1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 462 sk_sockets_allocated_inc(sk); 463 } 464 EXPORT_SYMBOL(tcp_init_sock); 465 466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 467 { 468 struct sk_buff *skb = tcp_write_queue_tail(sk); 469 470 if (tsflags && skb) { 471 struct skb_shared_info *shinfo = skb_shinfo(skb); 472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 473 474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 475 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 476 tcb->txstamp_ack = 1; 477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 479 } 480 } 481 482 static bool tcp_stream_is_readable(struct sock *sk, int target) 483 { 484 if (tcp_epollin_ready(sk, target)) 485 return true; 486 return sk_is_readable(sk); 487 } 488 489 /* 490 * Wait for a TCP event. 491 * 492 * Note that we don't need to lock the socket, as the upper poll layers 493 * take care of normal races (between the test and the event) and we don't 494 * go look at any of the socket buffers directly. 495 */ 496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 497 { 498 __poll_t mask; 499 struct sock *sk = sock->sk; 500 const struct tcp_sock *tp = tcp_sk(sk); 501 u8 shutdown; 502 int state; 503 504 sock_poll_wait(file, sock, wait); 505 506 state = inet_sk_state_load(sk); 507 if (state == TCP_LISTEN) 508 return inet_csk_listen_poll(sk); 509 510 /* Socket is not locked. We are protected from async events 511 * by poll logic and correct handling of state changes 512 * made by other threads is impossible in any case. 513 */ 514 515 mask = 0; 516 517 /* 518 * EPOLLHUP is certainly not done right. But poll() doesn't 519 * have a notion of HUP in just one direction, and for a 520 * socket the read side is more interesting. 521 * 522 * Some poll() documentation says that EPOLLHUP is incompatible 523 * with the EPOLLOUT/POLLWR flags, so somebody should check this 524 * all. But careful, it tends to be safer to return too many 525 * bits than too few, and you can easily break real applications 526 * if you don't tell them that something has hung up! 527 * 528 * Check-me. 529 * 530 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 531 * our fs/select.c). It means that after we received EOF, 532 * poll always returns immediately, making impossible poll() on write() 533 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 534 * if and only if shutdown has been made in both directions. 535 * Actually, it is interesting to look how Solaris and DUX 536 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 537 * then we could set it on SND_SHUTDOWN. BTW examples given 538 * in Stevens' books assume exactly this behaviour, it explains 539 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 540 * 541 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 542 * blocking on fresh not-connected or disconnected socket. --ANK 543 */ 544 shutdown = READ_ONCE(sk->sk_shutdown); 545 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 546 mask |= EPOLLHUP; 547 if (shutdown & RCV_SHUTDOWN) 548 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 549 550 /* Connected or passive Fast Open socket? */ 551 if (state != TCP_SYN_SENT && 552 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 553 int target = sock_rcvlowat(sk, 0, INT_MAX); 554 u16 urg_data = READ_ONCE(tp->urg_data); 555 556 if (unlikely(urg_data) && 557 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 558 !sock_flag(sk, SOCK_URGINLINE)) 559 target++; 560 561 if (tcp_stream_is_readable(sk, target)) 562 mask |= EPOLLIN | EPOLLRDNORM; 563 564 if (!(shutdown & SEND_SHUTDOWN)) { 565 if (__sk_stream_is_writeable(sk, 1)) { 566 mask |= EPOLLOUT | EPOLLWRNORM; 567 } else { /* send SIGIO later */ 568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 570 571 /* Race breaker. If space is freed after 572 * wspace test but before the flags are set, 573 * IO signal will be lost. Memory barrier 574 * pairs with the input side. 575 */ 576 smp_mb__after_atomic(); 577 if (__sk_stream_is_writeable(sk, 1)) 578 mask |= EPOLLOUT | EPOLLWRNORM; 579 } 580 } else 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 583 if (urg_data & TCP_URG_VALID) 584 mask |= EPOLLPRI; 585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 586 /* Active TCP fastopen socket with defer_connect 587 * Return EPOLLOUT so application can call write() 588 * in order for kernel to generate SYN+data 589 */ 590 mask |= EPOLLOUT | EPOLLWRNORM; 591 } 592 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 593 smp_rmb(); 594 if (READ_ONCE(sk->sk_err) || 595 !skb_queue_empty_lockless(&sk->sk_error_queue)) 596 mask |= EPOLLERR; 597 598 return mask; 599 } 600 EXPORT_SYMBOL(tcp_poll); 601 602 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 int answ; 606 bool slow; 607 608 switch (cmd) { 609 case SIOCINQ: 610 if (sk->sk_state == TCP_LISTEN) 611 return -EINVAL; 612 613 slow = lock_sock_fast(sk); 614 answ = tcp_inq(sk); 615 unlock_sock_fast(sk, slow); 616 break; 617 case SIOCATMARK: 618 answ = READ_ONCE(tp->urg_data) && 619 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 620 break; 621 case SIOCOUTQ: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 629 break; 630 case SIOCOUTQNSD: 631 if (sk->sk_state == TCP_LISTEN) 632 return -EINVAL; 633 634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 635 answ = 0; 636 else 637 answ = READ_ONCE(tp->write_seq) - 638 READ_ONCE(tp->snd_nxt); 639 break; 640 default: 641 return -ENOIOCTLCMD; 642 } 643 644 return put_user(answ, (int __user *)arg); 645 } 646 EXPORT_SYMBOL(tcp_ioctl); 647 648 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 649 { 650 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 651 tp->pushed_seq = tp->write_seq; 652 } 653 654 static inline bool forced_push(const struct tcp_sock *tp) 655 { 656 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 657 } 658 659 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 660 { 661 struct tcp_sock *tp = tcp_sk(sk); 662 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 663 664 tcb->seq = tcb->end_seq = tp->write_seq; 665 tcb->tcp_flags = TCPHDR_ACK; 666 __skb_header_release(skb); 667 tcp_add_write_queue_tail(sk, skb); 668 sk_wmem_queued_add(sk, skb->truesize); 669 sk_mem_charge(sk, skb->truesize); 670 if (tp->nonagle & TCP_NAGLE_PUSH) 671 tp->nonagle &= ~TCP_NAGLE_PUSH; 672 673 tcp_slow_start_after_idle_check(sk); 674 } 675 676 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 677 { 678 if (flags & MSG_OOB) 679 tp->snd_up = tp->write_seq; 680 } 681 682 /* If a not yet filled skb is pushed, do not send it if 683 * we have data packets in Qdisc or NIC queues : 684 * Because TX completion will happen shortly, it gives a chance 685 * to coalesce future sendmsg() payload into this skb, without 686 * need for a timer, and with no latency trade off. 687 * As packets containing data payload have a bigger truesize 688 * than pure acks (dataless) packets, the last checks prevent 689 * autocorking if we only have an ACK in Qdisc/NIC queues, 690 * or if TX completion was delayed after we processed ACK packet. 691 */ 692 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 693 int size_goal) 694 { 695 return skb->len < size_goal && 696 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 697 !tcp_rtx_queue_empty(sk) && 698 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 699 tcp_skb_can_collapse_to(skb); 700 } 701 702 void tcp_push(struct sock *sk, int flags, int mss_now, 703 int nonagle, int size_goal) 704 { 705 struct tcp_sock *tp = tcp_sk(sk); 706 struct sk_buff *skb; 707 708 skb = tcp_write_queue_tail(sk); 709 if (!skb) 710 return; 711 if (!(flags & MSG_MORE) || forced_push(tp)) 712 tcp_mark_push(tp, skb); 713 714 tcp_mark_urg(tp, flags); 715 716 if (tcp_should_autocork(sk, skb, size_goal)) { 717 718 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 719 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 721 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 722 } 723 /* It is possible TX completion already happened 724 * before we set TSQ_THROTTLED. 725 */ 726 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 727 return; 728 } 729 730 if (flags & MSG_MORE) 731 nonagle = TCP_NAGLE_CORK; 732 733 __tcp_push_pending_frames(sk, mss_now, nonagle); 734 } 735 736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 737 unsigned int offset, size_t len) 738 { 739 struct tcp_splice_state *tss = rd_desc->arg.data; 740 int ret; 741 742 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 743 min(rd_desc->count, len), tss->flags); 744 if (ret > 0) 745 rd_desc->count -= ret; 746 return ret; 747 } 748 749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 750 { 751 /* Store TCP splice context information in read_descriptor_t. */ 752 read_descriptor_t rd_desc = { 753 .arg.data = tss, 754 .count = tss->len, 755 }; 756 757 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 758 } 759 760 /** 761 * tcp_splice_read - splice data from TCP socket to a pipe 762 * @sock: socket to splice from 763 * @ppos: position (not valid) 764 * @pipe: pipe to splice to 765 * @len: number of bytes to splice 766 * @flags: splice modifier flags 767 * 768 * Description: 769 * Will read pages from given socket and fill them into a pipe. 770 * 771 **/ 772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 773 struct pipe_inode_info *pipe, size_t len, 774 unsigned int flags) 775 { 776 struct sock *sk = sock->sk; 777 struct tcp_splice_state tss = { 778 .pipe = pipe, 779 .len = len, 780 .flags = flags, 781 }; 782 long timeo; 783 ssize_t spliced; 784 int ret; 785 786 sock_rps_record_flow(sk); 787 /* 788 * We can't seek on a socket input 789 */ 790 if (unlikely(*ppos)) 791 return -ESPIPE; 792 793 ret = spliced = 0; 794 795 lock_sock(sk); 796 797 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 798 while (tss.len) { 799 ret = __tcp_splice_read(sk, &tss); 800 if (ret < 0) 801 break; 802 else if (!ret) { 803 if (spliced) 804 break; 805 if (sock_flag(sk, SOCK_DONE)) 806 break; 807 if (sk->sk_err) { 808 ret = sock_error(sk); 809 break; 810 } 811 if (sk->sk_shutdown & RCV_SHUTDOWN) 812 break; 813 if (sk->sk_state == TCP_CLOSE) { 814 /* 815 * This occurs when user tries to read 816 * from never connected socket. 817 */ 818 ret = -ENOTCONN; 819 break; 820 } 821 if (!timeo) { 822 ret = -EAGAIN; 823 break; 824 } 825 /* if __tcp_splice_read() got nothing while we have 826 * an skb in receive queue, we do not want to loop. 827 * This might happen with URG data. 828 */ 829 if (!skb_queue_empty(&sk->sk_receive_queue)) 830 break; 831 sk_wait_data(sk, &timeo, NULL); 832 if (signal_pending(current)) { 833 ret = sock_intr_errno(timeo); 834 break; 835 } 836 continue; 837 } 838 tss.len -= ret; 839 spliced += ret; 840 841 if (!timeo) 842 break; 843 release_sock(sk); 844 lock_sock(sk); 845 846 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 847 (sk->sk_shutdown & RCV_SHUTDOWN) || 848 signal_pending(current)) 849 break; 850 } 851 852 release_sock(sk); 853 854 if (spliced) 855 return spliced; 856 857 return ret; 858 } 859 EXPORT_SYMBOL(tcp_splice_read); 860 861 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 862 bool force_schedule) 863 { 864 struct sk_buff *skb; 865 866 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 867 if (likely(skb)) { 868 bool mem_scheduled; 869 870 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 871 if (force_schedule) { 872 mem_scheduled = true; 873 sk_forced_mem_schedule(sk, skb->truesize); 874 } else { 875 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 876 } 877 if (likely(mem_scheduled)) { 878 skb_reserve(skb, MAX_TCP_HEADER); 879 skb->ip_summed = CHECKSUM_PARTIAL; 880 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 881 return skb; 882 } 883 __kfree_skb(skb); 884 } else { 885 sk->sk_prot->enter_memory_pressure(sk); 886 sk_stream_moderate_sndbuf(sk); 887 } 888 return NULL; 889 } 890 891 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 892 int large_allowed) 893 { 894 struct tcp_sock *tp = tcp_sk(sk); 895 u32 new_size_goal, size_goal; 896 897 if (!large_allowed) 898 return mss_now; 899 900 /* Note : tcp_tso_autosize() will eventually split this later */ 901 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 902 903 /* We try hard to avoid divides here */ 904 size_goal = tp->gso_segs * mss_now; 905 if (unlikely(new_size_goal < size_goal || 906 new_size_goal >= size_goal + mss_now)) { 907 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 908 sk->sk_gso_max_segs); 909 size_goal = tp->gso_segs * mss_now; 910 } 911 912 return max(size_goal, mss_now); 913 } 914 915 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 916 { 917 int mss_now; 918 919 mss_now = tcp_current_mss(sk); 920 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 921 922 return mss_now; 923 } 924 925 /* In some cases, both sendpage() and sendmsg() could have added 926 * an skb to the write queue, but failed adding payload on it. 927 * We need to remove it to consume less memory, but more 928 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 929 * users. 930 */ 931 void tcp_remove_empty_skb(struct sock *sk) 932 { 933 struct sk_buff *skb = tcp_write_queue_tail(sk); 934 935 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 936 tcp_unlink_write_queue(skb, sk); 937 if (tcp_write_queue_empty(sk)) 938 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 939 tcp_wmem_free_skb(sk, skb); 940 } 941 } 942 943 /* skb changing from pure zc to mixed, must charge zc */ 944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 945 { 946 if (unlikely(skb_zcopy_pure(skb))) { 947 u32 extra = skb->truesize - 948 SKB_TRUESIZE(skb_end_offset(skb)); 949 950 if (!sk_wmem_schedule(sk, extra)) 951 return -ENOMEM; 952 953 sk_mem_charge(sk, extra); 954 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 955 } 956 return 0; 957 } 958 959 960 static int tcp_wmem_schedule(struct sock *sk, int copy) 961 { 962 int left; 963 964 if (likely(sk_wmem_schedule(sk, copy))) 965 return copy; 966 967 /* We could be in trouble if we have nothing queued. 968 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 969 * to guarantee some progress. 970 */ 971 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 972 if (left > 0) 973 sk_forced_mem_schedule(sk, min(left, copy)); 974 return min(copy, sk->sk_forward_alloc); 975 } 976 977 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 978 size_t size, int flags) 979 { 980 struct bio_vec bvec; 981 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, }; 982 983 if (!(sk->sk_route_caps & NETIF_F_SG)) 984 return sock_no_sendpage_locked(sk, page, offset, size, flags); 985 986 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 987 988 bvec_set_page(&bvec, page, size, offset); 989 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 990 991 if (flags & MSG_SENDPAGE_NOTLAST) 992 msg.msg_flags |= MSG_MORE; 993 994 return tcp_sendmsg_locked(sk, &msg, size); 995 } 996 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 997 998 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 999 size_t size, int flags) 1000 { 1001 int ret; 1002 1003 lock_sock(sk); 1004 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1005 release_sock(sk); 1006 1007 return ret; 1008 } 1009 EXPORT_SYMBOL(tcp_sendpage); 1010 1011 void tcp_free_fastopen_req(struct tcp_sock *tp) 1012 { 1013 if (tp->fastopen_req) { 1014 kfree(tp->fastopen_req); 1015 tp->fastopen_req = NULL; 1016 } 1017 } 1018 1019 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1020 size_t size, struct ubuf_info *uarg) 1021 { 1022 struct tcp_sock *tp = tcp_sk(sk); 1023 struct inet_sock *inet = inet_sk(sk); 1024 struct sockaddr *uaddr = msg->msg_name; 1025 int err, flags; 1026 1027 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1028 TFO_CLIENT_ENABLE) || 1029 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1030 uaddr->sa_family == AF_UNSPEC)) 1031 return -EOPNOTSUPP; 1032 if (tp->fastopen_req) 1033 return -EALREADY; /* Another Fast Open is in progress */ 1034 1035 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1036 sk->sk_allocation); 1037 if (unlikely(!tp->fastopen_req)) 1038 return -ENOBUFS; 1039 tp->fastopen_req->data = msg; 1040 tp->fastopen_req->size = size; 1041 tp->fastopen_req->uarg = uarg; 1042 1043 if (inet->defer_connect) { 1044 err = tcp_connect(sk); 1045 /* Same failure procedure as in tcp_v4/6_connect */ 1046 if (err) { 1047 tcp_set_state(sk, TCP_CLOSE); 1048 inet->inet_dport = 0; 1049 sk->sk_route_caps = 0; 1050 } 1051 } 1052 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1053 err = __inet_stream_connect(sk->sk_socket, uaddr, 1054 msg->msg_namelen, flags, 1); 1055 /* fastopen_req could already be freed in __inet_stream_connect 1056 * if the connection times out or gets rst 1057 */ 1058 if (tp->fastopen_req) { 1059 *copied = tp->fastopen_req->copied; 1060 tcp_free_fastopen_req(tp); 1061 inet->defer_connect = 0; 1062 } 1063 return err; 1064 } 1065 1066 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 struct ubuf_info *uarg = NULL; 1070 struct sk_buff *skb; 1071 struct sockcm_cookie sockc; 1072 int flags, err, copied = 0; 1073 int mss_now = 0, size_goal, copied_syn = 0; 1074 int process_backlog = 0; 1075 int zc = 0; 1076 long timeo; 1077 1078 flags = msg->msg_flags; 1079 1080 if ((flags & MSG_ZEROCOPY) && size) { 1081 if (msg->msg_ubuf) { 1082 uarg = msg->msg_ubuf; 1083 if (sk->sk_route_caps & NETIF_F_SG) 1084 zc = MSG_ZEROCOPY; 1085 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1086 skb = tcp_write_queue_tail(sk); 1087 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1088 if (!uarg) { 1089 err = -ENOBUFS; 1090 goto out_err; 1091 } 1092 if (sk->sk_route_caps & NETIF_F_SG) 1093 zc = MSG_ZEROCOPY; 1094 else 1095 uarg_to_msgzc(uarg)->zerocopy = 0; 1096 } 1097 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1098 if (sk->sk_route_caps & NETIF_F_SG) 1099 zc = MSG_SPLICE_PAGES; 1100 } 1101 1102 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1103 !tp->repair) { 1104 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1105 if (err == -EINPROGRESS && copied_syn > 0) 1106 goto out; 1107 else if (err) 1108 goto out_err; 1109 } 1110 1111 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1112 1113 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1114 1115 /* Wait for a connection to finish. One exception is TCP Fast Open 1116 * (passive side) where data is allowed to be sent before a connection 1117 * is fully established. 1118 */ 1119 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1120 !tcp_passive_fastopen(sk)) { 1121 err = sk_stream_wait_connect(sk, &timeo); 1122 if (err != 0) 1123 goto do_error; 1124 } 1125 1126 if (unlikely(tp->repair)) { 1127 if (tp->repair_queue == TCP_RECV_QUEUE) { 1128 copied = tcp_send_rcvq(sk, msg, size); 1129 goto out_nopush; 1130 } 1131 1132 err = -EINVAL; 1133 if (tp->repair_queue == TCP_NO_QUEUE) 1134 goto out_err; 1135 1136 /* 'common' sending to sendq */ 1137 } 1138 1139 sockcm_init(&sockc, sk); 1140 if (msg->msg_controllen) { 1141 err = sock_cmsg_send(sk, msg, &sockc); 1142 if (unlikely(err)) { 1143 err = -EINVAL; 1144 goto out_err; 1145 } 1146 } 1147 1148 /* This should be in poll */ 1149 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1150 1151 /* Ok commence sending. */ 1152 copied = 0; 1153 1154 restart: 1155 mss_now = tcp_send_mss(sk, &size_goal, flags); 1156 1157 err = -EPIPE; 1158 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1159 goto do_error; 1160 1161 while (msg_data_left(msg)) { 1162 ssize_t copy = 0; 1163 1164 skb = tcp_write_queue_tail(sk); 1165 if (skb) 1166 copy = size_goal - skb->len; 1167 1168 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1169 bool first_skb; 1170 1171 new_segment: 1172 if (!sk_stream_memory_free(sk)) 1173 goto wait_for_space; 1174 1175 if (unlikely(process_backlog >= 16)) { 1176 process_backlog = 0; 1177 if (sk_flush_backlog(sk)) 1178 goto restart; 1179 } 1180 first_skb = tcp_rtx_and_write_queues_empty(sk); 1181 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1182 first_skb); 1183 if (!skb) 1184 goto wait_for_space; 1185 1186 process_backlog++; 1187 1188 tcp_skb_entail(sk, skb); 1189 copy = size_goal; 1190 1191 /* All packets are restored as if they have 1192 * already been sent. skb_mstamp_ns isn't set to 1193 * avoid wrong rtt estimation. 1194 */ 1195 if (tp->repair) 1196 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1197 } 1198 1199 /* Try to append data to the end of skb. */ 1200 if (copy > msg_data_left(msg)) 1201 copy = msg_data_left(msg); 1202 1203 if (zc == 0) { 1204 bool merge = true; 1205 int i = skb_shinfo(skb)->nr_frags; 1206 struct page_frag *pfrag = sk_page_frag(sk); 1207 1208 if (!sk_page_frag_refill(sk, pfrag)) 1209 goto wait_for_space; 1210 1211 if (!skb_can_coalesce(skb, i, pfrag->page, 1212 pfrag->offset)) { 1213 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1214 tcp_mark_push(tp, skb); 1215 goto new_segment; 1216 } 1217 merge = false; 1218 } 1219 1220 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1221 1222 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1223 if (tcp_downgrade_zcopy_pure(sk, skb)) 1224 goto wait_for_space; 1225 skb_zcopy_downgrade_managed(skb); 1226 } 1227 1228 copy = tcp_wmem_schedule(sk, copy); 1229 if (!copy) 1230 goto wait_for_space; 1231 1232 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1233 pfrag->page, 1234 pfrag->offset, 1235 copy); 1236 if (err) 1237 goto do_error; 1238 1239 /* Update the skb. */ 1240 if (merge) { 1241 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1242 } else { 1243 skb_fill_page_desc(skb, i, pfrag->page, 1244 pfrag->offset, copy); 1245 page_ref_inc(pfrag->page); 1246 } 1247 pfrag->offset += copy; 1248 } else if (zc == MSG_ZEROCOPY) { 1249 /* First append to a fragless skb builds initial 1250 * pure zerocopy skb 1251 */ 1252 if (!skb->len) 1253 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1254 1255 if (!skb_zcopy_pure(skb)) { 1256 copy = tcp_wmem_schedule(sk, copy); 1257 if (!copy) 1258 goto wait_for_space; 1259 } 1260 1261 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1262 if (err == -EMSGSIZE || err == -EEXIST) { 1263 tcp_mark_push(tp, skb); 1264 goto new_segment; 1265 } 1266 if (err < 0) 1267 goto do_error; 1268 copy = err; 1269 } else if (zc == MSG_SPLICE_PAGES) { 1270 /* Splice in data if we can; copy if we can't. */ 1271 if (tcp_downgrade_zcopy_pure(sk, skb)) 1272 goto wait_for_space; 1273 copy = tcp_wmem_schedule(sk, copy); 1274 if (!copy) 1275 goto wait_for_space; 1276 1277 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1278 sk->sk_allocation); 1279 if (err < 0) { 1280 if (err == -EMSGSIZE) { 1281 tcp_mark_push(tp, skb); 1282 goto new_segment; 1283 } 1284 goto do_error; 1285 } 1286 copy = err; 1287 1288 if (!(flags & MSG_NO_SHARED_FRAGS)) 1289 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1290 1291 sk_wmem_queued_add(sk, copy); 1292 sk_mem_charge(sk, copy); 1293 } 1294 1295 if (!copied) 1296 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1297 1298 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1299 TCP_SKB_CB(skb)->end_seq += copy; 1300 tcp_skb_pcount_set(skb, 0); 1301 1302 copied += copy; 1303 if (!msg_data_left(msg)) { 1304 if (unlikely(flags & MSG_EOR)) 1305 TCP_SKB_CB(skb)->eor = 1; 1306 goto out; 1307 } 1308 1309 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1310 continue; 1311 1312 if (forced_push(tp)) { 1313 tcp_mark_push(tp, skb); 1314 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1315 } else if (skb == tcp_send_head(sk)) 1316 tcp_push_one(sk, mss_now); 1317 continue; 1318 1319 wait_for_space: 1320 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1321 if (copied) 1322 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1323 TCP_NAGLE_PUSH, size_goal); 1324 1325 err = sk_stream_wait_memory(sk, &timeo); 1326 if (err != 0) 1327 goto do_error; 1328 1329 mss_now = tcp_send_mss(sk, &size_goal, flags); 1330 } 1331 1332 out: 1333 if (copied) { 1334 tcp_tx_timestamp(sk, sockc.tsflags); 1335 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1336 } 1337 out_nopush: 1338 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1339 if (uarg && !msg->msg_ubuf) 1340 net_zcopy_put(uarg); 1341 return copied + copied_syn; 1342 1343 do_error: 1344 tcp_remove_empty_skb(sk); 1345 1346 if (copied + copied_syn) 1347 goto out; 1348 out_err: 1349 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1350 if (uarg && !msg->msg_ubuf) 1351 net_zcopy_put_abort(uarg, true); 1352 err = sk_stream_error(sk, flags, err); 1353 /* make sure we wake any epoll edge trigger waiter */ 1354 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1355 sk->sk_write_space(sk); 1356 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1357 } 1358 return err; 1359 } 1360 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1361 1362 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1363 { 1364 int ret; 1365 1366 lock_sock(sk); 1367 ret = tcp_sendmsg_locked(sk, msg, size); 1368 release_sock(sk); 1369 1370 return ret; 1371 } 1372 EXPORT_SYMBOL(tcp_sendmsg); 1373 1374 void tcp_splice_eof(struct socket *sock) 1375 { 1376 struct sock *sk = sock->sk; 1377 struct tcp_sock *tp = tcp_sk(sk); 1378 int mss_now, size_goal; 1379 1380 if (!tcp_write_queue_tail(sk)) 1381 return; 1382 1383 lock_sock(sk); 1384 mss_now = tcp_send_mss(sk, &size_goal, 0); 1385 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1386 release_sock(sk); 1387 } 1388 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1389 1390 /* 1391 * Handle reading urgent data. BSD has very simple semantics for 1392 * this, no blocking and very strange errors 8) 1393 */ 1394 1395 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1396 { 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 1399 /* No URG data to read. */ 1400 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1401 tp->urg_data == TCP_URG_READ) 1402 return -EINVAL; /* Yes this is right ! */ 1403 1404 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1405 return -ENOTCONN; 1406 1407 if (tp->urg_data & TCP_URG_VALID) { 1408 int err = 0; 1409 char c = tp->urg_data; 1410 1411 if (!(flags & MSG_PEEK)) 1412 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1413 1414 /* Read urgent data. */ 1415 msg->msg_flags |= MSG_OOB; 1416 1417 if (len > 0) { 1418 if (!(flags & MSG_TRUNC)) 1419 err = memcpy_to_msg(msg, &c, 1); 1420 len = 1; 1421 } else 1422 msg->msg_flags |= MSG_TRUNC; 1423 1424 return err ? -EFAULT : len; 1425 } 1426 1427 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1428 return 0; 1429 1430 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1431 * the available implementations agree in this case: 1432 * this call should never block, independent of the 1433 * blocking state of the socket. 1434 * Mike <pall@rz.uni-karlsruhe.de> 1435 */ 1436 return -EAGAIN; 1437 } 1438 1439 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1440 { 1441 struct sk_buff *skb; 1442 int copied = 0, err = 0; 1443 1444 /* XXX -- need to support SO_PEEK_OFF */ 1445 1446 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1447 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1448 if (err) 1449 return err; 1450 copied += skb->len; 1451 } 1452 1453 skb_queue_walk(&sk->sk_write_queue, skb) { 1454 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1455 if (err) 1456 break; 1457 1458 copied += skb->len; 1459 } 1460 1461 return err ?: copied; 1462 } 1463 1464 /* Clean up the receive buffer for full frames taken by the user, 1465 * then send an ACK if necessary. COPIED is the number of bytes 1466 * tcp_recvmsg has given to the user so far, it speeds up the 1467 * calculation of whether or not we must ACK for the sake of 1468 * a window update. 1469 */ 1470 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1471 { 1472 struct tcp_sock *tp = tcp_sk(sk); 1473 bool time_to_ack = false; 1474 1475 if (inet_csk_ack_scheduled(sk)) { 1476 const struct inet_connection_sock *icsk = inet_csk(sk); 1477 1478 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1479 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1480 /* 1481 * If this read emptied read buffer, we send ACK, if 1482 * connection is not bidirectional, user drained 1483 * receive buffer and there was a small segment 1484 * in queue. 1485 */ 1486 (copied > 0 && 1487 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1488 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1489 !inet_csk_in_pingpong_mode(sk))) && 1490 !atomic_read(&sk->sk_rmem_alloc))) 1491 time_to_ack = true; 1492 } 1493 1494 /* We send an ACK if we can now advertise a non-zero window 1495 * which has been raised "significantly". 1496 * 1497 * Even if window raised up to infinity, do not send window open ACK 1498 * in states, where we will not receive more. It is useless. 1499 */ 1500 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1501 __u32 rcv_window_now = tcp_receive_window(tp); 1502 1503 /* Optimize, __tcp_select_window() is not cheap. */ 1504 if (2*rcv_window_now <= tp->window_clamp) { 1505 __u32 new_window = __tcp_select_window(sk); 1506 1507 /* Send ACK now, if this read freed lots of space 1508 * in our buffer. Certainly, new_window is new window. 1509 * We can advertise it now, if it is not less than current one. 1510 * "Lots" means "at least twice" here. 1511 */ 1512 if (new_window && new_window >= 2 * rcv_window_now) 1513 time_to_ack = true; 1514 } 1515 } 1516 if (time_to_ack) 1517 tcp_send_ack(sk); 1518 } 1519 1520 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1521 { 1522 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1523 struct tcp_sock *tp = tcp_sk(sk); 1524 1525 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1526 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1527 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1528 __tcp_cleanup_rbuf(sk, copied); 1529 } 1530 1531 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1532 { 1533 __skb_unlink(skb, &sk->sk_receive_queue); 1534 if (likely(skb->destructor == sock_rfree)) { 1535 sock_rfree(skb); 1536 skb->destructor = NULL; 1537 skb->sk = NULL; 1538 return skb_attempt_defer_free(skb); 1539 } 1540 __kfree_skb(skb); 1541 } 1542 1543 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1544 { 1545 struct sk_buff *skb; 1546 u32 offset; 1547 1548 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1549 offset = seq - TCP_SKB_CB(skb)->seq; 1550 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1551 pr_err_once("%s: found a SYN, please report !\n", __func__); 1552 offset--; 1553 } 1554 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1555 *off = offset; 1556 return skb; 1557 } 1558 /* This looks weird, but this can happen if TCP collapsing 1559 * splitted a fat GRO packet, while we released socket lock 1560 * in skb_splice_bits() 1561 */ 1562 tcp_eat_recv_skb(sk, skb); 1563 } 1564 return NULL; 1565 } 1566 EXPORT_SYMBOL(tcp_recv_skb); 1567 1568 /* 1569 * This routine provides an alternative to tcp_recvmsg() for routines 1570 * that would like to handle copying from skbuffs directly in 'sendfile' 1571 * fashion. 1572 * Note: 1573 * - It is assumed that the socket was locked by the caller. 1574 * - The routine does not block. 1575 * - At present, there is no support for reading OOB data 1576 * or for 'peeking' the socket using this routine 1577 * (although both would be easy to implement). 1578 */ 1579 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1580 sk_read_actor_t recv_actor) 1581 { 1582 struct sk_buff *skb; 1583 struct tcp_sock *tp = tcp_sk(sk); 1584 u32 seq = tp->copied_seq; 1585 u32 offset; 1586 int copied = 0; 1587 1588 if (sk->sk_state == TCP_LISTEN) 1589 return -ENOTCONN; 1590 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1591 if (offset < skb->len) { 1592 int used; 1593 size_t len; 1594 1595 len = skb->len - offset; 1596 /* Stop reading if we hit a patch of urgent data */ 1597 if (unlikely(tp->urg_data)) { 1598 u32 urg_offset = tp->urg_seq - seq; 1599 if (urg_offset < len) 1600 len = urg_offset; 1601 if (!len) 1602 break; 1603 } 1604 used = recv_actor(desc, skb, offset, len); 1605 if (used <= 0) { 1606 if (!copied) 1607 copied = used; 1608 break; 1609 } 1610 if (WARN_ON_ONCE(used > len)) 1611 used = len; 1612 seq += used; 1613 copied += used; 1614 offset += used; 1615 1616 /* If recv_actor drops the lock (e.g. TCP splice 1617 * receive) the skb pointer might be invalid when 1618 * getting here: tcp_collapse might have deleted it 1619 * while aggregating skbs from the socket queue. 1620 */ 1621 skb = tcp_recv_skb(sk, seq - 1, &offset); 1622 if (!skb) 1623 break; 1624 /* TCP coalescing might have appended data to the skb. 1625 * Try to splice more frags 1626 */ 1627 if (offset + 1 != skb->len) 1628 continue; 1629 } 1630 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1631 tcp_eat_recv_skb(sk, skb); 1632 ++seq; 1633 break; 1634 } 1635 tcp_eat_recv_skb(sk, skb); 1636 if (!desc->count) 1637 break; 1638 WRITE_ONCE(tp->copied_seq, seq); 1639 } 1640 WRITE_ONCE(tp->copied_seq, seq); 1641 1642 tcp_rcv_space_adjust(sk); 1643 1644 /* Clean up data we have read: This will do ACK frames. */ 1645 if (copied > 0) { 1646 tcp_recv_skb(sk, seq, &offset); 1647 tcp_cleanup_rbuf(sk, copied); 1648 } 1649 return copied; 1650 } 1651 EXPORT_SYMBOL(tcp_read_sock); 1652 1653 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1654 { 1655 struct tcp_sock *tp = tcp_sk(sk); 1656 u32 seq = tp->copied_seq; 1657 struct sk_buff *skb; 1658 int copied = 0; 1659 u32 offset; 1660 1661 if (sk->sk_state == TCP_LISTEN) 1662 return -ENOTCONN; 1663 1664 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1665 u8 tcp_flags; 1666 int used; 1667 1668 __skb_unlink(skb, &sk->sk_receive_queue); 1669 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1670 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1671 used = recv_actor(sk, skb); 1672 if (used < 0) { 1673 if (!copied) 1674 copied = used; 1675 break; 1676 } 1677 seq += used; 1678 copied += used; 1679 1680 if (tcp_flags & TCPHDR_FIN) { 1681 ++seq; 1682 break; 1683 } 1684 } 1685 return copied; 1686 } 1687 EXPORT_SYMBOL(tcp_read_skb); 1688 1689 void tcp_read_done(struct sock *sk, size_t len) 1690 { 1691 struct tcp_sock *tp = tcp_sk(sk); 1692 u32 seq = tp->copied_seq; 1693 struct sk_buff *skb; 1694 size_t left; 1695 u32 offset; 1696 1697 if (sk->sk_state == TCP_LISTEN) 1698 return; 1699 1700 left = len; 1701 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1702 int used; 1703 1704 used = min_t(size_t, skb->len - offset, left); 1705 seq += used; 1706 left -= used; 1707 1708 if (skb->len > offset + used) 1709 break; 1710 1711 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1712 tcp_eat_recv_skb(sk, skb); 1713 ++seq; 1714 break; 1715 } 1716 tcp_eat_recv_skb(sk, skb); 1717 } 1718 WRITE_ONCE(tp->copied_seq, seq); 1719 1720 tcp_rcv_space_adjust(sk); 1721 1722 /* Clean up data we have read: This will do ACK frames. */ 1723 if (left != len) 1724 tcp_cleanup_rbuf(sk, len - left); 1725 } 1726 EXPORT_SYMBOL(tcp_read_done); 1727 1728 int tcp_peek_len(struct socket *sock) 1729 { 1730 return tcp_inq(sock->sk); 1731 } 1732 EXPORT_SYMBOL(tcp_peek_len); 1733 1734 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1735 int tcp_set_rcvlowat(struct sock *sk, int val) 1736 { 1737 int cap; 1738 1739 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1740 cap = sk->sk_rcvbuf >> 1; 1741 else 1742 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1743 val = min(val, cap); 1744 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1745 1746 /* Check if we need to signal EPOLLIN right now */ 1747 tcp_data_ready(sk); 1748 1749 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1750 return 0; 1751 1752 val <<= 1; 1753 if (val > sk->sk_rcvbuf) { 1754 WRITE_ONCE(sk->sk_rcvbuf, val); 1755 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1756 } 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(tcp_set_rcvlowat); 1760 1761 void tcp_update_recv_tstamps(struct sk_buff *skb, 1762 struct scm_timestamping_internal *tss) 1763 { 1764 if (skb->tstamp) 1765 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1766 else 1767 tss->ts[0] = (struct timespec64) {0}; 1768 1769 if (skb_hwtstamps(skb)->hwtstamp) 1770 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1771 else 1772 tss->ts[2] = (struct timespec64) {0}; 1773 } 1774 1775 #ifdef CONFIG_MMU 1776 static const struct vm_operations_struct tcp_vm_ops = { 1777 }; 1778 1779 int tcp_mmap(struct file *file, struct socket *sock, 1780 struct vm_area_struct *vma) 1781 { 1782 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1783 return -EPERM; 1784 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1785 1786 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1787 vm_flags_set(vma, VM_MIXEDMAP); 1788 1789 vma->vm_ops = &tcp_vm_ops; 1790 return 0; 1791 } 1792 EXPORT_SYMBOL(tcp_mmap); 1793 1794 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1795 u32 *offset_frag) 1796 { 1797 skb_frag_t *frag; 1798 1799 if (unlikely(offset_skb >= skb->len)) 1800 return NULL; 1801 1802 offset_skb -= skb_headlen(skb); 1803 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1804 return NULL; 1805 1806 frag = skb_shinfo(skb)->frags; 1807 while (offset_skb) { 1808 if (skb_frag_size(frag) > offset_skb) { 1809 *offset_frag = offset_skb; 1810 return frag; 1811 } 1812 offset_skb -= skb_frag_size(frag); 1813 ++frag; 1814 } 1815 *offset_frag = 0; 1816 return frag; 1817 } 1818 1819 static bool can_map_frag(const skb_frag_t *frag) 1820 { 1821 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1822 } 1823 1824 static int find_next_mappable_frag(const skb_frag_t *frag, 1825 int remaining_in_skb) 1826 { 1827 int offset = 0; 1828 1829 if (likely(can_map_frag(frag))) 1830 return 0; 1831 1832 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1833 offset += skb_frag_size(frag); 1834 ++frag; 1835 } 1836 return offset; 1837 } 1838 1839 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1840 struct tcp_zerocopy_receive *zc, 1841 struct sk_buff *skb, u32 offset) 1842 { 1843 u32 frag_offset, partial_frag_remainder = 0; 1844 int mappable_offset; 1845 skb_frag_t *frag; 1846 1847 /* worst case: skip to next skb. try to improve on this case below */ 1848 zc->recv_skip_hint = skb->len - offset; 1849 1850 /* Find the frag containing this offset (and how far into that frag) */ 1851 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1852 if (!frag) 1853 return; 1854 1855 if (frag_offset) { 1856 struct skb_shared_info *info = skb_shinfo(skb); 1857 1858 /* We read part of the last frag, must recvmsg() rest of skb. */ 1859 if (frag == &info->frags[info->nr_frags - 1]) 1860 return; 1861 1862 /* Else, we must at least read the remainder in this frag. */ 1863 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1864 zc->recv_skip_hint -= partial_frag_remainder; 1865 ++frag; 1866 } 1867 1868 /* partial_frag_remainder: If part way through a frag, must read rest. 1869 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1870 * in partial_frag_remainder. 1871 */ 1872 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1873 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1874 } 1875 1876 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1877 int flags, struct scm_timestamping_internal *tss, 1878 int *cmsg_flags); 1879 static int receive_fallback_to_copy(struct sock *sk, 1880 struct tcp_zerocopy_receive *zc, int inq, 1881 struct scm_timestamping_internal *tss) 1882 { 1883 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1884 struct msghdr msg = {}; 1885 struct iovec iov; 1886 int err; 1887 1888 zc->length = 0; 1889 zc->recv_skip_hint = 0; 1890 1891 if (copy_address != zc->copybuf_address) 1892 return -EINVAL; 1893 1894 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1895 inq, &iov, &msg.msg_iter); 1896 if (err) 1897 return err; 1898 1899 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1900 tss, &zc->msg_flags); 1901 if (err < 0) 1902 return err; 1903 1904 zc->copybuf_len = err; 1905 if (likely(zc->copybuf_len)) { 1906 struct sk_buff *skb; 1907 u32 offset; 1908 1909 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1910 if (skb) 1911 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1912 } 1913 return 0; 1914 } 1915 1916 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1917 struct sk_buff *skb, u32 copylen, 1918 u32 *offset, u32 *seq) 1919 { 1920 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1921 struct msghdr msg = {}; 1922 struct iovec iov; 1923 int err; 1924 1925 if (copy_address != zc->copybuf_address) 1926 return -EINVAL; 1927 1928 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1929 copylen, &iov, &msg.msg_iter); 1930 if (err) 1931 return err; 1932 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1933 if (err) 1934 return err; 1935 zc->recv_skip_hint -= copylen; 1936 *offset += copylen; 1937 *seq += copylen; 1938 return (__s32)copylen; 1939 } 1940 1941 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1942 struct sock *sk, 1943 struct sk_buff *skb, 1944 u32 *seq, 1945 s32 copybuf_len, 1946 struct scm_timestamping_internal *tss) 1947 { 1948 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1949 1950 if (!copylen) 1951 return 0; 1952 /* skb is null if inq < PAGE_SIZE. */ 1953 if (skb) { 1954 offset = *seq - TCP_SKB_CB(skb)->seq; 1955 } else { 1956 skb = tcp_recv_skb(sk, *seq, &offset); 1957 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1958 tcp_update_recv_tstamps(skb, tss); 1959 zc->msg_flags |= TCP_CMSG_TS; 1960 } 1961 } 1962 1963 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1964 seq); 1965 return zc->copybuf_len < 0 ? 0 : copylen; 1966 } 1967 1968 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1969 struct page **pending_pages, 1970 unsigned long pages_remaining, 1971 unsigned long *address, 1972 u32 *length, 1973 u32 *seq, 1974 struct tcp_zerocopy_receive *zc, 1975 u32 total_bytes_to_map, 1976 int err) 1977 { 1978 /* At least one page did not map. Try zapping if we skipped earlier. */ 1979 if (err == -EBUSY && 1980 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1981 u32 maybe_zap_len; 1982 1983 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1984 *length + /* Mapped or pending */ 1985 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1986 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1987 err = 0; 1988 } 1989 1990 if (!err) { 1991 unsigned long leftover_pages = pages_remaining; 1992 int bytes_mapped; 1993 1994 /* We called zap_page_range_single, try to reinsert. */ 1995 err = vm_insert_pages(vma, *address, 1996 pending_pages, 1997 &pages_remaining); 1998 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1999 *seq += bytes_mapped; 2000 *address += bytes_mapped; 2001 } 2002 if (err) { 2003 /* Either we were unable to zap, OR we zapped, retried an 2004 * insert, and still had an issue. Either ways, pages_remaining 2005 * is the number of pages we were unable to map, and we unroll 2006 * some state we speculatively touched before. 2007 */ 2008 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2009 2010 *length -= bytes_not_mapped; 2011 zc->recv_skip_hint += bytes_not_mapped; 2012 } 2013 return err; 2014 } 2015 2016 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2017 struct page **pages, 2018 unsigned int pages_to_map, 2019 unsigned long *address, 2020 u32 *length, 2021 u32 *seq, 2022 struct tcp_zerocopy_receive *zc, 2023 u32 total_bytes_to_map) 2024 { 2025 unsigned long pages_remaining = pages_to_map; 2026 unsigned int pages_mapped; 2027 unsigned int bytes_mapped; 2028 int err; 2029 2030 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2031 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2032 bytes_mapped = PAGE_SIZE * pages_mapped; 2033 /* Even if vm_insert_pages fails, it may have partially succeeded in 2034 * mapping (some but not all of the pages). 2035 */ 2036 *seq += bytes_mapped; 2037 *address += bytes_mapped; 2038 2039 if (likely(!err)) 2040 return 0; 2041 2042 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2043 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2044 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2045 err); 2046 } 2047 2048 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2049 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2050 struct tcp_zerocopy_receive *zc, 2051 struct scm_timestamping_internal *tss) 2052 { 2053 unsigned long msg_control_addr; 2054 struct msghdr cmsg_dummy; 2055 2056 msg_control_addr = (unsigned long)zc->msg_control; 2057 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2058 cmsg_dummy.msg_controllen = 2059 (__kernel_size_t)zc->msg_controllen; 2060 cmsg_dummy.msg_flags = in_compat_syscall() 2061 ? MSG_CMSG_COMPAT : 0; 2062 cmsg_dummy.msg_control_is_user = true; 2063 zc->msg_flags = 0; 2064 if (zc->msg_control == msg_control_addr && 2065 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2066 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2067 zc->msg_control = (__u64) 2068 ((uintptr_t)cmsg_dummy.msg_control_user); 2069 zc->msg_controllen = 2070 (__u64)cmsg_dummy.msg_controllen; 2071 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2072 } 2073 } 2074 2075 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2076 static int tcp_zerocopy_receive(struct sock *sk, 2077 struct tcp_zerocopy_receive *zc, 2078 struct scm_timestamping_internal *tss) 2079 { 2080 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2081 unsigned long address = (unsigned long)zc->address; 2082 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2083 s32 copybuf_len = zc->copybuf_len; 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 const skb_frag_t *frags = NULL; 2086 unsigned int pages_to_map = 0; 2087 struct vm_area_struct *vma; 2088 struct sk_buff *skb = NULL; 2089 u32 seq = tp->copied_seq; 2090 u32 total_bytes_to_map; 2091 int inq = tcp_inq(sk); 2092 int ret; 2093 2094 zc->copybuf_len = 0; 2095 zc->msg_flags = 0; 2096 2097 if (address & (PAGE_SIZE - 1) || address != zc->address) 2098 return -EINVAL; 2099 2100 if (sk->sk_state == TCP_LISTEN) 2101 return -ENOTCONN; 2102 2103 sock_rps_record_flow(sk); 2104 2105 if (inq && inq <= copybuf_len) 2106 return receive_fallback_to_copy(sk, zc, inq, tss); 2107 2108 if (inq < PAGE_SIZE) { 2109 zc->length = 0; 2110 zc->recv_skip_hint = inq; 2111 if (!inq && sock_flag(sk, SOCK_DONE)) 2112 return -EIO; 2113 return 0; 2114 } 2115 2116 mmap_read_lock(current->mm); 2117 2118 vma = vma_lookup(current->mm, address); 2119 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2120 mmap_read_unlock(current->mm); 2121 return -EINVAL; 2122 } 2123 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2124 avail_len = min_t(u32, vma_len, inq); 2125 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2126 if (total_bytes_to_map) { 2127 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2128 zap_page_range_single(vma, address, total_bytes_to_map, 2129 NULL); 2130 zc->length = total_bytes_to_map; 2131 zc->recv_skip_hint = 0; 2132 } else { 2133 zc->length = avail_len; 2134 zc->recv_skip_hint = avail_len; 2135 } 2136 ret = 0; 2137 while (length + PAGE_SIZE <= zc->length) { 2138 int mappable_offset; 2139 struct page *page; 2140 2141 if (zc->recv_skip_hint < PAGE_SIZE) { 2142 u32 offset_frag; 2143 2144 if (skb) { 2145 if (zc->recv_skip_hint > 0) 2146 break; 2147 skb = skb->next; 2148 offset = seq - TCP_SKB_CB(skb)->seq; 2149 } else { 2150 skb = tcp_recv_skb(sk, seq, &offset); 2151 } 2152 2153 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2154 tcp_update_recv_tstamps(skb, tss); 2155 zc->msg_flags |= TCP_CMSG_TS; 2156 } 2157 zc->recv_skip_hint = skb->len - offset; 2158 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2159 if (!frags || offset_frag) 2160 break; 2161 } 2162 2163 mappable_offset = find_next_mappable_frag(frags, 2164 zc->recv_skip_hint); 2165 if (mappable_offset) { 2166 zc->recv_skip_hint = mappable_offset; 2167 break; 2168 } 2169 page = skb_frag_page(frags); 2170 prefetchw(page); 2171 pages[pages_to_map++] = page; 2172 length += PAGE_SIZE; 2173 zc->recv_skip_hint -= PAGE_SIZE; 2174 frags++; 2175 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2176 zc->recv_skip_hint < PAGE_SIZE) { 2177 /* Either full batch, or we're about to go to next skb 2178 * (and we cannot unroll failed ops across skbs). 2179 */ 2180 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2181 pages_to_map, 2182 &address, &length, 2183 &seq, zc, 2184 total_bytes_to_map); 2185 if (ret) 2186 goto out; 2187 pages_to_map = 0; 2188 } 2189 } 2190 if (pages_to_map) { 2191 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2192 &address, &length, &seq, 2193 zc, total_bytes_to_map); 2194 } 2195 out: 2196 mmap_read_unlock(current->mm); 2197 /* Try to copy straggler data. */ 2198 if (!ret) 2199 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2200 2201 if (length + copylen) { 2202 WRITE_ONCE(tp->copied_seq, seq); 2203 tcp_rcv_space_adjust(sk); 2204 2205 /* Clean up data we have read: This will do ACK frames. */ 2206 tcp_recv_skb(sk, seq, &offset); 2207 tcp_cleanup_rbuf(sk, length + copylen); 2208 ret = 0; 2209 if (length == zc->length) 2210 zc->recv_skip_hint = 0; 2211 } else { 2212 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2213 ret = -EIO; 2214 } 2215 zc->length = length; 2216 return ret; 2217 } 2218 #endif 2219 2220 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2221 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2222 struct scm_timestamping_internal *tss) 2223 { 2224 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2225 bool has_timestamping = false; 2226 2227 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2228 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2229 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2230 if (new_tstamp) { 2231 struct __kernel_timespec kts = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_nsec = tss->ts[0].tv_nsec, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2236 sizeof(kts), &kts); 2237 } else { 2238 struct __kernel_old_timespec ts_old = { 2239 .tv_sec = tss->ts[0].tv_sec, 2240 .tv_nsec = tss->ts[0].tv_nsec, 2241 }; 2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2243 sizeof(ts_old), &ts_old); 2244 } 2245 } else { 2246 if (new_tstamp) { 2247 struct __kernel_sock_timeval stv = { 2248 .tv_sec = tss->ts[0].tv_sec, 2249 .tv_usec = tss->ts[0].tv_nsec / 1000, 2250 }; 2251 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2252 sizeof(stv), &stv); 2253 } else { 2254 struct __kernel_old_timeval tv = { 2255 .tv_sec = tss->ts[0].tv_sec, 2256 .tv_usec = tss->ts[0].tv_nsec / 1000, 2257 }; 2258 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2259 sizeof(tv), &tv); 2260 } 2261 } 2262 } 2263 2264 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2265 has_timestamping = true; 2266 else 2267 tss->ts[0] = (struct timespec64) {0}; 2268 } 2269 2270 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2271 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2272 has_timestamping = true; 2273 else 2274 tss->ts[2] = (struct timespec64) {0}; 2275 } 2276 2277 if (has_timestamping) { 2278 tss->ts[1] = (struct timespec64) {0}; 2279 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2280 put_cmsg_scm_timestamping64(msg, tss); 2281 else 2282 put_cmsg_scm_timestamping(msg, tss); 2283 } 2284 } 2285 2286 static int tcp_inq_hint(struct sock *sk) 2287 { 2288 const struct tcp_sock *tp = tcp_sk(sk); 2289 u32 copied_seq = READ_ONCE(tp->copied_seq); 2290 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2291 int inq; 2292 2293 inq = rcv_nxt - copied_seq; 2294 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2295 lock_sock(sk); 2296 inq = tp->rcv_nxt - tp->copied_seq; 2297 release_sock(sk); 2298 } 2299 /* After receiving a FIN, tell the user-space to continue reading 2300 * by returning a non-zero inq. 2301 */ 2302 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2303 inq = 1; 2304 return inq; 2305 } 2306 2307 /* 2308 * This routine copies from a sock struct into the user buffer. 2309 * 2310 * Technical note: in 2.3 we work on _locked_ socket, so that 2311 * tricks with *seq access order and skb->users are not required. 2312 * Probably, code can be easily improved even more. 2313 */ 2314 2315 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2316 int flags, struct scm_timestamping_internal *tss, 2317 int *cmsg_flags) 2318 { 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 int copied = 0; 2321 u32 peek_seq; 2322 u32 *seq; 2323 unsigned long used; 2324 int err; 2325 int target; /* Read at least this many bytes */ 2326 long timeo; 2327 struct sk_buff *skb, *last; 2328 u32 urg_hole = 0; 2329 2330 err = -ENOTCONN; 2331 if (sk->sk_state == TCP_LISTEN) 2332 goto out; 2333 2334 if (tp->recvmsg_inq) { 2335 *cmsg_flags = TCP_CMSG_INQ; 2336 msg->msg_get_inq = 1; 2337 } 2338 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2339 2340 /* Urgent data needs to be handled specially. */ 2341 if (flags & MSG_OOB) 2342 goto recv_urg; 2343 2344 if (unlikely(tp->repair)) { 2345 err = -EPERM; 2346 if (!(flags & MSG_PEEK)) 2347 goto out; 2348 2349 if (tp->repair_queue == TCP_SEND_QUEUE) 2350 goto recv_sndq; 2351 2352 err = -EINVAL; 2353 if (tp->repair_queue == TCP_NO_QUEUE) 2354 goto out; 2355 2356 /* 'common' recv queue MSG_PEEK-ing */ 2357 } 2358 2359 seq = &tp->copied_seq; 2360 if (flags & MSG_PEEK) { 2361 peek_seq = tp->copied_seq; 2362 seq = &peek_seq; 2363 } 2364 2365 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2366 2367 do { 2368 u32 offset; 2369 2370 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2371 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2372 if (copied) 2373 break; 2374 if (signal_pending(current)) { 2375 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2376 break; 2377 } 2378 } 2379 2380 /* Next get a buffer. */ 2381 2382 last = skb_peek_tail(&sk->sk_receive_queue); 2383 skb_queue_walk(&sk->sk_receive_queue, skb) { 2384 last = skb; 2385 /* Now that we have two receive queues this 2386 * shouldn't happen. 2387 */ 2388 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2389 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2390 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2391 flags)) 2392 break; 2393 2394 offset = *seq - TCP_SKB_CB(skb)->seq; 2395 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2396 pr_err_once("%s: found a SYN, please report !\n", __func__); 2397 offset--; 2398 } 2399 if (offset < skb->len) 2400 goto found_ok_skb; 2401 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2402 goto found_fin_ok; 2403 WARN(!(flags & MSG_PEEK), 2404 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2405 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2406 } 2407 2408 /* Well, if we have backlog, try to process it now yet. */ 2409 2410 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2411 break; 2412 2413 if (copied) { 2414 if (!timeo || 2415 sk->sk_err || 2416 sk->sk_state == TCP_CLOSE || 2417 (sk->sk_shutdown & RCV_SHUTDOWN) || 2418 signal_pending(current)) 2419 break; 2420 } else { 2421 if (sock_flag(sk, SOCK_DONE)) 2422 break; 2423 2424 if (sk->sk_err) { 2425 copied = sock_error(sk); 2426 break; 2427 } 2428 2429 if (sk->sk_shutdown & RCV_SHUTDOWN) 2430 break; 2431 2432 if (sk->sk_state == TCP_CLOSE) { 2433 /* This occurs when user tries to read 2434 * from never connected socket. 2435 */ 2436 copied = -ENOTCONN; 2437 break; 2438 } 2439 2440 if (!timeo) { 2441 copied = -EAGAIN; 2442 break; 2443 } 2444 2445 if (signal_pending(current)) { 2446 copied = sock_intr_errno(timeo); 2447 break; 2448 } 2449 } 2450 2451 if (copied >= target) { 2452 /* Do not sleep, just process backlog. */ 2453 __sk_flush_backlog(sk); 2454 } else { 2455 tcp_cleanup_rbuf(sk, copied); 2456 sk_wait_data(sk, &timeo, last); 2457 } 2458 2459 if ((flags & MSG_PEEK) && 2460 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2461 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2462 current->comm, 2463 task_pid_nr(current)); 2464 peek_seq = tp->copied_seq; 2465 } 2466 continue; 2467 2468 found_ok_skb: 2469 /* Ok so how much can we use? */ 2470 used = skb->len - offset; 2471 if (len < used) 2472 used = len; 2473 2474 /* Do we have urgent data here? */ 2475 if (unlikely(tp->urg_data)) { 2476 u32 urg_offset = tp->urg_seq - *seq; 2477 if (urg_offset < used) { 2478 if (!urg_offset) { 2479 if (!sock_flag(sk, SOCK_URGINLINE)) { 2480 WRITE_ONCE(*seq, *seq + 1); 2481 urg_hole++; 2482 offset++; 2483 used--; 2484 if (!used) 2485 goto skip_copy; 2486 } 2487 } else 2488 used = urg_offset; 2489 } 2490 } 2491 2492 if (!(flags & MSG_TRUNC)) { 2493 err = skb_copy_datagram_msg(skb, offset, msg, used); 2494 if (err) { 2495 /* Exception. Bailout! */ 2496 if (!copied) 2497 copied = -EFAULT; 2498 break; 2499 } 2500 } 2501 2502 WRITE_ONCE(*seq, *seq + used); 2503 copied += used; 2504 len -= used; 2505 2506 tcp_rcv_space_adjust(sk); 2507 2508 skip_copy: 2509 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2510 WRITE_ONCE(tp->urg_data, 0); 2511 tcp_fast_path_check(sk); 2512 } 2513 2514 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2515 tcp_update_recv_tstamps(skb, tss); 2516 *cmsg_flags |= TCP_CMSG_TS; 2517 } 2518 2519 if (used + offset < skb->len) 2520 continue; 2521 2522 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2523 goto found_fin_ok; 2524 if (!(flags & MSG_PEEK)) 2525 tcp_eat_recv_skb(sk, skb); 2526 continue; 2527 2528 found_fin_ok: 2529 /* Process the FIN. */ 2530 WRITE_ONCE(*seq, *seq + 1); 2531 if (!(flags & MSG_PEEK)) 2532 tcp_eat_recv_skb(sk, skb); 2533 break; 2534 } while (len > 0); 2535 2536 /* According to UNIX98, msg_name/msg_namelen are ignored 2537 * on connected socket. I was just happy when found this 8) --ANK 2538 */ 2539 2540 /* Clean up data we have read: This will do ACK frames. */ 2541 tcp_cleanup_rbuf(sk, copied); 2542 return copied; 2543 2544 out: 2545 return err; 2546 2547 recv_urg: 2548 err = tcp_recv_urg(sk, msg, len, flags); 2549 goto out; 2550 2551 recv_sndq: 2552 err = tcp_peek_sndq(sk, msg, len); 2553 goto out; 2554 } 2555 2556 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2557 int *addr_len) 2558 { 2559 int cmsg_flags = 0, ret; 2560 struct scm_timestamping_internal tss; 2561 2562 if (unlikely(flags & MSG_ERRQUEUE)) 2563 return inet_recv_error(sk, msg, len, addr_len); 2564 2565 if (sk_can_busy_loop(sk) && 2566 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2567 sk->sk_state == TCP_ESTABLISHED) 2568 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2569 2570 lock_sock(sk); 2571 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2572 release_sock(sk); 2573 2574 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2575 if (cmsg_flags & TCP_CMSG_TS) 2576 tcp_recv_timestamp(msg, sk, &tss); 2577 if (msg->msg_get_inq) { 2578 msg->msg_inq = tcp_inq_hint(sk); 2579 if (cmsg_flags & TCP_CMSG_INQ) 2580 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2581 sizeof(msg->msg_inq), &msg->msg_inq); 2582 } 2583 } 2584 return ret; 2585 } 2586 EXPORT_SYMBOL(tcp_recvmsg); 2587 2588 void tcp_set_state(struct sock *sk, int state) 2589 { 2590 int oldstate = sk->sk_state; 2591 2592 /* We defined a new enum for TCP states that are exported in BPF 2593 * so as not force the internal TCP states to be frozen. The 2594 * following checks will detect if an internal state value ever 2595 * differs from the BPF value. If this ever happens, then we will 2596 * need to remap the internal value to the BPF value before calling 2597 * tcp_call_bpf_2arg. 2598 */ 2599 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2600 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2601 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2602 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2603 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2604 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2605 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2606 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2607 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2608 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2609 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2610 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2611 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2612 2613 /* bpf uapi header bpf.h defines an anonymous enum with values 2614 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2615 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2616 * But clang built vmlinux does not have this enum in DWARF 2617 * since clang removes the above code before generating IR/debuginfo. 2618 * Let us explicitly emit the type debuginfo to ensure the 2619 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2620 * regardless of which compiler is used. 2621 */ 2622 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2623 2624 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2625 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2626 2627 switch (state) { 2628 case TCP_ESTABLISHED: 2629 if (oldstate != TCP_ESTABLISHED) 2630 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2631 break; 2632 2633 case TCP_CLOSE: 2634 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2635 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2636 2637 sk->sk_prot->unhash(sk); 2638 if (inet_csk(sk)->icsk_bind_hash && 2639 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2640 inet_put_port(sk); 2641 fallthrough; 2642 default: 2643 if (oldstate == TCP_ESTABLISHED) 2644 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2645 } 2646 2647 /* Change state AFTER socket is unhashed to avoid closed 2648 * socket sitting in hash tables. 2649 */ 2650 inet_sk_state_store(sk, state); 2651 } 2652 EXPORT_SYMBOL_GPL(tcp_set_state); 2653 2654 /* 2655 * State processing on a close. This implements the state shift for 2656 * sending our FIN frame. Note that we only send a FIN for some 2657 * states. A shutdown() may have already sent the FIN, or we may be 2658 * closed. 2659 */ 2660 2661 static const unsigned char new_state[16] = { 2662 /* current state: new state: action: */ 2663 [0 /* (Invalid) */] = TCP_CLOSE, 2664 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2665 [TCP_SYN_SENT] = TCP_CLOSE, 2666 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2667 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2668 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2669 [TCP_TIME_WAIT] = TCP_CLOSE, 2670 [TCP_CLOSE] = TCP_CLOSE, 2671 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2672 [TCP_LAST_ACK] = TCP_LAST_ACK, 2673 [TCP_LISTEN] = TCP_CLOSE, 2674 [TCP_CLOSING] = TCP_CLOSING, 2675 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2676 }; 2677 2678 static int tcp_close_state(struct sock *sk) 2679 { 2680 int next = (int)new_state[sk->sk_state]; 2681 int ns = next & TCP_STATE_MASK; 2682 2683 tcp_set_state(sk, ns); 2684 2685 return next & TCP_ACTION_FIN; 2686 } 2687 2688 /* 2689 * Shutdown the sending side of a connection. Much like close except 2690 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2691 */ 2692 2693 void tcp_shutdown(struct sock *sk, int how) 2694 { 2695 /* We need to grab some memory, and put together a FIN, 2696 * and then put it into the queue to be sent. 2697 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2698 */ 2699 if (!(how & SEND_SHUTDOWN)) 2700 return; 2701 2702 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2703 if ((1 << sk->sk_state) & 2704 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2705 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2706 /* Clear out any half completed packets. FIN if needed. */ 2707 if (tcp_close_state(sk)) 2708 tcp_send_fin(sk); 2709 } 2710 } 2711 EXPORT_SYMBOL(tcp_shutdown); 2712 2713 int tcp_orphan_count_sum(void) 2714 { 2715 int i, total = 0; 2716 2717 for_each_possible_cpu(i) 2718 total += per_cpu(tcp_orphan_count, i); 2719 2720 return max(total, 0); 2721 } 2722 2723 static int tcp_orphan_cache; 2724 static struct timer_list tcp_orphan_timer; 2725 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2726 2727 static void tcp_orphan_update(struct timer_list *unused) 2728 { 2729 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2730 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2731 } 2732 2733 static bool tcp_too_many_orphans(int shift) 2734 { 2735 return READ_ONCE(tcp_orphan_cache) << shift > 2736 READ_ONCE(sysctl_tcp_max_orphans); 2737 } 2738 2739 bool tcp_check_oom(struct sock *sk, int shift) 2740 { 2741 bool too_many_orphans, out_of_socket_memory; 2742 2743 too_many_orphans = tcp_too_many_orphans(shift); 2744 out_of_socket_memory = tcp_out_of_memory(sk); 2745 2746 if (too_many_orphans) 2747 net_info_ratelimited("too many orphaned sockets\n"); 2748 if (out_of_socket_memory) 2749 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2750 return too_many_orphans || out_of_socket_memory; 2751 } 2752 2753 void __tcp_close(struct sock *sk, long timeout) 2754 { 2755 struct sk_buff *skb; 2756 int data_was_unread = 0; 2757 int state; 2758 2759 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2760 2761 if (sk->sk_state == TCP_LISTEN) { 2762 tcp_set_state(sk, TCP_CLOSE); 2763 2764 /* Special case. */ 2765 inet_csk_listen_stop(sk); 2766 2767 goto adjudge_to_death; 2768 } 2769 2770 /* We need to flush the recv. buffs. We do this only on the 2771 * descriptor close, not protocol-sourced closes, because the 2772 * reader process may not have drained the data yet! 2773 */ 2774 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2775 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2776 2777 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2778 len--; 2779 data_was_unread += len; 2780 __kfree_skb(skb); 2781 } 2782 2783 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2784 if (sk->sk_state == TCP_CLOSE) 2785 goto adjudge_to_death; 2786 2787 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2788 * data was lost. To witness the awful effects of the old behavior of 2789 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2790 * GET in an FTP client, suspend the process, wait for the client to 2791 * advertise a zero window, then kill -9 the FTP client, wheee... 2792 * Note: timeout is always zero in such a case. 2793 */ 2794 if (unlikely(tcp_sk(sk)->repair)) { 2795 sk->sk_prot->disconnect(sk, 0); 2796 } else if (data_was_unread) { 2797 /* Unread data was tossed, zap the connection. */ 2798 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2799 tcp_set_state(sk, TCP_CLOSE); 2800 tcp_send_active_reset(sk, sk->sk_allocation); 2801 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2802 /* Check zero linger _after_ checking for unread data. */ 2803 sk->sk_prot->disconnect(sk, 0); 2804 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2805 } else if (tcp_close_state(sk)) { 2806 /* We FIN if the application ate all the data before 2807 * zapping the connection. 2808 */ 2809 2810 /* RED-PEN. Formally speaking, we have broken TCP state 2811 * machine. State transitions: 2812 * 2813 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2814 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2815 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2816 * 2817 * are legal only when FIN has been sent (i.e. in window), 2818 * rather than queued out of window. Purists blame. 2819 * 2820 * F.e. "RFC state" is ESTABLISHED, 2821 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2822 * 2823 * The visible declinations are that sometimes 2824 * we enter time-wait state, when it is not required really 2825 * (harmless), do not send active resets, when they are 2826 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2827 * they look as CLOSING or LAST_ACK for Linux) 2828 * Probably, I missed some more holelets. 2829 * --ANK 2830 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2831 * in a single packet! (May consider it later but will 2832 * probably need API support or TCP_CORK SYN-ACK until 2833 * data is written and socket is closed.) 2834 */ 2835 tcp_send_fin(sk); 2836 } 2837 2838 sk_stream_wait_close(sk, timeout); 2839 2840 adjudge_to_death: 2841 state = sk->sk_state; 2842 sock_hold(sk); 2843 sock_orphan(sk); 2844 2845 local_bh_disable(); 2846 bh_lock_sock(sk); 2847 /* remove backlog if any, without releasing ownership. */ 2848 __release_sock(sk); 2849 2850 this_cpu_inc(tcp_orphan_count); 2851 2852 /* Have we already been destroyed by a softirq or backlog? */ 2853 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2854 goto out; 2855 2856 /* This is a (useful) BSD violating of the RFC. There is a 2857 * problem with TCP as specified in that the other end could 2858 * keep a socket open forever with no application left this end. 2859 * We use a 1 minute timeout (about the same as BSD) then kill 2860 * our end. If they send after that then tough - BUT: long enough 2861 * that we won't make the old 4*rto = almost no time - whoops 2862 * reset mistake. 2863 * 2864 * Nope, it was not mistake. It is really desired behaviour 2865 * f.e. on http servers, when such sockets are useless, but 2866 * consume significant resources. Let's do it with special 2867 * linger2 option. --ANK 2868 */ 2869 2870 if (sk->sk_state == TCP_FIN_WAIT2) { 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 if (tp->linger2 < 0) { 2873 tcp_set_state(sk, TCP_CLOSE); 2874 tcp_send_active_reset(sk, GFP_ATOMIC); 2875 __NET_INC_STATS(sock_net(sk), 2876 LINUX_MIB_TCPABORTONLINGER); 2877 } else { 2878 const int tmo = tcp_fin_time(sk); 2879 2880 if (tmo > TCP_TIMEWAIT_LEN) { 2881 inet_csk_reset_keepalive_timer(sk, 2882 tmo - TCP_TIMEWAIT_LEN); 2883 } else { 2884 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2885 goto out; 2886 } 2887 } 2888 } 2889 if (sk->sk_state != TCP_CLOSE) { 2890 if (tcp_check_oom(sk, 0)) { 2891 tcp_set_state(sk, TCP_CLOSE); 2892 tcp_send_active_reset(sk, GFP_ATOMIC); 2893 __NET_INC_STATS(sock_net(sk), 2894 LINUX_MIB_TCPABORTONMEMORY); 2895 } else if (!check_net(sock_net(sk))) { 2896 /* Not possible to send reset; just close */ 2897 tcp_set_state(sk, TCP_CLOSE); 2898 } 2899 } 2900 2901 if (sk->sk_state == TCP_CLOSE) { 2902 struct request_sock *req; 2903 2904 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2905 lockdep_sock_is_held(sk)); 2906 /* We could get here with a non-NULL req if the socket is 2907 * aborted (e.g., closed with unread data) before 3WHS 2908 * finishes. 2909 */ 2910 if (req) 2911 reqsk_fastopen_remove(sk, req, false); 2912 inet_csk_destroy_sock(sk); 2913 } 2914 /* Otherwise, socket is reprieved until protocol close. */ 2915 2916 out: 2917 bh_unlock_sock(sk); 2918 local_bh_enable(); 2919 } 2920 2921 void tcp_close(struct sock *sk, long timeout) 2922 { 2923 lock_sock(sk); 2924 __tcp_close(sk, timeout); 2925 release_sock(sk); 2926 sock_put(sk); 2927 } 2928 EXPORT_SYMBOL(tcp_close); 2929 2930 /* These states need RST on ABORT according to RFC793 */ 2931 2932 static inline bool tcp_need_reset(int state) 2933 { 2934 return (1 << state) & 2935 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2936 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2937 } 2938 2939 static void tcp_rtx_queue_purge(struct sock *sk) 2940 { 2941 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2942 2943 tcp_sk(sk)->highest_sack = NULL; 2944 while (p) { 2945 struct sk_buff *skb = rb_to_skb(p); 2946 2947 p = rb_next(p); 2948 /* Since we are deleting whole queue, no need to 2949 * list_del(&skb->tcp_tsorted_anchor) 2950 */ 2951 tcp_rtx_queue_unlink(skb, sk); 2952 tcp_wmem_free_skb(sk, skb); 2953 } 2954 } 2955 2956 void tcp_write_queue_purge(struct sock *sk) 2957 { 2958 struct sk_buff *skb; 2959 2960 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2961 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2962 tcp_skb_tsorted_anchor_cleanup(skb); 2963 tcp_wmem_free_skb(sk, skb); 2964 } 2965 tcp_rtx_queue_purge(sk); 2966 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2967 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2968 tcp_sk(sk)->packets_out = 0; 2969 inet_csk(sk)->icsk_backoff = 0; 2970 } 2971 2972 int tcp_disconnect(struct sock *sk, int flags) 2973 { 2974 struct inet_sock *inet = inet_sk(sk); 2975 struct inet_connection_sock *icsk = inet_csk(sk); 2976 struct tcp_sock *tp = tcp_sk(sk); 2977 int old_state = sk->sk_state; 2978 u32 seq; 2979 2980 /* Deny disconnect if other threads are blocked in sk_wait_event() 2981 * or inet_wait_for_connect(). 2982 */ 2983 if (sk->sk_wait_pending) 2984 return -EBUSY; 2985 2986 if (old_state != TCP_CLOSE) 2987 tcp_set_state(sk, TCP_CLOSE); 2988 2989 /* ABORT function of RFC793 */ 2990 if (old_state == TCP_LISTEN) { 2991 inet_csk_listen_stop(sk); 2992 } else if (unlikely(tp->repair)) { 2993 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2994 } else if (tcp_need_reset(old_state) || 2995 (tp->snd_nxt != tp->write_seq && 2996 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2997 /* The last check adjusts for discrepancy of Linux wrt. RFC 2998 * states 2999 */ 3000 tcp_send_active_reset(sk, gfp_any()); 3001 WRITE_ONCE(sk->sk_err, ECONNRESET); 3002 } else if (old_state == TCP_SYN_SENT) 3003 WRITE_ONCE(sk->sk_err, ECONNRESET); 3004 3005 tcp_clear_xmit_timers(sk); 3006 __skb_queue_purge(&sk->sk_receive_queue); 3007 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3008 WRITE_ONCE(tp->urg_data, 0); 3009 tcp_write_queue_purge(sk); 3010 tcp_fastopen_active_disable_ofo_check(sk); 3011 skb_rbtree_purge(&tp->out_of_order_queue); 3012 3013 inet->inet_dport = 0; 3014 3015 inet_bhash2_reset_saddr(sk); 3016 3017 WRITE_ONCE(sk->sk_shutdown, 0); 3018 sock_reset_flag(sk, SOCK_DONE); 3019 tp->srtt_us = 0; 3020 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3021 tp->rcv_rtt_last_tsecr = 0; 3022 3023 seq = tp->write_seq + tp->max_window + 2; 3024 if (!seq) 3025 seq = 1; 3026 WRITE_ONCE(tp->write_seq, seq); 3027 3028 icsk->icsk_backoff = 0; 3029 icsk->icsk_probes_out = 0; 3030 icsk->icsk_probes_tstamp = 0; 3031 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3032 icsk->icsk_rto_min = TCP_RTO_MIN; 3033 icsk->icsk_delack_max = TCP_DELACK_MAX; 3034 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3035 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3036 tp->snd_cwnd_cnt = 0; 3037 tp->is_cwnd_limited = 0; 3038 tp->max_packets_out = 0; 3039 tp->window_clamp = 0; 3040 tp->delivered = 0; 3041 tp->delivered_ce = 0; 3042 if (icsk->icsk_ca_ops->release) 3043 icsk->icsk_ca_ops->release(sk); 3044 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3045 icsk->icsk_ca_initialized = 0; 3046 tcp_set_ca_state(sk, TCP_CA_Open); 3047 tp->is_sack_reneg = 0; 3048 tcp_clear_retrans(tp); 3049 tp->total_retrans = 0; 3050 inet_csk_delack_init(sk); 3051 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3052 * issue in __tcp_select_window() 3053 */ 3054 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3055 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3056 __sk_dst_reset(sk); 3057 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3058 tcp_saved_syn_free(tp); 3059 tp->compressed_ack = 0; 3060 tp->segs_in = 0; 3061 tp->segs_out = 0; 3062 tp->bytes_sent = 0; 3063 tp->bytes_acked = 0; 3064 tp->bytes_received = 0; 3065 tp->bytes_retrans = 0; 3066 tp->data_segs_in = 0; 3067 tp->data_segs_out = 0; 3068 tp->duplicate_sack[0].start_seq = 0; 3069 tp->duplicate_sack[0].end_seq = 0; 3070 tp->dsack_dups = 0; 3071 tp->reord_seen = 0; 3072 tp->retrans_out = 0; 3073 tp->sacked_out = 0; 3074 tp->tlp_high_seq = 0; 3075 tp->last_oow_ack_time = 0; 3076 tp->plb_rehash = 0; 3077 /* There's a bubble in the pipe until at least the first ACK. */ 3078 tp->app_limited = ~0U; 3079 tp->rate_app_limited = 1; 3080 tp->rack.mstamp = 0; 3081 tp->rack.advanced = 0; 3082 tp->rack.reo_wnd_steps = 1; 3083 tp->rack.last_delivered = 0; 3084 tp->rack.reo_wnd_persist = 0; 3085 tp->rack.dsack_seen = 0; 3086 tp->syn_data_acked = 0; 3087 tp->rx_opt.saw_tstamp = 0; 3088 tp->rx_opt.dsack = 0; 3089 tp->rx_opt.num_sacks = 0; 3090 tp->rcv_ooopack = 0; 3091 3092 3093 /* Clean up fastopen related fields */ 3094 tcp_free_fastopen_req(tp); 3095 inet->defer_connect = 0; 3096 tp->fastopen_client_fail = 0; 3097 3098 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3099 3100 if (sk->sk_frag.page) { 3101 put_page(sk->sk_frag.page); 3102 sk->sk_frag.page = NULL; 3103 sk->sk_frag.offset = 0; 3104 } 3105 sk_error_report(sk); 3106 return 0; 3107 } 3108 EXPORT_SYMBOL(tcp_disconnect); 3109 3110 static inline bool tcp_can_repair_sock(const struct sock *sk) 3111 { 3112 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3113 (sk->sk_state != TCP_LISTEN); 3114 } 3115 3116 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3117 { 3118 struct tcp_repair_window opt; 3119 3120 if (!tp->repair) 3121 return -EPERM; 3122 3123 if (len != sizeof(opt)) 3124 return -EINVAL; 3125 3126 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3127 return -EFAULT; 3128 3129 if (opt.max_window < opt.snd_wnd) 3130 return -EINVAL; 3131 3132 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3133 return -EINVAL; 3134 3135 if (after(opt.rcv_wup, tp->rcv_nxt)) 3136 return -EINVAL; 3137 3138 tp->snd_wl1 = opt.snd_wl1; 3139 tp->snd_wnd = opt.snd_wnd; 3140 tp->max_window = opt.max_window; 3141 3142 tp->rcv_wnd = opt.rcv_wnd; 3143 tp->rcv_wup = opt.rcv_wup; 3144 3145 return 0; 3146 } 3147 3148 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3149 unsigned int len) 3150 { 3151 struct tcp_sock *tp = tcp_sk(sk); 3152 struct tcp_repair_opt opt; 3153 size_t offset = 0; 3154 3155 while (len >= sizeof(opt)) { 3156 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3157 return -EFAULT; 3158 3159 offset += sizeof(opt); 3160 len -= sizeof(opt); 3161 3162 switch (opt.opt_code) { 3163 case TCPOPT_MSS: 3164 tp->rx_opt.mss_clamp = opt.opt_val; 3165 tcp_mtup_init(sk); 3166 break; 3167 case TCPOPT_WINDOW: 3168 { 3169 u16 snd_wscale = opt.opt_val & 0xFFFF; 3170 u16 rcv_wscale = opt.opt_val >> 16; 3171 3172 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3173 return -EFBIG; 3174 3175 tp->rx_opt.snd_wscale = snd_wscale; 3176 tp->rx_opt.rcv_wscale = rcv_wscale; 3177 tp->rx_opt.wscale_ok = 1; 3178 } 3179 break; 3180 case TCPOPT_SACK_PERM: 3181 if (opt.opt_val != 0) 3182 return -EINVAL; 3183 3184 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3185 break; 3186 case TCPOPT_TIMESTAMP: 3187 if (opt.opt_val != 0) 3188 return -EINVAL; 3189 3190 tp->rx_opt.tstamp_ok = 1; 3191 break; 3192 } 3193 } 3194 3195 return 0; 3196 } 3197 3198 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3199 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3200 3201 static void tcp_enable_tx_delay(void) 3202 { 3203 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3204 static int __tcp_tx_delay_enabled = 0; 3205 3206 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3207 static_branch_enable(&tcp_tx_delay_enabled); 3208 pr_info("TCP_TX_DELAY enabled\n"); 3209 } 3210 } 3211 } 3212 3213 /* When set indicates to always queue non-full frames. Later the user clears 3214 * this option and we transmit any pending partial frames in the queue. This is 3215 * meant to be used alongside sendfile() to get properly filled frames when the 3216 * user (for example) must write out headers with a write() call first and then 3217 * use sendfile to send out the data parts. 3218 * 3219 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3220 * TCP_NODELAY. 3221 */ 3222 void __tcp_sock_set_cork(struct sock *sk, bool on) 3223 { 3224 struct tcp_sock *tp = tcp_sk(sk); 3225 3226 if (on) { 3227 tp->nonagle |= TCP_NAGLE_CORK; 3228 } else { 3229 tp->nonagle &= ~TCP_NAGLE_CORK; 3230 if (tp->nonagle & TCP_NAGLE_OFF) 3231 tp->nonagle |= TCP_NAGLE_PUSH; 3232 tcp_push_pending_frames(sk); 3233 } 3234 } 3235 3236 void tcp_sock_set_cork(struct sock *sk, bool on) 3237 { 3238 lock_sock(sk); 3239 __tcp_sock_set_cork(sk, on); 3240 release_sock(sk); 3241 } 3242 EXPORT_SYMBOL(tcp_sock_set_cork); 3243 3244 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3245 * remembered, but it is not activated until cork is cleared. 3246 * 3247 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3248 * even TCP_CORK for currently queued segments. 3249 */ 3250 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3251 { 3252 if (on) { 3253 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3254 tcp_push_pending_frames(sk); 3255 } else { 3256 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3257 } 3258 } 3259 3260 void tcp_sock_set_nodelay(struct sock *sk) 3261 { 3262 lock_sock(sk); 3263 __tcp_sock_set_nodelay(sk, true); 3264 release_sock(sk); 3265 } 3266 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3267 3268 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3269 { 3270 if (!val) { 3271 inet_csk_enter_pingpong_mode(sk); 3272 return; 3273 } 3274 3275 inet_csk_exit_pingpong_mode(sk); 3276 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3277 inet_csk_ack_scheduled(sk)) { 3278 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3279 tcp_cleanup_rbuf(sk, 1); 3280 if (!(val & 1)) 3281 inet_csk_enter_pingpong_mode(sk); 3282 } 3283 } 3284 3285 void tcp_sock_set_quickack(struct sock *sk, int val) 3286 { 3287 lock_sock(sk); 3288 __tcp_sock_set_quickack(sk, val); 3289 release_sock(sk); 3290 } 3291 EXPORT_SYMBOL(tcp_sock_set_quickack); 3292 3293 int tcp_sock_set_syncnt(struct sock *sk, int val) 3294 { 3295 if (val < 1 || val > MAX_TCP_SYNCNT) 3296 return -EINVAL; 3297 3298 lock_sock(sk); 3299 inet_csk(sk)->icsk_syn_retries = val; 3300 release_sock(sk); 3301 return 0; 3302 } 3303 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3304 3305 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3306 { 3307 lock_sock(sk); 3308 inet_csk(sk)->icsk_user_timeout = val; 3309 release_sock(sk); 3310 } 3311 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3312 3313 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3314 { 3315 struct tcp_sock *tp = tcp_sk(sk); 3316 3317 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3318 return -EINVAL; 3319 3320 tp->keepalive_time = val * HZ; 3321 if (sock_flag(sk, SOCK_KEEPOPEN) && 3322 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3323 u32 elapsed = keepalive_time_elapsed(tp); 3324 3325 if (tp->keepalive_time > elapsed) 3326 elapsed = tp->keepalive_time - elapsed; 3327 else 3328 elapsed = 0; 3329 inet_csk_reset_keepalive_timer(sk, elapsed); 3330 } 3331 3332 return 0; 3333 } 3334 3335 int tcp_sock_set_keepidle(struct sock *sk, int val) 3336 { 3337 int err; 3338 3339 lock_sock(sk); 3340 err = tcp_sock_set_keepidle_locked(sk, val); 3341 release_sock(sk); 3342 return err; 3343 } 3344 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3345 3346 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3347 { 3348 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3349 return -EINVAL; 3350 3351 lock_sock(sk); 3352 tcp_sk(sk)->keepalive_intvl = val * HZ; 3353 release_sock(sk); 3354 return 0; 3355 } 3356 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3357 3358 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3359 { 3360 if (val < 1 || val > MAX_TCP_KEEPCNT) 3361 return -EINVAL; 3362 3363 lock_sock(sk); 3364 tcp_sk(sk)->keepalive_probes = val; 3365 release_sock(sk); 3366 return 0; 3367 } 3368 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3369 3370 int tcp_set_window_clamp(struct sock *sk, int val) 3371 { 3372 struct tcp_sock *tp = tcp_sk(sk); 3373 3374 if (!val) { 3375 if (sk->sk_state != TCP_CLOSE) 3376 return -EINVAL; 3377 tp->window_clamp = 0; 3378 } else { 3379 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3380 SOCK_MIN_RCVBUF / 2 : val; 3381 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3382 } 3383 return 0; 3384 } 3385 3386 /* 3387 * Socket option code for TCP. 3388 */ 3389 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3390 sockptr_t optval, unsigned int optlen) 3391 { 3392 struct tcp_sock *tp = tcp_sk(sk); 3393 struct inet_connection_sock *icsk = inet_csk(sk); 3394 struct net *net = sock_net(sk); 3395 int val; 3396 int err = 0; 3397 3398 /* These are data/string values, all the others are ints */ 3399 switch (optname) { 3400 case TCP_CONGESTION: { 3401 char name[TCP_CA_NAME_MAX]; 3402 3403 if (optlen < 1) 3404 return -EINVAL; 3405 3406 val = strncpy_from_sockptr(name, optval, 3407 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3408 if (val < 0) 3409 return -EFAULT; 3410 name[val] = 0; 3411 3412 sockopt_lock_sock(sk); 3413 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3414 sockopt_ns_capable(sock_net(sk)->user_ns, 3415 CAP_NET_ADMIN)); 3416 sockopt_release_sock(sk); 3417 return err; 3418 } 3419 case TCP_ULP: { 3420 char name[TCP_ULP_NAME_MAX]; 3421 3422 if (optlen < 1) 3423 return -EINVAL; 3424 3425 val = strncpy_from_sockptr(name, optval, 3426 min_t(long, TCP_ULP_NAME_MAX - 1, 3427 optlen)); 3428 if (val < 0) 3429 return -EFAULT; 3430 name[val] = 0; 3431 3432 sockopt_lock_sock(sk); 3433 err = tcp_set_ulp(sk, name); 3434 sockopt_release_sock(sk); 3435 return err; 3436 } 3437 case TCP_FASTOPEN_KEY: { 3438 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3439 __u8 *backup_key = NULL; 3440 3441 /* Allow a backup key as well to facilitate key rotation 3442 * First key is the active one. 3443 */ 3444 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3445 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3446 return -EINVAL; 3447 3448 if (copy_from_sockptr(key, optval, optlen)) 3449 return -EFAULT; 3450 3451 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3452 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3453 3454 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3455 } 3456 default: 3457 /* fallthru */ 3458 break; 3459 } 3460 3461 if (optlen < sizeof(int)) 3462 return -EINVAL; 3463 3464 if (copy_from_sockptr(&val, optval, sizeof(val))) 3465 return -EFAULT; 3466 3467 sockopt_lock_sock(sk); 3468 3469 switch (optname) { 3470 case TCP_MAXSEG: 3471 /* Values greater than interface MTU won't take effect. However 3472 * at the point when this call is done we typically don't yet 3473 * know which interface is going to be used 3474 */ 3475 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3476 err = -EINVAL; 3477 break; 3478 } 3479 tp->rx_opt.user_mss = val; 3480 break; 3481 3482 case TCP_NODELAY: 3483 __tcp_sock_set_nodelay(sk, val); 3484 break; 3485 3486 case TCP_THIN_LINEAR_TIMEOUTS: 3487 if (val < 0 || val > 1) 3488 err = -EINVAL; 3489 else 3490 tp->thin_lto = val; 3491 break; 3492 3493 case TCP_THIN_DUPACK: 3494 if (val < 0 || val > 1) 3495 err = -EINVAL; 3496 break; 3497 3498 case TCP_REPAIR: 3499 if (!tcp_can_repair_sock(sk)) 3500 err = -EPERM; 3501 else if (val == TCP_REPAIR_ON) { 3502 tp->repair = 1; 3503 sk->sk_reuse = SK_FORCE_REUSE; 3504 tp->repair_queue = TCP_NO_QUEUE; 3505 } else if (val == TCP_REPAIR_OFF) { 3506 tp->repair = 0; 3507 sk->sk_reuse = SK_NO_REUSE; 3508 tcp_send_window_probe(sk); 3509 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3510 tp->repair = 0; 3511 sk->sk_reuse = SK_NO_REUSE; 3512 } else 3513 err = -EINVAL; 3514 3515 break; 3516 3517 case TCP_REPAIR_QUEUE: 3518 if (!tp->repair) 3519 err = -EPERM; 3520 else if ((unsigned int)val < TCP_QUEUES_NR) 3521 tp->repair_queue = val; 3522 else 3523 err = -EINVAL; 3524 break; 3525 3526 case TCP_QUEUE_SEQ: 3527 if (sk->sk_state != TCP_CLOSE) { 3528 err = -EPERM; 3529 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3530 if (!tcp_rtx_queue_empty(sk)) 3531 err = -EPERM; 3532 else 3533 WRITE_ONCE(tp->write_seq, val); 3534 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3535 if (tp->rcv_nxt != tp->copied_seq) { 3536 err = -EPERM; 3537 } else { 3538 WRITE_ONCE(tp->rcv_nxt, val); 3539 WRITE_ONCE(tp->copied_seq, val); 3540 } 3541 } else { 3542 err = -EINVAL; 3543 } 3544 break; 3545 3546 case TCP_REPAIR_OPTIONS: 3547 if (!tp->repair) 3548 err = -EINVAL; 3549 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3550 err = tcp_repair_options_est(sk, optval, optlen); 3551 else 3552 err = -EPERM; 3553 break; 3554 3555 case TCP_CORK: 3556 __tcp_sock_set_cork(sk, val); 3557 break; 3558 3559 case TCP_KEEPIDLE: 3560 err = tcp_sock_set_keepidle_locked(sk, val); 3561 break; 3562 case TCP_KEEPINTVL: 3563 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3564 err = -EINVAL; 3565 else 3566 tp->keepalive_intvl = val * HZ; 3567 break; 3568 case TCP_KEEPCNT: 3569 if (val < 1 || val > MAX_TCP_KEEPCNT) 3570 err = -EINVAL; 3571 else 3572 tp->keepalive_probes = val; 3573 break; 3574 case TCP_SYNCNT: 3575 if (val < 1 || val > MAX_TCP_SYNCNT) 3576 err = -EINVAL; 3577 else 3578 icsk->icsk_syn_retries = val; 3579 break; 3580 3581 case TCP_SAVE_SYN: 3582 /* 0: disable, 1: enable, 2: start from ether_header */ 3583 if (val < 0 || val > 2) 3584 err = -EINVAL; 3585 else 3586 tp->save_syn = val; 3587 break; 3588 3589 case TCP_LINGER2: 3590 if (val < 0) 3591 tp->linger2 = -1; 3592 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3593 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3594 else 3595 tp->linger2 = val * HZ; 3596 break; 3597 3598 case TCP_DEFER_ACCEPT: 3599 /* Translate value in seconds to number of retransmits */ 3600 icsk->icsk_accept_queue.rskq_defer_accept = 3601 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3602 TCP_RTO_MAX / HZ); 3603 break; 3604 3605 case TCP_WINDOW_CLAMP: 3606 err = tcp_set_window_clamp(sk, val); 3607 break; 3608 3609 case TCP_QUICKACK: 3610 __tcp_sock_set_quickack(sk, val); 3611 break; 3612 3613 #ifdef CONFIG_TCP_MD5SIG 3614 case TCP_MD5SIG: 3615 case TCP_MD5SIG_EXT: 3616 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3617 break; 3618 #endif 3619 case TCP_USER_TIMEOUT: 3620 /* Cap the max time in ms TCP will retry or probe the window 3621 * before giving up and aborting (ETIMEDOUT) a connection. 3622 */ 3623 if (val < 0) 3624 err = -EINVAL; 3625 else 3626 icsk->icsk_user_timeout = val; 3627 break; 3628 3629 case TCP_FASTOPEN: 3630 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3631 TCPF_LISTEN))) { 3632 tcp_fastopen_init_key_once(net); 3633 3634 fastopen_queue_tune(sk, val); 3635 } else { 3636 err = -EINVAL; 3637 } 3638 break; 3639 case TCP_FASTOPEN_CONNECT: 3640 if (val > 1 || val < 0) { 3641 err = -EINVAL; 3642 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3643 TFO_CLIENT_ENABLE) { 3644 if (sk->sk_state == TCP_CLOSE) 3645 tp->fastopen_connect = val; 3646 else 3647 err = -EINVAL; 3648 } else { 3649 err = -EOPNOTSUPP; 3650 } 3651 break; 3652 case TCP_FASTOPEN_NO_COOKIE: 3653 if (val > 1 || val < 0) 3654 err = -EINVAL; 3655 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3656 err = -EINVAL; 3657 else 3658 tp->fastopen_no_cookie = val; 3659 break; 3660 case TCP_TIMESTAMP: 3661 if (!tp->repair) 3662 err = -EPERM; 3663 else 3664 tp->tsoffset = val - tcp_time_stamp_raw(); 3665 break; 3666 case TCP_REPAIR_WINDOW: 3667 err = tcp_repair_set_window(tp, optval, optlen); 3668 break; 3669 case TCP_NOTSENT_LOWAT: 3670 tp->notsent_lowat = val; 3671 sk->sk_write_space(sk); 3672 break; 3673 case TCP_INQ: 3674 if (val > 1 || val < 0) 3675 err = -EINVAL; 3676 else 3677 tp->recvmsg_inq = val; 3678 break; 3679 case TCP_TX_DELAY: 3680 if (val) 3681 tcp_enable_tx_delay(); 3682 tp->tcp_tx_delay = val; 3683 break; 3684 default: 3685 err = -ENOPROTOOPT; 3686 break; 3687 } 3688 3689 sockopt_release_sock(sk); 3690 return err; 3691 } 3692 3693 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3694 unsigned int optlen) 3695 { 3696 const struct inet_connection_sock *icsk = inet_csk(sk); 3697 3698 if (level != SOL_TCP) 3699 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3700 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3701 optval, optlen); 3702 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3703 } 3704 EXPORT_SYMBOL(tcp_setsockopt); 3705 3706 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3707 struct tcp_info *info) 3708 { 3709 u64 stats[__TCP_CHRONO_MAX], total = 0; 3710 enum tcp_chrono i; 3711 3712 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3713 stats[i] = tp->chrono_stat[i - 1]; 3714 if (i == tp->chrono_type) 3715 stats[i] += tcp_jiffies32 - tp->chrono_start; 3716 stats[i] *= USEC_PER_SEC / HZ; 3717 total += stats[i]; 3718 } 3719 3720 info->tcpi_busy_time = total; 3721 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3722 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3723 } 3724 3725 /* Return information about state of tcp endpoint in API format. */ 3726 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3727 { 3728 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3729 const struct inet_connection_sock *icsk = inet_csk(sk); 3730 unsigned long rate; 3731 u32 now; 3732 u64 rate64; 3733 bool slow; 3734 3735 memset(info, 0, sizeof(*info)); 3736 if (sk->sk_type != SOCK_STREAM) 3737 return; 3738 3739 info->tcpi_state = inet_sk_state_load(sk); 3740 3741 /* Report meaningful fields for all TCP states, including listeners */ 3742 rate = READ_ONCE(sk->sk_pacing_rate); 3743 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3744 info->tcpi_pacing_rate = rate64; 3745 3746 rate = READ_ONCE(sk->sk_max_pacing_rate); 3747 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3748 info->tcpi_max_pacing_rate = rate64; 3749 3750 info->tcpi_reordering = tp->reordering; 3751 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3752 3753 if (info->tcpi_state == TCP_LISTEN) { 3754 /* listeners aliased fields : 3755 * tcpi_unacked -> Number of children ready for accept() 3756 * tcpi_sacked -> max backlog 3757 */ 3758 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3759 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3760 return; 3761 } 3762 3763 slow = lock_sock_fast(sk); 3764 3765 info->tcpi_ca_state = icsk->icsk_ca_state; 3766 info->tcpi_retransmits = icsk->icsk_retransmits; 3767 info->tcpi_probes = icsk->icsk_probes_out; 3768 info->tcpi_backoff = icsk->icsk_backoff; 3769 3770 if (tp->rx_opt.tstamp_ok) 3771 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3772 if (tcp_is_sack(tp)) 3773 info->tcpi_options |= TCPI_OPT_SACK; 3774 if (tp->rx_opt.wscale_ok) { 3775 info->tcpi_options |= TCPI_OPT_WSCALE; 3776 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3777 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3778 } 3779 3780 if (tp->ecn_flags & TCP_ECN_OK) 3781 info->tcpi_options |= TCPI_OPT_ECN; 3782 if (tp->ecn_flags & TCP_ECN_SEEN) 3783 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3784 if (tp->syn_data_acked) 3785 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3786 3787 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3788 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3789 info->tcpi_snd_mss = tp->mss_cache; 3790 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3791 3792 info->tcpi_unacked = tp->packets_out; 3793 info->tcpi_sacked = tp->sacked_out; 3794 3795 info->tcpi_lost = tp->lost_out; 3796 info->tcpi_retrans = tp->retrans_out; 3797 3798 now = tcp_jiffies32; 3799 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3800 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3801 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3802 3803 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3804 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3805 info->tcpi_rtt = tp->srtt_us >> 3; 3806 info->tcpi_rttvar = tp->mdev_us >> 2; 3807 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3808 info->tcpi_advmss = tp->advmss; 3809 3810 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3811 info->tcpi_rcv_space = tp->rcvq_space.space; 3812 3813 info->tcpi_total_retrans = tp->total_retrans; 3814 3815 info->tcpi_bytes_acked = tp->bytes_acked; 3816 info->tcpi_bytes_received = tp->bytes_received; 3817 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3818 tcp_get_info_chrono_stats(tp, info); 3819 3820 info->tcpi_segs_out = tp->segs_out; 3821 3822 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3823 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3824 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3825 3826 info->tcpi_min_rtt = tcp_min_rtt(tp); 3827 info->tcpi_data_segs_out = tp->data_segs_out; 3828 3829 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3830 rate64 = tcp_compute_delivery_rate(tp); 3831 if (rate64) 3832 info->tcpi_delivery_rate = rate64; 3833 info->tcpi_delivered = tp->delivered; 3834 info->tcpi_delivered_ce = tp->delivered_ce; 3835 info->tcpi_bytes_sent = tp->bytes_sent; 3836 info->tcpi_bytes_retrans = tp->bytes_retrans; 3837 info->tcpi_dsack_dups = tp->dsack_dups; 3838 info->tcpi_reord_seen = tp->reord_seen; 3839 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3840 info->tcpi_snd_wnd = tp->snd_wnd; 3841 info->tcpi_rcv_wnd = tp->rcv_wnd; 3842 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3843 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3844 unlock_sock_fast(sk, slow); 3845 } 3846 EXPORT_SYMBOL_GPL(tcp_get_info); 3847 3848 static size_t tcp_opt_stats_get_size(void) 3849 { 3850 return 3851 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3852 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3853 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3854 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3855 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3856 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3857 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3859 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3861 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3862 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3863 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3864 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3865 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3867 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3868 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3869 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3870 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3871 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3872 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3873 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3874 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3875 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3876 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3877 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3878 0; 3879 } 3880 3881 /* Returns TTL or hop limit of an incoming packet from skb. */ 3882 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3883 { 3884 if (skb->protocol == htons(ETH_P_IP)) 3885 return ip_hdr(skb)->ttl; 3886 else if (skb->protocol == htons(ETH_P_IPV6)) 3887 return ipv6_hdr(skb)->hop_limit; 3888 else 3889 return 0; 3890 } 3891 3892 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3893 const struct sk_buff *orig_skb, 3894 const struct sk_buff *ack_skb) 3895 { 3896 const struct tcp_sock *tp = tcp_sk(sk); 3897 struct sk_buff *stats; 3898 struct tcp_info info; 3899 unsigned long rate; 3900 u64 rate64; 3901 3902 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3903 if (!stats) 3904 return NULL; 3905 3906 tcp_get_info_chrono_stats(tp, &info); 3907 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3908 info.tcpi_busy_time, TCP_NLA_PAD); 3909 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3910 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3911 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3912 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3913 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3914 tp->data_segs_out, TCP_NLA_PAD); 3915 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3916 tp->total_retrans, TCP_NLA_PAD); 3917 3918 rate = READ_ONCE(sk->sk_pacing_rate); 3919 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3920 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3921 3922 rate64 = tcp_compute_delivery_rate(tp); 3923 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3924 3925 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3926 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3927 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3928 3929 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3930 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3931 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3932 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3933 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3934 3935 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3936 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3937 3938 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3939 TCP_NLA_PAD); 3940 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3941 TCP_NLA_PAD); 3942 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3943 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3944 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3945 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3946 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3947 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3948 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3949 TCP_NLA_PAD); 3950 if (ack_skb) 3951 nla_put_u8(stats, TCP_NLA_TTL, 3952 tcp_skb_ttl_or_hop_limit(ack_skb)); 3953 3954 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3955 return stats; 3956 } 3957 3958 int do_tcp_getsockopt(struct sock *sk, int level, 3959 int optname, sockptr_t optval, sockptr_t optlen) 3960 { 3961 struct inet_connection_sock *icsk = inet_csk(sk); 3962 struct tcp_sock *tp = tcp_sk(sk); 3963 struct net *net = sock_net(sk); 3964 int val, len; 3965 3966 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3967 return -EFAULT; 3968 3969 len = min_t(unsigned int, len, sizeof(int)); 3970 3971 if (len < 0) 3972 return -EINVAL; 3973 3974 switch (optname) { 3975 case TCP_MAXSEG: 3976 val = tp->mss_cache; 3977 if (tp->rx_opt.user_mss && 3978 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3979 val = tp->rx_opt.user_mss; 3980 if (tp->repair) 3981 val = tp->rx_opt.mss_clamp; 3982 break; 3983 case TCP_NODELAY: 3984 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3985 break; 3986 case TCP_CORK: 3987 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3988 break; 3989 case TCP_KEEPIDLE: 3990 val = keepalive_time_when(tp) / HZ; 3991 break; 3992 case TCP_KEEPINTVL: 3993 val = keepalive_intvl_when(tp) / HZ; 3994 break; 3995 case TCP_KEEPCNT: 3996 val = keepalive_probes(tp); 3997 break; 3998 case TCP_SYNCNT: 3999 val = icsk->icsk_syn_retries ? : 4000 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4001 break; 4002 case TCP_LINGER2: 4003 val = tp->linger2; 4004 if (val >= 0) 4005 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4006 break; 4007 case TCP_DEFER_ACCEPT: 4008 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4009 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4010 break; 4011 case TCP_WINDOW_CLAMP: 4012 val = tp->window_clamp; 4013 break; 4014 case TCP_INFO: { 4015 struct tcp_info info; 4016 4017 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4018 return -EFAULT; 4019 4020 tcp_get_info(sk, &info); 4021 4022 len = min_t(unsigned int, len, sizeof(info)); 4023 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4024 return -EFAULT; 4025 if (copy_to_sockptr(optval, &info, len)) 4026 return -EFAULT; 4027 return 0; 4028 } 4029 case TCP_CC_INFO: { 4030 const struct tcp_congestion_ops *ca_ops; 4031 union tcp_cc_info info; 4032 size_t sz = 0; 4033 int attr; 4034 4035 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4036 return -EFAULT; 4037 4038 ca_ops = icsk->icsk_ca_ops; 4039 if (ca_ops && ca_ops->get_info) 4040 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4041 4042 len = min_t(unsigned int, len, sz); 4043 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4044 return -EFAULT; 4045 if (copy_to_sockptr(optval, &info, len)) 4046 return -EFAULT; 4047 return 0; 4048 } 4049 case TCP_QUICKACK: 4050 val = !inet_csk_in_pingpong_mode(sk); 4051 break; 4052 4053 case TCP_CONGESTION: 4054 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4055 return -EFAULT; 4056 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4057 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4058 return -EFAULT; 4059 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4060 return -EFAULT; 4061 return 0; 4062 4063 case TCP_ULP: 4064 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4065 return -EFAULT; 4066 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4067 if (!icsk->icsk_ulp_ops) { 4068 len = 0; 4069 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4070 return -EFAULT; 4071 return 0; 4072 } 4073 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4074 return -EFAULT; 4075 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4076 return -EFAULT; 4077 return 0; 4078 4079 case TCP_FASTOPEN_KEY: { 4080 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4081 unsigned int key_len; 4082 4083 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4084 return -EFAULT; 4085 4086 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4087 TCP_FASTOPEN_KEY_LENGTH; 4088 len = min_t(unsigned int, len, key_len); 4089 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4090 return -EFAULT; 4091 if (copy_to_sockptr(optval, key, len)) 4092 return -EFAULT; 4093 return 0; 4094 } 4095 case TCP_THIN_LINEAR_TIMEOUTS: 4096 val = tp->thin_lto; 4097 break; 4098 4099 case TCP_THIN_DUPACK: 4100 val = 0; 4101 break; 4102 4103 case TCP_REPAIR: 4104 val = tp->repair; 4105 break; 4106 4107 case TCP_REPAIR_QUEUE: 4108 if (tp->repair) 4109 val = tp->repair_queue; 4110 else 4111 return -EINVAL; 4112 break; 4113 4114 case TCP_REPAIR_WINDOW: { 4115 struct tcp_repair_window opt; 4116 4117 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4118 return -EFAULT; 4119 4120 if (len != sizeof(opt)) 4121 return -EINVAL; 4122 4123 if (!tp->repair) 4124 return -EPERM; 4125 4126 opt.snd_wl1 = tp->snd_wl1; 4127 opt.snd_wnd = tp->snd_wnd; 4128 opt.max_window = tp->max_window; 4129 opt.rcv_wnd = tp->rcv_wnd; 4130 opt.rcv_wup = tp->rcv_wup; 4131 4132 if (copy_to_sockptr(optval, &opt, len)) 4133 return -EFAULT; 4134 return 0; 4135 } 4136 case TCP_QUEUE_SEQ: 4137 if (tp->repair_queue == TCP_SEND_QUEUE) 4138 val = tp->write_seq; 4139 else if (tp->repair_queue == TCP_RECV_QUEUE) 4140 val = tp->rcv_nxt; 4141 else 4142 return -EINVAL; 4143 break; 4144 4145 case TCP_USER_TIMEOUT: 4146 val = icsk->icsk_user_timeout; 4147 break; 4148 4149 case TCP_FASTOPEN: 4150 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4151 break; 4152 4153 case TCP_FASTOPEN_CONNECT: 4154 val = tp->fastopen_connect; 4155 break; 4156 4157 case TCP_FASTOPEN_NO_COOKIE: 4158 val = tp->fastopen_no_cookie; 4159 break; 4160 4161 case TCP_TX_DELAY: 4162 val = tp->tcp_tx_delay; 4163 break; 4164 4165 case TCP_TIMESTAMP: 4166 val = tcp_time_stamp_raw() + tp->tsoffset; 4167 break; 4168 case TCP_NOTSENT_LOWAT: 4169 val = tp->notsent_lowat; 4170 break; 4171 case TCP_INQ: 4172 val = tp->recvmsg_inq; 4173 break; 4174 case TCP_SAVE_SYN: 4175 val = tp->save_syn; 4176 break; 4177 case TCP_SAVED_SYN: { 4178 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4179 return -EFAULT; 4180 4181 sockopt_lock_sock(sk); 4182 if (tp->saved_syn) { 4183 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4184 len = tcp_saved_syn_len(tp->saved_syn); 4185 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4186 sockopt_release_sock(sk); 4187 return -EFAULT; 4188 } 4189 sockopt_release_sock(sk); 4190 return -EINVAL; 4191 } 4192 len = tcp_saved_syn_len(tp->saved_syn); 4193 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4194 sockopt_release_sock(sk); 4195 return -EFAULT; 4196 } 4197 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4198 sockopt_release_sock(sk); 4199 return -EFAULT; 4200 } 4201 tcp_saved_syn_free(tp); 4202 sockopt_release_sock(sk); 4203 } else { 4204 sockopt_release_sock(sk); 4205 len = 0; 4206 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4207 return -EFAULT; 4208 } 4209 return 0; 4210 } 4211 #ifdef CONFIG_MMU 4212 case TCP_ZEROCOPY_RECEIVE: { 4213 struct scm_timestamping_internal tss; 4214 struct tcp_zerocopy_receive zc = {}; 4215 int err; 4216 4217 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4218 return -EFAULT; 4219 if (len < 0 || 4220 len < offsetofend(struct tcp_zerocopy_receive, length)) 4221 return -EINVAL; 4222 if (unlikely(len > sizeof(zc))) { 4223 err = check_zeroed_sockptr(optval, sizeof(zc), 4224 len - sizeof(zc)); 4225 if (err < 1) 4226 return err == 0 ? -EINVAL : err; 4227 len = sizeof(zc); 4228 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4229 return -EFAULT; 4230 } 4231 if (copy_from_sockptr(&zc, optval, len)) 4232 return -EFAULT; 4233 if (zc.reserved) 4234 return -EINVAL; 4235 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4236 return -EINVAL; 4237 sockopt_lock_sock(sk); 4238 err = tcp_zerocopy_receive(sk, &zc, &tss); 4239 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4240 &zc, &len, err); 4241 sockopt_release_sock(sk); 4242 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4243 goto zerocopy_rcv_cmsg; 4244 switch (len) { 4245 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4246 goto zerocopy_rcv_cmsg; 4247 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4248 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4249 case offsetofend(struct tcp_zerocopy_receive, flags): 4250 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4251 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4252 case offsetofend(struct tcp_zerocopy_receive, err): 4253 goto zerocopy_rcv_sk_err; 4254 case offsetofend(struct tcp_zerocopy_receive, inq): 4255 goto zerocopy_rcv_inq; 4256 case offsetofend(struct tcp_zerocopy_receive, length): 4257 default: 4258 goto zerocopy_rcv_out; 4259 } 4260 zerocopy_rcv_cmsg: 4261 if (zc.msg_flags & TCP_CMSG_TS) 4262 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4263 else 4264 zc.msg_flags = 0; 4265 zerocopy_rcv_sk_err: 4266 if (!err) 4267 zc.err = sock_error(sk); 4268 zerocopy_rcv_inq: 4269 zc.inq = tcp_inq_hint(sk); 4270 zerocopy_rcv_out: 4271 if (!err && copy_to_sockptr(optval, &zc, len)) 4272 err = -EFAULT; 4273 return err; 4274 } 4275 #endif 4276 default: 4277 return -ENOPROTOOPT; 4278 } 4279 4280 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4281 return -EFAULT; 4282 if (copy_to_sockptr(optval, &val, len)) 4283 return -EFAULT; 4284 return 0; 4285 } 4286 4287 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4288 { 4289 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4290 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4291 */ 4292 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4293 return true; 4294 4295 return false; 4296 } 4297 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4298 4299 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4300 int __user *optlen) 4301 { 4302 struct inet_connection_sock *icsk = inet_csk(sk); 4303 4304 if (level != SOL_TCP) 4305 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4306 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4307 optval, optlen); 4308 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4309 USER_SOCKPTR(optlen)); 4310 } 4311 EXPORT_SYMBOL(tcp_getsockopt); 4312 4313 #ifdef CONFIG_TCP_MD5SIG 4314 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4315 static DEFINE_MUTEX(tcp_md5sig_mutex); 4316 static bool tcp_md5sig_pool_populated = false; 4317 4318 static void __tcp_alloc_md5sig_pool(void) 4319 { 4320 struct crypto_ahash *hash; 4321 int cpu; 4322 4323 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4324 if (IS_ERR(hash)) 4325 return; 4326 4327 for_each_possible_cpu(cpu) { 4328 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4329 struct ahash_request *req; 4330 4331 if (!scratch) { 4332 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4333 sizeof(struct tcphdr), 4334 GFP_KERNEL, 4335 cpu_to_node(cpu)); 4336 if (!scratch) 4337 return; 4338 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4339 } 4340 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4341 continue; 4342 4343 req = ahash_request_alloc(hash, GFP_KERNEL); 4344 if (!req) 4345 return; 4346 4347 ahash_request_set_callback(req, 0, NULL, NULL); 4348 4349 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4350 } 4351 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4352 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4353 */ 4354 smp_wmb(); 4355 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4356 * and tcp_get_md5sig_pool(). 4357 */ 4358 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4359 } 4360 4361 bool tcp_alloc_md5sig_pool(void) 4362 { 4363 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4364 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4365 mutex_lock(&tcp_md5sig_mutex); 4366 4367 if (!tcp_md5sig_pool_populated) 4368 __tcp_alloc_md5sig_pool(); 4369 4370 mutex_unlock(&tcp_md5sig_mutex); 4371 } 4372 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4373 return READ_ONCE(tcp_md5sig_pool_populated); 4374 } 4375 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4376 4377 4378 /** 4379 * tcp_get_md5sig_pool - get md5sig_pool for this user 4380 * 4381 * We use percpu structure, so if we succeed, we exit with preemption 4382 * and BH disabled, to make sure another thread or softirq handling 4383 * wont try to get same context. 4384 */ 4385 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4386 { 4387 local_bh_disable(); 4388 4389 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4390 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4391 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4392 smp_rmb(); 4393 return this_cpu_ptr(&tcp_md5sig_pool); 4394 } 4395 local_bh_enable(); 4396 return NULL; 4397 } 4398 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4399 4400 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4401 const struct sk_buff *skb, unsigned int header_len) 4402 { 4403 struct scatterlist sg; 4404 const struct tcphdr *tp = tcp_hdr(skb); 4405 struct ahash_request *req = hp->md5_req; 4406 unsigned int i; 4407 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4408 skb_headlen(skb) - header_len : 0; 4409 const struct skb_shared_info *shi = skb_shinfo(skb); 4410 struct sk_buff *frag_iter; 4411 4412 sg_init_table(&sg, 1); 4413 4414 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4415 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4416 if (crypto_ahash_update(req)) 4417 return 1; 4418 4419 for (i = 0; i < shi->nr_frags; ++i) { 4420 const skb_frag_t *f = &shi->frags[i]; 4421 unsigned int offset = skb_frag_off(f); 4422 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4423 4424 sg_set_page(&sg, page, skb_frag_size(f), 4425 offset_in_page(offset)); 4426 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4427 if (crypto_ahash_update(req)) 4428 return 1; 4429 } 4430 4431 skb_walk_frags(skb, frag_iter) 4432 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4433 return 1; 4434 4435 return 0; 4436 } 4437 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4438 4439 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4440 { 4441 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4442 struct scatterlist sg; 4443 4444 sg_init_one(&sg, key->key, keylen); 4445 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4446 4447 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4448 return data_race(crypto_ahash_update(hp->md5_req)); 4449 } 4450 EXPORT_SYMBOL(tcp_md5_hash_key); 4451 4452 /* Called with rcu_read_lock() */ 4453 enum skb_drop_reason 4454 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4455 const void *saddr, const void *daddr, 4456 int family, int dif, int sdif) 4457 { 4458 /* 4459 * This gets called for each TCP segment that arrives 4460 * so we want to be efficient. 4461 * We have 3 drop cases: 4462 * o No MD5 hash and one expected. 4463 * o MD5 hash and we're not expecting one. 4464 * o MD5 hash and its wrong. 4465 */ 4466 const __u8 *hash_location = NULL; 4467 struct tcp_md5sig_key *hash_expected; 4468 const struct tcphdr *th = tcp_hdr(skb); 4469 const struct tcp_sock *tp = tcp_sk(sk); 4470 int genhash, l3index; 4471 u8 newhash[16]; 4472 4473 /* sdif set, means packet ingressed via a device 4474 * in an L3 domain and dif is set to the l3mdev 4475 */ 4476 l3index = sdif ? dif : 0; 4477 4478 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4479 hash_location = tcp_parse_md5sig_option(th); 4480 4481 /* We've parsed the options - do we have a hash? */ 4482 if (!hash_expected && !hash_location) 4483 return SKB_NOT_DROPPED_YET; 4484 4485 if (hash_expected && !hash_location) { 4486 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4487 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4488 } 4489 4490 if (!hash_expected && hash_location) { 4491 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4492 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4493 } 4494 4495 /* Check the signature. 4496 * To support dual stack listeners, we need to handle 4497 * IPv4-mapped case. 4498 */ 4499 if (family == AF_INET) 4500 genhash = tcp_v4_md5_hash_skb(newhash, 4501 hash_expected, 4502 NULL, skb); 4503 else 4504 genhash = tp->af_specific->calc_md5_hash(newhash, 4505 hash_expected, 4506 NULL, skb); 4507 4508 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4510 if (family == AF_INET) { 4511 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4512 saddr, ntohs(th->source), 4513 daddr, ntohs(th->dest), 4514 genhash ? " tcp_v4_calc_md5_hash failed" 4515 : "", l3index); 4516 } else { 4517 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4518 genhash ? "failed" : "mismatch", 4519 saddr, ntohs(th->source), 4520 daddr, ntohs(th->dest), l3index); 4521 } 4522 return SKB_DROP_REASON_TCP_MD5FAILURE; 4523 } 4524 return SKB_NOT_DROPPED_YET; 4525 } 4526 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4527 4528 #endif 4529 4530 void tcp_done(struct sock *sk) 4531 { 4532 struct request_sock *req; 4533 4534 /* We might be called with a new socket, after 4535 * inet_csk_prepare_forced_close() has been called 4536 * so we can not use lockdep_sock_is_held(sk) 4537 */ 4538 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4539 4540 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4541 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4542 4543 tcp_set_state(sk, TCP_CLOSE); 4544 tcp_clear_xmit_timers(sk); 4545 if (req) 4546 reqsk_fastopen_remove(sk, req, false); 4547 4548 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4549 4550 if (!sock_flag(sk, SOCK_DEAD)) 4551 sk->sk_state_change(sk); 4552 else 4553 inet_csk_destroy_sock(sk); 4554 } 4555 EXPORT_SYMBOL_GPL(tcp_done); 4556 4557 int tcp_abort(struct sock *sk, int err) 4558 { 4559 int state = inet_sk_state_load(sk); 4560 4561 if (state == TCP_NEW_SYN_RECV) { 4562 struct request_sock *req = inet_reqsk(sk); 4563 4564 local_bh_disable(); 4565 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4566 local_bh_enable(); 4567 return 0; 4568 } 4569 if (state == TCP_TIME_WAIT) { 4570 struct inet_timewait_sock *tw = inet_twsk(sk); 4571 4572 refcount_inc(&tw->tw_refcnt); 4573 local_bh_disable(); 4574 inet_twsk_deschedule_put(tw); 4575 local_bh_enable(); 4576 return 0; 4577 } 4578 4579 /* BPF context ensures sock locking. */ 4580 if (!has_current_bpf_ctx()) 4581 /* Don't race with userspace socket closes such as tcp_close. */ 4582 lock_sock(sk); 4583 4584 if (sk->sk_state == TCP_LISTEN) { 4585 tcp_set_state(sk, TCP_CLOSE); 4586 inet_csk_listen_stop(sk); 4587 } 4588 4589 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4590 local_bh_disable(); 4591 bh_lock_sock(sk); 4592 4593 if (!sock_flag(sk, SOCK_DEAD)) { 4594 WRITE_ONCE(sk->sk_err, err); 4595 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4596 smp_wmb(); 4597 sk_error_report(sk); 4598 if (tcp_need_reset(sk->sk_state)) 4599 tcp_send_active_reset(sk, GFP_ATOMIC); 4600 tcp_done(sk); 4601 } 4602 4603 bh_unlock_sock(sk); 4604 local_bh_enable(); 4605 tcp_write_queue_purge(sk); 4606 if (!has_current_bpf_ctx()) 4607 release_sock(sk); 4608 return 0; 4609 } 4610 EXPORT_SYMBOL_GPL(tcp_abort); 4611 4612 extern struct tcp_congestion_ops tcp_reno; 4613 4614 static __initdata unsigned long thash_entries; 4615 static int __init set_thash_entries(char *str) 4616 { 4617 ssize_t ret; 4618 4619 if (!str) 4620 return 0; 4621 4622 ret = kstrtoul(str, 0, &thash_entries); 4623 if (ret) 4624 return 0; 4625 4626 return 1; 4627 } 4628 __setup("thash_entries=", set_thash_entries); 4629 4630 static void __init tcp_init_mem(void) 4631 { 4632 unsigned long limit = nr_free_buffer_pages() / 16; 4633 4634 limit = max(limit, 128UL); 4635 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4636 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4637 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4638 } 4639 4640 void __init tcp_init(void) 4641 { 4642 int max_rshare, max_wshare, cnt; 4643 unsigned long limit; 4644 unsigned int i; 4645 4646 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4647 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4648 sizeof_field(struct sk_buff, cb)); 4649 4650 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4651 4652 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4653 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4654 4655 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4656 thash_entries, 21, /* one slot per 2 MB*/ 4657 0, 64 * 1024); 4658 tcp_hashinfo.bind_bucket_cachep = 4659 kmem_cache_create("tcp_bind_bucket", 4660 sizeof(struct inet_bind_bucket), 0, 4661 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4662 SLAB_ACCOUNT, 4663 NULL); 4664 tcp_hashinfo.bind2_bucket_cachep = 4665 kmem_cache_create("tcp_bind2_bucket", 4666 sizeof(struct inet_bind2_bucket), 0, 4667 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4668 SLAB_ACCOUNT, 4669 NULL); 4670 4671 /* Size and allocate the main established and bind bucket 4672 * hash tables. 4673 * 4674 * The methodology is similar to that of the buffer cache. 4675 */ 4676 tcp_hashinfo.ehash = 4677 alloc_large_system_hash("TCP established", 4678 sizeof(struct inet_ehash_bucket), 4679 thash_entries, 4680 17, /* one slot per 128 KB of memory */ 4681 0, 4682 NULL, 4683 &tcp_hashinfo.ehash_mask, 4684 0, 4685 thash_entries ? 0 : 512 * 1024); 4686 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4687 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4688 4689 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4690 panic("TCP: failed to alloc ehash_locks"); 4691 tcp_hashinfo.bhash = 4692 alloc_large_system_hash("TCP bind", 4693 2 * sizeof(struct inet_bind_hashbucket), 4694 tcp_hashinfo.ehash_mask + 1, 4695 17, /* one slot per 128 KB of memory */ 4696 0, 4697 &tcp_hashinfo.bhash_size, 4698 NULL, 4699 0, 4700 64 * 1024); 4701 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4702 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4703 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4704 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4705 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4706 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4707 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4708 } 4709 4710 tcp_hashinfo.pernet = false; 4711 4712 cnt = tcp_hashinfo.ehash_mask + 1; 4713 sysctl_tcp_max_orphans = cnt / 2; 4714 4715 tcp_init_mem(); 4716 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4717 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4718 max_wshare = min(4UL*1024*1024, limit); 4719 max_rshare = min(6UL*1024*1024, limit); 4720 4721 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4722 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4723 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4724 4725 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4726 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4727 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4728 4729 pr_info("Hash tables configured (established %u bind %u)\n", 4730 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4731 4732 tcp_v4_init(); 4733 tcp_metrics_init(); 4734 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4735 tcp_tasklet_init(); 4736 mptcp_init(); 4737 } 4738