xref: /openbmc/linux/net/ipv4/tcp.c (revision 4cfb908054456ad8b6b8cd5108bbdf80faade8cd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 
461 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 	sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465 
466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 	struct sk_buff *skb = tcp_write_queue_tail(sk);
469 
470 	if (tsflags && skb) {
471 		struct skb_shared_info *shinfo = skb_shinfo(skb);
472 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473 
474 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 			tcb->txstamp_ack = 1;
477 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 	}
480 }
481 
482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 	if (tcp_epollin_ready(sk, target))
485 		return true;
486 	return sk_is_readable(sk);
487 }
488 
489 /*
490  *	Wait for a TCP event.
491  *
492  *	Note that we don't need to lock the socket, as the upper poll layers
493  *	take care of normal races (between the test and the event) and we don't
494  *	go look at any of the socket buffers directly.
495  */
496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 	__poll_t mask;
499 	struct sock *sk = sock->sk;
500 	const struct tcp_sock *tp = tcp_sk(sk);
501 	u8 shutdown;
502 	int state;
503 
504 	sock_poll_wait(file, sock, wait);
505 
506 	state = inet_sk_state_load(sk);
507 	if (state == TCP_LISTEN)
508 		return inet_csk_listen_poll(sk);
509 
510 	/* Socket is not locked. We are protected from async events
511 	 * by poll logic and correct handling of state changes
512 	 * made by other threads is impossible in any case.
513 	 */
514 
515 	mask = 0;
516 
517 	/*
518 	 * EPOLLHUP is certainly not done right. But poll() doesn't
519 	 * have a notion of HUP in just one direction, and for a
520 	 * socket the read side is more interesting.
521 	 *
522 	 * Some poll() documentation says that EPOLLHUP is incompatible
523 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
524 	 * all. But careful, it tends to be safer to return too many
525 	 * bits than too few, and you can easily break real applications
526 	 * if you don't tell them that something has hung up!
527 	 *
528 	 * Check-me.
529 	 *
530 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
531 	 * our fs/select.c). It means that after we received EOF,
532 	 * poll always returns immediately, making impossible poll() on write()
533 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
534 	 * if and only if shutdown has been made in both directions.
535 	 * Actually, it is interesting to look how Solaris and DUX
536 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
537 	 * then we could set it on SND_SHUTDOWN. BTW examples given
538 	 * in Stevens' books assume exactly this behaviour, it explains
539 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
540 	 *
541 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
542 	 * blocking on fresh not-connected or disconnected socket. --ANK
543 	 */
544 	shutdown = READ_ONCE(sk->sk_shutdown);
545 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 		mask |= EPOLLHUP;
547 	if (shutdown & RCV_SHUTDOWN)
548 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
549 
550 	/* Connected or passive Fast Open socket? */
551 	if (state != TCP_SYN_SENT &&
552 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
553 		int target = sock_rcvlowat(sk, 0, INT_MAX);
554 		u16 urg_data = READ_ONCE(tp->urg_data);
555 
556 		if (unlikely(urg_data) &&
557 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
558 		    !sock_flag(sk, SOCK_URGINLINE))
559 			target++;
560 
561 		if (tcp_stream_is_readable(sk, target))
562 			mask |= EPOLLIN | EPOLLRDNORM;
563 
564 		if (!(shutdown & SEND_SHUTDOWN)) {
565 			if (__sk_stream_is_writeable(sk, 1)) {
566 				mask |= EPOLLOUT | EPOLLWRNORM;
567 			} else {  /* send SIGIO later */
568 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570 
571 				/* Race breaker. If space is freed after
572 				 * wspace test but before the flags are set,
573 				 * IO signal will be lost. Memory barrier
574 				 * pairs with the input side.
575 				 */
576 				smp_mb__after_atomic();
577 				if (__sk_stream_is_writeable(sk, 1))
578 					mask |= EPOLLOUT | EPOLLWRNORM;
579 			}
580 		} else
581 			mask |= EPOLLOUT | EPOLLWRNORM;
582 
583 		if (urg_data & TCP_URG_VALID)
584 			mask |= EPOLLPRI;
585 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 		/* Active TCP fastopen socket with defer_connect
587 		 * Return EPOLLOUT so application can call write()
588 		 * in order for kernel to generate SYN+data
589 		 */
590 		mask |= EPOLLOUT | EPOLLWRNORM;
591 	}
592 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
593 	smp_rmb();
594 	if (READ_ONCE(sk->sk_err) ||
595 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
596 		mask |= EPOLLERR;
597 
598 	return mask;
599 }
600 EXPORT_SYMBOL(tcp_poll);
601 
602 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	int answ;
606 	bool slow;
607 
608 	switch (cmd) {
609 	case SIOCINQ:
610 		if (sk->sk_state == TCP_LISTEN)
611 			return -EINVAL;
612 
613 		slow = lock_sock_fast(sk);
614 		answ = tcp_inq(sk);
615 		unlock_sock_fast(sk, slow);
616 		break;
617 	case SIOCATMARK:
618 		answ = READ_ONCE(tp->urg_data) &&
619 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
620 		break;
621 	case SIOCOUTQ:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
626 			answ = 0;
627 		else
628 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
629 		break;
630 	case SIOCOUTQNSD:
631 		if (sk->sk_state == TCP_LISTEN)
632 			return -EINVAL;
633 
634 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
635 			answ = 0;
636 		else
637 			answ = READ_ONCE(tp->write_seq) -
638 			       READ_ONCE(tp->snd_nxt);
639 		break;
640 	default:
641 		return -ENOIOCTLCMD;
642 	}
643 
644 	*karg = answ;
645 	return 0;
646 }
647 EXPORT_SYMBOL(tcp_ioctl);
648 
649 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
650 {
651 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
652 	tp->pushed_seq = tp->write_seq;
653 }
654 
655 static inline bool forced_push(const struct tcp_sock *tp)
656 {
657 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
658 }
659 
660 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
664 
665 	tcb->seq     = tcb->end_seq = tp->write_seq;
666 	tcb->tcp_flags = TCPHDR_ACK;
667 	__skb_header_release(skb);
668 	tcp_add_write_queue_tail(sk, skb);
669 	sk_wmem_queued_add(sk, skb->truesize);
670 	sk_mem_charge(sk, skb->truesize);
671 	if (tp->nonagle & TCP_NAGLE_PUSH)
672 		tp->nonagle &= ~TCP_NAGLE_PUSH;
673 
674 	tcp_slow_start_after_idle_check(sk);
675 }
676 
677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 	if (flags & MSG_OOB)
680 		tp->snd_up = tp->write_seq;
681 }
682 
683 /* If a not yet filled skb is pushed, do not send it if
684  * we have data packets in Qdisc or NIC queues :
685  * Because TX completion will happen shortly, it gives a chance
686  * to coalesce future sendmsg() payload into this skb, without
687  * need for a timer, and with no latency trade off.
688  * As packets containing data payload have a bigger truesize
689  * than pure acks (dataless) packets, the last checks prevent
690  * autocorking if we only have an ACK in Qdisc/NIC queues,
691  * or if TX completion was delayed after we processed ACK packet.
692  */
693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 				int size_goal)
695 {
696 	return skb->len < size_goal &&
697 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
698 	       !tcp_rtx_queue_empty(sk) &&
699 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
700 	       tcp_skb_can_collapse_to(skb);
701 }
702 
703 void tcp_push(struct sock *sk, int flags, int mss_now,
704 	      int nonagle, int size_goal)
705 {
706 	struct tcp_sock *tp = tcp_sk(sk);
707 	struct sk_buff *skb;
708 
709 	skb = tcp_write_queue_tail(sk);
710 	if (!skb)
711 		return;
712 	if (!(flags & MSG_MORE) || forced_push(tp))
713 		tcp_mark_push(tp, skb);
714 
715 	tcp_mark_urg(tp, flags);
716 
717 	if (tcp_should_autocork(sk, skb, size_goal)) {
718 
719 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
720 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
721 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
722 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
723 		}
724 		/* It is possible TX completion already happened
725 		 * before we set TSQ_THROTTLED.
726 		 */
727 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
728 			return;
729 	}
730 
731 	if (flags & MSG_MORE)
732 		nonagle = TCP_NAGLE_CORK;
733 
734 	__tcp_push_pending_frames(sk, mss_now, nonagle);
735 }
736 
737 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
738 				unsigned int offset, size_t len)
739 {
740 	struct tcp_splice_state *tss = rd_desc->arg.data;
741 	int ret;
742 
743 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
744 			      min(rd_desc->count, len), tss->flags);
745 	if (ret > 0)
746 		rd_desc->count -= ret;
747 	return ret;
748 }
749 
750 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
751 {
752 	/* Store TCP splice context information in read_descriptor_t. */
753 	read_descriptor_t rd_desc = {
754 		.arg.data = tss,
755 		.count	  = tss->len,
756 	};
757 
758 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
759 }
760 
761 /**
762  *  tcp_splice_read - splice data from TCP socket to a pipe
763  * @sock:	socket to splice from
764  * @ppos:	position (not valid)
765  * @pipe:	pipe to splice to
766  * @len:	number of bytes to splice
767  * @flags:	splice modifier flags
768  *
769  * Description:
770  *    Will read pages from given socket and fill them into a pipe.
771  *
772  **/
773 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
774 			struct pipe_inode_info *pipe, size_t len,
775 			unsigned int flags)
776 {
777 	struct sock *sk = sock->sk;
778 	struct tcp_splice_state tss = {
779 		.pipe = pipe,
780 		.len = len,
781 		.flags = flags,
782 	};
783 	long timeo;
784 	ssize_t spliced;
785 	int ret;
786 
787 	sock_rps_record_flow(sk);
788 	/*
789 	 * We can't seek on a socket input
790 	 */
791 	if (unlikely(*ppos))
792 		return -ESPIPE;
793 
794 	ret = spliced = 0;
795 
796 	lock_sock(sk);
797 
798 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
799 	while (tss.len) {
800 		ret = __tcp_splice_read(sk, &tss);
801 		if (ret < 0)
802 			break;
803 		else if (!ret) {
804 			if (spliced)
805 				break;
806 			if (sock_flag(sk, SOCK_DONE))
807 				break;
808 			if (sk->sk_err) {
809 				ret = sock_error(sk);
810 				break;
811 			}
812 			if (sk->sk_shutdown & RCV_SHUTDOWN)
813 				break;
814 			if (sk->sk_state == TCP_CLOSE) {
815 				/*
816 				 * This occurs when user tries to read
817 				 * from never connected socket.
818 				 */
819 				ret = -ENOTCONN;
820 				break;
821 			}
822 			if (!timeo) {
823 				ret = -EAGAIN;
824 				break;
825 			}
826 			/* if __tcp_splice_read() got nothing while we have
827 			 * an skb in receive queue, we do not want to loop.
828 			 * This might happen with URG data.
829 			 */
830 			if (!skb_queue_empty(&sk->sk_receive_queue))
831 				break;
832 			sk_wait_data(sk, &timeo, NULL);
833 			if (signal_pending(current)) {
834 				ret = sock_intr_errno(timeo);
835 				break;
836 			}
837 			continue;
838 		}
839 		tss.len -= ret;
840 		spliced += ret;
841 
842 		if (!tss.len || !timeo)
843 			break;
844 		release_sock(sk);
845 		lock_sock(sk);
846 
847 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
848 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
849 		    signal_pending(current))
850 			break;
851 	}
852 
853 	release_sock(sk);
854 
855 	if (spliced)
856 		return spliced;
857 
858 	return ret;
859 }
860 EXPORT_SYMBOL(tcp_splice_read);
861 
862 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
863 				     bool force_schedule)
864 {
865 	struct sk_buff *skb;
866 
867 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
868 	if (likely(skb)) {
869 		bool mem_scheduled;
870 
871 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
872 		if (force_schedule) {
873 			mem_scheduled = true;
874 			sk_forced_mem_schedule(sk, skb->truesize);
875 		} else {
876 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
877 		}
878 		if (likely(mem_scheduled)) {
879 			skb_reserve(skb, MAX_TCP_HEADER);
880 			skb->ip_summed = CHECKSUM_PARTIAL;
881 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
882 			return skb;
883 		}
884 		__kfree_skb(skb);
885 	} else {
886 		sk->sk_prot->enter_memory_pressure(sk);
887 		sk_stream_moderate_sndbuf(sk);
888 	}
889 	return NULL;
890 }
891 
892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
893 				       int large_allowed)
894 {
895 	struct tcp_sock *tp = tcp_sk(sk);
896 	u32 new_size_goal, size_goal;
897 
898 	if (!large_allowed)
899 		return mss_now;
900 
901 	/* Note : tcp_tso_autosize() will eventually split this later */
902 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
903 
904 	/* We try hard to avoid divides here */
905 	size_goal = tp->gso_segs * mss_now;
906 	if (unlikely(new_size_goal < size_goal ||
907 		     new_size_goal >= size_goal + mss_now)) {
908 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
909 				     sk->sk_gso_max_segs);
910 		size_goal = tp->gso_segs * mss_now;
911 	}
912 
913 	return max(size_goal, mss_now);
914 }
915 
916 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
917 {
918 	int mss_now;
919 
920 	mss_now = tcp_current_mss(sk);
921 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
922 
923 	return mss_now;
924 }
925 
926 /* In some cases, both sendmsg() could have added an skb to the write queue,
927  * but failed adding payload on it.  We need to remove it to consume less
928  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
929  * epoll() users.
930  */
931 void tcp_remove_empty_skb(struct sock *sk)
932 {
933 	struct sk_buff *skb = tcp_write_queue_tail(sk);
934 
935 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
936 		tcp_unlink_write_queue(skb, sk);
937 		if (tcp_write_queue_empty(sk))
938 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
939 		tcp_wmem_free_skb(sk, skb);
940 	}
941 }
942 
943 /* skb changing from pure zc to mixed, must charge zc */
944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
945 {
946 	if (unlikely(skb_zcopy_pure(skb))) {
947 		u32 extra = skb->truesize -
948 			    SKB_TRUESIZE(skb_end_offset(skb));
949 
950 		if (!sk_wmem_schedule(sk, extra))
951 			return -ENOMEM;
952 
953 		sk_mem_charge(sk, extra);
954 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
955 	}
956 	return 0;
957 }
958 
959 
960 int tcp_wmem_schedule(struct sock *sk, int copy)
961 {
962 	int left;
963 
964 	if (likely(sk_wmem_schedule(sk, copy)))
965 		return copy;
966 
967 	/* We could be in trouble if we have nothing queued.
968 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
969 	 * to guarantee some progress.
970 	 */
971 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
972 	if (left > 0)
973 		sk_forced_mem_schedule(sk, min(left, copy));
974 	return min(copy, sk->sk_forward_alloc);
975 }
976 
977 void tcp_free_fastopen_req(struct tcp_sock *tp)
978 {
979 	if (tp->fastopen_req) {
980 		kfree(tp->fastopen_req);
981 		tp->fastopen_req = NULL;
982 	}
983 }
984 
985 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
986 			 size_t size, struct ubuf_info *uarg)
987 {
988 	struct tcp_sock *tp = tcp_sk(sk);
989 	struct inet_sock *inet = inet_sk(sk);
990 	struct sockaddr *uaddr = msg->msg_name;
991 	int err, flags;
992 
993 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
994 	      TFO_CLIENT_ENABLE) ||
995 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
996 	     uaddr->sa_family == AF_UNSPEC))
997 		return -EOPNOTSUPP;
998 	if (tp->fastopen_req)
999 		return -EALREADY; /* Another Fast Open is in progress */
1000 
1001 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1002 				   sk->sk_allocation);
1003 	if (unlikely(!tp->fastopen_req))
1004 		return -ENOBUFS;
1005 	tp->fastopen_req->data = msg;
1006 	tp->fastopen_req->size = size;
1007 	tp->fastopen_req->uarg = uarg;
1008 
1009 	if (inet->defer_connect) {
1010 		err = tcp_connect(sk);
1011 		/* Same failure procedure as in tcp_v4/6_connect */
1012 		if (err) {
1013 			tcp_set_state(sk, TCP_CLOSE);
1014 			inet->inet_dport = 0;
1015 			sk->sk_route_caps = 0;
1016 		}
1017 	}
1018 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1019 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1020 				    msg->msg_namelen, flags, 1);
1021 	/* fastopen_req could already be freed in __inet_stream_connect
1022 	 * if the connection times out or gets rst
1023 	 */
1024 	if (tp->fastopen_req) {
1025 		*copied = tp->fastopen_req->copied;
1026 		tcp_free_fastopen_req(tp);
1027 		inet->defer_connect = 0;
1028 	}
1029 	return err;
1030 }
1031 
1032 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1033 {
1034 	struct tcp_sock *tp = tcp_sk(sk);
1035 	struct ubuf_info *uarg = NULL;
1036 	struct sk_buff *skb;
1037 	struct sockcm_cookie sockc;
1038 	int flags, err, copied = 0;
1039 	int mss_now = 0, size_goal, copied_syn = 0;
1040 	int process_backlog = 0;
1041 	int zc = 0;
1042 	long timeo;
1043 
1044 	flags = msg->msg_flags;
1045 
1046 	if ((flags & MSG_ZEROCOPY) && size) {
1047 		if (msg->msg_ubuf) {
1048 			uarg = msg->msg_ubuf;
1049 			if (sk->sk_route_caps & NETIF_F_SG)
1050 				zc = MSG_ZEROCOPY;
1051 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1052 			skb = tcp_write_queue_tail(sk);
1053 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1054 			if (!uarg) {
1055 				err = -ENOBUFS;
1056 				goto out_err;
1057 			}
1058 			if (sk->sk_route_caps & NETIF_F_SG)
1059 				zc = MSG_ZEROCOPY;
1060 			else
1061 				uarg_to_msgzc(uarg)->zerocopy = 0;
1062 		}
1063 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1064 		if (sk->sk_route_caps & NETIF_F_SG)
1065 			zc = MSG_SPLICE_PAGES;
1066 	}
1067 
1068 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1069 	    !tp->repair) {
1070 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1071 		if (err == -EINPROGRESS && copied_syn > 0)
1072 			goto out;
1073 		else if (err)
1074 			goto out_err;
1075 	}
1076 
1077 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1078 
1079 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1080 
1081 	/* Wait for a connection to finish. One exception is TCP Fast Open
1082 	 * (passive side) where data is allowed to be sent before a connection
1083 	 * is fully established.
1084 	 */
1085 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1086 	    !tcp_passive_fastopen(sk)) {
1087 		err = sk_stream_wait_connect(sk, &timeo);
1088 		if (err != 0)
1089 			goto do_error;
1090 	}
1091 
1092 	if (unlikely(tp->repair)) {
1093 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1094 			copied = tcp_send_rcvq(sk, msg, size);
1095 			goto out_nopush;
1096 		}
1097 
1098 		err = -EINVAL;
1099 		if (tp->repair_queue == TCP_NO_QUEUE)
1100 			goto out_err;
1101 
1102 		/* 'common' sending to sendq */
1103 	}
1104 
1105 	sockcm_init(&sockc, sk);
1106 	if (msg->msg_controllen) {
1107 		err = sock_cmsg_send(sk, msg, &sockc);
1108 		if (unlikely(err)) {
1109 			err = -EINVAL;
1110 			goto out_err;
1111 		}
1112 	}
1113 
1114 	/* This should be in poll */
1115 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1116 
1117 	/* Ok commence sending. */
1118 	copied = 0;
1119 
1120 restart:
1121 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1122 
1123 	err = -EPIPE;
1124 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1125 		goto do_error;
1126 
1127 	while (msg_data_left(msg)) {
1128 		ssize_t copy = 0;
1129 
1130 		skb = tcp_write_queue_tail(sk);
1131 		if (skb)
1132 			copy = size_goal - skb->len;
1133 
1134 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1135 			bool first_skb;
1136 
1137 new_segment:
1138 			if (!sk_stream_memory_free(sk))
1139 				goto wait_for_space;
1140 
1141 			if (unlikely(process_backlog >= 16)) {
1142 				process_backlog = 0;
1143 				if (sk_flush_backlog(sk))
1144 					goto restart;
1145 			}
1146 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1147 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1148 						   first_skb);
1149 			if (!skb)
1150 				goto wait_for_space;
1151 
1152 			process_backlog++;
1153 
1154 			tcp_skb_entail(sk, skb);
1155 			copy = size_goal;
1156 
1157 			/* All packets are restored as if they have
1158 			 * already been sent. skb_mstamp_ns isn't set to
1159 			 * avoid wrong rtt estimation.
1160 			 */
1161 			if (tp->repair)
1162 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1163 		}
1164 
1165 		/* Try to append data to the end of skb. */
1166 		if (copy > msg_data_left(msg))
1167 			copy = msg_data_left(msg);
1168 
1169 		if (zc == 0) {
1170 			bool merge = true;
1171 			int i = skb_shinfo(skb)->nr_frags;
1172 			struct page_frag *pfrag = sk_page_frag(sk);
1173 
1174 			if (!sk_page_frag_refill(sk, pfrag))
1175 				goto wait_for_space;
1176 
1177 			if (!skb_can_coalesce(skb, i, pfrag->page,
1178 					      pfrag->offset)) {
1179 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1180 					tcp_mark_push(tp, skb);
1181 					goto new_segment;
1182 				}
1183 				merge = false;
1184 			}
1185 
1186 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1187 
1188 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1189 				if (tcp_downgrade_zcopy_pure(sk, skb))
1190 					goto wait_for_space;
1191 				skb_zcopy_downgrade_managed(skb);
1192 			}
1193 
1194 			copy = tcp_wmem_schedule(sk, copy);
1195 			if (!copy)
1196 				goto wait_for_space;
1197 
1198 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1199 						       pfrag->page,
1200 						       pfrag->offset,
1201 						       copy);
1202 			if (err)
1203 				goto do_error;
1204 
1205 			/* Update the skb. */
1206 			if (merge) {
1207 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1208 			} else {
1209 				skb_fill_page_desc(skb, i, pfrag->page,
1210 						   pfrag->offset, copy);
1211 				page_ref_inc(pfrag->page);
1212 			}
1213 			pfrag->offset += copy;
1214 		} else if (zc == MSG_ZEROCOPY)  {
1215 			/* First append to a fragless skb builds initial
1216 			 * pure zerocopy skb
1217 			 */
1218 			if (!skb->len)
1219 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1220 
1221 			if (!skb_zcopy_pure(skb)) {
1222 				copy = tcp_wmem_schedule(sk, copy);
1223 				if (!copy)
1224 					goto wait_for_space;
1225 			}
1226 
1227 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1228 			if (err == -EMSGSIZE || err == -EEXIST) {
1229 				tcp_mark_push(tp, skb);
1230 				goto new_segment;
1231 			}
1232 			if (err < 0)
1233 				goto do_error;
1234 			copy = err;
1235 		} else if (zc == MSG_SPLICE_PAGES) {
1236 			/* Splice in data if we can; copy if we can't. */
1237 			if (tcp_downgrade_zcopy_pure(sk, skb))
1238 				goto wait_for_space;
1239 			copy = tcp_wmem_schedule(sk, copy);
1240 			if (!copy)
1241 				goto wait_for_space;
1242 
1243 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1244 						   sk->sk_allocation);
1245 			if (err < 0) {
1246 				if (err == -EMSGSIZE) {
1247 					tcp_mark_push(tp, skb);
1248 					goto new_segment;
1249 				}
1250 				goto do_error;
1251 			}
1252 			copy = err;
1253 
1254 			if (!(flags & MSG_NO_SHARED_FRAGS))
1255 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1256 
1257 			sk_wmem_queued_add(sk, copy);
1258 			sk_mem_charge(sk, copy);
1259 		}
1260 
1261 		if (!copied)
1262 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1263 
1264 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1265 		TCP_SKB_CB(skb)->end_seq += copy;
1266 		tcp_skb_pcount_set(skb, 0);
1267 
1268 		copied += copy;
1269 		if (!msg_data_left(msg)) {
1270 			if (unlikely(flags & MSG_EOR))
1271 				TCP_SKB_CB(skb)->eor = 1;
1272 			goto out;
1273 		}
1274 
1275 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1276 			continue;
1277 
1278 		if (forced_push(tp)) {
1279 			tcp_mark_push(tp, skb);
1280 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1281 		} else if (skb == tcp_send_head(sk))
1282 			tcp_push_one(sk, mss_now);
1283 		continue;
1284 
1285 wait_for_space:
1286 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1287 		if (copied)
1288 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1289 				 TCP_NAGLE_PUSH, size_goal);
1290 
1291 		err = sk_stream_wait_memory(sk, &timeo);
1292 		if (err != 0)
1293 			goto do_error;
1294 
1295 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1296 	}
1297 
1298 out:
1299 	if (copied) {
1300 		tcp_tx_timestamp(sk, sockc.tsflags);
1301 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1302 	}
1303 out_nopush:
1304 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1305 	if (uarg && !msg->msg_ubuf)
1306 		net_zcopy_put(uarg);
1307 	return copied + copied_syn;
1308 
1309 do_error:
1310 	tcp_remove_empty_skb(sk);
1311 
1312 	if (copied + copied_syn)
1313 		goto out;
1314 out_err:
1315 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1316 	if (uarg && !msg->msg_ubuf)
1317 		net_zcopy_put_abort(uarg, true);
1318 	err = sk_stream_error(sk, flags, err);
1319 	/* make sure we wake any epoll edge trigger waiter */
1320 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1321 		sk->sk_write_space(sk);
1322 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1323 	}
1324 	return err;
1325 }
1326 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1327 
1328 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1329 {
1330 	int ret;
1331 
1332 	lock_sock(sk);
1333 	ret = tcp_sendmsg_locked(sk, msg, size);
1334 	release_sock(sk);
1335 
1336 	return ret;
1337 }
1338 EXPORT_SYMBOL(tcp_sendmsg);
1339 
1340 void tcp_splice_eof(struct socket *sock)
1341 {
1342 	struct sock *sk = sock->sk;
1343 	struct tcp_sock *tp = tcp_sk(sk);
1344 	int mss_now, size_goal;
1345 
1346 	if (!tcp_write_queue_tail(sk))
1347 		return;
1348 
1349 	lock_sock(sk);
1350 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1351 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1352 	release_sock(sk);
1353 }
1354 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1355 
1356 /*
1357  *	Handle reading urgent data. BSD has very simple semantics for
1358  *	this, no blocking and very strange errors 8)
1359  */
1360 
1361 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1362 {
1363 	struct tcp_sock *tp = tcp_sk(sk);
1364 
1365 	/* No URG data to read. */
1366 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1367 	    tp->urg_data == TCP_URG_READ)
1368 		return -EINVAL;	/* Yes this is right ! */
1369 
1370 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1371 		return -ENOTCONN;
1372 
1373 	if (tp->urg_data & TCP_URG_VALID) {
1374 		int err = 0;
1375 		char c = tp->urg_data;
1376 
1377 		if (!(flags & MSG_PEEK))
1378 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1379 
1380 		/* Read urgent data. */
1381 		msg->msg_flags |= MSG_OOB;
1382 
1383 		if (len > 0) {
1384 			if (!(flags & MSG_TRUNC))
1385 				err = memcpy_to_msg(msg, &c, 1);
1386 			len = 1;
1387 		} else
1388 			msg->msg_flags |= MSG_TRUNC;
1389 
1390 		return err ? -EFAULT : len;
1391 	}
1392 
1393 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1394 		return 0;
1395 
1396 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1397 	 * the available implementations agree in this case:
1398 	 * this call should never block, independent of the
1399 	 * blocking state of the socket.
1400 	 * Mike <pall@rz.uni-karlsruhe.de>
1401 	 */
1402 	return -EAGAIN;
1403 }
1404 
1405 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1406 {
1407 	struct sk_buff *skb;
1408 	int copied = 0, err = 0;
1409 
1410 	/* XXX -- need to support SO_PEEK_OFF */
1411 
1412 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1413 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1414 		if (err)
1415 			return err;
1416 		copied += skb->len;
1417 	}
1418 
1419 	skb_queue_walk(&sk->sk_write_queue, skb) {
1420 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1421 		if (err)
1422 			break;
1423 
1424 		copied += skb->len;
1425 	}
1426 
1427 	return err ?: copied;
1428 }
1429 
1430 /* Clean up the receive buffer for full frames taken by the user,
1431  * then send an ACK if necessary.  COPIED is the number of bytes
1432  * tcp_recvmsg has given to the user so far, it speeds up the
1433  * calculation of whether or not we must ACK for the sake of
1434  * a window update.
1435  */
1436 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1437 {
1438 	struct tcp_sock *tp = tcp_sk(sk);
1439 	bool time_to_ack = false;
1440 
1441 	if (inet_csk_ack_scheduled(sk)) {
1442 		const struct inet_connection_sock *icsk = inet_csk(sk);
1443 
1444 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1445 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1446 		    /*
1447 		     * If this read emptied read buffer, we send ACK, if
1448 		     * connection is not bidirectional, user drained
1449 		     * receive buffer and there was a small segment
1450 		     * in queue.
1451 		     */
1452 		    (copied > 0 &&
1453 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1454 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1455 		       !inet_csk_in_pingpong_mode(sk))) &&
1456 		      !atomic_read(&sk->sk_rmem_alloc)))
1457 			time_to_ack = true;
1458 	}
1459 
1460 	/* We send an ACK if we can now advertise a non-zero window
1461 	 * which has been raised "significantly".
1462 	 *
1463 	 * Even if window raised up to infinity, do not send window open ACK
1464 	 * in states, where we will not receive more. It is useless.
1465 	 */
1466 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1467 		__u32 rcv_window_now = tcp_receive_window(tp);
1468 
1469 		/* Optimize, __tcp_select_window() is not cheap. */
1470 		if (2*rcv_window_now <= tp->window_clamp) {
1471 			__u32 new_window = __tcp_select_window(sk);
1472 
1473 			/* Send ACK now, if this read freed lots of space
1474 			 * in our buffer. Certainly, new_window is new window.
1475 			 * We can advertise it now, if it is not less than current one.
1476 			 * "Lots" means "at least twice" here.
1477 			 */
1478 			if (new_window && new_window >= 2 * rcv_window_now)
1479 				time_to_ack = true;
1480 		}
1481 	}
1482 	if (time_to_ack)
1483 		tcp_send_ack(sk);
1484 }
1485 
1486 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1487 {
1488 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1489 	struct tcp_sock *tp = tcp_sk(sk);
1490 
1491 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1492 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1493 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1494 	__tcp_cleanup_rbuf(sk, copied);
1495 }
1496 
1497 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1498 {
1499 	__skb_unlink(skb, &sk->sk_receive_queue);
1500 	if (likely(skb->destructor == sock_rfree)) {
1501 		sock_rfree(skb);
1502 		skb->destructor = NULL;
1503 		skb->sk = NULL;
1504 		return skb_attempt_defer_free(skb);
1505 	}
1506 	__kfree_skb(skb);
1507 }
1508 
1509 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1510 {
1511 	struct sk_buff *skb;
1512 	u32 offset;
1513 
1514 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1515 		offset = seq - TCP_SKB_CB(skb)->seq;
1516 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1517 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1518 			offset--;
1519 		}
1520 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1521 			*off = offset;
1522 			return skb;
1523 		}
1524 		/* This looks weird, but this can happen if TCP collapsing
1525 		 * splitted a fat GRO packet, while we released socket lock
1526 		 * in skb_splice_bits()
1527 		 */
1528 		tcp_eat_recv_skb(sk, skb);
1529 	}
1530 	return NULL;
1531 }
1532 EXPORT_SYMBOL(tcp_recv_skb);
1533 
1534 /*
1535  * This routine provides an alternative to tcp_recvmsg() for routines
1536  * that would like to handle copying from skbuffs directly in 'sendfile'
1537  * fashion.
1538  * Note:
1539  *	- It is assumed that the socket was locked by the caller.
1540  *	- The routine does not block.
1541  *	- At present, there is no support for reading OOB data
1542  *	  or for 'peeking' the socket using this routine
1543  *	  (although both would be easy to implement).
1544  */
1545 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1546 		  sk_read_actor_t recv_actor)
1547 {
1548 	struct sk_buff *skb;
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	u32 seq = tp->copied_seq;
1551 	u32 offset;
1552 	int copied = 0;
1553 
1554 	if (sk->sk_state == TCP_LISTEN)
1555 		return -ENOTCONN;
1556 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1557 		if (offset < skb->len) {
1558 			int used;
1559 			size_t len;
1560 
1561 			len = skb->len - offset;
1562 			/* Stop reading if we hit a patch of urgent data */
1563 			if (unlikely(tp->urg_data)) {
1564 				u32 urg_offset = tp->urg_seq - seq;
1565 				if (urg_offset < len)
1566 					len = urg_offset;
1567 				if (!len)
1568 					break;
1569 			}
1570 			used = recv_actor(desc, skb, offset, len);
1571 			if (used <= 0) {
1572 				if (!copied)
1573 					copied = used;
1574 				break;
1575 			}
1576 			if (WARN_ON_ONCE(used > len))
1577 				used = len;
1578 			seq += used;
1579 			copied += used;
1580 			offset += used;
1581 
1582 			/* If recv_actor drops the lock (e.g. TCP splice
1583 			 * receive) the skb pointer might be invalid when
1584 			 * getting here: tcp_collapse might have deleted it
1585 			 * while aggregating skbs from the socket queue.
1586 			 */
1587 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1588 			if (!skb)
1589 				break;
1590 			/* TCP coalescing might have appended data to the skb.
1591 			 * Try to splice more frags
1592 			 */
1593 			if (offset + 1 != skb->len)
1594 				continue;
1595 		}
1596 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1597 			tcp_eat_recv_skb(sk, skb);
1598 			++seq;
1599 			break;
1600 		}
1601 		tcp_eat_recv_skb(sk, skb);
1602 		if (!desc->count)
1603 			break;
1604 		WRITE_ONCE(tp->copied_seq, seq);
1605 	}
1606 	WRITE_ONCE(tp->copied_seq, seq);
1607 
1608 	tcp_rcv_space_adjust(sk);
1609 
1610 	/* Clean up data we have read: This will do ACK frames. */
1611 	if (copied > 0) {
1612 		tcp_recv_skb(sk, seq, &offset);
1613 		tcp_cleanup_rbuf(sk, copied);
1614 	}
1615 	return copied;
1616 }
1617 EXPORT_SYMBOL(tcp_read_sock);
1618 
1619 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1620 {
1621 	struct tcp_sock *tp = tcp_sk(sk);
1622 	u32 seq = tp->copied_seq;
1623 	struct sk_buff *skb;
1624 	int copied = 0;
1625 	u32 offset;
1626 
1627 	if (sk->sk_state == TCP_LISTEN)
1628 		return -ENOTCONN;
1629 
1630 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1631 		u8 tcp_flags;
1632 		int used;
1633 
1634 		__skb_unlink(skb, &sk->sk_receive_queue);
1635 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1636 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1637 		used = recv_actor(sk, skb);
1638 		if (used < 0) {
1639 			if (!copied)
1640 				copied = used;
1641 			break;
1642 		}
1643 		seq += used;
1644 		copied += used;
1645 
1646 		if (tcp_flags & TCPHDR_FIN) {
1647 			++seq;
1648 			break;
1649 		}
1650 	}
1651 	return copied;
1652 }
1653 EXPORT_SYMBOL(tcp_read_skb);
1654 
1655 void tcp_read_done(struct sock *sk, size_t len)
1656 {
1657 	struct tcp_sock *tp = tcp_sk(sk);
1658 	u32 seq = tp->copied_seq;
1659 	struct sk_buff *skb;
1660 	size_t left;
1661 	u32 offset;
1662 
1663 	if (sk->sk_state == TCP_LISTEN)
1664 		return;
1665 
1666 	left = len;
1667 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1668 		int used;
1669 
1670 		used = min_t(size_t, skb->len - offset, left);
1671 		seq += used;
1672 		left -= used;
1673 
1674 		if (skb->len > offset + used)
1675 			break;
1676 
1677 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1678 			tcp_eat_recv_skb(sk, skb);
1679 			++seq;
1680 			break;
1681 		}
1682 		tcp_eat_recv_skb(sk, skb);
1683 	}
1684 	WRITE_ONCE(tp->copied_seq, seq);
1685 
1686 	tcp_rcv_space_adjust(sk);
1687 
1688 	/* Clean up data we have read: This will do ACK frames. */
1689 	if (left != len)
1690 		tcp_cleanup_rbuf(sk, len - left);
1691 }
1692 EXPORT_SYMBOL(tcp_read_done);
1693 
1694 int tcp_peek_len(struct socket *sock)
1695 {
1696 	return tcp_inq(sock->sk);
1697 }
1698 EXPORT_SYMBOL(tcp_peek_len);
1699 
1700 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1701 int tcp_set_rcvlowat(struct sock *sk, int val)
1702 {
1703 	int cap;
1704 
1705 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1706 		cap = sk->sk_rcvbuf >> 1;
1707 	else
1708 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1709 	val = min(val, cap);
1710 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1711 
1712 	/* Check if we need to signal EPOLLIN right now */
1713 	tcp_data_ready(sk);
1714 
1715 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716 		return 0;
1717 
1718 	val <<= 1;
1719 	if (val > sk->sk_rcvbuf) {
1720 		WRITE_ONCE(sk->sk_rcvbuf, val);
1721 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1722 	}
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(tcp_set_rcvlowat);
1726 
1727 void tcp_update_recv_tstamps(struct sk_buff *skb,
1728 			     struct scm_timestamping_internal *tss)
1729 {
1730 	if (skb->tstamp)
1731 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1732 	else
1733 		tss->ts[0] = (struct timespec64) {0};
1734 
1735 	if (skb_hwtstamps(skb)->hwtstamp)
1736 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1737 	else
1738 		tss->ts[2] = (struct timespec64) {0};
1739 }
1740 
1741 #ifdef CONFIG_MMU
1742 const struct vm_operations_struct tcp_vm_ops = {
1743 };
1744 
1745 int tcp_mmap(struct file *file, struct socket *sock,
1746 	     struct vm_area_struct *vma)
1747 {
1748 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1749 		return -EPERM;
1750 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1751 
1752 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1753 	vm_flags_set(vma, VM_MIXEDMAP);
1754 
1755 	vma->vm_ops = &tcp_vm_ops;
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL(tcp_mmap);
1759 
1760 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1761 				       u32 *offset_frag)
1762 {
1763 	skb_frag_t *frag;
1764 
1765 	if (unlikely(offset_skb >= skb->len))
1766 		return NULL;
1767 
1768 	offset_skb -= skb_headlen(skb);
1769 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1770 		return NULL;
1771 
1772 	frag = skb_shinfo(skb)->frags;
1773 	while (offset_skb) {
1774 		if (skb_frag_size(frag) > offset_skb) {
1775 			*offset_frag = offset_skb;
1776 			return frag;
1777 		}
1778 		offset_skb -= skb_frag_size(frag);
1779 		++frag;
1780 	}
1781 	*offset_frag = 0;
1782 	return frag;
1783 }
1784 
1785 static bool can_map_frag(const skb_frag_t *frag)
1786 {
1787 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1788 }
1789 
1790 static int find_next_mappable_frag(const skb_frag_t *frag,
1791 				   int remaining_in_skb)
1792 {
1793 	int offset = 0;
1794 
1795 	if (likely(can_map_frag(frag)))
1796 		return 0;
1797 
1798 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1799 		offset += skb_frag_size(frag);
1800 		++frag;
1801 	}
1802 	return offset;
1803 }
1804 
1805 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1806 					  struct tcp_zerocopy_receive *zc,
1807 					  struct sk_buff *skb, u32 offset)
1808 {
1809 	u32 frag_offset, partial_frag_remainder = 0;
1810 	int mappable_offset;
1811 	skb_frag_t *frag;
1812 
1813 	/* worst case: skip to next skb. try to improve on this case below */
1814 	zc->recv_skip_hint = skb->len - offset;
1815 
1816 	/* Find the frag containing this offset (and how far into that frag) */
1817 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1818 	if (!frag)
1819 		return;
1820 
1821 	if (frag_offset) {
1822 		struct skb_shared_info *info = skb_shinfo(skb);
1823 
1824 		/* We read part of the last frag, must recvmsg() rest of skb. */
1825 		if (frag == &info->frags[info->nr_frags - 1])
1826 			return;
1827 
1828 		/* Else, we must at least read the remainder in this frag. */
1829 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1830 		zc->recv_skip_hint -= partial_frag_remainder;
1831 		++frag;
1832 	}
1833 
1834 	/* partial_frag_remainder: If part way through a frag, must read rest.
1835 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1836 	 * in partial_frag_remainder.
1837 	 */
1838 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1839 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1840 }
1841 
1842 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1843 			      int flags, struct scm_timestamping_internal *tss,
1844 			      int *cmsg_flags);
1845 static int receive_fallback_to_copy(struct sock *sk,
1846 				    struct tcp_zerocopy_receive *zc, int inq,
1847 				    struct scm_timestamping_internal *tss)
1848 {
1849 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1850 	struct msghdr msg = {};
1851 	struct iovec iov;
1852 	int err;
1853 
1854 	zc->length = 0;
1855 	zc->recv_skip_hint = 0;
1856 
1857 	if (copy_address != zc->copybuf_address)
1858 		return -EINVAL;
1859 
1860 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1861 				  inq, &iov, &msg.msg_iter);
1862 	if (err)
1863 		return err;
1864 
1865 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1866 				 tss, &zc->msg_flags);
1867 	if (err < 0)
1868 		return err;
1869 
1870 	zc->copybuf_len = err;
1871 	if (likely(zc->copybuf_len)) {
1872 		struct sk_buff *skb;
1873 		u32 offset;
1874 
1875 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1876 		if (skb)
1877 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1878 	}
1879 	return 0;
1880 }
1881 
1882 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1883 				   struct sk_buff *skb, u32 copylen,
1884 				   u32 *offset, u32 *seq)
1885 {
1886 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1887 	struct msghdr msg = {};
1888 	struct iovec iov;
1889 	int err;
1890 
1891 	if (copy_address != zc->copybuf_address)
1892 		return -EINVAL;
1893 
1894 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1895 				  copylen, &iov, &msg.msg_iter);
1896 	if (err)
1897 		return err;
1898 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1899 	if (err)
1900 		return err;
1901 	zc->recv_skip_hint -= copylen;
1902 	*offset += copylen;
1903 	*seq += copylen;
1904 	return (__s32)copylen;
1905 }
1906 
1907 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1908 				  struct sock *sk,
1909 				  struct sk_buff *skb,
1910 				  u32 *seq,
1911 				  s32 copybuf_len,
1912 				  struct scm_timestamping_internal *tss)
1913 {
1914 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1915 
1916 	if (!copylen)
1917 		return 0;
1918 	/* skb is null if inq < PAGE_SIZE. */
1919 	if (skb) {
1920 		offset = *seq - TCP_SKB_CB(skb)->seq;
1921 	} else {
1922 		skb = tcp_recv_skb(sk, *seq, &offset);
1923 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1924 			tcp_update_recv_tstamps(skb, tss);
1925 			zc->msg_flags |= TCP_CMSG_TS;
1926 		}
1927 	}
1928 
1929 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1930 						  seq);
1931 	return zc->copybuf_len < 0 ? 0 : copylen;
1932 }
1933 
1934 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1935 					      struct page **pending_pages,
1936 					      unsigned long pages_remaining,
1937 					      unsigned long *address,
1938 					      u32 *length,
1939 					      u32 *seq,
1940 					      struct tcp_zerocopy_receive *zc,
1941 					      u32 total_bytes_to_map,
1942 					      int err)
1943 {
1944 	/* At least one page did not map. Try zapping if we skipped earlier. */
1945 	if (err == -EBUSY &&
1946 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1947 		u32 maybe_zap_len;
1948 
1949 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1950 				*length + /* Mapped or pending */
1951 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1952 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1953 		err = 0;
1954 	}
1955 
1956 	if (!err) {
1957 		unsigned long leftover_pages = pages_remaining;
1958 		int bytes_mapped;
1959 
1960 		/* We called zap_page_range_single, try to reinsert. */
1961 		err = vm_insert_pages(vma, *address,
1962 				      pending_pages,
1963 				      &pages_remaining);
1964 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1965 		*seq += bytes_mapped;
1966 		*address += bytes_mapped;
1967 	}
1968 	if (err) {
1969 		/* Either we were unable to zap, OR we zapped, retried an
1970 		 * insert, and still had an issue. Either ways, pages_remaining
1971 		 * is the number of pages we were unable to map, and we unroll
1972 		 * some state we speculatively touched before.
1973 		 */
1974 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1975 
1976 		*length -= bytes_not_mapped;
1977 		zc->recv_skip_hint += bytes_not_mapped;
1978 	}
1979 	return err;
1980 }
1981 
1982 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1983 					struct page **pages,
1984 					unsigned int pages_to_map,
1985 					unsigned long *address,
1986 					u32 *length,
1987 					u32 *seq,
1988 					struct tcp_zerocopy_receive *zc,
1989 					u32 total_bytes_to_map)
1990 {
1991 	unsigned long pages_remaining = pages_to_map;
1992 	unsigned int pages_mapped;
1993 	unsigned int bytes_mapped;
1994 	int err;
1995 
1996 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1997 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1998 	bytes_mapped = PAGE_SIZE * pages_mapped;
1999 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2000 	 * mapping (some but not all of the pages).
2001 	 */
2002 	*seq += bytes_mapped;
2003 	*address += bytes_mapped;
2004 
2005 	if (likely(!err))
2006 		return 0;
2007 
2008 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2009 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2010 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2011 		err);
2012 }
2013 
2014 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2015 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2016 				      struct tcp_zerocopy_receive *zc,
2017 				      struct scm_timestamping_internal *tss)
2018 {
2019 	unsigned long msg_control_addr;
2020 	struct msghdr cmsg_dummy;
2021 
2022 	msg_control_addr = (unsigned long)zc->msg_control;
2023 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2024 	cmsg_dummy.msg_controllen =
2025 		(__kernel_size_t)zc->msg_controllen;
2026 	cmsg_dummy.msg_flags = in_compat_syscall()
2027 		? MSG_CMSG_COMPAT : 0;
2028 	cmsg_dummy.msg_control_is_user = true;
2029 	zc->msg_flags = 0;
2030 	if (zc->msg_control == msg_control_addr &&
2031 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2032 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2033 		zc->msg_control = (__u64)
2034 			((uintptr_t)cmsg_dummy.msg_control_user);
2035 		zc->msg_controllen =
2036 			(__u64)cmsg_dummy.msg_controllen;
2037 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2038 	}
2039 }
2040 
2041 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2042 					   unsigned long address,
2043 					   bool *mmap_locked)
2044 {
2045 	struct vm_area_struct *vma = NULL;
2046 
2047 #ifdef CONFIG_PER_VMA_LOCK
2048 	vma = lock_vma_under_rcu(mm, address);
2049 #endif
2050 	if (vma) {
2051 		if (!vma_is_tcp(vma)) {
2052 			vma_end_read(vma);
2053 			return NULL;
2054 		}
2055 		*mmap_locked = false;
2056 		return vma;
2057 	}
2058 
2059 	mmap_read_lock(mm);
2060 	vma = vma_lookup(mm, address);
2061 	if (!vma || !vma_is_tcp(vma)) {
2062 		mmap_read_unlock(mm);
2063 		return NULL;
2064 	}
2065 	*mmap_locked = true;
2066 	return vma;
2067 }
2068 
2069 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2070 static int tcp_zerocopy_receive(struct sock *sk,
2071 				struct tcp_zerocopy_receive *zc,
2072 				struct scm_timestamping_internal *tss)
2073 {
2074 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2075 	unsigned long address = (unsigned long)zc->address;
2076 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2077 	s32 copybuf_len = zc->copybuf_len;
2078 	struct tcp_sock *tp = tcp_sk(sk);
2079 	const skb_frag_t *frags = NULL;
2080 	unsigned int pages_to_map = 0;
2081 	struct vm_area_struct *vma;
2082 	struct sk_buff *skb = NULL;
2083 	u32 seq = tp->copied_seq;
2084 	u32 total_bytes_to_map;
2085 	int inq = tcp_inq(sk);
2086 	bool mmap_locked;
2087 	int ret;
2088 
2089 	zc->copybuf_len = 0;
2090 	zc->msg_flags = 0;
2091 
2092 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2093 		return -EINVAL;
2094 
2095 	if (sk->sk_state == TCP_LISTEN)
2096 		return -ENOTCONN;
2097 
2098 	sock_rps_record_flow(sk);
2099 
2100 	if (inq && inq <= copybuf_len)
2101 		return receive_fallback_to_copy(sk, zc, inq, tss);
2102 
2103 	if (inq < PAGE_SIZE) {
2104 		zc->length = 0;
2105 		zc->recv_skip_hint = inq;
2106 		if (!inq && sock_flag(sk, SOCK_DONE))
2107 			return -EIO;
2108 		return 0;
2109 	}
2110 
2111 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2112 	if (!vma)
2113 		return -EINVAL;
2114 
2115 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2116 	avail_len = min_t(u32, vma_len, inq);
2117 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2118 	if (total_bytes_to_map) {
2119 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2120 			zap_page_range_single(vma, address, total_bytes_to_map,
2121 					      NULL);
2122 		zc->length = total_bytes_to_map;
2123 		zc->recv_skip_hint = 0;
2124 	} else {
2125 		zc->length = avail_len;
2126 		zc->recv_skip_hint = avail_len;
2127 	}
2128 	ret = 0;
2129 	while (length + PAGE_SIZE <= zc->length) {
2130 		int mappable_offset;
2131 		struct page *page;
2132 
2133 		if (zc->recv_skip_hint < PAGE_SIZE) {
2134 			u32 offset_frag;
2135 
2136 			if (skb) {
2137 				if (zc->recv_skip_hint > 0)
2138 					break;
2139 				skb = skb->next;
2140 				offset = seq - TCP_SKB_CB(skb)->seq;
2141 			} else {
2142 				skb = tcp_recv_skb(sk, seq, &offset);
2143 			}
2144 
2145 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2146 				tcp_update_recv_tstamps(skb, tss);
2147 				zc->msg_flags |= TCP_CMSG_TS;
2148 			}
2149 			zc->recv_skip_hint = skb->len - offset;
2150 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2151 			if (!frags || offset_frag)
2152 				break;
2153 		}
2154 
2155 		mappable_offset = find_next_mappable_frag(frags,
2156 							  zc->recv_skip_hint);
2157 		if (mappable_offset) {
2158 			zc->recv_skip_hint = mappable_offset;
2159 			break;
2160 		}
2161 		page = skb_frag_page(frags);
2162 		prefetchw(page);
2163 		pages[pages_to_map++] = page;
2164 		length += PAGE_SIZE;
2165 		zc->recv_skip_hint -= PAGE_SIZE;
2166 		frags++;
2167 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2168 		    zc->recv_skip_hint < PAGE_SIZE) {
2169 			/* Either full batch, or we're about to go to next skb
2170 			 * (and we cannot unroll failed ops across skbs).
2171 			 */
2172 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2173 							   pages_to_map,
2174 							   &address, &length,
2175 							   &seq, zc,
2176 							   total_bytes_to_map);
2177 			if (ret)
2178 				goto out;
2179 			pages_to_map = 0;
2180 		}
2181 	}
2182 	if (pages_to_map) {
2183 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2184 						   &address, &length, &seq,
2185 						   zc, total_bytes_to_map);
2186 	}
2187 out:
2188 	if (mmap_locked)
2189 		mmap_read_unlock(current->mm);
2190 	else
2191 		vma_end_read(vma);
2192 	/* Try to copy straggler data. */
2193 	if (!ret)
2194 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2195 
2196 	if (length + copylen) {
2197 		WRITE_ONCE(tp->copied_seq, seq);
2198 		tcp_rcv_space_adjust(sk);
2199 
2200 		/* Clean up data we have read: This will do ACK frames. */
2201 		tcp_recv_skb(sk, seq, &offset);
2202 		tcp_cleanup_rbuf(sk, length + copylen);
2203 		ret = 0;
2204 		if (length == zc->length)
2205 			zc->recv_skip_hint = 0;
2206 	} else {
2207 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2208 			ret = -EIO;
2209 	}
2210 	zc->length = length;
2211 	return ret;
2212 }
2213 #endif
2214 
2215 /* Similar to __sock_recv_timestamp, but does not require an skb */
2216 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2217 			struct scm_timestamping_internal *tss)
2218 {
2219 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2220 	bool has_timestamping = false;
2221 
2222 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2223 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2224 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2225 				if (new_tstamp) {
2226 					struct __kernel_timespec kts = {
2227 						.tv_sec = tss->ts[0].tv_sec,
2228 						.tv_nsec = tss->ts[0].tv_nsec,
2229 					};
2230 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2231 						 sizeof(kts), &kts);
2232 				} else {
2233 					struct __kernel_old_timespec ts_old = {
2234 						.tv_sec = tss->ts[0].tv_sec,
2235 						.tv_nsec = tss->ts[0].tv_nsec,
2236 					};
2237 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2238 						 sizeof(ts_old), &ts_old);
2239 				}
2240 			} else {
2241 				if (new_tstamp) {
2242 					struct __kernel_sock_timeval stv = {
2243 						.tv_sec = tss->ts[0].tv_sec,
2244 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2245 					};
2246 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2247 						 sizeof(stv), &stv);
2248 				} else {
2249 					struct __kernel_old_timeval tv = {
2250 						.tv_sec = tss->ts[0].tv_sec,
2251 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2252 					};
2253 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2254 						 sizeof(tv), &tv);
2255 				}
2256 			}
2257 		}
2258 
2259 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2260 			has_timestamping = true;
2261 		else
2262 			tss->ts[0] = (struct timespec64) {0};
2263 	}
2264 
2265 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2266 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2267 			has_timestamping = true;
2268 		else
2269 			tss->ts[2] = (struct timespec64) {0};
2270 	}
2271 
2272 	if (has_timestamping) {
2273 		tss->ts[1] = (struct timespec64) {0};
2274 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2275 			put_cmsg_scm_timestamping64(msg, tss);
2276 		else
2277 			put_cmsg_scm_timestamping(msg, tss);
2278 	}
2279 }
2280 
2281 static int tcp_inq_hint(struct sock *sk)
2282 {
2283 	const struct tcp_sock *tp = tcp_sk(sk);
2284 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2285 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2286 	int inq;
2287 
2288 	inq = rcv_nxt - copied_seq;
2289 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2290 		lock_sock(sk);
2291 		inq = tp->rcv_nxt - tp->copied_seq;
2292 		release_sock(sk);
2293 	}
2294 	/* After receiving a FIN, tell the user-space to continue reading
2295 	 * by returning a non-zero inq.
2296 	 */
2297 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2298 		inq = 1;
2299 	return inq;
2300 }
2301 
2302 /*
2303  *	This routine copies from a sock struct into the user buffer.
2304  *
2305  *	Technical note: in 2.3 we work on _locked_ socket, so that
2306  *	tricks with *seq access order and skb->users are not required.
2307  *	Probably, code can be easily improved even more.
2308  */
2309 
2310 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2311 			      int flags, struct scm_timestamping_internal *tss,
2312 			      int *cmsg_flags)
2313 {
2314 	struct tcp_sock *tp = tcp_sk(sk);
2315 	int copied = 0;
2316 	u32 peek_seq;
2317 	u32 *seq;
2318 	unsigned long used;
2319 	int err;
2320 	int target;		/* Read at least this many bytes */
2321 	long timeo;
2322 	struct sk_buff *skb, *last;
2323 	u32 urg_hole = 0;
2324 
2325 	err = -ENOTCONN;
2326 	if (sk->sk_state == TCP_LISTEN)
2327 		goto out;
2328 
2329 	if (tp->recvmsg_inq) {
2330 		*cmsg_flags = TCP_CMSG_INQ;
2331 		msg->msg_get_inq = 1;
2332 	}
2333 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2334 
2335 	/* Urgent data needs to be handled specially. */
2336 	if (flags & MSG_OOB)
2337 		goto recv_urg;
2338 
2339 	if (unlikely(tp->repair)) {
2340 		err = -EPERM;
2341 		if (!(flags & MSG_PEEK))
2342 			goto out;
2343 
2344 		if (tp->repair_queue == TCP_SEND_QUEUE)
2345 			goto recv_sndq;
2346 
2347 		err = -EINVAL;
2348 		if (tp->repair_queue == TCP_NO_QUEUE)
2349 			goto out;
2350 
2351 		/* 'common' recv queue MSG_PEEK-ing */
2352 	}
2353 
2354 	seq = &tp->copied_seq;
2355 	if (flags & MSG_PEEK) {
2356 		peek_seq = tp->copied_seq;
2357 		seq = &peek_seq;
2358 	}
2359 
2360 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2361 
2362 	do {
2363 		u32 offset;
2364 
2365 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2366 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2367 			if (copied)
2368 				break;
2369 			if (signal_pending(current)) {
2370 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2371 				break;
2372 			}
2373 		}
2374 
2375 		/* Next get a buffer. */
2376 
2377 		last = skb_peek_tail(&sk->sk_receive_queue);
2378 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2379 			last = skb;
2380 			/* Now that we have two receive queues this
2381 			 * shouldn't happen.
2382 			 */
2383 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2384 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2385 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2386 				 flags))
2387 				break;
2388 
2389 			offset = *seq - TCP_SKB_CB(skb)->seq;
2390 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2391 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2392 				offset--;
2393 			}
2394 			if (offset < skb->len)
2395 				goto found_ok_skb;
2396 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2397 				goto found_fin_ok;
2398 			WARN(!(flags & MSG_PEEK),
2399 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2400 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2401 		}
2402 
2403 		/* Well, if we have backlog, try to process it now yet. */
2404 
2405 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2406 			break;
2407 
2408 		if (copied) {
2409 			if (!timeo ||
2410 			    sk->sk_err ||
2411 			    sk->sk_state == TCP_CLOSE ||
2412 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2413 			    signal_pending(current))
2414 				break;
2415 		} else {
2416 			if (sock_flag(sk, SOCK_DONE))
2417 				break;
2418 
2419 			if (sk->sk_err) {
2420 				copied = sock_error(sk);
2421 				break;
2422 			}
2423 
2424 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2425 				break;
2426 
2427 			if (sk->sk_state == TCP_CLOSE) {
2428 				/* This occurs when user tries to read
2429 				 * from never connected socket.
2430 				 */
2431 				copied = -ENOTCONN;
2432 				break;
2433 			}
2434 
2435 			if (!timeo) {
2436 				copied = -EAGAIN;
2437 				break;
2438 			}
2439 
2440 			if (signal_pending(current)) {
2441 				copied = sock_intr_errno(timeo);
2442 				break;
2443 			}
2444 		}
2445 
2446 		if (copied >= target) {
2447 			/* Do not sleep, just process backlog. */
2448 			__sk_flush_backlog(sk);
2449 		} else {
2450 			tcp_cleanup_rbuf(sk, copied);
2451 			sk_wait_data(sk, &timeo, last);
2452 		}
2453 
2454 		if ((flags & MSG_PEEK) &&
2455 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2456 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2457 					    current->comm,
2458 					    task_pid_nr(current));
2459 			peek_seq = tp->copied_seq;
2460 		}
2461 		continue;
2462 
2463 found_ok_skb:
2464 		/* Ok so how much can we use? */
2465 		used = skb->len - offset;
2466 		if (len < used)
2467 			used = len;
2468 
2469 		/* Do we have urgent data here? */
2470 		if (unlikely(tp->urg_data)) {
2471 			u32 urg_offset = tp->urg_seq - *seq;
2472 			if (urg_offset < used) {
2473 				if (!urg_offset) {
2474 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2475 						WRITE_ONCE(*seq, *seq + 1);
2476 						urg_hole++;
2477 						offset++;
2478 						used--;
2479 						if (!used)
2480 							goto skip_copy;
2481 					}
2482 				} else
2483 					used = urg_offset;
2484 			}
2485 		}
2486 
2487 		if (!(flags & MSG_TRUNC)) {
2488 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2489 			if (err) {
2490 				/* Exception. Bailout! */
2491 				if (!copied)
2492 					copied = -EFAULT;
2493 				break;
2494 			}
2495 		}
2496 
2497 		WRITE_ONCE(*seq, *seq + used);
2498 		copied += used;
2499 		len -= used;
2500 
2501 		tcp_rcv_space_adjust(sk);
2502 
2503 skip_copy:
2504 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2505 			WRITE_ONCE(tp->urg_data, 0);
2506 			tcp_fast_path_check(sk);
2507 		}
2508 
2509 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2510 			tcp_update_recv_tstamps(skb, tss);
2511 			*cmsg_flags |= TCP_CMSG_TS;
2512 		}
2513 
2514 		if (used + offset < skb->len)
2515 			continue;
2516 
2517 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2518 			goto found_fin_ok;
2519 		if (!(flags & MSG_PEEK))
2520 			tcp_eat_recv_skb(sk, skb);
2521 		continue;
2522 
2523 found_fin_ok:
2524 		/* Process the FIN. */
2525 		WRITE_ONCE(*seq, *seq + 1);
2526 		if (!(flags & MSG_PEEK))
2527 			tcp_eat_recv_skb(sk, skb);
2528 		break;
2529 	} while (len > 0);
2530 
2531 	/* According to UNIX98, msg_name/msg_namelen are ignored
2532 	 * on connected socket. I was just happy when found this 8) --ANK
2533 	 */
2534 
2535 	/* Clean up data we have read: This will do ACK frames. */
2536 	tcp_cleanup_rbuf(sk, copied);
2537 	return copied;
2538 
2539 out:
2540 	return err;
2541 
2542 recv_urg:
2543 	err = tcp_recv_urg(sk, msg, len, flags);
2544 	goto out;
2545 
2546 recv_sndq:
2547 	err = tcp_peek_sndq(sk, msg, len);
2548 	goto out;
2549 }
2550 
2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2552 		int *addr_len)
2553 {
2554 	int cmsg_flags = 0, ret;
2555 	struct scm_timestamping_internal tss;
2556 
2557 	if (unlikely(flags & MSG_ERRQUEUE))
2558 		return inet_recv_error(sk, msg, len, addr_len);
2559 
2560 	if (sk_can_busy_loop(sk) &&
2561 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2562 	    sk->sk_state == TCP_ESTABLISHED)
2563 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2564 
2565 	lock_sock(sk);
2566 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2567 	release_sock(sk);
2568 
2569 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2570 		if (cmsg_flags & TCP_CMSG_TS)
2571 			tcp_recv_timestamp(msg, sk, &tss);
2572 		if (msg->msg_get_inq) {
2573 			msg->msg_inq = tcp_inq_hint(sk);
2574 			if (cmsg_flags & TCP_CMSG_INQ)
2575 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2576 					 sizeof(msg->msg_inq), &msg->msg_inq);
2577 		}
2578 	}
2579 	return ret;
2580 }
2581 EXPORT_SYMBOL(tcp_recvmsg);
2582 
2583 void tcp_set_state(struct sock *sk, int state)
2584 {
2585 	int oldstate = sk->sk_state;
2586 
2587 	/* We defined a new enum for TCP states that are exported in BPF
2588 	 * so as not force the internal TCP states to be frozen. The
2589 	 * following checks will detect if an internal state value ever
2590 	 * differs from the BPF value. If this ever happens, then we will
2591 	 * need to remap the internal value to the BPF value before calling
2592 	 * tcp_call_bpf_2arg.
2593 	 */
2594 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2595 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2596 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2597 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2598 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2599 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2600 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2601 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2602 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2603 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2604 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2605 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2606 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2607 
2608 	/* bpf uapi header bpf.h defines an anonymous enum with values
2609 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2610 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2611 	 * But clang built vmlinux does not have this enum in DWARF
2612 	 * since clang removes the above code before generating IR/debuginfo.
2613 	 * Let us explicitly emit the type debuginfo to ensure the
2614 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2615 	 * regardless of which compiler is used.
2616 	 */
2617 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2618 
2619 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2620 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2621 
2622 	switch (state) {
2623 	case TCP_ESTABLISHED:
2624 		if (oldstate != TCP_ESTABLISHED)
2625 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2626 		break;
2627 
2628 	case TCP_CLOSE:
2629 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2630 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2631 
2632 		sk->sk_prot->unhash(sk);
2633 		if (inet_csk(sk)->icsk_bind_hash &&
2634 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2635 			inet_put_port(sk);
2636 		fallthrough;
2637 	default:
2638 		if (oldstate == TCP_ESTABLISHED)
2639 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 	}
2641 
2642 	/* Change state AFTER socket is unhashed to avoid closed
2643 	 * socket sitting in hash tables.
2644 	 */
2645 	inet_sk_state_store(sk, state);
2646 }
2647 EXPORT_SYMBOL_GPL(tcp_set_state);
2648 
2649 /*
2650  *	State processing on a close. This implements the state shift for
2651  *	sending our FIN frame. Note that we only send a FIN for some
2652  *	states. A shutdown() may have already sent the FIN, or we may be
2653  *	closed.
2654  */
2655 
2656 static const unsigned char new_state[16] = {
2657   /* current state:        new state:      action:	*/
2658   [0 /* (Invalid) */]	= TCP_CLOSE,
2659   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2660   [TCP_SYN_SENT]	= TCP_CLOSE,
2661   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2663   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2664   [TCP_TIME_WAIT]	= TCP_CLOSE,
2665   [TCP_CLOSE]		= TCP_CLOSE,
2666   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2667   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2668   [TCP_LISTEN]		= TCP_CLOSE,
2669   [TCP_CLOSING]		= TCP_CLOSING,
2670   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2671 };
2672 
2673 static int tcp_close_state(struct sock *sk)
2674 {
2675 	int next = (int)new_state[sk->sk_state];
2676 	int ns = next & TCP_STATE_MASK;
2677 
2678 	tcp_set_state(sk, ns);
2679 
2680 	return next & TCP_ACTION_FIN;
2681 }
2682 
2683 /*
2684  *	Shutdown the sending side of a connection. Much like close except
2685  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2686  */
2687 
2688 void tcp_shutdown(struct sock *sk, int how)
2689 {
2690 	/*	We need to grab some memory, and put together a FIN,
2691 	 *	and then put it into the queue to be sent.
2692 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2693 	 */
2694 	if (!(how & SEND_SHUTDOWN))
2695 		return;
2696 
2697 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2698 	if ((1 << sk->sk_state) &
2699 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2700 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2701 		/* Clear out any half completed packets.  FIN if needed. */
2702 		if (tcp_close_state(sk))
2703 			tcp_send_fin(sk);
2704 	}
2705 }
2706 EXPORT_SYMBOL(tcp_shutdown);
2707 
2708 int tcp_orphan_count_sum(void)
2709 {
2710 	int i, total = 0;
2711 
2712 	for_each_possible_cpu(i)
2713 		total += per_cpu(tcp_orphan_count, i);
2714 
2715 	return max(total, 0);
2716 }
2717 
2718 static int tcp_orphan_cache;
2719 static struct timer_list tcp_orphan_timer;
2720 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2721 
2722 static void tcp_orphan_update(struct timer_list *unused)
2723 {
2724 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2725 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2726 }
2727 
2728 static bool tcp_too_many_orphans(int shift)
2729 {
2730 	return READ_ONCE(tcp_orphan_cache) << shift >
2731 		READ_ONCE(sysctl_tcp_max_orphans);
2732 }
2733 
2734 bool tcp_check_oom(struct sock *sk, int shift)
2735 {
2736 	bool too_many_orphans, out_of_socket_memory;
2737 
2738 	too_many_orphans = tcp_too_many_orphans(shift);
2739 	out_of_socket_memory = tcp_out_of_memory(sk);
2740 
2741 	if (too_many_orphans)
2742 		net_info_ratelimited("too many orphaned sockets\n");
2743 	if (out_of_socket_memory)
2744 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2745 	return too_many_orphans || out_of_socket_memory;
2746 }
2747 
2748 void __tcp_close(struct sock *sk, long timeout)
2749 {
2750 	struct sk_buff *skb;
2751 	int data_was_unread = 0;
2752 	int state;
2753 
2754 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2755 
2756 	if (sk->sk_state == TCP_LISTEN) {
2757 		tcp_set_state(sk, TCP_CLOSE);
2758 
2759 		/* Special case. */
2760 		inet_csk_listen_stop(sk);
2761 
2762 		goto adjudge_to_death;
2763 	}
2764 
2765 	/*  We need to flush the recv. buffs.  We do this only on the
2766 	 *  descriptor close, not protocol-sourced closes, because the
2767 	 *  reader process may not have drained the data yet!
2768 	 */
2769 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2770 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2771 
2772 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2773 			len--;
2774 		data_was_unread += len;
2775 		__kfree_skb(skb);
2776 	}
2777 
2778 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2779 	if (sk->sk_state == TCP_CLOSE)
2780 		goto adjudge_to_death;
2781 
2782 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2783 	 * data was lost. To witness the awful effects of the old behavior of
2784 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2785 	 * GET in an FTP client, suspend the process, wait for the client to
2786 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2787 	 * Note: timeout is always zero in such a case.
2788 	 */
2789 	if (unlikely(tcp_sk(sk)->repair)) {
2790 		sk->sk_prot->disconnect(sk, 0);
2791 	} else if (data_was_unread) {
2792 		/* Unread data was tossed, zap the connection. */
2793 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2794 		tcp_set_state(sk, TCP_CLOSE);
2795 		tcp_send_active_reset(sk, sk->sk_allocation);
2796 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2797 		/* Check zero linger _after_ checking for unread data. */
2798 		sk->sk_prot->disconnect(sk, 0);
2799 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2800 	} else if (tcp_close_state(sk)) {
2801 		/* We FIN if the application ate all the data before
2802 		 * zapping the connection.
2803 		 */
2804 
2805 		/* RED-PEN. Formally speaking, we have broken TCP state
2806 		 * machine. State transitions:
2807 		 *
2808 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2809 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2810 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2811 		 *
2812 		 * are legal only when FIN has been sent (i.e. in window),
2813 		 * rather than queued out of window. Purists blame.
2814 		 *
2815 		 * F.e. "RFC state" is ESTABLISHED,
2816 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2817 		 *
2818 		 * The visible declinations are that sometimes
2819 		 * we enter time-wait state, when it is not required really
2820 		 * (harmless), do not send active resets, when they are
2821 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2822 		 * they look as CLOSING or LAST_ACK for Linux)
2823 		 * Probably, I missed some more holelets.
2824 		 * 						--ANK
2825 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2826 		 * in a single packet! (May consider it later but will
2827 		 * probably need API support or TCP_CORK SYN-ACK until
2828 		 * data is written and socket is closed.)
2829 		 */
2830 		tcp_send_fin(sk);
2831 	}
2832 
2833 	sk_stream_wait_close(sk, timeout);
2834 
2835 adjudge_to_death:
2836 	state = sk->sk_state;
2837 	sock_hold(sk);
2838 	sock_orphan(sk);
2839 
2840 	local_bh_disable();
2841 	bh_lock_sock(sk);
2842 	/* remove backlog if any, without releasing ownership. */
2843 	__release_sock(sk);
2844 
2845 	this_cpu_inc(tcp_orphan_count);
2846 
2847 	/* Have we already been destroyed by a softirq or backlog? */
2848 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2849 		goto out;
2850 
2851 	/*	This is a (useful) BSD violating of the RFC. There is a
2852 	 *	problem with TCP as specified in that the other end could
2853 	 *	keep a socket open forever with no application left this end.
2854 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2855 	 *	our end. If they send after that then tough - BUT: long enough
2856 	 *	that we won't make the old 4*rto = almost no time - whoops
2857 	 *	reset mistake.
2858 	 *
2859 	 *	Nope, it was not mistake. It is really desired behaviour
2860 	 *	f.e. on http servers, when such sockets are useless, but
2861 	 *	consume significant resources. Let's do it with special
2862 	 *	linger2	option.					--ANK
2863 	 */
2864 
2865 	if (sk->sk_state == TCP_FIN_WAIT2) {
2866 		struct tcp_sock *tp = tcp_sk(sk);
2867 		if (tp->linger2 < 0) {
2868 			tcp_set_state(sk, TCP_CLOSE);
2869 			tcp_send_active_reset(sk, GFP_ATOMIC);
2870 			__NET_INC_STATS(sock_net(sk),
2871 					LINUX_MIB_TCPABORTONLINGER);
2872 		} else {
2873 			const int tmo = tcp_fin_time(sk);
2874 
2875 			if (tmo > TCP_TIMEWAIT_LEN) {
2876 				inet_csk_reset_keepalive_timer(sk,
2877 						tmo - TCP_TIMEWAIT_LEN);
2878 			} else {
2879 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2880 				goto out;
2881 			}
2882 		}
2883 	}
2884 	if (sk->sk_state != TCP_CLOSE) {
2885 		if (tcp_check_oom(sk, 0)) {
2886 			tcp_set_state(sk, TCP_CLOSE);
2887 			tcp_send_active_reset(sk, GFP_ATOMIC);
2888 			__NET_INC_STATS(sock_net(sk),
2889 					LINUX_MIB_TCPABORTONMEMORY);
2890 		} else if (!check_net(sock_net(sk))) {
2891 			/* Not possible to send reset; just close */
2892 			tcp_set_state(sk, TCP_CLOSE);
2893 		}
2894 	}
2895 
2896 	if (sk->sk_state == TCP_CLOSE) {
2897 		struct request_sock *req;
2898 
2899 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2900 						lockdep_sock_is_held(sk));
2901 		/* We could get here with a non-NULL req if the socket is
2902 		 * aborted (e.g., closed with unread data) before 3WHS
2903 		 * finishes.
2904 		 */
2905 		if (req)
2906 			reqsk_fastopen_remove(sk, req, false);
2907 		inet_csk_destroy_sock(sk);
2908 	}
2909 	/* Otherwise, socket is reprieved until protocol close. */
2910 
2911 out:
2912 	bh_unlock_sock(sk);
2913 	local_bh_enable();
2914 }
2915 
2916 void tcp_close(struct sock *sk, long timeout)
2917 {
2918 	lock_sock(sk);
2919 	__tcp_close(sk, timeout);
2920 	release_sock(sk);
2921 	sock_put(sk);
2922 }
2923 EXPORT_SYMBOL(tcp_close);
2924 
2925 /* These states need RST on ABORT according to RFC793 */
2926 
2927 static inline bool tcp_need_reset(int state)
2928 {
2929 	return (1 << state) &
2930 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2931 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2932 }
2933 
2934 static void tcp_rtx_queue_purge(struct sock *sk)
2935 {
2936 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2937 
2938 	tcp_sk(sk)->highest_sack = NULL;
2939 	while (p) {
2940 		struct sk_buff *skb = rb_to_skb(p);
2941 
2942 		p = rb_next(p);
2943 		/* Since we are deleting whole queue, no need to
2944 		 * list_del(&skb->tcp_tsorted_anchor)
2945 		 */
2946 		tcp_rtx_queue_unlink(skb, sk);
2947 		tcp_wmem_free_skb(sk, skb);
2948 	}
2949 }
2950 
2951 void tcp_write_queue_purge(struct sock *sk)
2952 {
2953 	struct sk_buff *skb;
2954 
2955 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2956 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2957 		tcp_skb_tsorted_anchor_cleanup(skb);
2958 		tcp_wmem_free_skb(sk, skb);
2959 	}
2960 	tcp_rtx_queue_purge(sk);
2961 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2962 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2963 	tcp_sk(sk)->packets_out = 0;
2964 	inet_csk(sk)->icsk_backoff = 0;
2965 }
2966 
2967 int tcp_disconnect(struct sock *sk, int flags)
2968 {
2969 	struct inet_sock *inet = inet_sk(sk);
2970 	struct inet_connection_sock *icsk = inet_csk(sk);
2971 	struct tcp_sock *tp = tcp_sk(sk);
2972 	int old_state = sk->sk_state;
2973 	u32 seq;
2974 
2975 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2976 	 * or inet_wait_for_connect().
2977 	 */
2978 	if (sk->sk_wait_pending)
2979 		return -EBUSY;
2980 
2981 	if (old_state != TCP_CLOSE)
2982 		tcp_set_state(sk, TCP_CLOSE);
2983 
2984 	/* ABORT function of RFC793 */
2985 	if (old_state == TCP_LISTEN) {
2986 		inet_csk_listen_stop(sk);
2987 	} else if (unlikely(tp->repair)) {
2988 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2989 	} else if (tcp_need_reset(old_state) ||
2990 		   (tp->snd_nxt != tp->write_seq &&
2991 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2992 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2993 		 * states
2994 		 */
2995 		tcp_send_active_reset(sk, gfp_any());
2996 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2997 	} else if (old_state == TCP_SYN_SENT)
2998 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2999 
3000 	tcp_clear_xmit_timers(sk);
3001 	__skb_queue_purge(&sk->sk_receive_queue);
3002 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3003 	WRITE_ONCE(tp->urg_data, 0);
3004 	tcp_write_queue_purge(sk);
3005 	tcp_fastopen_active_disable_ofo_check(sk);
3006 	skb_rbtree_purge(&tp->out_of_order_queue);
3007 
3008 	inet->inet_dport = 0;
3009 
3010 	inet_bhash2_reset_saddr(sk);
3011 
3012 	WRITE_ONCE(sk->sk_shutdown, 0);
3013 	sock_reset_flag(sk, SOCK_DONE);
3014 	tp->srtt_us = 0;
3015 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3016 	tp->rcv_rtt_last_tsecr = 0;
3017 
3018 	seq = tp->write_seq + tp->max_window + 2;
3019 	if (!seq)
3020 		seq = 1;
3021 	WRITE_ONCE(tp->write_seq, seq);
3022 
3023 	icsk->icsk_backoff = 0;
3024 	icsk->icsk_probes_out = 0;
3025 	icsk->icsk_probes_tstamp = 0;
3026 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3027 	icsk->icsk_rto_min = TCP_RTO_MIN;
3028 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3029 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3030 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3031 	tp->snd_cwnd_cnt = 0;
3032 	tp->is_cwnd_limited = 0;
3033 	tp->max_packets_out = 0;
3034 	tp->window_clamp = 0;
3035 	tp->delivered = 0;
3036 	tp->delivered_ce = 0;
3037 	if (icsk->icsk_ca_ops->release)
3038 		icsk->icsk_ca_ops->release(sk);
3039 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3040 	icsk->icsk_ca_initialized = 0;
3041 	tcp_set_ca_state(sk, TCP_CA_Open);
3042 	tp->is_sack_reneg = 0;
3043 	tcp_clear_retrans(tp);
3044 	tp->total_retrans = 0;
3045 	inet_csk_delack_init(sk);
3046 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3047 	 * issue in __tcp_select_window()
3048 	 */
3049 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3050 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3051 	__sk_dst_reset(sk);
3052 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3053 	tcp_saved_syn_free(tp);
3054 	tp->compressed_ack = 0;
3055 	tp->segs_in = 0;
3056 	tp->segs_out = 0;
3057 	tp->bytes_sent = 0;
3058 	tp->bytes_acked = 0;
3059 	tp->bytes_received = 0;
3060 	tp->bytes_retrans = 0;
3061 	tp->data_segs_in = 0;
3062 	tp->data_segs_out = 0;
3063 	tp->duplicate_sack[0].start_seq = 0;
3064 	tp->duplicate_sack[0].end_seq = 0;
3065 	tp->dsack_dups = 0;
3066 	tp->reord_seen = 0;
3067 	tp->retrans_out = 0;
3068 	tp->sacked_out = 0;
3069 	tp->tlp_high_seq = 0;
3070 	tp->last_oow_ack_time = 0;
3071 	tp->plb_rehash = 0;
3072 	/* There's a bubble in the pipe until at least the first ACK. */
3073 	tp->app_limited = ~0U;
3074 	tp->rate_app_limited = 1;
3075 	tp->rack.mstamp = 0;
3076 	tp->rack.advanced = 0;
3077 	tp->rack.reo_wnd_steps = 1;
3078 	tp->rack.last_delivered = 0;
3079 	tp->rack.reo_wnd_persist = 0;
3080 	tp->rack.dsack_seen = 0;
3081 	tp->syn_data_acked = 0;
3082 	tp->rx_opt.saw_tstamp = 0;
3083 	tp->rx_opt.dsack = 0;
3084 	tp->rx_opt.num_sacks = 0;
3085 	tp->rcv_ooopack = 0;
3086 
3087 
3088 	/* Clean up fastopen related fields */
3089 	tcp_free_fastopen_req(tp);
3090 	inet->defer_connect = 0;
3091 	tp->fastopen_client_fail = 0;
3092 
3093 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3094 
3095 	if (sk->sk_frag.page) {
3096 		put_page(sk->sk_frag.page);
3097 		sk->sk_frag.page = NULL;
3098 		sk->sk_frag.offset = 0;
3099 	}
3100 	sk_error_report(sk);
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL(tcp_disconnect);
3104 
3105 static inline bool tcp_can_repair_sock(const struct sock *sk)
3106 {
3107 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3108 		(sk->sk_state != TCP_LISTEN);
3109 }
3110 
3111 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3112 {
3113 	struct tcp_repair_window opt;
3114 
3115 	if (!tp->repair)
3116 		return -EPERM;
3117 
3118 	if (len != sizeof(opt))
3119 		return -EINVAL;
3120 
3121 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3122 		return -EFAULT;
3123 
3124 	if (opt.max_window < opt.snd_wnd)
3125 		return -EINVAL;
3126 
3127 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3128 		return -EINVAL;
3129 
3130 	if (after(opt.rcv_wup, tp->rcv_nxt))
3131 		return -EINVAL;
3132 
3133 	tp->snd_wl1	= opt.snd_wl1;
3134 	tp->snd_wnd	= opt.snd_wnd;
3135 	tp->max_window	= opt.max_window;
3136 
3137 	tp->rcv_wnd	= opt.rcv_wnd;
3138 	tp->rcv_wup	= opt.rcv_wup;
3139 
3140 	return 0;
3141 }
3142 
3143 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3144 		unsigned int len)
3145 {
3146 	struct tcp_sock *tp = tcp_sk(sk);
3147 	struct tcp_repair_opt opt;
3148 	size_t offset = 0;
3149 
3150 	while (len >= sizeof(opt)) {
3151 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3152 			return -EFAULT;
3153 
3154 		offset += sizeof(opt);
3155 		len -= sizeof(opt);
3156 
3157 		switch (opt.opt_code) {
3158 		case TCPOPT_MSS:
3159 			tp->rx_opt.mss_clamp = opt.opt_val;
3160 			tcp_mtup_init(sk);
3161 			break;
3162 		case TCPOPT_WINDOW:
3163 			{
3164 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3165 				u16 rcv_wscale = opt.opt_val >> 16;
3166 
3167 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3168 					return -EFBIG;
3169 
3170 				tp->rx_opt.snd_wscale = snd_wscale;
3171 				tp->rx_opt.rcv_wscale = rcv_wscale;
3172 				tp->rx_opt.wscale_ok = 1;
3173 			}
3174 			break;
3175 		case TCPOPT_SACK_PERM:
3176 			if (opt.opt_val != 0)
3177 				return -EINVAL;
3178 
3179 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3180 			break;
3181 		case TCPOPT_TIMESTAMP:
3182 			if (opt.opt_val != 0)
3183 				return -EINVAL;
3184 
3185 			tp->rx_opt.tstamp_ok = 1;
3186 			break;
3187 		}
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3194 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3195 
3196 static void tcp_enable_tx_delay(void)
3197 {
3198 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3199 		static int __tcp_tx_delay_enabled = 0;
3200 
3201 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3202 			static_branch_enable(&tcp_tx_delay_enabled);
3203 			pr_info("TCP_TX_DELAY enabled\n");
3204 		}
3205 	}
3206 }
3207 
3208 /* When set indicates to always queue non-full frames.  Later the user clears
3209  * this option and we transmit any pending partial frames in the queue.  This is
3210  * meant to be used alongside sendfile() to get properly filled frames when the
3211  * user (for example) must write out headers with a write() call first and then
3212  * use sendfile to send out the data parts.
3213  *
3214  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3215  * TCP_NODELAY.
3216  */
3217 void __tcp_sock_set_cork(struct sock *sk, bool on)
3218 {
3219 	struct tcp_sock *tp = tcp_sk(sk);
3220 
3221 	if (on) {
3222 		tp->nonagle |= TCP_NAGLE_CORK;
3223 	} else {
3224 		tp->nonagle &= ~TCP_NAGLE_CORK;
3225 		if (tp->nonagle & TCP_NAGLE_OFF)
3226 			tp->nonagle |= TCP_NAGLE_PUSH;
3227 		tcp_push_pending_frames(sk);
3228 	}
3229 }
3230 
3231 void tcp_sock_set_cork(struct sock *sk, bool on)
3232 {
3233 	lock_sock(sk);
3234 	__tcp_sock_set_cork(sk, on);
3235 	release_sock(sk);
3236 }
3237 EXPORT_SYMBOL(tcp_sock_set_cork);
3238 
3239 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3240  * remembered, but it is not activated until cork is cleared.
3241  *
3242  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3243  * even TCP_CORK for currently queued segments.
3244  */
3245 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3246 {
3247 	if (on) {
3248 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3249 		tcp_push_pending_frames(sk);
3250 	} else {
3251 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3252 	}
3253 }
3254 
3255 void tcp_sock_set_nodelay(struct sock *sk)
3256 {
3257 	lock_sock(sk);
3258 	__tcp_sock_set_nodelay(sk, true);
3259 	release_sock(sk);
3260 }
3261 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3262 
3263 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3264 {
3265 	if (!val) {
3266 		inet_csk_enter_pingpong_mode(sk);
3267 		return;
3268 	}
3269 
3270 	inet_csk_exit_pingpong_mode(sk);
3271 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3272 	    inet_csk_ack_scheduled(sk)) {
3273 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3274 		tcp_cleanup_rbuf(sk, 1);
3275 		if (!(val & 1))
3276 			inet_csk_enter_pingpong_mode(sk);
3277 	}
3278 }
3279 
3280 void tcp_sock_set_quickack(struct sock *sk, int val)
3281 {
3282 	lock_sock(sk);
3283 	__tcp_sock_set_quickack(sk, val);
3284 	release_sock(sk);
3285 }
3286 EXPORT_SYMBOL(tcp_sock_set_quickack);
3287 
3288 int tcp_sock_set_syncnt(struct sock *sk, int val)
3289 {
3290 	if (val < 1 || val > MAX_TCP_SYNCNT)
3291 		return -EINVAL;
3292 
3293 	lock_sock(sk);
3294 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3295 	release_sock(sk);
3296 	return 0;
3297 }
3298 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3299 
3300 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3301 {
3302 	lock_sock(sk);
3303 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3304 	release_sock(sk);
3305 }
3306 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3307 
3308 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3309 {
3310 	struct tcp_sock *tp = tcp_sk(sk);
3311 
3312 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3313 		return -EINVAL;
3314 
3315 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3316 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3317 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3318 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3319 		u32 elapsed = keepalive_time_elapsed(tp);
3320 
3321 		if (tp->keepalive_time > elapsed)
3322 			elapsed = tp->keepalive_time - elapsed;
3323 		else
3324 			elapsed = 0;
3325 		inet_csk_reset_keepalive_timer(sk, elapsed);
3326 	}
3327 
3328 	return 0;
3329 }
3330 
3331 int tcp_sock_set_keepidle(struct sock *sk, int val)
3332 {
3333 	int err;
3334 
3335 	lock_sock(sk);
3336 	err = tcp_sock_set_keepidle_locked(sk, val);
3337 	release_sock(sk);
3338 	return err;
3339 }
3340 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3341 
3342 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3343 {
3344 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3345 		return -EINVAL;
3346 
3347 	lock_sock(sk);
3348 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3349 	release_sock(sk);
3350 	return 0;
3351 }
3352 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3353 
3354 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3355 {
3356 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3357 		return -EINVAL;
3358 
3359 	lock_sock(sk);
3360 	/* Paired with READ_ONCE() in keepalive_probes() */
3361 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3362 	release_sock(sk);
3363 	return 0;
3364 }
3365 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3366 
3367 int tcp_set_window_clamp(struct sock *sk, int val)
3368 {
3369 	struct tcp_sock *tp = tcp_sk(sk);
3370 
3371 	if (!val) {
3372 		if (sk->sk_state != TCP_CLOSE)
3373 			return -EINVAL;
3374 		tp->window_clamp = 0;
3375 	} else {
3376 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3377 			SOCK_MIN_RCVBUF / 2 : val;
3378 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3379 	}
3380 	return 0;
3381 }
3382 
3383 /*
3384  *	Socket option code for TCP.
3385  */
3386 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3387 		      sockptr_t optval, unsigned int optlen)
3388 {
3389 	struct tcp_sock *tp = tcp_sk(sk);
3390 	struct inet_connection_sock *icsk = inet_csk(sk);
3391 	struct net *net = sock_net(sk);
3392 	int val;
3393 	int err = 0;
3394 
3395 	/* These are data/string values, all the others are ints */
3396 	switch (optname) {
3397 	case TCP_CONGESTION: {
3398 		char name[TCP_CA_NAME_MAX];
3399 
3400 		if (optlen < 1)
3401 			return -EINVAL;
3402 
3403 		val = strncpy_from_sockptr(name, optval,
3404 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3405 		if (val < 0)
3406 			return -EFAULT;
3407 		name[val] = 0;
3408 
3409 		sockopt_lock_sock(sk);
3410 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3411 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3412 								    CAP_NET_ADMIN));
3413 		sockopt_release_sock(sk);
3414 		return err;
3415 	}
3416 	case TCP_ULP: {
3417 		char name[TCP_ULP_NAME_MAX];
3418 
3419 		if (optlen < 1)
3420 			return -EINVAL;
3421 
3422 		val = strncpy_from_sockptr(name, optval,
3423 					min_t(long, TCP_ULP_NAME_MAX - 1,
3424 					      optlen));
3425 		if (val < 0)
3426 			return -EFAULT;
3427 		name[val] = 0;
3428 
3429 		sockopt_lock_sock(sk);
3430 		err = tcp_set_ulp(sk, name);
3431 		sockopt_release_sock(sk);
3432 		return err;
3433 	}
3434 	case TCP_FASTOPEN_KEY: {
3435 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3436 		__u8 *backup_key = NULL;
3437 
3438 		/* Allow a backup key as well to facilitate key rotation
3439 		 * First key is the active one.
3440 		 */
3441 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3442 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3443 			return -EINVAL;
3444 
3445 		if (copy_from_sockptr(key, optval, optlen))
3446 			return -EFAULT;
3447 
3448 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3449 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3450 
3451 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3452 	}
3453 	default:
3454 		/* fallthru */
3455 		break;
3456 	}
3457 
3458 	if (optlen < sizeof(int))
3459 		return -EINVAL;
3460 
3461 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3462 		return -EFAULT;
3463 
3464 	sockopt_lock_sock(sk);
3465 
3466 	switch (optname) {
3467 	case TCP_MAXSEG:
3468 		/* Values greater than interface MTU won't take effect. However
3469 		 * at the point when this call is done we typically don't yet
3470 		 * know which interface is going to be used
3471 		 */
3472 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3473 			err = -EINVAL;
3474 			break;
3475 		}
3476 		tp->rx_opt.user_mss = val;
3477 		break;
3478 
3479 	case TCP_NODELAY:
3480 		__tcp_sock_set_nodelay(sk, val);
3481 		break;
3482 
3483 	case TCP_THIN_LINEAR_TIMEOUTS:
3484 		if (val < 0 || val > 1)
3485 			err = -EINVAL;
3486 		else
3487 			tp->thin_lto = val;
3488 		break;
3489 
3490 	case TCP_THIN_DUPACK:
3491 		if (val < 0 || val > 1)
3492 			err = -EINVAL;
3493 		break;
3494 
3495 	case TCP_REPAIR:
3496 		if (!tcp_can_repair_sock(sk))
3497 			err = -EPERM;
3498 		else if (val == TCP_REPAIR_ON) {
3499 			tp->repair = 1;
3500 			sk->sk_reuse = SK_FORCE_REUSE;
3501 			tp->repair_queue = TCP_NO_QUEUE;
3502 		} else if (val == TCP_REPAIR_OFF) {
3503 			tp->repair = 0;
3504 			sk->sk_reuse = SK_NO_REUSE;
3505 			tcp_send_window_probe(sk);
3506 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3507 			tp->repair = 0;
3508 			sk->sk_reuse = SK_NO_REUSE;
3509 		} else
3510 			err = -EINVAL;
3511 
3512 		break;
3513 
3514 	case TCP_REPAIR_QUEUE:
3515 		if (!tp->repair)
3516 			err = -EPERM;
3517 		else if ((unsigned int)val < TCP_QUEUES_NR)
3518 			tp->repair_queue = val;
3519 		else
3520 			err = -EINVAL;
3521 		break;
3522 
3523 	case TCP_QUEUE_SEQ:
3524 		if (sk->sk_state != TCP_CLOSE) {
3525 			err = -EPERM;
3526 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3527 			if (!tcp_rtx_queue_empty(sk))
3528 				err = -EPERM;
3529 			else
3530 				WRITE_ONCE(tp->write_seq, val);
3531 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3532 			if (tp->rcv_nxt != tp->copied_seq) {
3533 				err = -EPERM;
3534 			} else {
3535 				WRITE_ONCE(tp->rcv_nxt, val);
3536 				WRITE_ONCE(tp->copied_seq, val);
3537 			}
3538 		} else {
3539 			err = -EINVAL;
3540 		}
3541 		break;
3542 
3543 	case TCP_REPAIR_OPTIONS:
3544 		if (!tp->repair)
3545 			err = -EINVAL;
3546 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3547 			err = tcp_repair_options_est(sk, optval, optlen);
3548 		else
3549 			err = -EPERM;
3550 		break;
3551 
3552 	case TCP_CORK:
3553 		__tcp_sock_set_cork(sk, val);
3554 		break;
3555 
3556 	case TCP_KEEPIDLE:
3557 		err = tcp_sock_set_keepidle_locked(sk, val);
3558 		break;
3559 	case TCP_KEEPINTVL:
3560 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3561 			err = -EINVAL;
3562 		else
3563 			WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3564 		break;
3565 	case TCP_KEEPCNT:
3566 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3567 			err = -EINVAL;
3568 		else
3569 			WRITE_ONCE(tp->keepalive_probes, val);
3570 		break;
3571 	case TCP_SYNCNT:
3572 		if (val < 1 || val > MAX_TCP_SYNCNT)
3573 			err = -EINVAL;
3574 		else
3575 			WRITE_ONCE(icsk->icsk_syn_retries, val);
3576 		break;
3577 
3578 	case TCP_SAVE_SYN:
3579 		/* 0: disable, 1: enable, 2: start from ether_header */
3580 		if (val < 0 || val > 2)
3581 			err = -EINVAL;
3582 		else
3583 			tp->save_syn = val;
3584 		break;
3585 
3586 	case TCP_LINGER2:
3587 		if (val < 0)
3588 			WRITE_ONCE(tp->linger2, -1);
3589 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3590 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3591 		else
3592 			WRITE_ONCE(tp->linger2, val * HZ);
3593 		break;
3594 
3595 	case TCP_DEFER_ACCEPT:
3596 		/* Translate value in seconds to number of retransmits */
3597 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3598 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3599 					   TCP_RTO_MAX / HZ));
3600 		break;
3601 
3602 	case TCP_WINDOW_CLAMP:
3603 		err = tcp_set_window_clamp(sk, val);
3604 		break;
3605 
3606 	case TCP_QUICKACK:
3607 		__tcp_sock_set_quickack(sk, val);
3608 		break;
3609 
3610 #ifdef CONFIG_TCP_MD5SIG
3611 	case TCP_MD5SIG:
3612 	case TCP_MD5SIG_EXT:
3613 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3614 		break;
3615 #endif
3616 	case TCP_USER_TIMEOUT:
3617 		/* Cap the max time in ms TCP will retry or probe the window
3618 		 * before giving up and aborting (ETIMEDOUT) a connection.
3619 		 */
3620 		if (val < 0)
3621 			err = -EINVAL;
3622 		else
3623 			WRITE_ONCE(icsk->icsk_user_timeout, val);
3624 		break;
3625 
3626 	case TCP_FASTOPEN:
3627 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3628 		    TCPF_LISTEN))) {
3629 			tcp_fastopen_init_key_once(net);
3630 
3631 			fastopen_queue_tune(sk, val);
3632 		} else {
3633 			err = -EINVAL;
3634 		}
3635 		break;
3636 	case TCP_FASTOPEN_CONNECT:
3637 		if (val > 1 || val < 0) {
3638 			err = -EINVAL;
3639 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3640 			   TFO_CLIENT_ENABLE) {
3641 			if (sk->sk_state == TCP_CLOSE)
3642 				tp->fastopen_connect = val;
3643 			else
3644 				err = -EINVAL;
3645 		} else {
3646 			err = -EOPNOTSUPP;
3647 		}
3648 		break;
3649 	case TCP_FASTOPEN_NO_COOKIE:
3650 		if (val > 1 || val < 0)
3651 			err = -EINVAL;
3652 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3653 			err = -EINVAL;
3654 		else
3655 			tp->fastopen_no_cookie = val;
3656 		break;
3657 	case TCP_TIMESTAMP:
3658 		if (!tp->repair)
3659 			err = -EPERM;
3660 		else
3661 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3662 		break;
3663 	case TCP_REPAIR_WINDOW:
3664 		err = tcp_repair_set_window(tp, optval, optlen);
3665 		break;
3666 	case TCP_NOTSENT_LOWAT:
3667 		WRITE_ONCE(tp->notsent_lowat, val);
3668 		sk->sk_write_space(sk);
3669 		break;
3670 	case TCP_INQ:
3671 		if (val > 1 || val < 0)
3672 			err = -EINVAL;
3673 		else
3674 			tp->recvmsg_inq = val;
3675 		break;
3676 	case TCP_TX_DELAY:
3677 		if (val)
3678 			tcp_enable_tx_delay();
3679 		WRITE_ONCE(tp->tcp_tx_delay, val);
3680 		break;
3681 	default:
3682 		err = -ENOPROTOOPT;
3683 		break;
3684 	}
3685 
3686 	sockopt_release_sock(sk);
3687 	return err;
3688 }
3689 
3690 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3691 		   unsigned int optlen)
3692 {
3693 	const struct inet_connection_sock *icsk = inet_csk(sk);
3694 
3695 	if (level != SOL_TCP)
3696 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3697 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3698 								optval, optlen);
3699 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3700 }
3701 EXPORT_SYMBOL(tcp_setsockopt);
3702 
3703 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3704 				      struct tcp_info *info)
3705 {
3706 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3707 	enum tcp_chrono i;
3708 
3709 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3710 		stats[i] = tp->chrono_stat[i - 1];
3711 		if (i == tp->chrono_type)
3712 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3713 		stats[i] *= USEC_PER_SEC / HZ;
3714 		total += stats[i];
3715 	}
3716 
3717 	info->tcpi_busy_time = total;
3718 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3719 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3720 }
3721 
3722 /* Return information about state of tcp endpoint in API format. */
3723 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3724 {
3725 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3726 	const struct inet_connection_sock *icsk = inet_csk(sk);
3727 	unsigned long rate;
3728 	u32 now;
3729 	u64 rate64;
3730 	bool slow;
3731 
3732 	memset(info, 0, sizeof(*info));
3733 	if (sk->sk_type != SOCK_STREAM)
3734 		return;
3735 
3736 	info->tcpi_state = inet_sk_state_load(sk);
3737 
3738 	/* Report meaningful fields for all TCP states, including listeners */
3739 	rate = READ_ONCE(sk->sk_pacing_rate);
3740 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3741 	info->tcpi_pacing_rate = rate64;
3742 
3743 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3744 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3745 	info->tcpi_max_pacing_rate = rate64;
3746 
3747 	info->tcpi_reordering = tp->reordering;
3748 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3749 
3750 	if (info->tcpi_state == TCP_LISTEN) {
3751 		/* listeners aliased fields :
3752 		 * tcpi_unacked -> Number of children ready for accept()
3753 		 * tcpi_sacked  -> max backlog
3754 		 */
3755 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3756 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3757 		return;
3758 	}
3759 
3760 	slow = lock_sock_fast(sk);
3761 
3762 	info->tcpi_ca_state = icsk->icsk_ca_state;
3763 	info->tcpi_retransmits = icsk->icsk_retransmits;
3764 	info->tcpi_probes = icsk->icsk_probes_out;
3765 	info->tcpi_backoff = icsk->icsk_backoff;
3766 
3767 	if (tp->rx_opt.tstamp_ok)
3768 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3769 	if (tcp_is_sack(tp))
3770 		info->tcpi_options |= TCPI_OPT_SACK;
3771 	if (tp->rx_opt.wscale_ok) {
3772 		info->tcpi_options |= TCPI_OPT_WSCALE;
3773 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3774 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3775 	}
3776 
3777 	if (tp->ecn_flags & TCP_ECN_OK)
3778 		info->tcpi_options |= TCPI_OPT_ECN;
3779 	if (tp->ecn_flags & TCP_ECN_SEEN)
3780 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3781 	if (tp->syn_data_acked)
3782 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3783 
3784 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3785 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3786 	info->tcpi_snd_mss = tp->mss_cache;
3787 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3788 
3789 	info->tcpi_unacked = tp->packets_out;
3790 	info->tcpi_sacked = tp->sacked_out;
3791 
3792 	info->tcpi_lost = tp->lost_out;
3793 	info->tcpi_retrans = tp->retrans_out;
3794 
3795 	now = tcp_jiffies32;
3796 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3797 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3798 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3799 
3800 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3801 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3802 	info->tcpi_rtt = tp->srtt_us >> 3;
3803 	info->tcpi_rttvar = tp->mdev_us >> 2;
3804 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3805 	info->tcpi_advmss = tp->advmss;
3806 
3807 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3808 	info->tcpi_rcv_space = tp->rcvq_space.space;
3809 
3810 	info->tcpi_total_retrans = tp->total_retrans;
3811 
3812 	info->tcpi_bytes_acked = tp->bytes_acked;
3813 	info->tcpi_bytes_received = tp->bytes_received;
3814 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3815 	tcp_get_info_chrono_stats(tp, info);
3816 
3817 	info->tcpi_segs_out = tp->segs_out;
3818 
3819 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3820 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3821 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3822 
3823 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3824 	info->tcpi_data_segs_out = tp->data_segs_out;
3825 
3826 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3827 	rate64 = tcp_compute_delivery_rate(tp);
3828 	if (rate64)
3829 		info->tcpi_delivery_rate = rate64;
3830 	info->tcpi_delivered = tp->delivered;
3831 	info->tcpi_delivered_ce = tp->delivered_ce;
3832 	info->tcpi_bytes_sent = tp->bytes_sent;
3833 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3834 	info->tcpi_dsack_dups = tp->dsack_dups;
3835 	info->tcpi_reord_seen = tp->reord_seen;
3836 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3837 	info->tcpi_snd_wnd = tp->snd_wnd;
3838 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3839 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3840 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3841 	unlock_sock_fast(sk, slow);
3842 }
3843 EXPORT_SYMBOL_GPL(tcp_get_info);
3844 
3845 static size_t tcp_opt_stats_get_size(void)
3846 {
3847 	return
3848 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3849 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3850 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3851 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3852 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3853 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3854 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3855 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3856 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3858 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3859 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3860 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3861 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3862 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3863 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3865 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3866 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3867 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3868 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3869 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3870 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3871 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3872 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3873 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3874 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3875 		0;
3876 }
3877 
3878 /* Returns TTL or hop limit of an incoming packet from skb. */
3879 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3880 {
3881 	if (skb->protocol == htons(ETH_P_IP))
3882 		return ip_hdr(skb)->ttl;
3883 	else if (skb->protocol == htons(ETH_P_IPV6))
3884 		return ipv6_hdr(skb)->hop_limit;
3885 	else
3886 		return 0;
3887 }
3888 
3889 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3890 					       const struct sk_buff *orig_skb,
3891 					       const struct sk_buff *ack_skb)
3892 {
3893 	const struct tcp_sock *tp = tcp_sk(sk);
3894 	struct sk_buff *stats;
3895 	struct tcp_info info;
3896 	unsigned long rate;
3897 	u64 rate64;
3898 
3899 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3900 	if (!stats)
3901 		return NULL;
3902 
3903 	tcp_get_info_chrono_stats(tp, &info);
3904 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3905 			  info.tcpi_busy_time, TCP_NLA_PAD);
3906 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3907 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3908 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3909 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3910 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3911 			  tp->data_segs_out, TCP_NLA_PAD);
3912 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3913 			  tp->total_retrans, TCP_NLA_PAD);
3914 
3915 	rate = READ_ONCE(sk->sk_pacing_rate);
3916 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3917 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3918 
3919 	rate64 = tcp_compute_delivery_rate(tp);
3920 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3921 
3922 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3923 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3924 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3925 
3926 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3927 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3928 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3929 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3930 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3931 
3932 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3933 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3934 
3935 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3936 			  TCP_NLA_PAD);
3937 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3938 			  TCP_NLA_PAD);
3939 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3940 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3941 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3942 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3943 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3944 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3945 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3946 			  TCP_NLA_PAD);
3947 	if (ack_skb)
3948 		nla_put_u8(stats, TCP_NLA_TTL,
3949 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3950 
3951 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3952 	return stats;
3953 }
3954 
3955 int do_tcp_getsockopt(struct sock *sk, int level,
3956 		      int optname, sockptr_t optval, sockptr_t optlen)
3957 {
3958 	struct inet_connection_sock *icsk = inet_csk(sk);
3959 	struct tcp_sock *tp = tcp_sk(sk);
3960 	struct net *net = sock_net(sk);
3961 	int val, len;
3962 
3963 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3964 		return -EFAULT;
3965 
3966 	len = min_t(unsigned int, len, sizeof(int));
3967 
3968 	if (len < 0)
3969 		return -EINVAL;
3970 
3971 	switch (optname) {
3972 	case TCP_MAXSEG:
3973 		val = tp->mss_cache;
3974 		if (tp->rx_opt.user_mss &&
3975 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3976 			val = tp->rx_opt.user_mss;
3977 		if (tp->repair)
3978 			val = tp->rx_opt.mss_clamp;
3979 		break;
3980 	case TCP_NODELAY:
3981 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3982 		break;
3983 	case TCP_CORK:
3984 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3985 		break;
3986 	case TCP_KEEPIDLE:
3987 		val = keepalive_time_when(tp) / HZ;
3988 		break;
3989 	case TCP_KEEPINTVL:
3990 		val = keepalive_intvl_when(tp) / HZ;
3991 		break;
3992 	case TCP_KEEPCNT:
3993 		val = keepalive_probes(tp);
3994 		break;
3995 	case TCP_SYNCNT:
3996 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3997 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3998 		break;
3999 	case TCP_LINGER2:
4000 		val = READ_ONCE(tp->linger2);
4001 		if (val >= 0)
4002 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4003 		break;
4004 	case TCP_DEFER_ACCEPT:
4005 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4006 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4007 				      TCP_RTO_MAX / HZ);
4008 		break;
4009 	case TCP_WINDOW_CLAMP:
4010 		val = tp->window_clamp;
4011 		break;
4012 	case TCP_INFO: {
4013 		struct tcp_info info;
4014 
4015 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4016 			return -EFAULT;
4017 
4018 		tcp_get_info(sk, &info);
4019 
4020 		len = min_t(unsigned int, len, sizeof(info));
4021 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4022 			return -EFAULT;
4023 		if (copy_to_sockptr(optval, &info, len))
4024 			return -EFAULT;
4025 		return 0;
4026 	}
4027 	case TCP_CC_INFO: {
4028 		const struct tcp_congestion_ops *ca_ops;
4029 		union tcp_cc_info info;
4030 		size_t sz = 0;
4031 		int attr;
4032 
4033 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4034 			return -EFAULT;
4035 
4036 		ca_ops = icsk->icsk_ca_ops;
4037 		if (ca_ops && ca_ops->get_info)
4038 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4039 
4040 		len = min_t(unsigned int, len, sz);
4041 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4042 			return -EFAULT;
4043 		if (copy_to_sockptr(optval, &info, len))
4044 			return -EFAULT;
4045 		return 0;
4046 	}
4047 	case TCP_QUICKACK:
4048 		val = !inet_csk_in_pingpong_mode(sk);
4049 		break;
4050 
4051 	case TCP_CONGESTION:
4052 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4053 			return -EFAULT;
4054 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4055 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4056 			return -EFAULT;
4057 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4058 			return -EFAULT;
4059 		return 0;
4060 
4061 	case TCP_ULP:
4062 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4063 			return -EFAULT;
4064 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4065 		if (!icsk->icsk_ulp_ops) {
4066 			len = 0;
4067 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4068 				return -EFAULT;
4069 			return 0;
4070 		}
4071 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4072 			return -EFAULT;
4073 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4074 			return -EFAULT;
4075 		return 0;
4076 
4077 	case TCP_FASTOPEN_KEY: {
4078 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4079 		unsigned int key_len;
4080 
4081 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4082 			return -EFAULT;
4083 
4084 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4085 				TCP_FASTOPEN_KEY_LENGTH;
4086 		len = min_t(unsigned int, len, key_len);
4087 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4088 			return -EFAULT;
4089 		if (copy_to_sockptr(optval, key, len))
4090 			return -EFAULT;
4091 		return 0;
4092 	}
4093 	case TCP_THIN_LINEAR_TIMEOUTS:
4094 		val = tp->thin_lto;
4095 		break;
4096 
4097 	case TCP_THIN_DUPACK:
4098 		val = 0;
4099 		break;
4100 
4101 	case TCP_REPAIR:
4102 		val = tp->repair;
4103 		break;
4104 
4105 	case TCP_REPAIR_QUEUE:
4106 		if (tp->repair)
4107 			val = tp->repair_queue;
4108 		else
4109 			return -EINVAL;
4110 		break;
4111 
4112 	case TCP_REPAIR_WINDOW: {
4113 		struct tcp_repair_window opt;
4114 
4115 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4116 			return -EFAULT;
4117 
4118 		if (len != sizeof(opt))
4119 			return -EINVAL;
4120 
4121 		if (!tp->repair)
4122 			return -EPERM;
4123 
4124 		opt.snd_wl1	= tp->snd_wl1;
4125 		opt.snd_wnd	= tp->snd_wnd;
4126 		opt.max_window	= tp->max_window;
4127 		opt.rcv_wnd	= tp->rcv_wnd;
4128 		opt.rcv_wup	= tp->rcv_wup;
4129 
4130 		if (copy_to_sockptr(optval, &opt, len))
4131 			return -EFAULT;
4132 		return 0;
4133 	}
4134 	case TCP_QUEUE_SEQ:
4135 		if (tp->repair_queue == TCP_SEND_QUEUE)
4136 			val = tp->write_seq;
4137 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4138 			val = tp->rcv_nxt;
4139 		else
4140 			return -EINVAL;
4141 		break;
4142 
4143 	case TCP_USER_TIMEOUT:
4144 		val = READ_ONCE(icsk->icsk_user_timeout);
4145 		break;
4146 
4147 	case TCP_FASTOPEN:
4148 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4149 		break;
4150 
4151 	case TCP_FASTOPEN_CONNECT:
4152 		val = tp->fastopen_connect;
4153 		break;
4154 
4155 	case TCP_FASTOPEN_NO_COOKIE:
4156 		val = tp->fastopen_no_cookie;
4157 		break;
4158 
4159 	case TCP_TX_DELAY:
4160 		val = READ_ONCE(tp->tcp_tx_delay);
4161 		break;
4162 
4163 	case TCP_TIMESTAMP:
4164 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4165 		break;
4166 	case TCP_NOTSENT_LOWAT:
4167 		val = READ_ONCE(tp->notsent_lowat);
4168 		break;
4169 	case TCP_INQ:
4170 		val = tp->recvmsg_inq;
4171 		break;
4172 	case TCP_SAVE_SYN:
4173 		val = tp->save_syn;
4174 		break;
4175 	case TCP_SAVED_SYN: {
4176 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4177 			return -EFAULT;
4178 
4179 		sockopt_lock_sock(sk);
4180 		if (tp->saved_syn) {
4181 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4182 				len = tcp_saved_syn_len(tp->saved_syn);
4183 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4184 					sockopt_release_sock(sk);
4185 					return -EFAULT;
4186 				}
4187 				sockopt_release_sock(sk);
4188 				return -EINVAL;
4189 			}
4190 			len = tcp_saved_syn_len(tp->saved_syn);
4191 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4192 				sockopt_release_sock(sk);
4193 				return -EFAULT;
4194 			}
4195 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4196 				sockopt_release_sock(sk);
4197 				return -EFAULT;
4198 			}
4199 			tcp_saved_syn_free(tp);
4200 			sockopt_release_sock(sk);
4201 		} else {
4202 			sockopt_release_sock(sk);
4203 			len = 0;
4204 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4205 				return -EFAULT;
4206 		}
4207 		return 0;
4208 	}
4209 #ifdef CONFIG_MMU
4210 	case TCP_ZEROCOPY_RECEIVE: {
4211 		struct scm_timestamping_internal tss;
4212 		struct tcp_zerocopy_receive zc = {};
4213 		int err;
4214 
4215 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4216 			return -EFAULT;
4217 		if (len < 0 ||
4218 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4219 			return -EINVAL;
4220 		if (unlikely(len > sizeof(zc))) {
4221 			err = check_zeroed_sockptr(optval, sizeof(zc),
4222 						   len - sizeof(zc));
4223 			if (err < 1)
4224 				return err == 0 ? -EINVAL : err;
4225 			len = sizeof(zc);
4226 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4227 				return -EFAULT;
4228 		}
4229 		if (copy_from_sockptr(&zc, optval, len))
4230 			return -EFAULT;
4231 		if (zc.reserved)
4232 			return -EINVAL;
4233 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4234 			return -EINVAL;
4235 		sockopt_lock_sock(sk);
4236 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4237 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4238 							  &zc, &len, err);
4239 		sockopt_release_sock(sk);
4240 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4241 			goto zerocopy_rcv_cmsg;
4242 		switch (len) {
4243 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4244 			goto zerocopy_rcv_cmsg;
4245 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4246 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4247 		case offsetofend(struct tcp_zerocopy_receive, flags):
4248 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4249 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4250 		case offsetofend(struct tcp_zerocopy_receive, err):
4251 			goto zerocopy_rcv_sk_err;
4252 		case offsetofend(struct tcp_zerocopy_receive, inq):
4253 			goto zerocopy_rcv_inq;
4254 		case offsetofend(struct tcp_zerocopy_receive, length):
4255 		default:
4256 			goto zerocopy_rcv_out;
4257 		}
4258 zerocopy_rcv_cmsg:
4259 		if (zc.msg_flags & TCP_CMSG_TS)
4260 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4261 		else
4262 			zc.msg_flags = 0;
4263 zerocopy_rcv_sk_err:
4264 		if (!err)
4265 			zc.err = sock_error(sk);
4266 zerocopy_rcv_inq:
4267 		zc.inq = tcp_inq_hint(sk);
4268 zerocopy_rcv_out:
4269 		if (!err && copy_to_sockptr(optval, &zc, len))
4270 			err = -EFAULT;
4271 		return err;
4272 	}
4273 #endif
4274 	default:
4275 		return -ENOPROTOOPT;
4276 	}
4277 
4278 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4279 		return -EFAULT;
4280 	if (copy_to_sockptr(optval, &val, len))
4281 		return -EFAULT;
4282 	return 0;
4283 }
4284 
4285 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4286 {
4287 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4288 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4289 	 */
4290 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4291 		return true;
4292 
4293 	return false;
4294 }
4295 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4296 
4297 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4298 		   int __user *optlen)
4299 {
4300 	struct inet_connection_sock *icsk = inet_csk(sk);
4301 
4302 	if (level != SOL_TCP)
4303 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4304 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4305 								optval, optlen);
4306 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4307 				 USER_SOCKPTR(optlen));
4308 }
4309 EXPORT_SYMBOL(tcp_getsockopt);
4310 
4311 #ifdef CONFIG_TCP_MD5SIG
4312 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4313 static DEFINE_MUTEX(tcp_md5sig_mutex);
4314 static bool tcp_md5sig_pool_populated = false;
4315 
4316 static void __tcp_alloc_md5sig_pool(void)
4317 {
4318 	struct crypto_ahash *hash;
4319 	int cpu;
4320 
4321 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4322 	if (IS_ERR(hash))
4323 		return;
4324 
4325 	for_each_possible_cpu(cpu) {
4326 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4327 		struct ahash_request *req;
4328 
4329 		if (!scratch) {
4330 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4331 					       sizeof(struct tcphdr),
4332 					       GFP_KERNEL,
4333 					       cpu_to_node(cpu));
4334 			if (!scratch)
4335 				return;
4336 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4337 		}
4338 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4339 			continue;
4340 
4341 		req = ahash_request_alloc(hash, GFP_KERNEL);
4342 		if (!req)
4343 			return;
4344 
4345 		ahash_request_set_callback(req, 0, NULL, NULL);
4346 
4347 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4348 	}
4349 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4350 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4351 	 */
4352 	smp_wmb();
4353 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4354 	 * and tcp_get_md5sig_pool().
4355 	*/
4356 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4357 }
4358 
4359 bool tcp_alloc_md5sig_pool(void)
4360 {
4361 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4362 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4363 		mutex_lock(&tcp_md5sig_mutex);
4364 
4365 		if (!tcp_md5sig_pool_populated)
4366 			__tcp_alloc_md5sig_pool();
4367 
4368 		mutex_unlock(&tcp_md5sig_mutex);
4369 	}
4370 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4371 	return READ_ONCE(tcp_md5sig_pool_populated);
4372 }
4373 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4374 
4375 
4376 /**
4377  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4378  *
4379  *	We use percpu structure, so if we succeed, we exit with preemption
4380  *	and BH disabled, to make sure another thread or softirq handling
4381  *	wont try to get same context.
4382  */
4383 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4384 {
4385 	local_bh_disable();
4386 
4387 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4388 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4389 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4390 		smp_rmb();
4391 		return this_cpu_ptr(&tcp_md5sig_pool);
4392 	}
4393 	local_bh_enable();
4394 	return NULL;
4395 }
4396 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4397 
4398 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4399 			  const struct sk_buff *skb, unsigned int header_len)
4400 {
4401 	struct scatterlist sg;
4402 	const struct tcphdr *tp = tcp_hdr(skb);
4403 	struct ahash_request *req = hp->md5_req;
4404 	unsigned int i;
4405 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4406 					   skb_headlen(skb) - header_len : 0;
4407 	const struct skb_shared_info *shi = skb_shinfo(skb);
4408 	struct sk_buff *frag_iter;
4409 
4410 	sg_init_table(&sg, 1);
4411 
4412 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4413 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4414 	if (crypto_ahash_update(req))
4415 		return 1;
4416 
4417 	for (i = 0; i < shi->nr_frags; ++i) {
4418 		const skb_frag_t *f = &shi->frags[i];
4419 		unsigned int offset = skb_frag_off(f);
4420 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4421 
4422 		sg_set_page(&sg, page, skb_frag_size(f),
4423 			    offset_in_page(offset));
4424 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4425 		if (crypto_ahash_update(req))
4426 			return 1;
4427 	}
4428 
4429 	skb_walk_frags(skb, frag_iter)
4430 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4431 			return 1;
4432 
4433 	return 0;
4434 }
4435 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4436 
4437 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4438 {
4439 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4440 	struct scatterlist sg;
4441 
4442 	sg_init_one(&sg, key->key, keylen);
4443 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4444 
4445 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4446 	return data_race(crypto_ahash_update(hp->md5_req));
4447 }
4448 EXPORT_SYMBOL(tcp_md5_hash_key);
4449 
4450 /* Called with rcu_read_lock() */
4451 enum skb_drop_reason
4452 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4453 		     const void *saddr, const void *daddr,
4454 		     int family, int dif, int sdif)
4455 {
4456 	/*
4457 	 * This gets called for each TCP segment that arrives
4458 	 * so we want to be efficient.
4459 	 * We have 3 drop cases:
4460 	 * o No MD5 hash and one expected.
4461 	 * o MD5 hash and we're not expecting one.
4462 	 * o MD5 hash and its wrong.
4463 	 */
4464 	const __u8 *hash_location = NULL;
4465 	struct tcp_md5sig_key *hash_expected;
4466 	const struct tcphdr *th = tcp_hdr(skb);
4467 	const struct tcp_sock *tp = tcp_sk(sk);
4468 	int genhash, l3index;
4469 	u8 newhash[16];
4470 
4471 	/* sdif set, means packet ingressed via a device
4472 	 * in an L3 domain and dif is set to the l3mdev
4473 	 */
4474 	l3index = sdif ? dif : 0;
4475 
4476 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4477 	hash_location = tcp_parse_md5sig_option(th);
4478 
4479 	/* We've parsed the options - do we have a hash? */
4480 	if (!hash_expected && !hash_location)
4481 		return SKB_NOT_DROPPED_YET;
4482 
4483 	if (hash_expected && !hash_location) {
4484 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4485 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4486 	}
4487 
4488 	if (!hash_expected && hash_location) {
4489 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4490 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4491 	}
4492 
4493 	/* Check the signature.
4494 	 * To support dual stack listeners, we need to handle
4495 	 * IPv4-mapped case.
4496 	 */
4497 	if (family == AF_INET)
4498 		genhash = tcp_v4_md5_hash_skb(newhash,
4499 					      hash_expected,
4500 					      NULL, skb);
4501 	else
4502 		genhash = tp->af_specific->calc_md5_hash(newhash,
4503 							 hash_expected,
4504 							 NULL, skb);
4505 
4506 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4507 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4508 		if (family == AF_INET) {
4509 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4510 					saddr, ntohs(th->source),
4511 					daddr, ntohs(th->dest),
4512 					genhash ? " tcp_v4_calc_md5_hash failed"
4513 					: "", l3index);
4514 		} else {
4515 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4516 					genhash ? "failed" : "mismatch",
4517 					saddr, ntohs(th->source),
4518 					daddr, ntohs(th->dest), l3index);
4519 		}
4520 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4521 	}
4522 	return SKB_NOT_DROPPED_YET;
4523 }
4524 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4525 
4526 #endif
4527 
4528 void tcp_done(struct sock *sk)
4529 {
4530 	struct request_sock *req;
4531 
4532 	/* We might be called with a new socket, after
4533 	 * inet_csk_prepare_forced_close() has been called
4534 	 * so we can not use lockdep_sock_is_held(sk)
4535 	 */
4536 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4537 
4538 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4539 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4540 
4541 	tcp_set_state(sk, TCP_CLOSE);
4542 	tcp_clear_xmit_timers(sk);
4543 	if (req)
4544 		reqsk_fastopen_remove(sk, req, false);
4545 
4546 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4547 
4548 	if (!sock_flag(sk, SOCK_DEAD))
4549 		sk->sk_state_change(sk);
4550 	else
4551 		inet_csk_destroy_sock(sk);
4552 }
4553 EXPORT_SYMBOL_GPL(tcp_done);
4554 
4555 int tcp_abort(struct sock *sk, int err)
4556 {
4557 	int state = inet_sk_state_load(sk);
4558 
4559 	if (state == TCP_NEW_SYN_RECV) {
4560 		struct request_sock *req = inet_reqsk(sk);
4561 
4562 		local_bh_disable();
4563 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4564 		local_bh_enable();
4565 		return 0;
4566 	}
4567 	if (state == TCP_TIME_WAIT) {
4568 		struct inet_timewait_sock *tw = inet_twsk(sk);
4569 
4570 		refcount_inc(&tw->tw_refcnt);
4571 		local_bh_disable();
4572 		inet_twsk_deschedule_put(tw);
4573 		local_bh_enable();
4574 		return 0;
4575 	}
4576 
4577 	/* BPF context ensures sock locking. */
4578 	if (!has_current_bpf_ctx())
4579 		/* Don't race with userspace socket closes such as tcp_close. */
4580 		lock_sock(sk);
4581 
4582 	if (sk->sk_state == TCP_LISTEN) {
4583 		tcp_set_state(sk, TCP_CLOSE);
4584 		inet_csk_listen_stop(sk);
4585 	}
4586 
4587 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4588 	local_bh_disable();
4589 	bh_lock_sock(sk);
4590 
4591 	if (!sock_flag(sk, SOCK_DEAD)) {
4592 		WRITE_ONCE(sk->sk_err, err);
4593 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4594 		smp_wmb();
4595 		sk_error_report(sk);
4596 		if (tcp_need_reset(sk->sk_state))
4597 			tcp_send_active_reset(sk, GFP_ATOMIC);
4598 		tcp_done(sk);
4599 	}
4600 
4601 	bh_unlock_sock(sk);
4602 	local_bh_enable();
4603 	tcp_write_queue_purge(sk);
4604 	if (!has_current_bpf_ctx())
4605 		release_sock(sk);
4606 	return 0;
4607 }
4608 EXPORT_SYMBOL_GPL(tcp_abort);
4609 
4610 extern struct tcp_congestion_ops tcp_reno;
4611 
4612 static __initdata unsigned long thash_entries;
4613 static int __init set_thash_entries(char *str)
4614 {
4615 	ssize_t ret;
4616 
4617 	if (!str)
4618 		return 0;
4619 
4620 	ret = kstrtoul(str, 0, &thash_entries);
4621 	if (ret)
4622 		return 0;
4623 
4624 	return 1;
4625 }
4626 __setup("thash_entries=", set_thash_entries);
4627 
4628 static void __init tcp_init_mem(void)
4629 {
4630 	unsigned long limit = nr_free_buffer_pages() / 16;
4631 
4632 	limit = max(limit, 128UL);
4633 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4634 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4635 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4636 }
4637 
4638 void __init tcp_init(void)
4639 {
4640 	int max_rshare, max_wshare, cnt;
4641 	unsigned long limit;
4642 	unsigned int i;
4643 
4644 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4645 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4646 		     sizeof_field(struct sk_buff, cb));
4647 
4648 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4649 
4650 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4651 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4652 
4653 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4654 			    thash_entries, 21,  /* one slot per 2 MB*/
4655 			    0, 64 * 1024);
4656 	tcp_hashinfo.bind_bucket_cachep =
4657 		kmem_cache_create("tcp_bind_bucket",
4658 				  sizeof(struct inet_bind_bucket), 0,
4659 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4660 				  SLAB_ACCOUNT,
4661 				  NULL);
4662 	tcp_hashinfo.bind2_bucket_cachep =
4663 		kmem_cache_create("tcp_bind2_bucket",
4664 				  sizeof(struct inet_bind2_bucket), 0,
4665 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4666 				  SLAB_ACCOUNT,
4667 				  NULL);
4668 
4669 	/* Size and allocate the main established and bind bucket
4670 	 * hash tables.
4671 	 *
4672 	 * The methodology is similar to that of the buffer cache.
4673 	 */
4674 	tcp_hashinfo.ehash =
4675 		alloc_large_system_hash("TCP established",
4676 					sizeof(struct inet_ehash_bucket),
4677 					thash_entries,
4678 					17, /* one slot per 128 KB of memory */
4679 					0,
4680 					NULL,
4681 					&tcp_hashinfo.ehash_mask,
4682 					0,
4683 					thash_entries ? 0 : 512 * 1024);
4684 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4685 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4686 
4687 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4688 		panic("TCP: failed to alloc ehash_locks");
4689 	tcp_hashinfo.bhash =
4690 		alloc_large_system_hash("TCP bind",
4691 					2 * sizeof(struct inet_bind_hashbucket),
4692 					tcp_hashinfo.ehash_mask + 1,
4693 					17, /* one slot per 128 KB of memory */
4694 					0,
4695 					&tcp_hashinfo.bhash_size,
4696 					NULL,
4697 					0,
4698 					64 * 1024);
4699 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4700 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4701 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4702 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4703 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4704 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4705 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4706 	}
4707 
4708 	tcp_hashinfo.pernet = false;
4709 
4710 	cnt = tcp_hashinfo.ehash_mask + 1;
4711 	sysctl_tcp_max_orphans = cnt / 2;
4712 
4713 	tcp_init_mem();
4714 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4715 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4716 	max_wshare = min(4UL*1024*1024, limit);
4717 	max_rshare = min(6UL*1024*1024, limit);
4718 
4719 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4720 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4721 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4722 
4723 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4724 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4725 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4726 
4727 	pr_info("Hash tables configured (established %u bind %u)\n",
4728 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4729 
4730 	tcp_v4_init();
4731 	tcp_metrics_init();
4732 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4733 	tcp_tasklet_init();
4734 	mptcp_init();
4735 }
4736