xref: /openbmc/linux/net/ipv4/tcp.c (revision 4cff79e9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
273 #include <linux/static_key.h>
274 
275 #include <net/icmp.h>
276 #include <net/inet_common.h>
277 #include <net/tcp.h>
278 #include <net/xfrm.h>
279 #include <net/ip.h>
280 #include <net/sock.h>
281 
282 #include <linux/uaccess.h>
283 #include <asm/ioctls.h>
284 #include <net/busy_poll.h>
285 
286 struct percpu_counter tcp_orphan_count;
287 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291 
292 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294 
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299 
300 /*
301  * Current number of TCP sockets.
302  */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305 
306 /*
307  * TCP splice context
308  */
309 struct tcp_splice_state {
310 	struct pipe_inode_info *pipe;
311 	size_t len;
312 	unsigned int flags;
313 };
314 
315 /*
316  * Pressure flag: try to collapse.
317  * Technical note: it is used by multiple contexts non atomically.
318  * All the __sk_mem_schedule() is of this nature: accounting
319  * is strict, actions are advisory and have some latency.
320  */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323 
324 void tcp_enter_memory_pressure(struct sock *sk)
325 {
326 	unsigned long val;
327 
328 	if (tcp_memory_pressure)
329 		return;
330 	val = jiffies;
331 
332 	if (!val)
333 		val--;
334 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
336 }
337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
338 
339 void tcp_leave_memory_pressure(struct sock *sk)
340 {
341 	unsigned long val;
342 
343 	if (!tcp_memory_pressure)
344 		return;
345 	val = xchg(&tcp_memory_pressure, 0);
346 	if (val)
347 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
348 			      jiffies_to_msecs(jiffies - val));
349 }
350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
351 
352 /* Convert seconds to retransmits based on initial and max timeout */
353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
354 {
355 	u8 res = 0;
356 
357 	if (seconds > 0) {
358 		int period = timeout;
359 
360 		res = 1;
361 		while (seconds > period && res < 255) {
362 			res++;
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return res;
370 }
371 
372 /* Convert retransmits to seconds based on initial and max timeout */
373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
374 {
375 	int period = 0;
376 
377 	if (retrans > 0) {
378 		period = timeout;
379 		while (--retrans) {
380 			timeout <<= 1;
381 			if (timeout > rto_max)
382 				timeout = rto_max;
383 			period += timeout;
384 		}
385 	}
386 	return period;
387 }
388 
389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
390 {
391 	u32 rate = READ_ONCE(tp->rate_delivered);
392 	u32 intv = READ_ONCE(tp->rate_interval_us);
393 	u64 rate64 = 0;
394 
395 	if (rate && intv) {
396 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
397 		do_div(rate64, intv);
398 	}
399 	return rate64;
400 }
401 
402 /* Address-family independent initialization for a tcp_sock.
403  *
404  * NOTE: A lot of things set to zero explicitly by call to
405  *       sk_alloc() so need not be done here.
406  */
407 void tcp_init_sock(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	struct tcp_sock *tp = tcp_sk(sk);
411 
412 	tp->out_of_order_queue = RB_ROOT;
413 	sk->tcp_rtx_queue = RB_ROOT;
414 	tcp_init_xmit_timers(sk);
415 	INIT_LIST_HEAD(&tp->tsq_node);
416 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
417 
418 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
419 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
420 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
421 
422 	/* So many TCP implementations out there (incorrectly) count the
423 	 * initial SYN frame in their delayed-ACK and congestion control
424 	 * algorithms that we must have the following bandaid to talk
425 	 * efficiently to them.  -DaveM
426 	 */
427 	tp->snd_cwnd = TCP_INIT_CWND;
428 
429 	/* There's a bubble in the pipe until at least the first ACK. */
430 	tp->app_limited = ~0U;
431 
432 	/* See draft-stevens-tcpca-spec-01 for discussion of the
433 	 * initialization of these values.
434 	 */
435 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
436 	tp->snd_cwnd_clamp = ~0;
437 	tp->mss_cache = TCP_MSS_DEFAULT;
438 
439 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
440 	tcp_assign_congestion_control(sk);
441 
442 	tp->tsoffset = 0;
443 	tp->rack.reo_wnd_steps = 1;
444 
445 	sk->sk_state = TCP_CLOSE;
446 
447 	sk->sk_write_space = sk_stream_write_space;
448 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
449 
450 	icsk->icsk_sync_mss = tcp_sync_mss;
451 
452 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
453 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
454 
455 	sk_sockets_allocated_inc(sk);
456 	sk->sk_route_forced_caps = NETIF_F_GSO;
457 }
458 EXPORT_SYMBOL(tcp_init_sock);
459 
460 void tcp_init_transfer(struct sock *sk, int bpf_op)
461 {
462 	struct inet_connection_sock *icsk = inet_csk(sk);
463 
464 	tcp_mtup_init(sk);
465 	icsk->icsk_af_ops->rebuild_header(sk);
466 	tcp_init_metrics(sk);
467 	tcp_call_bpf(sk, bpf_op, 0, NULL);
468 	tcp_init_congestion_control(sk);
469 	tcp_init_buffer_space(sk);
470 }
471 
472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 	struct sk_buff *skb = tcp_write_queue_tail(sk);
475 
476 	if (tsflags && skb) {
477 		struct skb_shared_info *shinfo = skb_shinfo(skb);
478 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479 
480 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 			tcb->txstamp_ack = 1;
483 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 	}
486 }
487 
488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
489 					  int target, struct sock *sk)
490 {
491 	return (tp->rcv_nxt - tp->copied_seq >= target) ||
492 		(sk->sk_prot->stream_memory_read ?
493 		sk->sk_prot->stream_memory_read(sk) : false);
494 }
495 
496 /*
497  *	Wait for a TCP event.
498  *
499  *	Note that we don't need to lock the socket, as the upper poll layers
500  *	take care of normal races (between the test and the event) and we don't
501  *	go look at any of the socket buffers directly.
502  */
503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 	__poll_t mask;
506 	struct sock *sk = sock->sk;
507 	const struct tcp_sock *tp = tcp_sk(sk);
508 	int state;
509 
510 	sock_poll_wait(file, sk_sleep(sk), wait);
511 
512 	state = inet_sk_state_load(sk);
513 	if (state == TCP_LISTEN)
514 		return inet_csk_listen_poll(sk);
515 
516 	/* Socket is not locked. We are protected from async events
517 	 * by poll logic and correct handling of state changes
518 	 * made by other threads is impossible in any case.
519 	 */
520 
521 	mask = 0;
522 
523 	/*
524 	 * EPOLLHUP is certainly not done right. But poll() doesn't
525 	 * have a notion of HUP in just one direction, and for a
526 	 * socket the read side is more interesting.
527 	 *
528 	 * Some poll() documentation says that EPOLLHUP is incompatible
529 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 	 * all. But careful, it tends to be safer to return too many
531 	 * bits than too few, and you can easily break real applications
532 	 * if you don't tell them that something has hung up!
533 	 *
534 	 * Check-me.
535 	 *
536 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 	 * our fs/select.c). It means that after we received EOF,
538 	 * poll always returns immediately, making impossible poll() on write()
539 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 	 * if and only if shutdown has been made in both directions.
541 	 * Actually, it is interesting to look how Solaris and DUX
542 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 	 * then we could set it on SND_SHUTDOWN. BTW examples given
544 	 * in Stevens' books assume exactly this behaviour, it explains
545 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
546 	 *
547 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 	 * blocking on fresh not-connected or disconnected socket. --ANK
549 	 */
550 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 		mask |= EPOLLHUP;
552 	if (sk->sk_shutdown & RCV_SHUTDOWN)
553 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554 
555 	/* Connected or passive Fast Open socket? */
556 	if (state != TCP_SYN_SENT &&
557 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
558 		int target = sock_rcvlowat(sk, 0, INT_MAX);
559 
560 		if (tp->urg_seq == tp->copied_seq &&
561 		    !sock_flag(sk, SOCK_URGINLINE) &&
562 		    tp->urg_data)
563 			target++;
564 
565 		if (tcp_stream_is_readable(tp, target, sk))
566 			mask |= EPOLLIN | EPOLLRDNORM;
567 
568 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 			if (sk_stream_is_writeable(sk)) {
570 				mask |= EPOLLOUT | EPOLLWRNORM;
571 			} else {  /* send SIGIO later */
572 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574 
575 				/* Race breaker. If space is freed after
576 				 * wspace test but before the flags are set,
577 				 * IO signal will be lost. Memory barrier
578 				 * pairs with the input side.
579 				 */
580 				smp_mb__after_atomic();
581 				if (sk_stream_is_writeable(sk))
582 					mask |= EPOLLOUT | EPOLLWRNORM;
583 			}
584 		} else
585 			mask |= EPOLLOUT | EPOLLWRNORM;
586 
587 		if (tp->urg_data & TCP_URG_VALID)
588 			mask |= EPOLLPRI;
589 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 		/* Active TCP fastopen socket with defer_connect
591 		 * Return EPOLLOUT so application can call write()
592 		 * in order for kernel to generate SYN+data
593 		 */
594 		mask |= EPOLLOUT | EPOLLWRNORM;
595 	}
596 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
597 	smp_rmb();
598 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
599 		mask |= EPOLLERR;
600 
601 	return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604 
605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	int answ;
609 	bool slow;
610 
611 	switch (cmd) {
612 	case SIOCINQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		slow = lock_sock_fast(sk);
617 		answ = tcp_inq(sk);
618 		unlock_sock_fast(sk, slow);
619 		break;
620 	case SIOCATMARK:
621 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = tp->write_seq - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = tp->write_seq - tp->snd_nxt;
640 		break;
641 	default:
642 		return -ENOIOCTLCMD;
643 	}
644 
645 	return put_user(answ, (int __user *)arg);
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
660 static void skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	skb->csum    = 0;
666 	tcb->seq     = tcb->end_seq = tp->write_seq;
667 	tcb->tcp_flags = TCPHDR_ACK;
668 	tcb->sacked  = 0;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk->sk_wmem_queued += skb->truesize;
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
702 }
703 
704 static void tcp_push(struct sock *sk, int flags, int mss_now,
705 		     int nonagle, int size_goal)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	struct sk_buff *skb;
709 
710 	skb = tcp_write_queue_tail(sk);
711 	if (!skb)
712 		return;
713 	if (!(flags & MSG_MORE) || forced_push(tp))
714 		tcp_mark_push(tp, skb);
715 
716 	tcp_mark_urg(tp, flags);
717 
718 	if (tcp_should_autocork(sk, skb, size_goal)) {
719 
720 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
721 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
722 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
723 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
724 		}
725 		/* It is possible TX completion already happened
726 		 * before we set TSQ_THROTTLED.
727 		 */
728 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
729 			return;
730 	}
731 
732 	if (flags & MSG_MORE)
733 		nonagle = TCP_NAGLE_CORK;
734 
735 	__tcp_push_pending_frames(sk, mss_now, nonagle);
736 }
737 
738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
739 				unsigned int offset, size_t len)
740 {
741 	struct tcp_splice_state *tss = rd_desc->arg.data;
742 	int ret;
743 
744 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
745 			      min(rd_desc->count, len), tss->flags);
746 	if (ret > 0)
747 		rd_desc->count -= ret;
748 	return ret;
749 }
750 
751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
752 {
753 	/* Store TCP splice context information in read_descriptor_t. */
754 	read_descriptor_t rd_desc = {
755 		.arg.data = tss,
756 		.count	  = tss->len,
757 	};
758 
759 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
760 }
761 
762 /**
763  *  tcp_splice_read - splice data from TCP socket to a pipe
764  * @sock:	socket to splice from
765  * @ppos:	position (not valid)
766  * @pipe:	pipe to splice to
767  * @len:	number of bytes to splice
768  * @flags:	splice modifier flags
769  *
770  * Description:
771  *    Will read pages from given socket and fill them into a pipe.
772  *
773  **/
774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
775 			struct pipe_inode_info *pipe, size_t len,
776 			unsigned int flags)
777 {
778 	struct sock *sk = sock->sk;
779 	struct tcp_splice_state tss = {
780 		.pipe = pipe,
781 		.len = len,
782 		.flags = flags,
783 	};
784 	long timeo;
785 	ssize_t spliced;
786 	int ret;
787 
788 	sock_rps_record_flow(sk);
789 	/*
790 	 * We can't seek on a socket input
791 	 */
792 	if (unlikely(*ppos))
793 		return -ESPIPE;
794 
795 	ret = spliced = 0;
796 
797 	lock_sock(sk);
798 
799 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
800 	while (tss.len) {
801 		ret = __tcp_splice_read(sk, &tss);
802 		if (ret < 0)
803 			break;
804 		else if (!ret) {
805 			if (spliced)
806 				break;
807 			if (sock_flag(sk, SOCK_DONE))
808 				break;
809 			if (sk->sk_err) {
810 				ret = sock_error(sk);
811 				break;
812 			}
813 			if (sk->sk_shutdown & RCV_SHUTDOWN)
814 				break;
815 			if (sk->sk_state == TCP_CLOSE) {
816 				/*
817 				 * This occurs when user tries to read
818 				 * from never connected socket.
819 				 */
820 				if (!sock_flag(sk, SOCK_DONE))
821 					ret = -ENOTCONN;
822 				break;
823 			}
824 			if (!timeo) {
825 				ret = -EAGAIN;
826 				break;
827 			}
828 			/* if __tcp_splice_read() got nothing while we have
829 			 * an skb in receive queue, we do not want to loop.
830 			 * This might happen with URG data.
831 			 */
832 			if (!skb_queue_empty(&sk->sk_receive_queue))
833 				break;
834 			sk_wait_data(sk, &timeo, NULL);
835 			if (signal_pending(current)) {
836 				ret = sock_intr_errno(timeo);
837 				break;
838 			}
839 			continue;
840 		}
841 		tss.len -= ret;
842 		spliced += ret;
843 
844 		if (!timeo)
845 			break;
846 		release_sock(sk);
847 		lock_sock(sk);
848 
849 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
850 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
851 		    signal_pending(current))
852 			break;
853 	}
854 
855 	release_sock(sk);
856 
857 	if (spliced)
858 		return spliced;
859 
860 	return ret;
861 }
862 EXPORT_SYMBOL(tcp_splice_read);
863 
864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
865 				    bool force_schedule)
866 {
867 	struct sk_buff *skb;
868 
869 	/* The TCP header must be at least 32-bit aligned.  */
870 	size = ALIGN(size, 4);
871 
872 	if (unlikely(tcp_under_memory_pressure(sk)))
873 		sk_mem_reclaim_partial(sk);
874 
875 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
876 	if (likely(skb)) {
877 		bool mem_scheduled;
878 
879 		if (force_schedule) {
880 			mem_scheduled = true;
881 			sk_forced_mem_schedule(sk, skb->truesize);
882 		} else {
883 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
884 		}
885 		if (likely(mem_scheduled)) {
886 			skb_reserve(skb, sk->sk_prot->max_header);
887 			/*
888 			 * Make sure that we have exactly size bytes
889 			 * available to the caller, no more, no less.
890 			 */
891 			skb->reserved_tailroom = skb->end - skb->tail - size;
892 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
893 			return skb;
894 		}
895 		__kfree_skb(skb);
896 	} else {
897 		sk->sk_prot->enter_memory_pressure(sk);
898 		sk_stream_moderate_sndbuf(sk);
899 	}
900 	return NULL;
901 }
902 
903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
904 				       int large_allowed)
905 {
906 	struct tcp_sock *tp = tcp_sk(sk);
907 	u32 new_size_goal, size_goal;
908 
909 	if (!large_allowed)
910 		return mss_now;
911 
912 	/* Note : tcp_tso_autosize() will eventually split this later */
913 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
914 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
915 
916 	/* We try hard to avoid divides here */
917 	size_goal = tp->gso_segs * mss_now;
918 	if (unlikely(new_size_goal < size_goal ||
919 		     new_size_goal >= size_goal + mss_now)) {
920 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 				     sk->sk_gso_max_segs);
922 		size_goal = tp->gso_segs * mss_now;
923 	}
924 
925 	return max(size_goal, mss_now);
926 }
927 
928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
929 {
930 	int mss_now;
931 
932 	mss_now = tcp_current_mss(sk);
933 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
934 
935 	return mss_now;
936 }
937 
938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
939 			 size_t size, int flags)
940 {
941 	struct tcp_sock *tp = tcp_sk(sk);
942 	int mss_now, size_goal;
943 	int err;
944 	ssize_t copied;
945 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
946 
947 	/* Wait for a connection to finish. One exception is TCP Fast Open
948 	 * (passive side) where data is allowed to be sent before a connection
949 	 * is fully established.
950 	 */
951 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
952 	    !tcp_passive_fastopen(sk)) {
953 		err = sk_stream_wait_connect(sk, &timeo);
954 		if (err != 0)
955 			goto out_err;
956 	}
957 
958 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
959 
960 	mss_now = tcp_send_mss(sk, &size_goal, flags);
961 	copied = 0;
962 
963 	err = -EPIPE;
964 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
965 		goto out_err;
966 
967 	while (size > 0) {
968 		struct sk_buff *skb = tcp_write_queue_tail(sk);
969 		int copy, i;
970 		bool can_coalesce;
971 
972 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
973 		    !tcp_skb_can_collapse_to(skb)) {
974 new_segment:
975 			if (!sk_stream_memory_free(sk))
976 				goto wait_for_sndbuf;
977 
978 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
979 					tcp_rtx_and_write_queues_empty(sk));
980 			if (!skb)
981 				goto wait_for_memory;
982 
983 			skb_entail(sk, skb);
984 			copy = size_goal;
985 		}
986 
987 		if (copy > size)
988 			copy = size;
989 
990 		i = skb_shinfo(skb)->nr_frags;
991 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
992 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
993 			tcp_mark_push(tp, skb);
994 			goto new_segment;
995 		}
996 		if (!sk_wmem_schedule(sk, copy))
997 			goto wait_for_memory;
998 
999 		if (can_coalesce) {
1000 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1001 		} else {
1002 			get_page(page);
1003 			skb_fill_page_desc(skb, i, page, offset, copy);
1004 		}
1005 
1006 		if (!(flags & MSG_NO_SHARED_FRAGS))
1007 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1008 
1009 		skb->len += copy;
1010 		skb->data_len += copy;
1011 		skb->truesize += copy;
1012 		sk->sk_wmem_queued += copy;
1013 		sk_mem_charge(sk, copy);
1014 		skb->ip_summed = CHECKSUM_PARTIAL;
1015 		tp->write_seq += copy;
1016 		TCP_SKB_CB(skb)->end_seq += copy;
1017 		tcp_skb_pcount_set(skb, 0);
1018 
1019 		if (!copied)
1020 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1021 
1022 		copied += copy;
1023 		offset += copy;
1024 		size -= copy;
1025 		if (!size)
1026 			goto out;
1027 
1028 		if (skb->len < size_goal || (flags & MSG_OOB))
1029 			continue;
1030 
1031 		if (forced_push(tp)) {
1032 			tcp_mark_push(tp, skb);
1033 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1034 		} else if (skb == tcp_send_head(sk))
1035 			tcp_push_one(sk, mss_now);
1036 		continue;
1037 
1038 wait_for_sndbuf:
1039 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1040 wait_for_memory:
1041 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1042 			 TCP_NAGLE_PUSH, size_goal);
1043 
1044 		err = sk_stream_wait_memory(sk, &timeo);
1045 		if (err != 0)
1046 			goto do_error;
1047 
1048 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1049 	}
1050 
1051 out:
1052 	if (copied) {
1053 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1054 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1055 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1056 	}
1057 	return copied;
1058 
1059 do_error:
1060 	if (copied)
1061 		goto out;
1062 out_err:
1063 	/* make sure we wake any epoll edge trigger waiter */
1064 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1065 		     err == -EAGAIN)) {
1066 		sk->sk_write_space(sk);
1067 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1068 	}
1069 	return sk_stream_error(sk, flags, err);
1070 }
1071 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1072 
1073 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1074 			size_t size, int flags)
1075 {
1076 	if (!(sk->sk_route_caps & NETIF_F_SG))
1077 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1078 
1079 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1080 
1081 	return do_tcp_sendpages(sk, page, offset, size, flags);
1082 }
1083 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1084 
1085 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1086 		 size_t size, int flags)
1087 {
1088 	int ret;
1089 
1090 	lock_sock(sk);
1091 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1092 	release_sock(sk);
1093 
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL(tcp_sendpage);
1097 
1098 /* Do not bother using a page frag for very small frames.
1099  * But use this heuristic only for the first skb in write queue.
1100  *
1101  * Having no payload in skb->head allows better SACK shifting
1102  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1103  * write queue has less skbs.
1104  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1105  * This also speeds up tso_fragment(), since it wont fallback
1106  * to tcp_fragment().
1107  */
1108 static int linear_payload_sz(bool first_skb)
1109 {
1110 	if (first_skb)
1111 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1112 	return 0;
1113 }
1114 
1115 static int select_size(bool first_skb, bool zc)
1116 {
1117 	if (zc)
1118 		return 0;
1119 	return linear_payload_sz(first_skb);
1120 }
1121 
1122 void tcp_free_fastopen_req(struct tcp_sock *tp)
1123 {
1124 	if (tp->fastopen_req) {
1125 		kfree(tp->fastopen_req);
1126 		tp->fastopen_req = NULL;
1127 	}
1128 }
1129 
1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1131 				int *copied, size_t size)
1132 {
1133 	struct tcp_sock *tp = tcp_sk(sk);
1134 	struct inet_sock *inet = inet_sk(sk);
1135 	struct sockaddr *uaddr = msg->msg_name;
1136 	int err, flags;
1137 
1138 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1139 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1140 	     uaddr->sa_family == AF_UNSPEC))
1141 		return -EOPNOTSUPP;
1142 	if (tp->fastopen_req)
1143 		return -EALREADY; /* Another Fast Open is in progress */
1144 
1145 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1146 				   sk->sk_allocation);
1147 	if (unlikely(!tp->fastopen_req))
1148 		return -ENOBUFS;
1149 	tp->fastopen_req->data = msg;
1150 	tp->fastopen_req->size = size;
1151 
1152 	if (inet->defer_connect) {
1153 		err = tcp_connect(sk);
1154 		/* Same failure procedure as in tcp_v4/6_connect */
1155 		if (err) {
1156 			tcp_set_state(sk, TCP_CLOSE);
1157 			inet->inet_dport = 0;
1158 			sk->sk_route_caps = 0;
1159 		}
1160 	}
1161 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1163 				    msg->msg_namelen, flags, 1);
1164 	/* fastopen_req could already be freed in __inet_stream_connect
1165 	 * if the connection times out or gets rst
1166 	 */
1167 	if (tp->fastopen_req) {
1168 		*copied = tp->fastopen_req->copied;
1169 		tcp_free_fastopen_req(tp);
1170 		inet->defer_connect = 0;
1171 	}
1172 	return err;
1173 }
1174 
1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176 {
1177 	struct tcp_sock *tp = tcp_sk(sk);
1178 	struct ubuf_info *uarg = NULL;
1179 	struct sk_buff *skb;
1180 	struct sockcm_cookie sockc;
1181 	int flags, err, copied = 0;
1182 	int mss_now = 0, size_goal, copied_syn = 0;
1183 	bool process_backlog = false;
1184 	bool zc = false;
1185 	long timeo;
1186 
1187 	flags = msg->msg_flags;
1188 
1189 	if (flags & MSG_ZEROCOPY && size) {
1190 		if (sk->sk_state != TCP_ESTABLISHED) {
1191 			err = -EINVAL;
1192 			goto out_err;
1193 		}
1194 
1195 		skb = tcp_write_queue_tail(sk);
1196 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1197 		if (!uarg) {
1198 			err = -ENOBUFS;
1199 			goto out_err;
1200 		}
1201 
1202 		zc = sk->sk_route_caps & NETIF_F_SG;
1203 		if (!zc)
1204 			uarg->zerocopy = 0;
1205 	}
1206 
1207 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1208 	    !tp->repair) {
1209 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1210 		if (err == -EINPROGRESS && copied_syn > 0)
1211 			goto out;
1212 		else if (err)
1213 			goto out_err;
1214 	}
1215 
1216 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1217 
1218 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1219 
1220 	/* Wait for a connection to finish. One exception is TCP Fast Open
1221 	 * (passive side) where data is allowed to be sent before a connection
1222 	 * is fully established.
1223 	 */
1224 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1225 	    !tcp_passive_fastopen(sk)) {
1226 		err = sk_stream_wait_connect(sk, &timeo);
1227 		if (err != 0)
1228 			goto do_error;
1229 	}
1230 
1231 	if (unlikely(tp->repair)) {
1232 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1233 			copied = tcp_send_rcvq(sk, msg, size);
1234 			goto out_nopush;
1235 		}
1236 
1237 		err = -EINVAL;
1238 		if (tp->repair_queue == TCP_NO_QUEUE)
1239 			goto out_err;
1240 
1241 		/* 'common' sending to sendq */
1242 	}
1243 
1244 	sockc.tsflags = sk->sk_tsflags;
1245 	if (msg->msg_controllen) {
1246 		err = sock_cmsg_send(sk, msg, &sockc);
1247 		if (unlikely(err)) {
1248 			err = -EINVAL;
1249 			goto out_err;
1250 		}
1251 	}
1252 
1253 	/* This should be in poll */
1254 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1255 
1256 	/* Ok commence sending. */
1257 	copied = 0;
1258 
1259 restart:
1260 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1261 
1262 	err = -EPIPE;
1263 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1264 		goto do_error;
1265 
1266 	while (msg_data_left(msg)) {
1267 		int copy = 0;
1268 
1269 		skb = tcp_write_queue_tail(sk);
1270 		if (skb)
1271 			copy = size_goal - skb->len;
1272 
1273 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1274 			bool first_skb;
1275 			int linear;
1276 
1277 new_segment:
1278 			/* Allocate new segment. If the interface is SG,
1279 			 * allocate skb fitting to single page.
1280 			 */
1281 			if (!sk_stream_memory_free(sk))
1282 				goto wait_for_sndbuf;
1283 
1284 			if (process_backlog && sk_flush_backlog(sk)) {
1285 				process_backlog = false;
1286 				goto restart;
1287 			}
1288 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1289 			linear = select_size(first_skb, zc);
1290 			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
1291 						  first_skb);
1292 			if (!skb)
1293 				goto wait_for_memory;
1294 
1295 			process_backlog = true;
1296 			skb->ip_summed = CHECKSUM_PARTIAL;
1297 
1298 			skb_entail(sk, skb);
1299 			copy = size_goal;
1300 
1301 			/* All packets are restored as if they have
1302 			 * already been sent. skb_mstamp isn't set to
1303 			 * avoid wrong rtt estimation.
1304 			 */
1305 			if (tp->repair)
1306 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1307 		}
1308 
1309 		/* Try to append data to the end of skb. */
1310 		if (copy > msg_data_left(msg))
1311 			copy = msg_data_left(msg);
1312 
1313 		/* Where to copy to? */
1314 		if (skb_availroom(skb) > 0 && !zc) {
1315 			/* We have some space in skb head. Superb! */
1316 			copy = min_t(int, copy, skb_availroom(skb));
1317 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318 			if (err)
1319 				goto do_fault;
1320 		} else if (!zc) {
1321 			bool merge = true;
1322 			int i = skb_shinfo(skb)->nr_frags;
1323 			struct page_frag *pfrag = sk_page_frag(sk);
1324 
1325 			if (!sk_page_frag_refill(sk, pfrag))
1326 				goto wait_for_memory;
1327 
1328 			if (!skb_can_coalesce(skb, i, pfrag->page,
1329 					      pfrag->offset)) {
1330 				if (i >= sysctl_max_skb_frags) {
1331 					tcp_mark_push(tp, skb);
1332 					goto new_segment;
1333 				}
1334 				merge = false;
1335 			}
1336 
1337 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1338 
1339 			if (!sk_wmem_schedule(sk, copy))
1340 				goto wait_for_memory;
1341 
1342 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343 						       pfrag->page,
1344 						       pfrag->offset,
1345 						       copy);
1346 			if (err)
1347 				goto do_error;
1348 
1349 			/* Update the skb. */
1350 			if (merge) {
1351 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352 			} else {
1353 				skb_fill_page_desc(skb, i, pfrag->page,
1354 						   pfrag->offset, copy);
1355 				page_ref_inc(pfrag->page);
1356 			}
1357 			pfrag->offset += copy;
1358 		} else {
1359 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360 			if (err == -EMSGSIZE || err == -EEXIST) {
1361 				tcp_mark_push(tp, skb);
1362 				goto new_segment;
1363 			}
1364 			if (err < 0)
1365 				goto do_error;
1366 			copy = err;
1367 		}
1368 
1369 		if (!copied)
1370 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1371 
1372 		tp->write_seq += copy;
1373 		TCP_SKB_CB(skb)->end_seq += copy;
1374 		tcp_skb_pcount_set(skb, 0);
1375 
1376 		copied += copy;
1377 		if (!msg_data_left(msg)) {
1378 			if (unlikely(flags & MSG_EOR))
1379 				TCP_SKB_CB(skb)->eor = 1;
1380 			goto out;
1381 		}
1382 
1383 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1384 			continue;
1385 
1386 		if (forced_push(tp)) {
1387 			tcp_mark_push(tp, skb);
1388 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1389 		} else if (skb == tcp_send_head(sk))
1390 			tcp_push_one(sk, mss_now);
1391 		continue;
1392 
1393 wait_for_sndbuf:
1394 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1395 wait_for_memory:
1396 		if (copied)
1397 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1398 				 TCP_NAGLE_PUSH, size_goal);
1399 
1400 		err = sk_stream_wait_memory(sk, &timeo);
1401 		if (err != 0)
1402 			goto do_error;
1403 
1404 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1405 	}
1406 
1407 out:
1408 	if (copied) {
1409 		tcp_tx_timestamp(sk, sockc.tsflags);
1410 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1411 	}
1412 out_nopush:
1413 	sock_zerocopy_put(uarg);
1414 	return copied + copied_syn;
1415 
1416 do_fault:
1417 	if (!skb->len) {
1418 		tcp_unlink_write_queue(skb, sk);
1419 		/* It is the one place in all of TCP, except connection
1420 		 * reset, where we can be unlinking the send_head.
1421 		 */
1422 		tcp_check_send_head(sk, skb);
1423 		sk_wmem_free_skb(sk, skb);
1424 	}
1425 
1426 do_error:
1427 	if (copied + copied_syn)
1428 		goto out;
1429 out_err:
1430 	sock_zerocopy_put_abort(uarg);
1431 	err = sk_stream_error(sk, flags, err);
1432 	/* make sure we wake any epoll edge trigger waiter */
1433 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1434 		     err == -EAGAIN)) {
1435 		sk->sk_write_space(sk);
1436 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1437 	}
1438 	return err;
1439 }
1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1441 
1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1443 {
1444 	int ret;
1445 
1446 	lock_sock(sk);
1447 	ret = tcp_sendmsg_locked(sk, msg, size);
1448 	release_sock(sk);
1449 
1450 	return ret;
1451 }
1452 EXPORT_SYMBOL(tcp_sendmsg);
1453 
1454 /*
1455  *	Handle reading urgent data. BSD has very simple semantics for
1456  *	this, no blocking and very strange errors 8)
1457  */
1458 
1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	/* No URG data to read. */
1464 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1465 	    tp->urg_data == TCP_URG_READ)
1466 		return -EINVAL;	/* Yes this is right ! */
1467 
1468 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1469 		return -ENOTCONN;
1470 
1471 	if (tp->urg_data & TCP_URG_VALID) {
1472 		int err = 0;
1473 		char c = tp->urg_data;
1474 
1475 		if (!(flags & MSG_PEEK))
1476 			tp->urg_data = TCP_URG_READ;
1477 
1478 		/* Read urgent data. */
1479 		msg->msg_flags |= MSG_OOB;
1480 
1481 		if (len > 0) {
1482 			if (!(flags & MSG_TRUNC))
1483 				err = memcpy_to_msg(msg, &c, 1);
1484 			len = 1;
1485 		} else
1486 			msg->msg_flags |= MSG_TRUNC;
1487 
1488 		return err ? -EFAULT : len;
1489 	}
1490 
1491 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1492 		return 0;
1493 
1494 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1495 	 * the available implementations agree in this case:
1496 	 * this call should never block, independent of the
1497 	 * blocking state of the socket.
1498 	 * Mike <pall@rz.uni-karlsruhe.de>
1499 	 */
1500 	return -EAGAIN;
1501 }
1502 
1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1504 {
1505 	struct sk_buff *skb;
1506 	int copied = 0, err = 0;
1507 
1508 	/* XXX -- need to support SO_PEEK_OFF */
1509 
1510 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1511 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 		if (err)
1513 			return err;
1514 		copied += skb->len;
1515 	}
1516 
1517 	skb_queue_walk(&sk->sk_write_queue, skb) {
1518 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1519 		if (err)
1520 			break;
1521 
1522 		copied += skb->len;
1523 	}
1524 
1525 	return err ?: copied;
1526 }
1527 
1528 /* Clean up the receive buffer for full frames taken by the user,
1529  * then send an ACK if necessary.  COPIED is the number of bytes
1530  * tcp_recvmsg has given to the user so far, it speeds up the
1531  * calculation of whether or not we must ACK for the sake of
1532  * a window update.
1533  */
1534 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	bool time_to_ack = false;
1538 
1539 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1540 
1541 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1542 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1543 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1544 
1545 	if (inet_csk_ack_scheduled(sk)) {
1546 		const struct inet_connection_sock *icsk = inet_csk(sk);
1547 		   /* Delayed ACKs frequently hit locked sockets during bulk
1548 		    * receive. */
1549 		if (icsk->icsk_ack.blocked ||
1550 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1551 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1552 		    /*
1553 		     * If this read emptied read buffer, we send ACK, if
1554 		     * connection is not bidirectional, user drained
1555 		     * receive buffer and there was a small segment
1556 		     * in queue.
1557 		     */
1558 		    (copied > 0 &&
1559 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1560 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1561 		       !icsk->icsk_ack.pingpong)) &&
1562 		      !atomic_read(&sk->sk_rmem_alloc)))
1563 			time_to_ack = true;
1564 	}
1565 
1566 	/* We send an ACK if we can now advertise a non-zero window
1567 	 * which has been raised "significantly".
1568 	 *
1569 	 * Even if window raised up to infinity, do not send window open ACK
1570 	 * in states, where we will not receive more. It is useless.
1571 	 */
1572 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1573 		__u32 rcv_window_now = tcp_receive_window(tp);
1574 
1575 		/* Optimize, __tcp_select_window() is not cheap. */
1576 		if (2*rcv_window_now <= tp->window_clamp) {
1577 			__u32 new_window = __tcp_select_window(sk);
1578 
1579 			/* Send ACK now, if this read freed lots of space
1580 			 * in our buffer. Certainly, new_window is new window.
1581 			 * We can advertise it now, if it is not less than current one.
1582 			 * "Lots" means "at least twice" here.
1583 			 */
1584 			if (new_window && new_window >= 2 * rcv_window_now)
1585 				time_to_ack = true;
1586 		}
1587 	}
1588 	if (time_to_ack)
1589 		tcp_send_ack(sk);
1590 }
1591 
1592 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1593 {
1594 	struct sk_buff *skb;
1595 	u32 offset;
1596 
1597 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1598 		offset = seq - TCP_SKB_CB(skb)->seq;
1599 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1600 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1601 			offset--;
1602 		}
1603 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1604 			*off = offset;
1605 			return skb;
1606 		}
1607 		/* This looks weird, but this can happen if TCP collapsing
1608 		 * splitted a fat GRO packet, while we released socket lock
1609 		 * in skb_splice_bits()
1610 		 */
1611 		sk_eat_skb(sk, skb);
1612 	}
1613 	return NULL;
1614 }
1615 
1616 /*
1617  * This routine provides an alternative to tcp_recvmsg() for routines
1618  * that would like to handle copying from skbuffs directly in 'sendfile'
1619  * fashion.
1620  * Note:
1621  *	- It is assumed that the socket was locked by the caller.
1622  *	- The routine does not block.
1623  *	- At present, there is no support for reading OOB data
1624  *	  or for 'peeking' the socket using this routine
1625  *	  (although both would be easy to implement).
1626  */
1627 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1628 		  sk_read_actor_t recv_actor)
1629 {
1630 	struct sk_buff *skb;
1631 	struct tcp_sock *tp = tcp_sk(sk);
1632 	u32 seq = tp->copied_seq;
1633 	u32 offset;
1634 	int copied = 0;
1635 
1636 	if (sk->sk_state == TCP_LISTEN)
1637 		return -ENOTCONN;
1638 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1639 		if (offset < skb->len) {
1640 			int used;
1641 			size_t len;
1642 
1643 			len = skb->len - offset;
1644 			/* Stop reading if we hit a patch of urgent data */
1645 			if (tp->urg_data) {
1646 				u32 urg_offset = tp->urg_seq - seq;
1647 				if (urg_offset < len)
1648 					len = urg_offset;
1649 				if (!len)
1650 					break;
1651 			}
1652 			used = recv_actor(desc, skb, offset, len);
1653 			if (used <= 0) {
1654 				if (!copied)
1655 					copied = used;
1656 				break;
1657 			} else if (used <= len) {
1658 				seq += used;
1659 				copied += used;
1660 				offset += used;
1661 			}
1662 			/* If recv_actor drops the lock (e.g. TCP splice
1663 			 * receive) the skb pointer might be invalid when
1664 			 * getting here: tcp_collapse might have deleted it
1665 			 * while aggregating skbs from the socket queue.
1666 			 */
1667 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1668 			if (!skb)
1669 				break;
1670 			/* TCP coalescing might have appended data to the skb.
1671 			 * Try to splice more frags
1672 			 */
1673 			if (offset + 1 != skb->len)
1674 				continue;
1675 		}
1676 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1677 			sk_eat_skb(sk, skb);
1678 			++seq;
1679 			break;
1680 		}
1681 		sk_eat_skb(sk, skb);
1682 		if (!desc->count)
1683 			break;
1684 		tp->copied_seq = seq;
1685 	}
1686 	tp->copied_seq = seq;
1687 
1688 	tcp_rcv_space_adjust(sk);
1689 
1690 	/* Clean up data we have read: This will do ACK frames. */
1691 	if (copied > 0) {
1692 		tcp_recv_skb(sk, seq, &offset);
1693 		tcp_cleanup_rbuf(sk, copied);
1694 	}
1695 	return copied;
1696 }
1697 EXPORT_SYMBOL(tcp_read_sock);
1698 
1699 int tcp_peek_len(struct socket *sock)
1700 {
1701 	return tcp_inq(sock->sk);
1702 }
1703 EXPORT_SYMBOL(tcp_peek_len);
1704 
1705 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1706 				    struct scm_timestamping *tss)
1707 {
1708 	if (skb->tstamp)
1709 		tss->ts[0] = ktime_to_timespec(skb->tstamp);
1710 	else
1711 		tss->ts[0] = (struct timespec) {0};
1712 
1713 	if (skb_hwtstamps(skb)->hwtstamp)
1714 		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1715 	else
1716 		tss->ts[2] = (struct timespec) {0};
1717 }
1718 
1719 /* Similar to __sock_recv_timestamp, but does not require an skb */
1720 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1721 			       struct scm_timestamping *tss)
1722 {
1723 	struct timeval tv;
1724 	bool has_timestamping = false;
1725 
1726 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1727 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1728 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1729 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1730 					 sizeof(tss->ts[0]), &tss->ts[0]);
1731 			} else {
1732 				tv.tv_sec = tss->ts[0].tv_sec;
1733 				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1734 
1735 				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1736 					 sizeof(tv), &tv);
1737 			}
1738 		}
1739 
1740 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1741 			has_timestamping = true;
1742 		else
1743 			tss->ts[0] = (struct timespec) {0};
1744 	}
1745 
1746 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1747 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1748 			has_timestamping = true;
1749 		else
1750 			tss->ts[2] = (struct timespec) {0};
1751 	}
1752 
1753 	if (has_timestamping) {
1754 		tss->ts[1] = (struct timespec) {0};
1755 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1756 			 sizeof(*tss), tss);
1757 	}
1758 }
1759 
1760 /*
1761  *	This routine copies from a sock struct into the user buffer.
1762  *
1763  *	Technical note: in 2.3 we work on _locked_ socket, so that
1764  *	tricks with *seq access order and skb->users are not required.
1765  *	Probably, code can be easily improved even more.
1766  */
1767 
1768 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1769 		int flags, int *addr_len)
1770 {
1771 	struct tcp_sock *tp = tcp_sk(sk);
1772 	int copied = 0;
1773 	u32 peek_seq;
1774 	u32 *seq;
1775 	unsigned long used;
1776 	int err;
1777 	int target;		/* Read at least this many bytes */
1778 	long timeo;
1779 	struct sk_buff *skb, *last;
1780 	u32 urg_hole = 0;
1781 	struct scm_timestamping tss;
1782 	bool has_tss = false;
1783 
1784 	if (unlikely(flags & MSG_ERRQUEUE))
1785 		return inet_recv_error(sk, msg, len, addr_len);
1786 
1787 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1788 	    (sk->sk_state == TCP_ESTABLISHED))
1789 		sk_busy_loop(sk, nonblock);
1790 
1791 	lock_sock(sk);
1792 
1793 	err = -ENOTCONN;
1794 	if (sk->sk_state == TCP_LISTEN)
1795 		goto out;
1796 
1797 	timeo = sock_rcvtimeo(sk, nonblock);
1798 
1799 	/* Urgent data needs to be handled specially. */
1800 	if (flags & MSG_OOB)
1801 		goto recv_urg;
1802 
1803 	if (unlikely(tp->repair)) {
1804 		err = -EPERM;
1805 		if (!(flags & MSG_PEEK))
1806 			goto out;
1807 
1808 		if (tp->repair_queue == TCP_SEND_QUEUE)
1809 			goto recv_sndq;
1810 
1811 		err = -EINVAL;
1812 		if (tp->repair_queue == TCP_NO_QUEUE)
1813 			goto out;
1814 
1815 		/* 'common' recv queue MSG_PEEK-ing */
1816 	}
1817 
1818 	seq = &tp->copied_seq;
1819 	if (flags & MSG_PEEK) {
1820 		peek_seq = tp->copied_seq;
1821 		seq = &peek_seq;
1822 	}
1823 
1824 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1825 
1826 	do {
1827 		u32 offset;
1828 
1829 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1830 		if (tp->urg_data && tp->urg_seq == *seq) {
1831 			if (copied)
1832 				break;
1833 			if (signal_pending(current)) {
1834 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1835 				break;
1836 			}
1837 		}
1838 
1839 		/* Next get a buffer. */
1840 
1841 		last = skb_peek_tail(&sk->sk_receive_queue);
1842 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1843 			last = skb;
1844 			/* Now that we have two receive queues this
1845 			 * shouldn't happen.
1846 			 */
1847 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1848 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1849 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1850 				 flags))
1851 				break;
1852 
1853 			offset = *seq - TCP_SKB_CB(skb)->seq;
1854 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1855 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1856 				offset--;
1857 			}
1858 			if (offset < skb->len)
1859 				goto found_ok_skb;
1860 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1861 				goto found_fin_ok;
1862 			WARN(!(flags & MSG_PEEK),
1863 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1864 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1865 		}
1866 
1867 		/* Well, if we have backlog, try to process it now yet. */
1868 
1869 		if (copied >= target && !sk->sk_backlog.tail)
1870 			break;
1871 
1872 		if (copied) {
1873 			if (sk->sk_err ||
1874 			    sk->sk_state == TCP_CLOSE ||
1875 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1876 			    !timeo ||
1877 			    signal_pending(current))
1878 				break;
1879 		} else {
1880 			if (sock_flag(sk, SOCK_DONE))
1881 				break;
1882 
1883 			if (sk->sk_err) {
1884 				copied = sock_error(sk);
1885 				break;
1886 			}
1887 
1888 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1889 				break;
1890 
1891 			if (sk->sk_state == TCP_CLOSE) {
1892 				if (!sock_flag(sk, SOCK_DONE)) {
1893 					/* This occurs when user tries to read
1894 					 * from never connected socket.
1895 					 */
1896 					copied = -ENOTCONN;
1897 					break;
1898 				}
1899 				break;
1900 			}
1901 
1902 			if (!timeo) {
1903 				copied = -EAGAIN;
1904 				break;
1905 			}
1906 
1907 			if (signal_pending(current)) {
1908 				copied = sock_intr_errno(timeo);
1909 				break;
1910 			}
1911 		}
1912 
1913 		tcp_cleanup_rbuf(sk, copied);
1914 
1915 		if (copied >= target) {
1916 			/* Do not sleep, just process backlog. */
1917 			release_sock(sk);
1918 			lock_sock(sk);
1919 		} else {
1920 			sk_wait_data(sk, &timeo, last);
1921 		}
1922 
1923 		if ((flags & MSG_PEEK) &&
1924 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1925 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1926 					    current->comm,
1927 					    task_pid_nr(current));
1928 			peek_seq = tp->copied_seq;
1929 		}
1930 		continue;
1931 
1932 	found_ok_skb:
1933 		/* Ok so how much can we use? */
1934 		used = skb->len - offset;
1935 		if (len < used)
1936 			used = len;
1937 
1938 		/* Do we have urgent data here? */
1939 		if (tp->urg_data) {
1940 			u32 urg_offset = tp->urg_seq - *seq;
1941 			if (urg_offset < used) {
1942 				if (!urg_offset) {
1943 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1944 						++*seq;
1945 						urg_hole++;
1946 						offset++;
1947 						used--;
1948 						if (!used)
1949 							goto skip_copy;
1950 					}
1951 				} else
1952 					used = urg_offset;
1953 			}
1954 		}
1955 
1956 		if (!(flags & MSG_TRUNC)) {
1957 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1958 			if (err) {
1959 				/* Exception. Bailout! */
1960 				if (!copied)
1961 					copied = -EFAULT;
1962 				break;
1963 			}
1964 		}
1965 
1966 		*seq += used;
1967 		copied += used;
1968 		len -= used;
1969 
1970 		tcp_rcv_space_adjust(sk);
1971 
1972 skip_copy:
1973 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1974 			tp->urg_data = 0;
1975 			tcp_fast_path_check(sk);
1976 		}
1977 		if (used + offset < skb->len)
1978 			continue;
1979 
1980 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1981 			tcp_update_recv_tstamps(skb, &tss);
1982 			has_tss = true;
1983 		}
1984 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1985 			goto found_fin_ok;
1986 		if (!(flags & MSG_PEEK))
1987 			sk_eat_skb(sk, skb);
1988 		continue;
1989 
1990 	found_fin_ok:
1991 		/* Process the FIN. */
1992 		++*seq;
1993 		if (!(flags & MSG_PEEK))
1994 			sk_eat_skb(sk, skb);
1995 		break;
1996 	} while (len > 0);
1997 
1998 	/* According to UNIX98, msg_name/msg_namelen are ignored
1999 	 * on connected socket. I was just happy when found this 8) --ANK
2000 	 */
2001 
2002 	if (has_tss)
2003 		tcp_recv_timestamp(msg, sk, &tss);
2004 
2005 	/* Clean up data we have read: This will do ACK frames. */
2006 	tcp_cleanup_rbuf(sk, copied);
2007 
2008 	release_sock(sk);
2009 	return copied;
2010 
2011 out:
2012 	release_sock(sk);
2013 	return err;
2014 
2015 recv_urg:
2016 	err = tcp_recv_urg(sk, msg, len, flags);
2017 	goto out;
2018 
2019 recv_sndq:
2020 	err = tcp_peek_sndq(sk, msg, len);
2021 	goto out;
2022 }
2023 EXPORT_SYMBOL(tcp_recvmsg);
2024 
2025 void tcp_set_state(struct sock *sk, int state)
2026 {
2027 	int oldstate = sk->sk_state;
2028 
2029 	/* We defined a new enum for TCP states that are exported in BPF
2030 	 * so as not force the internal TCP states to be frozen. The
2031 	 * following checks will detect if an internal state value ever
2032 	 * differs from the BPF value. If this ever happens, then we will
2033 	 * need to remap the internal value to the BPF value before calling
2034 	 * tcp_call_bpf_2arg.
2035 	 */
2036 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2037 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2038 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2039 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2040 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2041 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2042 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2043 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2044 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2045 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2046 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2047 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2048 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2049 
2050 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2051 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2052 
2053 	switch (state) {
2054 	case TCP_ESTABLISHED:
2055 		if (oldstate != TCP_ESTABLISHED)
2056 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2057 		break;
2058 
2059 	case TCP_CLOSE:
2060 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2061 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2062 
2063 		sk->sk_prot->unhash(sk);
2064 		if (inet_csk(sk)->icsk_bind_hash &&
2065 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2066 			inet_put_port(sk);
2067 		/* fall through */
2068 	default:
2069 		if (oldstate == TCP_ESTABLISHED)
2070 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2071 	}
2072 
2073 	/* Change state AFTER socket is unhashed to avoid closed
2074 	 * socket sitting in hash tables.
2075 	 */
2076 	inet_sk_state_store(sk, state);
2077 
2078 #ifdef STATE_TRACE
2079 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2080 #endif
2081 }
2082 EXPORT_SYMBOL_GPL(tcp_set_state);
2083 
2084 /*
2085  *	State processing on a close. This implements the state shift for
2086  *	sending our FIN frame. Note that we only send a FIN for some
2087  *	states. A shutdown() may have already sent the FIN, or we may be
2088  *	closed.
2089  */
2090 
2091 static const unsigned char new_state[16] = {
2092   /* current state:        new state:      action:	*/
2093   [0 /* (Invalid) */]	= TCP_CLOSE,
2094   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2095   [TCP_SYN_SENT]	= TCP_CLOSE,
2096   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2097   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2098   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2099   [TCP_TIME_WAIT]	= TCP_CLOSE,
2100   [TCP_CLOSE]		= TCP_CLOSE,
2101   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2102   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2103   [TCP_LISTEN]		= TCP_CLOSE,
2104   [TCP_CLOSING]		= TCP_CLOSING,
2105   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2106 };
2107 
2108 static int tcp_close_state(struct sock *sk)
2109 {
2110 	int next = (int)new_state[sk->sk_state];
2111 	int ns = next & TCP_STATE_MASK;
2112 
2113 	tcp_set_state(sk, ns);
2114 
2115 	return next & TCP_ACTION_FIN;
2116 }
2117 
2118 /*
2119  *	Shutdown the sending side of a connection. Much like close except
2120  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2121  */
2122 
2123 void tcp_shutdown(struct sock *sk, int how)
2124 {
2125 	/*	We need to grab some memory, and put together a FIN,
2126 	 *	and then put it into the queue to be sent.
2127 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2128 	 */
2129 	if (!(how & SEND_SHUTDOWN))
2130 		return;
2131 
2132 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2133 	if ((1 << sk->sk_state) &
2134 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2135 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2136 		/* Clear out any half completed packets.  FIN if needed. */
2137 		if (tcp_close_state(sk))
2138 			tcp_send_fin(sk);
2139 	}
2140 }
2141 EXPORT_SYMBOL(tcp_shutdown);
2142 
2143 bool tcp_check_oom(struct sock *sk, int shift)
2144 {
2145 	bool too_many_orphans, out_of_socket_memory;
2146 
2147 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2148 	out_of_socket_memory = tcp_out_of_memory(sk);
2149 
2150 	if (too_many_orphans)
2151 		net_info_ratelimited("too many orphaned sockets\n");
2152 	if (out_of_socket_memory)
2153 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2154 	return too_many_orphans || out_of_socket_memory;
2155 }
2156 
2157 void tcp_close(struct sock *sk, long timeout)
2158 {
2159 	struct sk_buff *skb;
2160 	int data_was_unread = 0;
2161 	int state;
2162 
2163 	lock_sock(sk);
2164 	sk->sk_shutdown = SHUTDOWN_MASK;
2165 
2166 	if (sk->sk_state == TCP_LISTEN) {
2167 		tcp_set_state(sk, TCP_CLOSE);
2168 
2169 		/* Special case. */
2170 		inet_csk_listen_stop(sk);
2171 
2172 		goto adjudge_to_death;
2173 	}
2174 
2175 	/*  We need to flush the recv. buffs.  We do this only on the
2176 	 *  descriptor close, not protocol-sourced closes, because the
2177 	 *  reader process may not have drained the data yet!
2178 	 */
2179 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2180 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2181 
2182 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2183 			len--;
2184 		data_was_unread += len;
2185 		__kfree_skb(skb);
2186 	}
2187 
2188 	sk_mem_reclaim(sk);
2189 
2190 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2191 	if (sk->sk_state == TCP_CLOSE)
2192 		goto adjudge_to_death;
2193 
2194 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2195 	 * data was lost. To witness the awful effects of the old behavior of
2196 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2197 	 * GET in an FTP client, suspend the process, wait for the client to
2198 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2199 	 * Note: timeout is always zero in such a case.
2200 	 */
2201 	if (unlikely(tcp_sk(sk)->repair)) {
2202 		sk->sk_prot->disconnect(sk, 0);
2203 	} else if (data_was_unread) {
2204 		/* Unread data was tossed, zap the connection. */
2205 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2206 		tcp_set_state(sk, TCP_CLOSE);
2207 		tcp_send_active_reset(sk, sk->sk_allocation);
2208 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2209 		/* Check zero linger _after_ checking for unread data. */
2210 		sk->sk_prot->disconnect(sk, 0);
2211 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2212 	} else if (tcp_close_state(sk)) {
2213 		/* We FIN if the application ate all the data before
2214 		 * zapping the connection.
2215 		 */
2216 
2217 		/* RED-PEN. Formally speaking, we have broken TCP state
2218 		 * machine. State transitions:
2219 		 *
2220 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2221 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2222 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2223 		 *
2224 		 * are legal only when FIN has been sent (i.e. in window),
2225 		 * rather than queued out of window. Purists blame.
2226 		 *
2227 		 * F.e. "RFC state" is ESTABLISHED,
2228 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2229 		 *
2230 		 * The visible declinations are that sometimes
2231 		 * we enter time-wait state, when it is not required really
2232 		 * (harmless), do not send active resets, when they are
2233 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2234 		 * they look as CLOSING or LAST_ACK for Linux)
2235 		 * Probably, I missed some more holelets.
2236 		 * 						--ANK
2237 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2238 		 * in a single packet! (May consider it later but will
2239 		 * probably need API support or TCP_CORK SYN-ACK until
2240 		 * data is written and socket is closed.)
2241 		 */
2242 		tcp_send_fin(sk);
2243 	}
2244 
2245 	sk_stream_wait_close(sk, timeout);
2246 
2247 adjudge_to_death:
2248 	state = sk->sk_state;
2249 	sock_hold(sk);
2250 	sock_orphan(sk);
2251 
2252 	/* It is the last release_sock in its life. It will remove backlog. */
2253 	release_sock(sk);
2254 
2255 
2256 	/* Now socket is owned by kernel and we acquire BH lock
2257 	 *  to finish close. No need to check for user refs.
2258 	 */
2259 	local_bh_disable();
2260 	bh_lock_sock(sk);
2261 	WARN_ON(sock_owned_by_user(sk));
2262 
2263 	percpu_counter_inc(sk->sk_prot->orphan_count);
2264 
2265 	/* Have we already been destroyed by a softirq or backlog? */
2266 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2267 		goto out;
2268 
2269 	/*	This is a (useful) BSD violating of the RFC. There is a
2270 	 *	problem with TCP as specified in that the other end could
2271 	 *	keep a socket open forever with no application left this end.
2272 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2273 	 *	our end. If they send after that then tough - BUT: long enough
2274 	 *	that we won't make the old 4*rto = almost no time - whoops
2275 	 *	reset mistake.
2276 	 *
2277 	 *	Nope, it was not mistake. It is really desired behaviour
2278 	 *	f.e. on http servers, when such sockets are useless, but
2279 	 *	consume significant resources. Let's do it with special
2280 	 *	linger2	option.					--ANK
2281 	 */
2282 
2283 	if (sk->sk_state == TCP_FIN_WAIT2) {
2284 		struct tcp_sock *tp = tcp_sk(sk);
2285 		if (tp->linger2 < 0) {
2286 			tcp_set_state(sk, TCP_CLOSE);
2287 			tcp_send_active_reset(sk, GFP_ATOMIC);
2288 			__NET_INC_STATS(sock_net(sk),
2289 					LINUX_MIB_TCPABORTONLINGER);
2290 		} else {
2291 			const int tmo = tcp_fin_time(sk);
2292 
2293 			if (tmo > TCP_TIMEWAIT_LEN) {
2294 				inet_csk_reset_keepalive_timer(sk,
2295 						tmo - TCP_TIMEWAIT_LEN);
2296 			} else {
2297 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2298 				goto out;
2299 			}
2300 		}
2301 	}
2302 	if (sk->sk_state != TCP_CLOSE) {
2303 		sk_mem_reclaim(sk);
2304 		if (tcp_check_oom(sk, 0)) {
2305 			tcp_set_state(sk, TCP_CLOSE);
2306 			tcp_send_active_reset(sk, GFP_ATOMIC);
2307 			__NET_INC_STATS(sock_net(sk),
2308 					LINUX_MIB_TCPABORTONMEMORY);
2309 		} else if (!check_net(sock_net(sk))) {
2310 			/* Not possible to send reset; just close */
2311 			tcp_set_state(sk, TCP_CLOSE);
2312 		}
2313 	}
2314 
2315 	if (sk->sk_state == TCP_CLOSE) {
2316 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2317 		/* We could get here with a non-NULL req if the socket is
2318 		 * aborted (e.g., closed with unread data) before 3WHS
2319 		 * finishes.
2320 		 */
2321 		if (req)
2322 			reqsk_fastopen_remove(sk, req, false);
2323 		inet_csk_destroy_sock(sk);
2324 	}
2325 	/* Otherwise, socket is reprieved until protocol close. */
2326 
2327 out:
2328 	bh_unlock_sock(sk);
2329 	local_bh_enable();
2330 	sock_put(sk);
2331 }
2332 EXPORT_SYMBOL(tcp_close);
2333 
2334 /* These states need RST on ABORT according to RFC793 */
2335 
2336 static inline bool tcp_need_reset(int state)
2337 {
2338 	return (1 << state) &
2339 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2340 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2341 }
2342 
2343 static void tcp_rtx_queue_purge(struct sock *sk)
2344 {
2345 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2346 
2347 	while (p) {
2348 		struct sk_buff *skb = rb_to_skb(p);
2349 
2350 		p = rb_next(p);
2351 		/* Since we are deleting whole queue, no need to
2352 		 * list_del(&skb->tcp_tsorted_anchor)
2353 		 */
2354 		tcp_rtx_queue_unlink(skb, sk);
2355 		sk_wmem_free_skb(sk, skb);
2356 	}
2357 }
2358 
2359 void tcp_write_queue_purge(struct sock *sk)
2360 {
2361 	struct sk_buff *skb;
2362 
2363 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2364 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2365 		tcp_skb_tsorted_anchor_cleanup(skb);
2366 		sk_wmem_free_skb(sk, skb);
2367 	}
2368 	tcp_rtx_queue_purge(sk);
2369 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2370 	sk_mem_reclaim(sk);
2371 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2372 	tcp_sk(sk)->packets_out = 0;
2373 }
2374 
2375 int tcp_disconnect(struct sock *sk, int flags)
2376 {
2377 	struct inet_sock *inet = inet_sk(sk);
2378 	struct inet_connection_sock *icsk = inet_csk(sk);
2379 	struct tcp_sock *tp = tcp_sk(sk);
2380 	int err = 0;
2381 	int old_state = sk->sk_state;
2382 
2383 	if (old_state != TCP_CLOSE)
2384 		tcp_set_state(sk, TCP_CLOSE);
2385 
2386 	/* ABORT function of RFC793 */
2387 	if (old_state == TCP_LISTEN) {
2388 		inet_csk_listen_stop(sk);
2389 	} else if (unlikely(tp->repair)) {
2390 		sk->sk_err = ECONNABORTED;
2391 	} else if (tcp_need_reset(old_state) ||
2392 		   (tp->snd_nxt != tp->write_seq &&
2393 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2394 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2395 		 * states
2396 		 */
2397 		tcp_send_active_reset(sk, gfp_any());
2398 		sk->sk_err = ECONNRESET;
2399 	} else if (old_state == TCP_SYN_SENT)
2400 		sk->sk_err = ECONNRESET;
2401 
2402 	tcp_clear_xmit_timers(sk);
2403 	__skb_queue_purge(&sk->sk_receive_queue);
2404 	tcp_write_queue_purge(sk);
2405 	tcp_fastopen_active_disable_ofo_check(sk);
2406 	skb_rbtree_purge(&tp->out_of_order_queue);
2407 
2408 	inet->inet_dport = 0;
2409 
2410 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2411 		inet_reset_saddr(sk);
2412 
2413 	sk->sk_shutdown = 0;
2414 	sock_reset_flag(sk, SOCK_DONE);
2415 	tp->srtt_us = 0;
2416 	tp->write_seq += tp->max_window + 2;
2417 	if (tp->write_seq == 0)
2418 		tp->write_seq = 1;
2419 	icsk->icsk_backoff = 0;
2420 	tp->snd_cwnd = 2;
2421 	icsk->icsk_probes_out = 0;
2422 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2423 	tp->snd_cwnd_cnt = 0;
2424 	tp->window_clamp = 0;
2425 	tcp_set_ca_state(sk, TCP_CA_Open);
2426 	tp->is_sack_reneg = 0;
2427 	tcp_clear_retrans(tp);
2428 	inet_csk_delack_init(sk);
2429 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2430 	 * issue in __tcp_select_window()
2431 	 */
2432 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2433 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2434 	__sk_dst_reset(sk);
2435 	dst_release(sk->sk_rx_dst);
2436 	sk->sk_rx_dst = NULL;
2437 	tcp_saved_syn_free(tp);
2438 
2439 	/* Clean up fastopen related fields */
2440 	tcp_free_fastopen_req(tp);
2441 	inet->defer_connect = 0;
2442 
2443 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2444 
2445 	if (sk->sk_frag.page) {
2446 		put_page(sk->sk_frag.page);
2447 		sk->sk_frag.page = NULL;
2448 		sk->sk_frag.offset = 0;
2449 	}
2450 
2451 	sk->sk_error_report(sk);
2452 	return err;
2453 }
2454 EXPORT_SYMBOL(tcp_disconnect);
2455 
2456 static inline bool tcp_can_repair_sock(const struct sock *sk)
2457 {
2458 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2459 		(sk->sk_state != TCP_LISTEN);
2460 }
2461 
2462 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2463 {
2464 	struct tcp_repair_window opt;
2465 
2466 	if (!tp->repair)
2467 		return -EPERM;
2468 
2469 	if (len != sizeof(opt))
2470 		return -EINVAL;
2471 
2472 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2473 		return -EFAULT;
2474 
2475 	if (opt.max_window < opt.snd_wnd)
2476 		return -EINVAL;
2477 
2478 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2479 		return -EINVAL;
2480 
2481 	if (after(opt.rcv_wup, tp->rcv_nxt))
2482 		return -EINVAL;
2483 
2484 	tp->snd_wl1	= opt.snd_wl1;
2485 	tp->snd_wnd	= opt.snd_wnd;
2486 	tp->max_window	= opt.max_window;
2487 
2488 	tp->rcv_wnd	= opt.rcv_wnd;
2489 	tp->rcv_wup	= opt.rcv_wup;
2490 
2491 	return 0;
2492 }
2493 
2494 static int tcp_repair_options_est(struct sock *sk,
2495 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 	struct tcp_repair_opt opt;
2499 
2500 	while (len >= sizeof(opt)) {
2501 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2502 			return -EFAULT;
2503 
2504 		optbuf++;
2505 		len -= sizeof(opt);
2506 
2507 		switch (opt.opt_code) {
2508 		case TCPOPT_MSS:
2509 			tp->rx_opt.mss_clamp = opt.opt_val;
2510 			tcp_mtup_init(sk);
2511 			break;
2512 		case TCPOPT_WINDOW:
2513 			{
2514 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2515 				u16 rcv_wscale = opt.opt_val >> 16;
2516 
2517 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2518 					return -EFBIG;
2519 
2520 				tp->rx_opt.snd_wscale = snd_wscale;
2521 				tp->rx_opt.rcv_wscale = rcv_wscale;
2522 				tp->rx_opt.wscale_ok = 1;
2523 			}
2524 			break;
2525 		case TCPOPT_SACK_PERM:
2526 			if (opt.opt_val != 0)
2527 				return -EINVAL;
2528 
2529 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2530 			break;
2531 		case TCPOPT_TIMESTAMP:
2532 			if (opt.opt_val != 0)
2533 				return -EINVAL;
2534 
2535 			tp->rx_opt.tstamp_ok = 1;
2536 			break;
2537 		}
2538 	}
2539 
2540 	return 0;
2541 }
2542 
2543 /*
2544  *	Socket option code for TCP.
2545  */
2546 static int do_tcp_setsockopt(struct sock *sk, int level,
2547 		int optname, char __user *optval, unsigned int optlen)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 	struct inet_connection_sock *icsk = inet_csk(sk);
2551 	struct net *net = sock_net(sk);
2552 	int val;
2553 	int err = 0;
2554 
2555 	/* These are data/string values, all the others are ints */
2556 	switch (optname) {
2557 	case TCP_CONGESTION: {
2558 		char name[TCP_CA_NAME_MAX];
2559 
2560 		if (optlen < 1)
2561 			return -EINVAL;
2562 
2563 		val = strncpy_from_user(name, optval,
2564 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2565 		if (val < 0)
2566 			return -EFAULT;
2567 		name[val] = 0;
2568 
2569 		lock_sock(sk);
2570 		err = tcp_set_congestion_control(sk, name, true, true);
2571 		release_sock(sk);
2572 		return err;
2573 	}
2574 	case TCP_ULP: {
2575 		char name[TCP_ULP_NAME_MAX];
2576 
2577 		if (optlen < 1)
2578 			return -EINVAL;
2579 
2580 		val = strncpy_from_user(name, optval,
2581 					min_t(long, TCP_ULP_NAME_MAX - 1,
2582 					      optlen));
2583 		if (val < 0)
2584 			return -EFAULT;
2585 		name[val] = 0;
2586 
2587 		lock_sock(sk);
2588 		err = tcp_set_ulp(sk, name);
2589 		release_sock(sk);
2590 		return err;
2591 	}
2592 	case TCP_FASTOPEN_KEY: {
2593 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
2594 
2595 		if (optlen != sizeof(key))
2596 			return -EINVAL;
2597 
2598 		if (copy_from_user(key, optval, optlen))
2599 			return -EFAULT;
2600 
2601 		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
2602 	}
2603 	default:
2604 		/* fallthru */
2605 		break;
2606 	}
2607 
2608 	if (optlen < sizeof(int))
2609 		return -EINVAL;
2610 
2611 	if (get_user(val, (int __user *)optval))
2612 		return -EFAULT;
2613 
2614 	lock_sock(sk);
2615 
2616 	switch (optname) {
2617 	case TCP_MAXSEG:
2618 		/* Values greater than interface MTU won't take effect. However
2619 		 * at the point when this call is done we typically don't yet
2620 		 * know which interface is going to be used
2621 		 */
2622 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2623 			err = -EINVAL;
2624 			break;
2625 		}
2626 		tp->rx_opt.user_mss = val;
2627 		break;
2628 
2629 	case TCP_NODELAY:
2630 		if (val) {
2631 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2632 			 * this option on corked socket is remembered, but
2633 			 * it is not activated until cork is cleared.
2634 			 *
2635 			 * However, when TCP_NODELAY is set we make
2636 			 * an explicit push, which overrides even TCP_CORK
2637 			 * for currently queued segments.
2638 			 */
2639 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2640 			tcp_push_pending_frames(sk);
2641 		} else {
2642 			tp->nonagle &= ~TCP_NAGLE_OFF;
2643 		}
2644 		break;
2645 
2646 	case TCP_THIN_LINEAR_TIMEOUTS:
2647 		if (val < 0 || val > 1)
2648 			err = -EINVAL;
2649 		else
2650 			tp->thin_lto = val;
2651 		break;
2652 
2653 	case TCP_THIN_DUPACK:
2654 		if (val < 0 || val > 1)
2655 			err = -EINVAL;
2656 		break;
2657 
2658 	case TCP_REPAIR:
2659 		if (!tcp_can_repair_sock(sk))
2660 			err = -EPERM;
2661 		else if (val == 1) {
2662 			tp->repair = 1;
2663 			sk->sk_reuse = SK_FORCE_REUSE;
2664 			tp->repair_queue = TCP_NO_QUEUE;
2665 		} else if (val == 0) {
2666 			tp->repair = 0;
2667 			sk->sk_reuse = SK_NO_REUSE;
2668 			tcp_send_window_probe(sk);
2669 		} else
2670 			err = -EINVAL;
2671 
2672 		break;
2673 
2674 	case TCP_REPAIR_QUEUE:
2675 		if (!tp->repair)
2676 			err = -EPERM;
2677 		else if ((unsigned int)val < TCP_QUEUES_NR)
2678 			tp->repair_queue = val;
2679 		else
2680 			err = -EINVAL;
2681 		break;
2682 
2683 	case TCP_QUEUE_SEQ:
2684 		if (sk->sk_state != TCP_CLOSE)
2685 			err = -EPERM;
2686 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2687 			tp->write_seq = val;
2688 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2689 			tp->rcv_nxt = val;
2690 		else
2691 			err = -EINVAL;
2692 		break;
2693 
2694 	case TCP_REPAIR_OPTIONS:
2695 		if (!tp->repair)
2696 			err = -EINVAL;
2697 		else if (sk->sk_state == TCP_ESTABLISHED)
2698 			err = tcp_repair_options_est(sk,
2699 					(struct tcp_repair_opt __user *)optval,
2700 					optlen);
2701 		else
2702 			err = -EPERM;
2703 		break;
2704 
2705 	case TCP_CORK:
2706 		/* When set indicates to always queue non-full frames.
2707 		 * Later the user clears this option and we transmit
2708 		 * any pending partial frames in the queue.  This is
2709 		 * meant to be used alongside sendfile() to get properly
2710 		 * filled frames when the user (for example) must write
2711 		 * out headers with a write() call first and then use
2712 		 * sendfile to send out the data parts.
2713 		 *
2714 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2715 		 * stronger than TCP_NODELAY.
2716 		 */
2717 		if (val) {
2718 			tp->nonagle |= TCP_NAGLE_CORK;
2719 		} else {
2720 			tp->nonagle &= ~TCP_NAGLE_CORK;
2721 			if (tp->nonagle&TCP_NAGLE_OFF)
2722 				tp->nonagle |= TCP_NAGLE_PUSH;
2723 			tcp_push_pending_frames(sk);
2724 		}
2725 		break;
2726 
2727 	case TCP_KEEPIDLE:
2728 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2729 			err = -EINVAL;
2730 		else {
2731 			tp->keepalive_time = val * HZ;
2732 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2733 			    !((1 << sk->sk_state) &
2734 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2735 				u32 elapsed = keepalive_time_elapsed(tp);
2736 				if (tp->keepalive_time > elapsed)
2737 					elapsed = tp->keepalive_time - elapsed;
2738 				else
2739 					elapsed = 0;
2740 				inet_csk_reset_keepalive_timer(sk, elapsed);
2741 			}
2742 		}
2743 		break;
2744 	case TCP_KEEPINTVL:
2745 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2746 			err = -EINVAL;
2747 		else
2748 			tp->keepalive_intvl = val * HZ;
2749 		break;
2750 	case TCP_KEEPCNT:
2751 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2752 			err = -EINVAL;
2753 		else
2754 			tp->keepalive_probes = val;
2755 		break;
2756 	case TCP_SYNCNT:
2757 		if (val < 1 || val > MAX_TCP_SYNCNT)
2758 			err = -EINVAL;
2759 		else
2760 			icsk->icsk_syn_retries = val;
2761 		break;
2762 
2763 	case TCP_SAVE_SYN:
2764 		if (val < 0 || val > 1)
2765 			err = -EINVAL;
2766 		else
2767 			tp->save_syn = val;
2768 		break;
2769 
2770 	case TCP_LINGER2:
2771 		if (val < 0)
2772 			tp->linger2 = -1;
2773 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2774 			tp->linger2 = 0;
2775 		else
2776 			tp->linger2 = val * HZ;
2777 		break;
2778 
2779 	case TCP_DEFER_ACCEPT:
2780 		/* Translate value in seconds to number of retransmits */
2781 		icsk->icsk_accept_queue.rskq_defer_accept =
2782 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2783 					TCP_RTO_MAX / HZ);
2784 		break;
2785 
2786 	case TCP_WINDOW_CLAMP:
2787 		if (!val) {
2788 			if (sk->sk_state != TCP_CLOSE) {
2789 				err = -EINVAL;
2790 				break;
2791 			}
2792 			tp->window_clamp = 0;
2793 		} else
2794 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2795 						SOCK_MIN_RCVBUF / 2 : val;
2796 		break;
2797 
2798 	case TCP_QUICKACK:
2799 		if (!val) {
2800 			icsk->icsk_ack.pingpong = 1;
2801 		} else {
2802 			icsk->icsk_ack.pingpong = 0;
2803 			if ((1 << sk->sk_state) &
2804 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2805 			    inet_csk_ack_scheduled(sk)) {
2806 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2807 				tcp_cleanup_rbuf(sk, 1);
2808 				if (!(val & 1))
2809 					icsk->icsk_ack.pingpong = 1;
2810 			}
2811 		}
2812 		break;
2813 
2814 #ifdef CONFIG_TCP_MD5SIG
2815 	case TCP_MD5SIG:
2816 	case TCP_MD5SIG_EXT:
2817 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2818 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2819 		else
2820 			err = -EINVAL;
2821 		break;
2822 #endif
2823 	case TCP_USER_TIMEOUT:
2824 		/* Cap the max time in ms TCP will retry or probe the window
2825 		 * before giving up and aborting (ETIMEDOUT) a connection.
2826 		 */
2827 		if (val < 0)
2828 			err = -EINVAL;
2829 		else
2830 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2831 		break;
2832 
2833 	case TCP_FASTOPEN:
2834 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2835 		    TCPF_LISTEN))) {
2836 			tcp_fastopen_init_key_once(net);
2837 
2838 			fastopen_queue_tune(sk, val);
2839 		} else {
2840 			err = -EINVAL;
2841 		}
2842 		break;
2843 	case TCP_FASTOPEN_CONNECT:
2844 		if (val > 1 || val < 0) {
2845 			err = -EINVAL;
2846 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2847 			if (sk->sk_state == TCP_CLOSE)
2848 				tp->fastopen_connect = val;
2849 			else
2850 				err = -EINVAL;
2851 		} else {
2852 			err = -EOPNOTSUPP;
2853 		}
2854 		break;
2855 	case TCP_FASTOPEN_NO_COOKIE:
2856 		if (val > 1 || val < 0)
2857 			err = -EINVAL;
2858 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2859 			err = -EINVAL;
2860 		else
2861 			tp->fastopen_no_cookie = val;
2862 		break;
2863 	case TCP_TIMESTAMP:
2864 		if (!tp->repair)
2865 			err = -EPERM;
2866 		else
2867 			tp->tsoffset = val - tcp_time_stamp_raw();
2868 		break;
2869 	case TCP_REPAIR_WINDOW:
2870 		err = tcp_repair_set_window(tp, optval, optlen);
2871 		break;
2872 	case TCP_NOTSENT_LOWAT:
2873 		tp->notsent_lowat = val;
2874 		sk->sk_write_space(sk);
2875 		break;
2876 	default:
2877 		err = -ENOPROTOOPT;
2878 		break;
2879 	}
2880 
2881 	release_sock(sk);
2882 	return err;
2883 }
2884 
2885 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2886 		   unsigned int optlen)
2887 {
2888 	const struct inet_connection_sock *icsk = inet_csk(sk);
2889 
2890 	if (level != SOL_TCP)
2891 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2892 						     optval, optlen);
2893 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2894 }
2895 EXPORT_SYMBOL(tcp_setsockopt);
2896 
2897 #ifdef CONFIG_COMPAT
2898 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2899 			  char __user *optval, unsigned int optlen)
2900 {
2901 	if (level != SOL_TCP)
2902 		return inet_csk_compat_setsockopt(sk, level, optname,
2903 						  optval, optlen);
2904 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2905 }
2906 EXPORT_SYMBOL(compat_tcp_setsockopt);
2907 #endif
2908 
2909 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2910 				      struct tcp_info *info)
2911 {
2912 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2913 	enum tcp_chrono i;
2914 
2915 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2916 		stats[i] = tp->chrono_stat[i - 1];
2917 		if (i == tp->chrono_type)
2918 			stats[i] += tcp_jiffies32 - tp->chrono_start;
2919 		stats[i] *= USEC_PER_SEC / HZ;
2920 		total += stats[i];
2921 	}
2922 
2923 	info->tcpi_busy_time = total;
2924 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2925 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2926 }
2927 
2928 /* Return information about state of tcp endpoint in API format. */
2929 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2930 {
2931 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2932 	const struct inet_connection_sock *icsk = inet_csk(sk);
2933 	u32 now;
2934 	u64 rate64;
2935 	bool slow;
2936 	u32 rate;
2937 
2938 	memset(info, 0, sizeof(*info));
2939 	if (sk->sk_type != SOCK_STREAM)
2940 		return;
2941 
2942 	info->tcpi_state = inet_sk_state_load(sk);
2943 
2944 	/* Report meaningful fields for all TCP states, including listeners */
2945 	rate = READ_ONCE(sk->sk_pacing_rate);
2946 	rate64 = rate != ~0U ? rate : ~0ULL;
2947 	info->tcpi_pacing_rate = rate64;
2948 
2949 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2950 	rate64 = rate != ~0U ? rate : ~0ULL;
2951 	info->tcpi_max_pacing_rate = rate64;
2952 
2953 	info->tcpi_reordering = tp->reordering;
2954 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2955 
2956 	if (info->tcpi_state == TCP_LISTEN) {
2957 		/* listeners aliased fields :
2958 		 * tcpi_unacked -> Number of children ready for accept()
2959 		 * tcpi_sacked  -> max backlog
2960 		 */
2961 		info->tcpi_unacked = sk->sk_ack_backlog;
2962 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2963 		return;
2964 	}
2965 
2966 	slow = lock_sock_fast(sk);
2967 
2968 	info->tcpi_ca_state = icsk->icsk_ca_state;
2969 	info->tcpi_retransmits = icsk->icsk_retransmits;
2970 	info->tcpi_probes = icsk->icsk_probes_out;
2971 	info->tcpi_backoff = icsk->icsk_backoff;
2972 
2973 	if (tp->rx_opt.tstamp_ok)
2974 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2975 	if (tcp_is_sack(tp))
2976 		info->tcpi_options |= TCPI_OPT_SACK;
2977 	if (tp->rx_opt.wscale_ok) {
2978 		info->tcpi_options |= TCPI_OPT_WSCALE;
2979 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2980 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2981 	}
2982 
2983 	if (tp->ecn_flags & TCP_ECN_OK)
2984 		info->tcpi_options |= TCPI_OPT_ECN;
2985 	if (tp->ecn_flags & TCP_ECN_SEEN)
2986 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2987 	if (tp->syn_data_acked)
2988 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2989 
2990 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2991 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2992 	info->tcpi_snd_mss = tp->mss_cache;
2993 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2994 
2995 	info->tcpi_unacked = tp->packets_out;
2996 	info->tcpi_sacked = tp->sacked_out;
2997 
2998 	info->tcpi_lost = tp->lost_out;
2999 	info->tcpi_retrans = tp->retrans_out;
3000 
3001 	now = tcp_jiffies32;
3002 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3003 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3004 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3005 
3006 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3007 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3008 	info->tcpi_rtt = tp->srtt_us >> 3;
3009 	info->tcpi_rttvar = tp->mdev_us >> 2;
3010 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3011 	info->tcpi_advmss = tp->advmss;
3012 
3013 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3014 	info->tcpi_rcv_space = tp->rcvq_space.space;
3015 
3016 	info->tcpi_total_retrans = tp->total_retrans;
3017 
3018 	info->tcpi_bytes_acked = tp->bytes_acked;
3019 	info->tcpi_bytes_received = tp->bytes_received;
3020 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3021 	tcp_get_info_chrono_stats(tp, info);
3022 
3023 	info->tcpi_segs_out = tp->segs_out;
3024 	info->tcpi_segs_in = tp->segs_in;
3025 
3026 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3027 	info->tcpi_data_segs_in = tp->data_segs_in;
3028 	info->tcpi_data_segs_out = tp->data_segs_out;
3029 
3030 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3031 	rate64 = tcp_compute_delivery_rate(tp);
3032 	if (rate64)
3033 		info->tcpi_delivery_rate = rate64;
3034 	unlock_sock_fast(sk, slow);
3035 }
3036 EXPORT_SYMBOL_GPL(tcp_get_info);
3037 
3038 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3039 {
3040 	const struct tcp_sock *tp = tcp_sk(sk);
3041 	struct sk_buff *stats;
3042 	struct tcp_info info;
3043 	u64 rate64;
3044 	u32 rate;
3045 
3046 	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
3047 			  5 * nla_total_size(sizeof(u32)) +
3048 			  3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
3049 	if (!stats)
3050 		return NULL;
3051 
3052 	tcp_get_info_chrono_stats(tp, &info);
3053 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3054 			  info.tcpi_busy_time, TCP_NLA_PAD);
3055 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3056 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3057 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3058 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3059 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3060 			  tp->data_segs_out, TCP_NLA_PAD);
3061 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3062 			  tp->total_retrans, TCP_NLA_PAD);
3063 
3064 	rate = READ_ONCE(sk->sk_pacing_rate);
3065 	rate64 = rate != ~0U ? rate : ~0ULL;
3066 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3067 
3068 	rate64 = tcp_compute_delivery_rate(tp);
3069 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3070 
3071 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3072 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3073 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3074 
3075 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3076 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3077 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3078 
3079 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3080 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3081 	return stats;
3082 }
3083 
3084 static int do_tcp_getsockopt(struct sock *sk, int level,
3085 		int optname, char __user *optval, int __user *optlen)
3086 {
3087 	struct inet_connection_sock *icsk = inet_csk(sk);
3088 	struct tcp_sock *tp = tcp_sk(sk);
3089 	struct net *net = sock_net(sk);
3090 	int val, len;
3091 
3092 	if (get_user(len, optlen))
3093 		return -EFAULT;
3094 
3095 	len = min_t(unsigned int, len, sizeof(int));
3096 
3097 	if (len < 0)
3098 		return -EINVAL;
3099 
3100 	switch (optname) {
3101 	case TCP_MAXSEG:
3102 		val = tp->mss_cache;
3103 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3104 			val = tp->rx_opt.user_mss;
3105 		if (tp->repair)
3106 			val = tp->rx_opt.mss_clamp;
3107 		break;
3108 	case TCP_NODELAY:
3109 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3110 		break;
3111 	case TCP_CORK:
3112 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3113 		break;
3114 	case TCP_KEEPIDLE:
3115 		val = keepalive_time_when(tp) / HZ;
3116 		break;
3117 	case TCP_KEEPINTVL:
3118 		val = keepalive_intvl_when(tp) / HZ;
3119 		break;
3120 	case TCP_KEEPCNT:
3121 		val = keepalive_probes(tp);
3122 		break;
3123 	case TCP_SYNCNT:
3124 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3125 		break;
3126 	case TCP_LINGER2:
3127 		val = tp->linger2;
3128 		if (val >= 0)
3129 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3130 		break;
3131 	case TCP_DEFER_ACCEPT:
3132 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3133 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3134 		break;
3135 	case TCP_WINDOW_CLAMP:
3136 		val = tp->window_clamp;
3137 		break;
3138 	case TCP_INFO: {
3139 		struct tcp_info info;
3140 
3141 		if (get_user(len, optlen))
3142 			return -EFAULT;
3143 
3144 		tcp_get_info(sk, &info);
3145 
3146 		len = min_t(unsigned int, len, sizeof(info));
3147 		if (put_user(len, optlen))
3148 			return -EFAULT;
3149 		if (copy_to_user(optval, &info, len))
3150 			return -EFAULT;
3151 		return 0;
3152 	}
3153 	case TCP_CC_INFO: {
3154 		const struct tcp_congestion_ops *ca_ops;
3155 		union tcp_cc_info info;
3156 		size_t sz = 0;
3157 		int attr;
3158 
3159 		if (get_user(len, optlen))
3160 			return -EFAULT;
3161 
3162 		ca_ops = icsk->icsk_ca_ops;
3163 		if (ca_ops && ca_ops->get_info)
3164 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3165 
3166 		len = min_t(unsigned int, len, sz);
3167 		if (put_user(len, optlen))
3168 			return -EFAULT;
3169 		if (copy_to_user(optval, &info, len))
3170 			return -EFAULT;
3171 		return 0;
3172 	}
3173 	case TCP_QUICKACK:
3174 		val = !icsk->icsk_ack.pingpong;
3175 		break;
3176 
3177 	case TCP_CONGESTION:
3178 		if (get_user(len, optlen))
3179 			return -EFAULT;
3180 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3181 		if (put_user(len, optlen))
3182 			return -EFAULT;
3183 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3184 			return -EFAULT;
3185 		return 0;
3186 
3187 	case TCP_ULP:
3188 		if (get_user(len, optlen))
3189 			return -EFAULT;
3190 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3191 		if (!icsk->icsk_ulp_ops) {
3192 			if (put_user(0, optlen))
3193 				return -EFAULT;
3194 			return 0;
3195 		}
3196 		if (put_user(len, optlen))
3197 			return -EFAULT;
3198 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3199 			return -EFAULT;
3200 		return 0;
3201 
3202 	case TCP_FASTOPEN_KEY: {
3203 		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
3204 		struct tcp_fastopen_context *ctx;
3205 
3206 		if (get_user(len, optlen))
3207 			return -EFAULT;
3208 
3209 		rcu_read_lock();
3210 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3211 		if (ctx)
3212 			memcpy(key, ctx->key, sizeof(key));
3213 		else
3214 			len = 0;
3215 		rcu_read_unlock();
3216 
3217 		len = min_t(unsigned int, len, sizeof(key));
3218 		if (put_user(len, optlen))
3219 			return -EFAULT;
3220 		if (copy_to_user(optval, key, len))
3221 			return -EFAULT;
3222 		return 0;
3223 	}
3224 	case TCP_THIN_LINEAR_TIMEOUTS:
3225 		val = tp->thin_lto;
3226 		break;
3227 
3228 	case TCP_THIN_DUPACK:
3229 		val = 0;
3230 		break;
3231 
3232 	case TCP_REPAIR:
3233 		val = tp->repair;
3234 		break;
3235 
3236 	case TCP_REPAIR_QUEUE:
3237 		if (tp->repair)
3238 			val = tp->repair_queue;
3239 		else
3240 			return -EINVAL;
3241 		break;
3242 
3243 	case TCP_REPAIR_WINDOW: {
3244 		struct tcp_repair_window opt;
3245 
3246 		if (get_user(len, optlen))
3247 			return -EFAULT;
3248 
3249 		if (len != sizeof(opt))
3250 			return -EINVAL;
3251 
3252 		if (!tp->repair)
3253 			return -EPERM;
3254 
3255 		opt.snd_wl1	= tp->snd_wl1;
3256 		opt.snd_wnd	= tp->snd_wnd;
3257 		opt.max_window	= tp->max_window;
3258 		opt.rcv_wnd	= tp->rcv_wnd;
3259 		opt.rcv_wup	= tp->rcv_wup;
3260 
3261 		if (copy_to_user(optval, &opt, len))
3262 			return -EFAULT;
3263 		return 0;
3264 	}
3265 	case TCP_QUEUE_SEQ:
3266 		if (tp->repair_queue == TCP_SEND_QUEUE)
3267 			val = tp->write_seq;
3268 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3269 			val = tp->rcv_nxt;
3270 		else
3271 			return -EINVAL;
3272 		break;
3273 
3274 	case TCP_USER_TIMEOUT:
3275 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3276 		break;
3277 
3278 	case TCP_FASTOPEN:
3279 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3280 		break;
3281 
3282 	case TCP_FASTOPEN_CONNECT:
3283 		val = tp->fastopen_connect;
3284 		break;
3285 
3286 	case TCP_FASTOPEN_NO_COOKIE:
3287 		val = tp->fastopen_no_cookie;
3288 		break;
3289 
3290 	case TCP_TIMESTAMP:
3291 		val = tcp_time_stamp_raw() + tp->tsoffset;
3292 		break;
3293 	case TCP_NOTSENT_LOWAT:
3294 		val = tp->notsent_lowat;
3295 		break;
3296 	case TCP_SAVE_SYN:
3297 		val = tp->save_syn;
3298 		break;
3299 	case TCP_SAVED_SYN: {
3300 		if (get_user(len, optlen))
3301 			return -EFAULT;
3302 
3303 		lock_sock(sk);
3304 		if (tp->saved_syn) {
3305 			if (len < tp->saved_syn[0]) {
3306 				if (put_user(tp->saved_syn[0], optlen)) {
3307 					release_sock(sk);
3308 					return -EFAULT;
3309 				}
3310 				release_sock(sk);
3311 				return -EINVAL;
3312 			}
3313 			len = tp->saved_syn[0];
3314 			if (put_user(len, optlen)) {
3315 				release_sock(sk);
3316 				return -EFAULT;
3317 			}
3318 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3319 				release_sock(sk);
3320 				return -EFAULT;
3321 			}
3322 			tcp_saved_syn_free(tp);
3323 			release_sock(sk);
3324 		} else {
3325 			release_sock(sk);
3326 			len = 0;
3327 			if (put_user(len, optlen))
3328 				return -EFAULT;
3329 		}
3330 		return 0;
3331 	}
3332 	default:
3333 		return -ENOPROTOOPT;
3334 	}
3335 
3336 	if (put_user(len, optlen))
3337 		return -EFAULT;
3338 	if (copy_to_user(optval, &val, len))
3339 		return -EFAULT;
3340 	return 0;
3341 }
3342 
3343 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3344 		   int __user *optlen)
3345 {
3346 	struct inet_connection_sock *icsk = inet_csk(sk);
3347 
3348 	if (level != SOL_TCP)
3349 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3350 						     optval, optlen);
3351 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3352 }
3353 EXPORT_SYMBOL(tcp_getsockopt);
3354 
3355 #ifdef CONFIG_COMPAT
3356 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3357 			  char __user *optval, int __user *optlen)
3358 {
3359 	if (level != SOL_TCP)
3360 		return inet_csk_compat_getsockopt(sk, level, optname,
3361 						  optval, optlen);
3362 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3363 }
3364 EXPORT_SYMBOL(compat_tcp_getsockopt);
3365 #endif
3366 
3367 #ifdef CONFIG_TCP_MD5SIG
3368 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3369 static DEFINE_MUTEX(tcp_md5sig_mutex);
3370 static bool tcp_md5sig_pool_populated = false;
3371 
3372 static void __tcp_alloc_md5sig_pool(void)
3373 {
3374 	struct crypto_ahash *hash;
3375 	int cpu;
3376 
3377 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3378 	if (IS_ERR(hash))
3379 		return;
3380 
3381 	for_each_possible_cpu(cpu) {
3382 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3383 		struct ahash_request *req;
3384 
3385 		if (!scratch) {
3386 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3387 					       sizeof(struct tcphdr),
3388 					       GFP_KERNEL,
3389 					       cpu_to_node(cpu));
3390 			if (!scratch)
3391 				return;
3392 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3393 		}
3394 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3395 			continue;
3396 
3397 		req = ahash_request_alloc(hash, GFP_KERNEL);
3398 		if (!req)
3399 			return;
3400 
3401 		ahash_request_set_callback(req, 0, NULL, NULL);
3402 
3403 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3404 	}
3405 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3406 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3407 	 */
3408 	smp_wmb();
3409 	tcp_md5sig_pool_populated = true;
3410 }
3411 
3412 bool tcp_alloc_md5sig_pool(void)
3413 {
3414 	if (unlikely(!tcp_md5sig_pool_populated)) {
3415 		mutex_lock(&tcp_md5sig_mutex);
3416 
3417 		if (!tcp_md5sig_pool_populated)
3418 			__tcp_alloc_md5sig_pool();
3419 
3420 		mutex_unlock(&tcp_md5sig_mutex);
3421 	}
3422 	return tcp_md5sig_pool_populated;
3423 }
3424 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3425 
3426 
3427 /**
3428  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3429  *
3430  *	We use percpu structure, so if we succeed, we exit with preemption
3431  *	and BH disabled, to make sure another thread or softirq handling
3432  *	wont try to get same context.
3433  */
3434 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3435 {
3436 	local_bh_disable();
3437 
3438 	if (tcp_md5sig_pool_populated) {
3439 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3440 		smp_rmb();
3441 		return this_cpu_ptr(&tcp_md5sig_pool);
3442 	}
3443 	local_bh_enable();
3444 	return NULL;
3445 }
3446 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3447 
3448 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3449 			  const struct sk_buff *skb, unsigned int header_len)
3450 {
3451 	struct scatterlist sg;
3452 	const struct tcphdr *tp = tcp_hdr(skb);
3453 	struct ahash_request *req = hp->md5_req;
3454 	unsigned int i;
3455 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3456 					   skb_headlen(skb) - header_len : 0;
3457 	const struct skb_shared_info *shi = skb_shinfo(skb);
3458 	struct sk_buff *frag_iter;
3459 
3460 	sg_init_table(&sg, 1);
3461 
3462 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3463 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3464 	if (crypto_ahash_update(req))
3465 		return 1;
3466 
3467 	for (i = 0; i < shi->nr_frags; ++i) {
3468 		const struct skb_frag_struct *f = &shi->frags[i];
3469 		unsigned int offset = f->page_offset;
3470 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3471 
3472 		sg_set_page(&sg, page, skb_frag_size(f),
3473 			    offset_in_page(offset));
3474 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3475 		if (crypto_ahash_update(req))
3476 			return 1;
3477 	}
3478 
3479 	skb_walk_frags(skb, frag_iter)
3480 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3481 			return 1;
3482 
3483 	return 0;
3484 }
3485 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3486 
3487 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3488 {
3489 	struct scatterlist sg;
3490 
3491 	sg_init_one(&sg, key->key, key->keylen);
3492 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3493 	return crypto_ahash_update(hp->md5_req);
3494 }
3495 EXPORT_SYMBOL(tcp_md5_hash_key);
3496 
3497 #endif
3498 
3499 void tcp_done(struct sock *sk)
3500 {
3501 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3502 
3503 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3504 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3505 
3506 	tcp_set_state(sk, TCP_CLOSE);
3507 	tcp_clear_xmit_timers(sk);
3508 	if (req)
3509 		reqsk_fastopen_remove(sk, req, false);
3510 
3511 	sk->sk_shutdown = SHUTDOWN_MASK;
3512 
3513 	if (!sock_flag(sk, SOCK_DEAD))
3514 		sk->sk_state_change(sk);
3515 	else
3516 		inet_csk_destroy_sock(sk);
3517 }
3518 EXPORT_SYMBOL_GPL(tcp_done);
3519 
3520 int tcp_abort(struct sock *sk, int err)
3521 {
3522 	if (!sk_fullsock(sk)) {
3523 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3524 			struct request_sock *req = inet_reqsk(sk);
3525 
3526 			local_bh_disable();
3527 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3528 							  req);
3529 			local_bh_enable();
3530 			return 0;
3531 		}
3532 		return -EOPNOTSUPP;
3533 	}
3534 
3535 	/* Don't race with userspace socket closes such as tcp_close. */
3536 	lock_sock(sk);
3537 
3538 	if (sk->sk_state == TCP_LISTEN) {
3539 		tcp_set_state(sk, TCP_CLOSE);
3540 		inet_csk_listen_stop(sk);
3541 	}
3542 
3543 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3544 	local_bh_disable();
3545 	bh_lock_sock(sk);
3546 
3547 	if (!sock_flag(sk, SOCK_DEAD)) {
3548 		sk->sk_err = err;
3549 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3550 		smp_wmb();
3551 		sk->sk_error_report(sk);
3552 		if (tcp_need_reset(sk->sk_state))
3553 			tcp_send_active_reset(sk, GFP_ATOMIC);
3554 		tcp_done(sk);
3555 	}
3556 
3557 	bh_unlock_sock(sk);
3558 	local_bh_enable();
3559 	tcp_write_queue_purge(sk);
3560 	release_sock(sk);
3561 	return 0;
3562 }
3563 EXPORT_SYMBOL_GPL(tcp_abort);
3564 
3565 extern struct tcp_congestion_ops tcp_reno;
3566 
3567 static __initdata unsigned long thash_entries;
3568 static int __init set_thash_entries(char *str)
3569 {
3570 	ssize_t ret;
3571 
3572 	if (!str)
3573 		return 0;
3574 
3575 	ret = kstrtoul(str, 0, &thash_entries);
3576 	if (ret)
3577 		return 0;
3578 
3579 	return 1;
3580 }
3581 __setup("thash_entries=", set_thash_entries);
3582 
3583 static void __init tcp_init_mem(void)
3584 {
3585 	unsigned long limit = nr_free_buffer_pages() / 16;
3586 
3587 	limit = max(limit, 128UL);
3588 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3589 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3590 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3591 }
3592 
3593 void __init tcp_init(void)
3594 {
3595 	int max_rshare, max_wshare, cnt;
3596 	unsigned long limit;
3597 	unsigned int i;
3598 
3599 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3600 		     FIELD_SIZEOF(struct sk_buff, cb));
3601 
3602 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3603 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3604 	inet_hashinfo_init(&tcp_hashinfo);
3605 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3606 			    thash_entries, 21,  /* one slot per 2 MB*/
3607 			    0, 64 * 1024);
3608 	tcp_hashinfo.bind_bucket_cachep =
3609 		kmem_cache_create("tcp_bind_bucket",
3610 				  sizeof(struct inet_bind_bucket), 0,
3611 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3612 
3613 	/* Size and allocate the main established and bind bucket
3614 	 * hash tables.
3615 	 *
3616 	 * The methodology is similar to that of the buffer cache.
3617 	 */
3618 	tcp_hashinfo.ehash =
3619 		alloc_large_system_hash("TCP established",
3620 					sizeof(struct inet_ehash_bucket),
3621 					thash_entries,
3622 					17, /* one slot per 128 KB of memory */
3623 					0,
3624 					NULL,
3625 					&tcp_hashinfo.ehash_mask,
3626 					0,
3627 					thash_entries ? 0 : 512 * 1024);
3628 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3629 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3630 
3631 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3632 		panic("TCP: failed to alloc ehash_locks");
3633 	tcp_hashinfo.bhash =
3634 		alloc_large_system_hash("TCP bind",
3635 					sizeof(struct inet_bind_hashbucket),
3636 					tcp_hashinfo.ehash_mask + 1,
3637 					17, /* one slot per 128 KB of memory */
3638 					0,
3639 					&tcp_hashinfo.bhash_size,
3640 					NULL,
3641 					0,
3642 					64 * 1024);
3643 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3644 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3645 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3646 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3647 	}
3648 
3649 
3650 	cnt = tcp_hashinfo.ehash_mask + 1;
3651 	sysctl_tcp_max_orphans = cnt / 2;
3652 
3653 	tcp_init_mem();
3654 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3655 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3656 	max_wshare = min(4UL*1024*1024, limit);
3657 	max_rshare = min(6UL*1024*1024, limit);
3658 
3659 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3660 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
3661 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3662 
3663 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3664 	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
3665 	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
3666 
3667 	pr_info("Hash tables configured (established %u bind %u)\n",
3668 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3669 
3670 	tcp_v4_init();
3671 	tcp_metrics_init();
3672 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3673 	tcp_tasklet_init();
3674 }
3675