xref: /openbmc/linux/net/ipv4/tcp.c (revision 3f2fb9a834cb1fcddbae22deca7fde136944dc89)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	__skb_queue_head_init(&tp->out_of_order_queue);
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 	tp->rtt_min[0].rtt = ~0U;
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* See draft-stevens-tcpca-spec-01 for discussion of the
400 	 * initialization of these values.
401 	 */
402 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 	tp->snd_cwnd_clamp = ~0;
404 	tp->mss_cache = TCP_MSS_DEFAULT;
405 	u64_stats_init(&tp->syncp);
406 
407 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 	tcp_enable_early_retrans(tp);
409 	tcp_assign_congestion_control(sk);
410 
411 	tp->tsoffset = 0;
412 
413 	sk->sk_state = TCP_CLOSE;
414 
415 	sk->sk_write_space = sk_stream_write_space;
416 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417 
418 	icsk->icsk_sync_mss = tcp_sync_mss;
419 
420 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422 
423 	local_bh_disable();
424 	if (mem_cgroup_sockets_enabled)
425 		sock_update_memcg(sk);
426 	sk_sockets_allocated_inc(sk);
427 	local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430 
431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
432 {
433 	if (sk->sk_tsflags) {
434 		struct skb_shared_info *shinfo = skb_shinfo(skb);
435 
436 		sock_tx_timestamp(sk, &shinfo->tx_flags);
437 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
438 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
439 	}
440 }
441 
442 /*
443  *	Wait for a TCP event.
444  *
445  *	Note that we don't need to lock the socket, as the upper poll layers
446  *	take care of normal races (between the test and the event) and we don't
447  *	go look at any of the socket buffers directly.
448  */
449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
450 {
451 	unsigned int mask;
452 	struct sock *sk = sock->sk;
453 	const struct tcp_sock *tp = tcp_sk(sk);
454 	int state;
455 
456 	sock_rps_record_flow(sk);
457 
458 	sock_poll_wait(file, sk_sleep(sk), wait);
459 
460 	state = sk_state_load(sk);
461 	if (state == TCP_LISTEN)
462 		return inet_csk_listen_poll(sk);
463 
464 	/* Socket is not locked. We are protected from async events
465 	 * by poll logic and correct handling of state changes
466 	 * made by other threads is impossible in any case.
467 	 */
468 
469 	mask = 0;
470 
471 	/*
472 	 * POLLHUP is certainly not done right. But poll() doesn't
473 	 * have a notion of HUP in just one direction, and for a
474 	 * socket the read side is more interesting.
475 	 *
476 	 * Some poll() documentation says that POLLHUP is incompatible
477 	 * with the POLLOUT/POLLWR flags, so somebody should check this
478 	 * all. But careful, it tends to be safer to return too many
479 	 * bits than too few, and you can easily break real applications
480 	 * if you don't tell them that something has hung up!
481 	 *
482 	 * Check-me.
483 	 *
484 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
485 	 * our fs/select.c). It means that after we received EOF,
486 	 * poll always returns immediately, making impossible poll() on write()
487 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
488 	 * if and only if shutdown has been made in both directions.
489 	 * Actually, it is interesting to look how Solaris and DUX
490 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
491 	 * then we could set it on SND_SHUTDOWN. BTW examples given
492 	 * in Stevens' books assume exactly this behaviour, it explains
493 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
494 	 *
495 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
496 	 * blocking on fresh not-connected or disconnected socket. --ANK
497 	 */
498 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
499 		mask |= POLLHUP;
500 	if (sk->sk_shutdown & RCV_SHUTDOWN)
501 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
502 
503 	/* Connected or passive Fast Open socket? */
504 	if (state != TCP_SYN_SENT &&
505 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
506 		int target = sock_rcvlowat(sk, 0, INT_MAX);
507 
508 		if (tp->urg_seq == tp->copied_seq &&
509 		    !sock_flag(sk, SOCK_URGINLINE) &&
510 		    tp->urg_data)
511 			target++;
512 
513 		if (tp->rcv_nxt - tp->copied_seq >= target)
514 			mask |= POLLIN | POLLRDNORM;
515 
516 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
517 			if (sk_stream_is_writeable(sk)) {
518 				mask |= POLLOUT | POLLWRNORM;
519 			} else {  /* send SIGIO later */
520 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
521 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522 
523 				/* Race breaker. If space is freed after
524 				 * wspace test but before the flags are set,
525 				 * IO signal will be lost. Memory barrier
526 				 * pairs with the input side.
527 				 */
528 				smp_mb__after_atomic();
529 				if (sk_stream_is_writeable(sk))
530 					mask |= POLLOUT | POLLWRNORM;
531 			}
532 		} else
533 			mask |= POLLOUT | POLLWRNORM;
534 
535 		if (tp->urg_data & TCP_URG_VALID)
536 			mask |= POLLPRI;
537 	}
538 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
539 	smp_rmb();
540 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 		mask |= POLLERR;
542 
543 	return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546 
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 	int answ;
551 	bool slow;
552 
553 	switch (cmd) {
554 	case SIOCINQ:
555 		if (sk->sk_state == TCP_LISTEN)
556 			return -EINVAL;
557 
558 		slow = lock_sock_fast(sk);
559 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 			answ = 0;
561 		else if (sock_flag(sk, SOCK_URGINLINE) ||
562 			 !tp->urg_data ||
563 			 before(tp->urg_seq, tp->copied_seq) ||
564 			 !before(tp->urg_seq, tp->rcv_nxt)) {
565 
566 			answ = tp->rcv_nxt - tp->copied_seq;
567 
568 			/* Subtract 1, if FIN was received */
569 			if (answ && sock_flag(sk, SOCK_DONE))
570 				answ--;
571 		} else
572 			answ = tp->urg_seq - tp->copied_seq;
573 		unlock_sock_fast(sk, slow);
574 		break;
575 	case SIOCATMARK:
576 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 		break;
578 	case SIOCOUTQ:
579 		if (sk->sk_state == TCP_LISTEN)
580 			return -EINVAL;
581 
582 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 			answ = 0;
584 		else
585 			answ = tp->write_seq - tp->snd_una;
586 		break;
587 	case SIOCOUTQNSD:
588 		if (sk->sk_state == TCP_LISTEN)
589 			return -EINVAL;
590 
591 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 			answ = 0;
593 		else
594 			answ = tp->write_seq - tp->snd_nxt;
595 		break;
596 	default:
597 		return -ENOIOCTLCMD;
598 	}
599 
600 	return put_user(answ, (int __user *)arg);
601 }
602 EXPORT_SYMBOL(tcp_ioctl);
603 
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
605 {
606 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 	tp->pushed_seq = tp->write_seq;
608 }
609 
610 static inline bool forced_push(const struct tcp_sock *tp)
611 {
612 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
613 }
614 
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
619 
620 	skb->csum    = 0;
621 	tcb->seq     = tcb->end_seq = tp->write_seq;
622 	tcb->tcp_flags = TCPHDR_ACK;
623 	tcb->sacked  = 0;
624 	__skb_header_release(skb);
625 	tcp_add_write_queue_tail(sk, skb);
626 	sk->sk_wmem_queued += skb->truesize;
627 	sk_mem_charge(sk, skb->truesize);
628 	if (tp->nonagle & TCP_NAGLE_PUSH)
629 		tp->nonagle &= ~TCP_NAGLE_PUSH;
630 
631 	tcp_slow_start_after_idle_check(sk);
632 }
633 
634 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
635 {
636 	if (flags & MSG_OOB)
637 		tp->snd_up = tp->write_seq;
638 }
639 
640 /* If a not yet filled skb is pushed, do not send it if
641  * we have data packets in Qdisc or NIC queues :
642  * Because TX completion will happen shortly, it gives a chance
643  * to coalesce future sendmsg() payload into this skb, without
644  * need for a timer, and with no latency trade off.
645  * As packets containing data payload have a bigger truesize
646  * than pure acks (dataless) packets, the last checks prevent
647  * autocorking if we only have an ACK in Qdisc/NIC queues,
648  * or if TX completion was delayed after we processed ACK packet.
649  */
650 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
651 				int size_goal)
652 {
653 	return skb->len < size_goal &&
654 	       sysctl_tcp_autocorking &&
655 	       skb != tcp_write_queue_head(sk) &&
656 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
657 }
658 
659 static void tcp_push(struct sock *sk, int flags, int mss_now,
660 		     int nonagle, int size_goal)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct sk_buff *skb;
664 
665 	if (!tcp_send_head(sk))
666 		return;
667 
668 	skb = tcp_write_queue_tail(sk);
669 	if (!(flags & MSG_MORE) || forced_push(tp))
670 		tcp_mark_push(tp, skb);
671 
672 	tcp_mark_urg(tp, flags);
673 
674 	if (tcp_should_autocork(sk, skb, size_goal)) {
675 
676 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
677 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
678 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
679 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
680 		}
681 		/* It is possible TX completion already happened
682 		 * before we set TSQ_THROTTLED.
683 		 */
684 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
685 			return;
686 	}
687 
688 	if (flags & MSG_MORE)
689 		nonagle = TCP_NAGLE_CORK;
690 
691 	__tcp_push_pending_frames(sk, mss_now, nonagle);
692 }
693 
694 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
695 				unsigned int offset, size_t len)
696 {
697 	struct tcp_splice_state *tss = rd_desc->arg.data;
698 	int ret;
699 
700 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
701 			      min(rd_desc->count, len), tss->flags,
702 			      skb_socket_splice);
703 	if (ret > 0)
704 		rd_desc->count -= ret;
705 	return ret;
706 }
707 
708 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
709 {
710 	/* Store TCP splice context information in read_descriptor_t. */
711 	read_descriptor_t rd_desc = {
712 		.arg.data = tss,
713 		.count	  = tss->len,
714 	};
715 
716 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
717 }
718 
719 /**
720  *  tcp_splice_read - splice data from TCP socket to a pipe
721  * @sock:	socket to splice from
722  * @ppos:	position (not valid)
723  * @pipe:	pipe to splice to
724  * @len:	number of bytes to splice
725  * @flags:	splice modifier flags
726  *
727  * Description:
728  *    Will read pages from given socket and fill them into a pipe.
729  *
730  **/
731 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
732 			struct pipe_inode_info *pipe, size_t len,
733 			unsigned int flags)
734 {
735 	struct sock *sk = sock->sk;
736 	struct tcp_splice_state tss = {
737 		.pipe = pipe,
738 		.len = len,
739 		.flags = flags,
740 	};
741 	long timeo;
742 	ssize_t spliced;
743 	int ret;
744 
745 	sock_rps_record_flow(sk);
746 	/*
747 	 * We can't seek on a socket input
748 	 */
749 	if (unlikely(*ppos))
750 		return -ESPIPE;
751 
752 	ret = spliced = 0;
753 
754 	lock_sock(sk);
755 
756 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
757 	while (tss.len) {
758 		ret = __tcp_splice_read(sk, &tss);
759 		if (ret < 0)
760 			break;
761 		else if (!ret) {
762 			if (spliced)
763 				break;
764 			if (sock_flag(sk, SOCK_DONE))
765 				break;
766 			if (sk->sk_err) {
767 				ret = sock_error(sk);
768 				break;
769 			}
770 			if (sk->sk_shutdown & RCV_SHUTDOWN)
771 				break;
772 			if (sk->sk_state == TCP_CLOSE) {
773 				/*
774 				 * This occurs when user tries to read
775 				 * from never connected socket.
776 				 */
777 				if (!sock_flag(sk, SOCK_DONE))
778 					ret = -ENOTCONN;
779 				break;
780 			}
781 			if (!timeo) {
782 				ret = -EAGAIN;
783 				break;
784 			}
785 			sk_wait_data(sk, &timeo, NULL);
786 			if (signal_pending(current)) {
787 				ret = sock_intr_errno(timeo);
788 				break;
789 			}
790 			continue;
791 		}
792 		tss.len -= ret;
793 		spliced += ret;
794 
795 		if (!timeo)
796 			break;
797 		release_sock(sk);
798 		lock_sock(sk);
799 
800 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
801 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
802 		    signal_pending(current))
803 			break;
804 	}
805 
806 	release_sock(sk);
807 
808 	if (spliced)
809 		return spliced;
810 
811 	return ret;
812 }
813 EXPORT_SYMBOL(tcp_splice_read);
814 
815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
816 				    bool force_schedule)
817 {
818 	struct sk_buff *skb;
819 
820 	/* The TCP header must be at least 32-bit aligned.  */
821 	size = ALIGN(size, 4);
822 
823 	if (unlikely(tcp_under_memory_pressure(sk)))
824 		sk_mem_reclaim_partial(sk);
825 
826 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
827 	if (likely(skb)) {
828 		bool mem_scheduled;
829 
830 		if (force_schedule) {
831 			mem_scheduled = true;
832 			sk_forced_mem_schedule(sk, skb->truesize);
833 		} else {
834 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
835 		}
836 		if (likely(mem_scheduled)) {
837 			skb_reserve(skb, sk->sk_prot->max_header);
838 			/*
839 			 * Make sure that we have exactly size bytes
840 			 * available to the caller, no more, no less.
841 			 */
842 			skb->reserved_tailroom = skb->end - skb->tail - size;
843 			return skb;
844 		}
845 		__kfree_skb(skb);
846 	} else {
847 		sk->sk_prot->enter_memory_pressure(sk);
848 		sk_stream_moderate_sndbuf(sk);
849 	}
850 	return NULL;
851 }
852 
853 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
854 				       int large_allowed)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	u32 new_size_goal, size_goal;
858 
859 	if (!large_allowed || !sk_can_gso(sk))
860 		return mss_now;
861 
862 	/* Note : tcp_tso_autosize() will eventually split this later */
863 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
864 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
865 
866 	/* We try hard to avoid divides here */
867 	size_goal = tp->gso_segs * mss_now;
868 	if (unlikely(new_size_goal < size_goal ||
869 		     new_size_goal >= size_goal + mss_now)) {
870 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
871 				     sk->sk_gso_max_segs);
872 		size_goal = tp->gso_segs * mss_now;
873 	}
874 
875 	return max(size_goal, mss_now);
876 }
877 
878 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
879 {
880 	int mss_now;
881 
882 	mss_now = tcp_current_mss(sk);
883 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
884 
885 	return mss_now;
886 }
887 
888 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
889 				size_t size, int flags)
890 {
891 	struct tcp_sock *tp = tcp_sk(sk);
892 	int mss_now, size_goal;
893 	int err;
894 	ssize_t copied;
895 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
896 
897 	/* Wait for a connection to finish. One exception is TCP Fast Open
898 	 * (passive side) where data is allowed to be sent before a connection
899 	 * is fully established.
900 	 */
901 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
902 	    !tcp_passive_fastopen(sk)) {
903 		err = sk_stream_wait_connect(sk, &timeo);
904 		if (err != 0)
905 			goto out_err;
906 	}
907 
908 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
909 
910 	mss_now = tcp_send_mss(sk, &size_goal, flags);
911 	copied = 0;
912 
913 	err = -EPIPE;
914 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
915 		goto out_err;
916 
917 	while (size > 0) {
918 		struct sk_buff *skb = tcp_write_queue_tail(sk);
919 		int copy, i;
920 		bool can_coalesce;
921 
922 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
923 new_segment:
924 			if (!sk_stream_memory_free(sk))
925 				goto wait_for_sndbuf;
926 
927 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
928 						  skb_queue_empty(&sk->sk_write_queue));
929 			if (!skb)
930 				goto wait_for_memory;
931 
932 			skb_entail(sk, skb);
933 			copy = size_goal;
934 		}
935 
936 		if (copy > size)
937 			copy = size;
938 
939 		i = skb_shinfo(skb)->nr_frags;
940 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
941 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
942 			tcp_mark_push(tp, skb);
943 			goto new_segment;
944 		}
945 		if (!sk_wmem_schedule(sk, copy))
946 			goto wait_for_memory;
947 
948 		if (can_coalesce) {
949 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
950 		} else {
951 			get_page(page);
952 			skb_fill_page_desc(skb, i, page, offset, copy);
953 		}
954 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
955 
956 		skb->len += copy;
957 		skb->data_len += copy;
958 		skb->truesize += copy;
959 		sk->sk_wmem_queued += copy;
960 		sk_mem_charge(sk, copy);
961 		skb->ip_summed = CHECKSUM_PARTIAL;
962 		tp->write_seq += copy;
963 		TCP_SKB_CB(skb)->end_seq += copy;
964 		tcp_skb_pcount_set(skb, 0);
965 
966 		if (!copied)
967 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
968 
969 		copied += copy;
970 		offset += copy;
971 		size -= copy;
972 		if (!size) {
973 			tcp_tx_timestamp(sk, skb);
974 			goto out;
975 		}
976 
977 		if (skb->len < size_goal || (flags & MSG_OOB))
978 			continue;
979 
980 		if (forced_push(tp)) {
981 			tcp_mark_push(tp, skb);
982 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
983 		} else if (skb == tcp_send_head(sk))
984 			tcp_push_one(sk, mss_now);
985 		continue;
986 
987 wait_for_sndbuf:
988 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
989 wait_for_memory:
990 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
991 			 TCP_NAGLE_PUSH, size_goal);
992 
993 		err = sk_stream_wait_memory(sk, &timeo);
994 		if (err != 0)
995 			goto do_error;
996 
997 		mss_now = tcp_send_mss(sk, &size_goal, flags);
998 	}
999 
1000 out:
1001 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1002 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1003 	return copied;
1004 
1005 do_error:
1006 	if (copied)
1007 		goto out;
1008 out_err:
1009 	/* make sure we wake any epoll edge trigger waiter */
1010 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1011 		sk->sk_write_space(sk);
1012 	return sk_stream_error(sk, flags, err);
1013 }
1014 
1015 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1016 		 size_t size, int flags)
1017 {
1018 	ssize_t res;
1019 
1020 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1021 	    !sk_check_csum_caps(sk))
1022 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1023 					flags);
1024 
1025 	lock_sock(sk);
1026 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1027 	release_sock(sk);
1028 	return res;
1029 }
1030 EXPORT_SYMBOL(tcp_sendpage);
1031 
1032 static inline int select_size(const struct sock *sk, bool sg)
1033 {
1034 	const struct tcp_sock *tp = tcp_sk(sk);
1035 	int tmp = tp->mss_cache;
1036 
1037 	if (sg) {
1038 		if (sk_can_gso(sk)) {
1039 			/* Small frames wont use a full page:
1040 			 * Payload will immediately follow tcp header.
1041 			 */
1042 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1043 		} else {
1044 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1045 
1046 			if (tmp >= pgbreak &&
1047 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1048 				tmp = pgbreak;
1049 		}
1050 	}
1051 
1052 	return tmp;
1053 }
1054 
1055 void tcp_free_fastopen_req(struct tcp_sock *tp)
1056 {
1057 	if (tp->fastopen_req) {
1058 		kfree(tp->fastopen_req);
1059 		tp->fastopen_req = NULL;
1060 	}
1061 }
1062 
1063 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1064 				int *copied, size_t size)
1065 {
1066 	struct tcp_sock *tp = tcp_sk(sk);
1067 	int err, flags;
1068 
1069 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1070 		return -EOPNOTSUPP;
1071 	if (tp->fastopen_req)
1072 		return -EALREADY; /* Another Fast Open is in progress */
1073 
1074 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1075 				   sk->sk_allocation);
1076 	if (unlikely(!tp->fastopen_req))
1077 		return -ENOBUFS;
1078 	tp->fastopen_req->data = msg;
1079 	tp->fastopen_req->size = size;
1080 
1081 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1082 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1083 				    msg->msg_namelen, flags);
1084 	*copied = tp->fastopen_req->copied;
1085 	tcp_free_fastopen_req(tp);
1086 	return err;
1087 }
1088 
1089 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1090 {
1091 	struct tcp_sock *tp = tcp_sk(sk);
1092 	struct sk_buff *skb;
1093 	int flags, err, copied = 0;
1094 	int mss_now = 0, size_goal, copied_syn = 0;
1095 	bool sg;
1096 	long timeo;
1097 
1098 	lock_sock(sk);
1099 
1100 	flags = msg->msg_flags;
1101 	if (flags & MSG_FASTOPEN) {
1102 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1103 		if (err == -EINPROGRESS && copied_syn > 0)
1104 			goto out;
1105 		else if (err)
1106 			goto out_err;
1107 	}
1108 
1109 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1110 
1111 	/* Wait for a connection to finish. One exception is TCP Fast Open
1112 	 * (passive side) where data is allowed to be sent before a connection
1113 	 * is fully established.
1114 	 */
1115 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1116 	    !tcp_passive_fastopen(sk)) {
1117 		err = sk_stream_wait_connect(sk, &timeo);
1118 		if (err != 0)
1119 			goto do_error;
1120 	}
1121 
1122 	if (unlikely(tp->repair)) {
1123 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1124 			copied = tcp_send_rcvq(sk, msg, size);
1125 			goto out_nopush;
1126 		}
1127 
1128 		err = -EINVAL;
1129 		if (tp->repair_queue == TCP_NO_QUEUE)
1130 			goto out_err;
1131 
1132 		/* 'common' sending to sendq */
1133 	}
1134 
1135 	/* This should be in poll */
1136 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1137 
1138 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1139 
1140 	/* Ok commence sending. */
1141 	copied = 0;
1142 
1143 	err = -EPIPE;
1144 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1145 		goto out_err;
1146 
1147 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1148 
1149 	while (msg_data_left(msg)) {
1150 		int copy = 0;
1151 		int max = size_goal;
1152 
1153 		skb = tcp_write_queue_tail(sk);
1154 		if (tcp_send_head(sk)) {
1155 			if (skb->ip_summed == CHECKSUM_NONE)
1156 				max = mss_now;
1157 			copy = max - skb->len;
1158 		}
1159 
1160 		if (copy <= 0) {
1161 new_segment:
1162 			/* Allocate new segment. If the interface is SG,
1163 			 * allocate skb fitting to single page.
1164 			 */
1165 			if (!sk_stream_memory_free(sk))
1166 				goto wait_for_sndbuf;
1167 
1168 			skb = sk_stream_alloc_skb(sk,
1169 						  select_size(sk, sg),
1170 						  sk->sk_allocation,
1171 						  skb_queue_empty(&sk->sk_write_queue));
1172 			if (!skb)
1173 				goto wait_for_memory;
1174 
1175 			/*
1176 			 * Check whether we can use HW checksum.
1177 			 */
1178 			if (sk_check_csum_caps(sk))
1179 				skb->ip_summed = CHECKSUM_PARTIAL;
1180 
1181 			skb_entail(sk, skb);
1182 			copy = size_goal;
1183 			max = size_goal;
1184 
1185 			/* All packets are restored as if they have
1186 			 * already been sent. skb_mstamp isn't set to
1187 			 * avoid wrong rtt estimation.
1188 			 */
1189 			if (tp->repair)
1190 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1191 		}
1192 
1193 		/* Try to append data to the end of skb. */
1194 		if (copy > msg_data_left(msg))
1195 			copy = msg_data_left(msg);
1196 
1197 		/* Where to copy to? */
1198 		if (skb_availroom(skb) > 0) {
1199 			/* We have some space in skb head. Superb! */
1200 			copy = min_t(int, copy, skb_availroom(skb));
1201 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1202 			if (err)
1203 				goto do_fault;
1204 		} else {
1205 			bool merge = true;
1206 			int i = skb_shinfo(skb)->nr_frags;
1207 			struct page_frag *pfrag = sk_page_frag(sk);
1208 
1209 			if (!sk_page_frag_refill(sk, pfrag))
1210 				goto wait_for_memory;
1211 
1212 			if (!skb_can_coalesce(skb, i, pfrag->page,
1213 					      pfrag->offset)) {
1214 				if (i == sysctl_max_skb_frags || !sg) {
1215 					tcp_mark_push(tp, skb);
1216 					goto new_segment;
1217 				}
1218 				merge = false;
1219 			}
1220 
1221 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1222 
1223 			if (!sk_wmem_schedule(sk, copy))
1224 				goto wait_for_memory;
1225 
1226 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1227 						       pfrag->page,
1228 						       pfrag->offset,
1229 						       copy);
1230 			if (err)
1231 				goto do_error;
1232 
1233 			/* Update the skb. */
1234 			if (merge) {
1235 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1236 			} else {
1237 				skb_fill_page_desc(skb, i, pfrag->page,
1238 						   pfrag->offset, copy);
1239 				get_page(pfrag->page);
1240 			}
1241 			pfrag->offset += copy;
1242 		}
1243 
1244 		if (!copied)
1245 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1246 
1247 		tp->write_seq += copy;
1248 		TCP_SKB_CB(skb)->end_seq += copy;
1249 		tcp_skb_pcount_set(skb, 0);
1250 
1251 		copied += copy;
1252 		if (!msg_data_left(msg)) {
1253 			tcp_tx_timestamp(sk, skb);
1254 			goto out;
1255 		}
1256 
1257 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1258 			continue;
1259 
1260 		if (forced_push(tp)) {
1261 			tcp_mark_push(tp, skb);
1262 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1263 		} else if (skb == tcp_send_head(sk))
1264 			tcp_push_one(sk, mss_now);
1265 		continue;
1266 
1267 wait_for_sndbuf:
1268 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1269 wait_for_memory:
1270 		if (copied)
1271 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1272 				 TCP_NAGLE_PUSH, size_goal);
1273 
1274 		err = sk_stream_wait_memory(sk, &timeo);
1275 		if (err != 0)
1276 			goto do_error;
1277 
1278 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1279 	}
1280 
1281 out:
1282 	if (copied)
1283 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1284 out_nopush:
1285 	release_sock(sk);
1286 	return copied + copied_syn;
1287 
1288 do_fault:
1289 	if (!skb->len) {
1290 		tcp_unlink_write_queue(skb, sk);
1291 		/* It is the one place in all of TCP, except connection
1292 		 * reset, where we can be unlinking the send_head.
1293 		 */
1294 		tcp_check_send_head(sk, skb);
1295 		sk_wmem_free_skb(sk, skb);
1296 	}
1297 
1298 do_error:
1299 	if (copied + copied_syn)
1300 		goto out;
1301 out_err:
1302 	err = sk_stream_error(sk, flags, err);
1303 	/* make sure we wake any epoll edge trigger waiter */
1304 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1305 		sk->sk_write_space(sk);
1306 	release_sock(sk);
1307 	return err;
1308 }
1309 EXPORT_SYMBOL(tcp_sendmsg);
1310 
1311 /*
1312  *	Handle reading urgent data. BSD has very simple semantics for
1313  *	this, no blocking and very strange errors 8)
1314  */
1315 
1316 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1317 {
1318 	struct tcp_sock *tp = tcp_sk(sk);
1319 
1320 	/* No URG data to read. */
1321 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1322 	    tp->urg_data == TCP_URG_READ)
1323 		return -EINVAL;	/* Yes this is right ! */
1324 
1325 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1326 		return -ENOTCONN;
1327 
1328 	if (tp->urg_data & TCP_URG_VALID) {
1329 		int err = 0;
1330 		char c = tp->urg_data;
1331 
1332 		if (!(flags & MSG_PEEK))
1333 			tp->urg_data = TCP_URG_READ;
1334 
1335 		/* Read urgent data. */
1336 		msg->msg_flags |= MSG_OOB;
1337 
1338 		if (len > 0) {
1339 			if (!(flags & MSG_TRUNC))
1340 				err = memcpy_to_msg(msg, &c, 1);
1341 			len = 1;
1342 		} else
1343 			msg->msg_flags |= MSG_TRUNC;
1344 
1345 		return err ? -EFAULT : len;
1346 	}
1347 
1348 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1349 		return 0;
1350 
1351 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1352 	 * the available implementations agree in this case:
1353 	 * this call should never block, independent of the
1354 	 * blocking state of the socket.
1355 	 * Mike <pall@rz.uni-karlsruhe.de>
1356 	 */
1357 	return -EAGAIN;
1358 }
1359 
1360 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1361 {
1362 	struct sk_buff *skb;
1363 	int copied = 0, err = 0;
1364 
1365 	/* XXX -- need to support SO_PEEK_OFF */
1366 
1367 	skb_queue_walk(&sk->sk_write_queue, skb) {
1368 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1369 		if (err)
1370 			break;
1371 
1372 		copied += skb->len;
1373 	}
1374 
1375 	return err ?: copied;
1376 }
1377 
1378 /* Clean up the receive buffer for full frames taken by the user,
1379  * then send an ACK if necessary.  COPIED is the number of bytes
1380  * tcp_recvmsg has given to the user so far, it speeds up the
1381  * calculation of whether or not we must ACK for the sake of
1382  * a window update.
1383  */
1384 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1385 {
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 	bool time_to_ack = false;
1388 
1389 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1390 
1391 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1392 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1393 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1394 
1395 	if (inet_csk_ack_scheduled(sk)) {
1396 		const struct inet_connection_sock *icsk = inet_csk(sk);
1397 		   /* Delayed ACKs frequently hit locked sockets during bulk
1398 		    * receive. */
1399 		if (icsk->icsk_ack.blocked ||
1400 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1401 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1402 		    /*
1403 		     * If this read emptied read buffer, we send ACK, if
1404 		     * connection is not bidirectional, user drained
1405 		     * receive buffer and there was a small segment
1406 		     * in queue.
1407 		     */
1408 		    (copied > 0 &&
1409 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1410 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1411 		       !icsk->icsk_ack.pingpong)) &&
1412 		      !atomic_read(&sk->sk_rmem_alloc)))
1413 			time_to_ack = true;
1414 	}
1415 
1416 	/* We send an ACK if we can now advertise a non-zero window
1417 	 * which has been raised "significantly".
1418 	 *
1419 	 * Even if window raised up to infinity, do not send window open ACK
1420 	 * in states, where we will not receive more. It is useless.
1421 	 */
1422 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1423 		__u32 rcv_window_now = tcp_receive_window(tp);
1424 
1425 		/* Optimize, __tcp_select_window() is not cheap. */
1426 		if (2*rcv_window_now <= tp->window_clamp) {
1427 			__u32 new_window = __tcp_select_window(sk);
1428 
1429 			/* Send ACK now, if this read freed lots of space
1430 			 * in our buffer. Certainly, new_window is new window.
1431 			 * We can advertise it now, if it is not less than current one.
1432 			 * "Lots" means "at least twice" here.
1433 			 */
1434 			if (new_window && new_window >= 2 * rcv_window_now)
1435 				time_to_ack = true;
1436 		}
1437 	}
1438 	if (time_to_ack)
1439 		tcp_send_ack(sk);
1440 }
1441 
1442 static void tcp_prequeue_process(struct sock *sk)
1443 {
1444 	struct sk_buff *skb;
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 
1447 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1448 
1449 	/* RX process wants to run with disabled BHs, though it is not
1450 	 * necessary */
1451 	local_bh_disable();
1452 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1453 		sk_backlog_rcv(sk, skb);
1454 	local_bh_enable();
1455 
1456 	/* Clear memory counter. */
1457 	tp->ucopy.memory = 0;
1458 }
1459 
1460 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1461 {
1462 	struct sk_buff *skb;
1463 	u32 offset;
1464 
1465 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1466 		offset = seq - TCP_SKB_CB(skb)->seq;
1467 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1468 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1469 			offset--;
1470 		}
1471 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1472 			*off = offset;
1473 			return skb;
1474 		}
1475 		/* This looks weird, but this can happen if TCP collapsing
1476 		 * splitted a fat GRO packet, while we released socket lock
1477 		 * in skb_splice_bits()
1478 		 */
1479 		sk_eat_skb(sk, skb);
1480 	}
1481 	return NULL;
1482 }
1483 
1484 /*
1485  * This routine provides an alternative to tcp_recvmsg() for routines
1486  * that would like to handle copying from skbuffs directly in 'sendfile'
1487  * fashion.
1488  * Note:
1489  *	- It is assumed that the socket was locked by the caller.
1490  *	- The routine does not block.
1491  *	- At present, there is no support for reading OOB data
1492  *	  or for 'peeking' the socket using this routine
1493  *	  (although both would be easy to implement).
1494  */
1495 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1496 		  sk_read_actor_t recv_actor)
1497 {
1498 	struct sk_buff *skb;
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 	u32 seq = tp->copied_seq;
1501 	u32 offset;
1502 	int copied = 0;
1503 
1504 	if (sk->sk_state == TCP_LISTEN)
1505 		return -ENOTCONN;
1506 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1507 		if (offset < skb->len) {
1508 			int used;
1509 			size_t len;
1510 
1511 			len = skb->len - offset;
1512 			/* Stop reading if we hit a patch of urgent data */
1513 			if (tp->urg_data) {
1514 				u32 urg_offset = tp->urg_seq - seq;
1515 				if (urg_offset < len)
1516 					len = urg_offset;
1517 				if (!len)
1518 					break;
1519 			}
1520 			used = recv_actor(desc, skb, offset, len);
1521 			if (used <= 0) {
1522 				if (!copied)
1523 					copied = used;
1524 				break;
1525 			} else if (used <= len) {
1526 				seq += used;
1527 				copied += used;
1528 				offset += used;
1529 			}
1530 			/* If recv_actor drops the lock (e.g. TCP splice
1531 			 * receive) the skb pointer might be invalid when
1532 			 * getting here: tcp_collapse might have deleted it
1533 			 * while aggregating skbs from the socket queue.
1534 			 */
1535 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1536 			if (!skb)
1537 				break;
1538 			/* TCP coalescing might have appended data to the skb.
1539 			 * Try to splice more frags
1540 			 */
1541 			if (offset + 1 != skb->len)
1542 				continue;
1543 		}
1544 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1545 			sk_eat_skb(sk, skb);
1546 			++seq;
1547 			break;
1548 		}
1549 		sk_eat_skb(sk, skb);
1550 		if (!desc->count)
1551 			break;
1552 		tp->copied_seq = seq;
1553 	}
1554 	tp->copied_seq = seq;
1555 
1556 	tcp_rcv_space_adjust(sk);
1557 
1558 	/* Clean up data we have read: This will do ACK frames. */
1559 	if (copied > 0) {
1560 		tcp_recv_skb(sk, seq, &offset);
1561 		tcp_cleanup_rbuf(sk, copied);
1562 	}
1563 	return copied;
1564 }
1565 EXPORT_SYMBOL(tcp_read_sock);
1566 
1567 /*
1568  *	This routine copies from a sock struct into the user buffer.
1569  *
1570  *	Technical note: in 2.3 we work on _locked_ socket, so that
1571  *	tricks with *seq access order and skb->users are not required.
1572  *	Probably, code can be easily improved even more.
1573  */
1574 
1575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1576 		int flags, int *addr_len)
1577 {
1578 	struct tcp_sock *tp = tcp_sk(sk);
1579 	int copied = 0;
1580 	u32 peek_seq;
1581 	u32 *seq;
1582 	unsigned long used;
1583 	int err;
1584 	int target;		/* Read at least this many bytes */
1585 	long timeo;
1586 	struct task_struct *user_recv = NULL;
1587 	struct sk_buff *skb, *last;
1588 	u32 urg_hole = 0;
1589 
1590 	if (unlikely(flags & MSG_ERRQUEUE))
1591 		return inet_recv_error(sk, msg, len, addr_len);
1592 
1593 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1594 	    (sk->sk_state == TCP_ESTABLISHED))
1595 		sk_busy_loop(sk, nonblock);
1596 
1597 	lock_sock(sk);
1598 
1599 	err = -ENOTCONN;
1600 	if (sk->sk_state == TCP_LISTEN)
1601 		goto out;
1602 
1603 	timeo = sock_rcvtimeo(sk, nonblock);
1604 
1605 	/* Urgent data needs to be handled specially. */
1606 	if (flags & MSG_OOB)
1607 		goto recv_urg;
1608 
1609 	if (unlikely(tp->repair)) {
1610 		err = -EPERM;
1611 		if (!(flags & MSG_PEEK))
1612 			goto out;
1613 
1614 		if (tp->repair_queue == TCP_SEND_QUEUE)
1615 			goto recv_sndq;
1616 
1617 		err = -EINVAL;
1618 		if (tp->repair_queue == TCP_NO_QUEUE)
1619 			goto out;
1620 
1621 		/* 'common' recv queue MSG_PEEK-ing */
1622 	}
1623 
1624 	seq = &tp->copied_seq;
1625 	if (flags & MSG_PEEK) {
1626 		peek_seq = tp->copied_seq;
1627 		seq = &peek_seq;
1628 	}
1629 
1630 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1631 
1632 	do {
1633 		u32 offset;
1634 
1635 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1636 		if (tp->urg_data && tp->urg_seq == *seq) {
1637 			if (copied)
1638 				break;
1639 			if (signal_pending(current)) {
1640 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1641 				break;
1642 			}
1643 		}
1644 
1645 		/* Next get a buffer. */
1646 
1647 		last = skb_peek_tail(&sk->sk_receive_queue);
1648 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1649 			last = skb;
1650 			/* Now that we have two receive queues this
1651 			 * shouldn't happen.
1652 			 */
1653 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1654 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1655 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1656 				 flags))
1657 				break;
1658 
1659 			offset = *seq - TCP_SKB_CB(skb)->seq;
1660 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1661 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1662 				offset--;
1663 			}
1664 			if (offset < skb->len)
1665 				goto found_ok_skb;
1666 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1667 				goto found_fin_ok;
1668 			WARN(!(flags & MSG_PEEK),
1669 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1670 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1671 		}
1672 
1673 		/* Well, if we have backlog, try to process it now yet. */
1674 
1675 		if (copied >= target && !sk->sk_backlog.tail)
1676 			break;
1677 
1678 		if (copied) {
1679 			if (sk->sk_err ||
1680 			    sk->sk_state == TCP_CLOSE ||
1681 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1682 			    !timeo ||
1683 			    signal_pending(current))
1684 				break;
1685 		} else {
1686 			if (sock_flag(sk, SOCK_DONE))
1687 				break;
1688 
1689 			if (sk->sk_err) {
1690 				copied = sock_error(sk);
1691 				break;
1692 			}
1693 
1694 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1695 				break;
1696 
1697 			if (sk->sk_state == TCP_CLOSE) {
1698 				if (!sock_flag(sk, SOCK_DONE)) {
1699 					/* This occurs when user tries to read
1700 					 * from never connected socket.
1701 					 */
1702 					copied = -ENOTCONN;
1703 					break;
1704 				}
1705 				break;
1706 			}
1707 
1708 			if (!timeo) {
1709 				copied = -EAGAIN;
1710 				break;
1711 			}
1712 
1713 			if (signal_pending(current)) {
1714 				copied = sock_intr_errno(timeo);
1715 				break;
1716 			}
1717 		}
1718 
1719 		tcp_cleanup_rbuf(sk, copied);
1720 
1721 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1722 			/* Install new reader */
1723 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1724 				user_recv = current;
1725 				tp->ucopy.task = user_recv;
1726 				tp->ucopy.msg = msg;
1727 			}
1728 
1729 			tp->ucopy.len = len;
1730 
1731 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1732 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1733 
1734 			/* Ugly... If prequeue is not empty, we have to
1735 			 * process it before releasing socket, otherwise
1736 			 * order will be broken at second iteration.
1737 			 * More elegant solution is required!!!
1738 			 *
1739 			 * Look: we have the following (pseudo)queues:
1740 			 *
1741 			 * 1. packets in flight
1742 			 * 2. backlog
1743 			 * 3. prequeue
1744 			 * 4. receive_queue
1745 			 *
1746 			 * Each queue can be processed only if the next ones
1747 			 * are empty. At this point we have empty receive_queue.
1748 			 * But prequeue _can_ be not empty after 2nd iteration,
1749 			 * when we jumped to start of loop because backlog
1750 			 * processing added something to receive_queue.
1751 			 * We cannot release_sock(), because backlog contains
1752 			 * packets arrived _after_ prequeued ones.
1753 			 *
1754 			 * Shortly, algorithm is clear --- to process all
1755 			 * the queues in order. We could make it more directly,
1756 			 * requeueing packets from backlog to prequeue, if
1757 			 * is not empty. It is more elegant, but eats cycles,
1758 			 * unfortunately.
1759 			 */
1760 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1761 				goto do_prequeue;
1762 
1763 			/* __ Set realtime policy in scheduler __ */
1764 		}
1765 
1766 		if (copied >= target) {
1767 			/* Do not sleep, just process backlog. */
1768 			release_sock(sk);
1769 			lock_sock(sk);
1770 		} else {
1771 			sk_wait_data(sk, &timeo, last);
1772 		}
1773 
1774 		if (user_recv) {
1775 			int chunk;
1776 
1777 			/* __ Restore normal policy in scheduler __ */
1778 
1779 			chunk = len - tp->ucopy.len;
1780 			if (chunk != 0) {
1781 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1782 				len -= chunk;
1783 				copied += chunk;
1784 			}
1785 
1786 			if (tp->rcv_nxt == tp->copied_seq &&
1787 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1788 do_prequeue:
1789 				tcp_prequeue_process(sk);
1790 
1791 				chunk = len - tp->ucopy.len;
1792 				if (chunk != 0) {
1793 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1794 					len -= chunk;
1795 					copied += chunk;
1796 				}
1797 			}
1798 		}
1799 		if ((flags & MSG_PEEK) &&
1800 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1801 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1802 					    current->comm,
1803 					    task_pid_nr(current));
1804 			peek_seq = tp->copied_seq;
1805 		}
1806 		continue;
1807 
1808 	found_ok_skb:
1809 		/* Ok so how much can we use? */
1810 		used = skb->len - offset;
1811 		if (len < used)
1812 			used = len;
1813 
1814 		/* Do we have urgent data here? */
1815 		if (tp->urg_data) {
1816 			u32 urg_offset = tp->urg_seq - *seq;
1817 			if (urg_offset < used) {
1818 				if (!urg_offset) {
1819 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1820 						++*seq;
1821 						urg_hole++;
1822 						offset++;
1823 						used--;
1824 						if (!used)
1825 							goto skip_copy;
1826 					}
1827 				} else
1828 					used = urg_offset;
1829 			}
1830 		}
1831 
1832 		if (!(flags & MSG_TRUNC)) {
1833 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1834 			if (err) {
1835 				/* Exception. Bailout! */
1836 				if (!copied)
1837 					copied = -EFAULT;
1838 				break;
1839 			}
1840 		}
1841 
1842 		*seq += used;
1843 		copied += used;
1844 		len -= used;
1845 
1846 		tcp_rcv_space_adjust(sk);
1847 
1848 skip_copy:
1849 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1850 			tp->urg_data = 0;
1851 			tcp_fast_path_check(sk);
1852 		}
1853 		if (used + offset < skb->len)
1854 			continue;
1855 
1856 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1857 			goto found_fin_ok;
1858 		if (!(flags & MSG_PEEK))
1859 			sk_eat_skb(sk, skb);
1860 		continue;
1861 
1862 	found_fin_ok:
1863 		/* Process the FIN. */
1864 		++*seq;
1865 		if (!(flags & MSG_PEEK))
1866 			sk_eat_skb(sk, skb);
1867 		break;
1868 	} while (len > 0);
1869 
1870 	if (user_recv) {
1871 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1872 			int chunk;
1873 
1874 			tp->ucopy.len = copied > 0 ? len : 0;
1875 
1876 			tcp_prequeue_process(sk);
1877 
1878 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1879 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1880 				len -= chunk;
1881 				copied += chunk;
1882 			}
1883 		}
1884 
1885 		tp->ucopy.task = NULL;
1886 		tp->ucopy.len = 0;
1887 	}
1888 
1889 	/* According to UNIX98, msg_name/msg_namelen are ignored
1890 	 * on connected socket. I was just happy when found this 8) --ANK
1891 	 */
1892 
1893 	/* Clean up data we have read: This will do ACK frames. */
1894 	tcp_cleanup_rbuf(sk, copied);
1895 
1896 	release_sock(sk);
1897 	return copied;
1898 
1899 out:
1900 	release_sock(sk);
1901 	return err;
1902 
1903 recv_urg:
1904 	err = tcp_recv_urg(sk, msg, len, flags);
1905 	goto out;
1906 
1907 recv_sndq:
1908 	err = tcp_peek_sndq(sk, msg, len);
1909 	goto out;
1910 }
1911 EXPORT_SYMBOL(tcp_recvmsg);
1912 
1913 void tcp_set_state(struct sock *sk, int state)
1914 {
1915 	int oldstate = sk->sk_state;
1916 
1917 	switch (state) {
1918 	case TCP_ESTABLISHED:
1919 		if (oldstate != TCP_ESTABLISHED)
1920 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1921 		break;
1922 
1923 	case TCP_CLOSE:
1924 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1925 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1926 
1927 		sk->sk_prot->unhash(sk);
1928 		if (inet_csk(sk)->icsk_bind_hash &&
1929 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1930 			inet_put_port(sk);
1931 		/* fall through */
1932 	default:
1933 		if (oldstate == TCP_ESTABLISHED)
1934 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1935 	}
1936 
1937 	/* Change state AFTER socket is unhashed to avoid closed
1938 	 * socket sitting in hash tables.
1939 	 */
1940 	sk_state_store(sk, state);
1941 
1942 #ifdef STATE_TRACE
1943 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1944 #endif
1945 }
1946 EXPORT_SYMBOL_GPL(tcp_set_state);
1947 
1948 /*
1949  *	State processing on a close. This implements the state shift for
1950  *	sending our FIN frame. Note that we only send a FIN for some
1951  *	states. A shutdown() may have already sent the FIN, or we may be
1952  *	closed.
1953  */
1954 
1955 static const unsigned char new_state[16] = {
1956   /* current state:        new state:      action:	*/
1957   [0 /* (Invalid) */]	= TCP_CLOSE,
1958   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1959   [TCP_SYN_SENT]	= TCP_CLOSE,
1960   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1961   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1962   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1963   [TCP_TIME_WAIT]	= TCP_CLOSE,
1964   [TCP_CLOSE]		= TCP_CLOSE,
1965   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1966   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1967   [TCP_LISTEN]		= TCP_CLOSE,
1968   [TCP_CLOSING]		= TCP_CLOSING,
1969   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1970 };
1971 
1972 static int tcp_close_state(struct sock *sk)
1973 {
1974 	int next = (int)new_state[sk->sk_state];
1975 	int ns = next & TCP_STATE_MASK;
1976 
1977 	tcp_set_state(sk, ns);
1978 
1979 	return next & TCP_ACTION_FIN;
1980 }
1981 
1982 /*
1983  *	Shutdown the sending side of a connection. Much like close except
1984  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1985  */
1986 
1987 void tcp_shutdown(struct sock *sk, int how)
1988 {
1989 	/*	We need to grab some memory, and put together a FIN,
1990 	 *	and then put it into the queue to be sent.
1991 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1992 	 */
1993 	if (!(how & SEND_SHUTDOWN))
1994 		return;
1995 
1996 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1997 	if ((1 << sk->sk_state) &
1998 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1999 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2000 		/* Clear out any half completed packets.  FIN if needed. */
2001 		if (tcp_close_state(sk))
2002 			tcp_send_fin(sk);
2003 	}
2004 }
2005 EXPORT_SYMBOL(tcp_shutdown);
2006 
2007 bool tcp_check_oom(struct sock *sk, int shift)
2008 {
2009 	bool too_many_orphans, out_of_socket_memory;
2010 
2011 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2012 	out_of_socket_memory = tcp_out_of_memory(sk);
2013 
2014 	if (too_many_orphans)
2015 		net_info_ratelimited("too many orphaned sockets\n");
2016 	if (out_of_socket_memory)
2017 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2018 	return too_many_orphans || out_of_socket_memory;
2019 }
2020 
2021 void tcp_close(struct sock *sk, long timeout)
2022 {
2023 	struct sk_buff *skb;
2024 	int data_was_unread = 0;
2025 	int state;
2026 
2027 	lock_sock(sk);
2028 	sk->sk_shutdown = SHUTDOWN_MASK;
2029 
2030 	if (sk->sk_state == TCP_LISTEN) {
2031 		tcp_set_state(sk, TCP_CLOSE);
2032 
2033 		/* Special case. */
2034 		inet_csk_listen_stop(sk);
2035 
2036 		goto adjudge_to_death;
2037 	}
2038 
2039 	/*  We need to flush the recv. buffs.  We do this only on the
2040 	 *  descriptor close, not protocol-sourced closes, because the
2041 	 *  reader process may not have drained the data yet!
2042 	 */
2043 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2044 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2045 
2046 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2047 			len--;
2048 		data_was_unread += len;
2049 		__kfree_skb(skb);
2050 	}
2051 
2052 	sk_mem_reclaim(sk);
2053 
2054 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2055 	if (sk->sk_state == TCP_CLOSE)
2056 		goto adjudge_to_death;
2057 
2058 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2059 	 * data was lost. To witness the awful effects of the old behavior of
2060 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2061 	 * GET in an FTP client, suspend the process, wait for the client to
2062 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2063 	 * Note: timeout is always zero in such a case.
2064 	 */
2065 	if (unlikely(tcp_sk(sk)->repair)) {
2066 		sk->sk_prot->disconnect(sk, 0);
2067 	} else if (data_was_unread) {
2068 		/* Unread data was tossed, zap the connection. */
2069 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2070 		tcp_set_state(sk, TCP_CLOSE);
2071 		tcp_send_active_reset(sk, sk->sk_allocation);
2072 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2073 		/* Check zero linger _after_ checking for unread data. */
2074 		sk->sk_prot->disconnect(sk, 0);
2075 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2076 	} else if (tcp_close_state(sk)) {
2077 		/* We FIN if the application ate all the data before
2078 		 * zapping the connection.
2079 		 */
2080 
2081 		/* RED-PEN. Formally speaking, we have broken TCP state
2082 		 * machine. State transitions:
2083 		 *
2084 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2085 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2086 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2087 		 *
2088 		 * are legal only when FIN has been sent (i.e. in window),
2089 		 * rather than queued out of window. Purists blame.
2090 		 *
2091 		 * F.e. "RFC state" is ESTABLISHED,
2092 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2093 		 *
2094 		 * The visible declinations are that sometimes
2095 		 * we enter time-wait state, when it is not required really
2096 		 * (harmless), do not send active resets, when they are
2097 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2098 		 * they look as CLOSING or LAST_ACK for Linux)
2099 		 * Probably, I missed some more holelets.
2100 		 * 						--ANK
2101 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2102 		 * in a single packet! (May consider it later but will
2103 		 * probably need API support or TCP_CORK SYN-ACK until
2104 		 * data is written and socket is closed.)
2105 		 */
2106 		tcp_send_fin(sk);
2107 	}
2108 
2109 	sk_stream_wait_close(sk, timeout);
2110 
2111 adjudge_to_death:
2112 	state = sk->sk_state;
2113 	sock_hold(sk);
2114 	sock_orphan(sk);
2115 
2116 	/* It is the last release_sock in its life. It will remove backlog. */
2117 	release_sock(sk);
2118 
2119 
2120 	/* Now socket is owned by kernel and we acquire BH lock
2121 	   to finish close. No need to check for user refs.
2122 	 */
2123 	local_bh_disable();
2124 	bh_lock_sock(sk);
2125 	WARN_ON(sock_owned_by_user(sk));
2126 
2127 	percpu_counter_inc(sk->sk_prot->orphan_count);
2128 
2129 	/* Have we already been destroyed by a softirq or backlog? */
2130 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2131 		goto out;
2132 
2133 	/*	This is a (useful) BSD violating of the RFC. There is a
2134 	 *	problem with TCP as specified in that the other end could
2135 	 *	keep a socket open forever with no application left this end.
2136 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2137 	 *	our end. If they send after that then tough - BUT: long enough
2138 	 *	that we won't make the old 4*rto = almost no time - whoops
2139 	 *	reset mistake.
2140 	 *
2141 	 *	Nope, it was not mistake. It is really desired behaviour
2142 	 *	f.e. on http servers, when such sockets are useless, but
2143 	 *	consume significant resources. Let's do it with special
2144 	 *	linger2	option.					--ANK
2145 	 */
2146 
2147 	if (sk->sk_state == TCP_FIN_WAIT2) {
2148 		struct tcp_sock *tp = tcp_sk(sk);
2149 		if (tp->linger2 < 0) {
2150 			tcp_set_state(sk, TCP_CLOSE);
2151 			tcp_send_active_reset(sk, GFP_ATOMIC);
2152 			NET_INC_STATS_BH(sock_net(sk),
2153 					LINUX_MIB_TCPABORTONLINGER);
2154 		} else {
2155 			const int tmo = tcp_fin_time(sk);
2156 
2157 			if (tmo > TCP_TIMEWAIT_LEN) {
2158 				inet_csk_reset_keepalive_timer(sk,
2159 						tmo - TCP_TIMEWAIT_LEN);
2160 			} else {
2161 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2162 				goto out;
2163 			}
2164 		}
2165 	}
2166 	if (sk->sk_state != TCP_CLOSE) {
2167 		sk_mem_reclaim(sk);
2168 		if (tcp_check_oom(sk, 0)) {
2169 			tcp_set_state(sk, TCP_CLOSE);
2170 			tcp_send_active_reset(sk, GFP_ATOMIC);
2171 			NET_INC_STATS_BH(sock_net(sk),
2172 					LINUX_MIB_TCPABORTONMEMORY);
2173 		}
2174 	}
2175 
2176 	if (sk->sk_state == TCP_CLOSE) {
2177 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2178 		/* We could get here with a non-NULL req if the socket is
2179 		 * aborted (e.g., closed with unread data) before 3WHS
2180 		 * finishes.
2181 		 */
2182 		if (req)
2183 			reqsk_fastopen_remove(sk, req, false);
2184 		inet_csk_destroy_sock(sk);
2185 	}
2186 	/* Otherwise, socket is reprieved until protocol close. */
2187 
2188 out:
2189 	bh_unlock_sock(sk);
2190 	local_bh_enable();
2191 	sock_put(sk);
2192 }
2193 EXPORT_SYMBOL(tcp_close);
2194 
2195 /* These states need RST on ABORT according to RFC793 */
2196 
2197 static inline bool tcp_need_reset(int state)
2198 {
2199 	return (1 << state) &
2200 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2201 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2202 }
2203 
2204 int tcp_disconnect(struct sock *sk, int flags)
2205 {
2206 	struct inet_sock *inet = inet_sk(sk);
2207 	struct inet_connection_sock *icsk = inet_csk(sk);
2208 	struct tcp_sock *tp = tcp_sk(sk);
2209 	int err = 0;
2210 	int old_state = sk->sk_state;
2211 
2212 	if (old_state != TCP_CLOSE)
2213 		tcp_set_state(sk, TCP_CLOSE);
2214 
2215 	/* ABORT function of RFC793 */
2216 	if (old_state == TCP_LISTEN) {
2217 		inet_csk_listen_stop(sk);
2218 	} else if (unlikely(tp->repair)) {
2219 		sk->sk_err = ECONNABORTED;
2220 	} else if (tcp_need_reset(old_state) ||
2221 		   (tp->snd_nxt != tp->write_seq &&
2222 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2223 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2224 		 * states
2225 		 */
2226 		tcp_send_active_reset(sk, gfp_any());
2227 		sk->sk_err = ECONNRESET;
2228 	} else if (old_state == TCP_SYN_SENT)
2229 		sk->sk_err = ECONNRESET;
2230 
2231 	tcp_clear_xmit_timers(sk);
2232 	__skb_queue_purge(&sk->sk_receive_queue);
2233 	tcp_write_queue_purge(sk);
2234 	__skb_queue_purge(&tp->out_of_order_queue);
2235 
2236 	inet->inet_dport = 0;
2237 
2238 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2239 		inet_reset_saddr(sk);
2240 
2241 	sk->sk_shutdown = 0;
2242 	sock_reset_flag(sk, SOCK_DONE);
2243 	tp->srtt_us = 0;
2244 	tp->write_seq += tp->max_window + 2;
2245 	if (tp->write_seq == 0)
2246 		tp->write_seq = 1;
2247 	icsk->icsk_backoff = 0;
2248 	tp->snd_cwnd = 2;
2249 	icsk->icsk_probes_out = 0;
2250 	tp->packets_out = 0;
2251 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2252 	tp->snd_cwnd_cnt = 0;
2253 	tp->window_clamp = 0;
2254 	tcp_set_ca_state(sk, TCP_CA_Open);
2255 	tcp_clear_retrans(tp);
2256 	inet_csk_delack_init(sk);
2257 	tcp_init_send_head(sk);
2258 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2259 	__sk_dst_reset(sk);
2260 
2261 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2262 
2263 	sk->sk_error_report(sk);
2264 	return err;
2265 }
2266 EXPORT_SYMBOL(tcp_disconnect);
2267 
2268 static inline bool tcp_can_repair_sock(const struct sock *sk)
2269 {
2270 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2271 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2272 }
2273 
2274 static int tcp_repair_options_est(struct tcp_sock *tp,
2275 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2276 {
2277 	struct tcp_repair_opt opt;
2278 
2279 	while (len >= sizeof(opt)) {
2280 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2281 			return -EFAULT;
2282 
2283 		optbuf++;
2284 		len -= sizeof(opt);
2285 
2286 		switch (opt.opt_code) {
2287 		case TCPOPT_MSS:
2288 			tp->rx_opt.mss_clamp = opt.opt_val;
2289 			break;
2290 		case TCPOPT_WINDOW:
2291 			{
2292 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2293 				u16 rcv_wscale = opt.opt_val >> 16;
2294 
2295 				if (snd_wscale > 14 || rcv_wscale > 14)
2296 					return -EFBIG;
2297 
2298 				tp->rx_opt.snd_wscale = snd_wscale;
2299 				tp->rx_opt.rcv_wscale = rcv_wscale;
2300 				tp->rx_opt.wscale_ok = 1;
2301 			}
2302 			break;
2303 		case TCPOPT_SACK_PERM:
2304 			if (opt.opt_val != 0)
2305 				return -EINVAL;
2306 
2307 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2308 			if (sysctl_tcp_fack)
2309 				tcp_enable_fack(tp);
2310 			break;
2311 		case TCPOPT_TIMESTAMP:
2312 			if (opt.opt_val != 0)
2313 				return -EINVAL;
2314 
2315 			tp->rx_opt.tstamp_ok = 1;
2316 			break;
2317 		}
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 /*
2324  *	Socket option code for TCP.
2325  */
2326 static int do_tcp_setsockopt(struct sock *sk, int level,
2327 		int optname, char __user *optval, unsigned int optlen)
2328 {
2329 	struct tcp_sock *tp = tcp_sk(sk);
2330 	struct inet_connection_sock *icsk = inet_csk(sk);
2331 	struct net *net = sock_net(sk);
2332 	int val;
2333 	int err = 0;
2334 
2335 	/* These are data/string values, all the others are ints */
2336 	switch (optname) {
2337 	case TCP_CONGESTION: {
2338 		char name[TCP_CA_NAME_MAX];
2339 
2340 		if (optlen < 1)
2341 			return -EINVAL;
2342 
2343 		val = strncpy_from_user(name, optval,
2344 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2345 		if (val < 0)
2346 			return -EFAULT;
2347 		name[val] = 0;
2348 
2349 		lock_sock(sk);
2350 		err = tcp_set_congestion_control(sk, name);
2351 		release_sock(sk);
2352 		return err;
2353 	}
2354 	default:
2355 		/* fallthru */
2356 		break;
2357 	}
2358 
2359 	if (optlen < sizeof(int))
2360 		return -EINVAL;
2361 
2362 	if (get_user(val, (int __user *)optval))
2363 		return -EFAULT;
2364 
2365 	lock_sock(sk);
2366 
2367 	switch (optname) {
2368 	case TCP_MAXSEG:
2369 		/* Values greater than interface MTU won't take effect. However
2370 		 * at the point when this call is done we typically don't yet
2371 		 * know which interface is going to be used */
2372 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2373 			err = -EINVAL;
2374 			break;
2375 		}
2376 		tp->rx_opt.user_mss = val;
2377 		break;
2378 
2379 	case TCP_NODELAY:
2380 		if (val) {
2381 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2382 			 * this option on corked socket is remembered, but
2383 			 * it is not activated until cork is cleared.
2384 			 *
2385 			 * However, when TCP_NODELAY is set we make
2386 			 * an explicit push, which overrides even TCP_CORK
2387 			 * for currently queued segments.
2388 			 */
2389 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2390 			tcp_push_pending_frames(sk);
2391 		} else {
2392 			tp->nonagle &= ~TCP_NAGLE_OFF;
2393 		}
2394 		break;
2395 
2396 	case TCP_THIN_LINEAR_TIMEOUTS:
2397 		if (val < 0 || val > 1)
2398 			err = -EINVAL;
2399 		else
2400 			tp->thin_lto = val;
2401 		break;
2402 
2403 	case TCP_THIN_DUPACK:
2404 		if (val < 0 || val > 1)
2405 			err = -EINVAL;
2406 		else {
2407 			tp->thin_dupack = val;
2408 			if (tp->thin_dupack)
2409 				tcp_disable_early_retrans(tp);
2410 		}
2411 		break;
2412 
2413 	case TCP_REPAIR:
2414 		if (!tcp_can_repair_sock(sk))
2415 			err = -EPERM;
2416 		else if (val == 1) {
2417 			tp->repair = 1;
2418 			sk->sk_reuse = SK_FORCE_REUSE;
2419 			tp->repair_queue = TCP_NO_QUEUE;
2420 		} else if (val == 0) {
2421 			tp->repair = 0;
2422 			sk->sk_reuse = SK_NO_REUSE;
2423 			tcp_send_window_probe(sk);
2424 		} else
2425 			err = -EINVAL;
2426 
2427 		break;
2428 
2429 	case TCP_REPAIR_QUEUE:
2430 		if (!tp->repair)
2431 			err = -EPERM;
2432 		else if (val < TCP_QUEUES_NR)
2433 			tp->repair_queue = val;
2434 		else
2435 			err = -EINVAL;
2436 		break;
2437 
2438 	case TCP_QUEUE_SEQ:
2439 		if (sk->sk_state != TCP_CLOSE)
2440 			err = -EPERM;
2441 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2442 			tp->write_seq = val;
2443 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2444 			tp->rcv_nxt = val;
2445 		else
2446 			err = -EINVAL;
2447 		break;
2448 
2449 	case TCP_REPAIR_OPTIONS:
2450 		if (!tp->repair)
2451 			err = -EINVAL;
2452 		else if (sk->sk_state == TCP_ESTABLISHED)
2453 			err = tcp_repair_options_est(tp,
2454 					(struct tcp_repair_opt __user *)optval,
2455 					optlen);
2456 		else
2457 			err = -EPERM;
2458 		break;
2459 
2460 	case TCP_CORK:
2461 		/* When set indicates to always queue non-full frames.
2462 		 * Later the user clears this option and we transmit
2463 		 * any pending partial frames in the queue.  This is
2464 		 * meant to be used alongside sendfile() to get properly
2465 		 * filled frames when the user (for example) must write
2466 		 * out headers with a write() call first and then use
2467 		 * sendfile to send out the data parts.
2468 		 *
2469 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2470 		 * stronger than TCP_NODELAY.
2471 		 */
2472 		if (val) {
2473 			tp->nonagle |= TCP_NAGLE_CORK;
2474 		} else {
2475 			tp->nonagle &= ~TCP_NAGLE_CORK;
2476 			if (tp->nonagle&TCP_NAGLE_OFF)
2477 				tp->nonagle |= TCP_NAGLE_PUSH;
2478 			tcp_push_pending_frames(sk);
2479 		}
2480 		break;
2481 
2482 	case TCP_KEEPIDLE:
2483 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2484 			err = -EINVAL;
2485 		else {
2486 			tp->keepalive_time = val * HZ;
2487 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2488 			    !((1 << sk->sk_state) &
2489 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2490 				u32 elapsed = keepalive_time_elapsed(tp);
2491 				if (tp->keepalive_time > elapsed)
2492 					elapsed = tp->keepalive_time - elapsed;
2493 				else
2494 					elapsed = 0;
2495 				inet_csk_reset_keepalive_timer(sk, elapsed);
2496 			}
2497 		}
2498 		break;
2499 	case TCP_KEEPINTVL:
2500 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2501 			err = -EINVAL;
2502 		else
2503 			tp->keepalive_intvl = val * HZ;
2504 		break;
2505 	case TCP_KEEPCNT:
2506 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2507 			err = -EINVAL;
2508 		else
2509 			tp->keepalive_probes = val;
2510 		break;
2511 	case TCP_SYNCNT:
2512 		if (val < 1 || val > MAX_TCP_SYNCNT)
2513 			err = -EINVAL;
2514 		else
2515 			icsk->icsk_syn_retries = val;
2516 		break;
2517 
2518 	case TCP_SAVE_SYN:
2519 		if (val < 0 || val > 1)
2520 			err = -EINVAL;
2521 		else
2522 			tp->save_syn = val;
2523 		break;
2524 
2525 	case TCP_LINGER2:
2526 		if (val < 0)
2527 			tp->linger2 = -1;
2528 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2529 			tp->linger2 = 0;
2530 		else
2531 			tp->linger2 = val * HZ;
2532 		break;
2533 
2534 	case TCP_DEFER_ACCEPT:
2535 		/* Translate value in seconds to number of retransmits */
2536 		icsk->icsk_accept_queue.rskq_defer_accept =
2537 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2538 					TCP_RTO_MAX / HZ);
2539 		break;
2540 
2541 	case TCP_WINDOW_CLAMP:
2542 		if (!val) {
2543 			if (sk->sk_state != TCP_CLOSE) {
2544 				err = -EINVAL;
2545 				break;
2546 			}
2547 			tp->window_clamp = 0;
2548 		} else
2549 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2550 						SOCK_MIN_RCVBUF / 2 : val;
2551 		break;
2552 
2553 	case TCP_QUICKACK:
2554 		if (!val) {
2555 			icsk->icsk_ack.pingpong = 1;
2556 		} else {
2557 			icsk->icsk_ack.pingpong = 0;
2558 			if ((1 << sk->sk_state) &
2559 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2560 			    inet_csk_ack_scheduled(sk)) {
2561 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2562 				tcp_cleanup_rbuf(sk, 1);
2563 				if (!(val & 1))
2564 					icsk->icsk_ack.pingpong = 1;
2565 			}
2566 		}
2567 		break;
2568 
2569 #ifdef CONFIG_TCP_MD5SIG
2570 	case TCP_MD5SIG:
2571 		/* Read the IP->Key mappings from userspace */
2572 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2573 		break;
2574 #endif
2575 	case TCP_USER_TIMEOUT:
2576 		/* Cap the max time in ms TCP will retry or probe the window
2577 		 * before giving up and aborting (ETIMEDOUT) a connection.
2578 		 */
2579 		if (val < 0)
2580 			err = -EINVAL;
2581 		else
2582 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2583 		break;
2584 
2585 	case TCP_FASTOPEN:
2586 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2587 		    TCPF_LISTEN))) {
2588 			tcp_fastopen_init_key_once(true);
2589 
2590 			fastopen_queue_tune(sk, val);
2591 		} else {
2592 			err = -EINVAL;
2593 		}
2594 		break;
2595 	case TCP_TIMESTAMP:
2596 		if (!tp->repair)
2597 			err = -EPERM;
2598 		else
2599 			tp->tsoffset = val - tcp_time_stamp;
2600 		break;
2601 	case TCP_NOTSENT_LOWAT:
2602 		tp->notsent_lowat = val;
2603 		sk->sk_write_space(sk);
2604 		break;
2605 	default:
2606 		err = -ENOPROTOOPT;
2607 		break;
2608 	}
2609 
2610 	release_sock(sk);
2611 	return err;
2612 }
2613 
2614 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2615 		   unsigned int optlen)
2616 {
2617 	const struct inet_connection_sock *icsk = inet_csk(sk);
2618 
2619 	if (level != SOL_TCP)
2620 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2621 						     optval, optlen);
2622 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2623 }
2624 EXPORT_SYMBOL(tcp_setsockopt);
2625 
2626 #ifdef CONFIG_COMPAT
2627 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2628 			  char __user *optval, unsigned int optlen)
2629 {
2630 	if (level != SOL_TCP)
2631 		return inet_csk_compat_setsockopt(sk, level, optname,
2632 						  optval, optlen);
2633 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2634 }
2635 EXPORT_SYMBOL(compat_tcp_setsockopt);
2636 #endif
2637 
2638 /* Return information about state of tcp endpoint in API format. */
2639 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2640 {
2641 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2642 	const struct inet_connection_sock *icsk = inet_csk(sk);
2643 	u32 now = tcp_time_stamp;
2644 	unsigned int start;
2645 	int notsent_bytes;
2646 	u64 rate64;
2647 	u32 rate;
2648 
2649 	memset(info, 0, sizeof(*info));
2650 	if (sk->sk_type != SOCK_STREAM)
2651 		return;
2652 
2653 	info->tcpi_state = sk_state_load(sk);
2654 
2655 	info->tcpi_ca_state = icsk->icsk_ca_state;
2656 	info->tcpi_retransmits = icsk->icsk_retransmits;
2657 	info->tcpi_probes = icsk->icsk_probes_out;
2658 	info->tcpi_backoff = icsk->icsk_backoff;
2659 
2660 	if (tp->rx_opt.tstamp_ok)
2661 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2662 	if (tcp_is_sack(tp))
2663 		info->tcpi_options |= TCPI_OPT_SACK;
2664 	if (tp->rx_opt.wscale_ok) {
2665 		info->tcpi_options |= TCPI_OPT_WSCALE;
2666 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2667 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2668 	}
2669 
2670 	if (tp->ecn_flags & TCP_ECN_OK)
2671 		info->tcpi_options |= TCPI_OPT_ECN;
2672 	if (tp->ecn_flags & TCP_ECN_SEEN)
2673 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2674 	if (tp->syn_data_acked)
2675 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2676 
2677 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2678 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2679 	info->tcpi_snd_mss = tp->mss_cache;
2680 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2681 
2682 	if (info->tcpi_state == TCP_LISTEN) {
2683 		info->tcpi_unacked = sk->sk_ack_backlog;
2684 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2685 	} else {
2686 		info->tcpi_unacked = tp->packets_out;
2687 		info->tcpi_sacked = tp->sacked_out;
2688 	}
2689 	info->tcpi_lost = tp->lost_out;
2690 	info->tcpi_retrans = tp->retrans_out;
2691 	info->tcpi_fackets = tp->fackets_out;
2692 
2693 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2694 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2695 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2696 
2697 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2698 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2699 	info->tcpi_rtt = tp->srtt_us >> 3;
2700 	info->tcpi_rttvar = tp->mdev_us >> 2;
2701 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2702 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2703 	info->tcpi_advmss = tp->advmss;
2704 	info->tcpi_reordering = tp->reordering;
2705 
2706 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2707 	info->tcpi_rcv_space = tp->rcvq_space.space;
2708 
2709 	info->tcpi_total_retrans = tp->total_retrans;
2710 
2711 	rate = READ_ONCE(sk->sk_pacing_rate);
2712 	rate64 = rate != ~0U ? rate : ~0ULL;
2713 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2714 
2715 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2716 	rate64 = rate != ~0U ? rate : ~0ULL;
2717 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2718 
2719 	do {
2720 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2721 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2722 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2723 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2724 	info->tcpi_segs_out = tp->segs_out;
2725 	info->tcpi_segs_in = tp->segs_in;
2726 
2727 	notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2728 	info->tcpi_notsent_bytes = max(0, notsent_bytes);
2729 
2730 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2731 }
2732 EXPORT_SYMBOL_GPL(tcp_get_info);
2733 
2734 static int do_tcp_getsockopt(struct sock *sk, int level,
2735 		int optname, char __user *optval, int __user *optlen)
2736 {
2737 	struct inet_connection_sock *icsk = inet_csk(sk);
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 	struct net *net = sock_net(sk);
2740 	int val, len;
2741 
2742 	if (get_user(len, optlen))
2743 		return -EFAULT;
2744 
2745 	len = min_t(unsigned int, len, sizeof(int));
2746 
2747 	if (len < 0)
2748 		return -EINVAL;
2749 
2750 	switch (optname) {
2751 	case TCP_MAXSEG:
2752 		val = tp->mss_cache;
2753 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2754 			val = tp->rx_opt.user_mss;
2755 		if (tp->repair)
2756 			val = tp->rx_opt.mss_clamp;
2757 		break;
2758 	case TCP_NODELAY:
2759 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2760 		break;
2761 	case TCP_CORK:
2762 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2763 		break;
2764 	case TCP_KEEPIDLE:
2765 		val = keepalive_time_when(tp) / HZ;
2766 		break;
2767 	case TCP_KEEPINTVL:
2768 		val = keepalive_intvl_when(tp) / HZ;
2769 		break;
2770 	case TCP_KEEPCNT:
2771 		val = keepalive_probes(tp);
2772 		break;
2773 	case TCP_SYNCNT:
2774 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2775 		break;
2776 	case TCP_LINGER2:
2777 		val = tp->linger2;
2778 		if (val >= 0)
2779 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2780 		break;
2781 	case TCP_DEFER_ACCEPT:
2782 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2783 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2784 		break;
2785 	case TCP_WINDOW_CLAMP:
2786 		val = tp->window_clamp;
2787 		break;
2788 	case TCP_INFO: {
2789 		struct tcp_info info;
2790 
2791 		if (get_user(len, optlen))
2792 			return -EFAULT;
2793 
2794 		tcp_get_info(sk, &info);
2795 
2796 		len = min_t(unsigned int, len, sizeof(info));
2797 		if (put_user(len, optlen))
2798 			return -EFAULT;
2799 		if (copy_to_user(optval, &info, len))
2800 			return -EFAULT;
2801 		return 0;
2802 	}
2803 	case TCP_CC_INFO: {
2804 		const struct tcp_congestion_ops *ca_ops;
2805 		union tcp_cc_info info;
2806 		size_t sz = 0;
2807 		int attr;
2808 
2809 		if (get_user(len, optlen))
2810 			return -EFAULT;
2811 
2812 		ca_ops = icsk->icsk_ca_ops;
2813 		if (ca_ops && ca_ops->get_info)
2814 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2815 
2816 		len = min_t(unsigned int, len, sz);
2817 		if (put_user(len, optlen))
2818 			return -EFAULT;
2819 		if (copy_to_user(optval, &info, len))
2820 			return -EFAULT;
2821 		return 0;
2822 	}
2823 	case TCP_QUICKACK:
2824 		val = !icsk->icsk_ack.pingpong;
2825 		break;
2826 
2827 	case TCP_CONGESTION:
2828 		if (get_user(len, optlen))
2829 			return -EFAULT;
2830 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2831 		if (put_user(len, optlen))
2832 			return -EFAULT;
2833 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2834 			return -EFAULT;
2835 		return 0;
2836 
2837 	case TCP_THIN_LINEAR_TIMEOUTS:
2838 		val = tp->thin_lto;
2839 		break;
2840 	case TCP_THIN_DUPACK:
2841 		val = tp->thin_dupack;
2842 		break;
2843 
2844 	case TCP_REPAIR:
2845 		val = tp->repair;
2846 		break;
2847 
2848 	case TCP_REPAIR_QUEUE:
2849 		if (tp->repair)
2850 			val = tp->repair_queue;
2851 		else
2852 			return -EINVAL;
2853 		break;
2854 
2855 	case TCP_QUEUE_SEQ:
2856 		if (tp->repair_queue == TCP_SEND_QUEUE)
2857 			val = tp->write_seq;
2858 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2859 			val = tp->rcv_nxt;
2860 		else
2861 			return -EINVAL;
2862 		break;
2863 
2864 	case TCP_USER_TIMEOUT:
2865 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2866 		break;
2867 
2868 	case TCP_FASTOPEN:
2869 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2870 		break;
2871 
2872 	case TCP_TIMESTAMP:
2873 		val = tcp_time_stamp + tp->tsoffset;
2874 		break;
2875 	case TCP_NOTSENT_LOWAT:
2876 		val = tp->notsent_lowat;
2877 		break;
2878 	case TCP_SAVE_SYN:
2879 		val = tp->save_syn;
2880 		break;
2881 	case TCP_SAVED_SYN: {
2882 		if (get_user(len, optlen))
2883 			return -EFAULT;
2884 
2885 		lock_sock(sk);
2886 		if (tp->saved_syn) {
2887 			if (len < tp->saved_syn[0]) {
2888 				if (put_user(tp->saved_syn[0], optlen)) {
2889 					release_sock(sk);
2890 					return -EFAULT;
2891 				}
2892 				release_sock(sk);
2893 				return -EINVAL;
2894 			}
2895 			len = tp->saved_syn[0];
2896 			if (put_user(len, optlen)) {
2897 				release_sock(sk);
2898 				return -EFAULT;
2899 			}
2900 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2901 				release_sock(sk);
2902 				return -EFAULT;
2903 			}
2904 			tcp_saved_syn_free(tp);
2905 			release_sock(sk);
2906 		} else {
2907 			release_sock(sk);
2908 			len = 0;
2909 			if (put_user(len, optlen))
2910 				return -EFAULT;
2911 		}
2912 		return 0;
2913 	}
2914 	default:
2915 		return -ENOPROTOOPT;
2916 	}
2917 
2918 	if (put_user(len, optlen))
2919 		return -EFAULT;
2920 	if (copy_to_user(optval, &val, len))
2921 		return -EFAULT;
2922 	return 0;
2923 }
2924 
2925 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2926 		   int __user *optlen)
2927 {
2928 	struct inet_connection_sock *icsk = inet_csk(sk);
2929 
2930 	if (level != SOL_TCP)
2931 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2932 						     optval, optlen);
2933 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2934 }
2935 EXPORT_SYMBOL(tcp_getsockopt);
2936 
2937 #ifdef CONFIG_COMPAT
2938 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2939 			  char __user *optval, int __user *optlen)
2940 {
2941 	if (level != SOL_TCP)
2942 		return inet_csk_compat_getsockopt(sk, level, optname,
2943 						  optval, optlen);
2944 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2945 }
2946 EXPORT_SYMBOL(compat_tcp_getsockopt);
2947 #endif
2948 
2949 #ifdef CONFIG_TCP_MD5SIG
2950 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2951 static DEFINE_MUTEX(tcp_md5sig_mutex);
2952 static bool tcp_md5sig_pool_populated = false;
2953 
2954 static void __tcp_alloc_md5sig_pool(void)
2955 {
2956 	int cpu;
2957 
2958 	for_each_possible_cpu(cpu) {
2959 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2960 			struct crypto_hash *hash;
2961 
2962 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2963 			if (IS_ERR(hash))
2964 				return;
2965 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2966 		}
2967 	}
2968 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2969 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2970 	 */
2971 	smp_wmb();
2972 	tcp_md5sig_pool_populated = true;
2973 }
2974 
2975 bool tcp_alloc_md5sig_pool(void)
2976 {
2977 	if (unlikely(!tcp_md5sig_pool_populated)) {
2978 		mutex_lock(&tcp_md5sig_mutex);
2979 
2980 		if (!tcp_md5sig_pool_populated)
2981 			__tcp_alloc_md5sig_pool();
2982 
2983 		mutex_unlock(&tcp_md5sig_mutex);
2984 	}
2985 	return tcp_md5sig_pool_populated;
2986 }
2987 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2988 
2989 
2990 /**
2991  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2992  *
2993  *	We use percpu structure, so if we succeed, we exit with preemption
2994  *	and BH disabled, to make sure another thread or softirq handling
2995  *	wont try to get same context.
2996  */
2997 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2998 {
2999 	local_bh_disable();
3000 
3001 	if (tcp_md5sig_pool_populated) {
3002 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3003 		smp_rmb();
3004 		return this_cpu_ptr(&tcp_md5sig_pool);
3005 	}
3006 	local_bh_enable();
3007 	return NULL;
3008 }
3009 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3010 
3011 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3012 			const struct tcphdr *th)
3013 {
3014 	struct scatterlist sg;
3015 	struct tcphdr hdr;
3016 	int err;
3017 
3018 	/* We are not allowed to change tcphdr, make a local copy */
3019 	memcpy(&hdr, th, sizeof(hdr));
3020 	hdr.check = 0;
3021 
3022 	/* options aren't included in the hash */
3023 	sg_init_one(&sg, &hdr, sizeof(hdr));
3024 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3025 	return err;
3026 }
3027 EXPORT_SYMBOL(tcp_md5_hash_header);
3028 
3029 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3030 			  const struct sk_buff *skb, unsigned int header_len)
3031 {
3032 	struct scatterlist sg;
3033 	const struct tcphdr *tp = tcp_hdr(skb);
3034 	struct hash_desc *desc = &hp->md5_desc;
3035 	unsigned int i;
3036 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3037 					   skb_headlen(skb) - header_len : 0;
3038 	const struct skb_shared_info *shi = skb_shinfo(skb);
3039 	struct sk_buff *frag_iter;
3040 
3041 	sg_init_table(&sg, 1);
3042 
3043 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3044 	if (crypto_hash_update(desc, &sg, head_data_len))
3045 		return 1;
3046 
3047 	for (i = 0; i < shi->nr_frags; ++i) {
3048 		const struct skb_frag_struct *f = &shi->frags[i];
3049 		unsigned int offset = f->page_offset;
3050 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3051 
3052 		sg_set_page(&sg, page, skb_frag_size(f),
3053 			    offset_in_page(offset));
3054 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3055 			return 1;
3056 	}
3057 
3058 	skb_walk_frags(skb, frag_iter)
3059 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3060 			return 1;
3061 
3062 	return 0;
3063 }
3064 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3065 
3066 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3067 {
3068 	struct scatterlist sg;
3069 
3070 	sg_init_one(&sg, key->key, key->keylen);
3071 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3072 }
3073 EXPORT_SYMBOL(tcp_md5_hash_key);
3074 
3075 #endif
3076 
3077 void tcp_done(struct sock *sk)
3078 {
3079 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3080 
3081 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3082 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3083 
3084 	tcp_set_state(sk, TCP_CLOSE);
3085 	tcp_clear_xmit_timers(sk);
3086 	if (req)
3087 		reqsk_fastopen_remove(sk, req, false);
3088 
3089 	sk->sk_shutdown = SHUTDOWN_MASK;
3090 
3091 	if (!sock_flag(sk, SOCK_DEAD))
3092 		sk->sk_state_change(sk);
3093 	else
3094 		inet_csk_destroy_sock(sk);
3095 }
3096 EXPORT_SYMBOL_GPL(tcp_done);
3097 
3098 int tcp_abort(struct sock *sk, int err)
3099 {
3100 	if (!sk_fullsock(sk)) {
3101 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3102 			struct request_sock *req = inet_reqsk(sk);
3103 
3104 			local_bh_disable();
3105 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3106 							  req);
3107 			local_bh_enable();
3108 			return 0;
3109 		}
3110 		sock_gen_put(sk);
3111 		return -EOPNOTSUPP;
3112 	}
3113 
3114 	/* Don't race with userspace socket closes such as tcp_close. */
3115 	lock_sock(sk);
3116 
3117 	if (sk->sk_state == TCP_LISTEN) {
3118 		tcp_set_state(sk, TCP_CLOSE);
3119 		inet_csk_listen_stop(sk);
3120 	}
3121 
3122 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3123 	local_bh_disable();
3124 	bh_lock_sock(sk);
3125 
3126 	if (!sock_flag(sk, SOCK_DEAD)) {
3127 		sk->sk_err = err;
3128 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3129 		smp_wmb();
3130 		sk->sk_error_report(sk);
3131 		if (tcp_need_reset(sk->sk_state))
3132 			tcp_send_active_reset(sk, GFP_ATOMIC);
3133 		tcp_done(sk);
3134 	}
3135 
3136 	bh_unlock_sock(sk);
3137 	local_bh_enable();
3138 	release_sock(sk);
3139 	sock_put(sk);
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(tcp_abort);
3143 
3144 extern struct tcp_congestion_ops tcp_reno;
3145 
3146 static __initdata unsigned long thash_entries;
3147 static int __init set_thash_entries(char *str)
3148 {
3149 	ssize_t ret;
3150 
3151 	if (!str)
3152 		return 0;
3153 
3154 	ret = kstrtoul(str, 0, &thash_entries);
3155 	if (ret)
3156 		return 0;
3157 
3158 	return 1;
3159 }
3160 __setup("thash_entries=", set_thash_entries);
3161 
3162 static void __init tcp_init_mem(void)
3163 {
3164 	unsigned long limit = nr_free_buffer_pages() / 16;
3165 
3166 	limit = max(limit, 128UL);
3167 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3168 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3169 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3170 }
3171 
3172 void __init tcp_init(void)
3173 {
3174 	unsigned long limit;
3175 	int max_rshare, max_wshare, cnt;
3176 	unsigned int i;
3177 
3178 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3179 
3180 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3181 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3182 	tcp_hashinfo.bind_bucket_cachep =
3183 		kmem_cache_create("tcp_bind_bucket",
3184 				  sizeof(struct inet_bind_bucket), 0,
3185 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3186 
3187 	/* Size and allocate the main established and bind bucket
3188 	 * hash tables.
3189 	 *
3190 	 * The methodology is similar to that of the buffer cache.
3191 	 */
3192 	tcp_hashinfo.ehash =
3193 		alloc_large_system_hash("TCP established",
3194 					sizeof(struct inet_ehash_bucket),
3195 					thash_entries,
3196 					17, /* one slot per 128 KB of memory */
3197 					0,
3198 					NULL,
3199 					&tcp_hashinfo.ehash_mask,
3200 					0,
3201 					thash_entries ? 0 : 512 * 1024);
3202 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3203 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3204 
3205 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3206 		panic("TCP: failed to alloc ehash_locks");
3207 	tcp_hashinfo.bhash =
3208 		alloc_large_system_hash("TCP bind",
3209 					sizeof(struct inet_bind_hashbucket),
3210 					tcp_hashinfo.ehash_mask + 1,
3211 					17, /* one slot per 128 KB of memory */
3212 					0,
3213 					&tcp_hashinfo.bhash_size,
3214 					NULL,
3215 					0,
3216 					64 * 1024);
3217 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3218 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3219 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3220 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3221 	}
3222 
3223 
3224 	cnt = tcp_hashinfo.ehash_mask + 1;
3225 
3226 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3227 	sysctl_tcp_max_orphans = cnt / 2;
3228 	sysctl_max_syn_backlog = max(128, cnt / 256);
3229 
3230 	tcp_init_mem();
3231 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3232 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3233 	max_wshare = min(4UL*1024*1024, limit);
3234 	max_rshare = min(6UL*1024*1024, limit);
3235 
3236 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3237 	sysctl_tcp_wmem[1] = 16*1024;
3238 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3239 
3240 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3241 	sysctl_tcp_rmem[1] = 87380;
3242 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3243 
3244 	pr_info("Hash tables configured (established %u bind %u)\n",
3245 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3246 
3247 	tcp_metrics_init();
3248 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3249 	tcp_tasklet_init();
3250 }
3251