1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/inet_diag.h> 256 #include <linux/init.h> 257 #include <linux/fs.h> 258 #include <linux/skbuff.h> 259 #include <linux/scatterlist.h> 260 #include <linux/splice.h> 261 #include <linux/net.h> 262 #include <linux/socket.h> 263 #include <linux/random.h> 264 #include <linux/bootmem.h> 265 #include <linux/highmem.h> 266 #include <linux/swap.h> 267 #include <linux/cache.h> 268 #include <linux/err.h> 269 #include <linux/crypto.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <asm/unaligned.h> 283 #include <net/busy_poll.h> 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 int tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 if (!tcp_memory_pressure) { 330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 331 tcp_memory_pressure = 1; 332 } 333 } 334 EXPORT_SYMBOL(tcp_enter_memory_pressure); 335 336 /* Convert seconds to retransmits based on initial and max timeout */ 337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 338 { 339 u8 res = 0; 340 341 if (seconds > 0) { 342 int period = timeout; 343 344 res = 1; 345 while (seconds > period && res < 255) { 346 res++; 347 timeout <<= 1; 348 if (timeout > rto_max) 349 timeout = rto_max; 350 period += timeout; 351 } 352 } 353 return res; 354 } 355 356 /* Convert retransmits to seconds based on initial and max timeout */ 357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 358 { 359 int period = 0; 360 361 if (retrans > 0) { 362 period = timeout; 363 while (--retrans) { 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return period; 371 } 372 373 /* Address-family independent initialization for a tcp_sock. 374 * 375 * NOTE: A lot of things set to zero explicitly by call to 376 * sk_alloc() so need not be done here. 377 */ 378 void tcp_init_sock(struct sock *sk) 379 { 380 struct inet_connection_sock *icsk = inet_csk(sk); 381 struct tcp_sock *tp = tcp_sk(sk); 382 383 __skb_queue_head_init(&tp->out_of_order_queue); 384 tcp_init_xmit_timers(sk); 385 tcp_prequeue_init(tp); 386 INIT_LIST_HEAD(&tp->tsq_node); 387 388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 390 tp->rtt_min[0].rtt = ~0U; 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* See draft-stevens-tcpca-spec-01 for discussion of the 400 * initialization of these values. 401 */ 402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 403 tp->snd_cwnd_clamp = ~0; 404 tp->mss_cache = TCP_MSS_DEFAULT; 405 u64_stats_init(&tp->syncp); 406 407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 408 tcp_enable_early_retrans(tp); 409 tcp_assign_congestion_control(sk); 410 411 tp->tsoffset = 0; 412 413 sk->sk_state = TCP_CLOSE; 414 415 sk->sk_write_space = sk_stream_write_space; 416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 417 418 icsk->icsk_sync_mss = tcp_sync_mss; 419 420 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 421 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 422 423 local_bh_disable(); 424 if (mem_cgroup_sockets_enabled) 425 sock_update_memcg(sk); 426 sk_sockets_allocated_inc(sk); 427 local_bh_enable(); 428 } 429 EXPORT_SYMBOL(tcp_init_sock); 430 431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 432 { 433 if (sk->sk_tsflags) { 434 struct skb_shared_info *shinfo = skb_shinfo(skb); 435 436 sock_tx_timestamp(sk, &shinfo->tx_flags); 437 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 438 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 439 } 440 } 441 442 /* 443 * Wait for a TCP event. 444 * 445 * Note that we don't need to lock the socket, as the upper poll layers 446 * take care of normal races (between the test and the event) and we don't 447 * go look at any of the socket buffers directly. 448 */ 449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 450 { 451 unsigned int mask; 452 struct sock *sk = sock->sk; 453 const struct tcp_sock *tp = tcp_sk(sk); 454 int state; 455 456 sock_rps_record_flow(sk); 457 458 sock_poll_wait(file, sk_sleep(sk), wait); 459 460 state = sk_state_load(sk); 461 if (state == TCP_LISTEN) 462 return inet_csk_listen_poll(sk); 463 464 /* Socket is not locked. We are protected from async events 465 * by poll logic and correct handling of state changes 466 * made by other threads is impossible in any case. 467 */ 468 469 mask = 0; 470 471 /* 472 * POLLHUP is certainly not done right. But poll() doesn't 473 * have a notion of HUP in just one direction, and for a 474 * socket the read side is more interesting. 475 * 476 * Some poll() documentation says that POLLHUP is incompatible 477 * with the POLLOUT/POLLWR flags, so somebody should check this 478 * all. But careful, it tends to be safer to return too many 479 * bits than too few, and you can easily break real applications 480 * if you don't tell them that something has hung up! 481 * 482 * Check-me. 483 * 484 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 485 * our fs/select.c). It means that after we received EOF, 486 * poll always returns immediately, making impossible poll() on write() 487 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 488 * if and only if shutdown has been made in both directions. 489 * Actually, it is interesting to look how Solaris and DUX 490 * solve this dilemma. I would prefer, if POLLHUP were maskable, 491 * then we could set it on SND_SHUTDOWN. BTW examples given 492 * in Stevens' books assume exactly this behaviour, it explains 493 * why POLLHUP is incompatible with POLLOUT. --ANK 494 * 495 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 496 * blocking on fresh not-connected or disconnected socket. --ANK 497 */ 498 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 499 mask |= POLLHUP; 500 if (sk->sk_shutdown & RCV_SHUTDOWN) 501 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 502 503 /* Connected or passive Fast Open socket? */ 504 if (state != TCP_SYN_SENT && 505 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 506 int target = sock_rcvlowat(sk, 0, INT_MAX); 507 508 if (tp->urg_seq == tp->copied_seq && 509 !sock_flag(sk, SOCK_URGINLINE) && 510 tp->urg_data) 511 target++; 512 513 if (tp->rcv_nxt - tp->copied_seq >= target) 514 mask |= POLLIN | POLLRDNORM; 515 516 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 517 if (sk_stream_is_writeable(sk)) { 518 mask |= POLLOUT | POLLWRNORM; 519 } else { /* send SIGIO later */ 520 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 522 523 /* Race breaker. If space is freed after 524 * wspace test but before the flags are set, 525 * IO signal will be lost. Memory barrier 526 * pairs with the input side. 527 */ 528 smp_mb__after_atomic(); 529 if (sk_stream_is_writeable(sk)) 530 mask |= POLLOUT | POLLWRNORM; 531 } 532 } else 533 mask |= POLLOUT | POLLWRNORM; 534 535 if (tp->urg_data & TCP_URG_VALID) 536 mask |= POLLPRI; 537 } 538 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 539 smp_rmb(); 540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 541 mask |= POLLERR; 542 543 return mask; 544 } 545 EXPORT_SYMBOL(tcp_poll); 546 547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 548 { 549 struct tcp_sock *tp = tcp_sk(sk); 550 int answ; 551 bool slow; 552 553 switch (cmd) { 554 case SIOCINQ: 555 if (sk->sk_state == TCP_LISTEN) 556 return -EINVAL; 557 558 slow = lock_sock_fast(sk); 559 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 560 answ = 0; 561 else if (sock_flag(sk, SOCK_URGINLINE) || 562 !tp->urg_data || 563 before(tp->urg_seq, tp->copied_seq) || 564 !before(tp->urg_seq, tp->rcv_nxt)) { 565 566 answ = tp->rcv_nxt - tp->copied_seq; 567 568 /* Subtract 1, if FIN was received */ 569 if (answ && sock_flag(sk, SOCK_DONE)) 570 answ--; 571 } else 572 answ = tp->urg_seq - tp->copied_seq; 573 unlock_sock_fast(sk, slow); 574 break; 575 case SIOCATMARK: 576 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 577 break; 578 case SIOCOUTQ: 579 if (sk->sk_state == TCP_LISTEN) 580 return -EINVAL; 581 582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 583 answ = 0; 584 else 585 answ = tp->write_seq - tp->snd_una; 586 break; 587 case SIOCOUTQNSD: 588 if (sk->sk_state == TCP_LISTEN) 589 return -EINVAL; 590 591 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 592 answ = 0; 593 else 594 answ = tp->write_seq - tp->snd_nxt; 595 break; 596 default: 597 return -ENOIOCTLCMD; 598 } 599 600 return put_user(answ, (int __user *)arg); 601 } 602 EXPORT_SYMBOL(tcp_ioctl); 603 604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 605 { 606 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 607 tp->pushed_seq = tp->write_seq; 608 } 609 610 static inline bool forced_push(const struct tcp_sock *tp) 611 { 612 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 613 } 614 615 static void skb_entail(struct sock *sk, struct sk_buff *skb) 616 { 617 struct tcp_sock *tp = tcp_sk(sk); 618 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 619 620 skb->csum = 0; 621 tcb->seq = tcb->end_seq = tp->write_seq; 622 tcb->tcp_flags = TCPHDR_ACK; 623 tcb->sacked = 0; 624 __skb_header_release(skb); 625 tcp_add_write_queue_tail(sk, skb); 626 sk->sk_wmem_queued += skb->truesize; 627 sk_mem_charge(sk, skb->truesize); 628 if (tp->nonagle & TCP_NAGLE_PUSH) 629 tp->nonagle &= ~TCP_NAGLE_PUSH; 630 631 tcp_slow_start_after_idle_check(sk); 632 } 633 634 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 635 { 636 if (flags & MSG_OOB) 637 tp->snd_up = tp->write_seq; 638 } 639 640 /* If a not yet filled skb is pushed, do not send it if 641 * we have data packets in Qdisc or NIC queues : 642 * Because TX completion will happen shortly, it gives a chance 643 * to coalesce future sendmsg() payload into this skb, without 644 * need for a timer, and with no latency trade off. 645 * As packets containing data payload have a bigger truesize 646 * than pure acks (dataless) packets, the last checks prevent 647 * autocorking if we only have an ACK in Qdisc/NIC queues, 648 * or if TX completion was delayed after we processed ACK packet. 649 */ 650 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 651 int size_goal) 652 { 653 return skb->len < size_goal && 654 sysctl_tcp_autocorking && 655 skb != tcp_write_queue_head(sk) && 656 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 657 } 658 659 static void tcp_push(struct sock *sk, int flags, int mss_now, 660 int nonagle, int size_goal) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct sk_buff *skb; 664 665 if (!tcp_send_head(sk)) 666 return; 667 668 skb = tcp_write_queue_tail(sk); 669 if (!(flags & MSG_MORE) || forced_push(tp)) 670 tcp_mark_push(tp, skb); 671 672 tcp_mark_urg(tp, flags); 673 674 if (tcp_should_autocork(sk, skb, size_goal)) { 675 676 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 677 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 678 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 679 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 680 } 681 /* It is possible TX completion already happened 682 * before we set TSQ_THROTTLED. 683 */ 684 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 685 return; 686 } 687 688 if (flags & MSG_MORE) 689 nonagle = TCP_NAGLE_CORK; 690 691 __tcp_push_pending_frames(sk, mss_now, nonagle); 692 } 693 694 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 695 unsigned int offset, size_t len) 696 { 697 struct tcp_splice_state *tss = rd_desc->arg.data; 698 int ret; 699 700 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 701 min(rd_desc->count, len), tss->flags, 702 skb_socket_splice); 703 if (ret > 0) 704 rd_desc->count -= ret; 705 return ret; 706 } 707 708 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 709 { 710 /* Store TCP splice context information in read_descriptor_t. */ 711 read_descriptor_t rd_desc = { 712 .arg.data = tss, 713 .count = tss->len, 714 }; 715 716 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 717 } 718 719 /** 720 * tcp_splice_read - splice data from TCP socket to a pipe 721 * @sock: socket to splice from 722 * @ppos: position (not valid) 723 * @pipe: pipe to splice to 724 * @len: number of bytes to splice 725 * @flags: splice modifier flags 726 * 727 * Description: 728 * Will read pages from given socket and fill them into a pipe. 729 * 730 **/ 731 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 732 struct pipe_inode_info *pipe, size_t len, 733 unsigned int flags) 734 { 735 struct sock *sk = sock->sk; 736 struct tcp_splice_state tss = { 737 .pipe = pipe, 738 .len = len, 739 .flags = flags, 740 }; 741 long timeo; 742 ssize_t spliced; 743 int ret; 744 745 sock_rps_record_flow(sk); 746 /* 747 * We can't seek on a socket input 748 */ 749 if (unlikely(*ppos)) 750 return -ESPIPE; 751 752 ret = spliced = 0; 753 754 lock_sock(sk); 755 756 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 757 while (tss.len) { 758 ret = __tcp_splice_read(sk, &tss); 759 if (ret < 0) 760 break; 761 else if (!ret) { 762 if (spliced) 763 break; 764 if (sock_flag(sk, SOCK_DONE)) 765 break; 766 if (sk->sk_err) { 767 ret = sock_error(sk); 768 break; 769 } 770 if (sk->sk_shutdown & RCV_SHUTDOWN) 771 break; 772 if (sk->sk_state == TCP_CLOSE) { 773 /* 774 * This occurs when user tries to read 775 * from never connected socket. 776 */ 777 if (!sock_flag(sk, SOCK_DONE)) 778 ret = -ENOTCONN; 779 break; 780 } 781 if (!timeo) { 782 ret = -EAGAIN; 783 break; 784 } 785 sk_wait_data(sk, &timeo, NULL); 786 if (signal_pending(current)) { 787 ret = sock_intr_errno(timeo); 788 break; 789 } 790 continue; 791 } 792 tss.len -= ret; 793 spliced += ret; 794 795 if (!timeo) 796 break; 797 release_sock(sk); 798 lock_sock(sk); 799 800 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 801 (sk->sk_shutdown & RCV_SHUTDOWN) || 802 signal_pending(current)) 803 break; 804 } 805 806 release_sock(sk); 807 808 if (spliced) 809 return spliced; 810 811 return ret; 812 } 813 EXPORT_SYMBOL(tcp_splice_read); 814 815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 816 bool force_schedule) 817 { 818 struct sk_buff *skb; 819 820 /* The TCP header must be at least 32-bit aligned. */ 821 size = ALIGN(size, 4); 822 823 if (unlikely(tcp_under_memory_pressure(sk))) 824 sk_mem_reclaim_partial(sk); 825 826 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 827 if (likely(skb)) { 828 bool mem_scheduled; 829 830 if (force_schedule) { 831 mem_scheduled = true; 832 sk_forced_mem_schedule(sk, skb->truesize); 833 } else { 834 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 835 } 836 if (likely(mem_scheduled)) { 837 skb_reserve(skb, sk->sk_prot->max_header); 838 /* 839 * Make sure that we have exactly size bytes 840 * available to the caller, no more, no less. 841 */ 842 skb->reserved_tailroom = skb->end - skb->tail - size; 843 return skb; 844 } 845 __kfree_skb(skb); 846 } else { 847 sk->sk_prot->enter_memory_pressure(sk); 848 sk_stream_moderate_sndbuf(sk); 849 } 850 return NULL; 851 } 852 853 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 854 int large_allowed) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 u32 new_size_goal, size_goal; 858 859 if (!large_allowed || !sk_can_gso(sk)) 860 return mss_now; 861 862 /* Note : tcp_tso_autosize() will eventually split this later */ 863 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 864 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 865 866 /* We try hard to avoid divides here */ 867 size_goal = tp->gso_segs * mss_now; 868 if (unlikely(new_size_goal < size_goal || 869 new_size_goal >= size_goal + mss_now)) { 870 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 871 sk->sk_gso_max_segs); 872 size_goal = tp->gso_segs * mss_now; 873 } 874 875 return max(size_goal, mss_now); 876 } 877 878 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 879 { 880 int mss_now; 881 882 mss_now = tcp_current_mss(sk); 883 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 884 885 return mss_now; 886 } 887 888 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 889 size_t size, int flags) 890 { 891 struct tcp_sock *tp = tcp_sk(sk); 892 int mss_now, size_goal; 893 int err; 894 ssize_t copied; 895 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 896 897 /* Wait for a connection to finish. One exception is TCP Fast Open 898 * (passive side) where data is allowed to be sent before a connection 899 * is fully established. 900 */ 901 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 902 !tcp_passive_fastopen(sk)) { 903 err = sk_stream_wait_connect(sk, &timeo); 904 if (err != 0) 905 goto out_err; 906 } 907 908 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 909 910 mss_now = tcp_send_mss(sk, &size_goal, flags); 911 copied = 0; 912 913 err = -EPIPE; 914 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 915 goto out_err; 916 917 while (size > 0) { 918 struct sk_buff *skb = tcp_write_queue_tail(sk); 919 int copy, i; 920 bool can_coalesce; 921 922 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 923 new_segment: 924 if (!sk_stream_memory_free(sk)) 925 goto wait_for_sndbuf; 926 927 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 928 skb_queue_empty(&sk->sk_write_queue)); 929 if (!skb) 930 goto wait_for_memory; 931 932 skb_entail(sk, skb); 933 copy = size_goal; 934 } 935 936 if (copy > size) 937 copy = size; 938 939 i = skb_shinfo(skb)->nr_frags; 940 can_coalesce = skb_can_coalesce(skb, i, page, offset); 941 if (!can_coalesce && i >= sysctl_max_skb_frags) { 942 tcp_mark_push(tp, skb); 943 goto new_segment; 944 } 945 if (!sk_wmem_schedule(sk, copy)) 946 goto wait_for_memory; 947 948 if (can_coalesce) { 949 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 950 } else { 951 get_page(page); 952 skb_fill_page_desc(skb, i, page, offset, copy); 953 } 954 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 955 956 skb->len += copy; 957 skb->data_len += copy; 958 skb->truesize += copy; 959 sk->sk_wmem_queued += copy; 960 sk_mem_charge(sk, copy); 961 skb->ip_summed = CHECKSUM_PARTIAL; 962 tp->write_seq += copy; 963 TCP_SKB_CB(skb)->end_seq += copy; 964 tcp_skb_pcount_set(skb, 0); 965 966 if (!copied) 967 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 968 969 copied += copy; 970 offset += copy; 971 size -= copy; 972 if (!size) { 973 tcp_tx_timestamp(sk, skb); 974 goto out; 975 } 976 977 if (skb->len < size_goal || (flags & MSG_OOB)) 978 continue; 979 980 if (forced_push(tp)) { 981 tcp_mark_push(tp, skb); 982 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 983 } else if (skb == tcp_send_head(sk)) 984 tcp_push_one(sk, mss_now); 985 continue; 986 987 wait_for_sndbuf: 988 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 989 wait_for_memory: 990 tcp_push(sk, flags & ~MSG_MORE, mss_now, 991 TCP_NAGLE_PUSH, size_goal); 992 993 err = sk_stream_wait_memory(sk, &timeo); 994 if (err != 0) 995 goto do_error; 996 997 mss_now = tcp_send_mss(sk, &size_goal, flags); 998 } 999 1000 out: 1001 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 1002 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1003 return copied; 1004 1005 do_error: 1006 if (copied) 1007 goto out; 1008 out_err: 1009 /* make sure we wake any epoll edge trigger waiter */ 1010 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1011 sk->sk_write_space(sk); 1012 return sk_stream_error(sk, flags, err); 1013 } 1014 1015 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1016 size_t size, int flags) 1017 { 1018 ssize_t res; 1019 1020 if (!(sk->sk_route_caps & NETIF_F_SG) || 1021 !sk_check_csum_caps(sk)) 1022 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1023 flags); 1024 1025 lock_sock(sk); 1026 res = do_tcp_sendpages(sk, page, offset, size, flags); 1027 release_sock(sk); 1028 return res; 1029 } 1030 EXPORT_SYMBOL(tcp_sendpage); 1031 1032 static inline int select_size(const struct sock *sk, bool sg) 1033 { 1034 const struct tcp_sock *tp = tcp_sk(sk); 1035 int tmp = tp->mss_cache; 1036 1037 if (sg) { 1038 if (sk_can_gso(sk)) { 1039 /* Small frames wont use a full page: 1040 * Payload will immediately follow tcp header. 1041 */ 1042 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1043 } else { 1044 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1045 1046 if (tmp >= pgbreak && 1047 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1048 tmp = pgbreak; 1049 } 1050 } 1051 1052 return tmp; 1053 } 1054 1055 void tcp_free_fastopen_req(struct tcp_sock *tp) 1056 { 1057 if (tp->fastopen_req) { 1058 kfree(tp->fastopen_req); 1059 tp->fastopen_req = NULL; 1060 } 1061 } 1062 1063 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1064 int *copied, size_t size) 1065 { 1066 struct tcp_sock *tp = tcp_sk(sk); 1067 int err, flags; 1068 1069 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1070 return -EOPNOTSUPP; 1071 if (tp->fastopen_req) 1072 return -EALREADY; /* Another Fast Open is in progress */ 1073 1074 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1075 sk->sk_allocation); 1076 if (unlikely(!tp->fastopen_req)) 1077 return -ENOBUFS; 1078 tp->fastopen_req->data = msg; 1079 tp->fastopen_req->size = size; 1080 1081 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1082 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1083 msg->msg_namelen, flags); 1084 *copied = tp->fastopen_req->copied; 1085 tcp_free_fastopen_req(tp); 1086 return err; 1087 } 1088 1089 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1090 { 1091 struct tcp_sock *tp = tcp_sk(sk); 1092 struct sk_buff *skb; 1093 int flags, err, copied = 0; 1094 int mss_now = 0, size_goal, copied_syn = 0; 1095 bool sg; 1096 long timeo; 1097 1098 lock_sock(sk); 1099 1100 flags = msg->msg_flags; 1101 if (flags & MSG_FASTOPEN) { 1102 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1103 if (err == -EINPROGRESS && copied_syn > 0) 1104 goto out; 1105 else if (err) 1106 goto out_err; 1107 } 1108 1109 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1110 1111 /* Wait for a connection to finish. One exception is TCP Fast Open 1112 * (passive side) where data is allowed to be sent before a connection 1113 * is fully established. 1114 */ 1115 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1116 !tcp_passive_fastopen(sk)) { 1117 err = sk_stream_wait_connect(sk, &timeo); 1118 if (err != 0) 1119 goto do_error; 1120 } 1121 1122 if (unlikely(tp->repair)) { 1123 if (tp->repair_queue == TCP_RECV_QUEUE) { 1124 copied = tcp_send_rcvq(sk, msg, size); 1125 goto out_nopush; 1126 } 1127 1128 err = -EINVAL; 1129 if (tp->repair_queue == TCP_NO_QUEUE) 1130 goto out_err; 1131 1132 /* 'common' sending to sendq */ 1133 } 1134 1135 /* This should be in poll */ 1136 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1137 1138 mss_now = tcp_send_mss(sk, &size_goal, flags); 1139 1140 /* Ok commence sending. */ 1141 copied = 0; 1142 1143 err = -EPIPE; 1144 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1145 goto out_err; 1146 1147 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1148 1149 while (msg_data_left(msg)) { 1150 int copy = 0; 1151 int max = size_goal; 1152 1153 skb = tcp_write_queue_tail(sk); 1154 if (tcp_send_head(sk)) { 1155 if (skb->ip_summed == CHECKSUM_NONE) 1156 max = mss_now; 1157 copy = max - skb->len; 1158 } 1159 1160 if (copy <= 0) { 1161 new_segment: 1162 /* Allocate new segment. If the interface is SG, 1163 * allocate skb fitting to single page. 1164 */ 1165 if (!sk_stream_memory_free(sk)) 1166 goto wait_for_sndbuf; 1167 1168 skb = sk_stream_alloc_skb(sk, 1169 select_size(sk, sg), 1170 sk->sk_allocation, 1171 skb_queue_empty(&sk->sk_write_queue)); 1172 if (!skb) 1173 goto wait_for_memory; 1174 1175 /* 1176 * Check whether we can use HW checksum. 1177 */ 1178 if (sk_check_csum_caps(sk)) 1179 skb->ip_summed = CHECKSUM_PARTIAL; 1180 1181 skb_entail(sk, skb); 1182 copy = size_goal; 1183 max = size_goal; 1184 1185 /* All packets are restored as if they have 1186 * already been sent. skb_mstamp isn't set to 1187 * avoid wrong rtt estimation. 1188 */ 1189 if (tp->repair) 1190 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1191 } 1192 1193 /* Try to append data to the end of skb. */ 1194 if (copy > msg_data_left(msg)) 1195 copy = msg_data_left(msg); 1196 1197 /* Where to copy to? */ 1198 if (skb_availroom(skb) > 0) { 1199 /* We have some space in skb head. Superb! */ 1200 copy = min_t(int, copy, skb_availroom(skb)); 1201 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1202 if (err) 1203 goto do_fault; 1204 } else { 1205 bool merge = true; 1206 int i = skb_shinfo(skb)->nr_frags; 1207 struct page_frag *pfrag = sk_page_frag(sk); 1208 1209 if (!sk_page_frag_refill(sk, pfrag)) 1210 goto wait_for_memory; 1211 1212 if (!skb_can_coalesce(skb, i, pfrag->page, 1213 pfrag->offset)) { 1214 if (i == sysctl_max_skb_frags || !sg) { 1215 tcp_mark_push(tp, skb); 1216 goto new_segment; 1217 } 1218 merge = false; 1219 } 1220 1221 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1222 1223 if (!sk_wmem_schedule(sk, copy)) 1224 goto wait_for_memory; 1225 1226 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1227 pfrag->page, 1228 pfrag->offset, 1229 copy); 1230 if (err) 1231 goto do_error; 1232 1233 /* Update the skb. */ 1234 if (merge) { 1235 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1236 } else { 1237 skb_fill_page_desc(skb, i, pfrag->page, 1238 pfrag->offset, copy); 1239 get_page(pfrag->page); 1240 } 1241 pfrag->offset += copy; 1242 } 1243 1244 if (!copied) 1245 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1246 1247 tp->write_seq += copy; 1248 TCP_SKB_CB(skb)->end_seq += copy; 1249 tcp_skb_pcount_set(skb, 0); 1250 1251 copied += copy; 1252 if (!msg_data_left(msg)) { 1253 tcp_tx_timestamp(sk, skb); 1254 goto out; 1255 } 1256 1257 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1258 continue; 1259 1260 if (forced_push(tp)) { 1261 tcp_mark_push(tp, skb); 1262 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1263 } else if (skb == tcp_send_head(sk)) 1264 tcp_push_one(sk, mss_now); 1265 continue; 1266 1267 wait_for_sndbuf: 1268 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1269 wait_for_memory: 1270 if (copied) 1271 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1272 TCP_NAGLE_PUSH, size_goal); 1273 1274 err = sk_stream_wait_memory(sk, &timeo); 1275 if (err != 0) 1276 goto do_error; 1277 1278 mss_now = tcp_send_mss(sk, &size_goal, flags); 1279 } 1280 1281 out: 1282 if (copied) 1283 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1284 out_nopush: 1285 release_sock(sk); 1286 return copied + copied_syn; 1287 1288 do_fault: 1289 if (!skb->len) { 1290 tcp_unlink_write_queue(skb, sk); 1291 /* It is the one place in all of TCP, except connection 1292 * reset, where we can be unlinking the send_head. 1293 */ 1294 tcp_check_send_head(sk, skb); 1295 sk_wmem_free_skb(sk, skb); 1296 } 1297 1298 do_error: 1299 if (copied + copied_syn) 1300 goto out; 1301 out_err: 1302 err = sk_stream_error(sk, flags, err); 1303 /* make sure we wake any epoll edge trigger waiter */ 1304 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1305 sk->sk_write_space(sk); 1306 release_sock(sk); 1307 return err; 1308 } 1309 EXPORT_SYMBOL(tcp_sendmsg); 1310 1311 /* 1312 * Handle reading urgent data. BSD has very simple semantics for 1313 * this, no blocking and very strange errors 8) 1314 */ 1315 1316 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1317 { 1318 struct tcp_sock *tp = tcp_sk(sk); 1319 1320 /* No URG data to read. */ 1321 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1322 tp->urg_data == TCP_URG_READ) 1323 return -EINVAL; /* Yes this is right ! */ 1324 1325 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1326 return -ENOTCONN; 1327 1328 if (tp->urg_data & TCP_URG_VALID) { 1329 int err = 0; 1330 char c = tp->urg_data; 1331 1332 if (!(flags & MSG_PEEK)) 1333 tp->urg_data = TCP_URG_READ; 1334 1335 /* Read urgent data. */ 1336 msg->msg_flags |= MSG_OOB; 1337 1338 if (len > 0) { 1339 if (!(flags & MSG_TRUNC)) 1340 err = memcpy_to_msg(msg, &c, 1); 1341 len = 1; 1342 } else 1343 msg->msg_flags |= MSG_TRUNC; 1344 1345 return err ? -EFAULT : len; 1346 } 1347 1348 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1349 return 0; 1350 1351 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1352 * the available implementations agree in this case: 1353 * this call should never block, independent of the 1354 * blocking state of the socket. 1355 * Mike <pall@rz.uni-karlsruhe.de> 1356 */ 1357 return -EAGAIN; 1358 } 1359 1360 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1361 { 1362 struct sk_buff *skb; 1363 int copied = 0, err = 0; 1364 1365 /* XXX -- need to support SO_PEEK_OFF */ 1366 1367 skb_queue_walk(&sk->sk_write_queue, skb) { 1368 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1369 if (err) 1370 break; 1371 1372 copied += skb->len; 1373 } 1374 1375 return err ?: copied; 1376 } 1377 1378 /* Clean up the receive buffer for full frames taken by the user, 1379 * then send an ACK if necessary. COPIED is the number of bytes 1380 * tcp_recvmsg has given to the user so far, it speeds up the 1381 * calculation of whether or not we must ACK for the sake of 1382 * a window update. 1383 */ 1384 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1385 { 1386 struct tcp_sock *tp = tcp_sk(sk); 1387 bool time_to_ack = false; 1388 1389 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1390 1391 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1392 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1393 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1394 1395 if (inet_csk_ack_scheduled(sk)) { 1396 const struct inet_connection_sock *icsk = inet_csk(sk); 1397 /* Delayed ACKs frequently hit locked sockets during bulk 1398 * receive. */ 1399 if (icsk->icsk_ack.blocked || 1400 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1401 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1402 /* 1403 * If this read emptied read buffer, we send ACK, if 1404 * connection is not bidirectional, user drained 1405 * receive buffer and there was a small segment 1406 * in queue. 1407 */ 1408 (copied > 0 && 1409 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1410 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1411 !icsk->icsk_ack.pingpong)) && 1412 !atomic_read(&sk->sk_rmem_alloc))) 1413 time_to_ack = true; 1414 } 1415 1416 /* We send an ACK if we can now advertise a non-zero window 1417 * which has been raised "significantly". 1418 * 1419 * Even if window raised up to infinity, do not send window open ACK 1420 * in states, where we will not receive more. It is useless. 1421 */ 1422 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1423 __u32 rcv_window_now = tcp_receive_window(tp); 1424 1425 /* Optimize, __tcp_select_window() is not cheap. */ 1426 if (2*rcv_window_now <= tp->window_clamp) { 1427 __u32 new_window = __tcp_select_window(sk); 1428 1429 /* Send ACK now, if this read freed lots of space 1430 * in our buffer. Certainly, new_window is new window. 1431 * We can advertise it now, if it is not less than current one. 1432 * "Lots" means "at least twice" here. 1433 */ 1434 if (new_window && new_window >= 2 * rcv_window_now) 1435 time_to_ack = true; 1436 } 1437 } 1438 if (time_to_ack) 1439 tcp_send_ack(sk); 1440 } 1441 1442 static void tcp_prequeue_process(struct sock *sk) 1443 { 1444 struct sk_buff *skb; 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 1447 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1448 1449 /* RX process wants to run with disabled BHs, though it is not 1450 * necessary */ 1451 local_bh_disable(); 1452 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1453 sk_backlog_rcv(sk, skb); 1454 local_bh_enable(); 1455 1456 /* Clear memory counter. */ 1457 tp->ucopy.memory = 0; 1458 } 1459 1460 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1461 { 1462 struct sk_buff *skb; 1463 u32 offset; 1464 1465 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1466 offset = seq - TCP_SKB_CB(skb)->seq; 1467 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1468 pr_err_once("%s: found a SYN, please report !\n", __func__); 1469 offset--; 1470 } 1471 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1472 *off = offset; 1473 return skb; 1474 } 1475 /* This looks weird, but this can happen if TCP collapsing 1476 * splitted a fat GRO packet, while we released socket lock 1477 * in skb_splice_bits() 1478 */ 1479 sk_eat_skb(sk, skb); 1480 } 1481 return NULL; 1482 } 1483 1484 /* 1485 * This routine provides an alternative to tcp_recvmsg() for routines 1486 * that would like to handle copying from skbuffs directly in 'sendfile' 1487 * fashion. 1488 * Note: 1489 * - It is assumed that the socket was locked by the caller. 1490 * - The routine does not block. 1491 * - At present, there is no support for reading OOB data 1492 * or for 'peeking' the socket using this routine 1493 * (although both would be easy to implement). 1494 */ 1495 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1496 sk_read_actor_t recv_actor) 1497 { 1498 struct sk_buff *skb; 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 u32 seq = tp->copied_seq; 1501 u32 offset; 1502 int copied = 0; 1503 1504 if (sk->sk_state == TCP_LISTEN) 1505 return -ENOTCONN; 1506 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1507 if (offset < skb->len) { 1508 int used; 1509 size_t len; 1510 1511 len = skb->len - offset; 1512 /* Stop reading if we hit a patch of urgent data */ 1513 if (tp->urg_data) { 1514 u32 urg_offset = tp->urg_seq - seq; 1515 if (urg_offset < len) 1516 len = urg_offset; 1517 if (!len) 1518 break; 1519 } 1520 used = recv_actor(desc, skb, offset, len); 1521 if (used <= 0) { 1522 if (!copied) 1523 copied = used; 1524 break; 1525 } else if (used <= len) { 1526 seq += used; 1527 copied += used; 1528 offset += used; 1529 } 1530 /* If recv_actor drops the lock (e.g. TCP splice 1531 * receive) the skb pointer might be invalid when 1532 * getting here: tcp_collapse might have deleted it 1533 * while aggregating skbs from the socket queue. 1534 */ 1535 skb = tcp_recv_skb(sk, seq - 1, &offset); 1536 if (!skb) 1537 break; 1538 /* TCP coalescing might have appended data to the skb. 1539 * Try to splice more frags 1540 */ 1541 if (offset + 1 != skb->len) 1542 continue; 1543 } 1544 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1545 sk_eat_skb(sk, skb); 1546 ++seq; 1547 break; 1548 } 1549 sk_eat_skb(sk, skb); 1550 if (!desc->count) 1551 break; 1552 tp->copied_seq = seq; 1553 } 1554 tp->copied_seq = seq; 1555 1556 tcp_rcv_space_adjust(sk); 1557 1558 /* Clean up data we have read: This will do ACK frames. */ 1559 if (copied > 0) { 1560 tcp_recv_skb(sk, seq, &offset); 1561 tcp_cleanup_rbuf(sk, copied); 1562 } 1563 return copied; 1564 } 1565 EXPORT_SYMBOL(tcp_read_sock); 1566 1567 /* 1568 * This routine copies from a sock struct into the user buffer. 1569 * 1570 * Technical note: in 2.3 we work on _locked_ socket, so that 1571 * tricks with *seq access order and skb->users are not required. 1572 * Probably, code can be easily improved even more. 1573 */ 1574 1575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1576 int flags, int *addr_len) 1577 { 1578 struct tcp_sock *tp = tcp_sk(sk); 1579 int copied = 0; 1580 u32 peek_seq; 1581 u32 *seq; 1582 unsigned long used; 1583 int err; 1584 int target; /* Read at least this many bytes */ 1585 long timeo; 1586 struct task_struct *user_recv = NULL; 1587 struct sk_buff *skb, *last; 1588 u32 urg_hole = 0; 1589 1590 if (unlikely(flags & MSG_ERRQUEUE)) 1591 return inet_recv_error(sk, msg, len, addr_len); 1592 1593 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1594 (sk->sk_state == TCP_ESTABLISHED)) 1595 sk_busy_loop(sk, nonblock); 1596 1597 lock_sock(sk); 1598 1599 err = -ENOTCONN; 1600 if (sk->sk_state == TCP_LISTEN) 1601 goto out; 1602 1603 timeo = sock_rcvtimeo(sk, nonblock); 1604 1605 /* Urgent data needs to be handled specially. */ 1606 if (flags & MSG_OOB) 1607 goto recv_urg; 1608 1609 if (unlikely(tp->repair)) { 1610 err = -EPERM; 1611 if (!(flags & MSG_PEEK)) 1612 goto out; 1613 1614 if (tp->repair_queue == TCP_SEND_QUEUE) 1615 goto recv_sndq; 1616 1617 err = -EINVAL; 1618 if (tp->repair_queue == TCP_NO_QUEUE) 1619 goto out; 1620 1621 /* 'common' recv queue MSG_PEEK-ing */ 1622 } 1623 1624 seq = &tp->copied_seq; 1625 if (flags & MSG_PEEK) { 1626 peek_seq = tp->copied_seq; 1627 seq = &peek_seq; 1628 } 1629 1630 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1631 1632 do { 1633 u32 offset; 1634 1635 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1636 if (tp->urg_data && tp->urg_seq == *seq) { 1637 if (copied) 1638 break; 1639 if (signal_pending(current)) { 1640 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1641 break; 1642 } 1643 } 1644 1645 /* Next get a buffer. */ 1646 1647 last = skb_peek_tail(&sk->sk_receive_queue); 1648 skb_queue_walk(&sk->sk_receive_queue, skb) { 1649 last = skb; 1650 /* Now that we have two receive queues this 1651 * shouldn't happen. 1652 */ 1653 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1654 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1655 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1656 flags)) 1657 break; 1658 1659 offset = *seq - TCP_SKB_CB(skb)->seq; 1660 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1661 pr_err_once("%s: found a SYN, please report !\n", __func__); 1662 offset--; 1663 } 1664 if (offset < skb->len) 1665 goto found_ok_skb; 1666 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1667 goto found_fin_ok; 1668 WARN(!(flags & MSG_PEEK), 1669 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1670 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1671 } 1672 1673 /* Well, if we have backlog, try to process it now yet. */ 1674 1675 if (copied >= target && !sk->sk_backlog.tail) 1676 break; 1677 1678 if (copied) { 1679 if (sk->sk_err || 1680 sk->sk_state == TCP_CLOSE || 1681 (sk->sk_shutdown & RCV_SHUTDOWN) || 1682 !timeo || 1683 signal_pending(current)) 1684 break; 1685 } else { 1686 if (sock_flag(sk, SOCK_DONE)) 1687 break; 1688 1689 if (sk->sk_err) { 1690 copied = sock_error(sk); 1691 break; 1692 } 1693 1694 if (sk->sk_shutdown & RCV_SHUTDOWN) 1695 break; 1696 1697 if (sk->sk_state == TCP_CLOSE) { 1698 if (!sock_flag(sk, SOCK_DONE)) { 1699 /* This occurs when user tries to read 1700 * from never connected socket. 1701 */ 1702 copied = -ENOTCONN; 1703 break; 1704 } 1705 break; 1706 } 1707 1708 if (!timeo) { 1709 copied = -EAGAIN; 1710 break; 1711 } 1712 1713 if (signal_pending(current)) { 1714 copied = sock_intr_errno(timeo); 1715 break; 1716 } 1717 } 1718 1719 tcp_cleanup_rbuf(sk, copied); 1720 1721 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1722 /* Install new reader */ 1723 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1724 user_recv = current; 1725 tp->ucopy.task = user_recv; 1726 tp->ucopy.msg = msg; 1727 } 1728 1729 tp->ucopy.len = len; 1730 1731 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1732 !(flags & (MSG_PEEK | MSG_TRUNC))); 1733 1734 /* Ugly... If prequeue is not empty, we have to 1735 * process it before releasing socket, otherwise 1736 * order will be broken at second iteration. 1737 * More elegant solution is required!!! 1738 * 1739 * Look: we have the following (pseudo)queues: 1740 * 1741 * 1. packets in flight 1742 * 2. backlog 1743 * 3. prequeue 1744 * 4. receive_queue 1745 * 1746 * Each queue can be processed only if the next ones 1747 * are empty. At this point we have empty receive_queue. 1748 * But prequeue _can_ be not empty after 2nd iteration, 1749 * when we jumped to start of loop because backlog 1750 * processing added something to receive_queue. 1751 * We cannot release_sock(), because backlog contains 1752 * packets arrived _after_ prequeued ones. 1753 * 1754 * Shortly, algorithm is clear --- to process all 1755 * the queues in order. We could make it more directly, 1756 * requeueing packets from backlog to prequeue, if 1757 * is not empty. It is more elegant, but eats cycles, 1758 * unfortunately. 1759 */ 1760 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1761 goto do_prequeue; 1762 1763 /* __ Set realtime policy in scheduler __ */ 1764 } 1765 1766 if (copied >= target) { 1767 /* Do not sleep, just process backlog. */ 1768 release_sock(sk); 1769 lock_sock(sk); 1770 } else { 1771 sk_wait_data(sk, &timeo, last); 1772 } 1773 1774 if (user_recv) { 1775 int chunk; 1776 1777 /* __ Restore normal policy in scheduler __ */ 1778 1779 chunk = len - tp->ucopy.len; 1780 if (chunk != 0) { 1781 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1782 len -= chunk; 1783 copied += chunk; 1784 } 1785 1786 if (tp->rcv_nxt == tp->copied_seq && 1787 !skb_queue_empty(&tp->ucopy.prequeue)) { 1788 do_prequeue: 1789 tcp_prequeue_process(sk); 1790 1791 chunk = len - tp->ucopy.len; 1792 if (chunk != 0) { 1793 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1794 len -= chunk; 1795 copied += chunk; 1796 } 1797 } 1798 } 1799 if ((flags & MSG_PEEK) && 1800 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1801 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1802 current->comm, 1803 task_pid_nr(current)); 1804 peek_seq = tp->copied_seq; 1805 } 1806 continue; 1807 1808 found_ok_skb: 1809 /* Ok so how much can we use? */ 1810 used = skb->len - offset; 1811 if (len < used) 1812 used = len; 1813 1814 /* Do we have urgent data here? */ 1815 if (tp->urg_data) { 1816 u32 urg_offset = tp->urg_seq - *seq; 1817 if (urg_offset < used) { 1818 if (!urg_offset) { 1819 if (!sock_flag(sk, SOCK_URGINLINE)) { 1820 ++*seq; 1821 urg_hole++; 1822 offset++; 1823 used--; 1824 if (!used) 1825 goto skip_copy; 1826 } 1827 } else 1828 used = urg_offset; 1829 } 1830 } 1831 1832 if (!(flags & MSG_TRUNC)) { 1833 err = skb_copy_datagram_msg(skb, offset, msg, used); 1834 if (err) { 1835 /* Exception. Bailout! */ 1836 if (!copied) 1837 copied = -EFAULT; 1838 break; 1839 } 1840 } 1841 1842 *seq += used; 1843 copied += used; 1844 len -= used; 1845 1846 tcp_rcv_space_adjust(sk); 1847 1848 skip_copy: 1849 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1850 tp->urg_data = 0; 1851 tcp_fast_path_check(sk); 1852 } 1853 if (used + offset < skb->len) 1854 continue; 1855 1856 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1857 goto found_fin_ok; 1858 if (!(flags & MSG_PEEK)) 1859 sk_eat_skb(sk, skb); 1860 continue; 1861 1862 found_fin_ok: 1863 /* Process the FIN. */ 1864 ++*seq; 1865 if (!(flags & MSG_PEEK)) 1866 sk_eat_skb(sk, skb); 1867 break; 1868 } while (len > 0); 1869 1870 if (user_recv) { 1871 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1872 int chunk; 1873 1874 tp->ucopy.len = copied > 0 ? len : 0; 1875 1876 tcp_prequeue_process(sk); 1877 1878 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1879 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1880 len -= chunk; 1881 copied += chunk; 1882 } 1883 } 1884 1885 tp->ucopy.task = NULL; 1886 tp->ucopy.len = 0; 1887 } 1888 1889 /* According to UNIX98, msg_name/msg_namelen are ignored 1890 * on connected socket. I was just happy when found this 8) --ANK 1891 */ 1892 1893 /* Clean up data we have read: This will do ACK frames. */ 1894 tcp_cleanup_rbuf(sk, copied); 1895 1896 release_sock(sk); 1897 return copied; 1898 1899 out: 1900 release_sock(sk); 1901 return err; 1902 1903 recv_urg: 1904 err = tcp_recv_urg(sk, msg, len, flags); 1905 goto out; 1906 1907 recv_sndq: 1908 err = tcp_peek_sndq(sk, msg, len); 1909 goto out; 1910 } 1911 EXPORT_SYMBOL(tcp_recvmsg); 1912 1913 void tcp_set_state(struct sock *sk, int state) 1914 { 1915 int oldstate = sk->sk_state; 1916 1917 switch (state) { 1918 case TCP_ESTABLISHED: 1919 if (oldstate != TCP_ESTABLISHED) 1920 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1921 break; 1922 1923 case TCP_CLOSE: 1924 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1925 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1926 1927 sk->sk_prot->unhash(sk); 1928 if (inet_csk(sk)->icsk_bind_hash && 1929 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1930 inet_put_port(sk); 1931 /* fall through */ 1932 default: 1933 if (oldstate == TCP_ESTABLISHED) 1934 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1935 } 1936 1937 /* Change state AFTER socket is unhashed to avoid closed 1938 * socket sitting in hash tables. 1939 */ 1940 sk_state_store(sk, state); 1941 1942 #ifdef STATE_TRACE 1943 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1944 #endif 1945 } 1946 EXPORT_SYMBOL_GPL(tcp_set_state); 1947 1948 /* 1949 * State processing on a close. This implements the state shift for 1950 * sending our FIN frame. Note that we only send a FIN for some 1951 * states. A shutdown() may have already sent the FIN, or we may be 1952 * closed. 1953 */ 1954 1955 static const unsigned char new_state[16] = { 1956 /* current state: new state: action: */ 1957 [0 /* (Invalid) */] = TCP_CLOSE, 1958 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1959 [TCP_SYN_SENT] = TCP_CLOSE, 1960 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1961 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1962 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1963 [TCP_TIME_WAIT] = TCP_CLOSE, 1964 [TCP_CLOSE] = TCP_CLOSE, 1965 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1966 [TCP_LAST_ACK] = TCP_LAST_ACK, 1967 [TCP_LISTEN] = TCP_CLOSE, 1968 [TCP_CLOSING] = TCP_CLOSING, 1969 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1970 }; 1971 1972 static int tcp_close_state(struct sock *sk) 1973 { 1974 int next = (int)new_state[sk->sk_state]; 1975 int ns = next & TCP_STATE_MASK; 1976 1977 tcp_set_state(sk, ns); 1978 1979 return next & TCP_ACTION_FIN; 1980 } 1981 1982 /* 1983 * Shutdown the sending side of a connection. Much like close except 1984 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1985 */ 1986 1987 void tcp_shutdown(struct sock *sk, int how) 1988 { 1989 /* We need to grab some memory, and put together a FIN, 1990 * and then put it into the queue to be sent. 1991 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1992 */ 1993 if (!(how & SEND_SHUTDOWN)) 1994 return; 1995 1996 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1997 if ((1 << sk->sk_state) & 1998 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1999 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2000 /* Clear out any half completed packets. FIN if needed. */ 2001 if (tcp_close_state(sk)) 2002 tcp_send_fin(sk); 2003 } 2004 } 2005 EXPORT_SYMBOL(tcp_shutdown); 2006 2007 bool tcp_check_oom(struct sock *sk, int shift) 2008 { 2009 bool too_many_orphans, out_of_socket_memory; 2010 2011 too_many_orphans = tcp_too_many_orphans(sk, shift); 2012 out_of_socket_memory = tcp_out_of_memory(sk); 2013 2014 if (too_many_orphans) 2015 net_info_ratelimited("too many orphaned sockets\n"); 2016 if (out_of_socket_memory) 2017 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2018 return too_many_orphans || out_of_socket_memory; 2019 } 2020 2021 void tcp_close(struct sock *sk, long timeout) 2022 { 2023 struct sk_buff *skb; 2024 int data_was_unread = 0; 2025 int state; 2026 2027 lock_sock(sk); 2028 sk->sk_shutdown = SHUTDOWN_MASK; 2029 2030 if (sk->sk_state == TCP_LISTEN) { 2031 tcp_set_state(sk, TCP_CLOSE); 2032 2033 /* Special case. */ 2034 inet_csk_listen_stop(sk); 2035 2036 goto adjudge_to_death; 2037 } 2038 2039 /* We need to flush the recv. buffs. We do this only on the 2040 * descriptor close, not protocol-sourced closes, because the 2041 * reader process may not have drained the data yet! 2042 */ 2043 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2044 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2045 2046 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2047 len--; 2048 data_was_unread += len; 2049 __kfree_skb(skb); 2050 } 2051 2052 sk_mem_reclaim(sk); 2053 2054 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2055 if (sk->sk_state == TCP_CLOSE) 2056 goto adjudge_to_death; 2057 2058 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2059 * data was lost. To witness the awful effects of the old behavior of 2060 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2061 * GET in an FTP client, suspend the process, wait for the client to 2062 * advertise a zero window, then kill -9 the FTP client, wheee... 2063 * Note: timeout is always zero in such a case. 2064 */ 2065 if (unlikely(tcp_sk(sk)->repair)) { 2066 sk->sk_prot->disconnect(sk, 0); 2067 } else if (data_was_unread) { 2068 /* Unread data was tossed, zap the connection. */ 2069 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2070 tcp_set_state(sk, TCP_CLOSE); 2071 tcp_send_active_reset(sk, sk->sk_allocation); 2072 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2073 /* Check zero linger _after_ checking for unread data. */ 2074 sk->sk_prot->disconnect(sk, 0); 2075 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2076 } else if (tcp_close_state(sk)) { 2077 /* We FIN if the application ate all the data before 2078 * zapping the connection. 2079 */ 2080 2081 /* RED-PEN. Formally speaking, we have broken TCP state 2082 * machine. State transitions: 2083 * 2084 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2085 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2086 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2087 * 2088 * are legal only when FIN has been sent (i.e. in window), 2089 * rather than queued out of window. Purists blame. 2090 * 2091 * F.e. "RFC state" is ESTABLISHED, 2092 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2093 * 2094 * The visible declinations are that sometimes 2095 * we enter time-wait state, when it is not required really 2096 * (harmless), do not send active resets, when they are 2097 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2098 * they look as CLOSING or LAST_ACK for Linux) 2099 * Probably, I missed some more holelets. 2100 * --ANK 2101 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2102 * in a single packet! (May consider it later but will 2103 * probably need API support or TCP_CORK SYN-ACK until 2104 * data is written and socket is closed.) 2105 */ 2106 tcp_send_fin(sk); 2107 } 2108 2109 sk_stream_wait_close(sk, timeout); 2110 2111 adjudge_to_death: 2112 state = sk->sk_state; 2113 sock_hold(sk); 2114 sock_orphan(sk); 2115 2116 /* It is the last release_sock in its life. It will remove backlog. */ 2117 release_sock(sk); 2118 2119 2120 /* Now socket is owned by kernel and we acquire BH lock 2121 to finish close. No need to check for user refs. 2122 */ 2123 local_bh_disable(); 2124 bh_lock_sock(sk); 2125 WARN_ON(sock_owned_by_user(sk)); 2126 2127 percpu_counter_inc(sk->sk_prot->orphan_count); 2128 2129 /* Have we already been destroyed by a softirq or backlog? */ 2130 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2131 goto out; 2132 2133 /* This is a (useful) BSD violating of the RFC. There is a 2134 * problem with TCP as specified in that the other end could 2135 * keep a socket open forever with no application left this end. 2136 * We use a 1 minute timeout (about the same as BSD) then kill 2137 * our end. If they send after that then tough - BUT: long enough 2138 * that we won't make the old 4*rto = almost no time - whoops 2139 * reset mistake. 2140 * 2141 * Nope, it was not mistake. It is really desired behaviour 2142 * f.e. on http servers, when such sockets are useless, but 2143 * consume significant resources. Let's do it with special 2144 * linger2 option. --ANK 2145 */ 2146 2147 if (sk->sk_state == TCP_FIN_WAIT2) { 2148 struct tcp_sock *tp = tcp_sk(sk); 2149 if (tp->linger2 < 0) { 2150 tcp_set_state(sk, TCP_CLOSE); 2151 tcp_send_active_reset(sk, GFP_ATOMIC); 2152 NET_INC_STATS_BH(sock_net(sk), 2153 LINUX_MIB_TCPABORTONLINGER); 2154 } else { 2155 const int tmo = tcp_fin_time(sk); 2156 2157 if (tmo > TCP_TIMEWAIT_LEN) { 2158 inet_csk_reset_keepalive_timer(sk, 2159 tmo - TCP_TIMEWAIT_LEN); 2160 } else { 2161 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2162 goto out; 2163 } 2164 } 2165 } 2166 if (sk->sk_state != TCP_CLOSE) { 2167 sk_mem_reclaim(sk); 2168 if (tcp_check_oom(sk, 0)) { 2169 tcp_set_state(sk, TCP_CLOSE); 2170 tcp_send_active_reset(sk, GFP_ATOMIC); 2171 NET_INC_STATS_BH(sock_net(sk), 2172 LINUX_MIB_TCPABORTONMEMORY); 2173 } 2174 } 2175 2176 if (sk->sk_state == TCP_CLOSE) { 2177 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2178 /* We could get here with a non-NULL req if the socket is 2179 * aborted (e.g., closed with unread data) before 3WHS 2180 * finishes. 2181 */ 2182 if (req) 2183 reqsk_fastopen_remove(sk, req, false); 2184 inet_csk_destroy_sock(sk); 2185 } 2186 /* Otherwise, socket is reprieved until protocol close. */ 2187 2188 out: 2189 bh_unlock_sock(sk); 2190 local_bh_enable(); 2191 sock_put(sk); 2192 } 2193 EXPORT_SYMBOL(tcp_close); 2194 2195 /* These states need RST on ABORT according to RFC793 */ 2196 2197 static inline bool tcp_need_reset(int state) 2198 { 2199 return (1 << state) & 2200 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2201 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2202 } 2203 2204 int tcp_disconnect(struct sock *sk, int flags) 2205 { 2206 struct inet_sock *inet = inet_sk(sk); 2207 struct inet_connection_sock *icsk = inet_csk(sk); 2208 struct tcp_sock *tp = tcp_sk(sk); 2209 int err = 0; 2210 int old_state = sk->sk_state; 2211 2212 if (old_state != TCP_CLOSE) 2213 tcp_set_state(sk, TCP_CLOSE); 2214 2215 /* ABORT function of RFC793 */ 2216 if (old_state == TCP_LISTEN) { 2217 inet_csk_listen_stop(sk); 2218 } else if (unlikely(tp->repair)) { 2219 sk->sk_err = ECONNABORTED; 2220 } else if (tcp_need_reset(old_state) || 2221 (tp->snd_nxt != tp->write_seq && 2222 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2223 /* The last check adjusts for discrepancy of Linux wrt. RFC 2224 * states 2225 */ 2226 tcp_send_active_reset(sk, gfp_any()); 2227 sk->sk_err = ECONNRESET; 2228 } else if (old_state == TCP_SYN_SENT) 2229 sk->sk_err = ECONNRESET; 2230 2231 tcp_clear_xmit_timers(sk); 2232 __skb_queue_purge(&sk->sk_receive_queue); 2233 tcp_write_queue_purge(sk); 2234 __skb_queue_purge(&tp->out_of_order_queue); 2235 2236 inet->inet_dport = 0; 2237 2238 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2239 inet_reset_saddr(sk); 2240 2241 sk->sk_shutdown = 0; 2242 sock_reset_flag(sk, SOCK_DONE); 2243 tp->srtt_us = 0; 2244 tp->write_seq += tp->max_window + 2; 2245 if (tp->write_seq == 0) 2246 tp->write_seq = 1; 2247 icsk->icsk_backoff = 0; 2248 tp->snd_cwnd = 2; 2249 icsk->icsk_probes_out = 0; 2250 tp->packets_out = 0; 2251 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2252 tp->snd_cwnd_cnt = 0; 2253 tp->window_clamp = 0; 2254 tcp_set_ca_state(sk, TCP_CA_Open); 2255 tcp_clear_retrans(tp); 2256 inet_csk_delack_init(sk); 2257 tcp_init_send_head(sk); 2258 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2259 __sk_dst_reset(sk); 2260 2261 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2262 2263 sk->sk_error_report(sk); 2264 return err; 2265 } 2266 EXPORT_SYMBOL(tcp_disconnect); 2267 2268 static inline bool tcp_can_repair_sock(const struct sock *sk) 2269 { 2270 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2271 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2272 } 2273 2274 static int tcp_repair_options_est(struct tcp_sock *tp, 2275 struct tcp_repair_opt __user *optbuf, unsigned int len) 2276 { 2277 struct tcp_repair_opt opt; 2278 2279 while (len >= sizeof(opt)) { 2280 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2281 return -EFAULT; 2282 2283 optbuf++; 2284 len -= sizeof(opt); 2285 2286 switch (opt.opt_code) { 2287 case TCPOPT_MSS: 2288 tp->rx_opt.mss_clamp = opt.opt_val; 2289 break; 2290 case TCPOPT_WINDOW: 2291 { 2292 u16 snd_wscale = opt.opt_val & 0xFFFF; 2293 u16 rcv_wscale = opt.opt_val >> 16; 2294 2295 if (snd_wscale > 14 || rcv_wscale > 14) 2296 return -EFBIG; 2297 2298 tp->rx_opt.snd_wscale = snd_wscale; 2299 tp->rx_opt.rcv_wscale = rcv_wscale; 2300 tp->rx_opt.wscale_ok = 1; 2301 } 2302 break; 2303 case TCPOPT_SACK_PERM: 2304 if (opt.opt_val != 0) 2305 return -EINVAL; 2306 2307 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2308 if (sysctl_tcp_fack) 2309 tcp_enable_fack(tp); 2310 break; 2311 case TCPOPT_TIMESTAMP: 2312 if (opt.opt_val != 0) 2313 return -EINVAL; 2314 2315 tp->rx_opt.tstamp_ok = 1; 2316 break; 2317 } 2318 } 2319 2320 return 0; 2321 } 2322 2323 /* 2324 * Socket option code for TCP. 2325 */ 2326 static int do_tcp_setsockopt(struct sock *sk, int level, 2327 int optname, char __user *optval, unsigned int optlen) 2328 { 2329 struct tcp_sock *tp = tcp_sk(sk); 2330 struct inet_connection_sock *icsk = inet_csk(sk); 2331 struct net *net = sock_net(sk); 2332 int val; 2333 int err = 0; 2334 2335 /* These are data/string values, all the others are ints */ 2336 switch (optname) { 2337 case TCP_CONGESTION: { 2338 char name[TCP_CA_NAME_MAX]; 2339 2340 if (optlen < 1) 2341 return -EINVAL; 2342 2343 val = strncpy_from_user(name, optval, 2344 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2345 if (val < 0) 2346 return -EFAULT; 2347 name[val] = 0; 2348 2349 lock_sock(sk); 2350 err = tcp_set_congestion_control(sk, name); 2351 release_sock(sk); 2352 return err; 2353 } 2354 default: 2355 /* fallthru */ 2356 break; 2357 } 2358 2359 if (optlen < sizeof(int)) 2360 return -EINVAL; 2361 2362 if (get_user(val, (int __user *)optval)) 2363 return -EFAULT; 2364 2365 lock_sock(sk); 2366 2367 switch (optname) { 2368 case TCP_MAXSEG: 2369 /* Values greater than interface MTU won't take effect. However 2370 * at the point when this call is done we typically don't yet 2371 * know which interface is going to be used */ 2372 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2373 err = -EINVAL; 2374 break; 2375 } 2376 tp->rx_opt.user_mss = val; 2377 break; 2378 2379 case TCP_NODELAY: 2380 if (val) { 2381 /* TCP_NODELAY is weaker than TCP_CORK, so that 2382 * this option on corked socket is remembered, but 2383 * it is not activated until cork is cleared. 2384 * 2385 * However, when TCP_NODELAY is set we make 2386 * an explicit push, which overrides even TCP_CORK 2387 * for currently queued segments. 2388 */ 2389 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2390 tcp_push_pending_frames(sk); 2391 } else { 2392 tp->nonagle &= ~TCP_NAGLE_OFF; 2393 } 2394 break; 2395 2396 case TCP_THIN_LINEAR_TIMEOUTS: 2397 if (val < 0 || val > 1) 2398 err = -EINVAL; 2399 else 2400 tp->thin_lto = val; 2401 break; 2402 2403 case TCP_THIN_DUPACK: 2404 if (val < 0 || val > 1) 2405 err = -EINVAL; 2406 else { 2407 tp->thin_dupack = val; 2408 if (tp->thin_dupack) 2409 tcp_disable_early_retrans(tp); 2410 } 2411 break; 2412 2413 case TCP_REPAIR: 2414 if (!tcp_can_repair_sock(sk)) 2415 err = -EPERM; 2416 else if (val == 1) { 2417 tp->repair = 1; 2418 sk->sk_reuse = SK_FORCE_REUSE; 2419 tp->repair_queue = TCP_NO_QUEUE; 2420 } else if (val == 0) { 2421 tp->repair = 0; 2422 sk->sk_reuse = SK_NO_REUSE; 2423 tcp_send_window_probe(sk); 2424 } else 2425 err = -EINVAL; 2426 2427 break; 2428 2429 case TCP_REPAIR_QUEUE: 2430 if (!tp->repair) 2431 err = -EPERM; 2432 else if (val < TCP_QUEUES_NR) 2433 tp->repair_queue = val; 2434 else 2435 err = -EINVAL; 2436 break; 2437 2438 case TCP_QUEUE_SEQ: 2439 if (sk->sk_state != TCP_CLOSE) 2440 err = -EPERM; 2441 else if (tp->repair_queue == TCP_SEND_QUEUE) 2442 tp->write_seq = val; 2443 else if (tp->repair_queue == TCP_RECV_QUEUE) 2444 tp->rcv_nxt = val; 2445 else 2446 err = -EINVAL; 2447 break; 2448 2449 case TCP_REPAIR_OPTIONS: 2450 if (!tp->repair) 2451 err = -EINVAL; 2452 else if (sk->sk_state == TCP_ESTABLISHED) 2453 err = tcp_repair_options_est(tp, 2454 (struct tcp_repair_opt __user *)optval, 2455 optlen); 2456 else 2457 err = -EPERM; 2458 break; 2459 2460 case TCP_CORK: 2461 /* When set indicates to always queue non-full frames. 2462 * Later the user clears this option and we transmit 2463 * any pending partial frames in the queue. This is 2464 * meant to be used alongside sendfile() to get properly 2465 * filled frames when the user (for example) must write 2466 * out headers with a write() call first and then use 2467 * sendfile to send out the data parts. 2468 * 2469 * TCP_CORK can be set together with TCP_NODELAY and it is 2470 * stronger than TCP_NODELAY. 2471 */ 2472 if (val) { 2473 tp->nonagle |= TCP_NAGLE_CORK; 2474 } else { 2475 tp->nonagle &= ~TCP_NAGLE_CORK; 2476 if (tp->nonagle&TCP_NAGLE_OFF) 2477 tp->nonagle |= TCP_NAGLE_PUSH; 2478 tcp_push_pending_frames(sk); 2479 } 2480 break; 2481 2482 case TCP_KEEPIDLE: 2483 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2484 err = -EINVAL; 2485 else { 2486 tp->keepalive_time = val * HZ; 2487 if (sock_flag(sk, SOCK_KEEPOPEN) && 2488 !((1 << sk->sk_state) & 2489 (TCPF_CLOSE | TCPF_LISTEN))) { 2490 u32 elapsed = keepalive_time_elapsed(tp); 2491 if (tp->keepalive_time > elapsed) 2492 elapsed = tp->keepalive_time - elapsed; 2493 else 2494 elapsed = 0; 2495 inet_csk_reset_keepalive_timer(sk, elapsed); 2496 } 2497 } 2498 break; 2499 case TCP_KEEPINTVL: 2500 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2501 err = -EINVAL; 2502 else 2503 tp->keepalive_intvl = val * HZ; 2504 break; 2505 case TCP_KEEPCNT: 2506 if (val < 1 || val > MAX_TCP_KEEPCNT) 2507 err = -EINVAL; 2508 else 2509 tp->keepalive_probes = val; 2510 break; 2511 case TCP_SYNCNT: 2512 if (val < 1 || val > MAX_TCP_SYNCNT) 2513 err = -EINVAL; 2514 else 2515 icsk->icsk_syn_retries = val; 2516 break; 2517 2518 case TCP_SAVE_SYN: 2519 if (val < 0 || val > 1) 2520 err = -EINVAL; 2521 else 2522 tp->save_syn = val; 2523 break; 2524 2525 case TCP_LINGER2: 2526 if (val < 0) 2527 tp->linger2 = -1; 2528 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2529 tp->linger2 = 0; 2530 else 2531 tp->linger2 = val * HZ; 2532 break; 2533 2534 case TCP_DEFER_ACCEPT: 2535 /* Translate value in seconds to number of retransmits */ 2536 icsk->icsk_accept_queue.rskq_defer_accept = 2537 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2538 TCP_RTO_MAX / HZ); 2539 break; 2540 2541 case TCP_WINDOW_CLAMP: 2542 if (!val) { 2543 if (sk->sk_state != TCP_CLOSE) { 2544 err = -EINVAL; 2545 break; 2546 } 2547 tp->window_clamp = 0; 2548 } else 2549 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2550 SOCK_MIN_RCVBUF / 2 : val; 2551 break; 2552 2553 case TCP_QUICKACK: 2554 if (!val) { 2555 icsk->icsk_ack.pingpong = 1; 2556 } else { 2557 icsk->icsk_ack.pingpong = 0; 2558 if ((1 << sk->sk_state) & 2559 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2560 inet_csk_ack_scheduled(sk)) { 2561 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2562 tcp_cleanup_rbuf(sk, 1); 2563 if (!(val & 1)) 2564 icsk->icsk_ack.pingpong = 1; 2565 } 2566 } 2567 break; 2568 2569 #ifdef CONFIG_TCP_MD5SIG 2570 case TCP_MD5SIG: 2571 /* Read the IP->Key mappings from userspace */ 2572 err = tp->af_specific->md5_parse(sk, optval, optlen); 2573 break; 2574 #endif 2575 case TCP_USER_TIMEOUT: 2576 /* Cap the max time in ms TCP will retry or probe the window 2577 * before giving up and aborting (ETIMEDOUT) a connection. 2578 */ 2579 if (val < 0) 2580 err = -EINVAL; 2581 else 2582 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2583 break; 2584 2585 case TCP_FASTOPEN: 2586 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2587 TCPF_LISTEN))) { 2588 tcp_fastopen_init_key_once(true); 2589 2590 fastopen_queue_tune(sk, val); 2591 } else { 2592 err = -EINVAL; 2593 } 2594 break; 2595 case TCP_TIMESTAMP: 2596 if (!tp->repair) 2597 err = -EPERM; 2598 else 2599 tp->tsoffset = val - tcp_time_stamp; 2600 break; 2601 case TCP_NOTSENT_LOWAT: 2602 tp->notsent_lowat = val; 2603 sk->sk_write_space(sk); 2604 break; 2605 default: 2606 err = -ENOPROTOOPT; 2607 break; 2608 } 2609 2610 release_sock(sk); 2611 return err; 2612 } 2613 2614 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2615 unsigned int optlen) 2616 { 2617 const struct inet_connection_sock *icsk = inet_csk(sk); 2618 2619 if (level != SOL_TCP) 2620 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2621 optval, optlen); 2622 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2623 } 2624 EXPORT_SYMBOL(tcp_setsockopt); 2625 2626 #ifdef CONFIG_COMPAT 2627 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2628 char __user *optval, unsigned int optlen) 2629 { 2630 if (level != SOL_TCP) 2631 return inet_csk_compat_setsockopt(sk, level, optname, 2632 optval, optlen); 2633 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2634 } 2635 EXPORT_SYMBOL(compat_tcp_setsockopt); 2636 #endif 2637 2638 /* Return information about state of tcp endpoint in API format. */ 2639 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2640 { 2641 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2642 const struct inet_connection_sock *icsk = inet_csk(sk); 2643 u32 now = tcp_time_stamp; 2644 unsigned int start; 2645 int notsent_bytes; 2646 u64 rate64; 2647 u32 rate; 2648 2649 memset(info, 0, sizeof(*info)); 2650 if (sk->sk_type != SOCK_STREAM) 2651 return; 2652 2653 info->tcpi_state = sk_state_load(sk); 2654 2655 info->tcpi_ca_state = icsk->icsk_ca_state; 2656 info->tcpi_retransmits = icsk->icsk_retransmits; 2657 info->tcpi_probes = icsk->icsk_probes_out; 2658 info->tcpi_backoff = icsk->icsk_backoff; 2659 2660 if (tp->rx_opt.tstamp_ok) 2661 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2662 if (tcp_is_sack(tp)) 2663 info->tcpi_options |= TCPI_OPT_SACK; 2664 if (tp->rx_opt.wscale_ok) { 2665 info->tcpi_options |= TCPI_OPT_WSCALE; 2666 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2667 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2668 } 2669 2670 if (tp->ecn_flags & TCP_ECN_OK) 2671 info->tcpi_options |= TCPI_OPT_ECN; 2672 if (tp->ecn_flags & TCP_ECN_SEEN) 2673 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2674 if (tp->syn_data_acked) 2675 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2676 2677 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2678 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2679 info->tcpi_snd_mss = tp->mss_cache; 2680 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2681 2682 if (info->tcpi_state == TCP_LISTEN) { 2683 info->tcpi_unacked = sk->sk_ack_backlog; 2684 info->tcpi_sacked = sk->sk_max_ack_backlog; 2685 } else { 2686 info->tcpi_unacked = tp->packets_out; 2687 info->tcpi_sacked = tp->sacked_out; 2688 } 2689 info->tcpi_lost = tp->lost_out; 2690 info->tcpi_retrans = tp->retrans_out; 2691 info->tcpi_fackets = tp->fackets_out; 2692 2693 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2694 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2695 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2696 2697 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2698 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2699 info->tcpi_rtt = tp->srtt_us >> 3; 2700 info->tcpi_rttvar = tp->mdev_us >> 2; 2701 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2702 info->tcpi_snd_cwnd = tp->snd_cwnd; 2703 info->tcpi_advmss = tp->advmss; 2704 info->tcpi_reordering = tp->reordering; 2705 2706 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2707 info->tcpi_rcv_space = tp->rcvq_space.space; 2708 2709 info->tcpi_total_retrans = tp->total_retrans; 2710 2711 rate = READ_ONCE(sk->sk_pacing_rate); 2712 rate64 = rate != ~0U ? rate : ~0ULL; 2713 put_unaligned(rate64, &info->tcpi_pacing_rate); 2714 2715 rate = READ_ONCE(sk->sk_max_pacing_rate); 2716 rate64 = rate != ~0U ? rate : ~0ULL; 2717 put_unaligned(rate64, &info->tcpi_max_pacing_rate); 2718 2719 do { 2720 start = u64_stats_fetch_begin_irq(&tp->syncp); 2721 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked); 2722 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received); 2723 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2724 info->tcpi_segs_out = tp->segs_out; 2725 info->tcpi_segs_in = tp->segs_in; 2726 2727 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); 2728 info->tcpi_notsent_bytes = max(0, notsent_bytes); 2729 2730 info->tcpi_min_rtt = tcp_min_rtt(tp); 2731 } 2732 EXPORT_SYMBOL_GPL(tcp_get_info); 2733 2734 static int do_tcp_getsockopt(struct sock *sk, int level, 2735 int optname, char __user *optval, int __user *optlen) 2736 { 2737 struct inet_connection_sock *icsk = inet_csk(sk); 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 struct net *net = sock_net(sk); 2740 int val, len; 2741 2742 if (get_user(len, optlen)) 2743 return -EFAULT; 2744 2745 len = min_t(unsigned int, len, sizeof(int)); 2746 2747 if (len < 0) 2748 return -EINVAL; 2749 2750 switch (optname) { 2751 case TCP_MAXSEG: 2752 val = tp->mss_cache; 2753 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2754 val = tp->rx_opt.user_mss; 2755 if (tp->repair) 2756 val = tp->rx_opt.mss_clamp; 2757 break; 2758 case TCP_NODELAY: 2759 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2760 break; 2761 case TCP_CORK: 2762 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2763 break; 2764 case TCP_KEEPIDLE: 2765 val = keepalive_time_when(tp) / HZ; 2766 break; 2767 case TCP_KEEPINTVL: 2768 val = keepalive_intvl_when(tp) / HZ; 2769 break; 2770 case TCP_KEEPCNT: 2771 val = keepalive_probes(tp); 2772 break; 2773 case TCP_SYNCNT: 2774 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2775 break; 2776 case TCP_LINGER2: 2777 val = tp->linger2; 2778 if (val >= 0) 2779 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2780 break; 2781 case TCP_DEFER_ACCEPT: 2782 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2783 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2784 break; 2785 case TCP_WINDOW_CLAMP: 2786 val = tp->window_clamp; 2787 break; 2788 case TCP_INFO: { 2789 struct tcp_info info; 2790 2791 if (get_user(len, optlen)) 2792 return -EFAULT; 2793 2794 tcp_get_info(sk, &info); 2795 2796 len = min_t(unsigned int, len, sizeof(info)); 2797 if (put_user(len, optlen)) 2798 return -EFAULT; 2799 if (copy_to_user(optval, &info, len)) 2800 return -EFAULT; 2801 return 0; 2802 } 2803 case TCP_CC_INFO: { 2804 const struct tcp_congestion_ops *ca_ops; 2805 union tcp_cc_info info; 2806 size_t sz = 0; 2807 int attr; 2808 2809 if (get_user(len, optlen)) 2810 return -EFAULT; 2811 2812 ca_ops = icsk->icsk_ca_ops; 2813 if (ca_ops && ca_ops->get_info) 2814 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2815 2816 len = min_t(unsigned int, len, sz); 2817 if (put_user(len, optlen)) 2818 return -EFAULT; 2819 if (copy_to_user(optval, &info, len)) 2820 return -EFAULT; 2821 return 0; 2822 } 2823 case TCP_QUICKACK: 2824 val = !icsk->icsk_ack.pingpong; 2825 break; 2826 2827 case TCP_CONGESTION: 2828 if (get_user(len, optlen)) 2829 return -EFAULT; 2830 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2831 if (put_user(len, optlen)) 2832 return -EFAULT; 2833 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2834 return -EFAULT; 2835 return 0; 2836 2837 case TCP_THIN_LINEAR_TIMEOUTS: 2838 val = tp->thin_lto; 2839 break; 2840 case TCP_THIN_DUPACK: 2841 val = tp->thin_dupack; 2842 break; 2843 2844 case TCP_REPAIR: 2845 val = tp->repair; 2846 break; 2847 2848 case TCP_REPAIR_QUEUE: 2849 if (tp->repair) 2850 val = tp->repair_queue; 2851 else 2852 return -EINVAL; 2853 break; 2854 2855 case TCP_QUEUE_SEQ: 2856 if (tp->repair_queue == TCP_SEND_QUEUE) 2857 val = tp->write_seq; 2858 else if (tp->repair_queue == TCP_RECV_QUEUE) 2859 val = tp->rcv_nxt; 2860 else 2861 return -EINVAL; 2862 break; 2863 2864 case TCP_USER_TIMEOUT: 2865 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2866 break; 2867 2868 case TCP_FASTOPEN: 2869 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2870 break; 2871 2872 case TCP_TIMESTAMP: 2873 val = tcp_time_stamp + tp->tsoffset; 2874 break; 2875 case TCP_NOTSENT_LOWAT: 2876 val = tp->notsent_lowat; 2877 break; 2878 case TCP_SAVE_SYN: 2879 val = tp->save_syn; 2880 break; 2881 case TCP_SAVED_SYN: { 2882 if (get_user(len, optlen)) 2883 return -EFAULT; 2884 2885 lock_sock(sk); 2886 if (tp->saved_syn) { 2887 if (len < tp->saved_syn[0]) { 2888 if (put_user(tp->saved_syn[0], optlen)) { 2889 release_sock(sk); 2890 return -EFAULT; 2891 } 2892 release_sock(sk); 2893 return -EINVAL; 2894 } 2895 len = tp->saved_syn[0]; 2896 if (put_user(len, optlen)) { 2897 release_sock(sk); 2898 return -EFAULT; 2899 } 2900 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 2901 release_sock(sk); 2902 return -EFAULT; 2903 } 2904 tcp_saved_syn_free(tp); 2905 release_sock(sk); 2906 } else { 2907 release_sock(sk); 2908 len = 0; 2909 if (put_user(len, optlen)) 2910 return -EFAULT; 2911 } 2912 return 0; 2913 } 2914 default: 2915 return -ENOPROTOOPT; 2916 } 2917 2918 if (put_user(len, optlen)) 2919 return -EFAULT; 2920 if (copy_to_user(optval, &val, len)) 2921 return -EFAULT; 2922 return 0; 2923 } 2924 2925 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2926 int __user *optlen) 2927 { 2928 struct inet_connection_sock *icsk = inet_csk(sk); 2929 2930 if (level != SOL_TCP) 2931 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2932 optval, optlen); 2933 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2934 } 2935 EXPORT_SYMBOL(tcp_getsockopt); 2936 2937 #ifdef CONFIG_COMPAT 2938 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2939 char __user *optval, int __user *optlen) 2940 { 2941 if (level != SOL_TCP) 2942 return inet_csk_compat_getsockopt(sk, level, optname, 2943 optval, optlen); 2944 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2945 } 2946 EXPORT_SYMBOL(compat_tcp_getsockopt); 2947 #endif 2948 2949 #ifdef CONFIG_TCP_MD5SIG 2950 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2951 static DEFINE_MUTEX(tcp_md5sig_mutex); 2952 static bool tcp_md5sig_pool_populated = false; 2953 2954 static void __tcp_alloc_md5sig_pool(void) 2955 { 2956 int cpu; 2957 2958 for_each_possible_cpu(cpu) { 2959 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) { 2960 struct crypto_hash *hash; 2961 2962 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2963 if (IS_ERR(hash)) 2964 return; 2965 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash; 2966 } 2967 } 2968 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2969 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2970 */ 2971 smp_wmb(); 2972 tcp_md5sig_pool_populated = true; 2973 } 2974 2975 bool tcp_alloc_md5sig_pool(void) 2976 { 2977 if (unlikely(!tcp_md5sig_pool_populated)) { 2978 mutex_lock(&tcp_md5sig_mutex); 2979 2980 if (!tcp_md5sig_pool_populated) 2981 __tcp_alloc_md5sig_pool(); 2982 2983 mutex_unlock(&tcp_md5sig_mutex); 2984 } 2985 return tcp_md5sig_pool_populated; 2986 } 2987 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2988 2989 2990 /** 2991 * tcp_get_md5sig_pool - get md5sig_pool for this user 2992 * 2993 * We use percpu structure, so if we succeed, we exit with preemption 2994 * and BH disabled, to make sure another thread or softirq handling 2995 * wont try to get same context. 2996 */ 2997 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2998 { 2999 local_bh_disable(); 3000 3001 if (tcp_md5sig_pool_populated) { 3002 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3003 smp_rmb(); 3004 return this_cpu_ptr(&tcp_md5sig_pool); 3005 } 3006 local_bh_enable(); 3007 return NULL; 3008 } 3009 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3010 3011 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3012 const struct tcphdr *th) 3013 { 3014 struct scatterlist sg; 3015 struct tcphdr hdr; 3016 int err; 3017 3018 /* We are not allowed to change tcphdr, make a local copy */ 3019 memcpy(&hdr, th, sizeof(hdr)); 3020 hdr.check = 0; 3021 3022 /* options aren't included in the hash */ 3023 sg_init_one(&sg, &hdr, sizeof(hdr)); 3024 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3025 return err; 3026 } 3027 EXPORT_SYMBOL(tcp_md5_hash_header); 3028 3029 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3030 const struct sk_buff *skb, unsigned int header_len) 3031 { 3032 struct scatterlist sg; 3033 const struct tcphdr *tp = tcp_hdr(skb); 3034 struct hash_desc *desc = &hp->md5_desc; 3035 unsigned int i; 3036 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3037 skb_headlen(skb) - header_len : 0; 3038 const struct skb_shared_info *shi = skb_shinfo(skb); 3039 struct sk_buff *frag_iter; 3040 3041 sg_init_table(&sg, 1); 3042 3043 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3044 if (crypto_hash_update(desc, &sg, head_data_len)) 3045 return 1; 3046 3047 for (i = 0; i < shi->nr_frags; ++i) { 3048 const struct skb_frag_struct *f = &shi->frags[i]; 3049 unsigned int offset = f->page_offset; 3050 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3051 3052 sg_set_page(&sg, page, skb_frag_size(f), 3053 offset_in_page(offset)); 3054 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3055 return 1; 3056 } 3057 3058 skb_walk_frags(skb, frag_iter) 3059 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3060 return 1; 3061 3062 return 0; 3063 } 3064 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3065 3066 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3067 { 3068 struct scatterlist sg; 3069 3070 sg_init_one(&sg, key->key, key->keylen); 3071 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3072 } 3073 EXPORT_SYMBOL(tcp_md5_hash_key); 3074 3075 #endif 3076 3077 void tcp_done(struct sock *sk) 3078 { 3079 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3080 3081 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3082 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3083 3084 tcp_set_state(sk, TCP_CLOSE); 3085 tcp_clear_xmit_timers(sk); 3086 if (req) 3087 reqsk_fastopen_remove(sk, req, false); 3088 3089 sk->sk_shutdown = SHUTDOWN_MASK; 3090 3091 if (!sock_flag(sk, SOCK_DEAD)) 3092 sk->sk_state_change(sk); 3093 else 3094 inet_csk_destroy_sock(sk); 3095 } 3096 EXPORT_SYMBOL_GPL(tcp_done); 3097 3098 int tcp_abort(struct sock *sk, int err) 3099 { 3100 if (!sk_fullsock(sk)) { 3101 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3102 struct request_sock *req = inet_reqsk(sk); 3103 3104 local_bh_disable(); 3105 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3106 req); 3107 local_bh_enable(); 3108 return 0; 3109 } 3110 sock_gen_put(sk); 3111 return -EOPNOTSUPP; 3112 } 3113 3114 /* Don't race with userspace socket closes such as tcp_close. */ 3115 lock_sock(sk); 3116 3117 if (sk->sk_state == TCP_LISTEN) { 3118 tcp_set_state(sk, TCP_CLOSE); 3119 inet_csk_listen_stop(sk); 3120 } 3121 3122 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3123 local_bh_disable(); 3124 bh_lock_sock(sk); 3125 3126 if (!sock_flag(sk, SOCK_DEAD)) { 3127 sk->sk_err = err; 3128 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3129 smp_wmb(); 3130 sk->sk_error_report(sk); 3131 if (tcp_need_reset(sk->sk_state)) 3132 tcp_send_active_reset(sk, GFP_ATOMIC); 3133 tcp_done(sk); 3134 } 3135 3136 bh_unlock_sock(sk); 3137 local_bh_enable(); 3138 release_sock(sk); 3139 sock_put(sk); 3140 return 0; 3141 } 3142 EXPORT_SYMBOL_GPL(tcp_abort); 3143 3144 extern struct tcp_congestion_ops tcp_reno; 3145 3146 static __initdata unsigned long thash_entries; 3147 static int __init set_thash_entries(char *str) 3148 { 3149 ssize_t ret; 3150 3151 if (!str) 3152 return 0; 3153 3154 ret = kstrtoul(str, 0, &thash_entries); 3155 if (ret) 3156 return 0; 3157 3158 return 1; 3159 } 3160 __setup("thash_entries=", set_thash_entries); 3161 3162 static void __init tcp_init_mem(void) 3163 { 3164 unsigned long limit = nr_free_buffer_pages() / 16; 3165 3166 limit = max(limit, 128UL); 3167 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3168 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3169 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3170 } 3171 3172 void __init tcp_init(void) 3173 { 3174 unsigned long limit; 3175 int max_rshare, max_wshare, cnt; 3176 unsigned int i; 3177 3178 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb)); 3179 3180 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3181 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3182 tcp_hashinfo.bind_bucket_cachep = 3183 kmem_cache_create("tcp_bind_bucket", 3184 sizeof(struct inet_bind_bucket), 0, 3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3186 3187 /* Size and allocate the main established and bind bucket 3188 * hash tables. 3189 * 3190 * The methodology is similar to that of the buffer cache. 3191 */ 3192 tcp_hashinfo.ehash = 3193 alloc_large_system_hash("TCP established", 3194 sizeof(struct inet_ehash_bucket), 3195 thash_entries, 3196 17, /* one slot per 128 KB of memory */ 3197 0, 3198 NULL, 3199 &tcp_hashinfo.ehash_mask, 3200 0, 3201 thash_entries ? 0 : 512 * 1024); 3202 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3203 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3204 3205 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3206 panic("TCP: failed to alloc ehash_locks"); 3207 tcp_hashinfo.bhash = 3208 alloc_large_system_hash("TCP bind", 3209 sizeof(struct inet_bind_hashbucket), 3210 tcp_hashinfo.ehash_mask + 1, 3211 17, /* one slot per 128 KB of memory */ 3212 0, 3213 &tcp_hashinfo.bhash_size, 3214 NULL, 3215 0, 3216 64 * 1024); 3217 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3218 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3219 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3220 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3221 } 3222 3223 3224 cnt = tcp_hashinfo.ehash_mask + 1; 3225 3226 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3227 sysctl_tcp_max_orphans = cnt / 2; 3228 sysctl_max_syn_backlog = max(128, cnt / 256); 3229 3230 tcp_init_mem(); 3231 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3232 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3233 max_wshare = min(4UL*1024*1024, limit); 3234 max_rshare = min(6UL*1024*1024, limit); 3235 3236 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3237 sysctl_tcp_wmem[1] = 16*1024; 3238 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3239 3240 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3241 sysctl_tcp_rmem[1] = 87380; 3242 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3243 3244 pr_info("Hash tables configured (established %u bind %u)\n", 3245 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3246 3247 tcp_metrics_init(); 3248 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3249 tcp_tasklet_init(); 3250 } 3251