1994 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1995 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1996 bytes_mapped = PAGE_SIZE * pages_mapped; 1997 /* Even if vm_insert_pages fails, it may have partially succeeded in 1998 * mapping (some but not all of the pages). 1999 */ 2000 *seq += bytes_mapped; 2001 *address += bytes_mapped; 2002 2003 if (likely(!err)) 2004 return 0; 2005 2006 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2007 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2008 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2009 err); 2010 } 2011 2012 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2013 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2014 struct tcp_zerocopy_receive *zc, 2015 struct scm_timestamping_internal *tss) 2016 { 2017 unsigned long msg_control_addr; 2018 struct msghdr cmsg_dummy; 2019 2020 msg_control_addr = (unsigned long)zc->msg_control; 2021 cmsg_dummy.msg_control = (void *)msg_control_addr; 2022 cmsg_dummy.msg_controllen = 2023 (__kernel_size_t)zc->msg_controllen; 2024 cmsg_dummy.msg_flags = in_compat_syscall() 2025 ? MSG_CMSG_COMPAT : 0; 2026 cmsg_dummy.msg_control_is_user = true; 2027 zc->msg_flags = 0; 2028 if (zc->msg_control == msg_control_addr && 2029 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2030 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2031 zc->msg_control = (__u64) 2032 ((uintptr_t)cmsg_dummy.msg_control); 2033 zc->msg_controllen = 2034 (__u64)cmsg_dummy.msg_controllen; 2035 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2036 } 2037 } 2038 2039 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2040 static int tcp_zerocopy_receive(struct sock *sk, 2041 struct tcp_zerocopy_receive *zc, 2042 struct scm_timestamping_internal *tss) 2043 { 2044 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2045 unsigned long address = (unsigned long)zc->address; 2046 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2047 s32 copybuf_len = zc->copybuf_len; 2048 struct tcp_sock *tp = tcp_sk(sk); 2049 const skb_frag_t *frags = NULL; 2050 unsigned int pages_to_map = 0; 2051 struct vm_area_struct *vma; 2052 struct sk_buff *skb = NULL; 2053 u32 seq = tp->copied_seq; 2054 u32 total_bytes_to_map; 2055 int inq = tcp_inq(sk); 2056 int ret; 2057 2058 zc->copybuf_len = 0; 2059 zc->msg_flags = 0; 2060 2061 if (address & (PAGE_SIZE - 1) || address != zc->address) 2062 return -EINVAL; 2063 2064 if (sk->sk_state == TCP_LISTEN) 2065 return -ENOTCONN; 2066 2067 sock_rps_record_flow(sk); 2068 2069 if (inq && inq <= copybuf_len) 2070 return receive_fallback_to_copy(sk, zc, inq, tss); 2071 2072 if (inq < PAGE_SIZE) { 2073 zc->length = 0; 2074 zc->recv_skip_hint = inq; 2075 if (!inq && sock_flag(sk, SOCK_DONE)) 2076 return -EIO; 2077 return 0; 2078 } 2079 2080 mmap_read_lock(current->mm); 2081 2082 vma = vma_lookup(current->mm, address); 2083 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2084 mmap_read_unlock(current->mm); 2085 return -EINVAL; 2086 } 2087 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2088 avail_len = min_t(u32, vma_len, inq); 2089 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2090 if (total_bytes_to_map) { 2091 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2092 zap_page_range(vma, address, total_bytes_to_map); 2093 zc->length = total_bytes_to_map; 2094 zc->recv_skip_hint = 0; 2095 } else { 2096 zc->length = avail_len; 2097 zc->recv_skip_hint = avail_len; 2098 } 2099 ret = 0; 2100 while (length + PAGE_SIZE <= zc->length) { 2101 int mappable_offset; 2102 struct page *page; 2103 2104 if (zc->recv_skip_hint < PAGE_SIZE) { 2105 u32 offset_frag; 2106 2107 if (skb) { 2108 if (zc->recv_skip_hint > 0) 2109 break; 2110 skb = skb->next; 2111 offset = seq - TCP_SKB_CB(skb)->seq; 2112 } else { 2113 skb = tcp_recv_skb(sk, seq, &offset); 2114 } 2115 2116 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2117 tcp_update_recv_tstamps(skb, tss); 2118 zc->msg_flags |= TCP_CMSG_TS; 2119 } 2120 zc->recv_skip_hint = skb->len - offset; 2121 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2122 if (!frags || offset_frag) 2123 break; 2124 } 2125 2126 mappable_offset = find_next_mappable_frag(frags, 2127 zc->recv_skip_hint); 2128 if (mappable_offset) { 2129 zc->recv_skip_hint = mappable_offset; 2130 break; 2131 } 2132 page = skb_frag_page(frags); 2133 prefetchw(page); 2134 pages[pages_to_map++] = page; 2135 length += PAGE_SIZE; 2136 zc->recv_skip_hint -= PAGE_SIZE; 2137 frags++; 2138 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2139 zc->recv_skip_hint < PAGE_SIZE) { 2140 /* Either full batch, or we're about to go to next skb 2141 * (and we cannot unroll failed ops across skbs). 2142 */ 2143 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2144 pages_to_map, 2145 &address, &length, 2146 &seq, zc, 2147 total_bytes_to_map); 2148 if (ret) 2149 goto out; 2150 pages_to_map = 0; 2151 } 2152 } 2153 if (pages_to_map) { 2154 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2155 &address, &length, &seq, 2156 zc, total_bytes_to_map); 2157 } 2158 out: 2159 mmap_read_unlock(current->mm); 2160 /* Try to copy straggler data. */ 2161 if (!ret) 2162 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2163 2164 if (length + copylen) { 2165 WRITE_ONCE(tp->copied_seq, seq); 2166 tcp_rcv_space_adjust(sk); 2167 2168 /* Clean up data we have read: This will do ACK frames. */ 2169 tcp_recv_skb(sk, seq, &offset); 2170 tcp_cleanup_rbuf(sk, length + copylen); 2171 ret = 0; 2172 if (length == zc->length) 2173 zc->recv_skip_hint = 0; 2174 } else { 2175 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2176 ret = -EIO; 2177 } 2178 zc->length = length; 2179 return ret; 2180 } 2181 #endif 2182 2183 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2184 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2185 struct scm_timestamping_internal *tss) 2186 { 2187 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2188 bool has_timestamping = false; 2189 2190 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2191 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2192 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2193 if (new_tstamp) { 2194 struct __kernel_timespec kts = { 2195 .tv_sec = tss->ts[0].tv_sec, 2196 .tv_nsec = tss->ts[0].tv_nsec, 2197 }; 2198 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2199 sizeof(kts), &kts); 2200 } else { 2201 struct __kernel_old_timespec ts_old = { 2202 .tv_sec = tss->ts[0].tv_sec, 2203 .tv_nsec = tss->ts[0].tv_nsec, 2204 }; 2205 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2206 sizeof(ts_old), &ts_old); 2207 } 2208 } else { 2209 if (new_tstamp) { 2210 struct __kernel_sock_timeval stv = { 2211 .tv_sec = tss->ts[0].tv_sec, 2212 .tv_usec = tss->ts[0].tv_nsec / 1000, 2213 }; 2214 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2215 sizeof(stv), &stv); 2216 } else { 2217 struct __kernel_old_timeval tv = { 2218 .tv_sec = tss->ts[0].tv_sec, 2219 .tv_usec = tss->ts[0].tv_nsec / 1000, 2220 }; 2221 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2222 sizeof(tv), &tv); 2223 } 2224 } 2225 } 2226 2227 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2228 has_timestamping = true; 2229 else 2230 tss->ts[0] = (struct timespec64) {0}; 2231 } 2232 2233 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2234 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2235 has_timestamping = true; 2236 else 2237 tss->ts[2] = (struct timespec64) {0}; 2238 } 2239 2240 if (has_timestamping) { 2241 tss->ts[1] = (struct timespec64) {0}; 2242 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2243 put_cmsg_scm_timestamping64(msg, tss); 2244 else 2245 put_cmsg_scm_timestamping(msg, tss); 2246 } 2247 } 2248 2249 static int tcp_inq_hint(struct sock *sk) 2250 { 2251 const struct tcp_sock *tp = tcp_sk(sk); 2252 u32 copied_seq = READ_ONCE(tp->copied_seq); 2253 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2254 int inq; 2255 2256 inq = rcv_nxt - copied_seq; 2257 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2258 lock_sock(sk); 2259 inq = tp->rcv_nxt - tp->copied_seq; 2260 release_sock(sk); 2261 } 2262 /* After receiving a FIN, tell the user-space to continue reading 2263 * by returning a non-zero inq. 2264 */ 2265 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2266 inq = 1; 2267 return inq; 2268 } 2269 2270 /* 2271 * This routine copies from a sock struct into the user buffer. 2272 * 2273 * Technical note: in 2.3 we work on _locked_ socket, so that 2274 * tricks with *seq access order and skb->users are not required. 2275 * Probably, code can be easily improved even more. 2276 */ 2277 2278 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2279 int nonblock, int flags, 2280 struct scm_timestamping_internal *tss, 2281 int *cmsg_flags) 2282 { 2283 struct tcp_sock *tp = tcp_sk(sk); 2284 int copied = 0; 2285 u32 peek_seq; 2286 u32 *seq; 2287 unsigned long used; 2288 int err; 2289 int target; /* Read at least this many bytes */ 2290 long timeo; 2291 struct sk_buff *skb, *last; 2292 u32 urg_hole = 0; 2293 2294 err = -ENOTCONN; 2295 if (sk->sk_state == TCP_LISTEN) 2296 goto out; 2297 2298 if (tp->recvmsg_inq) 2299 *cmsg_flags = TCP_CMSG_INQ; 2300 timeo = sock_rcvtimeo(sk, nonblock); 2301 2302 /* Urgent data needs to be handled specially. */ 2303 if (flags & MSG_OOB) 2304 goto recv_urg; 2305 2306 if (unlikely(tp->repair)) { 2307 err = -EPERM; 2308 if (!(flags & MSG_PEEK)) 2309 goto out; 2310 2311 if (tp->repair_queue == TCP_SEND_QUEUE) 2312 goto recv_sndq; 2313 2314 err = -EINVAL; 2315 if (tp->repair_queue == TCP_NO_QUEUE) 2316 goto out; 2317 2318 /* 'common' recv queue MSG_PEEK-ing */ 2319 } 2320 2321 seq = &tp->copied_seq; 2322 if (flags & MSG_PEEK) { 2323 peek_seq = tp->copied_seq; 2324 seq = &peek_seq; 2325 } 2326 2327 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2328 2329 do { 2330 u32 offset; 2331 2332 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2333 if (tp->urg_data && tp->urg_seq == *seq) { 2334 if (copied) 2335 break; 2336 if (signal_pending(current)) { 2337 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2338 break; 2339 } 2340 } 2341 2342 /* Next get a buffer. */ 2343 2344 last = skb_peek_tail(&sk->sk_receive_queue); 2345 skb_queue_walk(&sk->sk_receive_queue, skb) { 2346 last = skb; 2347 /* Now that we have two receive queues this 2348 * shouldn't happen. 2349 */ 2350 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2351 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2352 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2353 flags)) 2354 break; 2355 2356 offset = *seq - TCP_SKB_CB(skb)->seq; 2357 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2358 pr_err_once("%s: found a SYN, please report !\n", __func__); 2359 offset--; 2360 } 2361 if (offset < skb->len) 2362 goto found_ok_skb; 2363 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2364 goto found_fin_ok; 2365 WARN(!(flags & MSG_PEEK), 2366 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2367 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2368 } 2369 2370 /* Well, if we have backlog, try to process it now yet. */ 2371 2372 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2373 break; 2374 2375 if (copied) { 2376 if (sk->sk_err || 2377 sk->sk_state == TCP_CLOSE || 2378 (sk->sk_shutdown & RCV_SHUTDOWN) || 2379 !timeo || 2380 signal_pending(current)) 2381 break; 2382 } else { 2383 if (sock_flag(sk, SOCK_DONE)) 2384 break; 2385 2386 if (sk->sk_err) { 2387 copied = sock_error(sk); 2388 break; 2389 } 2390 2391 if (sk->sk_shutdown & RCV_SHUTDOWN) 2392 break; 2393 2394 if (sk->sk_state == TCP_CLOSE) { 2395 /* This occurs when user tries to read 2396 * from never connected socket. 2397 */ 2398 copied = -ENOTCONN; 2399 break; 2400 } 2401 2402 if (!timeo) { 2403 copied = -EAGAIN; 2404 break; 2405 } 2406 2407 if (signal_pending(current)) { 2408 copied = sock_intr_errno(timeo); 2409 break; 2410 } 2411 } 2412 2413 tcp_cleanup_rbuf(sk, copied); 2414 2415 if (copied >= target) { 2416 /* Do not sleep, just process backlog. */ 2417 release_sock(sk); 2418 lock_sock(sk); 2419 } else { 2420 sk_wait_data(sk, &timeo, last); 2421 } 2422 2423 if ((flags & MSG_PEEK) && 2424 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2425 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2426 current->comm, 2427 task_pid_nr(current)); 2428 peek_seq = tp->copied_seq; 2429 } 2430 continue; 2431 2432 found_ok_skb: 2433 /* Ok so how much can we use? */ 2434 used = skb->len - offset; 2435 if (len < used) 2436 used = len; 2437 2438 /* Do we have urgent data here? */ 2439 if (tp->urg_data) { 2440 u32 urg_offset = tp->urg_seq - *seq; 2441 if (urg_offset < used) { 2442 if (!urg_offset) { 2443 if (!sock_flag(sk, SOCK_URGINLINE)) { 2444 WRITE_ONCE(*seq, *seq + 1); 2445 urg_hole++; 2446 offset++; 2447 used--; 2448 if (!used) 2449 goto skip_copy; 2450 } 2451 } else 2452 used = urg_offset; 2453 } 2454 } 2455 2456 if (!(flags & MSG_TRUNC)) { 2457 err = skb_copy_datagram_msg(skb, offset, msg, used); 2458 if (err) { 2459 /* Exception. Bailout! */ 2460 if (!copied) 2461 copied = -EFAULT; 2462 break; 2463 } 2464 } 2465 2466 WRITE_ONCE(*seq, *seq + used); 2467 copied += used; 2468 len -= used; 2469 2470 tcp_rcv_space_adjust(sk); 2471 2472 skip_copy: 2473 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2474 tp->urg_data = 0; 2475 tcp_fast_path_check(sk); 2476 } 2477 2478 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2479 tcp_update_recv_tstamps(skb, tss); 2480 *cmsg_flags |= TCP_CMSG_TS; 2481 } 2482 2483 if (used + offset < skb->len) 2484 continue; 2485 2486 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2487 goto found_fin_ok; 2488 if (!(flags & MSG_PEEK)) 2489 sk_eat_skb(sk, skb); 2490 continue; 2491 2492 found_fin_ok: 2493 /* Process the FIN. */ 2494 WRITE_ONCE(*seq, *seq + 1); 2495 if (!(flags & MSG_PEEK)) 2496 sk_eat_skb(sk, skb); 2497 break; 2498 } while (len > 0); 2499 2500 /* According to UNIX98, msg_name/msg_namelen are ignored 2501 * on connected socket. I was just happy when found this 8) --ANK 2502 */ 2503 2504 /* Clean up data we have read: This will do ACK frames. */ 2505 tcp_cleanup_rbuf(sk, copied); 2506 return copied; 2507 2508 out: 2509 return err; 2510 2511 recv_urg: 2512 err = tcp_recv_urg(sk, msg, len, flags); 2513 goto out; 2514 2515 recv_sndq: 2516 err = tcp_peek_sndq(sk, msg, len); 2517 goto out; 2518 } 2519 2520 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2521 int flags, int *addr_len) 2522 { 2523 int cmsg_flags = 0, ret, inq; 2524 struct scm_timestamping_internal tss; 2525 2526 if (unlikely(flags & MSG_ERRQUEUE)) 2527 return inet_recv_error(sk, msg, len, addr_len); 2528 2529 if (sk_can_busy_loop(sk) && 2530 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2531 sk->sk_state == TCP_ESTABLISHED) 2532 sk_busy_loop(sk, nonblock); 2533 2534 lock_sock(sk); 2535 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2536 &cmsg_flags); 2537 release_sock(sk); 2538 2539 if (cmsg_flags && ret >= 0) { 2540 if (cmsg_flags & TCP_CMSG_TS) 2541 tcp_recv_timestamp(msg, sk, &tss); 2542 if (cmsg_flags & TCP_CMSG_INQ) { 2543 inq = tcp_inq_hint(sk); 2544 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2545 } 2546 } 2547 return ret; 2548 } 2549 EXPORT_SYMBOL(tcp_recvmsg); 2550 2551 void tcp_set_state(struct sock *sk, int state) 2552 { 2553 int oldstate = sk->sk_state; 2554 2555 /* We defined a new enum for TCP states that are exported in BPF 2556 * so as not force the internal TCP states to be frozen. The 2557 * following checks will detect if an internal state value ever 2558 * differs from the BPF value. If this ever happens, then we will 2559 * need to remap the internal value to the BPF value before calling 2560 * tcp_call_bpf_2arg. 2561 */ 2562 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2563 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2564 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2565 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2566 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2567 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2568 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2569 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2570 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2571 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2572 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2573 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2574 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2575 2576 /* bpf uapi header bpf.h defines an anonymous enum with values 2577 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2578 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2579 * But clang built vmlinux does not have this enum in DWARF 2580 * since clang removes the above code before generating IR/debuginfo. 2581 * Let us explicitly emit the type debuginfo to ensure the 2582 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2583 * regardless of which compiler is used. 2584 */ 2585 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2586 2587 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2588 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2589 2590 switch (state) { 2591 case TCP_ESTABLISHED: 2592 if (oldstate != TCP_ESTABLISHED) 2593 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2594 break; 2595 2596 case TCP_CLOSE: 2597 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2598 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2599 2600 sk->sk_prot->unhash(sk); 2601 if (inet_csk(sk)->icsk_bind_hash && 2602 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2603 inet_put_port(sk); 2604 fallthrough; 2605 default: 2606 if (oldstate == TCP_ESTABLISHED) 2607 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2608 } 2609 2610 /* Change state AFTER socket is unhashed to avoid closed 2611 * socket sitting in hash tables. 2612 */ 2613 inet_sk_state_store(sk, state); 2614 } 2615 EXPORT_SYMBOL_GPL(tcp_set_state); 2616 2617 /* 2618 * State processing on a close. This implements the state shift for 2619 * sending our FIN frame. Note that we only send a FIN for some 2620 * states. A shutdown() may have already sent the FIN, or we may be 2621 * closed. 2622 */ 2623 2624 static const unsigned char new_state[16] = { 2625 /* current state: new state: action: */ 2626 [0 /* (Invalid) */] = TCP_CLOSE, 2627 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2628 [TCP_SYN_SENT] = TCP_CLOSE, 2629 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2630 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2631 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2632 [TCP_TIME_WAIT] = TCP_CLOSE, 2633 [TCP_CLOSE] = TCP_CLOSE, 2634 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2635 [TCP_LAST_ACK] = TCP_LAST_ACK, 2636 [TCP_LISTEN] = TCP_CLOSE, 2637 [TCP_CLOSING] = TCP_CLOSING, 2638 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2639 }; 2640 2641 static int tcp_close_state(struct sock *sk) 2642 { 2643 int next = (int)new_state[sk->sk_state]; 2644 int ns = next & TCP_STATE_MASK; 2645 2646 tcp_set_state(sk, ns); 2647 2648 return next & TCP_ACTION_FIN; 2649 } 2650 2651 /* 2652 * Shutdown the sending side of a connection. Much like close except 2653 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2654 */ 2655 2656 void tcp_shutdown(struct sock *sk, int how) 2657 { 2658 /* We need to grab some memory, and put together a FIN, 2659 * and then put it into the queue to be sent. 2660 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2661 */ 2662 if (!(how & SEND_SHUTDOWN)) 2663 return; 2664 2665 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2666 if ((1 << sk->sk_state) & 2667 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2668 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2669 /* Clear out any half completed packets. FIN if needed. */ 2670 if (tcp_close_state(sk)) 2671 tcp_send_fin(sk); 2672 } 2673 } 2674 EXPORT_SYMBOL(tcp_shutdown); 2675 2676 int tcp_orphan_count_sum(void) 2677 { 2678 int i, total = 0; 2679 2680 for_each_possible_cpu(i) 2681 total += per_cpu(tcp_orphan_count, i); 2682 2683 return max(total, 0); 2684 } 2685 2686 static int tcp_orphan_cache; 2687 static struct timer_list tcp_orphan_timer; 2688 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2689 2690 static void tcp_orphan_update(struct timer_list *unused) 2691 { 2692 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2693 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2694 } 2695 2696 static bool tcp_too_many_orphans(int shift) 2697 { 2698 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2699 } 2700 2701 bool tcp_check_oom(struct sock *sk, int shift) 2702 { 2703 bool too_many_orphans, out_of_socket_memory; 2704 2705 too_many_orphans = tcp_too_many_orphans(shift); 2706 out_of_socket_memory = tcp_out_of_memory(sk); 2707 2708 if (too_many_orphans) 2709 net_info_ratelimited("too many orphaned sockets\n"); 2710 if (out_of_socket_memory) 2711 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2712 return too_many_orphans || out_of_socket_memory; 2713 } 2714 2715 void __tcp_close(struct sock *sk, long timeout) 2716 { 2717 struct sk_buff *skb; 2718 int data_was_unread = 0; 2719 int state; 2720 2721 sk->sk_shutdown = SHUTDOWN_MASK; 2722 2723 if (sk->sk_state == TCP_LISTEN) { 2724 tcp_set_state(sk, TCP_CLOSE); 2725 2726 /* Special case. */ 2727 inet_csk_listen_stop(sk); 2728 2729 goto adjudge_to_death; 2730 } 2731 2732 /* We need to flush the recv. buffs. We do this only on the 2733 * descriptor close, not protocol-sourced closes, because the 2734 * reader process may not have drained the data yet! 2735 */ 2736 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2737 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2738 2739 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2740 len--; 2741 data_was_unread += len; 2742 __kfree_skb(skb); 2743 } 2744 2745 sk_mem_reclaim(sk); 2746 2747 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2748 if (sk->sk_state == TCP_CLOSE) 2749 goto adjudge_to_death; 2750 2751 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2752 * data was lost. To witness the awful effects of the old behavior of 2753 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2754 * GET in an FTP client, suspend the process, wait for the client to 2755 * advertise a zero window, then kill -9 the FTP client, wheee... 2756 * Note: timeout is always zero in such a case. 2757 */ 2758 if (unlikely(tcp_sk(sk)->repair)) { 2759 sk->sk_prot->disconnect(sk, 0); 2760 } else if (data_was_unread) { 2761 /* Unread data was tossed, zap the connection. */ 2762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2763 tcp_set_state(sk, TCP_CLOSE); 2764 tcp_send_active_reset(sk, sk->sk_allocation); 2765 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2766 /* Check zero linger _after_ checking for unread data. */ 2767 sk->sk_prot->disconnect(sk, 0); 2768 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2769 } else if (tcp_close_state(sk)) { 2770 /* We FIN if the application ate all the data before 2771 * zapping the connection. 2772 */ 2773 2774 /* RED-PEN. Formally speaking, we have broken TCP state 2775 * machine. State transitions: 2776 * 2777 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2778 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2779 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2780 * 2781 * are legal only when FIN has been sent (i.e. in window), 2782 * rather than queued out of window. Purists blame. 2783 * 2784 * F.e. "RFC state" is ESTABLISHED, 2785 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2786 * 2787 * The visible declinations are that sometimes 2788 * we enter time-wait state, when it is not required really 2789 * (harmless), do not send active resets, when they are 2790 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2791 * they look as CLOSING or LAST_ACK for Linux) 2792 * Probably, I missed some more holelets. 2793 * --ANK 2794 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2795 * in a single packet! (May consider it later but will 2796 * probably need API support or TCP_CORK SYN-ACK until 2797 * data is written and socket is closed.) 2798 */ 2799 tcp_send_fin(sk); 2800 } 2801 2802 sk_stream_wait_close(sk, timeout); 2803 2804 adjudge_to_death: 2805 state = sk->sk_state; 2806 sock_hold(sk); 2807 sock_orphan(sk); 2808 2809 local_bh_disable(); 2810 bh_lock_sock(sk); 2811 /* remove backlog if any, without releasing ownership. */ 2812 __release_sock(sk); 2813 2814 this_cpu_inc(tcp_orphan_count); 2815 2816 /* Have we already been destroyed by a softirq or backlog? */ 2817 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2818 goto out; 2819 2820 /* This is a (useful) BSD violating of the RFC. There is a 2821 * problem with TCP as specified in that the other end could 2822 * keep a socket open forever with no application left this end. 2823 * We use a 1 minute timeout (about the same as BSD) then kill 2824 * our end. If they send after that then tough - BUT: long enough 2825 * that we won't make the old 4*rto = almost no time - whoops 2826 * reset mistake. 2827 * 2828 * Nope, it was not mistake. It is really desired behaviour 2829 * f.e. on http servers, when such sockets are useless, but 2830 * consume significant resources. Let's do it with special 2831 * linger2 option. --ANK 2832 */ 2833 2834 if (sk->sk_state == TCP_FIN_WAIT2) { 2835 struct tcp_sock *tp = tcp_sk(sk); 2836 if (tp->linger2 < 0) { 2837 tcp_set_state(sk, TCP_CLOSE); 2838 tcp_send_active_reset(sk, GFP_ATOMIC); 2839 __NET_INC_STATS(sock_net(sk), 2840 LINUX_MIB_TCPABORTONLINGER); 2841 } else { 2842 const int tmo = tcp_fin_time(sk); 2843 2844 if (tmo > TCP_TIMEWAIT_LEN) { 2845 inet_csk_reset_keepalive_timer(sk, 2846 tmo - TCP_TIMEWAIT_LEN); 2847 } else { 2848 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2849 goto out; 2850 } 2851 } 2852 } 2853 if (sk->sk_state != TCP_CLOSE) { 2854 sk_mem_reclaim(sk); 2855 if (tcp_check_oom(sk, 0)) { 2856 tcp_set_state(sk, TCP_CLOSE); 2857 tcp_send_active_reset(sk, GFP_ATOMIC); 2858 __NET_INC_STATS(sock_net(sk), 2859 LINUX_MIB_TCPABORTONMEMORY); 2860 } else if (!check_net(sock_net(sk))) { 2861 /* Not possible to send reset; just close */ 2862 tcp_set_state(sk, TCP_CLOSE); 2863 } 2864 } 2865 2866 if (sk->sk_state == TCP_CLOSE) { 2867 struct request_sock *req; 2868 2869 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2870 lockdep_sock_is_held(sk)); 2871 /* We could get here with a non-NULL req if the socket is 2872 * aborted (e.g., closed with unread data) before 3WHS 2873 * finishes. 2874 */ 2875 if (req) 2876 reqsk_fastopen_remove(sk, req, false); 2877 inet_csk_destroy_sock(sk); 2878 } 2879 /* Otherwise, socket is reprieved until protocol close. */ 2880 2881 out: 2882 bh_unlock_sock(sk); 2883 local_bh_enable(); 2884 } 2885 2886 void tcp_close(struct sock *sk, long timeout) 2887 { 2888 lock_sock(sk); 2889 __tcp_close(sk, timeout); 2890 release_sock(sk); 2891 sock_put(sk); 2892 } 2893 EXPORT_SYMBOL(tcp_close); 2894 2895 /* These states need RST on ABORT according to RFC793 */ 2896 2897 static inline bool tcp_need_reset(int state) 2898 { 2899 return (1 << state) & 2900 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2901 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2902 } 2903 2904 static void tcp_rtx_queue_purge(struct sock *sk) 2905 { 2906 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2907 2908 tcp_sk(sk)->highest_sack = NULL; 2909 while (p) { 2910 struct sk_buff *skb = rb_to_skb(p); 2911 2912 p = rb_next(p); 2913 /* Since we are deleting whole queue, no need to 2914 * list_del(&skb->tcp_tsorted_anchor) 2915 */ 2916 tcp_rtx_queue_unlink(skb, sk); 2917 sk_wmem_free_skb(sk, skb); 2918 } 2919 } 2920 2921 void tcp_write_queue_purge(struct sock *sk) 2922 { 2923 struct sk_buff *skb; 2924 2925 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2926 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2927 tcp_skb_tsorted_anchor_cleanup(skb); 2928 sk_wmem_free_skb(sk, skb); 2929 } 2930 tcp_rtx_queue_purge(sk); 2931 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2932 sk_mem_reclaim(sk); 2933 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2934 tcp_sk(sk)->packets_out = 0; 2935 inet_csk(sk)->icsk_backoff = 0; 2936 } 2937 2938 int tcp_disconnect(struct sock *sk, int flags) 2939 { 2940 struct inet_sock *inet = inet_sk(sk); 2941 struct inet_connection_sock *icsk = inet_csk(sk); 2942 struct tcp_sock *tp = tcp_sk(sk); 2943 int old_state = sk->sk_state; 2944 u32 seq; 2945 2946 if (old_state != TCP_CLOSE) 2947 tcp_set_state(sk, TCP_CLOSE); 2948 2949 /* ABORT function of RFC793 */ 2950 if (old_state == TCP_LISTEN) { 2951 inet_csk_listen_stop(sk); 2952 } else if (unlikely(tp->repair)) { 2953 sk->sk_err = ECONNABORTED; 2954 } else if (tcp_need_reset(old_state) || 2955 (tp->snd_nxt != tp->write_seq && 2956 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2957 /* The last check adjusts for discrepancy of Linux wrt. RFC 2958 * states 2959 */ 2960 tcp_send_active_reset(sk, gfp_any()); 2961 sk->sk_err = ECONNRESET; 2962 } else if (old_state == TCP_SYN_SENT) 2963 sk->sk_err = ECONNRESET; 2964 2965 tcp_clear_xmit_timers(sk); 2966 __skb_queue_purge(&sk->sk_receive_queue); 2967 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2968 tp->urg_data = 0; 2969 tcp_write_queue_purge(sk); 2970 tcp_fastopen_active_disable_ofo_check(sk); 2971 skb_rbtree_purge(&tp->out_of_order_queue); 2972 2973 inet->inet_dport = 0; 2974 2975 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2976 inet_reset_saddr(sk); 2977 2978 sk->sk_shutdown = 0; 2979 sock_reset_flag(sk, SOCK_DONE); 2980 tp->srtt_us = 0; 2981 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2982 tp->rcv_rtt_last_tsecr = 0; 2983 2984 seq = tp->write_seq + tp->max_window + 2; 2985 if (!seq) 2986 seq = 1; 2987 WRITE_ONCE(tp->write_seq, seq); 2988 2989 icsk->icsk_backoff = 0; 2990 icsk->icsk_probes_out = 0; 2991 icsk->icsk_probes_tstamp = 0; 2992 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2993 icsk->icsk_rto_min = TCP_RTO_MIN; 2994 icsk->icsk_delack_max = TCP_DELACK_MAX; 2995 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2996 tp->snd_cwnd = TCP_INIT_CWND; 2997 tp->snd_cwnd_cnt = 0; 2998 tp->window_clamp = 0; 2999 tp->delivered = 0; 3000 tp->delivered_ce = 0; 3001 if (icsk->icsk_ca_ops->release) 3002 icsk->icsk_ca_ops->release(sk); 3003 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3004 icsk->icsk_ca_initialized = 0; 3005 tcp_set_ca_state(sk, TCP_CA_Open); 3006 tp->is_sack_reneg = 0; 3007 tcp_clear_retrans(tp); 3008 tp->total_retrans = 0; 3009 inet_csk_delack_init(sk); 3010 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3011 * issue in __tcp_select_window() 3012 */ 3013 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3014 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3015 __sk_dst_reset(sk); 3016 dst_release(sk->sk_rx_dst); 3017 sk->sk_rx_dst = NULL; 3018 tcp_saved_syn_free(tp); 3019 tp->compressed_ack = 0; 3020 tp->segs_in = 0; 3021 tp->segs_out = 0; 3022 tp->bytes_sent = 0; 3023 tp->bytes_acked = 0; 3024 tp->bytes_received = 0; 3025 tp->bytes_retrans = 0; 3026 tp->data_segs_in = 0; 3027 tp->data_segs_out = 0; 3028 tp->duplicate_sack[0].start_seq = 0; 3029 tp->duplicate_sack[0].end_seq = 0; 3030 tp->dsack_dups = 0; 3031 tp->reord_seen = 0; 3032 tp->retrans_out = 0; 3033 tp->sacked_out = 0; 3034 tp->tlp_high_seq = 0; 3035 tp->last_oow_ack_time = 0; 3036 /* There's a bubble in the pipe until at least the first ACK. */ 3037 tp->app_limited = ~0U; 3038 tp->rack.mstamp = 0; 3039 tp->rack.advanced = 0; 3040 tp->rack.reo_wnd_steps = 1; 3041 tp->rack.last_delivered = 0; 3042 tp->rack.reo_wnd_persist = 0; 3043 tp->rack.dsack_seen = 0; 3044 tp->syn_data_acked = 0; 3045 tp->rx_opt.saw_tstamp = 0; 3046 tp->rx_opt.dsack = 0; 3047 tp->rx_opt.num_sacks = 0; 3048 tp->rcv_ooopack = 0; 3049 3050 3051 /* Clean up fastopen related fields */ 3052 tcp_free_fastopen_req(tp); 3053 inet->defer_connect = 0; 3054 tp->fastopen_client_fail = 0; 3055 3056 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3057 3058 if (sk->sk_frag.page) { 3059 put_page(sk->sk_frag.page); 3060 sk->sk_frag.page = NULL; 3061 sk->sk_frag.offset = 0; 3062 } 3063 3064 sk_error_report(sk); 3065 return 0; 3066 } 3067 EXPORT_SYMBOL(tcp_disconnect); 3068 3069 static inline bool tcp_can_repair_sock(const struct sock *sk) 3070 { 3071 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3072 (sk->sk_state != TCP_LISTEN); 3073 } 3074 3075 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3076 { 3077 struct tcp_repair_window opt; 3078 3079 if (!tp->repair) 3080 return -EPERM; 3081 3082 if (len != sizeof(opt)) 3083 return -EINVAL; 3084 3085 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3086 return -EFAULT; 3087 3088 if (opt.max_window < opt.snd_wnd) 3089 return -EINVAL; 3090 3091 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3092 return -EINVAL; 3093 3094 if (after(opt.rcv_wup, tp->rcv_nxt)) 3095 return -EINVAL; 3096 3097 tp->snd_wl1 = opt.snd_wl1; 3098 tp->snd_wnd = opt.snd_wnd; 3099 tp->max_window = opt.max_window; 3100 3101 tp->rcv_wnd = opt.rcv_wnd; 3102 tp->rcv_wup = opt.rcv_wup; 3103 3104 return 0; 3105 } 3106 3107 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3108 unsigned int len) 3109 { 3110 struct tcp_sock *tp = tcp_sk(sk); 3111 struct tcp_repair_opt opt; 3112 size_t offset = 0; 3113 3114 while (len >= sizeof(opt)) { 3115 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3116 return -EFAULT; 3117 3118 offset += sizeof(opt); 3119 len -= sizeof(opt); 3120 3121 switch (opt.opt_code) { 3122 case TCPOPT_MSS: 3123 tp->rx_opt.mss_clamp = opt.opt_val; 3124 tcp_mtup_init(sk); 3125 break; 3126 case TCPOPT_WINDOW: 3127 { 3128 u16 snd_wscale = opt.opt_val & 0xFFFF; 3129 u16 rcv_wscale = opt.opt_val >> 16; 3130 3131 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3132 return -EFBIG; 3133 3134 tp->rx_opt.snd_wscale = snd_wscale; 3135 tp->rx_opt.rcv_wscale = rcv_wscale; 3136 tp->rx_opt.wscale_ok = 1; 3137 } 3138 break; 3139 case TCPOPT_SACK_PERM: 3140 if (opt.opt_val != 0) 3141 return -EINVAL; 3142 3143 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3144 break; 3145 case TCPOPT_TIMESTAMP: 3146 if (opt.opt_val != 0) 3147 return -EINVAL; 3148 3149 tp->rx_opt.tstamp_ok = 1; 3150 break; 3151 } 3152 } 3153 3154 return 0; 3155 } 3156 3157 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3158 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3159 3160 static void tcp_enable_tx_delay(void) 3161 { 3162 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3163 static int __tcp_tx_delay_enabled = 0; 3164 3165 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3166 static_branch_enable(&tcp_tx_delay_enabled); 3167 pr_info("TCP_TX_DELAY enabled\n"); 3168 } 3169 } 3170 } 3171 3172 /* When set indicates to always queue non-full frames. Later the user clears 3173 * this option and we transmit any pending partial frames in the queue. This is 3174 * meant to be used alongside sendfile() to get properly filled frames when the 3175 * user (for example) must write out headers with a write() call first and then 3176 * use sendfile to send out the data parts. 3177 * 3178 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3179 * TCP_NODELAY. 3180 */ 3181 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3182 { 3183 struct tcp_sock *tp = tcp_sk(sk); 3184 3185 if (on) { 3186 tp->nonagle |= TCP_NAGLE_CORK; 3187 } else { 3188 tp->nonagle &= ~TCP_NAGLE_CORK; 3189 if (tp->nonagle & TCP_NAGLE_OFF) 3190 tp->nonagle |= TCP_NAGLE_PUSH; 3191 tcp_push_pending_frames(sk); 3192 } 3193 } 3194 3195 void tcp_sock_set_cork(struct sock *sk, bool on) 3196 { 3197 lock_sock(sk); 3198 __tcp_sock_set_cork(sk, on); 3199 release_sock(sk); 3200 } 3201 EXPORT_SYMBOL(tcp_sock_set_cork); 3202 3203 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3204 * remembered, but it is not activated until cork is cleared. 3205 * 3206 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3207 * even TCP_CORK for currently queued segments. 3208 */ 3209 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3210 { 3211 if (on) { 3212 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3213 tcp_push_pending_frames(sk); 3214 } else { 3215 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3216 } 3217 } 3218 3219 void tcp_sock_set_nodelay(struct sock *sk) 3220 { 3221 lock_sock(sk); 3222 __tcp_sock_set_nodelay(sk, true); 3223 release_sock(sk); 3224 } 3225 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3226 3227 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3228 { 3229 if (!val) { 3230 inet_csk_enter_pingpong_mode(sk); 3231 return; 3232 } 3233 3234 inet_csk_exit_pingpong_mode(sk); 3235 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3236 inet_csk_ack_scheduled(sk)) { 3237 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3238 tcp_cleanup_rbuf(sk, 1); 3239 if (!(val & 1)) 3240 inet_csk_enter_pingpong_mode(sk); 3241 } 3242 } 3243 3244 void tcp_sock_set_quickack(struct sock *sk, int val) 3245 { 3246 lock_sock(sk); 3247 __tcp_sock_set_quickack(sk, val); 3248 release_sock(sk); 3249 } 3250 EXPORT_SYMBOL(tcp_sock_set_quickack); 3251 3252 int tcp_sock_set_syncnt(struct sock *sk, int val) 3253 { 3254 if (val < 1 || val > MAX_TCP_SYNCNT) 3255 return -EINVAL; 3256 3257 lock_sock(sk); 3258 inet_csk(sk)->icsk_syn_retries = val; 3259 release_sock(sk); 3260 return 0; 3261 } 3262 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3263 3264 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3265 { 3266 lock_sock(sk); 3267 inet_csk(sk)->icsk_user_timeout = val; 3268 release_sock(sk); 3269 } 3270 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3271 3272 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3273 { 3274 struct tcp_sock *tp = tcp_sk(sk); 3275 3276 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3277 return -EINVAL; 3278 3279 tp->keepalive_time = val * HZ; 3280 if (sock_flag(sk, SOCK_KEEPOPEN) && 3281 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3282 u32 elapsed = keepalive_time_elapsed(tp); 3283 3284 if (tp->keepalive_time > elapsed) 3285 elapsed = tp->keepalive_time - elapsed; 3286 else 3287 elapsed = 0; 3288 inet_csk_reset_keepalive_timer(sk, elapsed); 3289 } 3290 3291 return 0; 3292 } 3293 3294 int tcp_sock_set_keepidle(struct sock *sk, int val) 3295 { 3296 int err; 3297 3298 lock_sock(sk); 3299 err = tcp_sock_set_keepidle_locked(sk, val); 3300 release_sock(sk); 3301 return err; 3302 } 3303 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3304 3305 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3306 { 3307 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3308 return -EINVAL; 3309 3310 lock_sock(sk); 3311 tcp_sk(sk)->keepalive_intvl = val * HZ; 3312 release_sock(sk); 3313 return 0; 3314 } 3315 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3316 3317 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3318 { 3319 if (val < 1 || val > MAX_TCP_KEEPCNT) 3320 return -EINVAL; 3321 3322 lock_sock(sk); 3323 tcp_sk(sk)->keepalive_probes = val; 3324 release_sock(sk); 3325 return 0; 3326 } 3327 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3328 3329 int tcp_set_window_clamp(struct sock *sk, int val) 3330 { 3331 struct tcp_sock *tp = tcp_sk(sk); 3332 3333 if (!val) { 3334 if (sk->sk_state != TCP_CLOSE) 3335 return -EINVAL; 3336 tp->window_clamp = 0; 3337 } else { 3338 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3339 SOCK_MIN_RCVBUF / 2 : val; 3340 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3341 } 3342 return 0; 3343 } 3344 3345 /* 3346 * Socket option code for TCP. 3347 */ 3348 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3349 sockptr_t optval, unsigned int optlen) 3350 { 3351 struct tcp_sock *tp = tcp_sk(sk); 3352 struct inet_connection_sock *icsk = inet_csk(sk); 3353 struct net *net = sock_net(sk); 3354 int val; 3355 int err = 0; 3356 3357 /* These are data/string values, all the others are ints */ 3358 switch (optname) { 3359 case TCP_CONGESTION: { 3360 char name[TCP_CA_NAME_MAX]; 3361 3362 if (optlen < 1) 3363 return -EINVAL; 3364 3365 val = strncpy_from_sockptr(name, optval, 3366 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3367 if (val < 0) 3368 return -EFAULT; 3369 name[val] = 0; 3370 3371 lock_sock(sk); 3372 err = tcp_set_congestion_control(sk, name, true, 3373 ns_capable(sock_net(sk)->user_ns, 3374 CAP_NET_ADMIN)); 3375 release_sock(sk); 3376 return err; 3377 } 3378 case TCP_ULP: { 3379 char name[TCP_ULP_NAME_MAX]; 3380 3381 if (optlen < 1) 3382 return -EINVAL; 3383 3384 val = strncpy_from_sockptr(name, optval, 3385 min_t(long, TCP_ULP_NAME_MAX - 1, 3386 optlen)); 3387 if (val < 0) 3388 return -EFAULT; 3389 name[val] = 0; 3390 3391 lock_sock(sk); 3392 err = tcp_set_ulp(sk, name); 3393 release_sock(sk); 3394 return err; 3395 } 3396 case TCP_FASTOPEN_KEY: { 3397 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3398 __u8 *backup_key = NULL; 3399 3400 /* Allow a backup key as well to facilitate key rotation 3401 * First key is the active one. 3402 */ 3403 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3404 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3405 return -EINVAL; 3406 3407 if (copy_from_sockptr(key, optval, optlen)) 3408 return -EFAULT; 3409 3410 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3411 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3412 3413 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3414 } 3415 default: 3416 /* fallthru */ 3417 break; 3418 } 3419 3420 if (optlen < sizeof(int)) 3421 return -EINVAL; 3422 3423 if (copy_from_sockptr(&val, optval, sizeof(val))) 3424 return -EFAULT; 3425 3426 lock_sock(sk); 3427 3428 switch (optname) { 3429 case TCP_MAXSEG: 3430 /* Values greater than interface MTU won't take effect. However 3431 * at the point when this call is done we typically don't yet 3432 * know which interface is going to be used 3433 */ 3434 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3435 err = -EINVAL; 3436 break; 3437 } 3438 tp->rx_opt.user_mss = val; 3439 break; 3440 3441 case TCP_NODELAY: 3442 __tcp_sock_set_nodelay(sk, val); 3443 break; 3444 3445 case TCP_THIN_LINEAR_TIMEOUTS: 3446 if (val < 0 || val > 1) 3447 err = -EINVAL; 3448 else 3449 tp->thin_lto = val; 3450 break; 3451 3452 case TCP_THIN_DUPACK: 3453 if (val < 0 || val > 1) 3454 err = -EINVAL; 3455 break; 3456 3457 case TCP_REPAIR: 3458 if (!tcp_can_repair_sock(sk)) 3459 err = -EPERM; 3460 else if (val == TCP_REPAIR_ON) { 3461 tp->repair = 1; 3462 sk->sk_reuse = SK_FORCE_REUSE; 3463 tp->repair_queue = TCP_NO_QUEUE; 3464 } else if (val == TCP_REPAIR_OFF) { 3465 tp->repair = 0; 3466 sk->sk_reuse = SK_NO_REUSE; 3467 tcp_send_window_probe(sk); 3468 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3469 tp->repair = 0; 3470 sk->sk_reuse = SK_NO_REUSE; 3471 } else 3472 err = -EINVAL; 3473 3474 break; 3475 3476 case TCP_REPAIR_QUEUE: 3477 if (!tp->repair) 3478 err = -EPERM; 3479 else if ((unsigned int)val < TCP_QUEUES_NR) 3480 tp->repair_queue = val; 3481 else 3482 err = -EINVAL; 3483 break; 3484 3485 case TCP_QUEUE_SEQ: 3486 if (sk->sk_state != TCP_CLOSE) { 3487 err = -EPERM; 3488 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3489 if (!tcp_rtx_queue_empty(sk)) 3490 err = -EPERM; 3491 else 3492 WRITE_ONCE(tp->write_seq, val); 3493 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3494 if (tp->rcv_nxt != tp->copied_seq) { 3495 err = -EPERM; 3496 } else { 3497 WRITE_ONCE(tp->rcv_nxt, val); 3498 WRITE_ONCE(tp->copied_seq, val); 3499 } 3500 } else { 3501 err = -EINVAL; 3502 } 3503 break; 3504 3505 case TCP_REPAIR_OPTIONS: 3506 if (!tp->repair) 3507 err = -EINVAL; 3508 else if (sk->sk_state == TCP_ESTABLISHED) 3509 err = tcp_repair_options_est(sk, optval, optlen); 3510 else 3511 err = -EPERM; 3512 break; 3513 3514 case TCP_CORK: 3515 __tcp_sock_set_cork(sk, val); 3516 break; 3517 3518 case TCP_KEEPIDLE: 3519 err = tcp_sock_set_keepidle_locked(sk, val); 3520 break; 3521 case TCP_KEEPINTVL: 3522 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3523 err = -EINVAL; 3524 else 3525 tp->keepalive_intvl = val * HZ; 3526 break; 3527 case TCP_KEEPCNT: 3528 if (val < 1 || val > MAX_TCP_KEEPCNT) 3529 err = -EINVAL; 3530 else 3531 tp->keepalive_probes = val; 3532 break; 3533 case TCP_SYNCNT: 3534 if (val < 1 || val > MAX_TCP_SYNCNT) 3535 err = -EINVAL; 3536 else 3537 icsk->icsk_syn_retries = val; 3538 break; 3539 3540 case TCP_SAVE_SYN: 3541 /* 0: disable, 1: enable, 2: start from ether_header */ 3542 if (val < 0 || val > 2) 3543 err = -EINVAL; 3544 else 3545 tp->save_syn = val; 3546 break; 3547 3548 case TCP_LINGER2: 3549 if (val < 0) 3550 tp->linger2 = -1; 3551 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3552 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3553 else 3554 tp->linger2 = val * HZ; 3555 break; 3556 3557 case TCP_DEFER_ACCEPT: 3558 /* Translate value in seconds to number of retransmits */ 3559 icsk->icsk_accept_queue.rskq_defer_accept = 3560 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3561 TCP_RTO_MAX / HZ); 3562 break; 3563 3564 case TCP_WINDOW_CLAMP: 3565 err = tcp_set_window_clamp(sk, val); 3566 break; 3567 3568 case TCP_QUICKACK: 3569 __tcp_sock_set_quickack(sk, val); 3570 break; 3571 3572 #ifdef CONFIG_TCP_MD5SIG 3573 case TCP_MD5SIG: 3574 case TCP_MD5SIG_EXT: 3575 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3576 break; 3577 #endif 3578 case TCP_USER_TIMEOUT: 3579 /* Cap the max time in ms TCP will retry or probe the window 3580 * before giving up and aborting (ETIMEDOUT) a connection. 3581 */ 3582 if (val < 0) 3583 err = -EINVAL; 3584 else 3585 icsk->icsk_user_timeout = val; 3586 break; 3587 3588 case TCP_FASTOPEN: 3589 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3590 TCPF_LISTEN))) { 3591 tcp_fastopen_init_key_once(net); 3592 3593 fastopen_queue_tune(sk, val); 3594 } else { 3595 err = -EINVAL; 3596 } 3597 break; 3598 case TCP_FASTOPEN_CONNECT: 3599 if (val > 1 || val < 0) { 3600 err = -EINVAL; 3601 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3602 if (sk->sk_state == TCP_CLOSE) 3603 tp->fastopen_connect = val; 3604 else 3605 err = -EINVAL; 3606 } else { 3607 err = -EOPNOTSUPP; 3608 } 3609 break; 3610 case TCP_FASTOPEN_NO_COOKIE: 3611 if (val > 1 || val < 0) 3612 err = -EINVAL; 3613 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3614 err = -EINVAL; 3615 else 3616 tp->fastopen_no_cookie = val; 3617 break; 3618 case TCP_TIMESTAMP: 3619 if (!tp->repair) 3620 err = -EPERM; 3621 else 3622 tp->tsoffset = val - tcp_time_stamp_raw(); 3623 break; 3624 case TCP_REPAIR_WINDOW: 3625 err = tcp_repair_set_window(tp, optval, optlen); 3626 break; 3627 case TCP_NOTSENT_LOWAT: 3628 tp->notsent_lowat = val; 3629 sk->sk_write_space(sk); 3630 break; 3631 case TCP_INQ: 3632 if (val > 1 || val < 0) 3633 err = -EINVAL; 3634 else 3635 tp->recvmsg_inq = val; 3636 break; 3637 case TCP_TX_DELAY: 3638 if (val) 3639 tcp_enable_tx_delay(); 3640 tp->tcp_tx_delay = val; 3641 break; 3642 default: 3643 err = -ENOPROTOOPT; 3644 break; 3645 } 3646 3647 release_sock(sk); 3648 return err; 3649 } 3650 3651 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3652 unsigned int optlen) 3653 { 3654 const struct inet_connection_sock *icsk = inet_csk(sk); 3655 3656 if (level != SOL_TCP) 3657 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3658 optval, optlen); 3659 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3660 } 3661 EXPORT_SYMBOL(tcp_setsockopt); 3662 3663 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3664 struct tcp_info *info) 3665 { 3666 u64 stats[__TCP_CHRONO_MAX], total = 0; 3667 enum tcp_chrono i; 3668 3669 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3670 stats[i] = tp->chrono_stat[i - 1]; 3671 if (i == tp->chrono_type) 3672 stats[i] += tcp_jiffies32 - tp->chrono_start; 3673 stats[i] *= USEC_PER_SEC / HZ; 3674 total += stats[i]; 3675 } 3676 3677 info->tcpi_busy_time = total; 3678 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3679 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3680 } 3681 3682 /* Return information about state of tcp endpoint in API format. */ 3683 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3684 { 3685 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3686 const struct inet_connection_sock *icsk = inet_csk(sk); 3687 unsigned long rate; 3688 u32 now; 3689 u64 rate64; 3690 bool slow; 3691 3692 memset(info, 0, sizeof(*info)); 3693 if (sk->sk_type != SOCK_STREAM) 3694 return; 3695 3696 info->tcpi_state = inet_sk_state_load(sk); 3697 3698 /* Report meaningful fields for all TCP states, including listeners */ 3699 rate = READ_ONCE(sk->sk_pacing_rate); 3700 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3701 info->tcpi_pacing_rate = rate64; 3702 3703 rate = READ_ONCE(sk->sk_max_pacing_rate); 3704 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3705 info->tcpi_max_pacing_rate = rate64; 3706 3707 info->tcpi_reordering = tp->reordering; 3708 info->tcpi_snd_cwnd = tp->snd_cwnd; 3709 3710 if (info->tcpi_state == TCP_LISTEN) { 3711 /* listeners aliased fields : 3712 * tcpi_unacked -> Number of children ready for accept() 3713 * tcpi_sacked -> max backlog 3714 */ 3715 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3716 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3717 return; 3718 } 3719 3720 slow = lock_sock_fast(sk); 3721 3722 info->tcpi_ca_state = icsk->icsk_ca_state; 3723 info->tcpi_retransmits = icsk->icsk_retransmits; 3724 info->tcpi_probes = icsk->icsk_probes_out; 3725 info->tcpi_backoff = icsk->icsk_backoff; 3726 3727 if (tp->rx_opt.tstamp_ok) 3728 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3729 if (tcp_is_sack(tp)) 3730 info->tcpi_options |= TCPI_OPT_SACK; 3731 if (tp->rx_opt.wscale_ok) { 3732 info->tcpi_options |= TCPI_OPT_WSCALE; 3733 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3734 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3735 } 3736 3737 if (tp->ecn_flags & TCP_ECN_OK) 3738 info->tcpi_options |= TCPI_OPT_ECN; 3739 if (tp->ecn_flags & TCP_ECN_SEEN) 3740 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3741 if (tp->syn_data_acked) 3742 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3743 3744 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3745 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3746 info->tcpi_snd_mss = tp->mss_cache; 3747 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3748 3749 info->tcpi_unacked = tp->packets_out; 3750 info->tcpi_sacked = tp->sacked_out; 3751 3752 info->tcpi_lost = tp->lost_out; 3753 info->tcpi_retrans = tp->retrans_out; 3754 3755 now = tcp_jiffies32; 3756 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3757 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3758 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3759 3760 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3761 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3762 info->tcpi_rtt = tp->srtt_us >> 3; 3763 info->tcpi_rttvar = tp->mdev_us >> 2; 3764 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3765 info->tcpi_advmss = tp->advmss; 3766 3767 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3768 info->tcpi_rcv_space = tp->rcvq_space.space; 3769 3770 info->tcpi_total_retrans = tp->total_retrans; 3771 3772 info->tcpi_bytes_acked = tp->bytes_acked; 3773 info->tcpi_bytes_received = tp->bytes_received; 3774 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3775 tcp_get_info_chrono_stats(tp, info); 3776 3777 info->tcpi_segs_out = tp->segs_out; 3778 info->tcpi_segs_in = tp->segs_in; 3779 3780 info->tcpi_min_rtt = tcp_min_rtt(tp); 3781 info->tcpi_data_segs_in = tp->data_segs_in; 3782 info->tcpi_data_segs_out = tp->data_segs_out; 3783 3784 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3785 rate64 = tcp_compute_delivery_rate(tp); 3786 if (rate64) 3787 info->tcpi_delivery_rate = rate64; 3788 info->tcpi_delivered = tp->delivered; 3789 info->tcpi_delivered_ce = tp->delivered_ce; 3790 info->tcpi_bytes_sent = tp->bytes_sent; 3791 info->tcpi_bytes_retrans = tp->bytes_retrans; 3792 info->tcpi_dsack_dups = tp->dsack_dups; 3793 info->tcpi_reord_seen = tp->reord_seen; 3794 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3795 info->tcpi_snd_wnd = tp->snd_wnd; 3796 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3797 unlock_sock_fast(sk, slow); 3798 } 3799 EXPORT_SYMBOL_GPL(tcp_get_info); 3800 3801 static size_t tcp_opt_stats_get_size(void) 3802 { 3803 return 3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3809 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3810 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3812 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3813 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3814 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3815 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3816 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3817 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3818 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3819 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3820 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3821 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3822 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3823 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3824 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3825 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3826 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3827 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3828 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3829 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3830 0; 3831 } 3832 3833 /* Returns TTL or hop limit of an incoming packet from skb. */ 3834 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3835 { 3836 if (skb->protocol == htons(ETH_P_IP)) 3837 return ip_hdr(skb)->ttl; 3838 else if (skb->protocol == htons(ETH_P_IPV6)) 3839 return ipv6_hdr(skb)->hop_limit; 3840 else 3841 return 0; 3842 } 3843 3844 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3845 const struct sk_buff *orig_skb, 3846 const struct sk_buff *ack_skb) 3847 { 3848 const struct tcp_sock *tp = tcp_sk(sk); 3849 struct sk_buff *stats; 3850 struct tcp_info info; 3851 unsigned long rate; 3852 u64 rate64; 3853 3854 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3855 if (!stats) 3856 return NULL; 3857 3858 tcp_get_info_chrono_stats(tp, &info); 3859 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3860 info.tcpi_busy_time, TCP_NLA_PAD); 3861 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3862 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3863 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3864 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3865 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3866 tp->data_segs_out, TCP_NLA_PAD); 3867 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3868 tp->total_retrans, TCP_NLA_PAD); 3869 3870 rate = READ_ONCE(sk->sk_pacing_rate); 3871 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3872 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3873 3874 rate64 = tcp_compute_delivery_rate(tp); 3875 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3876 3877 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3878 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3879 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3880 3881 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3882 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3883 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3884 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3885 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3886 3887 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3888 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3889 3890 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3891 TCP_NLA_PAD); 3892 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3893 TCP_NLA_PAD); 3894 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3895 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3896 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3897 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3898 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3899 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3900 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3901 TCP_NLA_PAD); 3902 if (ack_skb) 3903 nla_put_u8(stats, TCP_NLA_TTL, 3904 tcp_skb_ttl_or_hop_limit(ack_skb)); 3905 3906 return stats; 3907 } 3908 3909 static int do_tcp_getsockopt(struct sock *sk, int level, 3910 int optname, char __user *optval, int __user *optlen) 3911 { 3912 struct inet_connection_sock *icsk = inet_csk(sk); 3913 struct tcp_sock *tp = tcp_sk(sk); 3914 struct net *net = sock_net(sk); 3915 int val, len; 3916 3917 if (get_user(len, optlen)) 3918 return -EFAULT; 3919 3920 len = min_t(unsigned int, len, sizeof(int)); 3921 3922 if (len < 0) 3923 return -EINVAL; 3924 3925 switch (optname) { 3926 case TCP_MAXSEG: 3927 val = tp->mss_cache; 3928 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3929 val = tp->rx_opt.user_mss; 3930 if (tp->repair) 3931 val = tp->rx_opt.mss_clamp; 3932 break; 3933 case TCP_NODELAY: 3934 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3935 break; 3936 case TCP_CORK: 3937 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3938 break; 3939 case TCP_KEEPIDLE: 3940 val = keepalive_time_when(tp) / HZ; 3941 break; 3942 case TCP_KEEPINTVL: 3943 val = keepalive_intvl_when(tp) / HZ; 3944 break; 3945 case TCP_KEEPCNT: 3946 val = keepalive_probes(tp); 3947 break; 3948 case TCP_SYNCNT: 3949 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3950 break; 3951 case TCP_LINGER2: 3952 val = tp->linger2; 3953 if (val >= 0) 3954 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3955 break; 3956 case TCP_DEFER_ACCEPT: 3957 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3958 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3959 break; 3960 case TCP_WINDOW_CLAMP: 3961 val = tp->window_clamp; 3962 break; 3963 case TCP_INFO: { 3964 struct tcp_info info; 3965 3966 if (get_user(len, optlen)) 3967 return -EFAULT; 3968 3969 tcp_get_info(sk, &info); 3970 3971 len = min_t(unsigned int, len, sizeof(info)); 3972 if (put_user(len, optlen)) 3973 return -EFAULT; 3974 if (copy_to_user(optval, &info, len)) 3975 return -EFAULT; 3976 return 0; 3977 } 3978 case TCP_CC_INFO: { 3979 const struct tcp_congestion_ops *ca_ops; 3980 union tcp_cc_info info; 3981 size_t sz = 0; 3982 int attr; 3983 3984 if (get_user(len, optlen)) 3985 return -EFAULT; 3986 3987 ca_ops = icsk->icsk_ca_ops; 3988 if (ca_ops && ca_ops->get_info) 3989 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3990 3991 len = min_t(unsigned int, len, sz); 3992 if (put_user(len, optlen)) 3993 return -EFAULT; 3994 if (copy_to_user(optval, &info, len)) 3995 return -EFAULT; 3996 return 0; 3997 } 3998 case TCP_QUICKACK: 3999 val = !inet_csk_in_pingpong_mode(sk); 4000 break; 4001 4002 case TCP_CONGESTION: 4003 if (get_user(len, optlen)) 4004 return -EFAULT; 4005 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4006 if (put_user(len, optlen)) 4007 return -EFAULT; 4008 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4009 return -EFAULT; 4010 return 0; 4011 4012 case TCP_ULP: 4013 if (get_user(len, optlen)) 4014 return -EFAULT; 4015 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4016 if (!icsk->icsk_ulp_ops) { 4017 if (put_user(0, optlen)) 4018 return -EFAULT; 4019 return 0; 4020 } 4021 if (put_user(len, optlen)) 4022 return -EFAULT; 4023 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4024 return -EFAULT; 4025 return 0; 4026 4027 case TCP_FASTOPEN_KEY: { 4028 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4029 unsigned int key_len; 4030 4031 if (get_user(len, optlen)) 4032 return -EFAULT; 4033 4034 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4035 TCP_FASTOPEN_KEY_LENGTH; 4036 len = min_t(unsigned int, len, key_len); 4037 if (put_user(len, optlen)) 4038 return -EFAULT; 4039 if (copy_to_user(optval, key, len)) 4040 return -EFAULT; 4041 return 0; 4042 } 4043 case TCP_THIN_LINEAR_TIMEOUTS: 4044 val = tp->thin_lto; 4045 break; 4046 4047 case TCP_THIN_DUPACK: 4048 val = 0; 4049 break; 4050 4051 case TCP_REPAIR: 4052 val = tp->repair; 4053 break; 4054 4055 case TCP_REPAIR_QUEUE: 4056 if (tp->repair) 4057 val = tp->repair_queue; 4058 else 4059 return -EINVAL; 4060 break; 4061 4062 case TCP_REPAIR_WINDOW: { 4063 struct tcp_repair_window opt; 4064 4065 if (get_user(len, optlen)) 4066 return -EFAULT; 4067 4068 if (len != sizeof(opt)) 4069 return -EINVAL; 4070 4071 if (!tp->repair) 4072 return -EPERM; 4073 4074 opt.snd_wl1 = tp->snd_wl1; 4075 opt.snd_wnd = tp->snd_wnd; 4076 opt.max_window = tp->max_window; 4077 opt.rcv_wnd = tp->rcv_wnd; 4078 opt.rcv_wup = tp->rcv_wup; 4079 4080 if (copy_to_user(optval, &opt, len)) 4081 return -EFAULT; 4082 return 0; 4083 } 4084 case TCP_QUEUE_SEQ: 4085 if (tp->repair_queue == TCP_SEND_QUEUE) 4086 val = tp->write_seq; 4087 else if (tp->repair_queue == TCP_RECV_QUEUE) 4088 val = tp->rcv_nxt; 4089 else 4090 return -EINVAL; 4091 break; 4092 4093 case TCP_USER_TIMEOUT: 4094 val = icsk->icsk_user_timeout; 4095 break; 4096 4097 case TCP_FASTOPEN: 4098 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4099 break; 4100 4101 case TCP_FASTOPEN_CONNECT: 4102 val = tp->fastopen_connect; 4103 break; 4104 4105 case TCP_FASTOPEN_NO_COOKIE: 4106 val = tp->fastopen_no_cookie; 4107 break; 4108 4109 case TCP_TX_DELAY: 4110 val = tp->tcp_tx_delay; 4111 break; 4112 4113 case TCP_TIMESTAMP: 4114 val = tcp_time_stamp_raw() + tp->tsoffset; 4115 break; 4116 case TCP_NOTSENT_LOWAT: 4117 val = tp->notsent_lowat; 4118 break; 4119 case TCP_INQ: 4120 val = tp->recvmsg_inq; 4121 break; 4122 case TCP_SAVE_SYN: 4123 val = tp->save_syn; 4124 break; 4125 case TCP_SAVED_SYN: { 4126 if (get_user(len, optlen)) 4127 return -EFAULT; 4128 4129 lock_sock(sk); 4130 if (tp->saved_syn) { 4131 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4132 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4133 optlen)) { 4134 release_sock(sk); 4135 return -EFAULT; 4136 } 4137 release_sock(sk); 4138 return -EINVAL; 4139 } 4140 len = tcp_saved_syn_len(tp->saved_syn); 4141 if (put_user(len, optlen)) { 4142 release_sock(sk); 4143 return -EFAULT; 4144 } 4145 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4146 release_sock(sk); 4147 return -EFAULT; 4148 } 4149 tcp_saved_syn_free(tp); 4150 release_sock(sk); 4151 } else { 4152 release_sock(sk); 4153 len = 0; 4154 if (put_user(len, optlen)) 4155 return -EFAULT; 4156 } 4157 return 0; 4158 } 4159 #ifdef CONFIG_MMU 4160 case TCP_ZEROCOPY_RECEIVE: { 4161 struct scm_timestamping_internal tss; 4162 struct tcp_zerocopy_receive zc = {}; 4163 int err; 4164 4165 if (get_user(len, optlen)) 4166 return -EFAULT; 4167 if (len < 0 || 4168 len < offsetofend(struct tcp_zerocopy_receive, length)) 4169 return -EINVAL; 4170 if (unlikely(len > sizeof(zc))) { 4171 err = check_zeroed_user(optval + sizeof(zc), 4172 len - sizeof(zc)); 4173 if (err < 1) 4174 return err == 0 ? -EINVAL : err; 4175 len = sizeof(zc); 4176 if (put_user(len, optlen)) 4177 return -EFAULT; 4178 } 4179 if (copy_from_user(&zc, optval, len)) 4180 return -EFAULT; 4181 if (zc.reserved) 4182 return -EINVAL; 4183 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4184 return -EINVAL; 4185 lock_sock(sk); 4186 err = tcp_zerocopy_receive(sk, &zc, &tss); 4187 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4188 &zc, &len, err); 4189 release_sock(sk); 4190 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4191 goto zerocopy_rcv_cmsg; 4192 switch (len) { 4193 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4194 goto zerocopy_rcv_cmsg; 4195 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4196 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4197 case offsetofend(struct tcp_zerocopy_receive, flags): 4198 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4199 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4200 case offsetofend(struct tcp_zerocopy_receive, err): 4201 goto zerocopy_rcv_sk_err; 4202 case offsetofend(struct tcp_zerocopy_receive, inq): 4203 goto zerocopy_rcv_inq; 4204 case offsetofend(struct tcp_zerocopy_receive, length): 4205 default: 4206 goto zerocopy_rcv_out; 4207 } 4208 zerocopy_rcv_cmsg: 4209 if (zc.msg_flags & TCP_CMSG_TS) 4210 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4211 else 4212 zc.msg_flags = 0; 4213 zerocopy_rcv_sk_err: 4214 if (!err) 4215 zc.err = sock_error(sk); 4216 zerocopy_rcv_inq: 4217 zc.inq = tcp_inq_hint(sk); 4218 zerocopy_rcv_out: 4219 if (!err && copy_to_user(optval, &zc, len)) 4220 err = -EFAULT; 4221 return err; 4222 } 4223 #endif 4224 default: 4225 return -ENOPROTOOPT; 4226 } 4227 4228 if (put_user(len, optlen)) 4229 return -EFAULT; 4230 if (copy_to_user(optval, &val, len)) 4231 return -EFAULT; 4232 return 0; 4233 } 4234 4235 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4236 { 4237 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4238 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4239 */ 4240 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4241 return true; 4242 4243 return false; 4244 } 4245 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4246 4247 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4248 int __user *optlen) 4249 { 4250 struct inet_connection_sock *icsk = inet_csk(sk); 4251 4252 if (level != SOL_TCP) 4253 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4254 optval, optlen); 4255 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4256 } 4257 EXPORT_SYMBOL(tcp_getsockopt); 4258 4259 #ifdef CONFIG_TCP_MD5SIG 4260 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4261 static DEFINE_MUTEX(tcp_md5sig_mutex); 4262 static bool tcp_md5sig_pool_populated = false; 4263 4264 static void __tcp_alloc_md5sig_pool(void) 4265 { 4266 struct crypto_ahash *hash; 4267 int cpu; 4268 4269 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4270 if (IS_ERR(hash)) 4271 return; 4272 4273 for_each_possible_cpu(cpu) { 4274 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4275 struct ahash_request *req; 4276 4277 if (!scratch) { 4278 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4279 sizeof(struct tcphdr), 4280 GFP_KERNEL, 4281 cpu_to_node(cpu)); 4282 if (!scratch) 4283 return; 4284 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4285 } 4286 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4287 continue; 4288 4289 req = ahash_request_alloc(hash, GFP_KERNEL); 4290 if (!req) 4291 return; 4292 4293 ahash_request_set_callback(req, 0, NULL, NULL); 4294 4295 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4296 } 4297 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4298 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4299 */ 4300 smp_wmb(); 4301 tcp_md5sig_pool_populated = true; 4302 } 4303 4304 bool tcp_alloc_md5sig_pool(void) 4305 { 4306 if (unlikely(!tcp_md5sig_pool_populated)) { 4307 mutex_lock(&tcp_md5sig_mutex); 4308 4309 if (!tcp_md5sig_pool_populated) { 4310 __tcp_alloc_md5sig_pool(); 4311 if (tcp_md5sig_pool_populated) 4312 static_branch_inc(&tcp_md5_needed); 4313 } 4314 4315 mutex_unlock(&tcp_md5sig_mutex); 4316 } 4317 return tcp_md5sig_pool_populated; 4318 } 4319 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4320 4321 4322 /** 4323 * tcp_get_md5sig_pool - get md5sig_pool for this user 4324 * 4325 * We use percpu structure, so if we succeed, we exit with preemption 4326 * and BH disabled, to make sure another thread or softirq handling 4327 * wont try to get same context. 4328 */ 4329 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4330 { 4331 local_bh_disable(); 4332 4333 if (tcp_md5sig_pool_populated) { 4334 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4335 smp_rmb(); 4336 return this_cpu_ptr(&tcp_md5sig_pool); 4337 } 4338 local_bh_enable(); 4339 return NULL; 4340 } 4341 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4342 4343 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4344 const struct sk_buff *skb, unsigned int header_len) 4345 { 4346 struct scatterlist sg; 4347 const struct tcphdr *tp = tcp_hdr(skb); 4348 struct ahash_request *req = hp->md5_req; 4349 unsigned int i; 4350 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4351 skb_headlen(skb) - header_len : 0; 4352 const struct skb_shared_info *shi = skb_shinfo(skb); 4353 struct sk_buff *frag_iter; 4354 4355 sg_init_table(&sg, 1); 4356 4357 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4358 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4359 if (crypto_ahash_update(req)) 4360 return 1; 4361 4362 for (i = 0; i < shi->nr_frags; ++i) { 4363 const skb_frag_t *f = &shi->frags[i]; 4364 unsigned int offset = skb_frag_off(f); 4365 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4366 4367 sg_set_page(&sg, page, skb_frag_size(f), 4368 offset_in_page(offset)); 4369 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4370 if (crypto_ahash_update(req)) 4371 return 1; 4372 } 4373 4374 skb_walk_frags(skb, frag_iter) 4375 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4376 return 1; 4377 4378 return 0; 4379 } 4380 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4381 4382 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4383 { 4384 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4385 struct scatterlist sg; 4386 4387 sg_init_one(&sg, key->key, keylen); 4388 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4389 4390 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4391 return data_race(crypto_ahash_update(hp->md5_req)); 4392 } 4393 EXPORT_SYMBOL(tcp_md5_hash_key); 4394 4395 #endif 4396 4397 void tcp_done(struct sock *sk) 4398 { 4399 struct request_sock *req; 4400 4401 /* We might be called with a new socket, after 4402 * inet_csk_prepare_forced_close() has been called 4403 * so we can not use lockdep_sock_is_held(sk) 4404 */ 4405 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4406 4407 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4408 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4409 4410 tcp_set_state(sk, TCP_CLOSE); 4411 tcp_clear_xmit_timers(sk); 4412 if (req) 4413 reqsk_fastopen_remove(sk, req, false); 4414 4415 sk->sk_shutdown = SHUTDOWN_MASK; 4416 4417 if (!sock_flag(sk, SOCK_DEAD)) 4418 sk->sk_state_change(sk); 4419 else 4420 inet_csk_destroy_sock(sk); 4421 } 4422 EXPORT_SYMBOL_GPL(tcp_done); 4423 4424 int tcp_abort(struct sock *sk, int err) 4425 { 4426 if (!sk_fullsock(sk)) { 4427 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4428 struct request_sock *req = inet_reqsk(sk); 4429 4430 local_bh_disable(); 4431 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4432 local_bh_enable(); 4433 return 0; 4434 } 4435 return -EOPNOTSUPP; 4436 } 4437 4438 /* Don't race with userspace socket closes such as tcp_close. */ 4439 lock_sock(sk); 4440 4441 if (sk->sk_state == TCP_LISTEN) { 4442 tcp_set_state(sk, TCP_CLOSE); 4443 inet_csk_listen_stop(sk); 4444 } 4445 4446 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4447 local_bh_disable(); 4448 bh_lock_sock(sk); 4449 4450 if (!sock_flag(sk, SOCK_DEAD)) { 4451 sk->sk_err = err; 4452 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4453 smp_wmb(); 4454 sk_error_report(sk); 4455 if (tcp_need_reset(sk->sk_state)) 4456 tcp_send_active_reset(sk, GFP_ATOMIC); 4457 tcp_done(sk); 4458 } 4459 4460 bh_unlock_sock(sk); 4461 local_bh_enable(); 4462 tcp_write_queue_purge(sk); 4463 release_sock(sk); 4464 return 0; 4465 } 4466 EXPORT_SYMBOL_GPL(tcp_abort); 4467 4468 extern struct tcp_congestion_ops tcp_reno; 4469 4470 static __initdata unsigned long thash_entries; 4471 static int __init set_thash_entries(char *str) 4472 { 4473 ssize_t ret; 4474 4475 if (!str) 4476 return 0; 4477 4478 ret = kstrtoul(str, 0, &thash_entries); 4479 if (ret) 4480 return 0; 4481 4482 return 1; 4483 } 4484 __setup("thash_entries=", set_thash_entries); 4485 4486 static void __init tcp_init_mem(void) 4487 { 4488 unsigned long limit = nr_free_buffer_pages() / 16; 4489 4490 limit = max(limit, 128UL); 4491 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4492 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4493 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4494 } 4495 4496 void __init tcp_init(void) 4497 { 4498 int max_rshare, max_wshare, cnt; 4499 unsigned long limit; 4500 unsigned int i; 4501 4502 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4503 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4504 sizeof_field(struct sk_buff, cb)); 4505 4506 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4507 4508 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4509 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4510 4511 inet_hashinfo_init(&tcp_hashinfo); 4512 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4513 thash_entries, 21, /* one slot per 2 MB*/ 4514 0, 64 * 1024); 4515 tcp_hashinfo.bind_bucket_cachep = 4516 kmem_cache_create("tcp_bind_bucket", 4517 sizeof(struct inet_bind_bucket), 0, 4518 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4519 SLAB_ACCOUNT, 4520 NULL); 4521 4522 /* Size and allocate the main established and bind bucket 4523 * hash tables. 4524 * 4525 * The methodology is similar to that of the buffer cache. 4526 */ 4527 tcp_hashinfo.ehash = 4528 alloc_large_system_hash("TCP established", 4529 sizeof(struct inet_ehash_bucket), 4530 thash_entries, 4531 17, /* one slot per 128 KB of memory */ 4532 0, 4533 NULL, 4534 &tcp_hashinfo.ehash_mask, 4535 0, 4536 thash_entries ? 0 : 512 * 1024); 4537 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4538 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4539 4540 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4541 panic("TCP: failed to alloc ehash_locks"); 4542 tcp_hashinfo.bhash = 4543 alloc_large_system_hash("TCP bind", 4544 sizeof(struct inet_bind_hashbucket), 4545 tcp_hashinfo.ehash_mask + 1, 4546 17, /* one slot per 128 KB of memory */ 4547 0, 4548 &tcp_hashinfo.bhash_size, 4549 NULL, 4550 0, 4551 64 * 1024); 4552 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4553 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4554 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4555 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4556 } 4557 4558 4559 cnt = tcp_hashinfo.ehash_mask + 1; 4560 sysctl_tcp_max_orphans = cnt / 2; 4561 4562 tcp_init_mem(); 4563 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4564 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4565 max_wshare = min(4UL*1024*1024, limit); 4566 max_rshare = min(6UL*1024*1024, limit); 4567 4568 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4569 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4570 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4571 4572 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4573 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4574 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4575 4576 pr_info("Hash tables configured (established %u bind %u)\n", 4577 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4578 4579 tcp_v4_init(); 4580 tcp_metrics_init(); 4581 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4582 tcp_tasklet_init(); 4583 mptcp_init(); 4584 } 4585