xref: /openbmc/linux/net/ipv4/tcp.c (revision 4bacd796)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 #include <linux/time.h>
268 #include <linux/slab.h>
269 
270 #include <net/icmp.h>
271 #include <net/tcp.h>
272 #include <net/xfrm.h>
273 #include <net/ip.h>
274 #include <net/netdma.h>
275 #include <net/sock.h>
276 
277 #include <asm/uaccess.h>
278 #include <asm/ioctls.h>
279 
280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 int sysctl_tcp_mem[3] __read_mostly;
286 int sysctl_tcp_wmem[3] __read_mostly;
287 int sysctl_tcp_rmem[3] __read_mostly;
288 
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /*
367  *	Wait for a TCP event.
368  *
369  *	Note that we don't need to lock the socket, as the upper poll layers
370  *	take care of normal races (between the test and the event) and we don't
371  *	go look at any of the socket buffers directly.
372  */
373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
374 {
375 	unsigned int mask;
376 	struct sock *sk = sock->sk;
377 	struct tcp_sock *tp = tcp_sk(sk);
378 
379 	sock_poll_wait(file, sk_sleep(sk), wait);
380 	if (sk->sk_state == TCP_LISTEN)
381 		return inet_csk_listen_poll(sk);
382 
383 	/* Socket is not locked. We are protected from async events
384 	 * by poll logic and correct handling of state changes
385 	 * made by other threads is impossible in any case.
386 	 */
387 
388 	mask = 0;
389 	if (sk->sk_err)
390 		mask = POLLERR;
391 
392 	/*
393 	 * POLLHUP is certainly not done right. But poll() doesn't
394 	 * have a notion of HUP in just one direction, and for a
395 	 * socket the read side is more interesting.
396 	 *
397 	 * Some poll() documentation says that POLLHUP is incompatible
398 	 * with the POLLOUT/POLLWR flags, so somebody should check this
399 	 * all. But careful, it tends to be safer to return too many
400 	 * bits than too few, and you can easily break real applications
401 	 * if you don't tell them that something has hung up!
402 	 *
403 	 * Check-me.
404 	 *
405 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
406 	 * our fs/select.c). It means that after we received EOF,
407 	 * poll always returns immediately, making impossible poll() on write()
408 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
409 	 * if and only if shutdown has been made in both directions.
410 	 * Actually, it is interesting to look how Solaris and DUX
411 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
412 	 * then we could set it on SND_SHUTDOWN. BTW examples given
413 	 * in Stevens' books assume exactly this behaviour, it explains
414 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
415 	 *
416 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
417 	 * blocking on fresh not-connected or disconnected socket. --ANK
418 	 */
419 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
420 		mask |= POLLHUP;
421 	if (sk->sk_shutdown & RCV_SHUTDOWN)
422 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
423 
424 	/* Connected? */
425 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
426 		int target = sock_rcvlowat(sk, 0, INT_MAX);
427 
428 		if (tp->urg_seq == tp->copied_seq &&
429 		    !sock_flag(sk, SOCK_URGINLINE) &&
430 		    tp->urg_data)
431 			target++;
432 
433 		/* Potential race condition. If read of tp below will
434 		 * escape above sk->sk_state, we can be illegally awaken
435 		 * in SYN_* states. */
436 		if (tp->rcv_nxt - tp->copied_seq >= target)
437 			mask |= POLLIN | POLLRDNORM;
438 
439 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
440 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
441 				mask |= POLLOUT | POLLWRNORM;
442 			} else {  /* send SIGIO later */
443 				set_bit(SOCK_ASYNC_NOSPACE,
444 					&sk->sk_socket->flags);
445 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
446 
447 				/* Race breaker. If space is freed after
448 				 * wspace test but before the flags are set,
449 				 * IO signal will be lost.
450 				 */
451 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
452 					mask |= POLLOUT | POLLWRNORM;
453 			}
454 		}
455 
456 		if (tp->urg_data & TCP_URG_VALID)
457 			mask |= POLLPRI;
458 	}
459 	return mask;
460 }
461 EXPORT_SYMBOL(tcp_poll);
462 
463 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
464 {
465 	struct tcp_sock *tp = tcp_sk(sk);
466 	int answ;
467 
468 	switch (cmd) {
469 	case SIOCINQ:
470 		if (sk->sk_state == TCP_LISTEN)
471 			return -EINVAL;
472 
473 		lock_sock(sk);
474 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
475 			answ = 0;
476 		else if (sock_flag(sk, SOCK_URGINLINE) ||
477 			 !tp->urg_data ||
478 			 before(tp->urg_seq, tp->copied_seq) ||
479 			 !before(tp->urg_seq, tp->rcv_nxt)) {
480 			struct sk_buff *skb;
481 
482 			answ = tp->rcv_nxt - tp->copied_seq;
483 
484 			/* Subtract 1, if FIN is in queue. */
485 			skb = skb_peek_tail(&sk->sk_receive_queue);
486 			if (answ && skb)
487 				answ -= tcp_hdr(skb)->fin;
488 		} else
489 			answ = tp->urg_seq - tp->copied_seq;
490 		release_sock(sk);
491 		break;
492 	case SIOCATMARK:
493 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
494 		break;
495 	case SIOCOUTQ:
496 		if (sk->sk_state == TCP_LISTEN)
497 			return -EINVAL;
498 
499 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
500 			answ = 0;
501 		else
502 			answ = tp->write_seq - tp->snd_una;
503 		break;
504 	default:
505 		return -ENOIOCTLCMD;
506 	}
507 
508 	return put_user(answ, (int __user *)arg);
509 }
510 EXPORT_SYMBOL(tcp_ioctl);
511 
512 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
513 {
514 	TCP_SKB_CB(skb)->flags |= TCPHDR_PSH;
515 	tp->pushed_seq = tp->write_seq;
516 }
517 
518 static inline int forced_push(struct tcp_sock *tp)
519 {
520 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
521 }
522 
523 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
527 
528 	skb->csum    = 0;
529 	tcb->seq     = tcb->end_seq = tp->write_seq;
530 	tcb->flags   = TCPHDR_ACK;
531 	tcb->sacked  = 0;
532 	skb_header_release(skb);
533 	tcp_add_write_queue_tail(sk, skb);
534 	sk->sk_wmem_queued += skb->truesize;
535 	sk_mem_charge(sk, skb->truesize);
536 	if (tp->nonagle & TCP_NAGLE_PUSH)
537 		tp->nonagle &= ~TCP_NAGLE_PUSH;
538 }
539 
540 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
541 {
542 	if (flags & MSG_OOB)
543 		tp->snd_up = tp->write_seq;
544 }
545 
546 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
547 			    int nonagle)
548 {
549 	if (tcp_send_head(sk)) {
550 		struct tcp_sock *tp = tcp_sk(sk);
551 
552 		if (!(flags & MSG_MORE) || forced_push(tp))
553 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
554 
555 		tcp_mark_urg(tp, flags);
556 		__tcp_push_pending_frames(sk, mss_now,
557 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
558 	}
559 }
560 
561 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
562 				unsigned int offset, size_t len)
563 {
564 	struct tcp_splice_state *tss = rd_desc->arg.data;
565 	int ret;
566 
567 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
568 			      tss->flags);
569 	if (ret > 0)
570 		rd_desc->count -= ret;
571 	return ret;
572 }
573 
574 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
575 {
576 	/* Store TCP splice context information in read_descriptor_t. */
577 	read_descriptor_t rd_desc = {
578 		.arg.data = tss,
579 		.count	  = tss->len,
580 	};
581 
582 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
583 }
584 
585 /**
586  *  tcp_splice_read - splice data from TCP socket to a pipe
587  * @sock:	socket to splice from
588  * @ppos:	position (not valid)
589  * @pipe:	pipe to splice to
590  * @len:	number of bytes to splice
591  * @flags:	splice modifier flags
592  *
593  * Description:
594  *    Will read pages from given socket and fill them into a pipe.
595  *
596  **/
597 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
598 			struct pipe_inode_info *pipe, size_t len,
599 			unsigned int flags)
600 {
601 	struct sock *sk = sock->sk;
602 	struct tcp_splice_state tss = {
603 		.pipe = pipe,
604 		.len = len,
605 		.flags = flags,
606 	};
607 	long timeo;
608 	ssize_t spliced;
609 	int ret;
610 
611 	sock_rps_record_flow(sk);
612 	/*
613 	 * We can't seek on a socket input
614 	 */
615 	if (unlikely(*ppos))
616 		return -ESPIPE;
617 
618 	ret = spliced = 0;
619 
620 	lock_sock(sk);
621 
622 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
623 	while (tss.len) {
624 		ret = __tcp_splice_read(sk, &tss);
625 		if (ret < 0)
626 			break;
627 		else if (!ret) {
628 			if (spliced)
629 				break;
630 			if (sock_flag(sk, SOCK_DONE))
631 				break;
632 			if (sk->sk_err) {
633 				ret = sock_error(sk);
634 				break;
635 			}
636 			if (sk->sk_shutdown & RCV_SHUTDOWN)
637 				break;
638 			if (sk->sk_state == TCP_CLOSE) {
639 				/*
640 				 * This occurs when user tries to read
641 				 * from never connected socket.
642 				 */
643 				if (!sock_flag(sk, SOCK_DONE))
644 					ret = -ENOTCONN;
645 				break;
646 			}
647 			if (!timeo) {
648 				ret = -EAGAIN;
649 				break;
650 			}
651 			sk_wait_data(sk, &timeo);
652 			if (signal_pending(current)) {
653 				ret = sock_intr_errno(timeo);
654 				break;
655 			}
656 			continue;
657 		}
658 		tss.len -= ret;
659 		spliced += ret;
660 
661 		if (!timeo)
662 			break;
663 		release_sock(sk);
664 		lock_sock(sk);
665 
666 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
667 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
668 		    signal_pending(current))
669 			break;
670 	}
671 
672 	release_sock(sk);
673 
674 	if (spliced)
675 		return spliced;
676 
677 	return ret;
678 }
679 EXPORT_SYMBOL(tcp_splice_read);
680 
681 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
682 {
683 	struct sk_buff *skb;
684 
685 	/* The TCP header must be at least 32-bit aligned.  */
686 	size = ALIGN(size, 4);
687 
688 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
689 	if (skb) {
690 		if (sk_wmem_schedule(sk, skb->truesize)) {
691 			/*
692 			 * Make sure that we have exactly size bytes
693 			 * available to the caller, no more, no less.
694 			 */
695 			skb_reserve(skb, skb_tailroom(skb) - size);
696 			return skb;
697 		}
698 		__kfree_skb(skb);
699 	} else {
700 		sk->sk_prot->enter_memory_pressure(sk);
701 		sk_stream_moderate_sndbuf(sk);
702 	}
703 	return NULL;
704 }
705 
706 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
707 				       int large_allowed)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 	u32 xmit_size_goal, old_size_goal;
711 
712 	xmit_size_goal = mss_now;
713 
714 	if (large_allowed && sk_can_gso(sk)) {
715 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
716 				  inet_csk(sk)->icsk_af_ops->net_header_len -
717 				  inet_csk(sk)->icsk_ext_hdr_len -
718 				  tp->tcp_header_len);
719 
720 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
721 
722 		/* We try hard to avoid divides here */
723 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
724 
725 		if (likely(old_size_goal <= xmit_size_goal &&
726 			   old_size_goal + mss_now > xmit_size_goal)) {
727 			xmit_size_goal = old_size_goal;
728 		} else {
729 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
730 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
731 		}
732 	}
733 
734 	return max(xmit_size_goal, mss_now);
735 }
736 
737 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
738 {
739 	int mss_now;
740 
741 	mss_now = tcp_current_mss(sk);
742 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
743 
744 	return mss_now;
745 }
746 
747 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
748 			 size_t psize, int flags)
749 {
750 	struct tcp_sock *tp = tcp_sk(sk);
751 	int mss_now, size_goal;
752 	int err;
753 	ssize_t copied;
754 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
755 
756 	/* Wait for a connection to finish. */
757 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
758 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
759 			goto out_err;
760 
761 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
762 
763 	mss_now = tcp_send_mss(sk, &size_goal, flags);
764 	copied = 0;
765 
766 	err = -EPIPE;
767 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
768 		goto out_err;
769 
770 	while (psize > 0) {
771 		struct sk_buff *skb = tcp_write_queue_tail(sk);
772 		struct page *page = pages[poffset / PAGE_SIZE];
773 		int copy, i, can_coalesce;
774 		int offset = poffset % PAGE_SIZE;
775 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
776 
777 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
778 new_segment:
779 			if (!sk_stream_memory_free(sk))
780 				goto wait_for_sndbuf;
781 
782 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
783 			if (!skb)
784 				goto wait_for_memory;
785 
786 			skb_entail(sk, skb);
787 			copy = size_goal;
788 		}
789 
790 		if (copy > size)
791 			copy = size;
792 
793 		i = skb_shinfo(skb)->nr_frags;
794 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
795 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
796 			tcp_mark_push(tp, skb);
797 			goto new_segment;
798 		}
799 		if (!sk_wmem_schedule(sk, copy))
800 			goto wait_for_memory;
801 
802 		if (can_coalesce) {
803 			skb_shinfo(skb)->frags[i - 1].size += copy;
804 		} else {
805 			get_page(page);
806 			skb_fill_page_desc(skb, i, page, offset, copy);
807 		}
808 
809 		skb->len += copy;
810 		skb->data_len += copy;
811 		skb->truesize += copy;
812 		sk->sk_wmem_queued += copy;
813 		sk_mem_charge(sk, copy);
814 		skb->ip_summed = CHECKSUM_PARTIAL;
815 		tp->write_seq += copy;
816 		TCP_SKB_CB(skb)->end_seq += copy;
817 		skb_shinfo(skb)->gso_segs = 0;
818 
819 		if (!copied)
820 			TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
821 
822 		copied += copy;
823 		poffset += copy;
824 		if (!(psize -= copy))
825 			goto out;
826 
827 		if (skb->len < size_goal || (flags & MSG_OOB))
828 			continue;
829 
830 		if (forced_push(tp)) {
831 			tcp_mark_push(tp, skb);
832 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
833 		} else if (skb == tcp_send_head(sk))
834 			tcp_push_one(sk, mss_now);
835 		continue;
836 
837 wait_for_sndbuf:
838 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
839 wait_for_memory:
840 		if (copied)
841 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
842 
843 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
844 			goto do_error;
845 
846 		mss_now = tcp_send_mss(sk, &size_goal, flags);
847 	}
848 
849 out:
850 	if (copied)
851 		tcp_push(sk, flags, mss_now, tp->nonagle);
852 	return copied;
853 
854 do_error:
855 	if (copied)
856 		goto out;
857 out_err:
858 	return sk_stream_error(sk, flags, err);
859 }
860 
861 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
862 		 size_t size, int flags)
863 {
864 	ssize_t res;
865 
866 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
867 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
868 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
869 					flags);
870 
871 	lock_sock(sk);
872 	TCP_CHECK_TIMER(sk);
873 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
874 	TCP_CHECK_TIMER(sk);
875 	release_sock(sk);
876 	return res;
877 }
878 EXPORT_SYMBOL(tcp_sendpage);
879 
880 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
881 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
882 
883 static inline int select_size(struct sock *sk, int sg)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	int tmp = tp->mss_cache;
887 
888 	if (sg) {
889 		if (sk_can_gso(sk))
890 			tmp = 0;
891 		else {
892 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
893 
894 			if (tmp >= pgbreak &&
895 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
896 				tmp = pgbreak;
897 		}
898 	}
899 
900 	return tmp;
901 }
902 
903 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
904 		size_t size)
905 {
906 	struct iovec *iov;
907 	struct tcp_sock *tp = tcp_sk(sk);
908 	struct sk_buff *skb;
909 	int iovlen, flags;
910 	int mss_now, size_goal;
911 	int sg, err, copied;
912 	long timeo;
913 
914 	lock_sock(sk);
915 	TCP_CHECK_TIMER(sk);
916 
917 	flags = msg->msg_flags;
918 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
919 
920 	/* Wait for a connection to finish. */
921 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
922 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
923 			goto out_err;
924 
925 	/* This should be in poll */
926 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
927 
928 	mss_now = tcp_send_mss(sk, &size_goal, flags);
929 
930 	/* Ok commence sending. */
931 	iovlen = msg->msg_iovlen;
932 	iov = msg->msg_iov;
933 	copied = 0;
934 
935 	err = -EPIPE;
936 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
937 		goto out_err;
938 
939 	sg = sk->sk_route_caps & NETIF_F_SG;
940 
941 	while (--iovlen >= 0) {
942 		int seglen = iov->iov_len;
943 		unsigned char __user *from = iov->iov_base;
944 
945 		iov++;
946 
947 		while (seglen > 0) {
948 			int copy = 0;
949 			int max = size_goal;
950 
951 			skb = tcp_write_queue_tail(sk);
952 			if (tcp_send_head(sk)) {
953 				if (skb->ip_summed == CHECKSUM_NONE)
954 					max = mss_now;
955 				copy = max - skb->len;
956 			}
957 
958 			if (copy <= 0) {
959 new_segment:
960 				/* Allocate new segment. If the interface is SG,
961 				 * allocate skb fitting to single page.
962 				 */
963 				if (!sk_stream_memory_free(sk))
964 					goto wait_for_sndbuf;
965 
966 				skb = sk_stream_alloc_skb(sk,
967 							  select_size(sk, sg),
968 							  sk->sk_allocation);
969 				if (!skb)
970 					goto wait_for_memory;
971 
972 				/*
973 				 * Check whether we can use HW checksum.
974 				 */
975 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
976 					skb->ip_summed = CHECKSUM_PARTIAL;
977 
978 				skb_entail(sk, skb);
979 				copy = size_goal;
980 				max = size_goal;
981 			}
982 
983 			/* Try to append data to the end of skb. */
984 			if (copy > seglen)
985 				copy = seglen;
986 
987 			/* Where to copy to? */
988 			if (skb_tailroom(skb) > 0) {
989 				/* We have some space in skb head. Superb! */
990 				if (copy > skb_tailroom(skb))
991 					copy = skb_tailroom(skb);
992 				if ((err = skb_add_data(skb, from, copy)) != 0)
993 					goto do_fault;
994 			} else {
995 				int merge = 0;
996 				int i = skb_shinfo(skb)->nr_frags;
997 				struct page *page = TCP_PAGE(sk);
998 				int off = TCP_OFF(sk);
999 
1000 				if (skb_can_coalesce(skb, i, page, off) &&
1001 				    off != PAGE_SIZE) {
1002 					/* We can extend the last page
1003 					 * fragment. */
1004 					merge = 1;
1005 				} else if (i == MAX_SKB_FRAGS || !sg) {
1006 					/* Need to add new fragment and cannot
1007 					 * do this because interface is non-SG,
1008 					 * or because all the page slots are
1009 					 * busy. */
1010 					tcp_mark_push(tp, skb);
1011 					goto new_segment;
1012 				} else if (page) {
1013 					if (off == PAGE_SIZE) {
1014 						put_page(page);
1015 						TCP_PAGE(sk) = page = NULL;
1016 						off = 0;
1017 					}
1018 				} else
1019 					off = 0;
1020 
1021 				if (copy > PAGE_SIZE - off)
1022 					copy = PAGE_SIZE - off;
1023 
1024 				if (!sk_wmem_schedule(sk, copy))
1025 					goto wait_for_memory;
1026 
1027 				if (!page) {
1028 					/* Allocate new cache page. */
1029 					if (!(page = sk_stream_alloc_page(sk)))
1030 						goto wait_for_memory;
1031 				}
1032 
1033 				/* Time to copy data. We are close to
1034 				 * the end! */
1035 				err = skb_copy_to_page(sk, from, skb, page,
1036 						       off, copy);
1037 				if (err) {
1038 					/* If this page was new, give it to the
1039 					 * socket so it does not get leaked.
1040 					 */
1041 					if (!TCP_PAGE(sk)) {
1042 						TCP_PAGE(sk) = page;
1043 						TCP_OFF(sk) = 0;
1044 					}
1045 					goto do_error;
1046 				}
1047 
1048 				/* Update the skb. */
1049 				if (merge) {
1050 					skb_shinfo(skb)->frags[i - 1].size +=
1051 									copy;
1052 				} else {
1053 					skb_fill_page_desc(skb, i, page, off, copy);
1054 					if (TCP_PAGE(sk)) {
1055 						get_page(page);
1056 					} else if (off + copy < PAGE_SIZE) {
1057 						get_page(page);
1058 						TCP_PAGE(sk) = page;
1059 					}
1060 				}
1061 
1062 				TCP_OFF(sk) = off + copy;
1063 			}
1064 
1065 			if (!copied)
1066 				TCP_SKB_CB(skb)->flags &= ~TCPHDR_PSH;
1067 
1068 			tp->write_seq += copy;
1069 			TCP_SKB_CB(skb)->end_seq += copy;
1070 			skb_shinfo(skb)->gso_segs = 0;
1071 
1072 			from += copy;
1073 			copied += copy;
1074 			if ((seglen -= copy) == 0 && iovlen == 0)
1075 				goto out;
1076 
1077 			if (skb->len < max || (flags & MSG_OOB))
1078 				continue;
1079 
1080 			if (forced_push(tp)) {
1081 				tcp_mark_push(tp, skb);
1082 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1083 			} else if (skb == tcp_send_head(sk))
1084 				tcp_push_one(sk, mss_now);
1085 			continue;
1086 
1087 wait_for_sndbuf:
1088 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1089 wait_for_memory:
1090 			if (copied)
1091 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1092 
1093 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1094 				goto do_error;
1095 
1096 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1097 		}
1098 	}
1099 
1100 out:
1101 	if (copied)
1102 		tcp_push(sk, flags, mss_now, tp->nonagle);
1103 	TCP_CHECK_TIMER(sk);
1104 	release_sock(sk);
1105 	return copied;
1106 
1107 do_fault:
1108 	if (!skb->len) {
1109 		tcp_unlink_write_queue(skb, sk);
1110 		/* It is the one place in all of TCP, except connection
1111 		 * reset, where we can be unlinking the send_head.
1112 		 */
1113 		tcp_check_send_head(sk, skb);
1114 		sk_wmem_free_skb(sk, skb);
1115 	}
1116 
1117 do_error:
1118 	if (copied)
1119 		goto out;
1120 out_err:
1121 	err = sk_stream_error(sk, flags, err);
1122 	TCP_CHECK_TIMER(sk);
1123 	release_sock(sk);
1124 	return err;
1125 }
1126 EXPORT_SYMBOL(tcp_sendmsg);
1127 
1128 /*
1129  *	Handle reading urgent data. BSD has very simple semantics for
1130  *	this, no blocking and very strange errors 8)
1131  */
1132 
1133 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1134 {
1135 	struct tcp_sock *tp = tcp_sk(sk);
1136 
1137 	/* No URG data to read. */
1138 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1139 	    tp->urg_data == TCP_URG_READ)
1140 		return -EINVAL;	/* Yes this is right ! */
1141 
1142 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1143 		return -ENOTCONN;
1144 
1145 	if (tp->urg_data & TCP_URG_VALID) {
1146 		int err = 0;
1147 		char c = tp->urg_data;
1148 
1149 		if (!(flags & MSG_PEEK))
1150 			tp->urg_data = TCP_URG_READ;
1151 
1152 		/* Read urgent data. */
1153 		msg->msg_flags |= MSG_OOB;
1154 
1155 		if (len > 0) {
1156 			if (!(flags & MSG_TRUNC))
1157 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1158 			len = 1;
1159 		} else
1160 			msg->msg_flags |= MSG_TRUNC;
1161 
1162 		return err ? -EFAULT : len;
1163 	}
1164 
1165 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1166 		return 0;
1167 
1168 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1169 	 * the available implementations agree in this case:
1170 	 * this call should never block, independent of the
1171 	 * blocking state of the socket.
1172 	 * Mike <pall@rz.uni-karlsruhe.de>
1173 	 */
1174 	return -EAGAIN;
1175 }
1176 
1177 /* Clean up the receive buffer for full frames taken by the user,
1178  * then send an ACK if necessary.  COPIED is the number of bytes
1179  * tcp_recvmsg has given to the user so far, it speeds up the
1180  * calculation of whether or not we must ACK for the sake of
1181  * a window update.
1182  */
1183 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1184 {
1185 	struct tcp_sock *tp = tcp_sk(sk);
1186 	int time_to_ack = 0;
1187 
1188 #if TCP_DEBUG
1189 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1190 
1191 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1192 	     KERN_INFO "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1193 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1194 #endif
1195 
1196 	if (inet_csk_ack_scheduled(sk)) {
1197 		const struct inet_connection_sock *icsk = inet_csk(sk);
1198 		   /* Delayed ACKs frequently hit locked sockets during bulk
1199 		    * receive. */
1200 		if (icsk->icsk_ack.blocked ||
1201 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1202 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1203 		    /*
1204 		     * If this read emptied read buffer, we send ACK, if
1205 		     * connection is not bidirectional, user drained
1206 		     * receive buffer and there was a small segment
1207 		     * in queue.
1208 		     */
1209 		    (copied > 0 &&
1210 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1211 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1212 		       !icsk->icsk_ack.pingpong)) &&
1213 		      !atomic_read(&sk->sk_rmem_alloc)))
1214 			time_to_ack = 1;
1215 	}
1216 
1217 	/* We send an ACK if we can now advertise a non-zero window
1218 	 * which has been raised "significantly".
1219 	 *
1220 	 * Even if window raised up to infinity, do not send window open ACK
1221 	 * in states, where we will not receive more. It is useless.
1222 	 */
1223 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1224 		__u32 rcv_window_now = tcp_receive_window(tp);
1225 
1226 		/* Optimize, __tcp_select_window() is not cheap. */
1227 		if (2*rcv_window_now <= tp->window_clamp) {
1228 			__u32 new_window = __tcp_select_window(sk);
1229 
1230 			/* Send ACK now, if this read freed lots of space
1231 			 * in our buffer. Certainly, new_window is new window.
1232 			 * We can advertise it now, if it is not less than current one.
1233 			 * "Lots" means "at least twice" here.
1234 			 */
1235 			if (new_window && new_window >= 2 * rcv_window_now)
1236 				time_to_ack = 1;
1237 		}
1238 	}
1239 	if (time_to_ack)
1240 		tcp_send_ack(sk);
1241 }
1242 
1243 static void tcp_prequeue_process(struct sock *sk)
1244 {
1245 	struct sk_buff *skb;
1246 	struct tcp_sock *tp = tcp_sk(sk);
1247 
1248 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1249 
1250 	/* RX process wants to run with disabled BHs, though it is not
1251 	 * necessary */
1252 	local_bh_disable();
1253 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1254 		sk_backlog_rcv(sk, skb);
1255 	local_bh_enable();
1256 
1257 	/* Clear memory counter. */
1258 	tp->ucopy.memory = 0;
1259 }
1260 
1261 #ifdef CONFIG_NET_DMA
1262 static void tcp_service_net_dma(struct sock *sk, bool wait)
1263 {
1264 	dma_cookie_t done, used;
1265 	dma_cookie_t last_issued;
1266 	struct tcp_sock *tp = tcp_sk(sk);
1267 
1268 	if (!tp->ucopy.dma_chan)
1269 		return;
1270 
1271 	last_issued = tp->ucopy.dma_cookie;
1272 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1273 
1274 	do {
1275 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1276 					      last_issued, &done,
1277 					      &used) == DMA_SUCCESS) {
1278 			/* Safe to free early-copied skbs now */
1279 			__skb_queue_purge(&sk->sk_async_wait_queue);
1280 			break;
1281 		} else {
1282 			struct sk_buff *skb;
1283 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1284 			       (dma_async_is_complete(skb->dma_cookie, done,
1285 						      used) == DMA_SUCCESS)) {
1286 				__skb_dequeue(&sk->sk_async_wait_queue);
1287 				kfree_skb(skb);
1288 			}
1289 		}
1290 	} while (wait);
1291 }
1292 #endif
1293 
1294 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1295 {
1296 	struct sk_buff *skb;
1297 	u32 offset;
1298 
1299 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1300 		offset = seq - TCP_SKB_CB(skb)->seq;
1301 		if (tcp_hdr(skb)->syn)
1302 			offset--;
1303 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1304 			*off = offset;
1305 			return skb;
1306 		}
1307 	}
1308 	return NULL;
1309 }
1310 
1311 /*
1312  * This routine provides an alternative to tcp_recvmsg() for routines
1313  * that would like to handle copying from skbuffs directly in 'sendfile'
1314  * fashion.
1315  * Note:
1316  *	- It is assumed that the socket was locked by the caller.
1317  *	- The routine does not block.
1318  *	- At present, there is no support for reading OOB data
1319  *	  or for 'peeking' the socket using this routine
1320  *	  (although both would be easy to implement).
1321  */
1322 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1323 		  sk_read_actor_t recv_actor)
1324 {
1325 	struct sk_buff *skb;
1326 	struct tcp_sock *tp = tcp_sk(sk);
1327 	u32 seq = tp->copied_seq;
1328 	u32 offset;
1329 	int copied = 0;
1330 
1331 	if (sk->sk_state == TCP_LISTEN)
1332 		return -ENOTCONN;
1333 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1334 		if (offset < skb->len) {
1335 			int used;
1336 			size_t len;
1337 
1338 			len = skb->len - offset;
1339 			/* Stop reading if we hit a patch of urgent data */
1340 			if (tp->urg_data) {
1341 				u32 urg_offset = tp->urg_seq - seq;
1342 				if (urg_offset < len)
1343 					len = urg_offset;
1344 				if (!len)
1345 					break;
1346 			}
1347 			used = recv_actor(desc, skb, offset, len);
1348 			if (used < 0) {
1349 				if (!copied)
1350 					copied = used;
1351 				break;
1352 			} else if (used <= len) {
1353 				seq += used;
1354 				copied += used;
1355 				offset += used;
1356 			}
1357 			/*
1358 			 * If recv_actor drops the lock (e.g. TCP splice
1359 			 * receive) the skb pointer might be invalid when
1360 			 * getting here: tcp_collapse might have deleted it
1361 			 * while aggregating skbs from the socket queue.
1362 			 */
1363 			skb = tcp_recv_skb(sk, seq-1, &offset);
1364 			if (!skb || (offset+1 != skb->len))
1365 				break;
1366 		}
1367 		if (tcp_hdr(skb)->fin) {
1368 			sk_eat_skb(sk, skb, 0);
1369 			++seq;
1370 			break;
1371 		}
1372 		sk_eat_skb(sk, skb, 0);
1373 		if (!desc->count)
1374 			break;
1375 		tp->copied_seq = seq;
1376 	}
1377 	tp->copied_seq = seq;
1378 
1379 	tcp_rcv_space_adjust(sk);
1380 
1381 	/* Clean up data we have read: This will do ACK frames. */
1382 	if (copied > 0)
1383 		tcp_cleanup_rbuf(sk, copied);
1384 	return copied;
1385 }
1386 EXPORT_SYMBOL(tcp_read_sock);
1387 
1388 /*
1389  *	This routine copies from a sock struct into the user buffer.
1390  *
1391  *	Technical note: in 2.3 we work on _locked_ socket, so that
1392  *	tricks with *seq access order and skb->users are not required.
1393  *	Probably, code can be easily improved even more.
1394  */
1395 
1396 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1397 		size_t len, int nonblock, int flags, int *addr_len)
1398 {
1399 	struct tcp_sock *tp = tcp_sk(sk);
1400 	int copied = 0;
1401 	u32 peek_seq;
1402 	u32 *seq;
1403 	unsigned long used;
1404 	int err;
1405 	int target;		/* Read at least this many bytes */
1406 	long timeo;
1407 	struct task_struct *user_recv = NULL;
1408 	int copied_early = 0;
1409 	struct sk_buff *skb;
1410 	u32 urg_hole = 0;
1411 
1412 	lock_sock(sk);
1413 
1414 	TCP_CHECK_TIMER(sk);
1415 
1416 	err = -ENOTCONN;
1417 	if (sk->sk_state == TCP_LISTEN)
1418 		goto out;
1419 
1420 	timeo = sock_rcvtimeo(sk, nonblock);
1421 
1422 	/* Urgent data needs to be handled specially. */
1423 	if (flags & MSG_OOB)
1424 		goto recv_urg;
1425 
1426 	seq = &tp->copied_seq;
1427 	if (flags & MSG_PEEK) {
1428 		peek_seq = tp->copied_seq;
1429 		seq = &peek_seq;
1430 	}
1431 
1432 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1433 
1434 #ifdef CONFIG_NET_DMA
1435 	tp->ucopy.dma_chan = NULL;
1436 	preempt_disable();
1437 	skb = skb_peek_tail(&sk->sk_receive_queue);
1438 	{
1439 		int available = 0;
1440 
1441 		if (skb)
1442 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1443 		if ((available < target) &&
1444 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1445 		    !sysctl_tcp_low_latency &&
1446 		    dma_find_channel(DMA_MEMCPY)) {
1447 			preempt_enable_no_resched();
1448 			tp->ucopy.pinned_list =
1449 					dma_pin_iovec_pages(msg->msg_iov, len);
1450 		} else {
1451 			preempt_enable_no_resched();
1452 		}
1453 	}
1454 #endif
1455 
1456 	do {
1457 		u32 offset;
1458 
1459 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1460 		if (tp->urg_data && tp->urg_seq == *seq) {
1461 			if (copied)
1462 				break;
1463 			if (signal_pending(current)) {
1464 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1465 				break;
1466 			}
1467 		}
1468 
1469 		/* Next get a buffer. */
1470 
1471 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1472 			/* Now that we have two receive queues this
1473 			 * shouldn't happen.
1474 			 */
1475 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1476 			     KERN_INFO "recvmsg bug: copied %X "
1477 				       "seq %X rcvnxt %X fl %X\n", *seq,
1478 				       TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1479 				       flags))
1480 				break;
1481 
1482 			offset = *seq - TCP_SKB_CB(skb)->seq;
1483 			if (tcp_hdr(skb)->syn)
1484 				offset--;
1485 			if (offset < skb->len)
1486 				goto found_ok_skb;
1487 			if (tcp_hdr(skb)->fin)
1488 				goto found_fin_ok;
1489 			WARN(!(flags & MSG_PEEK), KERN_INFO "recvmsg bug 2: "
1490 					"copied %X seq %X rcvnxt %X fl %X\n",
1491 					*seq, TCP_SKB_CB(skb)->seq,
1492 					tp->rcv_nxt, flags);
1493 		}
1494 
1495 		/* Well, if we have backlog, try to process it now yet. */
1496 
1497 		if (copied >= target && !sk->sk_backlog.tail)
1498 			break;
1499 
1500 		if (copied) {
1501 			if (sk->sk_err ||
1502 			    sk->sk_state == TCP_CLOSE ||
1503 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1504 			    !timeo ||
1505 			    signal_pending(current))
1506 				break;
1507 		} else {
1508 			if (sock_flag(sk, SOCK_DONE))
1509 				break;
1510 
1511 			if (sk->sk_err) {
1512 				copied = sock_error(sk);
1513 				break;
1514 			}
1515 
1516 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1517 				break;
1518 
1519 			if (sk->sk_state == TCP_CLOSE) {
1520 				if (!sock_flag(sk, SOCK_DONE)) {
1521 					/* This occurs when user tries to read
1522 					 * from never connected socket.
1523 					 */
1524 					copied = -ENOTCONN;
1525 					break;
1526 				}
1527 				break;
1528 			}
1529 
1530 			if (!timeo) {
1531 				copied = -EAGAIN;
1532 				break;
1533 			}
1534 
1535 			if (signal_pending(current)) {
1536 				copied = sock_intr_errno(timeo);
1537 				break;
1538 			}
1539 		}
1540 
1541 		tcp_cleanup_rbuf(sk, copied);
1542 
1543 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1544 			/* Install new reader */
1545 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1546 				user_recv = current;
1547 				tp->ucopy.task = user_recv;
1548 				tp->ucopy.iov = msg->msg_iov;
1549 			}
1550 
1551 			tp->ucopy.len = len;
1552 
1553 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1554 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1555 
1556 			/* Ugly... If prequeue is not empty, we have to
1557 			 * process it before releasing socket, otherwise
1558 			 * order will be broken at second iteration.
1559 			 * More elegant solution is required!!!
1560 			 *
1561 			 * Look: we have the following (pseudo)queues:
1562 			 *
1563 			 * 1. packets in flight
1564 			 * 2. backlog
1565 			 * 3. prequeue
1566 			 * 4. receive_queue
1567 			 *
1568 			 * Each queue can be processed only if the next ones
1569 			 * are empty. At this point we have empty receive_queue.
1570 			 * But prequeue _can_ be not empty after 2nd iteration,
1571 			 * when we jumped to start of loop because backlog
1572 			 * processing added something to receive_queue.
1573 			 * We cannot release_sock(), because backlog contains
1574 			 * packets arrived _after_ prequeued ones.
1575 			 *
1576 			 * Shortly, algorithm is clear --- to process all
1577 			 * the queues in order. We could make it more directly,
1578 			 * requeueing packets from backlog to prequeue, if
1579 			 * is not empty. It is more elegant, but eats cycles,
1580 			 * unfortunately.
1581 			 */
1582 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1583 				goto do_prequeue;
1584 
1585 			/* __ Set realtime policy in scheduler __ */
1586 		}
1587 
1588 #ifdef CONFIG_NET_DMA
1589 		if (tp->ucopy.dma_chan)
1590 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1591 #endif
1592 		if (copied >= target) {
1593 			/* Do not sleep, just process backlog. */
1594 			release_sock(sk);
1595 			lock_sock(sk);
1596 		} else
1597 			sk_wait_data(sk, &timeo);
1598 
1599 #ifdef CONFIG_NET_DMA
1600 		tcp_service_net_dma(sk, false);  /* Don't block */
1601 		tp->ucopy.wakeup = 0;
1602 #endif
1603 
1604 		if (user_recv) {
1605 			int chunk;
1606 
1607 			/* __ Restore normal policy in scheduler __ */
1608 
1609 			if ((chunk = len - tp->ucopy.len) != 0) {
1610 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1611 				len -= chunk;
1612 				copied += chunk;
1613 			}
1614 
1615 			if (tp->rcv_nxt == tp->copied_seq &&
1616 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1617 do_prequeue:
1618 				tcp_prequeue_process(sk);
1619 
1620 				if ((chunk = len - tp->ucopy.len) != 0) {
1621 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1622 					len -= chunk;
1623 					copied += chunk;
1624 				}
1625 			}
1626 		}
1627 		if ((flags & MSG_PEEK) &&
1628 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1629 			if (net_ratelimit())
1630 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1631 				       current->comm, task_pid_nr(current));
1632 			peek_seq = tp->copied_seq;
1633 		}
1634 		continue;
1635 
1636 	found_ok_skb:
1637 		/* Ok so how much can we use? */
1638 		used = skb->len - offset;
1639 		if (len < used)
1640 			used = len;
1641 
1642 		/* Do we have urgent data here? */
1643 		if (tp->urg_data) {
1644 			u32 urg_offset = tp->urg_seq - *seq;
1645 			if (urg_offset < used) {
1646 				if (!urg_offset) {
1647 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1648 						++*seq;
1649 						urg_hole++;
1650 						offset++;
1651 						used--;
1652 						if (!used)
1653 							goto skip_copy;
1654 					}
1655 				} else
1656 					used = urg_offset;
1657 			}
1658 		}
1659 
1660 		if (!(flags & MSG_TRUNC)) {
1661 #ifdef CONFIG_NET_DMA
1662 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1663 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1664 
1665 			if (tp->ucopy.dma_chan) {
1666 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1667 					tp->ucopy.dma_chan, skb, offset,
1668 					msg->msg_iov, used,
1669 					tp->ucopy.pinned_list);
1670 
1671 				if (tp->ucopy.dma_cookie < 0) {
1672 
1673 					printk(KERN_ALERT "dma_cookie < 0\n");
1674 
1675 					/* Exception. Bailout! */
1676 					if (!copied)
1677 						copied = -EFAULT;
1678 					break;
1679 				}
1680 
1681 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1682 
1683 				if ((offset + used) == skb->len)
1684 					copied_early = 1;
1685 
1686 			} else
1687 #endif
1688 			{
1689 				err = skb_copy_datagram_iovec(skb, offset,
1690 						msg->msg_iov, used);
1691 				if (err) {
1692 					/* Exception. Bailout! */
1693 					if (!copied)
1694 						copied = -EFAULT;
1695 					break;
1696 				}
1697 			}
1698 		}
1699 
1700 		*seq += used;
1701 		copied += used;
1702 		len -= used;
1703 
1704 		tcp_rcv_space_adjust(sk);
1705 
1706 skip_copy:
1707 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1708 			tp->urg_data = 0;
1709 			tcp_fast_path_check(sk);
1710 		}
1711 		if (used + offset < skb->len)
1712 			continue;
1713 
1714 		if (tcp_hdr(skb)->fin)
1715 			goto found_fin_ok;
1716 		if (!(flags & MSG_PEEK)) {
1717 			sk_eat_skb(sk, skb, copied_early);
1718 			copied_early = 0;
1719 		}
1720 		continue;
1721 
1722 	found_fin_ok:
1723 		/* Process the FIN. */
1724 		++*seq;
1725 		if (!(flags & MSG_PEEK)) {
1726 			sk_eat_skb(sk, skb, copied_early);
1727 			copied_early = 0;
1728 		}
1729 		break;
1730 	} while (len > 0);
1731 
1732 	if (user_recv) {
1733 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1734 			int chunk;
1735 
1736 			tp->ucopy.len = copied > 0 ? len : 0;
1737 
1738 			tcp_prequeue_process(sk);
1739 
1740 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1741 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1742 				len -= chunk;
1743 				copied += chunk;
1744 			}
1745 		}
1746 
1747 		tp->ucopy.task = NULL;
1748 		tp->ucopy.len = 0;
1749 	}
1750 
1751 #ifdef CONFIG_NET_DMA
1752 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1753 	tp->ucopy.dma_chan = NULL;
1754 
1755 	if (tp->ucopy.pinned_list) {
1756 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1757 		tp->ucopy.pinned_list = NULL;
1758 	}
1759 #endif
1760 
1761 	/* According to UNIX98, msg_name/msg_namelen are ignored
1762 	 * on connected socket. I was just happy when found this 8) --ANK
1763 	 */
1764 
1765 	/* Clean up data we have read: This will do ACK frames. */
1766 	tcp_cleanup_rbuf(sk, copied);
1767 
1768 	TCP_CHECK_TIMER(sk);
1769 	release_sock(sk);
1770 	return copied;
1771 
1772 out:
1773 	TCP_CHECK_TIMER(sk);
1774 	release_sock(sk);
1775 	return err;
1776 
1777 recv_urg:
1778 	err = tcp_recv_urg(sk, msg, len, flags);
1779 	goto out;
1780 }
1781 EXPORT_SYMBOL(tcp_recvmsg);
1782 
1783 void tcp_set_state(struct sock *sk, int state)
1784 {
1785 	int oldstate = sk->sk_state;
1786 
1787 	switch (state) {
1788 	case TCP_ESTABLISHED:
1789 		if (oldstate != TCP_ESTABLISHED)
1790 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1791 		break;
1792 
1793 	case TCP_CLOSE:
1794 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1795 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1796 
1797 		sk->sk_prot->unhash(sk);
1798 		if (inet_csk(sk)->icsk_bind_hash &&
1799 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1800 			inet_put_port(sk);
1801 		/* fall through */
1802 	default:
1803 		if (oldstate == TCP_ESTABLISHED)
1804 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1805 	}
1806 
1807 	/* Change state AFTER socket is unhashed to avoid closed
1808 	 * socket sitting in hash tables.
1809 	 */
1810 	sk->sk_state = state;
1811 
1812 #ifdef STATE_TRACE
1813 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1814 #endif
1815 }
1816 EXPORT_SYMBOL_GPL(tcp_set_state);
1817 
1818 /*
1819  *	State processing on a close. This implements the state shift for
1820  *	sending our FIN frame. Note that we only send a FIN for some
1821  *	states. A shutdown() may have already sent the FIN, or we may be
1822  *	closed.
1823  */
1824 
1825 static const unsigned char new_state[16] = {
1826   /* current state:        new state:      action:	*/
1827   /* (Invalid)		*/ TCP_CLOSE,
1828   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1829   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1830   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1831   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1832   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1833   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1834   /* TCP_CLOSE		*/ TCP_CLOSE,
1835   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1836   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1837   /* TCP_LISTEN		*/ TCP_CLOSE,
1838   /* TCP_CLOSING	*/ TCP_CLOSING,
1839 };
1840 
1841 static int tcp_close_state(struct sock *sk)
1842 {
1843 	int next = (int)new_state[sk->sk_state];
1844 	int ns = next & TCP_STATE_MASK;
1845 
1846 	tcp_set_state(sk, ns);
1847 
1848 	return next & TCP_ACTION_FIN;
1849 }
1850 
1851 /*
1852  *	Shutdown the sending side of a connection. Much like close except
1853  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1854  */
1855 
1856 void tcp_shutdown(struct sock *sk, int how)
1857 {
1858 	/*	We need to grab some memory, and put together a FIN,
1859 	 *	and then put it into the queue to be sent.
1860 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1861 	 */
1862 	if (!(how & SEND_SHUTDOWN))
1863 		return;
1864 
1865 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1866 	if ((1 << sk->sk_state) &
1867 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1868 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1869 		/* Clear out any half completed packets.  FIN if needed. */
1870 		if (tcp_close_state(sk))
1871 			tcp_send_fin(sk);
1872 	}
1873 }
1874 EXPORT_SYMBOL(tcp_shutdown);
1875 
1876 void tcp_close(struct sock *sk, long timeout)
1877 {
1878 	struct sk_buff *skb;
1879 	int data_was_unread = 0;
1880 	int state;
1881 
1882 	lock_sock(sk);
1883 	sk->sk_shutdown = SHUTDOWN_MASK;
1884 
1885 	if (sk->sk_state == TCP_LISTEN) {
1886 		tcp_set_state(sk, TCP_CLOSE);
1887 
1888 		/* Special case. */
1889 		inet_csk_listen_stop(sk);
1890 
1891 		goto adjudge_to_death;
1892 	}
1893 
1894 	/*  We need to flush the recv. buffs.  We do this only on the
1895 	 *  descriptor close, not protocol-sourced closes, because the
1896 	 *  reader process may not have drained the data yet!
1897 	 */
1898 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1899 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1900 			  tcp_hdr(skb)->fin;
1901 		data_was_unread += len;
1902 		__kfree_skb(skb);
1903 	}
1904 
1905 	sk_mem_reclaim(sk);
1906 
1907 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
1908 	if (sk->sk_state == TCP_CLOSE)
1909 		goto adjudge_to_death;
1910 
1911 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1912 	 * data was lost. To witness the awful effects of the old behavior of
1913 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1914 	 * GET in an FTP client, suspend the process, wait for the client to
1915 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1916 	 * Note: timeout is always zero in such a case.
1917 	 */
1918 	if (data_was_unread) {
1919 		/* Unread data was tossed, zap the connection. */
1920 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1921 		tcp_set_state(sk, TCP_CLOSE);
1922 		tcp_send_active_reset(sk, sk->sk_allocation);
1923 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1924 		/* Check zero linger _after_ checking for unread data. */
1925 		sk->sk_prot->disconnect(sk, 0);
1926 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1927 	} else if (tcp_close_state(sk)) {
1928 		/* We FIN if the application ate all the data before
1929 		 * zapping the connection.
1930 		 */
1931 
1932 		/* RED-PEN. Formally speaking, we have broken TCP state
1933 		 * machine. State transitions:
1934 		 *
1935 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1936 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1937 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1938 		 *
1939 		 * are legal only when FIN has been sent (i.e. in window),
1940 		 * rather than queued out of window. Purists blame.
1941 		 *
1942 		 * F.e. "RFC state" is ESTABLISHED,
1943 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1944 		 *
1945 		 * The visible declinations are that sometimes
1946 		 * we enter time-wait state, when it is not required really
1947 		 * (harmless), do not send active resets, when they are
1948 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1949 		 * they look as CLOSING or LAST_ACK for Linux)
1950 		 * Probably, I missed some more holelets.
1951 		 * 						--ANK
1952 		 */
1953 		tcp_send_fin(sk);
1954 	}
1955 
1956 	sk_stream_wait_close(sk, timeout);
1957 
1958 adjudge_to_death:
1959 	state = sk->sk_state;
1960 	sock_hold(sk);
1961 	sock_orphan(sk);
1962 
1963 	/* It is the last release_sock in its life. It will remove backlog. */
1964 	release_sock(sk);
1965 
1966 
1967 	/* Now socket is owned by kernel and we acquire BH lock
1968 	   to finish close. No need to check for user refs.
1969 	 */
1970 	local_bh_disable();
1971 	bh_lock_sock(sk);
1972 	WARN_ON(sock_owned_by_user(sk));
1973 
1974 	percpu_counter_inc(sk->sk_prot->orphan_count);
1975 
1976 	/* Have we already been destroyed by a softirq or backlog? */
1977 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1978 		goto out;
1979 
1980 	/*	This is a (useful) BSD violating of the RFC. There is a
1981 	 *	problem with TCP as specified in that the other end could
1982 	 *	keep a socket open forever with no application left this end.
1983 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1984 	 *	our end. If they send after that then tough - BUT: long enough
1985 	 *	that we won't make the old 4*rto = almost no time - whoops
1986 	 *	reset mistake.
1987 	 *
1988 	 *	Nope, it was not mistake. It is really desired behaviour
1989 	 *	f.e. on http servers, when such sockets are useless, but
1990 	 *	consume significant resources. Let's do it with special
1991 	 *	linger2	option.					--ANK
1992 	 */
1993 
1994 	if (sk->sk_state == TCP_FIN_WAIT2) {
1995 		struct tcp_sock *tp = tcp_sk(sk);
1996 		if (tp->linger2 < 0) {
1997 			tcp_set_state(sk, TCP_CLOSE);
1998 			tcp_send_active_reset(sk, GFP_ATOMIC);
1999 			NET_INC_STATS_BH(sock_net(sk),
2000 					LINUX_MIB_TCPABORTONLINGER);
2001 		} else {
2002 			const int tmo = tcp_fin_time(sk);
2003 
2004 			if (tmo > TCP_TIMEWAIT_LEN) {
2005 				inet_csk_reset_keepalive_timer(sk,
2006 						tmo - TCP_TIMEWAIT_LEN);
2007 			} else {
2008 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2009 				goto out;
2010 			}
2011 		}
2012 	}
2013 	if (sk->sk_state != TCP_CLOSE) {
2014 		int orphan_count = percpu_counter_read_positive(
2015 						sk->sk_prot->orphan_count);
2016 
2017 		sk_mem_reclaim(sk);
2018 		if (tcp_too_many_orphans(sk, orphan_count)) {
2019 			if (net_ratelimit())
2020 				printk(KERN_INFO "TCP: too many of orphaned "
2021 				       "sockets\n");
2022 			tcp_set_state(sk, TCP_CLOSE);
2023 			tcp_send_active_reset(sk, GFP_ATOMIC);
2024 			NET_INC_STATS_BH(sock_net(sk),
2025 					LINUX_MIB_TCPABORTONMEMORY);
2026 		}
2027 	}
2028 
2029 	if (sk->sk_state == TCP_CLOSE)
2030 		inet_csk_destroy_sock(sk);
2031 	/* Otherwise, socket is reprieved until protocol close. */
2032 
2033 out:
2034 	bh_unlock_sock(sk);
2035 	local_bh_enable();
2036 	sock_put(sk);
2037 }
2038 EXPORT_SYMBOL(tcp_close);
2039 
2040 /* These states need RST on ABORT according to RFC793 */
2041 
2042 static inline int tcp_need_reset(int state)
2043 {
2044 	return (1 << state) &
2045 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2046 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2047 }
2048 
2049 int tcp_disconnect(struct sock *sk, int flags)
2050 {
2051 	struct inet_sock *inet = inet_sk(sk);
2052 	struct inet_connection_sock *icsk = inet_csk(sk);
2053 	struct tcp_sock *tp = tcp_sk(sk);
2054 	int err = 0;
2055 	int old_state = sk->sk_state;
2056 
2057 	if (old_state != TCP_CLOSE)
2058 		tcp_set_state(sk, TCP_CLOSE);
2059 
2060 	/* ABORT function of RFC793 */
2061 	if (old_state == TCP_LISTEN) {
2062 		inet_csk_listen_stop(sk);
2063 	} else if (tcp_need_reset(old_state) ||
2064 		   (tp->snd_nxt != tp->write_seq &&
2065 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2066 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2067 		 * states
2068 		 */
2069 		tcp_send_active_reset(sk, gfp_any());
2070 		sk->sk_err = ECONNRESET;
2071 	} else if (old_state == TCP_SYN_SENT)
2072 		sk->sk_err = ECONNRESET;
2073 
2074 	tcp_clear_xmit_timers(sk);
2075 	__skb_queue_purge(&sk->sk_receive_queue);
2076 	tcp_write_queue_purge(sk);
2077 	__skb_queue_purge(&tp->out_of_order_queue);
2078 #ifdef CONFIG_NET_DMA
2079 	__skb_queue_purge(&sk->sk_async_wait_queue);
2080 #endif
2081 
2082 	inet->inet_dport = 0;
2083 
2084 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2085 		inet_reset_saddr(sk);
2086 
2087 	sk->sk_shutdown = 0;
2088 	sock_reset_flag(sk, SOCK_DONE);
2089 	tp->srtt = 0;
2090 	if ((tp->write_seq += tp->max_window + 2) == 0)
2091 		tp->write_seq = 1;
2092 	icsk->icsk_backoff = 0;
2093 	tp->snd_cwnd = 2;
2094 	icsk->icsk_probes_out = 0;
2095 	tp->packets_out = 0;
2096 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2097 	tp->snd_cwnd_cnt = 0;
2098 	tp->bytes_acked = 0;
2099 	tp->window_clamp = 0;
2100 	tcp_set_ca_state(sk, TCP_CA_Open);
2101 	tcp_clear_retrans(tp);
2102 	inet_csk_delack_init(sk);
2103 	tcp_init_send_head(sk);
2104 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2105 	__sk_dst_reset(sk);
2106 
2107 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2108 
2109 	sk->sk_error_report(sk);
2110 	return err;
2111 }
2112 EXPORT_SYMBOL(tcp_disconnect);
2113 
2114 /*
2115  *	Socket option code for TCP.
2116  */
2117 static int do_tcp_setsockopt(struct sock *sk, int level,
2118 		int optname, char __user *optval, unsigned int optlen)
2119 {
2120 	struct tcp_sock *tp = tcp_sk(sk);
2121 	struct inet_connection_sock *icsk = inet_csk(sk);
2122 	int val;
2123 	int err = 0;
2124 
2125 	/* These are data/string values, all the others are ints */
2126 	switch (optname) {
2127 	case TCP_CONGESTION: {
2128 		char name[TCP_CA_NAME_MAX];
2129 
2130 		if (optlen < 1)
2131 			return -EINVAL;
2132 
2133 		val = strncpy_from_user(name, optval,
2134 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2135 		if (val < 0)
2136 			return -EFAULT;
2137 		name[val] = 0;
2138 
2139 		lock_sock(sk);
2140 		err = tcp_set_congestion_control(sk, name);
2141 		release_sock(sk);
2142 		return err;
2143 	}
2144 	case TCP_COOKIE_TRANSACTIONS: {
2145 		struct tcp_cookie_transactions ctd;
2146 		struct tcp_cookie_values *cvp = NULL;
2147 
2148 		if (sizeof(ctd) > optlen)
2149 			return -EINVAL;
2150 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2151 			return -EFAULT;
2152 
2153 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2154 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2155 			return -EINVAL;
2156 
2157 		if (ctd.tcpct_cookie_desired == 0) {
2158 			/* default to global value */
2159 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2160 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2161 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2162 			return -EINVAL;
2163 		}
2164 
2165 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2166 			/* Supercedes all other values */
2167 			lock_sock(sk);
2168 			if (tp->cookie_values != NULL) {
2169 				kref_put(&tp->cookie_values->kref,
2170 					 tcp_cookie_values_release);
2171 				tp->cookie_values = NULL;
2172 			}
2173 			tp->rx_opt.cookie_in_always = 0; /* false */
2174 			tp->rx_opt.cookie_out_never = 1; /* true */
2175 			release_sock(sk);
2176 			return err;
2177 		}
2178 
2179 		/* Allocate ancillary memory before locking.
2180 		 */
2181 		if (ctd.tcpct_used > 0 ||
2182 		    (tp->cookie_values == NULL &&
2183 		     (sysctl_tcp_cookie_size > 0 ||
2184 		      ctd.tcpct_cookie_desired > 0 ||
2185 		      ctd.tcpct_s_data_desired > 0))) {
2186 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2187 				      GFP_KERNEL);
2188 			if (cvp == NULL)
2189 				return -ENOMEM;
2190 
2191 			kref_init(&cvp->kref);
2192 		}
2193 		lock_sock(sk);
2194 		tp->rx_opt.cookie_in_always =
2195 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2196 		tp->rx_opt.cookie_out_never = 0; /* false */
2197 
2198 		if (tp->cookie_values != NULL) {
2199 			if (cvp != NULL) {
2200 				/* Changed values are recorded by a changed
2201 				 * pointer, ensuring the cookie will differ,
2202 				 * without separately hashing each value later.
2203 				 */
2204 				kref_put(&tp->cookie_values->kref,
2205 					 tcp_cookie_values_release);
2206 			} else {
2207 				cvp = tp->cookie_values;
2208 			}
2209 		}
2210 
2211 		if (cvp != NULL) {
2212 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2213 
2214 			if (ctd.tcpct_used > 0) {
2215 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2216 				       ctd.tcpct_used);
2217 				cvp->s_data_desired = ctd.tcpct_used;
2218 				cvp->s_data_constant = 1; /* true */
2219 			} else {
2220 				/* No constant payload data. */
2221 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2222 				cvp->s_data_constant = 0; /* false */
2223 			}
2224 
2225 			tp->cookie_values = cvp;
2226 		}
2227 		release_sock(sk);
2228 		return err;
2229 	}
2230 	default:
2231 		/* fallthru */
2232 		break;
2233 	}
2234 
2235 	if (optlen < sizeof(int))
2236 		return -EINVAL;
2237 
2238 	if (get_user(val, (int __user *)optval))
2239 		return -EFAULT;
2240 
2241 	lock_sock(sk);
2242 
2243 	switch (optname) {
2244 	case TCP_MAXSEG:
2245 		/* Values greater than interface MTU won't take effect. However
2246 		 * at the point when this call is done we typically don't yet
2247 		 * know which interface is going to be used */
2248 		if (val < 8 || val > MAX_TCP_WINDOW) {
2249 			err = -EINVAL;
2250 			break;
2251 		}
2252 		tp->rx_opt.user_mss = val;
2253 		break;
2254 
2255 	case TCP_NODELAY:
2256 		if (val) {
2257 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2258 			 * this option on corked socket is remembered, but
2259 			 * it is not activated until cork is cleared.
2260 			 *
2261 			 * However, when TCP_NODELAY is set we make
2262 			 * an explicit push, which overrides even TCP_CORK
2263 			 * for currently queued segments.
2264 			 */
2265 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2266 			tcp_push_pending_frames(sk);
2267 		} else {
2268 			tp->nonagle &= ~TCP_NAGLE_OFF;
2269 		}
2270 		break;
2271 
2272 	case TCP_THIN_LINEAR_TIMEOUTS:
2273 		if (val < 0 || val > 1)
2274 			err = -EINVAL;
2275 		else
2276 			tp->thin_lto = val;
2277 		break;
2278 
2279 	case TCP_THIN_DUPACK:
2280 		if (val < 0 || val > 1)
2281 			err = -EINVAL;
2282 		else
2283 			tp->thin_dupack = val;
2284 		break;
2285 
2286 	case TCP_CORK:
2287 		/* When set indicates to always queue non-full frames.
2288 		 * Later the user clears this option and we transmit
2289 		 * any pending partial frames in the queue.  This is
2290 		 * meant to be used alongside sendfile() to get properly
2291 		 * filled frames when the user (for example) must write
2292 		 * out headers with a write() call first and then use
2293 		 * sendfile to send out the data parts.
2294 		 *
2295 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2296 		 * stronger than TCP_NODELAY.
2297 		 */
2298 		if (val) {
2299 			tp->nonagle |= TCP_NAGLE_CORK;
2300 		} else {
2301 			tp->nonagle &= ~TCP_NAGLE_CORK;
2302 			if (tp->nonagle&TCP_NAGLE_OFF)
2303 				tp->nonagle |= TCP_NAGLE_PUSH;
2304 			tcp_push_pending_frames(sk);
2305 		}
2306 		break;
2307 
2308 	case TCP_KEEPIDLE:
2309 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2310 			err = -EINVAL;
2311 		else {
2312 			tp->keepalive_time = val * HZ;
2313 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2314 			    !((1 << sk->sk_state) &
2315 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2316 				u32 elapsed = keepalive_time_elapsed(tp);
2317 				if (tp->keepalive_time > elapsed)
2318 					elapsed = tp->keepalive_time - elapsed;
2319 				else
2320 					elapsed = 0;
2321 				inet_csk_reset_keepalive_timer(sk, elapsed);
2322 			}
2323 		}
2324 		break;
2325 	case TCP_KEEPINTVL:
2326 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2327 			err = -EINVAL;
2328 		else
2329 			tp->keepalive_intvl = val * HZ;
2330 		break;
2331 	case TCP_KEEPCNT:
2332 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2333 			err = -EINVAL;
2334 		else
2335 			tp->keepalive_probes = val;
2336 		break;
2337 	case TCP_SYNCNT:
2338 		if (val < 1 || val > MAX_TCP_SYNCNT)
2339 			err = -EINVAL;
2340 		else
2341 			icsk->icsk_syn_retries = val;
2342 		break;
2343 
2344 	case TCP_LINGER2:
2345 		if (val < 0)
2346 			tp->linger2 = -1;
2347 		else if (val > sysctl_tcp_fin_timeout / HZ)
2348 			tp->linger2 = 0;
2349 		else
2350 			tp->linger2 = val * HZ;
2351 		break;
2352 
2353 	case TCP_DEFER_ACCEPT:
2354 		/* Translate value in seconds to number of retransmits */
2355 		icsk->icsk_accept_queue.rskq_defer_accept =
2356 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2357 					TCP_RTO_MAX / HZ);
2358 		break;
2359 
2360 	case TCP_WINDOW_CLAMP:
2361 		if (!val) {
2362 			if (sk->sk_state != TCP_CLOSE) {
2363 				err = -EINVAL;
2364 				break;
2365 			}
2366 			tp->window_clamp = 0;
2367 		} else
2368 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2369 						SOCK_MIN_RCVBUF / 2 : val;
2370 		break;
2371 
2372 	case TCP_QUICKACK:
2373 		if (!val) {
2374 			icsk->icsk_ack.pingpong = 1;
2375 		} else {
2376 			icsk->icsk_ack.pingpong = 0;
2377 			if ((1 << sk->sk_state) &
2378 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2379 			    inet_csk_ack_scheduled(sk)) {
2380 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2381 				tcp_cleanup_rbuf(sk, 1);
2382 				if (!(val & 1))
2383 					icsk->icsk_ack.pingpong = 1;
2384 			}
2385 		}
2386 		break;
2387 
2388 #ifdef CONFIG_TCP_MD5SIG
2389 	case TCP_MD5SIG:
2390 		/* Read the IP->Key mappings from userspace */
2391 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2392 		break;
2393 #endif
2394 
2395 	default:
2396 		err = -ENOPROTOOPT;
2397 		break;
2398 	}
2399 
2400 	release_sock(sk);
2401 	return err;
2402 }
2403 
2404 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2405 		   unsigned int optlen)
2406 {
2407 	struct inet_connection_sock *icsk = inet_csk(sk);
2408 
2409 	if (level != SOL_TCP)
2410 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2411 						     optval, optlen);
2412 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2413 }
2414 EXPORT_SYMBOL(tcp_setsockopt);
2415 
2416 #ifdef CONFIG_COMPAT
2417 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2418 			  char __user *optval, unsigned int optlen)
2419 {
2420 	if (level != SOL_TCP)
2421 		return inet_csk_compat_setsockopt(sk, level, optname,
2422 						  optval, optlen);
2423 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2424 }
2425 EXPORT_SYMBOL(compat_tcp_setsockopt);
2426 #endif
2427 
2428 /* Return information about state of tcp endpoint in API format. */
2429 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2430 {
2431 	struct tcp_sock *tp = tcp_sk(sk);
2432 	const struct inet_connection_sock *icsk = inet_csk(sk);
2433 	u32 now = tcp_time_stamp;
2434 
2435 	memset(info, 0, sizeof(*info));
2436 
2437 	info->tcpi_state = sk->sk_state;
2438 	info->tcpi_ca_state = icsk->icsk_ca_state;
2439 	info->tcpi_retransmits = icsk->icsk_retransmits;
2440 	info->tcpi_probes = icsk->icsk_probes_out;
2441 	info->tcpi_backoff = icsk->icsk_backoff;
2442 
2443 	if (tp->rx_opt.tstamp_ok)
2444 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2445 	if (tcp_is_sack(tp))
2446 		info->tcpi_options |= TCPI_OPT_SACK;
2447 	if (tp->rx_opt.wscale_ok) {
2448 		info->tcpi_options |= TCPI_OPT_WSCALE;
2449 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2450 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2451 	}
2452 
2453 	if (tp->ecn_flags&TCP_ECN_OK)
2454 		info->tcpi_options |= TCPI_OPT_ECN;
2455 
2456 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2457 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2458 	info->tcpi_snd_mss = tp->mss_cache;
2459 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2460 
2461 	if (sk->sk_state == TCP_LISTEN) {
2462 		info->tcpi_unacked = sk->sk_ack_backlog;
2463 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2464 	} else {
2465 		info->tcpi_unacked = tp->packets_out;
2466 		info->tcpi_sacked = tp->sacked_out;
2467 	}
2468 	info->tcpi_lost = tp->lost_out;
2469 	info->tcpi_retrans = tp->retrans_out;
2470 	info->tcpi_fackets = tp->fackets_out;
2471 
2472 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2473 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2474 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2475 
2476 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2477 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2478 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2479 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2480 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2481 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2482 	info->tcpi_advmss = tp->advmss;
2483 	info->tcpi_reordering = tp->reordering;
2484 
2485 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2486 	info->tcpi_rcv_space = tp->rcvq_space.space;
2487 
2488 	info->tcpi_total_retrans = tp->total_retrans;
2489 }
2490 EXPORT_SYMBOL_GPL(tcp_get_info);
2491 
2492 static int do_tcp_getsockopt(struct sock *sk, int level,
2493 		int optname, char __user *optval, int __user *optlen)
2494 {
2495 	struct inet_connection_sock *icsk = inet_csk(sk);
2496 	struct tcp_sock *tp = tcp_sk(sk);
2497 	int val, len;
2498 
2499 	if (get_user(len, optlen))
2500 		return -EFAULT;
2501 
2502 	len = min_t(unsigned int, len, sizeof(int));
2503 
2504 	if (len < 0)
2505 		return -EINVAL;
2506 
2507 	switch (optname) {
2508 	case TCP_MAXSEG:
2509 		val = tp->mss_cache;
2510 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2511 			val = tp->rx_opt.user_mss;
2512 		break;
2513 	case TCP_NODELAY:
2514 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2515 		break;
2516 	case TCP_CORK:
2517 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2518 		break;
2519 	case TCP_KEEPIDLE:
2520 		val = keepalive_time_when(tp) / HZ;
2521 		break;
2522 	case TCP_KEEPINTVL:
2523 		val = keepalive_intvl_when(tp) / HZ;
2524 		break;
2525 	case TCP_KEEPCNT:
2526 		val = keepalive_probes(tp);
2527 		break;
2528 	case TCP_SYNCNT:
2529 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2530 		break;
2531 	case TCP_LINGER2:
2532 		val = tp->linger2;
2533 		if (val >= 0)
2534 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2535 		break;
2536 	case TCP_DEFER_ACCEPT:
2537 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2538 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2539 		break;
2540 	case TCP_WINDOW_CLAMP:
2541 		val = tp->window_clamp;
2542 		break;
2543 	case TCP_INFO: {
2544 		struct tcp_info info;
2545 
2546 		if (get_user(len, optlen))
2547 			return -EFAULT;
2548 
2549 		tcp_get_info(sk, &info);
2550 
2551 		len = min_t(unsigned int, len, sizeof(info));
2552 		if (put_user(len, optlen))
2553 			return -EFAULT;
2554 		if (copy_to_user(optval, &info, len))
2555 			return -EFAULT;
2556 		return 0;
2557 	}
2558 	case TCP_QUICKACK:
2559 		val = !icsk->icsk_ack.pingpong;
2560 		break;
2561 
2562 	case TCP_CONGESTION:
2563 		if (get_user(len, optlen))
2564 			return -EFAULT;
2565 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2566 		if (put_user(len, optlen))
2567 			return -EFAULT;
2568 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2569 			return -EFAULT;
2570 		return 0;
2571 
2572 	case TCP_COOKIE_TRANSACTIONS: {
2573 		struct tcp_cookie_transactions ctd;
2574 		struct tcp_cookie_values *cvp = tp->cookie_values;
2575 
2576 		if (get_user(len, optlen))
2577 			return -EFAULT;
2578 		if (len < sizeof(ctd))
2579 			return -EINVAL;
2580 
2581 		memset(&ctd, 0, sizeof(ctd));
2582 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2583 				   TCP_COOKIE_IN_ALWAYS : 0)
2584 				| (tp->rx_opt.cookie_out_never ?
2585 				   TCP_COOKIE_OUT_NEVER : 0);
2586 
2587 		if (cvp != NULL) {
2588 			ctd.tcpct_flags |= (cvp->s_data_in ?
2589 					    TCP_S_DATA_IN : 0)
2590 					 | (cvp->s_data_out ?
2591 					    TCP_S_DATA_OUT : 0);
2592 
2593 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2594 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2595 
2596 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2597 			       cvp->cookie_pair_size);
2598 			ctd.tcpct_used = cvp->cookie_pair_size;
2599 		}
2600 
2601 		if (put_user(sizeof(ctd), optlen))
2602 			return -EFAULT;
2603 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2604 			return -EFAULT;
2605 		return 0;
2606 	}
2607 	case TCP_THIN_LINEAR_TIMEOUTS:
2608 		val = tp->thin_lto;
2609 		break;
2610 	case TCP_THIN_DUPACK:
2611 		val = tp->thin_dupack;
2612 		break;
2613 	default:
2614 		return -ENOPROTOOPT;
2615 	}
2616 
2617 	if (put_user(len, optlen))
2618 		return -EFAULT;
2619 	if (copy_to_user(optval, &val, len))
2620 		return -EFAULT;
2621 	return 0;
2622 }
2623 
2624 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2625 		   int __user *optlen)
2626 {
2627 	struct inet_connection_sock *icsk = inet_csk(sk);
2628 
2629 	if (level != SOL_TCP)
2630 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2631 						     optval, optlen);
2632 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2633 }
2634 EXPORT_SYMBOL(tcp_getsockopt);
2635 
2636 #ifdef CONFIG_COMPAT
2637 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2638 			  char __user *optval, int __user *optlen)
2639 {
2640 	if (level != SOL_TCP)
2641 		return inet_csk_compat_getsockopt(sk, level, optname,
2642 						  optval, optlen);
2643 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2644 }
2645 EXPORT_SYMBOL(compat_tcp_getsockopt);
2646 #endif
2647 
2648 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2649 {
2650 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2651 	struct tcphdr *th;
2652 	unsigned thlen;
2653 	unsigned int seq;
2654 	__be32 delta;
2655 	unsigned int oldlen;
2656 	unsigned int mss;
2657 
2658 	if (!pskb_may_pull(skb, sizeof(*th)))
2659 		goto out;
2660 
2661 	th = tcp_hdr(skb);
2662 	thlen = th->doff * 4;
2663 	if (thlen < sizeof(*th))
2664 		goto out;
2665 
2666 	if (!pskb_may_pull(skb, thlen))
2667 		goto out;
2668 
2669 	oldlen = (u16)~skb->len;
2670 	__skb_pull(skb, thlen);
2671 
2672 	mss = skb_shinfo(skb)->gso_size;
2673 	if (unlikely(skb->len <= mss))
2674 		goto out;
2675 
2676 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2677 		/* Packet is from an untrusted source, reset gso_segs. */
2678 		int type = skb_shinfo(skb)->gso_type;
2679 
2680 		if (unlikely(type &
2681 			     ~(SKB_GSO_TCPV4 |
2682 			       SKB_GSO_DODGY |
2683 			       SKB_GSO_TCP_ECN |
2684 			       SKB_GSO_TCPV6 |
2685 			       0) ||
2686 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2687 			goto out;
2688 
2689 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2690 
2691 		segs = NULL;
2692 		goto out;
2693 	}
2694 
2695 	segs = skb_segment(skb, features);
2696 	if (IS_ERR(segs))
2697 		goto out;
2698 
2699 	delta = htonl(oldlen + (thlen + mss));
2700 
2701 	skb = segs;
2702 	th = tcp_hdr(skb);
2703 	seq = ntohl(th->seq);
2704 
2705 	do {
2706 		th->fin = th->psh = 0;
2707 
2708 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2709 				       (__force u32)delta));
2710 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2711 			th->check =
2712 			     csum_fold(csum_partial(skb_transport_header(skb),
2713 						    thlen, skb->csum));
2714 
2715 		seq += mss;
2716 		skb = skb->next;
2717 		th = tcp_hdr(skb);
2718 
2719 		th->seq = htonl(seq);
2720 		th->cwr = 0;
2721 	} while (skb->next);
2722 
2723 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2724 		      skb->data_len);
2725 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2726 				(__force u32)delta));
2727 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2728 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2729 						   thlen, skb->csum));
2730 
2731 out:
2732 	return segs;
2733 }
2734 EXPORT_SYMBOL(tcp_tso_segment);
2735 
2736 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2737 {
2738 	struct sk_buff **pp = NULL;
2739 	struct sk_buff *p;
2740 	struct tcphdr *th;
2741 	struct tcphdr *th2;
2742 	unsigned int len;
2743 	unsigned int thlen;
2744 	__be32 flags;
2745 	unsigned int mss = 1;
2746 	unsigned int hlen;
2747 	unsigned int off;
2748 	int flush = 1;
2749 	int i;
2750 
2751 	off = skb_gro_offset(skb);
2752 	hlen = off + sizeof(*th);
2753 	th = skb_gro_header_fast(skb, off);
2754 	if (skb_gro_header_hard(skb, hlen)) {
2755 		th = skb_gro_header_slow(skb, hlen, off);
2756 		if (unlikely(!th))
2757 			goto out;
2758 	}
2759 
2760 	thlen = th->doff * 4;
2761 	if (thlen < sizeof(*th))
2762 		goto out;
2763 
2764 	hlen = off + thlen;
2765 	if (skb_gro_header_hard(skb, hlen)) {
2766 		th = skb_gro_header_slow(skb, hlen, off);
2767 		if (unlikely(!th))
2768 			goto out;
2769 	}
2770 
2771 	skb_gro_pull(skb, thlen);
2772 
2773 	len = skb_gro_len(skb);
2774 	flags = tcp_flag_word(th);
2775 
2776 	for (; (p = *head); head = &p->next) {
2777 		if (!NAPI_GRO_CB(p)->same_flow)
2778 			continue;
2779 
2780 		th2 = tcp_hdr(p);
2781 
2782 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
2783 			NAPI_GRO_CB(p)->same_flow = 0;
2784 			continue;
2785 		}
2786 
2787 		goto found;
2788 	}
2789 
2790 	goto out_check_final;
2791 
2792 found:
2793 	flush = NAPI_GRO_CB(p)->flush;
2794 	flush |= (__force int)(flags & TCP_FLAG_CWR);
2795 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
2796 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
2797 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
2798 	for (i = sizeof(*th); i < thlen; i += 4)
2799 		flush |= *(u32 *)((u8 *)th + i) ^
2800 			 *(u32 *)((u8 *)th2 + i);
2801 
2802 	mss = skb_shinfo(p)->gso_size;
2803 
2804 	flush |= (len - 1) >= mss;
2805 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
2806 
2807 	if (flush || skb_gro_receive(head, skb)) {
2808 		mss = 1;
2809 		goto out_check_final;
2810 	}
2811 
2812 	p = *head;
2813 	th2 = tcp_hdr(p);
2814 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2815 
2816 out_check_final:
2817 	flush = len < mss;
2818 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
2819 					TCP_FLAG_RST | TCP_FLAG_SYN |
2820 					TCP_FLAG_FIN));
2821 
2822 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2823 		pp = head;
2824 
2825 out:
2826 	NAPI_GRO_CB(skb)->flush |= flush;
2827 
2828 	return pp;
2829 }
2830 EXPORT_SYMBOL(tcp_gro_receive);
2831 
2832 int tcp_gro_complete(struct sk_buff *skb)
2833 {
2834 	struct tcphdr *th = tcp_hdr(skb);
2835 
2836 	skb->csum_start = skb_transport_header(skb) - skb->head;
2837 	skb->csum_offset = offsetof(struct tcphdr, check);
2838 	skb->ip_summed = CHECKSUM_PARTIAL;
2839 
2840 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2841 
2842 	if (th->cwr)
2843 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2844 
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL(tcp_gro_complete);
2848 
2849 #ifdef CONFIG_TCP_MD5SIG
2850 static unsigned long tcp_md5sig_users;
2851 static struct tcp_md5sig_pool * __percpu *tcp_md5sig_pool;
2852 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2853 
2854 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool * __percpu *pool)
2855 {
2856 	int cpu;
2857 	for_each_possible_cpu(cpu) {
2858 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2859 		if (p) {
2860 			if (p->md5_desc.tfm)
2861 				crypto_free_hash(p->md5_desc.tfm);
2862 			kfree(p);
2863 		}
2864 	}
2865 	free_percpu(pool);
2866 }
2867 
2868 void tcp_free_md5sig_pool(void)
2869 {
2870 	struct tcp_md5sig_pool * __percpu *pool = NULL;
2871 
2872 	spin_lock_bh(&tcp_md5sig_pool_lock);
2873 	if (--tcp_md5sig_users == 0) {
2874 		pool = tcp_md5sig_pool;
2875 		tcp_md5sig_pool = NULL;
2876 	}
2877 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2878 	if (pool)
2879 		__tcp_free_md5sig_pool(pool);
2880 }
2881 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2882 
2883 static struct tcp_md5sig_pool * __percpu *
2884 __tcp_alloc_md5sig_pool(struct sock *sk)
2885 {
2886 	int cpu;
2887 	struct tcp_md5sig_pool * __percpu *pool;
2888 
2889 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2890 	if (!pool)
2891 		return NULL;
2892 
2893 	for_each_possible_cpu(cpu) {
2894 		struct tcp_md5sig_pool *p;
2895 		struct crypto_hash *hash;
2896 
2897 		p = kzalloc(sizeof(*p), sk->sk_allocation);
2898 		if (!p)
2899 			goto out_free;
2900 		*per_cpu_ptr(pool, cpu) = p;
2901 
2902 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2903 		if (!hash || IS_ERR(hash))
2904 			goto out_free;
2905 
2906 		p->md5_desc.tfm = hash;
2907 	}
2908 	return pool;
2909 out_free:
2910 	__tcp_free_md5sig_pool(pool);
2911 	return NULL;
2912 }
2913 
2914 struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
2915 {
2916 	struct tcp_md5sig_pool * __percpu *pool;
2917 	int alloc = 0;
2918 
2919 retry:
2920 	spin_lock_bh(&tcp_md5sig_pool_lock);
2921 	pool = tcp_md5sig_pool;
2922 	if (tcp_md5sig_users++ == 0) {
2923 		alloc = 1;
2924 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2925 	} else if (!pool) {
2926 		tcp_md5sig_users--;
2927 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2928 		cpu_relax();
2929 		goto retry;
2930 	} else
2931 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2932 
2933 	if (alloc) {
2934 		/* we cannot hold spinlock here because this may sleep. */
2935 		struct tcp_md5sig_pool * __percpu *p;
2936 
2937 		p = __tcp_alloc_md5sig_pool(sk);
2938 		spin_lock_bh(&tcp_md5sig_pool_lock);
2939 		if (!p) {
2940 			tcp_md5sig_users--;
2941 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2942 			return NULL;
2943 		}
2944 		pool = tcp_md5sig_pool;
2945 		if (pool) {
2946 			/* oops, it has already been assigned. */
2947 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2948 			__tcp_free_md5sig_pool(p);
2949 		} else {
2950 			tcp_md5sig_pool = pool = p;
2951 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2952 		}
2953 	}
2954 	return pool;
2955 }
2956 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2957 
2958 
2959 /**
2960  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2961  *
2962  *	We use percpu structure, so if we succeed, we exit with preemption
2963  *	and BH disabled, to make sure another thread or softirq handling
2964  *	wont try to get same context.
2965  */
2966 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2967 {
2968 	struct tcp_md5sig_pool * __percpu *p;
2969 
2970 	local_bh_disable();
2971 
2972 	spin_lock(&tcp_md5sig_pool_lock);
2973 	p = tcp_md5sig_pool;
2974 	if (p)
2975 		tcp_md5sig_users++;
2976 	spin_unlock(&tcp_md5sig_pool_lock);
2977 
2978 	if (p)
2979 		return *this_cpu_ptr(p);
2980 
2981 	local_bh_enable();
2982 	return NULL;
2983 }
2984 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2985 
2986 void tcp_put_md5sig_pool(void)
2987 {
2988 	local_bh_enable();
2989 	tcp_free_md5sig_pool();
2990 }
2991 EXPORT_SYMBOL(tcp_put_md5sig_pool);
2992 
2993 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2994 			struct tcphdr *th)
2995 {
2996 	struct scatterlist sg;
2997 	int err;
2998 
2999 	__sum16 old_checksum = th->check;
3000 	th->check = 0;
3001 	/* options aren't included in the hash */
3002 	sg_init_one(&sg, th, sizeof(struct tcphdr));
3003 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
3004 	th->check = old_checksum;
3005 	return err;
3006 }
3007 EXPORT_SYMBOL(tcp_md5_hash_header);
3008 
3009 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3010 			  struct sk_buff *skb, unsigned header_len)
3011 {
3012 	struct scatterlist sg;
3013 	const struct tcphdr *tp = tcp_hdr(skb);
3014 	struct hash_desc *desc = &hp->md5_desc;
3015 	unsigned i;
3016 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
3017 				       skb_headlen(skb) - header_len : 0;
3018 	const struct skb_shared_info *shi = skb_shinfo(skb);
3019 	struct sk_buff *frag_iter;
3020 
3021 	sg_init_table(&sg, 1);
3022 
3023 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3024 	if (crypto_hash_update(desc, &sg, head_data_len))
3025 		return 1;
3026 
3027 	for (i = 0; i < shi->nr_frags; ++i) {
3028 		const struct skb_frag_struct *f = &shi->frags[i];
3029 		sg_set_page(&sg, f->page, f->size, f->page_offset);
3030 		if (crypto_hash_update(desc, &sg, f->size))
3031 			return 1;
3032 	}
3033 
3034 	skb_walk_frags(skb, frag_iter)
3035 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3036 			return 1;
3037 
3038 	return 0;
3039 }
3040 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3041 
3042 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
3043 {
3044 	struct scatterlist sg;
3045 
3046 	sg_init_one(&sg, key->key, key->keylen);
3047 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3048 }
3049 EXPORT_SYMBOL(tcp_md5_hash_key);
3050 
3051 #endif
3052 
3053 /**
3054  * Each Responder maintains up to two secret values concurrently for
3055  * efficient secret rollover.  Each secret value has 4 states:
3056  *
3057  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3058  *    Generates new Responder-Cookies, but not yet used for primary
3059  *    verification.  This is a short-term state, typically lasting only
3060  *    one round trip time (RTT).
3061  *
3062  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3063  *    Used both for generation and primary verification.
3064  *
3065  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3066  *    Used for verification, until the first failure that can be
3067  *    verified by the newer Generating secret.  At that time, this
3068  *    cookie's state is changed to Secondary, and the Generating
3069  *    cookie's state is changed to Primary.  This is a short-term state,
3070  *    typically lasting only one round trip time (RTT).
3071  *
3072  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3073  *    Used for secondary verification, after primary verification
3074  *    failures.  This state lasts no more than twice the Maximum Segment
3075  *    Lifetime (2MSL).  Then, the secret is discarded.
3076  */
3077 struct tcp_cookie_secret {
3078 	/* The secret is divided into two parts.  The digest part is the
3079 	 * equivalent of previously hashing a secret and saving the state,
3080 	 * and serves as an initialization vector (IV).  The message part
3081 	 * serves as the trailing secret.
3082 	 */
3083 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3084 	unsigned long			expires;
3085 };
3086 
3087 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3088 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3089 #define TCP_SECRET_LIFE (HZ * 600)
3090 
3091 static struct tcp_cookie_secret tcp_secret_one;
3092 static struct tcp_cookie_secret tcp_secret_two;
3093 
3094 /* Essentially a circular list, without dynamic allocation. */
3095 static struct tcp_cookie_secret *tcp_secret_generating;
3096 static struct tcp_cookie_secret *tcp_secret_primary;
3097 static struct tcp_cookie_secret *tcp_secret_retiring;
3098 static struct tcp_cookie_secret *tcp_secret_secondary;
3099 
3100 static DEFINE_SPINLOCK(tcp_secret_locker);
3101 
3102 /* Select a pseudo-random word in the cookie workspace.
3103  */
3104 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3105 {
3106 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3107 }
3108 
3109 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3110  * Called in softirq context.
3111  * Returns: 0 for success.
3112  */
3113 int tcp_cookie_generator(u32 *bakery)
3114 {
3115 	unsigned long jiffy = jiffies;
3116 
3117 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3118 		spin_lock_bh(&tcp_secret_locker);
3119 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3120 			/* refreshed by another */
3121 			memcpy(bakery,
3122 			       &tcp_secret_generating->secrets[0],
3123 			       COOKIE_WORKSPACE_WORDS);
3124 		} else {
3125 			/* still needs refreshing */
3126 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3127 
3128 			/* The first time, paranoia assumes that the
3129 			 * randomization function isn't as strong.  But,
3130 			 * this secret initialization is delayed until
3131 			 * the last possible moment (packet arrival).
3132 			 * Although that time is observable, it is
3133 			 * unpredictably variable.  Mash in the most
3134 			 * volatile clock bits available, and expire the
3135 			 * secret extra quickly.
3136 			 */
3137 			if (unlikely(tcp_secret_primary->expires ==
3138 				     tcp_secret_secondary->expires)) {
3139 				struct timespec tv;
3140 
3141 				getnstimeofday(&tv);
3142 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3143 					(u32)tv.tv_nsec;
3144 
3145 				tcp_secret_secondary->expires = jiffy
3146 					+ TCP_SECRET_1MSL
3147 					+ (0x0f & tcp_cookie_work(bakery, 0));
3148 			} else {
3149 				tcp_secret_secondary->expires = jiffy
3150 					+ TCP_SECRET_LIFE
3151 					+ (0xff & tcp_cookie_work(bakery, 1));
3152 				tcp_secret_primary->expires = jiffy
3153 					+ TCP_SECRET_2MSL
3154 					+ (0x1f & tcp_cookie_work(bakery, 2));
3155 			}
3156 			memcpy(&tcp_secret_secondary->secrets[0],
3157 			       bakery, COOKIE_WORKSPACE_WORDS);
3158 
3159 			rcu_assign_pointer(tcp_secret_generating,
3160 					   tcp_secret_secondary);
3161 			rcu_assign_pointer(tcp_secret_retiring,
3162 					   tcp_secret_primary);
3163 			/*
3164 			 * Neither call_rcu() nor synchronize_rcu() needed.
3165 			 * Retiring data is not freed.  It is replaced after
3166 			 * further (locked) pointer updates, and a quiet time
3167 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3168 			 */
3169 		}
3170 		spin_unlock_bh(&tcp_secret_locker);
3171 	} else {
3172 		rcu_read_lock_bh();
3173 		memcpy(bakery,
3174 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3175 		       COOKIE_WORKSPACE_WORDS);
3176 		rcu_read_unlock_bh();
3177 	}
3178 	return 0;
3179 }
3180 EXPORT_SYMBOL(tcp_cookie_generator);
3181 
3182 void tcp_done(struct sock *sk)
3183 {
3184 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3185 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3186 
3187 	tcp_set_state(sk, TCP_CLOSE);
3188 	tcp_clear_xmit_timers(sk);
3189 
3190 	sk->sk_shutdown = SHUTDOWN_MASK;
3191 
3192 	if (!sock_flag(sk, SOCK_DEAD))
3193 		sk->sk_state_change(sk);
3194 	else
3195 		inet_csk_destroy_sock(sk);
3196 }
3197 EXPORT_SYMBOL_GPL(tcp_done);
3198 
3199 extern struct tcp_congestion_ops tcp_reno;
3200 
3201 static __initdata unsigned long thash_entries;
3202 static int __init set_thash_entries(char *str)
3203 {
3204 	if (!str)
3205 		return 0;
3206 	thash_entries = simple_strtoul(str, &str, 0);
3207 	return 1;
3208 }
3209 __setup("thash_entries=", set_thash_entries);
3210 
3211 void __init tcp_init(void)
3212 {
3213 	struct sk_buff *skb = NULL;
3214 	unsigned long nr_pages, limit;
3215 	int order, i, max_share;
3216 	unsigned long jiffy = jiffies;
3217 
3218 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3219 
3220 	percpu_counter_init(&tcp_sockets_allocated, 0);
3221 	percpu_counter_init(&tcp_orphan_count, 0);
3222 	tcp_hashinfo.bind_bucket_cachep =
3223 		kmem_cache_create("tcp_bind_bucket",
3224 				  sizeof(struct inet_bind_bucket), 0,
3225 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3226 
3227 	/* Size and allocate the main established and bind bucket
3228 	 * hash tables.
3229 	 *
3230 	 * The methodology is similar to that of the buffer cache.
3231 	 */
3232 	tcp_hashinfo.ehash =
3233 		alloc_large_system_hash("TCP established",
3234 					sizeof(struct inet_ehash_bucket),
3235 					thash_entries,
3236 					(totalram_pages >= 128 * 1024) ?
3237 					13 : 15,
3238 					0,
3239 					NULL,
3240 					&tcp_hashinfo.ehash_mask,
3241 					thash_entries ? 0 : 512 * 1024);
3242 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3243 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3244 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3245 	}
3246 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3247 		panic("TCP: failed to alloc ehash_locks");
3248 	tcp_hashinfo.bhash =
3249 		alloc_large_system_hash("TCP bind",
3250 					sizeof(struct inet_bind_hashbucket),
3251 					tcp_hashinfo.ehash_mask + 1,
3252 					(totalram_pages >= 128 * 1024) ?
3253 					13 : 15,
3254 					0,
3255 					&tcp_hashinfo.bhash_size,
3256 					NULL,
3257 					64 * 1024);
3258 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
3259 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3260 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3261 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3262 	}
3263 
3264 	/* Try to be a bit smarter and adjust defaults depending
3265 	 * on available memory.
3266 	 */
3267 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
3268 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
3269 			order++)
3270 		;
3271 	if (order >= 4) {
3272 		tcp_death_row.sysctl_max_tw_buckets = 180000;
3273 		sysctl_tcp_max_orphans = 4096 << (order - 4);
3274 		sysctl_max_syn_backlog = 1024;
3275 	} else if (order < 3) {
3276 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
3277 		sysctl_tcp_max_orphans >>= (3 - order);
3278 		sysctl_max_syn_backlog = 128;
3279 	}
3280 
3281 	/* Set the pressure threshold to be a fraction of global memory that
3282 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
3283 	 * memory, with a floor of 128 pages.
3284 	 */
3285 	nr_pages = totalram_pages - totalhigh_pages;
3286 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
3287 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
3288 	limit = max(limit, 128UL);
3289 	sysctl_tcp_mem[0] = limit / 4 * 3;
3290 	sysctl_tcp_mem[1] = limit;
3291 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3292 
3293 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3294 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
3295 	max_share = min(4UL*1024*1024, limit);
3296 
3297 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3298 	sysctl_tcp_wmem[1] = 16*1024;
3299 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
3300 
3301 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3302 	sysctl_tcp_rmem[1] = 87380;
3303 	sysctl_tcp_rmem[2] = max(87380, max_share);
3304 
3305 	printk(KERN_INFO "TCP: Hash tables configured "
3306 	       "(established %u bind %u)\n",
3307 	       tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3308 
3309 	tcp_register_congestion_control(&tcp_reno);
3310 
3311 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3312 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3313 	tcp_secret_one.expires = jiffy; /* past due */
3314 	tcp_secret_two.expires = jiffy; /* past due */
3315 	tcp_secret_generating = &tcp_secret_one;
3316 	tcp_secret_primary = &tcp_secret_one;
3317 	tcp_secret_retiring = &tcp_secret_two;
3318 	tcp_secret_secondary = &tcp_secret_two;
3319 }
3320