1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sk_sleep(sk), wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (tp->urg_seq == tp->copied_seq && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (sk_stream_is_writeable(sk)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (sk_stream_is_writeable(sk)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = tp->write_seq - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = tp->write_seq - tp->snd_nxt; 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk->sk_wmem_queued += skb->truesize; 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 static void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 if (!sock_flag(sk, SOCK_DONE)) 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 sk_wait_data(sk, &timeo, NULL); 835 if (signal_pending(current)) { 836 ret = sock_intr_errno(timeo); 837 break; 838 } 839 continue; 840 } 841 tss.len -= ret; 842 spliced += ret; 843 844 if (!timeo) 845 break; 846 release_sock(sk); 847 lock_sock(sk); 848 849 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 850 (sk->sk_shutdown & RCV_SHUTDOWN) || 851 signal_pending(current)) 852 break; 853 } 854 855 release_sock(sk); 856 857 if (spliced) 858 return spliced; 859 860 return ret; 861 } 862 EXPORT_SYMBOL(tcp_splice_read); 863 864 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 865 bool force_schedule) 866 { 867 struct sk_buff *skb; 868 869 /* The TCP header must be at least 32-bit aligned. */ 870 size = ALIGN(size, 4); 871 872 if (unlikely(tcp_under_memory_pressure(sk))) 873 sk_mem_reclaim_partial(sk); 874 875 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 876 if (likely(skb)) { 877 bool mem_scheduled; 878 879 if (force_schedule) { 880 mem_scheduled = true; 881 sk_forced_mem_schedule(sk, skb->truesize); 882 } else { 883 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 884 } 885 if (likely(mem_scheduled)) { 886 skb_reserve(skb, sk->sk_prot->max_header); 887 /* 888 * Make sure that we have exactly size bytes 889 * available to the caller, no more, no less. 890 */ 891 skb->reserved_tailroom = skb->end - skb->tail - size; 892 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 893 return skb; 894 } 895 __kfree_skb(skb); 896 } else { 897 sk->sk_prot->enter_memory_pressure(sk); 898 sk_stream_moderate_sndbuf(sk); 899 } 900 return NULL; 901 } 902 903 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 904 int large_allowed) 905 { 906 struct tcp_sock *tp = tcp_sk(sk); 907 u32 new_size_goal, size_goal; 908 909 if (!large_allowed) 910 return mss_now; 911 912 /* Note : tcp_tso_autosize() will eventually split this later */ 913 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 914 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 915 916 /* We try hard to avoid divides here */ 917 size_goal = tp->gso_segs * mss_now; 918 if (unlikely(new_size_goal < size_goal || 919 new_size_goal >= size_goal + mss_now)) { 920 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 921 sk->sk_gso_max_segs); 922 size_goal = tp->gso_segs * mss_now; 923 } 924 925 return max(size_goal, mss_now); 926 } 927 928 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 929 { 930 int mss_now; 931 932 mss_now = tcp_current_mss(sk); 933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 934 935 return mss_now; 936 } 937 938 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 939 size_t size, int flags) 940 { 941 struct tcp_sock *tp = tcp_sk(sk); 942 int mss_now, size_goal; 943 int err; 944 ssize_t copied; 945 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 946 947 /* Wait for a connection to finish. One exception is TCP Fast Open 948 * (passive side) where data is allowed to be sent before a connection 949 * is fully established. 950 */ 951 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 952 !tcp_passive_fastopen(sk)) { 953 err = sk_stream_wait_connect(sk, &timeo); 954 if (err != 0) 955 goto out_err; 956 } 957 958 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 959 960 mss_now = tcp_send_mss(sk, &size_goal, flags); 961 copied = 0; 962 963 err = -EPIPE; 964 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 965 goto out_err; 966 967 while (size > 0) { 968 struct sk_buff *skb = tcp_write_queue_tail(sk); 969 int copy, i; 970 bool can_coalesce; 971 972 if (!skb || (copy = size_goal - skb->len) <= 0 || 973 !tcp_skb_can_collapse_to(skb)) { 974 new_segment: 975 if (!sk_stream_memory_free(sk)) 976 goto wait_for_sndbuf; 977 978 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 979 tcp_rtx_and_write_queues_empty(sk)); 980 if (!skb) 981 goto wait_for_memory; 982 983 skb_entail(sk, skb); 984 copy = size_goal; 985 } 986 987 if (copy > size) 988 copy = size; 989 990 i = skb_shinfo(skb)->nr_frags; 991 can_coalesce = skb_can_coalesce(skb, i, page, offset); 992 if (!can_coalesce && i >= sysctl_max_skb_frags) { 993 tcp_mark_push(tp, skb); 994 goto new_segment; 995 } 996 if (!sk_wmem_schedule(sk, copy)) 997 goto wait_for_memory; 998 999 if (can_coalesce) { 1000 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1001 } else { 1002 get_page(page); 1003 skb_fill_page_desc(skb, i, page, offset, copy); 1004 } 1005 1006 if (!(flags & MSG_NO_SHARED_FRAGS)) 1007 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1008 1009 skb->len += copy; 1010 skb->data_len += copy; 1011 skb->truesize += copy; 1012 sk->sk_wmem_queued += copy; 1013 sk_mem_charge(sk, copy); 1014 skb->ip_summed = CHECKSUM_PARTIAL; 1015 tp->write_seq += copy; 1016 TCP_SKB_CB(skb)->end_seq += copy; 1017 tcp_skb_pcount_set(skb, 0); 1018 1019 if (!copied) 1020 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1021 1022 copied += copy; 1023 offset += copy; 1024 size -= copy; 1025 if (!size) 1026 goto out; 1027 1028 if (skb->len < size_goal || (flags & MSG_OOB)) 1029 continue; 1030 1031 if (forced_push(tp)) { 1032 tcp_mark_push(tp, skb); 1033 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1034 } else if (skb == tcp_send_head(sk)) 1035 tcp_push_one(sk, mss_now); 1036 continue; 1037 1038 wait_for_sndbuf: 1039 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1040 wait_for_memory: 1041 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1042 TCP_NAGLE_PUSH, size_goal); 1043 1044 err = sk_stream_wait_memory(sk, &timeo); 1045 if (err != 0) 1046 goto do_error; 1047 1048 mss_now = tcp_send_mss(sk, &size_goal, flags); 1049 } 1050 1051 out: 1052 if (copied) { 1053 tcp_tx_timestamp(sk, sk->sk_tsflags); 1054 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1055 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1056 } 1057 return copied; 1058 1059 do_error: 1060 if (copied) 1061 goto out; 1062 out_err: 1063 /* make sure we wake any epoll edge trigger waiter */ 1064 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1065 err == -EAGAIN)) { 1066 sk->sk_write_space(sk); 1067 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1068 } 1069 return sk_stream_error(sk, flags, err); 1070 } 1071 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1072 1073 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1074 size_t size, int flags) 1075 { 1076 if (!(sk->sk_route_caps & NETIF_F_SG)) 1077 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1078 1079 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1080 1081 return do_tcp_sendpages(sk, page, offset, size, flags); 1082 } 1083 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1084 1085 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1086 size_t size, int flags) 1087 { 1088 int ret; 1089 1090 lock_sock(sk); 1091 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1092 release_sock(sk); 1093 1094 return ret; 1095 } 1096 EXPORT_SYMBOL(tcp_sendpage); 1097 1098 /* Do not bother using a page frag for very small frames. 1099 * But use this heuristic only for the first skb in write queue. 1100 * 1101 * Having no payload in skb->head allows better SACK shifting 1102 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1103 * write queue has less skbs. 1104 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1105 * This also speeds up tso_fragment(), since it wont fallback 1106 * to tcp_fragment(). 1107 */ 1108 static int linear_payload_sz(bool first_skb) 1109 { 1110 if (first_skb) 1111 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1112 return 0; 1113 } 1114 1115 static int select_size(bool first_skb, bool zc) 1116 { 1117 if (zc) 1118 return 0; 1119 return linear_payload_sz(first_skb); 1120 } 1121 1122 void tcp_free_fastopen_req(struct tcp_sock *tp) 1123 { 1124 if (tp->fastopen_req) { 1125 kfree(tp->fastopen_req); 1126 tp->fastopen_req = NULL; 1127 } 1128 } 1129 1130 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1131 int *copied, size_t size) 1132 { 1133 struct tcp_sock *tp = tcp_sk(sk); 1134 struct inet_sock *inet = inet_sk(sk); 1135 struct sockaddr *uaddr = msg->msg_name; 1136 int err, flags; 1137 1138 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1139 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1140 uaddr->sa_family == AF_UNSPEC)) 1141 return -EOPNOTSUPP; 1142 if (tp->fastopen_req) 1143 return -EALREADY; /* Another Fast Open is in progress */ 1144 1145 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1146 sk->sk_allocation); 1147 if (unlikely(!tp->fastopen_req)) 1148 return -ENOBUFS; 1149 tp->fastopen_req->data = msg; 1150 tp->fastopen_req->size = size; 1151 1152 if (inet->defer_connect) { 1153 err = tcp_connect(sk); 1154 /* Same failure procedure as in tcp_v4/6_connect */ 1155 if (err) { 1156 tcp_set_state(sk, TCP_CLOSE); 1157 inet->inet_dport = 0; 1158 sk->sk_route_caps = 0; 1159 } 1160 } 1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1162 err = __inet_stream_connect(sk->sk_socket, uaddr, 1163 msg->msg_namelen, flags, 1); 1164 /* fastopen_req could already be freed in __inet_stream_connect 1165 * if the connection times out or gets rst 1166 */ 1167 if (tp->fastopen_req) { 1168 *copied = tp->fastopen_req->copied; 1169 tcp_free_fastopen_req(tp); 1170 inet->defer_connect = 0; 1171 } 1172 return err; 1173 } 1174 1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1176 { 1177 struct tcp_sock *tp = tcp_sk(sk); 1178 struct ubuf_info *uarg = NULL; 1179 struct sk_buff *skb; 1180 struct sockcm_cookie sockc; 1181 int flags, err, copied = 0; 1182 int mss_now = 0, size_goal, copied_syn = 0; 1183 bool process_backlog = false; 1184 bool zc = false; 1185 long timeo; 1186 1187 flags = msg->msg_flags; 1188 1189 if (flags & MSG_ZEROCOPY && size) { 1190 if (sk->sk_state != TCP_ESTABLISHED) { 1191 err = -EINVAL; 1192 goto out_err; 1193 } 1194 1195 skb = tcp_write_queue_tail(sk); 1196 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1197 if (!uarg) { 1198 err = -ENOBUFS; 1199 goto out_err; 1200 } 1201 1202 zc = sk->sk_route_caps & NETIF_F_SG; 1203 if (!zc) 1204 uarg->zerocopy = 0; 1205 } 1206 1207 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1208 !tp->repair) { 1209 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1210 if (err == -EINPROGRESS && copied_syn > 0) 1211 goto out; 1212 else if (err) 1213 goto out_err; 1214 } 1215 1216 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1217 1218 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1219 1220 /* Wait for a connection to finish. One exception is TCP Fast Open 1221 * (passive side) where data is allowed to be sent before a connection 1222 * is fully established. 1223 */ 1224 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1225 !tcp_passive_fastopen(sk)) { 1226 err = sk_stream_wait_connect(sk, &timeo); 1227 if (err != 0) 1228 goto do_error; 1229 } 1230 1231 if (unlikely(tp->repair)) { 1232 if (tp->repair_queue == TCP_RECV_QUEUE) { 1233 copied = tcp_send_rcvq(sk, msg, size); 1234 goto out_nopush; 1235 } 1236 1237 err = -EINVAL; 1238 if (tp->repair_queue == TCP_NO_QUEUE) 1239 goto out_err; 1240 1241 /* 'common' sending to sendq */ 1242 } 1243 1244 sockc.tsflags = sk->sk_tsflags; 1245 if (msg->msg_controllen) { 1246 err = sock_cmsg_send(sk, msg, &sockc); 1247 if (unlikely(err)) { 1248 err = -EINVAL; 1249 goto out_err; 1250 } 1251 } 1252 1253 /* This should be in poll */ 1254 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1255 1256 /* Ok commence sending. */ 1257 copied = 0; 1258 1259 restart: 1260 mss_now = tcp_send_mss(sk, &size_goal, flags); 1261 1262 err = -EPIPE; 1263 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1264 goto do_error; 1265 1266 while (msg_data_left(msg)) { 1267 int copy = 0; 1268 1269 skb = tcp_write_queue_tail(sk); 1270 if (skb) 1271 copy = size_goal - skb->len; 1272 1273 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1274 bool first_skb; 1275 int linear; 1276 1277 new_segment: 1278 /* Allocate new segment. If the interface is SG, 1279 * allocate skb fitting to single page. 1280 */ 1281 if (!sk_stream_memory_free(sk)) 1282 goto wait_for_sndbuf; 1283 1284 if (process_backlog && sk_flush_backlog(sk)) { 1285 process_backlog = false; 1286 goto restart; 1287 } 1288 first_skb = tcp_rtx_and_write_queues_empty(sk); 1289 linear = select_size(first_skb, zc); 1290 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1291 first_skb); 1292 if (!skb) 1293 goto wait_for_memory; 1294 1295 process_backlog = true; 1296 skb->ip_summed = CHECKSUM_PARTIAL; 1297 1298 skb_entail(sk, skb); 1299 copy = size_goal; 1300 1301 /* All packets are restored as if they have 1302 * already been sent. skb_mstamp isn't set to 1303 * avoid wrong rtt estimation. 1304 */ 1305 if (tp->repair) 1306 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1307 } 1308 1309 /* Try to append data to the end of skb. */ 1310 if (copy > msg_data_left(msg)) 1311 copy = msg_data_left(msg); 1312 1313 /* Where to copy to? */ 1314 if (skb_availroom(skb) > 0 && !zc) { 1315 /* We have some space in skb head. Superb! */ 1316 copy = min_t(int, copy, skb_availroom(skb)); 1317 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1318 if (err) 1319 goto do_fault; 1320 } else if (!zc) { 1321 bool merge = true; 1322 int i = skb_shinfo(skb)->nr_frags; 1323 struct page_frag *pfrag = sk_page_frag(sk); 1324 1325 if (!sk_page_frag_refill(sk, pfrag)) 1326 goto wait_for_memory; 1327 1328 if (!skb_can_coalesce(skb, i, pfrag->page, 1329 pfrag->offset)) { 1330 if (i >= sysctl_max_skb_frags) { 1331 tcp_mark_push(tp, skb); 1332 goto new_segment; 1333 } 1334 merge = false; 1335 } 1336 1337 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1338 1339 if (!sk_wmem_schedule(sk, copy)) 1340 goto wait_for_memory; 1341 1342 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1343 pfrag->page, 1344 pfrag->offset, 1345 copy); 1346 if (err) 1347 goto do_error; 1348 1349 /* Update the skb. */ 1350 if (merge) { 1351 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1352 } else { 1353 skb_fill_page_desc(skb, i, pfrag->page, 1354 pfrag->offset, copy); 1355 page_ref_inc(pfrag->page); 1356 } 1357 pfrag->offset += copy; 1358 } else { 1359 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1360 if (err == -EMSGSIZE || err == -EEXIST) { 1361 tcp_mark_push(tp, skb); 1362 goto new_segment; 1363 } 1364 if (err < 0) 1365 goto do_error; 1366 copy = err; 1367 } 1368 1369 if (!copied) 1370 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1371 1372 tp->write_seq += copy; 1373 TCP_SKB_CB(skb)->end_seq += copy; 1374 tcp_skb_pcount_set(skb, 0); 1375 1376 copied += copy; 1377 if (!msg_data_left(msg)) { 1378 if (unlikely(flags & MSG_EOR)) 1379 TCP_SKB_CB(skb)->eor = 1; 1380 goto out; 1381 } 1382 1383 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1384 continue; 1385 1386 if (forced_push(tp)) { 1387 tcp_mark_push(tp, skb); 1388 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1389 } else if (skb == tcp_send_head(sk)) 1390 tcp_push_one(sk, mss_now); 1391 continue; 1392 1393 wait_for_sndbuf: 1394 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1395 wait_for_memory: 1396 if (copied) 1397 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1398 TCP_NAGLE_PUSH, size_goal); 1399 1400 err = sk_stream_wait_memory(sk, &timeo); 1401 if (err != 0) 1402 goto do_error; 1403 1404 mss_now = tcp_send_mss(sk, &size_goal, flags); 1405 } 1406 1407 out: 1408 if (copied) { 1409 tcp_tx_timestamp(sk, sockc.tsflags); 1410 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1411 } 1412 out_nopush: 1413 sock_zerocopy_put(uarg); 1414 return copied + copied_syn; 1415 1416 do_fault: 1417 if (!skb->len) { 1418 tcp_unlink_write_queue(skb, sk); 1419 /* It is the one place in all of TCP, except connection 1420 * reset, where we can be unlinking the send_head. 1421 */ 1422 tcp_check_send_head(sk, skb); 1423 sk_wmem_free_skb(sk, skb); 1424 } 1425 1426 do_error: 1427 if (copied + copied_syn) 1428 goto out; 1429 out_err: 1430 sock_zerocopy_put_abort(uarg); 1431 err = sk_stream_error(sk, flags, err); 1432 /* make sure we wake any epoll edge trigger waiter */ 1433 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1434 err == -EAGAIN)) { 1435 sk->sk_write_space(sk); 1436 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1437 } 1438 return err; 1439 } 1440 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1441 1442 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1443 { 1444 int ret; 1445 1446 lock_sock(sk); 1447 ret = tcp_sendmsg_locked(sk, msg, size); 1448 release_sock(sk); 1449 1450 return ret; 1451 } 1452 EXPORT_SYMBOL(tcp_sendmsg); 1453 1454 /* 1455 * Handle reading urgent data. BSD has very simple semantics for 1456 * this, no blocking and very strange errors 8) 1457 */ 1458 1459 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1460 { 1461 struct tcp_sock *tp = tcp_sk(sk); 1462 1463 /* No URG data to read. */ 1464 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1465 tp->urg_data == TCP_URG_READ) 1466 return -EINVAL; /* Yes this is right ! */ 1467 1468 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1469 return -ENOTCONN; 1470 1471 if (tp->urg_data & TCP_URG_VALID) { 1472 int err = 0; 1473 char c = tp->urg_data; 1474 1475 if (!(flags & MSG_PEEK)) 1476 tp->urg_data = TCP_URG_READ; 1477 1478 /* Read urgent data. */ 1479 msg->msg_flags |= MSG_OOB; 1480 1481 if (len > 0) { 1482 if (!(flags & MSG_TRUNC)) 1483 err = memcpy_to_msg(msg, &c, 1); 1484 len = 1; 1485 } else 1486 msg->msg_flags |= MSG_TRUNC; 1487 1488 return err ? -EFAULT : len; 1489 } 1490 1491 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1492 return 0; 1493 1494 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1495 * the available implementations agree in this case: 1496 * this call should never block, independent of the 1497 * blocking state of the socket. 1498 * Mike <pall@rz.uni-karlsruhe.de> 1499 */ 1500 return -EAGAIN; 1501 } 1502 1503 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1504 { 1505 struct sk_buff *skb; 1506 int copied = 0, err = 0; 1507 1508 /* XXX -- need to support SO_PEEK_OFF */ 1509 1510 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1512 if (err) 1513 return err; 1514 copied += skb->len; 1515 } 1516 1517 skb_queue_walk(&sk->sk_write_queue, skb) { 1518 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1519 if (err) 1520 break; 1521 1522 copied += skb->len; 1523 } 1524 1525 return err ?: copied; 1526 } 1527 1528 /* Clean up the receive buffer for full frames taken by the user, 1529 * then send an ACK if necessary. COPIED is the number of bytes 1530 * tcp_recvmsg has given to the user so far, it speeds up the 1531 * calculation of whether or not we must ACK for the sake of 1532 * a window update. 1533 */ 1534 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1535 { 1536 struct tcp_sock *tp = tcp_sk(sk); 1537 bool time_to_ack = false; 1538 1539 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1540 1541 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1542 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1543 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1544 1545 if (inet_csk_ack_scheduled(sk)) { 1546 const struct inet_connection_sock *icsk = inet_csk(sk); 1547 /* Delayed ACKs frequently hit locked sockets during bulk 1548 * receive. */ 1549 if (icsk->icsk_ack.blocked || 1550 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1551 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1552 /* 1553 * If this read emptied read buffer, we send ACK, if 1554 * connection is not bidirectional, user drained 1555 * receive buffer and there was a small segment 1556 * in queue. 1557 */ 1558 (copied > 0 && 1559 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1560 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1561 !icsk->icsk_ack.pingpong)) && 1562 !atomic_read(&sk->sk_rmem_alloc))) 1563 time_to_ack = true; 1564 } 1565 1566 /* We send an ACK if we can now advertise a non-zero window 1567 * which has been raised "significantly". 1568 * 1569 * Even if window raised up to infinity, do not send window open ACK 1570 * in states, where we will not receive more. It is useless. 1571 */ 1572 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1573 __u32 rcv_window_now = tcp_receive_window(tp); 1574 1575 /* Optimize, __tcp_select_window() is not cheap. */ 1576 if (2*rcv_window_now <= tp->window_clamp) { 1577 __u32 new_window = __tcp_select_window(sk); 1578 1579 /* Send ACK now, if this read freed lots of space 1580 * in our buffer. Certainly, new_window is new window. 1581 * We can advertise it now, if it is not less than current one. 1582 * "Lots" means "at least twice" here. 1583 */ 1584 if (new_window && new_window >= 2 * rcv_window_now) 1585 time_to_ack = true; 1586 } 1587 } 1588 if (time_to_ack) 1589 tcp_send_ack(sk); 1590 } 1591 1592 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1593 { 1594 struct sk_buff *skb; 1595 u32 offset; 1596 1597 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1598 offset = seq - TCP_SKB_CB(skb)->seq; 1599 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1600 pr_err_once("%s: found a SYN, please report !\n", __func__); 1601 offset--; 1602 } 1603 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1604 *off = offset; 1605 return skb; 1606 } 1607 /* This looks weird, but this can happen if TCP collapsing 1608 * splitted a fat GRO packet, while we released socket lock 1609 * in skb_splice_bits() 1610 */ 1611 sk_eat_skb(sk, skb); 1612 } 1613 return NULL; 1614 } 1615 1616 /* 1617 * This routine provides an alternative to tcp_recvmsg() for routines 1618 * that would like to handle copying from skbuffs directly in 'sendfile' 1619 * fashion. 1620 * Note: 1621 * - It is assumed that the socket was locked by the caller. 1622 * - The routine does not block. 1623 * - At present, there is no support for reading OOB data 1624 * or for 'peeking' the socket using this routine 1625 * (although both would be easy to implement). 1626 */ 1627 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1628 sk_read_actor_t recv_actor) 1629 { 1630 struct sk_buff *skb; 1631 struct tcp_sock *tp = tcp_sk(sk); 1632 u32 seq = tp->copied_seq; 1633 u32 offset; 1634 int copied = 0; 1635 1636 if (sk->sk_state == TCP_LISTEN) 1637 return -ENOTCONN; 1638 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1639 if (offset < skb->len) { 1640 int used; 1641 size_t len; 1642 1643 len = skb->len - offset; 1644 /* Stop reading if we hit a patch of urgent data */ 1645 if (tp->urg_data) { 1646 u32 urg_offset = tp->urg_seq - seq; 1647 if (urg_offset < len) 1648 len = urg_offset; 1649 if (!len) 1650 break; 1651 } 1652 used = recv_actor(desc, skb, offset, len); 1653 if (used <= 0) { 1654 if (!copied) 1655 copied = used; 1656 break; 1657 } else if (used <= len) { 1658 seq += used; 1659 copied += used; 1660 offset += used; 1661 } 1662 /* If recv_actor drops the lock (e.g. TCP splice 1663 * receive) the skb pointer might be invalid when 1664 * getting here: tcp_collapse might have deleted it 1665 * while aggregating skbs from the socket queue. 1666 */ 1667 skb = tcp_recv_skb(sk, seq - 1, &offset); 1668 if (!skb) 1669 break; 1670 /* TCP coalescing might have appended data to the skb. 1671 * Try to splice more frags 1672 */ 1673 if (offset + 1 != skb->len) 1674 continue; 1675 } 1676 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1677 sk_eat_skb(sk, skb); 1678 ++seq; 1679 break; 1680 } 1681 sk_eat_skb(sk, skb); 1682 if (!desc->count) 1683 break; 1684 tp->copied_seq = seq; 1685 } 1686 tp->copied_seq = seq; 1687 1688 tcp_rcv_space_adjust(sk); 1689 1690 /* Clean up data we have read: This will do ACK frames. */ 1691 if (copied > 0) { 1692 tcp_recv_skb(sk, seq, &offset); 1693 tcp_cleanup_rbuf(sk, copied); 1694 } 1695 return copied; 1696 } 1697 EXPORT_SYMBOL(tcp_read_sock); 1698 1699 int tcp_peek_len(struct socket *sock) 1700 { 1701 return tcp_inq(sock->sk); 1702 } 1703 EXPORT_SYMBOL(tcp_peek_len); 1704 1705 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1706 int tcp_set_rcvlowat(struct sock *sk, int val) 1707 { 1708 int cap; 1709 1710 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1711 cap = sk->sk_rcvbuf >> 1; 1712 else 1713 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1714 val = min(val, cap); 1715 sk->sk_rcvlowat = val ? : 1; 1716 1717 /* Check if we need to signal EPOLLIN right now */ 1718 tcp_data_ready(sk); 1719 1720 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1721 return 0; 1722 1723 val <<= 1; 1724 if (val > sk->sk_rcvbuf) { 1725 sk->sk_rcvbuf = val; 1726 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1727 } 1728 return 0; 1729 } 1730 EXPORT_SYMBOL(tcp_set_rcvlowat); 1731 1732 #ifdef CONFIG_MMU 1733 static const struct vm_operations_struct tcp_vm_ops = { 1734 }; 1735 1736 int tcp_mmap(struct file *file, struct socket *sock, 1737 struct vm_area_struct *vma) 1738 { 1739 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1740 return -EPERM; 1741 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1742 1743 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1744 vma->vm_flags |= VM_MIXEDMAP; 1745 1746 vma->vm_ops = &tcp_vm_ops; 1747 return 0; 1748 } 1749 EXPORT_SYMBOL(tcp_mmap); 1750 1751 static int tcp_zerocopy_receive(struct sock *sk, 1752 struct tcp_zerocopy_receive *zc) 1753 { 1754 unsigned long address = (unsigned long)zc->address; 1755 const skb_frag_t *frags = NULL; 1756 u32 length = 0, seq, offset; 1757 struct vm_area_struct *vma; 1758 struct sk_buff *skb = NULL; 1759 struct tcp_sock *tp; 1760 int ret; 1761 1762 if (address & (PAGE_SIZE - 1) || address != zc->address) 1763 return -EINVAL; 1764 1765 if (sk->sk_state == TCP_LISTEN) 1766 return -ENOTCONN; 1767 1768 sock_rps_record_flow(sk); 1769 1770 down_read(¤t->mm->mmap_sem); 1771 1772 ret = -EINVAL; 1773 vma = find_vma(current->mm, address); 1774 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1775 goto out; 1776 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1777 1778 tp = tcp_sk(sk); 1779 seq = tp->copied_seq; 1780 zc->length = min_t(u32, zc->length, tcp_inq(sk)); 1781 zc->length &= ~(PAGE_SIZE - 1); 1782 1783 zap_page_range(vma, address, zc->length); 1784 1785 zc->recv_skip_hint = 0; 1786 ret = 0; 1787 while (length + PAGE_SIZE <= zc->length) { 1788 if (zc->recv_skip_hint < PAGE_SIZE) { 1789 if (skb) { 1790 skb = skb->next; 1791 offset = seq - TCP_SKB_CB(skb)->seq; 1792 } else { 1793 skb = tcp_recv_skb(sk, seq, &offset); 1794 } 1795 1796 zc->recv_skip_hint = skb->len - offset; 1797 offset -= skb_headlen(skb); 1798 if ((int)offset < 0 || skb_has_frag_list(skb)) 1799 break; 1800 frags = skb_shinfo(skb)->frags; 1801 while (offset) { 1802 if (frags->size > offset) 1803 goto out; 1804 offset -= frags->size; 1805 frags++; 1806 } 1807 } 1808 if (frags->size != PAGE_SIZE || frags->page_offset) 1809 break; 1810 ret = vm_insert_page(vma, address + length, 1811 skb_frag_page(frags)); 1812 if (ret) 1813 break; 1814 length += PAGE_SIZE; 1815 seq += PAGE_SIZE; 1816 zc->recv_skip_hint -= PAGE_SIZE; 1817 frags++; 1818 } 1819 out: 1820 up_read(¤t->mm->mmap_sem); 1821 if (length) { 1822 tp->copied_seq = seq; 1823 tcp_rcv_space_adjust(sk); 1824 1825 /* Clean up data we have read: This will do ACK frames. */ 1826 tcp_recv_skb(sk, seq, &offset); 1827 tcp_cleanup_rbuf(sk, length); 1828 ret = 0; 1829 if (length == zc->length) 1830 zc->recv_skip_hint = 0; 1831 } else { 1832 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1833 ret = -EIO; 1834 } 1835 zc->length = length; 1836 return ret; 1837 } 1838 #endif 1839 1840 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1841 struct scm_timestamping *tss) 1842 { 1843 if (skb->tstamp) 1844 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1845 else 1846 tss->ts[0] = (struct timespec) {0}; 1847 1848 if (skb_hwtstamps(skb)->hwtstamp) 1849 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1850 else 1851 tss->ts[2] = (struct timespec) {0}; 1852 } 1853 1854 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1855 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1856 struct scm_timestamping *tss) 1857 { 1858 struct timeval tv; 1859 bool has_timestamping = false; 1860 1861 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1862 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1863 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1864 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1865 sizeof(tss->ts[0]), &tss->ts[0]); 1866 } else { 1867 tv.tv_sec = tss->ts[0].tv_sec; 1868 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1869 1870 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1871 sizeof(tv), &tv); 1872 } 1873 } 1874 1875 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1876 has_timestamping = true; 1877 else 1878 tss->ts[0] = (struct timespec) {0}; 1879 } 1880 1881 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1882 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1883 has_timestamping = true; 1884 else 1885 tss->ts[2] = (struct timespec) {0}; 1886 } 1887 1888 if (has_timestamping) { 1889 tss->ts[1] = (struct timespec) {0}; 1890 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1891 sizeof(*tss), tss); 1892 } 1893 } 1894 1895 static int tcp_inq_hint(struct sock *sk) 1896 { 1897 const struct tcp_sock *tp = tcp_sk(sk); 1898 u32 copied_seq = READ_ONCE(tp->copied_seq); 1899 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1900 int inq; 1901 1902 inq = rcv_nxt - copied_seq; 1903 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1904 lock_sock(sk); 1905 inq = tp->rcv_nxt - tp->copied_seq; 1906 release_sock(sk); 1907 } 1908 return inq; 1909 } 1910 1911 /* 1912 * This routine copies from a sock struct into the user buffer. 1913 * 1914 * Technical note: in 2.3 we work on _locked_ socket, so that 1915 * tricks with *seq access order and skb->users are not required. 1916 * Probably, code can be easily improved even more. 1917 */ 1918 1919 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1920 int flags, int *addr_len) 1921 { 1922 struct tcp_sock *tp = tcp_sk(sk); 1923 int copied = 0; 1924 u32 peek_seq; 1925 u32 *seq; 1926 unsigned long used; 1927 int err, inq; 1928 int target; /* Read at least this many bytes */ 1929 long timeo; 1930 struct sk_buff *skb, *last; 1931 u32 urg_hole = 0; 1932 struct scm_timestamping tss; 1933 bool has_tss = false; 1934 bool has_cmsg; 1935 1936 if (unlikely(flags & MSG_ERRQUEUE)) 1937 return inet_recv_error(sk, msg, len, addr_len); 1938 1939 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1940 (sk->sk_state == TCP_ESTABLISHED)) 1941 sk_busy_loop(sk, nonblock); 1942 1943 lock_sock(sk); 1944 1945 err = -ENOTCONN; 1946 if (sk->sk_state == TCP_LISTEN) 1947 goto out; 1948 1949 has_cmsg = tp->recvmsg_inq; 1950 timeo = sock_rcvtimeo(sk, nonblock); 1951 1952 /* Urgent data needs to be handled specially. */ 1953 if (flags & MSG_OOB) 1954 goto recv_urg; 1955 1956 if (unlikely(tp->repair)) { 1957 err = -EPERM; 1958 if (!(flags & MSG_PEEK)) 1959 goto out; 1960 1961 if (tp->repair_queue == TCP_SEND_QUEUE) 1962 goto recv_sndq; 1963 1964 err = -EINVAL; 1965 if (tp->repair_queue == TCP_NO_QUEUE) 1966 goto out; 1967 1968 /* 'common' recv queue MSG_PEEK-ing */ 1969 } 1970 1971 seq = &tp->copied_seq; 1972 if (flags & MSG_PEEK) { 1973 peek_seq = tp->copied_seq; 1974 seq = &peek_seq; 1975 } 1976 1977 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1978 1979 do { 1980 u32 offset; 1981 1982 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1983 if (tp->urg_data && tp->urg_seq == *seq) { 1984 if (copied) 1985 break; 1986 if (signal_pending(current)) { 1987 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1988 break; 1989 } 1990 } 1991 1992 /* Next get a buffer. */ 1993 1994 last = skb_peek_tail(&sk->sk_receive_queue); 1995 skb_queue_walk(&sk->sk_receive_queue, skb) { 1996 last = skb; 1997 /* Now that we have two receive queues this 1998 * shouldn't happen. 1999 */ 2000 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2001 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 2002 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2003 flags)) 2004 break; 2005 2006 offset = *seq - TCP_SKB_CB(skb)->seq; 2007 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2008 pr_err_once("%s: found a SYN, please report !\n", __func__); 2009 offset--; 2010 } 2011 if (offset < skb->len) 2012 goto found_ok_skb; 2013 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2014 goto found_fin_ok; 2015 WARN(!(flags & MSG_PEEK), 2016 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 2017 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2018 } 2019 2020 /* Well, if we have backlog, try to process it now yet. */ 2021 2022 if (copied >= target && !sk->sk_backlog.tail) 2023 break; 2024 2025 if (copied) { 2026 if (sk->sk_err || 2027 sk->sk_state == TCP_CLOSE || 2028 (sk->sk_shutdown & RCV_SHUTDOWN) || 2029 !timeo || 2030 signal_pending(current)) 2031 break; 2032 } else { 2033 if (sock_flag(sk, SOCK_DONE)) 2034 break; 2035 2036 if (sk->sk_err) { 2037 copied = sock_error(sk); 2038 break; 2039 } 2040 2041 if (sk->sk_shutdown & RCV_SHUTDOWN) 2042 break; 2043 2044 if (sk->sk_state == TCP_CLOSE) { 2045 if (!sock_flag(sk, SOCK_DONE)) { 2046 /* This occurs when user tries to read 2047 * from never connected socket. 2048 */ 2049 copied = -ENOTCONN; 2050 break; 2051 } 2052 break; 2053 } 2054 2055 if (!timeo) { 2056 copied = -EAGAIN; 2057 break; 2058 } 2059 2060 if (signal_pending(current)) { 2061 copied = sock_intr_errno(timeo); 2062 break; 2063 } 2064 } 2065 2066 tcp_cleanup_rbuf(sk, copied); 2067 2068 if (copied >= target) { 2069 /* Do not sleep, just process backlog. */ 2070 release_sock(sk); 2071 lock_sock(sk); 2072 } else { 2073 sk_wait_data(sk, &timeo, last); 2074 } 2075 2076 if ((flags & MSG_PEEK) && 2077 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2078 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2079 current->comm, 2080 task_pid_nr(current)); 2081 peek_seq = tp->copied_seq; 2082 } 2083 continue; 2084 2085 found_ok_skb: 2086 /* Ok so how much can we use? */ 2087 used = skb->len - offset; 2088 if (len < used) 2089 used = len; 2090 2091 /* Do we have urgent data here? */ 2092 if (tp->urg_data) { 2093 u32 urg_offset = tp->urg_seq - *seq; 2094 if (urg_offset < used) { 2095 if (!urg_offset) { 2096 if (!sock_flag(sk, SOCK_URGINLINE)) { 2097 ++*seq; 2098 urg_hole++; 2099 offset++; 2100 used--; 2101 if (!used) 2102 goto skip_copy; 2103 } 2104 } else 2105 used = urg_offset; 2106 } 2107 } 2108 2109 if (!(flags & MSG_TRUNC)) { 2110 err = skb_copy_datagram_msg(skb, offset, msg, used); 2111 if (err) { 2112 /* Exception. Bailout! */ 2113 if (!copied) 2114 copied = -EFAULT; 2115 break; 2116 } 2117 } 2118 2119 *seq += used; 2120 copied += used; 2121 len -= used; 2122 2123 tcp_rcv_space_adjust(sk); 2124 2125 skip_copy: 2126 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2127 tp->urg_data = 0; 2128 tcp_fast_path_check(sk); 2129 } 2130 if (used + offset < skb->len) 2131 continue; 2132 2133 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2134 tcp_update_recv_tstamps(skb, &tss); 2135 has_tss = true; 2136 has_cmsg = true; 2137 } 2138 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2139 goto found_fin_ok; 2140 if (!(flags & MSG_PEEK)) 2141 sk_eat_skb(sk, skb); 2142 continue; 2143 2144 found_fin_ok: 2145 /* Process the FIN. */ 2146 ++*seq; 2147 if (!(flags & MSG_PEEK)) 2148 sk_eat_skb(sk, skb); 2149 break; 2150 } while (len > 0); 2151 2152 /* According to UNIX98, msg_name/msg_namelen are ignored 2153 * on connected socket. I was just happy when found this 8) --ANK 2154 */ 2155 2156 /* Clean up data we have read: This will do ACK frames. */ 2157 tcp_cleanup_rbuf(sk, copied); 2158 2159 release_sock(sk); 2160 2161 if (has_cmsg) { 2162 if (has_tss) 2163 tcp_recv_timestamp(msg, sk, &tss); 2164 if (tp->recvmsg_inq) { 2165 inq = tcp_inq_hint(sk); 2166 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2167 } 2168 } 2169 2170 return copied; 2171 2172 out: 2173 release_sock(sk); 2174 return err; 2175 2176 recv_urg: 2177 err = tcp_recv_urg(sk, msg, len, flags); 2178 goto out; 2179 2180 recv_sndq: 2181 err = tcp_peek_sndq(sk, msg, len); 2182 goto out; 2183 } 2184 EXPORT_SYMBOL(tcp_recvmsg); 2185 2186 void tcp_set_state(struct sock *sk, int state) 2187 { 2188 int oldstate = sk->sk_state; 2189 2190 /* We defined a new enum for TCP states that are exported in BPF 2191 * so as not force the internal TCP states to be frozen. The 2192 * following checks will detect if an internal state value ever 2193 * differs from the BPF value. If this ever happens, then we will 2194 * need to remap the internal value to the BPF value before calling 2195 * tcp_call_bpf_2arg. 2196 */ 2197 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2198 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2199 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2200 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2201 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2202 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2203 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2204 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2205 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2206 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2207 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2208 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2209 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2210 2211 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2212 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2213 2214 switch (state) { 2215 case TCP_ESTABLISHED: 2216 if (oldstate != TCP_ESTABLISHED) 2217 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2218 break; 2219 2220 case TCP_CLOSE: 2221 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2222 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2223 2224 sk->sk_prot->unhash(sk); 2225 if (inet_csk(sk)->icsk_bind_hash && 2226 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2227 inet_put_port(sk); 2228 /* fall through */ 2229 default: 2230 if (oldstate == TCP_ESTABLISHED) 2231 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2232 } 2233 2234 /* Change state AFTER socket is unhashed to avoid closed 2235 * socket sitting in hash tables. 2236 */ 2237 inet_sk_state_store(sk, state); 2238 2239 #ifdef STATE_TRACE 2240 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2241 #endif 2242 } 2243 EXPORT_SYMBOL_GPL(tcp_set_state); 2244 2245 /* 2246 * State processing on a close. This implements the state shift for 2247 * sending our FIN frame. Note that we only send a FIN for some 2248 * states. A shutdown() may have already sent the FIN, or we may be 2249 * closed. 2250 */ 2251 2252 static const unsigned char new_state[16] = { 2253 /* current state: new state: action: */ 2254 [0 /* (Invalid) */] = TCP_CLOSE, 2255 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2256 [TCP_SYN_SENT] = TCP_CLOSE, 2257 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2258 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2259 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2260 [TCP_TIME_WAIT] = TCP_CLOSE, 2261 [TCP_CLOSE] = TCP_CLOSE, 2262 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2263 [TCP_LAST_ACK] = TCP_LAST_ACK, 2264 [TCP_LISTEN] = TCP_CLOSE, 2265 [TCP_CLOSING] = TCP_CLOSING, 2266 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2267 }; 2268 2269 static int tcp_close_state(struct sock *sk) 2270 { 2271 int next = (int)new_state[sk->sk_state]; 2272 int ns = next & TCP_STATE_MASK; 2273 2274 tcp_set_state(sk, ns); 2275 2276 return next & TCP_ACTION_FIN; 2277 } 2278 2279 /* 2280 * Shutdown the sending side of a connection. Much like close except 2281 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2282 */ 2283 2284 void tcp_shutdown(struct sock *sk, int how) 2285 { 2286 /* We need to grab some memory, and put together a FIN, 2287 * and then put it into the queue to be sent. 2288 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2289 */ 2290 if (!(how & SEND_SHUTDOWN)) 2291 return; 2292 2293 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2294 if ((1 << sk->sk_state) & 2295 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2296 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2297 /* Clear out any half completed packets. FIN if needed. */ 2298 if (tcp_close_state(sk)) 2299 tcp_send_fin(sk); 2300 } 2301 } 2302 EXPORT_SYMBOL(tcp_shutdown); 2303 2304 bool tcp_check_oom(struct sock *sk, int shift) 2305 { 2306 bool too_many_orphans, out_of_socket_memory; 2307 2308 too_many_orphans = tcp_too_many_orphans(sk, shift); 2309 out_of_socket_memory = tcp_out_of_memory(sk); 2310 2311 if (too_many_orphans) 2312 net_info_ratelimited("too many orphaned sockets\n"); 2313 if (out_of_socket_memory) 2314 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2315 return too_many_orphans || out_of_socket_memory; 2316 } 2317 2318 void tcp_close(struct sock *sk, long timeout) 2319 { 2320 struct sk_buff *skb; 2321 int data_was_unread = 0; 2322 int state; 2323 2324 lock_sock(sk); 2325 sk->sk_shutdown = SHUTDOWN_MASK; 2326 2327 if (sk->sk_state == TCP_LISTEN) { 2328 tcp_set_state(sk, TCP_CLOSE); 2329 2330 /* Special case. */ 2331 inet_csk_listen_stop(sk); 2332 2333 goto adjudge_to_death; 2334 } 2335 2336 /* We need to flush the recv. buffs. We do this only on the 2337 * descriptor close, not protocol-sourced closes, because the 2338 * reader process may not have drained the data yet! 2339 */ 2340 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2341 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2342 2343 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2344 len--; 2345 data_was_unread += len; 2346 __kfree_skb(skb); 2347 } 2348 2349 sk_mem_reclaim(sk); 2350 2351 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2352 if (sk->sk_state == TCP_CLOSE) 2353 goto adjudge_to_death; 2354 2355 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2356 * data was lost. To witness the awful effects of the old behavior of 2357 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2358 * GET in an FTP client, suspend the process, wait for the client to 2359 * advertise a zero window, then kill -9 the FTP client, wheee... 2360 * Note: timeout is always zero in such a case. 2361 */ 2362 if (unlikely(tcp_sk(sk)->repair)) { 2363 sk->sk_prot->disconnect(sk, 0); 2364 } else if (data_was_unread) { 2365 /* Unread data was tossed, zap the connection. */ 2366 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2367 tcp_set_state(sk, TCP_CLOSE); 2368 tcp_send_active_reset(sk, sk->sk_allocation); 2369 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2370 /* Check zero linger _after_ checking for unread data. */ 2371 sk->sk_prot->disconnect(sk, 0); 2372 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2373 } else if (tcp_close_state(sk)) { 2374 /* We FIN if the application ate all the data before 2375 * zapping the connection. 2376 */ 2377 2378 /* RED-PEN. Formally speaking, we have broken TCP state 2379 * machine. State transitions: 2380 * 2381 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2382 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2383 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2384 * 2385 * are legal only when FIN has been sent (i.e. in window), 2386 * rather than queued out of window. Purists blame. 2387 * 2388 * F.e. "RFC state" is ESTABLISHED, 2389 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2390 * 2391 * The visible declinations are that sometimes 2392 * we enter time-wait state, when it is not required really 2393 * (harmless), do not send active resets, when they are 2394 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2395 * they look as CLOSING or LAST_ACK for Linux) 2396 * Probably, I missed some more holelets. 2397 * --ANK 2398 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2399 * in a single packet! (May consider it later but will 2400 * probably need API support or TCP_CORK SYN-ACK until 2401 * data is written and socket is closed.) 2402 */ 2403 tcp_send_fin(sk); 2404 } 2405 2406 sk_stream_wait_close(sk, timeout); 2407 2408 adjudge_to_death: 2409 state = sk->sk_state; 2410 sock_hold(sk); 2411 sock_orphan(sk); 2412 2413 /* It is the last release_sock in its life. It will remove backlog. */ 2414 release_sock(sk); 2415 2416 2417 /* Now socket is owned by kernel and we acquire BH lock 2418 * to finish close. No need to check for user refs. 2419 */ 2420 local_bh_disable(); 2421 bh_lock_sock(sk); 2422 WARN_ON(sock_owned_by_user(sk)); 2423 2424 percpu_counter_inc(sk->sk_prot->orphan_count); 2425 2426 /* Have we already been destroyed by a softirq or backlog? */ 2427 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2428 goto out; 2429 2430 /* This is a (useful) BSD violating of the RFC. There is a 2431 * problem with TCP as specified in that the other end could 2432 * keep a socket open forever with no application left this end. 2433 * We use a 1 minute timeout (about the same as BSD) then kill 2434 * our end. If they send after that then tough - BUT: long enough 2435 * that we won't make the old 4*rto = almost no time - whoops 2436 * reset mistake. 2437 * 2438 * Nope, it was not mistake. It is really desired behaviour 2439 * f.e. on http servers, when such sockets are useless, but 2440 * consume significant resources. Let's do it with special 2441 * linger2 option. --ANK 2442 */ 2443 2444 if (sk->sk_state == TCP_FIN_WAIT2) { 2445 struct tcp_sock *tp = tcp_sk(sk); 2446 if (tp->linger2 < 0) { 2447 tcp_set_state(sk, TCP_CLOSE); 2448 tcp_send_active_reset(sk, GFP_ATOMIC); 2449 __NET_INC_STATS(sock_net(sk), 2450 LINUX_MIB_TCPABORTONLINGER); 2451 } else { 2452 const int tmo = tcp_fin_time(sk); 2453 2454 if (tmo > TCP_TIMEWAIT_LEN) { 2455 inet_csk_reset_keepalive_timer(sk, 2456 tmo - TCP_TIMEWAIT_LEN); 2457 } else { 2458 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2459 goto out; 2460 } 2461 } 2462 } 2463 if (sk->sk_state != TCP_CLOSE) { 2464 sk_mem_reclaim(sk); 2465 if (tcp_check_oom(sk, 0)) { 2466 tcp_set_state(sk, TCP_CLOSE); 2467 tcp_send_active_reset(sk, GFP_ATOMIC); 2468 __NET_INC_STATS(sock_net(sk), 2469 LINUX_MIB_TCPABORTONMEMORY); 2470 } else if (!check_net(sock_net(sk))) { 2471 /* Not possible to send reset; just close */ 2472 tcp_set_state(sk, TCP_CLOSE); 2473 } 2474 } 2475 2476 if (sk->sk_state == TCP_CLOSE) { 2477 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2478 /* We could get here with a non-NULL req if the socket is 2479 * aborted (e.g., closed with unread data) before 3WHS 2480 * finishes. 2481 */ 2482 if (req) 2483 reqsk_fastopen_remove(sk, req, false); 2484 inet_csk_destroy_sock(sk); 2485 } 2486 /* Otherwise, socket is reprieved until protocol close. */ 2487 2488 out: 2489 bh_unlock_sock(sk); 2490 local_bh_enable(); 2491 sock_put(sk); 2492 } 2493 EXPORT_SYMBOL(tcp_close); 2494 2495 /* These states need RST on ABORT according to RFC793 */ 2496 2497 static inline bool tcp_need_reset(int state) 2498 { 2499 return (1 << state) & 2500 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2501 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2502 } 2503 2504 static void tcp_rtx_queue_purge(struct sock *sk) 2505 { 2506 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2507 2508 while (p) { 2509 struct sk_buff *skb = rb_to_skb(p); 2510 2511 p = rb_next(p); 2512 /* Since we are deleting whole queue, no need to 2513 * list_del(&skb->tcp_tsorted_anchor) 2514 */ 2515 tcp_rtx_queue_unlink(skb, sk); 2516 sk_wmem_free_skb(sk, skb); 2517 } 2518 } 2519 2520 void tcp_write_queue_purge(struct sock *sk) 2521 { 2522 struct sk_buff *skb; 2523 2524 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2525 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2526 tcp_skb_tsorted_anchor_cleanup(skb); 2527 sk_wmem_free_skb(sk, skb); 2528 } 2529 tcp_rtx_queue_purge(sk); 2530 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2531 sk_mem_reclaim(sk); 2532 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2533 tcp_sk(sk)->packets_out = 0; 2534 } 2535 2536 int tcp_disconnect(struct sock *sk, int flags) 2537 { 2538 struct inet_sock *inet = inet_sk(sk); 2539 struct inet_connection_sock *icsk = inet_csk(sk); 2540 struct tcp_sock *tp = tcp_sk(sk); 2541 int err = 0; 2542 int old_state = sk->sk_state; 2543 2544 if (old_state != TCP_CLOSE) 2545 tcp_set_state(sk, TCP_CLOSE); 2546 2547 /* ABORT function of RFC793 */ 2548 if (old_state == TCP_LISTEN) { 2549 inet_csk_listen_stop(sk); 2550 } else if (unlikely(tp->repair)) { 2551 sk->sk_err = ECONNABORTED; 2552 } else if (tcp_need_reset(old_state) || 2553 (tp->snd_nxt != tp->write_seq && 2554 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2555 /* The last check adjusts for discrepancy of Linux wrt. RFC 2556 * states 2557 */ 2558 tcp_send_active_reset(sk, gfp_any()); 2559 sk->sk_err = ECONNRESET; 2560 } else if (old_state == TCP_SYN_SENT) 2561 sk->sk_err = ECONNRESET; 2562 2563 tcp_clear_xmit_timers(sk); 2564 __skb_queue_purge(&sk->sk_receive_queue); 2565 tcp_write_queue_purge(sk); 2566 tcp_fastopen_active_disable_ofo_check(sk); 2567 skb_rbtree_purge(&tp->out_of_order_queue); 2568 2569 inet->inet_dport = 0; 2570 2571 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2572 inet_reset_saddr(sk); 2573 2574 sk->sk_shutdown = 0; 2575 sock_reset_flag(sk, SOCK_DONE); 2576 tp->srtt_us = 0; 2577 tp->write_seq += tp->max_window + 2; 2578 if (tp->write_seq == 0) 2579 tp->write_seq = 1; 2580 icsk->icsk_backoff = 0; 2581 tp->snd_cwnd = 2; 2582 icsk->icsk_probes_out = 0; 2583 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2584 tp->snd_cwnd_cnt = 0; 2585 tp->window_clamp = 0; 2586 tp->delivered_ce = 0; 2587 tcp_set_ca_state(sk, TCP_CA_Open); 2588 tp->is_sack_reneg = 0; 2589 tcp_clear_retrans(tp); 2590 inet_csk_delack_init(sk); 2591 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2592 * issue in __tcp_select_window() 2593 */ 2594 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2595 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2596 __sk_dst_reset(sk); 2597 dst_release(sk->sk_rx_dst); 2598 sk->sk_rx_dst = NULL; 2599 tcp_saved_syn_free(tp); 2600 tp->compressed_ack = 0; 2601 2602 /* Clean up fastopen related fields */ 2603 tcp_free_fastopen_req(tp); 2604 inet->defer_connect = 0; 2605 2606 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2607 2608 if (sk->sk_frag.page) { 2609 put_page(sk->sk_frag.page); 2610 sk->sk_frag.page = NULL; 2611 sk->sk_frag.offset = 0; 2612 } 2613 2614 sk->sk_error_report(sk); 2615 return err; 2616 } 2617 EXPORT_SYMBOL(tcp_disconnect); 2618 2619 static inline bool tcp_can_repair_sock(const struct sock *sk) 2620 { 2621 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2622 (sk->sk_state != TCP_LISTEN); 2623 } 2624 2625 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2626 { 2627 struct tcp_repair_window opt; 2628 2629 if (!tp->repair) 2630 return -EPERM; 2631 2632 if (len != sizeof(opt)) 2633 return -EINVAL; 2634 2635 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2636 return -EFAULT; 2637 2638 if (opt.max_window < opt.snd_wnd) 2639 return -EINVAL; 2640 2641 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2642 return -EINVAL; 2643 2644 if (after(opt.rcv_wup, tp->rcv_nxt)) 2645 return -EINVAL; 2646 2647 tp->snd_wl1 = opt.snd_wl1; 2648 tp->snd_wnd = opt.snd_wnd; 2649 tp->max_window = opt.max_window; 2650 2651 tp->rcv_wnd = opt.rcv_wnd; 2652 tp->rcv_wup = opt.rcv_wup; 2653 2654 return 0; 2655 } 2656 2657 static int tcp_repair_options_est(struct sock *sk, 2658 struct tcp_repair_opt __user *optbuf, unsigned int len) 2659 { 2660 struct tcp_sock *tp = tcp_sk(sk); 2661 struct tcp_repair_opt opt; 2662 2663 while (len >= sizeof(opt)) { 2664 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2665 return -EFAULT; 2666 2667 optbuf++; 2668 len -= sizeof(opt); 2669 2670 switch (opt.opt_code) { 2671 case TCPOPT_MSS: 2672 tp->rx_opt.mss_clamp = opt.opt_val; 2673 tcp_mtup_init(sk); 2674 break; 2675 case TCPOPT_WINDOW: 2676 { 2677 u16 snd_wscale = opt.opt_val & 0xFFFF; 2678 u16 rcv_wscale = opt.opt_val >> 16; 2679 2680 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2681 return -EFBIG; 2682 2683 tp->rx_opt.snd_wscale = snd_wscale; 2684 tp->rx_opt.rcv_wscale = rcv_wscale; 2685 tp->rx_opt.wscale_ok = 1; 2686 } 2687 break; 2688 case TCPOPT_SACK_PERM: 2689 if (opt.opt_val != 0) 2690 return -EINVAL; 2691 2692 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2693 break; 2694 case TCPOPT_TIMESTAMP: 2695 if (opt.opt_val != 0) 2696 return -EINVAL; 2697 2698 tp->rx_opt.tstamp_ok = 1; 2699 break; 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 /* 2707 * Socket option code for TCP. 2708 */ 2709 static int do_tcp_setsockopt(struct sock *sk, int level, 2710 int optname, char __user *optval, unsigned int optlen) 2711 { 2712 struct tcp_sock *tp = tcp_sk(sk); 2713 struct inet_connection_sock *icsk = inet_csk(sk); 2714 struct net *net = sock_net(sk); 2715 int val; 2716 int err = 0; 2717 2718 /* These are data/string values, all the others are ints */ 2719 switch (optname) { 2720 case TCP_CONGESTION: { 2721 char name[TCP_CA_NAME_MAX]; 2722 2723 if (optlen < 1) 2724 return -EINVAL; 2725 2726 val = strncpy_from_user(name, optval, 2727 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2728 if (val < 0) 2729 return -EFAULT; 2730 name[val] = 0; 2731 2732 lock_sock(sk); 2733 err = tcp_set_congestion_control(sk, name, true, true); 2734 release_sock(sk); 2735 return err; 2736 } 2737 case TCP_ULP: { 2738 char name[TCP_ULP_NAME_MAX]; 2739 2740 if (optlen < 1) 2741 return -EINVAL; 2742 2743 val = strncpy_from_user(name, optval, 2744 min_t(long, TCP_ULP_NAME_MAX - 1, 2745 optlen)); 2746 if (val < 0) 2747 return -EFAULT; 2748 name[val] = 0; 2749 2750 lock_sock(sk); 2751 err = tcp_set_ulp(sk, name); 2752 release_sock(sk); 2753 return err; 2754 } 2755 case TCP_FASTOPEN_KEY: { 2756 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2757 2758 if (optlen != sizeof(key)) 2759 return -EINVAL; 2760 2761 if (copy_from_user(key, optval, optlen)) 2762 return -EFAULT; 2763 2764 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2765 } 2766 default: 2767 /* fallthru */ 2768 break; 2769 } 2770 2771 if (optlen < sizeof(int)) 2772 return -EINVAL; 2773 2774 if (get_user(val, (int __user *)optval)) 2775 return -EFAULT; 2776 2777 lock_sock(sk); 2778 2779 switch (optname) { 2780 case TCP_MAXSEG: 2781 /* Values greater than interface MTU won't take effect. However 2782 * at the point when this call is done we typically don't yet 2783 * know which interface is going to be used 2784 */ 2785 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2786 err = -EINVAL; 2787 break; 2788 } 2789 tp->rx_opt.user_mss = val; 2790 break; 2791 2792 case TCP_NODELAY: 2793 if (val) { 2794 /* TCP_NODELAY is weaker than TCP_CORK, so that 2795 * this option on corked socket is remembered, but 2796 * it is not activated until cork is cleared. 2797 * 2798 * However, when TCP_NODELAY is set we make 2799 * an explicit push, which overrides even TCP_CORK 2800 * for currently queued segments. 2801 */ 2802 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2803 tcp_push_pending_frames(sk); 2804 } else { 2805 tp->nonagle &= ~TCP_NAGLE_OFF; 2806 } 2807 break; 2808 2809 case TCP_THIN_LINEAR_TIMEOUTS: 2810 if (val < 0 || val > 1) 2811 err = -EINVAL; 2812 else 2813 tp->thin_lto = val; 2814 break; 2815 2816 case TCP_THIN_DUPACK: 2817 if (val < 0 || val > 1) 2818 err = -EINVAL; 2819 break; 2820 2821 case TCP_REPAIR: 2822 if (!tcp_can_repair_sock(sk)) 2823 err = -EPERM; 2824 else if (val == 1) { 2825 tp->repair = 1; 2826 sk->sk_reuse = SK_FORCE_REUSE; 2827 tp->repair_queue = TCP_NO_QUEUE; 2828 } else if (val == 0) { 2829 tp->repair = 0; 2830 sk->sk_reuse = SK_NO_REUSE; 2831 tcp_send_window_probe(sk); 2832 } else 2833 err = -EINVAL; 2834 2835 break; 2836 2837 case TCP_REPAIR_QUEUE: 2838 if (!tp->repair) 2839 err = -EPERM; 2840 else if ((unsigned int)val < TCP_QUEUES_NR) 2841 tp->repair_queue = val; 2842 else 2843 err = -EINVAL; 2844 break; 2845 2846 case TCP_QUEUE_SEQ: 2847 if (sk->sk_state != TCP_CLOSE) 2848 err = -EPERM; 2849 else if (tp->repair_queue == TCP_SEND_QUEUE) 2850 tp->write_seq = val; 2851 else if (tp->repair_queue == TCP_RECV_QUEUE) 2852 tp->rcv_nxt = val; 2853 else 2854 err = -EINVAL; 2855 break; 2856 2857 case TCP_REPAIR_OPTIONS: 2858 if (!tp->repair) 2859 err = -EINVAL; 2860 else if (sk->sk_state == TCP_ESTABLISHED) 2861 err = tcp_repair_options_est(sk, 2862 (struct tcp_repair_opt __user *)optval, 2863 optlen); 2864 else 2865 err = -EPERM; 2866 break; 2867 2868 case TCP_CORK: 2869 /* When set indicates to always queue non-full frames. 2870 * Later the user clears this option and we transmit 2871 * any pending partial frames in the queue. This is 2872 * meant to be used alongside sendfile() to get properly 2873 * filled frames when the user (for example) must write 2874 * out headers with a write() call first and then use 2875 * sendfile to send out the data parts. 2876 * 2877 * TCP_CORK can be set together with TCP_NODELAY and it is 2878 * stronger than TCP_NODELAY. 2879 */ 2880 if (val) { 2881 tp->nonagle |= TCP_NAGLE_CORK; 2882 } else { 2883 tp->nonagle &= ~TCP_NAGLE_CORK; 2884 if (tp->nonagle&TCP_NAGLE_OFF) 2885 tp->nonagle |= TCP_NAGLE_PUSH; 2886 tcp_push_pending_frames(sk); 2887 } 2888 break; 2889 2890 case TCP_KEEPIDLE: 2891 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2892 err = -EINVAL; 2893 else { 2894 tp->keepalive_time = val * HZ; 2895 if (sock_flag(sk, SOCK_KEEPOPEN) && 2896 !((1 << sk->sk_state) & 2897 (TCPF_CLOSE | TCPF_LISTEN))) { 2898 u32 elapsed = keepalive_time_elapsed(tp); 2899 if (tp->keepalive_time > elapsed) 2900 elapsed = tp->keepalive_time - elapsed; 2901 else 2902 elapsed = 0; 2903 inet_csk_reset_keepalive_timer(sk, elapsed); 2904 } 2905 } 2906 break; 2907 case TCP_KEEPINTVL: 2908 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2909 err = -EINVAL; 2910 else 2911 tp->keepalive_intvl = val * HZ; 2912 break; 2913 case TCP_KEEPCNT: 2914 if (val < 1 || val > MAX_TCP_KEEPCNT) 2915 err = -EINVAL; 2916 else 2917 tp->keepalive_probes = val; 2918 break; 2919 case TCP_SYNCNT: 2920 if (val < 1 || val > MAX_TCP_SYNCNT) 2921 err = -EINVAL; 2922 else 2923 icsk->icsk_syn_retries = val; 2924 break; 2925 2926 case TCP_SAVE_SYN: 2927 if (val < 0 || val > 1) 2928 err = -EINVAL; 2929 else 2930 tp->save_syn = val; 2931 break; 2932 2933 case TCP_LINGER2: 2934 if (val < 0) 2935 tp->linger2 = -1; 2936 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2937 tp->linger2 = 0; 2938 else 2939 tp->linger2 = val * HZ; 2940 break; 2941 2942 case TCP_DEFER_ACCEPT: 2943 /* Translate value in seconds to number of retransmits */ 2944 icsk->icsk_accept_queue.rskq_defer_accept = 2945 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2946 TCP_RTO_MAX / HZ); 2947 break; 2948 2949 case TCP_WINDOW_CLAMP: 2950 if (!val) { 2951 if (sk->sk_state != TCP_CLOSE) { 2952 err = -EINVAL; 2953 break; 2954 } 2955 tp->window_clamp = 0; 2956 } else 2957 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2958 SOCK_MIN_RCVBUF / 2 : val; 2959 break; 2960 2961 case TCP_QUICKACK: 2962 if (!val) { 2963 icsk->icsk_ack.pingpong = 1; 2964 } else { 2965 icsk->icsk_ack.pingpong = 0; 2966 if ((1 << sk->sk_state) & 2967 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2968 inet_csk_ack_scheduled(sk)) { 2969 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2970 tcp_cleanup_rbuf(sk, 1); 2971 if (!(val & 1)) 2972 icsk->icsk_ack.pingpong = 1; 2973 } 2974 } 2975 break; 2976 2977 #ifdef CONFIG_TCP_MD5SIG 2978 case TCP_MD5SIG: 2979 case TCP_MD5SIG_EXT: 2980 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 2981 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2982 else 2983 err = -EINVAL; 2984 break; 2985 #endif 2986 case TCP_USER_TIMEOUT: 2987 /* Cap the max time in ms TCP will retry or probe the window 2988 * before giving up and aborting (ETIMEDOUT) a connection. 2989 */ 2990 if (val < 0) 2991 err = -EINVAL; 2992 else 2993 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2994 break; 2995 2996 case TCP_FASTOPEN: 2997 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2998 TCPF_LISTEN))) { 2999 tcp_fastopen_init_key_once(net); 3000 3001 fastopen_queue_tune(sk, val); 3002 } else { 3003 err = -EINVAL; 3004 } 3005 break; 3006 case TCP_FASTOPEN_CONNECT: 3007 if (val > 1 || val < 0) { 3008 err = -EINVAL; 3009 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3010 if (sk->sk_state == TCP_CLOSE) 3011 tp->fastopen_connect = val; 3012 else 3013 err = -EINVAL; 3014 } else { 3015 err = -EOPNOTSUPP; 3016 } 3017 break; 3018 case TCP_FASTOPEN_NO_COOKIE: 3019 if (val > 1 || val < 0) 3020 err = -EINVAL; 3021 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3022 err = -EINVAL; 3023 else 3024 tp->fastopen_no_cookie = val; 3025 break; 3026 case TCP_TIMESTAMP: 3027 if (!tp->repair) 3028 err = -EPERM; 3029 else 3030 tp->tsoffset = val - tcp_time_stamp_raw(); 3031 break; 3032 case TCP_REPAIR_WINDOW: 3033 err = tcp_repair_set_window(tp, optval, optlen); 3034 break; 3035 case TCP_NOTSENT_LOWAT: 3036 tp->notsent_lowat = val; 3037 sk->sk_write_space(sk); 3038 break; 3039 case TCP_INQ: 3040 if (val > 1 || val < 0) 3041 err = -EINVAL; 3042 else 3043 tp->recvmsg_inq = val; 3044 break; 3045 default: 3046 err = -ENOPROTOOPT; 3047 break; 3048 } 3049 3050 release_sock(sk); 3051 return err; 3052 } 3053 3054 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3055 unsigned int optlen) 3056 { 3057 const struct inet_connection_sock *icsk = inet_csk(sk); 3058 3059 if (level != SOL_TCP) 3060 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3061 optval, optlen); 3062 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3063 } 3064 EXPORT_SYMBOL(tcp_setsockopt); 3065 3066 #ifdef CONFIG_COMPAT 3067 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3068 char __user *optval, unsigned int optlen) 3069 { 3070 if (level != SOL_TCP) 3071 return inet_csk_compat_setsockopt(sk, level, optname, 3072 optval, optlen); 3073 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3074 } 3075 EXPORT_SYMBOL(compat_tcp_setsockopt); 3076 #endif 3077 3078 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3079 struct tcp_info *info) 3080 { 3081 u64 stats[__TCP_CHRONO_MAX], total = 0; 3082 enum tcp_chrono i; 3083 3084 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3085 stats[i] = tp->chrono_stat[i - 1]; 3086 if (i == tp->chrono_type) 3087 stats[i] += tcp_jiffies32 - tp->chrono_start; 3088 stats[i] *= USEC_PER_SEC / HZ; 3089 total += stats[i]; 3090 } 3091 3092 info->tcpi_busy_time = total; 3093 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3094 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3095 } 3096 3097 /* Return information about state of tcp endpoint in API format. */ 3098 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3099 { 3100 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3101 const struct inet_connection_sock *icsk = inet_csk(sk); 3102 u32 now; 3103 u64 rate64; 3104 bool slow; 3105 u32 rate; 3106 3107 memset(info, 0, sizeof(*info)); 3108 if (sk->sk_type != SOCK_STREAM) 3109 return; 3110 3111 info->tcpi_state = inet_sk_state_load(sk); 3112 3113 /* Report meaningful fields for all TCP states, including listeners */ 3114 rate = READ_ONCE(sk->sk_pacing_rate); 3115 rate64 = rate != ~0U ? rate : ~0ULL; 3116 info->tcpi_pacing_rate = rate64; 3117 3118 rate = READ_ONCE(sk->sk_max_pacing_rate); 3119 rate64 = rate != ~0U ? rate : ~0ULL; 3120 info->tcpi_max_pacing_rate = rate64; 3121 3122 info->tcpi_reordering = tp->reordering; 3123 info->tcpi_snd_cwnd = tp->snd_cwnd; 3124 3125 if (info->tcpi_state == TCP_LISTEN) { 3126 /* listeners aliased fields : 3127 * tcpi_unacked -> Number of children ready for accept() 3128 * tcpi_sacked -> max backlog 3129 */ 3130 info->tcpi_unacked = sk->sk_ack_backlog; 3131 info->tcpi_sacked = sk->sk_max_ack_backlog; 3132 return; 3133 } 3134 3135 slow = lock_sock_fast(sk); 3136 3137 info->tcpi_ca_state = icsk->icsk_ca_state; 3138 info->tcpi_retransmits = icsk->icsk_retransmits; 3139 info->tcpi_probes = icsk->icsk_probes_out; 3140 info->tcpi_backoff = icsk->icsk_backoff; 3141 3142 if (tp->rx_opt.tstamp_ok) 3143 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3144 if (tcp_is_sack(tp)) 3145 info->tcpi_options |= TCPI_OPT_SACK; 3146 if (tp->rx_opt.wscale_ok) { 3147 info->tcpi_options |= TCPI_OPT_WSCALE; 3148 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3149 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3150 } 3151 3152 if (tp->ecn_flags & TCP_ECN_OK) 3153 info->tcpi_options |= TCPI_OPT_ECN; 3154 if (tp->ecn_flags & TCP_ECN_SEEN) 3155 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3156 if (tp->syn_data_acked) 3157 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3158 3159 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3160 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3161 info->tcpi_snd_mss = tp->mss_cache; 3162 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3163 3164 info->tcpi_unacked = tp->packets_out; 3165 info->tcpi_sacked = tp->sacked_out; 3166 3167 info->tcpi_lost = tp->lost_out; 3168 info->tcpi_retrans = tp->retrans_out; 3169 3170 now = tcp_jiffies32; 3171 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3172 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3173 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3174 3175 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3176 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3177 info->tcpi_rtt = tp->srtt_us >> 3; 3178 info->tcpi_rttvar = tp->mdev_us >> 2; 3179 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3180 info->tcpi_advmss = tp->advmss; 3181 3182 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3183 info->tcpi_rcv_space = tp->rcvq_space.space; 3184 3185 info->tcpi_total_retrans = tp->total_retrans; 3186 3187 info->tcpi_bytes_acked = tp->bytes_acked; 3188 info->tcpi_bytes_received = tp->bytes_received; 3189 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3190 tcp_get_info_chrono_stats(tp, info); 3191 3192 info->tcpi_segs_out = tp->segs_out; 3193 info->tcpi_segs_in = tp->segs_in; 3194 3195 info->tcpi_min_rtt = tcp_min_rtt(tp); 3196 info->tcpi_data_segs_in = tp->data_segs_in; 3197 info->tcpi_data_segs_out = tp->data_segs_out; 3198 3199 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3200 rate64 = tcp_compute_delivery_rate(tp); 3201 if (rate64) 3202 info->tcpi_delivery_rate = rate64; 3203 info->tcpi_delivered = tp->delivered; 3204 info->tcpi_delivered_ce = tp->delivered_ce; 3205 unlock_sock_fast(sk, slow); 3206 } 3207 EXPORT_SYMBOL_GPL(tcp_get_info); 3208 3209 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3210 { 3211 const struct tcp_sock *tp = tcp_sk(sk); 3212 struct sk_buff *stats; 3213 struct tcp_info info; 3214 u64 rate64; 3215 u32 rate; 3216 3217 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3218 7 * nla_total_size(sizeof(u32)) + 3219 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3220 if (!stats) 3221 return NULL; 3222 3223 tcp_get_info_chrono_stats(tp, &info); 3224 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3225 info.tcpi_busy_time, TCP_NLA_PAD); 3226 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3227 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3228 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3229 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3230 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3231 tp->data_segs_out, TCP_NLA_PAD); 3232 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3233 tp->total_retrans, TCP_NLA_PAD); 3234 3235 rate = READ_ONCE(sk->sk_pacing_rate); 3236 rate64 = rate != ~0U ? rate : ~0ULL; 3237 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3238 3239 rate64 = tcp_compute_delivery_rate(tp); 3240 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3241 3242 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3243 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3244 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3245 3246 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3247 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3248 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3249 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3250 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3251 3252 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3253 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3254 3255 return stats; 3256 } 3257 3258 static int do_tcp_getsockopt(struct sock *sk, int level, 3259 int optname, char __user *optval, int __user *optlen) 3260 { 3261 struct inet_connection_sock *icsk = inet_csk(sk); 3262 struct tcp_sock *tp = tcp_sk(sk); 3263 struct net *net = sock_net(sk); 3264 int val, len; 3265 3266 if (get_user(len, optlen)) 3267 return -EFAULT; 3268 3269 len = min_t(unsigned int, len, sizeof(int)); 3270 3271 if (len < 0) 3272 return -EINVAL; 3273 3274 switch (optname) { 3275 case TCP_MAXSEG: 3276 val = tp->mss_cache; 3277 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3278 val = tp->rx_opt.user_mss; 3279 if (tp->repair) 3280 val = tp->rx_opt.mss_clamp; 3281 break; 3282 case TCP_NODELAY: 3283 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3284 break; 3285 case TCP_CORK: 3286 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3287 break; 3288 case TCP_KEEPIDLE: 3289 val = keepalive_time_when(tp) / HZ; 3290 break; 3291 case TCP_KEEPINTVL: 3292 val = keepalive_intvl_when(tp) / HZ; 3293 break; 3294 case TCP_KEEPCNT: 3295 val = keepalive_probes(tp); 3296 break; 3297 case TCP_SYNCNT: 3298 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3299 break; 3300 case TCP_LINGER2: 3301 val = tp->linger2; 3302 if (val >= 0) 3303 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3304 break; 3305 case TCP_DEFER_ACCEPT: 3306 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3307 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3308 break; 3309 case TCP_WINDOW_CLAMP: 3310 val = tp->window_clamp; 3311 break; 3312 case TCP_INFO: { 3313 struct tcp_info info; 3314 3315 if (get_user(len, optlen)) 3316 return -EFAULT; 3317 3318 tcp_get_info(sk, &info); 3319 3320 len = min_t(unsigned int, len, sizeof(info)); 3321 if (put_user(len, optlen)) 3322 return -EFAULT; 3323 if (copy_to_user(optval, &info, len)) 3324 return -EFAULT; 3325 return 0; 3326 } 3327 case TCP_CC_INFO: { 3328 const struct tcp_congestion_ops *ca_ops; 3329 union tcp_cc_info info; 3330 size_t sz = 0; 3331 int attr; 3332 3333 if (get_user(len, optlen)) 3334 return -EFAULT; 3335 3336 ca_ops = icsk->icsk_ca_ops; 3337 if (ca_ops && ca_ops->get_info) 3338 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3339 3340 len = min_t(unsigned int, len, sz); 3341 if (put_user(len, optlen)) 3342 return -EFAULT; 3343 if (copy_to_user(optval, &info, len)) 3344 return -EFAULT; 3345 return 0; 3346 } 3347 case TCP_QUICKACK: 3348 val = !icsk->icsk_ack.pingpong; 3349 break; 3350 3351 case TCP_CONGESTION: 3352 if (get_user(len, optlen)) 3353 return -EFAULT; 3354 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3355 if (put_user(len, optlen)) 3356 return -EFAULT; 3357 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3358 return -EFAULT; 3359 return 0; 3360 3361 case TCP_ULP: 3362 if (get_user(len, optlen)) 3363 return -EFAULT; 3364 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3365 if (!icsk->icsk_ulp_ops) { 3366 if (put_user(0, optlen)) 3367 return -EFAULT; 3368 return 0; 3369 } 3370 if (put_user(len, optlen)) 3371 return -EFAULT; 3372 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3373 return -EFAULT; 3374 return 0; 3375 3376 case TCP_FASTOPEN_KEY: { 3377 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3378 struct tcp_fastopen_context *ctx; 3379 3380 if (get_user(len, optlen)) 3381 return -EFAULT; 3382 3383 rcu_read_lock(); 3384 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3385 if (ctx) 3386 memcpy(key, ctx->key, sizeof(key)); 3387 else 3388 len = 0; 3389 rcu_read_unlock(); 3390 3391 len = min_t(unsigned int, len, sizeof(key)); 3392 if (put_user(len, optlen)) 3393 return -EFAULT; 3394 if (copy_to_user(optval, key, len)) 3395 return -EFAULT; 3396 return 0; 3397 } 3398 case TCP_THIN_LINEAR_TIMEOUTS: 3399 val = tp->thin_lto; 3400 break; 3401 3402 case TCP_THIN_DUPACK: 3403 val = 0; 3404 break; 3405 3406 case TCP_REPAIR: 3407 val = tp->repair; 3408 break; 3409 3410 case TCP_REPAIR_QUEUE: 3411 if (tp->repair) 3412 val = tp->repair_queue; 3413 else 3414 return -EINVAL; 3415 break; 3416 3417 case TCP_REPAIR_WINDOW: { 3418 struct tcp_repair_window opt; 3419 3420 if (get_user(len, optlen)) 3421 return -EFAULT; 3422 3423 if (len != sizeof(opt)) 3424 return -EINVAL; 3425 3426 if (!tp->repair) 3427 return -EPERM; 3428 3429 opt.snd_wl1 = tp->snd_wl1; 3430 opt.snd_wnd = tp->snd_wnd; 3431 opt.max_window = tp->max_window; 3432 opt.rcv_wnd = tp->rcv_wnd; 3433 opt.rcv_wup = tp->rcv_wup; 3434 3435 if (copy_to_user(optval, &opt, len)) 3436 return -EFAULT; 3437 return 0; 3438 } 3439 case TCP_QUEUE_SEQ: 3440 if (tp->repair_queue == TCP_SEND_QUEUE) 3441 val = tp->write_seq; 3442 else if (tp->repair_queue == TCP_RECV_QUEUE) 3443 val = tp->rcv_nxt; 3444 else 3445 return -EINVAL; 3446 break; 3447 3448 case TCP_USER_TIMEOUT: 3449 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3450 break; 3451 3452 case TCP_FASTOPEN: 3453 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3454 break; 3455 3456 case TCP_FASTOPEN_CONNECT: 3457 val = tp->fastopen_connect; 3458 break; 3459 3460 case TCP_FASTOPEN_NO_COOKIE: 3461 val = tp->fastopen_no_cookie; 3462 break; 3463 3464 case TCP_TIMESTAMP: 3465 val = tcp_time_stamp_raw() + tp->tsoffset; 3466 break; 3467 case TCP_NOTSENT_LOWAT: 3468 val = tp->notsent_lowat; 3469 break; 3470 case TCP_INQ: 3471 val = tp->recvmsg_inq; 3472 break; 3473 case TCP_SAVE_SYN: 3474 val = tp->save_syn; 3475 break; 3476 case TCP_SAVED_SYN: { 3477 if (get_user(len, optlen)) 3478 return -EFAULT; 3479 3480 lock_sock(sk); 3481 if (tp->saved_syn) { 3482 if (len < tp->saved_syn[0]) { 3483 if (put_user(tp->saved_syn[0], optlen)) { 3484 release_sock(sk); 3485 return -EFAULT; 3486 } 3487 release_sock(sk); 3488 return -EINVAL; 3489 } 3490 len = tp->saved_syn[0]; 3491 if (put_user(len, optlen)) { 3492 release_sock(sk); 3493 return -EFAULT; 3494 } 3495 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3496 release_sock(sk); 3497 return -EFAULT; 3498 } 3499 tcp_saved_syn_free(tp); 3500 release_sock(sk); 3501 } else { 3502 release_sock(sk); 3503 len = 0; 3504 if (put_user(len, optlen)) 3505 return -EFAULT; 3506 } 3507 return 0; 3508 } 3509 #ifdef CONFIG_MMU 3510 case TCP_ZEROCOPY_RECEIVE: { 3511 struct tcp_zerocopy_receive zc; 3512 int err; 3513 3514 if (get_user(len, optlen)) 3515 return -EFAULT; 3516 if (len != sizeof(zc)) 3517 return -EINVAL; 3518 if (copy_from_user(&zc, optval, len)) 3519 return -EFAULT; 3520 lock_sock(sk); 3521 err = tcp_zerocopy_receive(sk, &zc); 3522 release_sock(sk); 3523 if (!err && copy_to_user(optval, &zc, len)) 3524 err = -EFAULT; 3525 return err; 3526 } 3527 #endif 3528 default: 3529 return -ENOPROTOOPT; 3530 } 3531 3532 if (put_user(len, optlen)) 3533 return -EFAULT; 3534 if (copy_to_user(optval, &val, len)) 3535 return -EFAULT; 3536 return 0; 3537 } 3538 3539 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3540 int __user *optlen) 3541 { 3542 struct inet_connection_sock *icsk = inet_csk(sk); 3543 3544 if (level != SOL_TCP) 3545 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3546 optval, optlen); 3547 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3548 } 3549 EXPORT_SYMBOL(tcp_getsockopt); 3550 3551 #ifdef CONFIG_COMPAT 3552 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3553 char __user *optval, int __user *optlen) 3554 { 3555 if (level != SOL_TCP) 3556 return inet_csk_compat_getsockopt(sk, level, optname, 3557 optval, optlen); 3558 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3559 } 3560 EXPORT_SYMBOL(compat_tcp_getsockopt); 3561 #endif 3562 3563 #ifdef CONFIG_TCP_MD5SIG 3564 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3565 static DEFINE_MUTEX(tcp_md5sig_mutex); 3566 static bool tcp_md5sig_pool_populated = false; 3567 3568 static void __tcp_alloc_md5sig_pool(void) 3569 { 3570 struct crypto_ahash *hash; 3571 int cpu; 3572 3573 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3574 if (IS_ERR(hash)) 3575 return; 3576 3577 for_each_possible_cpu(cpu) { 3578 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3579 struct ahash_request *req; 3580 3581 if (!scratch) { 3582 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3583 sizeof(struct tcphdr), 3584 GFP_KERNEL, 3585 cpu_to_node(cpu)); 3586 if (!scratch) 3587 return; 3588 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3589 } 3590 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3591 continue; 3592 3593 req = ahash_request_alloc(hash, GFP_KERNEL); 3594 if (!req) 3595 return; 3596 3597 ahash_request_set_callback(req, 0, NULL, NULL); 3598 3599 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3600 } 3601 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3602 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3603 */ 3604 smp_wmb(); 3605 tcp_md5sig_pool_populated = true; 3606 } 3607 3608 bool tcp_alloc_md5sig_pool(void) 3609 { 3610 if (unlikely(!tcp_md5sig_pool_populated)) { 3611 mutex_lock(&tcp_md5sig_mutex); 3612 3613 if (!tcp_md5sig_pool_populated) 3614 __tcp_alloc_md5sig_pool(); 3615 3616 mutex_unlock(&tcp_md5sig_mutex); 3617 } 3618 return tcp_md5sig_pool_populated; 3619 } 3620 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3621 3622 3623 /** 3624 * tcp_get_md5sig_pool - get md5sig_pool for this user 3625 * 3626 * We use percpu structure, so if we succeed, we exit with preemption 3627 * and BH disabled, to make sure another thread or softirq handling 3628 * wont try to get same context. 3629 */ 3630 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3631 { 3632 local_bh_disable(); 3633 3634 if (tcp_md5sig_pool_populated) { 3635 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3636 smp_rmb(); 3637 return this_cpu_ptr(&tcp_md5sig_pool); 3638 } 3639 local_bh_enable(); 3640 return NULL; 3641 } 3642 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3643 3644 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3645 const struct sk_buff *skb, unsigned int header_len) 3646 { 3647 struct scatterlist sg; 3648 const struct tcphdr *tp = tcp_hdr(skb); 3649 struct ahash_request *req = hp->md5_req; 3650 unsigned int i; 3651 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3652 skb_headlen(skb) - header_len : 0; 3653 const struct skb_shared_info *shi = skb_shinfo(skb); 3654 struct sk_buff *frag_iter; 3655 3656 sg_init_table(&sg, 1); 3657 3658 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3659 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3660 if (crypto_ahash_update(req)) 3661 return 1; 3662 3663 for (i = 0; i < shi->nr_frags; ++i) { 3664 const struct skb_frag_struct *f = &shi->frags[i]; 3665 unsigned int offset = f->page_offset; 3666 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3667 3668 sg_set_page(&sg, page, skb_frag_size(f), 3669 offset_in_page(offset)); 3670 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3671 if (crypto_ahash_update(req)) 3672 return 1; 3673 } 3674 3675 skb_walk_frags(skb, frag_iter) 3676 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3677 return 1; 3678 3679 return 0; 3680 } 3681 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3682 3683 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3684 { 3685 struct scatterlist sg; 3686 3687 sg_init_one(&sg, key->key, key->keylen); 3688 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3689 return crypto_ahash_update(hp->md5_req); 3690 } 3691 EXPORT_SYMBOL(tcp_md5_hash_key); 3692 3693 #endif 3694 3695 void tcp_done(struct sock *sk) 3696 { 3697 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3698 3699 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3700 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3701 3702 tcp_set_state(sk, TCP_CLOSE); 3703 tcp_clear_xmit_timers(sk); 3704 if (req) 3705 reqsk_fastopen_remove(sk, req, false); 3706 3707 sk->sk_shutdown = SHUTDOWN_MASK; 3708 3709 if (!sock_flag(sk, SOCK_DEAD)) 3710 sk->sk_state_change(sk); 3711 else 3712 inet_csk_destroy_sock(sk); 3713 } 3714 EXPORT_SYMBOL_GPL(tcp_done); 3715 3716 int tcp_abort(struct sock *sk, int err) 3717 { 3718 if (!sk_fullsock(sk)) { 3719 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3720 struct request_sock *req = inet_reqsk(sk); 3721 3722 local_bh_disable(); 3723 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3724 req); 3725 local_bh_enable(); 3726 return 0; 3727 } 3728 return -EOPNOTSUPP; 3729 } 3730 3731 /* Don't race with userspace socket closes such as tcp_close. */ 3732 lock_sock(sk); 3733 3734 if (sk->sk_state == TCP_LISTEN) { 3735 tcp_set_state(sk, TCP_CLOSE); 3736 inet_csk_listen_stop(sk); 3737 } 3738 3739 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3740 local_bh_disable(); 3741 bh_lock_sock(sk); 3742 3743 if (!sock_flag(sk, SOCK_DEAD)) { 3744 sk->sk_err = err; 3745 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3746 smp_wmb(); 3747 sk->sk_error_report(sk); 3748 if (tcp_need_reset(sk->sk_state)) 3749 tcp_send_active_reset(sk, GFP_ATOMIC); 3750 tcp_done(sk); 3751 } 3752 3753 bh_unlock_sock(sk); 3754 local_bh_enable(); 3755 tcp_write_queue_purge(sk); 3756 release_sock(sk); 3757 return 0; 3758 } 3759 EXPORT_SYMBOL_GPL(tcp_abort); 3760 3761 extern struct tcp_congestion_ops tcp_reno; 3762 3763 static __initdata unsigned long thash_entries; 3764 static int __init set_thash_entries(char *str) 3765 { 3766 ssize_t ret; 3767 3768 if (!str) 3769 return 0; 3770 3771 ret = kstrtoul(str, 0, &thash_entries); 3772 if (ret) 3773 return 0; 3774 3775 return 1; 3776 } 3777 __setup("thash_entries=", set_thash_entries); 3778 3779 static void __init tcp_init_mem(void) 3780 { 3781 unsigned long limit = nr_free_buffer_pages() / 16; 3782 3783 limit = max(limit, 128UL); 3784 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3785 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3786 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3787 } 3788 3789 void __init tcp_init(void) 3790 { 3791 int max_rshare, max_wshare, cnt; 3792 unsigned long limit; 3793 unsigned int i; 3794 3795 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3796 FIELD_SIZEOF(struct sk_buff, cb)); 3797 3798 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3799 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3800 inet_hashinfo_init(&tcp_hashinfo); 3801 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3802 thash_entries, 21, /* one slot per 2 MB*/ 3803 0, 64 * 1024); 3804 tcp_hashinfo.bind_bucket_cachep = 3805 kmem_cache_create("tcp_bind_bucket", 3806 sizeof(struct inet_bind_bucket), 0, 3807 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3808 3809 /* Size and allocate the main established and bind bucket 3810 * hash tables. 3811 * 3812 * The methodology is similar to that of the buffer cache. 3813 */ 3814 tcp_hashinfo.ehash = 3815 alloc_large_system_hash("TCP established", 3816 sizeof(struct inet_ehash_bucket), 3817 thash_entries, 3818 17, /* one slot per 128 KB of memory */ 3819 0, 3820 NULL, 3821 &tcp_hashinfo.ehash_mask, 3822 0, 3823 thash_entries ? 0 : 512 * 1024); 3824 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3825 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3826 3827 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3828 panic("TCP: failed to alloc ehash_locks"); 3829 tcp_hashinfo.bhash = 3830 alloc_large_system_hash("TCP bind", 3831 sizeof(struct inet_bind_hashbucket), 3832 tcp_hashinfo.ehash_mask + 1, 3833 17, /* one slot per 128 KB of memory */ 3834 0, 3835 &tcp_hashinfo.bhash_size, 3836 NULL, 3837 0, 3838 64 * 1024); 3839 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3840 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3841 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3842 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3843 } 3844 3845 3846 cnt = tcp_hashinfo.ehash_mask + 1; 3847 sysctl_tcp_max_orphans = cnt / 2; 3848 3849 tcp_init_mem(); 3850 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3851 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3852 max_wshare = min(4UL*1024*1024, limit); 3853 max_rshare = min(6UL*1024*1024, limit); 3854 3855 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3856 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3857 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3858 3859 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3860 init_net.ipv4.sysctl_tcp_rmem[1] = 87380; 3861 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare); 3862 3863 pr_info("Hash tables configured (established %u bind %u)\n", 3864 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3865 3866 tcp_v4_init(); 3867 tcp_metrics_init(); 3868 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3869 tcp_tasklet_init(); 3870 } 3871