1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/inet_common.h> 274 #include <net/tcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/netdma.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 284 285 struct percpu_counter tcp_orphan_count; 286 EXPORT_SYMBOL_GPL(tcp_orphan_count); 287 288 int sysctl_tcp_wmem[3] __read_mostly; 289 int sysctl_tcp_rmem[3] __read_mostly; 290 291 EXPORT_SYMBOL(sysctl_tcp_rmem); 292 EXPORT_SYMBOL(sysctl_tcp_wmem); 293 294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 295 EXPORT_SYMBOL(tcp_memory_allocated); 296 297 /* 298 * Current number of TCP sockets. 299 */ 300 struct percpu_counter tcp_sockets_allocated; 301 EXPORT_SYMBOL(tcp_sockets_allocated); 302 303 /* 304 * TCP splice context 305 */ 306 struct tcp_splice_state { 307 struct pipe_inode_info *pipe; 308 size_t len; 309 unsigned int flags; 310 }; 311 312 /* 313 * Pressure flag: try to collapse. 314 * Technical note: it is used by multiple contexts non atomically. 315 * All the __sk_mem_schedule() is of this nature: accounting 316 * is strict, actions are advisory and have some latency. 317 */ 318 int tcp_memory_pressure __read_mostly; 319 EXPORT_SYMBOL(tcp_memory_pressure); 320 321 void tcp_enter_memory_pressure(struct sock *sk) 322 { 323 if (!tcp_memory_pressure) { 324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 325 tcp_memory_pressure = 1; 326 } 327 } 328 EXPORT_SYMBOL(tcp_enter_memory_pressure); 329 330 /* Convert seconds to retransmits based on initial and max timeout */ 331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 332 { 333 u8 res = 0; 334 335 if (seconds > 0) { 336 int period = timeout; 337 338 res = 1; 339 while (seconds > period && res < 255) { 340 res++; 341 timeout <<= 1; 342 if (timeout > rto_max) 343 timeout = rto_max; 344 period += timeout; 345 } 346 } 347 return res; 348 } 349 350 /* Convert retransmits to seconds based on initial and max timeout */ 351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 352 { 353 int period = 0; 354 355 if (retrans > 0) { 356 period = timeout; 357 while (--retrans) { 358 timeout <<= 1; 359 if (timeout > rto_max) 360 timeout = rto_max; 361 period += timeout; 362 } 363 } 364 return period; 365 } 366 367 /* Address-family independent initialization for a tcp_sock. 368 * 369 * NOTE: A lot of things set to zero explicitly by call to 370 * sk_alloc() so need not be done here. 371 */ 372 void tcp_init_sock(struct sock *sk) 373 { 374 struct inet_connection_sock *icsk = inet_csk(sk); 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 skb_queue_head_init(&tp->out_of_order_queue); 378 tcp_init_xmit_timers(sk); 379 tcp_prequeue_init(tp); 380 INIT_LIST_HEAD(&tp->tsq_node); 381 382 icsk->icsk_rto = TCP_TIMEOUT_INIT; 383 tp->mdev = TCP_TIMEOUT_INIT; 384 385 /* So many TCP implementations out there (incorrectly) count the 386 * initial SYN frame in their delayed-ACK and congestion control 387 * algorithms that we must have the following bandaid to talk 388 * efficiently to them. -DaveM 389 */ 390 tp->snd_cwnd = TCP_INIT_CWND; 391 392 /* See draft-stevens-tcpca-spec-01 for discussion of the 393 * initialization of these values. 394 */ 395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 396 tp->snd_cwnd_clamp = ~0; 397 tp->mss_cache = TCP_MSS_DEFAULT; 398 399 tp->reordering = sysctl_tcp_reordering; 400 tcp_enable_early_retrans(tp); 401 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 402 403 tp->tsoffset = 0; 404 405 sk->sk_state = TCP_CLOSE; 406 407 sk->sk_write_space = sk_stream_write_space; 408 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 409 410 icsk->icsk_sync_mss = tcp_sync_mss; 411 412 /* Presumed zeroed, in order of appearance: 413 * cookie_in_always, cookie_out_never, 414 * s_data_constant, s_data_in, s_data_out 415 */ 416 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 417 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 418 419 local_bh_disable(); 420 sock_update_memcg(sk); 421 sk_sockets_allocated_inc(sk); 422 local_bh_enable(); 423 } 424 EXPORT_SYMBOL(tcp_init_sock); 425 426 /* 427 * Wait for a TCP event. 428 * 429 * Note that we don't need to lock the socket, as the upper poll layers 430 * take care of normal races (between the test and the event) and we don't 431 * go look at any of the socket buffers directly. 432 */ 433 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 434 { 435 unsigned int mask; 436 struct sock *sk = sock->sk; 437 const struct tcp_sock *tp = tcp_sk(sk); 438 439 sock_poll_wait(file, sk_sleep(sk), wait); 440 if (sk->sk_state == TCP_LISTEN) 441 return inet_csk_listen_poll(sk); 442 443 /* Socket is not locked. We are protected from async events 444 * by poll logic and correct handling of state changes 445 * made by other threads is impossible in any case. 446 */ 447 448 mask = 0; 449 450 /* 451 * POLLHUP is certainly not done right. But poll() doesn't 452 * have a notion of HUP in just one direction, and for a 453 * socket the read side is more interesting. 454 * 455 * Some poll() documentation says that POLLHUP is incompatible 456 * with the POLLOUT/POLLWR flags, so somebody should check this 457 * all. But careful, it tends to be safer to return too many 458 * bits than too few, and you can easily break real applications 459 * if you don't tell them that something has hung up! 460 * 461 * Check-me. 462 * 463 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 464 * our fs/select.c). It means that after we received EOF, 465 * poll always returns immediately, making impossible poll() on write() 466 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 467 * if and only if shutdown has been made in both directions. 468 * Actually, it is interesting to look how Solaris and DUX 469 * solve this dilemma. I would prefer, if POLLHUP were maskable, 470 * then we could set it on SND_SHUTDOWN. BTW examples given 471 * in Stevens' books assume exactly this behaviour, it explains 472 * why POLLHUP is incompatible with POLLOUT. --ANK 473 * 474 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 475 * blocking on fresh not-connected or disconnected socket. --ANK 476 */ 477 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 478 mask |= POLLHUP; 479 if (sk->sk_shutdown & RCV_SHUTDOWN) 480 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 481 482 /* Connected or passive Fast Open socket? */ 483 if (sk->sk_state != TCP_SYN_SENT && 484 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) { 485 int target = sock_rcvlowat(sk, 0, INT_MAX); 486 487 if (tp->urg_seq == tp->copied_seq && 488 !sock_flag(sk, SOCK_URGINLINE) && 489 tp->urg_data) 490 target++; 491 492 /* Potential race condition. If read of tp below will 493 * escape above sk->sk_state, we can be illegally awaken 494 * in SYN_* states. */ 495 if (tp->rcv_nxt - tp->copied_seq >= target) 496 mask |= POLLIN | POLLRDNORM; 497 498 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 499 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 500 mask |= POLLOUT | POLLWRNORM; 501 } else { /* send SIGIO later */ 502 set_bit(SOCK_ASYNC_NOSPACE, 503 &sk->sk_socket->flags); 504 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 505 506 /* Race breaker. If space is freed after 507 * wspace test but before the flags are set, 508 * IO signal will be lost. 509 */ 510 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 511 mask |= POLLOUT | POLLWRNORM; 512 } 513 } else 514 mask |= POLLOUT | POLLWRNORM; 515 516 if (tp->urg_data & TCP_URG_VALID) 517 mask |= POLLPRI; 518 } 519 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 520 smp_rmb(); 521 if (sk->sk_err) 522 mask |= POLLERR; 523 524 return mask; 525 } 526 EXPORT_SYMBOL(tcp_poll); 527 528 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 529 { 530 struct tcp_sock *tp = tcp_sk(sk); 531 int answ; 532 bool slow; 533 534 switch (cmd) { 535 case SIOCINQ: 536 if (sk->sk_state == TCP_LISTEN) 537 return -EINVAL; 538 539 slow = lock_sock_fast(sk); 540 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 541 answ = 0; 542 else if (sock_flag(sk, SOCK_URGINLINE) || 543 !tp->urg_data || 544 before(tp->urg_seq, tp->copied_seq) || 545 !before(tp->urg_seq, tp->rcv_nxt)) { 546 547 answ = tp->rcv_nxt - tp->copied_seq; 548 549 /* Subtract 1, if FIN was received */ 550 if (answ && sock_flag(sk, SOCK_DONE)) 551 answ--; 552 } else 553 answ = tp->urg_seq - tp->copied_seq; 554 unlock_sock_fast(sk, slow); 555 break; 556 case SIOCATMARK: 557 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 558 break; 559 case SIOCOUTQ: 560 if (sk->sk_state == TCP_LISTEN) 561 return -EINVAL; 562 563 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 564 answ = 0; 565 else 566 answ = tp->write_seq - tp->snd_una; 567 break; 568 case SIOCOUTQNSD: 569 if (sk->sk_state == TCP_LISTEN) 570 return -EINVAL; 571 572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 573 answ = 0; 574 else 575 answ = tp->write_seq - tp->snd_nxt; 576 break; 577 default: 578 return -ENOIOCTLCMD; 579 } 580 581 return put_user(answ, (int __user *)arg); 582 } 583 EXPORT_SYMBOL(tcp_ioctl); 584 585 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 586 { 587 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 588 tp->pushed_seq = tp->write_seq; 589 } 590 591 static inline bool forced_push(const struct tcp_sock *tp) 592 { 593 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 594 } 595 596 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 597 { 598 struct tcp_sock *tp = tcp_sk(sk); 599 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 600 601 skb->csum = 0; 602 tcb->seq = tcb->end_seq = tp->write_seq; 603 tcb->tcp_flags = TCPHDR_ACK; 604 tcb->sacked = 0; 605 skb_header_release(skb); 606 tcp_add_write_queue_tail(sk, skb); 607 sk->sk_wmem_queued += skb->truesize; 608 sk_mem_charge(sk, skb->truesize); 609 if (tp->nonagle & TCP_NAGLE_PUSH) 610 tp->nonagle &= ~TCP_NAGLE_PUSH; 611 } 612 613 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 614 { 615 if (flags & MSG_OOB) 616 tp->snd_up = tp->write_seq; 617 } 618 619 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 620 int nonagle) 621 { 622 if (tcp_send_head(sk)) { 623 struct tcp_sock *tp = tcp_sk(sk); 624 625 if (!(flags & MSG_MORE) || forced_push(tp)) 626 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 627 628 tcp_mark_urg(tp, flags); 629 __tcp_push_pending_frames(sk, mss_now, 630 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 631 } 632 } 633 634 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 635 unsigned int offset, size_t len) 636 { 637 struct tcp_splice_state *tss = rd_desc->arg.data; 638 int ret; 639 640 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 641 tss->flags); 642 if (ret > 0) 643 rd_desc->count -= ret; 644 return ret; 645 } 646 647 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 648 { 649 /* Store TCP splice context information in read_descriptor_t. */ 650 read_descriptor_t rd_desc = { 651 .arg.data = tss, 652 .count = tss->len, 653 }; 654 655 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 656 } 657 658 /** 659 * tcp_splice_read - splice data from TCP socket to a pipe 660 * @sock: socket to splice from 661 * @ppos: position (not valid) 662 * @pipe: pipe to splice to 663 * @len: number of bytes to splice 664 * @flags: splice modifier flags 665 * 666 * Description: 667 * Will read pages from given socket and fill them into a pipe. 668 * 669 **/ 670 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 671 struct pipe_inode_info *pipe, size_t len, 672 unsigned int flags) 673 { 674 struct sock *sk = sock->sk; 675 struct tcp_splice_state tss = { 676 .pipe = pipe, 677 .len = len, 678 .flags = flags, 679 }; 680 long timeo; 681 ssize_t spliced; 682 int ret; 683 684 sock_rps_record_flow(sk); 685 /* 686 * We can't seek on a socket input 687 */ 688 if (unlikely(*ppos)) 689 return -ESPIPE; 690 691 ret = spliced = 0; 692 693 lock_sock(sk); 694 695 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 696 while (tss.len) { 697 ret = __tcp_splice_read(sk, &tss); 698 if (ret < 0) 699 break; 700 else if (!ret) { 701 if (spliced) 702 break; 703 if (sock_flag(sk, SOCK_DONE)) 704 break; 705 if (sk->sk_err) { 706 ret = sock_error(sk); 707 break; 708 } 709 if (sk->sk_shutdown & RCV_SHUTDOWN) 710 break; 711 if (sk->sk_state == TCP_CLOSE) { 712 /* 713 * This occurs when user tries to read 714 * from never connected socket. 715 */ 716 if (!sock_flag(sk, SOCK_DONE)) 717 ret = -ENOTCONN; 718 break; 719 } 720 if (!timeo) { 721 ret = -EAGAIN; 722 break; 723 } 724 sk_wait_data(sk, &timeo); 725 if (signal_pending(current)) { 726 ret = sock_intr_errno(timeo); 727 break; 728 } 729 continue; 730 } 731 tss.len -= ret; 732 spliced += ret; 733 734 if (!timeo) 735 break; 736 release_sock(sk); 737 lock_sock(sk); 738 739 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 740 (sk->sk_shutdown & RCV_SHUTDOWN) || 741 signal_pending(current)) 742 break; 743 } 744 745 release_sock(sk); 746 747 if (spliced) 748 return spliced; 749 750 return ret; 751 } 752 EXPORT_SYMBOL(tcp_splice_read); 753 754 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 755 { 756 struct sk_buff *skb; 757 758 /* The TCP header must be at least 32-bit aligned. */ 759 size = ALIGN(size, 4); 760 761 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 762 if (skb) { 763 if (sk_wmem_schedule(sk, skb->truesize)) { 764 skb_reserve(skb, sk->sk_prot->max_header); 765 /* 766 * Make sure that we have exactly size bytes 767 * available to the caller, no more, no less. 768 */ 769 skb->reserved_tailroom = skb->end - skb->tail - size; 770 return skb; 771 } 772 __kfree_skb(skb); 773 } else { 774 sk->sk_prot->enter_memory_pressure(sk); 775 sk_stream_moderate_sndbuf(sk); 776 } 777 return NULL; 778 } 779 780 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 781 int large_allowed) 782 { 783 struct tcp_sock *tp = tcp_sk(sk); 784 u32 xmit_size_goal, old_size_goal; 785 786 xmit_size_goal = mss_now; 787 788 if (large_allowed && sk_can_gso(sk)) { 789 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 790 inet_csk(sk)->icsk_af_ops->net_header_len - 791 inet_csk(sk)->icsk_ext_hdr_len - 792 tp->tcp_header_len); 793 794 /* TSQ : try to have two TSO segments in flight */ 795 xmit_size_goal = min_t(u32, xmit_size_goal, 796 sysctl_tcp_limit_output_bytes >> 1); 797 798 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 799 800 /* We try hard to avoid divides here */ 801 old_size_goal = tp->xmit_size_goal_segs * mss_now; 802 803 if (likely(old_size_goal <= xmit_size_goal && 804 old_size_goal + mss_now > xmit_size_goal)) { 805 xmit_size_goal = old_size_goal; 806 } else { 807 tp->xmit_size_goal_segs = 808 min_t(u16, xmit_size_goal / mss_now, 809 sk->sk_gso_max_segs); 810 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 811 } 812 } 813 814 return max(xmit_size_goal, mss_now); 815 } 816 817 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 818 { 819 int mss_now; 820 821 mss_now = tcp_current_mss(sk); 822 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 823 824 return mss_now; 825 } 826 827 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 828 size_t size, int flags) 829 { 830 struct tcp_sock *tp = tcp_sk(sk); 831 int mss_now, size_goal; 832 int err; 833 ssize_t copied; 834 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 835 836 /* Wait for a connection to finish. One exception is TCP Fast Open 837 * (passive side) where data is allowed to be sent before a connection 838 * is fully established. 839 */ 840 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 841 !tcp_passive_fastopen(sk)) { 842 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 843 goto out_err; 844 } 845 846 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 847 848 mss_now = tcp_send_mss(sk, &size_goal, flags); 849 copied = 0; 850 851 err = -EPIPE; 852 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 853 goto out_err; 854 855 while (size > 0) { 856 struct sk_buff *skb = tcp_write_queue_tail(sk); 857 int copy, i; 858 bool can_coalesce; 859 860 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 861 new_segment: 862 if (!sk_stream_memory_free(sk)) 863 goto wait_for_sndbuf; 864 865 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 866 if (!skb) 867 goto wait_for_memory; 868 869 skb_entail(sk, skb); 870 copy = size_goal; 871 } 872 873 if (copy > size) 874 copy = size; 875 876 i = skb_shinfo(skb)->nr_frags; 877 can_coalesce = skb_can_coalesce(skb, i, page, offset); 878 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 879 tcp_mark_push(tp, skb); 880 goto new_segment; 881 } 882 if (!sk_wmem_schedule(sk, copy)) 883 goto wait_for_memory; 884 885 if (can_coalesce) { 886 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 887 } else { 888 get_page(page); 889 skb_fill_page_desc(skb, i, page, offset, copy); 890 } 891 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 892 893 skb->len += copy; 894 skb->data_len += copy; 895 skb->truesize += copy; 896 sk->sk_wmem_queued += copy; 897 sk_mem_charge(sk, copy); 898 skb->ip_summed = CHECKSUM_PARTIAL; 899 tp->write_seq += copy; 900 TCP_SKB_CB(skb)->end_seq += copy; 901 skb_shinfo(skb)->gso_segs = 0; 902 903 if (!copied) 904 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 905 906 copied += copy; 907 offset += copy; 908 if (!(size -= copy)) 909 goto out; 910 911 if (skb->len < size_goal || (flags & MSG_OOB)) 912 continue; 913 914 if (forced_push(tp)) { 915 tcp_mark_push(tp, skb); 916 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 917 } else if (skb == tcp_send_head(sk)) 918 tcp_push_one(sk, mss_now); 919 continue; 920 921 wait_for_sndbuf: 922 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 923 wait_for_memory: 924 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 925 926 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 927 goto do_error; 928 929 mss_now = tcp_send_mss(sk, &size_goal, flags); 930 } 931 932 out: 933 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 934 tcp_push(sk, flags, mss_now, tp->nonagle); 935 return copied; 936 937 do_error: 938 if (copied) 939 goto out; 940 out_err: 941 return sk_stream_error(sk, flags, err); 942 } 943 944 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 945 size_t size, int flags) 946 { 947 ssize_t res; 948 949 if (!(sk->sk_route_caps & NETIF_F_SG) || 950 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 951 return sock_no_sendpage(sk->sk_socket, page, offset, size, 952 flags); 953 954 lock_sock(sk); 955 res = do_tcp_sendpages(sk, page, offset, size, flags); 956 release_sock(sk); 957 return res; 958 } 959 EXPORT_SYMBOL(tcp_sendpage); 960 961 static inline int select_size(const struct sock *sk, bool sg) 962 { 963 const struct tcp_sock *tp = tcp_sk(sk); 964 int tmp = tp->mss_cache; 965 966 if (sg) { 967 if (sk_can_gso(sk)) { 968 /* Small frames wont use a full page: 969 * Payload will immediately follow tcp header. 970 */ 971 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 972 } else { 973 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 974 975 if (tmp >= pgbreak && 976 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 977 tmp = pgbreak; 978 } 979 } 980 981 return tmp; 982 } 983 984 void tcp_free_fastopen_req(struct tcp_sock *tp) 985 { 986 if (tp->fastopen_req != NULL) { 987 kfree(tp->fastopen_req); 988 tp->fastopen_req = NULL; 989 } 990 } 991 992 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 int err, flags; 996 997 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 998 return -EOPNOTSUPP; 999 if (tp->fastopen_req != NULL) 1000 return -EALREADY; /* Another Fast Open is in progress */ 1001 1002 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1003 sk->sk_allocation); 1004 if (unlikely(tp->fastopen_req == NULL)) 1005 return -ENOBUFS; 1006 tp->fastopen_req->data = msg; 1007 1008 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1009 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1010 msg->msg_namelen, flags); 1011 *size = tp->fastopen_req->copied; 1012 tcp_free_fastopen_req(tp); 1013 return err; 1014 } 1015 1016 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1017 size_t size) 1018 { 1019 struct iovec *iov; 1020 struct tcp_sock *tp = tcp_sk(sk); 1021 struct sk_buff *skb; 1022 int iovlen, flags, err, copied = 0; 1023 int mss_now = 0, size_goal, copied_syn = 0, offset = 0; 1024 bool sg; 1025 long timeo; 1026 1027 lock_sock(sk); 1028 1029 flags = msg->msg_flags; 1030 if (flags & MSG_FASTOPEN) { 1031 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn); 1032 if (err == -EINPROGRESS && copied_syn > 0) 1033 goto out; 1034 else if (err) 1035 goto out_err; 1036 offset = copied_syn; 1037 } 1038 1039 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1040 1041 /* Wait for a connection to finish. One exception is TCP Fast Open 1042 * (passive side) where data is allowed to be sent before a connection 1043 * is fully established. 1044 */ 1045 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1046 !tcp_passive_fastopen(sk)) { 1047 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1048 goto do_error; 1049 } 1050 1051 if (unlikely(tp->repair)) { 1052 if (tp->repair_queue == TCP_RECV_QUEUE) { 1053 copied = tcp_send_rcvq(sk, msg, size); 1054 goto out; 1055 } 1056 1057 err = -EINVAL; 1058 if (tp->repair_queue == TCP_NO_QUEUE) 1059 goto out_err; 1060 1061 /* 'common' sending to sendq */ 1062 } 1063 1064 /* This should be in poll */ 1065 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1066 1067 mss_now = tcp_send_mss(sk, &size_goal, flags); 1068 1069 /* Ok commence sending. */ 1070 iovlen = msg->msg_iovlen; 1071 iov = msg->msg_iov; 1072 copied = 0; 1073 1074 err = -EPIPE; 1075 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1076 goto out_err; 1077 1078 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1079 1080 while (--iovlen >= 0) { 1081 size_t seglen = iov->iov_len; 1082 unsigned char __user *from = iov->iov_base; 1083 1084 iov++; 1085 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */ 1086 if (offset >= seglen) { 1087 offset -= seglen; 1088 continue; 1089 } 1090 seglen -= offset; 1091 from += offset; 1092 offset = 0; 1093 } 1094 1095 while (seglen > 0) { 1096 int copy = 0; 1097 int max = size_goal; 1098 1099 skb = tcp_write_queue_tail(sk); 1100 if (tcp_send_head(sk)) { 1101 if (skb->ip_summed == CHECKSUM_NONE) 1102 max = mss_now; 1103 copy = max - skb->len; 1104 } 1105 1106 if (copy <= 0) { 1107 new_segment: 1108 /* Allocate new segment. If the interface is SG, 1109 * allocate skb fitting to single page. 1110 */ 1111 if (!sk_stream_memory_free(sk)) 1112 goto wait_for_sndbuf; 1113 1114 skb = sk_stream_alloc_skb(sk, 1115 select_size(sk, sg), 1116 sk->sk_allocation); 1117 if (!skb) 1118 goto wait_for_memory; 1119 1120 /* 1121 * Check whether we can use HW checksum. 1122 */ 1123 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1124 skb->ip_summed = CHECKSUM_PARTIAL; 1125 1126 skb_entail(sk, skb); 1127 copy = size_goal; 1128 max = size_goal; 1129 } 1130 1131 /* Try to append data to the end of skb. */ 1132 if (copy > seglen) 1133 copy = seglen; 1134 1135 /* Where to copy to? */ 1136 if (skb_availroom(skb) > 0) { 1137 /* We have some space in skb head. Superb! */ 1138 copy = min_t(int, copy, skb_availroom(skb)); 1139 err = skb_add_data_nocache(sk, skb, from, copy); 1140 if (err) 1141 goto do_fault; 1142 } else { 1143 bool merge = true; 1144 int i = skb_shinfo(skb)->nr_frags; 1145 struct page_frag *pfrag = sk_page_frag(sk); 1146 1147 if (!sk_page_frag_refill(sk, pfrag)) 1148 goto wait_for_memory; 1149 1150 if (!skb_can_coalesce(skb, i, pfrag->page, 1151 pfrag->offset)) { 1152 if (i == MAX_SKB_FRAGS || !sg) { 1153 tcp_mark_push(tp, skb); 1154 goto new_segment; 1155 } 1156 merge = false; 1157 } 1158 1159 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1160 1161 if (!sk_wmem_schedule(sk, copy)) 1162 goto wait_for_memory; 1163 1164 err = skb_copy_to_page_nocache(sk, from, skb, 1165 pfrag->page, 1166 pfrag->offset, 1167 copy); 1168 if (err) 1169 goto do_error; 1170 1171 /* Update the skb. */ 1172 if (merge) { 1173 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1174 } else { 1175 skb_fill_page_desc(skb, i, pfrag->page, 1176 pfrag->offset, copy); 1177 get_page(pfrag->page); 1178 } 1179 pfrag->offset += copy; 1180 } 1181 1182 if (!copied) 1183 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1184 1185 tp->write_seq += copy; 1186 TCP_SKB_CB(skb)->end_seq += copy; 1187 skb_shinfo(skb)->gso_segs = 0; 1188 1189 from += copy; 1190 copied += copy; 1191 if ((seglen -= copy) == 0 && iovlen == 0) 1192 goto out; 1193 1194 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1195 continue; 1196 1197 if (forced_push(tp)) { 1198 tcp_mark_push(tp, skb); 1199 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1200 } else if (skb == tcp_send_head(sk)) 1201 tcp_push_one(sk, mss_now); 1202 continue; 1203 1204 wait_for_sndbuf: 1205 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1206 wait_for_memory: 1207 if (copied) 1208 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1209 1210 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1211 goto do_error; 1212 1213 mss_now = tcp_send_mss(sk, &size_goal, flags); 1214 } 1215 } 1216 1217 out: 1218 if (copied) 1219 tcp_push(sk, flags, mss_now, tp->nonagle); 1220 release_sock(sk); 1221 return copied + copied_syn; 1222 1223 do_fault: 1224 if (!skb->len) { 1225 tcp_unlink_write_queue(skb, sk); 1226 /* It is the one place in all of TCP, except connection 1227 * reset, where we can be unlinking the send_head. 1228 */ 1229 tcp_check_send_head(sk, skb); 1230 sk_wmem_free_skb(sk, skb); 1231 } 1232 1233 do_error: 1234 if (copied + copied_syn) 1235 goto out; 1236 out_err: 1237 err = sk_stream_error(sk, flags, err); 1238 release_sock(sk); 1239 return err; 1240 } 1241 EXPORT_SYMBOL(tcp_sendmsg); 1242 1243 /* 1244 * Handle reading urgent data. BSD has very simple semantics for 1245 * this, no blocking and very strange errors 8) 1246 */ 1247 1248 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1249 { 1250 struct tcp_sock *tp = tcp_sk(sk); 1251 1252 /* No URG data to read. */ 1253 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1254 tp->urg_data == TCP_URG_READ) 1255 return -EINVAL; /* Yes this is right ! */ 1256 1257 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1258 return -ENOTCONN; 1259 1260 if (tp->urg_data & TCP_URG_VALID) { 1261 int err = 0; 1262 char c = tp->urg_data; 1263 1264 if (!(flags & MSG_PEEK)) 1265 tp->urg_data = TCP_URG_READ; 1266 1267 /* Read urgent data. */ 1268 msg->msg_flags |= MSG_OOB; 1269 1270 if (len > 0) { 1271 if (!(flags & MSG_TRUNC)) 1272 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1273 len = 1; 1274 } else 1275 msg->msg_flags |= MSG_TRUNC; 1276 1277 return err ? -EFAULT : len; 1278 } 1279 1280 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1281 return 0; 1282 1283 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1284 * the available implementations agree in this case: 1285 * this call should never block, independent of the 1286 * blocking state of the socket. 1287 * Mike <pall@rz.uni-karlsruhe.de> 1288 */ 1289 return -EAGAIN; 1290 } 1291 1292 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1293 { 1294 struct sk_buff *skb; 1295 int copied = 0, err = 0; 1296 1297 /* XXX -- need to support SO_PEEK_OFF */ 1298 1299 skb_queue_walk(&sk->sk_write_queue, skb) { 1300 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1301 if (err) 1302 break; 1303 1304 copied += skb->len; 1305 } 1306 1307 return err ?: copied; 1308 } 1309 1310 /* Clean up the receive buffer for full frames taken by the user, 1311 * then send an ACK if necessary. COPIED is the number of bytes 1312 * tcp_recvmsg has given to the user so far, it speeds up the 1313 * calculation of whether or not we must ACK for the sake of 1314 * a window update. 1315 */ 1316 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1317 { 1318 struct tcp_sock *tp = tcp_sk(sk); 1319 bool time_to_ack = false; 1320 1321 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1322 1323 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1324 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1325 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1326 1327 if (inet_csk_ack_scheduled(sk)) { 1328 const struct inet_connection_sock *icsk = inet_csk(sk); 1329 /* Delayed ACKs frequently hit locked sockets during bulk 1330 * receive. */ 1331 if (icsk->icsk_ack.blocked || 1332 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1333 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1334 /* 1335 * If this read emptied read buffer, we send ACK, if 1336 * connection is not bidirectional, user drained 1337 * receive buffer and there was a small segment 1338 * in queue. 1339 */ 1340 (copied > 0 && 1341 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1342 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1343 !icsk->icsk_ack.pingpong)) && 1344 !atomic_read(&sk->sk_rmem_alloc))) 1345 time_to_ack = true; 1346 } 1347 1348 /* We send an ACK if we can now advertise a non-zero window 1349 * which has been raised "significantly". 1350 * 1351 * Even if window raised up to infinity, do not send window open ACK 1352 * in states, where we will not receive more. It is useless. 1353 */ 1354 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1355 __u32 rcv_window_now = tcp_receive_window(tp); 1356 1357 /* Optimize, __tcp_select_window() is not cheap. */ 1358 if (2*rcv_window_now <= tp->window_clamp) { 1359 __u32 new_window = __tcp_select_window(sk); 1360 1361 /* Send ACK now, if this read freed lots of space 1362 * in our buffer. Certainly, new_window is new window. 1363 * We can advertise it now, if it is not less than current one. 1364 * "Lots" means "at least twice" here. 1365 */ 1366 if (new_window && new_window >= 2 * rcv_window_now) 1367 time_to_ack = true; 1368 } 1369 } 1370 if (time_to_ack) 1371 tcp_send_ack(sk); 1372 } 1373 1374 static void tcp_prequeue_process(struct sock *sk) 1375 { 1376 struct sk_buff *skb; 1377 struct tcp_sock *tp = tcp_sk(sk); 1378 1379 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1380 1381 /* RX process wants to run with disabled BHs, though it is not 1382 * necessary */ 1383 local_bh_disable(); 1384 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1385 sk_backlog_rcv(sk, skb); 1386 local_bh_enable(); 1387 1388 /* Clear memory counter. */ 1389 tp->ucopy.memory = 0; 1390 } 1391 1392 #ifdef CONFIG_NET_DMA 1393 static void tcp_service_net_dma(struct sock *sk, bool wait) 1394 { 1395 dma_cookie_t done, used; 1396 dma_cookie_t last_issued; 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 1399 if (!tp->ucopy.dma_chan) 1400 return; 1401 1402 last_issued = tp->ucopy.dma_cookie; 1403 dma_async_issue_pending(tp->ucopy.dma_chan); 1404 1405 do { 1406 if (dma_async_is_tx_complete(tp->ucopy.dma_chan, 1407 last_issued, &done, 1408 &used) == DMA_SUCCESS) { 1409 /* Safe to free early-copied skbs now */ 1410 __skb_queue_purge(&sk->sk_async_wait_queue); 1411 break; 1412 } else { 1413 struct sk_buff *skb; 1414 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1415 (dma_async_is_complete(skb->dma_cookie, done, 1416 used) == DMA_SUCCESS)) { 1417 __skb_dequeue(&sk->sk_async_wait_queue); 1418 kfree_skb(skb); 1419 } 1420 } 1421 } while (wait); 1422 } 1423 #endif 1424 1425 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1426 { 1427 struct sk_buff *skb; 1428 u32 offset; 1429 1430 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1431 offset = seq - TCP_SKB_CB(skb)->seq; 1432 if (tcp_hdr(skb)->syn) 1433 offset--; 1434 if (offset < skb->len || tcp_hdr(skb)->fin) { 1435 *off = offset; 1436 return skb; 1437 } 1438 /* This looks weird, but this can happen if TCP collapsing 1439 * splitted a fat GRO packet, while we released socket lock 1440 * in skb_splice_bits() 1441 */ 1442 sk_eat_skb(sk, skb, false); 1443 } 1444 return NULL; 1445 } 1446 1447 /* 1448 * This routine provides an alternative to tcp_recvmsg() for routines 1449 * that would like to handle copying from skbuffs directly in 'sendfile' 1450 * fashion. 1451 * Note: 1452 * - It is assumed that the socket was locked by the caller. 1453 * - The routine does not block. 1454 * - At present, there is no support for reading OOB data 1455 * or for 'peeking' the socket using this routine 1456 * (although both would be easy to implement). 1457 */ 1458 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1459 sk_read_actor_t recv_actor) 1460 { 1461 struct sk_buff *skb; 1462 struct tcp_sock *tp = tcp_sk(sk); 1463 u32 seq = tp->copied_seq; 1464 u32 offset; 1465 int copied = 0; 1466 1467 if (sk->sk_state == TCP_LISTEN) 1468 return -ENOTCONN; 1469 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1470 if (offset < skb->len) { 1471 int used; 1472 size_t len; 1473 1474 len = skb->len - offset; 1475 /* Stop reading if we hit a patch of urgent data */ 1476 if (tp->urg_data) { 1477 u32 urg_offset = tp->urg_seq - seq; 1478 if (urg_offset < len) 1479 len = urg_offset; 1480 if (!len) 1481 break; 1482 } 1483 used = recv_actor(desc, skb, offset, len); 1484 if (used <= 0) { 1485 if (!copied) 1486 copied = used; 1487 break; 1488 } else if (used <= len) { 1489 seq += used; 1490 copied += used; 1491 offset += used; 1492 } 1493 /* If recv_actor drops the lock (e.g. TCP splice 1494 * receive) the skb pointer might be invalid when 1495 * getting here: tcp_collapse might have deleted it 1496 * while aggregating skbs from the socket queue. 1497 */ 1498 skb = tcp_recv_skb(sk, seq - 1, &offset); 1499 if (!skb) 1500 break; 1501 /* TCP coalescing might have appended data to the skb. 1502 * Try to splice more frags 1503 */ 1504 if (offset + 1 != skb->len) 1505 continue; 1506 } 1507 if (tcp_hdr(skb)->fin) { 1508 sk_eat_skb(sk, skb, false); 1509 ++seq; 1510 break; 1511 } 1512 sk_eat_skb(sk, skb, false); 1513 if (!desc->count) 1514 break; 1515 tp->copied_seq = seq; 1516 } 1517 tp->copied_seq = seq; 1518 1519 tcp_rcv_space_adjust(sk); 1520 1521 /* Clean up data we have read: This will do ACK frames. */ 1522 if (copied > 0) { 1523 tcp_recv_skb(sk, seq, &offset); 1524 tcp_cleanup_rbuf(sk, copied); 1525 } 1526 return copied; 1527 } 1528 EXPORT_SYMBOL(tcp_read_sock); 1529 1530 /* 1531 * This routine copies from a sock struct into the user buffer. 1532 * 1533 * Technical note: in 2.3 we work on _locked_ socket, so that 1534 * tricks with *seq access order and skb->users are not required. 1535 * Probably, code can be easily improved even more. 1536 */ 1537 1538 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1539 size_t len, int nonblock, int flags, int *addr_len) 1540 { 1541 struct tcp_sock *tp = tcp_sk(sk); 1542 int copied = 0; 1543 u32 peek_seq; 1544 u32 *seq; 1545 unsigned long used; 1546 int err; 1547 int target; /* Read at least this many bytes */ 1548 long timeo; 1549 struct task_struct *user_recv = NULL; 1550 bool copied_early = false; 1551 struct sk_buff *skb; 1552 u32 urg_hole = 0; 1553 1554 lock_sock(sk); 1555 1556 err = -ENOTCONN; 1557 if (sk->sk_state == TCP_LISTEN) 1558 goto out; 1559 1560 timeo = sock_rcvtimeo(sk, nonblock); 1561 1562 /* Urgent data needs to be handled specially. */ 1563 if (flags & MSG_OOB) 1564 goto recv_urg; 1565 1566 if (unlikely(tp->repair)) { 1567 err = -EPERM; 1568 if (!(flags & MSG_PEEK)) 1569 goto out; 1570 1571 if (tp->repair_queue == TCP_SEND_QUEUE) 1572 goto recv_sndq; 1573 1574 err = -EINVAL; 1575 if (tp->repair_queue == TCP_NO_QUEUE) 1576 goto out; 1577 1578 /* 'common' recv queue MSG_PEEK-ing */ 1579 } 1580 1581 seq = &tp->copied_seq; 1582 if (flags & MSG_PEEK) { 1583 peek_seq = tp->copied_seq; 1584 seq = &peek_seq; 1585 } 1586 1587 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1588 1589 #ifdef CONFIG_NET_DMA 1590 tp->ucopy.dma_chan = NULL; 1591 preempt_disable(); 1592 skb = skb_peek_tail(&sk->sk_receive_queue); 1593 { 1594 int available = 0; 1595 1596 if (skb) 1597 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1598 if ((available < target) && 1599 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1600 !sysctl_tcp_low_latency && 1601 net_dma_find_channel()) { 1602 preempt_enable_no_resched(); 1603 tp->ucopy.pinned_list = 1604 dma_pin_iovec_pages(msg->msg_iov, len); 1605 } else { 1606 preempt_enable_no_resched(); 1607 } 1608 } 1609 #endif 1610 1611 do { 1612 u32 offset; 1613 1614 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1615 if (tp->urg_data && tp->urg_seq == *seq) { 1616 if (copied) 1617 break; 1618 if (signal_pending(current)) { 1619 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1620 break; 1621 } 1622 } 1623 1624 /* Next get a buffer. */ 1625 1626 skb_queue_walk(&sk->sk_receive_queue, skb) { 1627 /* Now that we have two receive queues this 1628 * shouldn't happen. 1629 */ 1630 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1631 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1632 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1633 flags)) 1634 break; 1635 1636 offset = *seq - TCP_SKB_CB(skb)->seq; 1637 if (tcp_hdr(skb)->syn) 1638 offset--; 1639 if (offset < skb->len) 1640 goto found_ok_skb; 1641 if (tcp_hdr(skb)->fin) 1642 goto found_fin_ok; 1643 WARN(!(flags & MSG_PEEK), 1644 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1645 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1646 } 1647 1648 /* Well, if we have backlog, try to process it now yet. */ 1649 1650 if (copied >= target && !sk->sk_backlog.tail) 1651 break; 1652 1653 if (copied) { 1654 if (sk->sk_err || 1655 sk->sk_state == TCP_CLOSE || 1656 (sk->sk_shutdown & RCV_SHUTDOWN) || 1657 !timeo || 1658 signal_pending(current)) 1659 break; 1660 } else { 1661 if (sock_flag(sk, SOCK_DONE)) 1662 break; 1663 1664 if (sk->sk_err) { 1665 copied = sock_error(sk); 1666 break; 1667 } 1668 1669 if (sk->sk_shutdown & RCV_SHUTDOWN) 1670 break; 1671 1672 if (sk->sk_state == TCP_CLOSE) { 1673 if (!sock_flag(sk, SOCK_DONE)) { 1674 /* This occurs when user tries to read 1675 * from never connected socket. 1676 */ 1677 copied = -ENOTCONN; 1678 break; 1679 } 1680 break; 1681 } 1682 1683 if (!timeo) { 1684 copied = -EAGAIN; 1685 break; 1686 } 1687 1688 if (signal_pending(current)) { 1689 copied = sock_intr_errno(timeo); 1690 break; 1691 } 1692 } 1693 1694 tcp_cleanup_rbuf(sk, copied); 1695 1696 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1697 /* Install new reader */ 1698 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1699 user_recv = current; 1700 tp->ucopy.task = user_recv; 1701 tp->ucopy.iov = msg->msg_iov; 1702 } 1703 1704 tp->ucopy.len = len; 1705 1706 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1707 !(flags & (MSG_PEEK | MSG_TRUNC))); 1708 1709 /* Ugly... If prequeue is not empty, we have to 1710 * process it before releasing socket, otherwise 1711 * order will be broken at second iteration. 1712 * More elegant solution is required!!! 1713 * 1714 * Look: we have the following (pseudo)queues: 1715 * 1716 * 1. packets in flight 1717 * 2. backlog 1718 * 3. prequeue 1719 * 4. receive_queue 1720 * 1721 * Each queue can be processed only if the next ones 1722 * are empty. At this point we have empty receive_queue. 1723 * But prequeue _can_ be not empty after 2nd iteration, 1724 * when we jumped to start of loop because backlog 1725 * processing added something to receive_queue. 1726 * We cannot release_sock(), because backlog contains 1727 * packets arrived _after_ prequeued ones. 1728 * 1729 * Shortly, algorithm is clear --- to process all 1730 * the queues in order. We could make it more directly, 1731 * requeueing packets from backlog to prequeue, if 1732 * is not empty. It is more elegant, but eats cycles, 1733 * unfortunately. 1734 */ 1735 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1736 goto do_prequeue; 1737 1738 /* __ Set realtime policy in scheduler __ */ 1739 } 1740 1741 #ifdef CONFIG_NET_DMA 1742 if (tp->ucopy.dma_chan) { 1743 if (tp->rcv_wnd == 0 && 1744 !skb_queue_empty(&sk->sk_async_wait_queue)) { 1745 tcp_service_net_dma(sk, true); 1746 tcp_cleanup_rbuf(sk, copied); 1747 } else 1748 dma_async_issue_pending(tp->ucopy.dma_chan); 1749 } 1750 #endif 1751 if (copied >= target) { 1752 /* Do not sleep, just process backlog. */ 1753 release_sock(sk); 1754 lock_sock(sk); 1755 } else 1756 sk_wait_data(sk, &timeo); 1757 1758 #ifdef CONFIG_NET_DMA 1759 tcp_service_net_dma(sk, false); /* Don't block */ 1760 tp->ucopy.wakeup = 0; 1761 #endif 1762 1763 if (user_recv) { 1764 int chunk; 1765 1766 /* __ Restore normal policy in scheduler __ */ 1767 1768 if ((chunk = len - tp->ucopy.len) != 0) { 1769 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1770 len -= chunk; 1771 copied += chunk; 1772 } 1773 1774 if (tp->rcv_nxt == tp->copied_seq && 1775 !skb_queue_empty(&tp->ucopy.prequeue)) { 1776 do_prequeue: 1777 tcp_prequeue_process(sk); 1778 1779 if ((chunk = len - tp->ucopy.len) != 0) { 1780 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1781 len -= chunk; 1782 copied += chunk; 1783 } 1784 } 1785 } 1786 if ((flags & MSG_PEEK) && 1787 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1788 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1789 current->comm, 1790 task_pid_nr(current)); 1791 peek_seq = tp->copied_seq; 1792 } 1793 continue; 1794 1795 found_ok_skb: 1796 /* Ok so how much can we use? */ 1797 used = skb->len - offset; 1798 if (len < used) 1799 used = len; 1800 1801 /* Do we have urgent data here? */ 1802 if (tp->urg_data) { 1803 u32 urg_offset = tp->urg_seq - *seq; 1804 if (urg_offset < used) { 1805 if (!urg_offset) { 1806 if (!sock_flag(sk, SOCK_URGINLINE)) { 1807 ++*seq; 1808 urg_hole++; 1809 offset++; 1810 used--; 1811 if (!used) 1812 goto skip_copy; 1813 } 1814 } else 1815 used = urg_offset; 1816 } 1817 } 1818 1819 if (!(flags & MSG_TRUNC)) { 1820 #ifdef CONFIG_NET_DMA 1821 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1822 tp->ucopy.dma_chan = net_dma_find_channel(); 1823 1824 if (tp->ucopy.dma_chan) { 1825 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1826 tp->ucopy.dma_chan, skb, offset, 1827 msg->msg_iov, used, 1828 tp->ucopy.pinned_list); 1829 1830 if (tp->ucopy.dma_cookie < 0) { 1831 1832 pr_alert("%s: dma_cookie < 0\n", 1833 __func__); 1834 1835 /* Exception. Bailout! */ 1836 if (!copied) 1837 copied = -EFAULT; 1838 break; 1839 } 1840 1841 dma_async_issue_pending(tp->ucopy.dma_chan); 1842 1843 if ((offset + used) == skb->len) 1844 copied_early = true; 1845 1846 } else 1847 #endif 1848 { 1849 err = skb_copy_datagram_iovec(skb, offset, 1850 msg->msg_iov, used); 1851 if (err) { 1852 /* Exception. Bailout! */ 1853 if (!copied) 1854 copied = -EFAULT; 1855 break; 1856 } 1857 } 1858 } 1859 1860 *seq += used; 1861 copied += used; 1862 len -= used; 1863 1864 tcp_rcv_space_adjust(sk); 1865 1866 skip_copy: 1867 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1868 tp->urg_data = 0; 1869 tcp_fast_path_check(sk); 1870 } 1871 if (used + offset < skb->len) 1872 continue; 1873 1874 if (tcp_hdr(skb)->fin) 1875 goto found_fin_ok; 1876 if (!(flags & MSG_PEEK)) { 1877 sk_eat_skb(sk, skb, copied_early); 1878 copied_early = false; 1879 } 1880 continue; 1881 1882 found_fin_ok: 1883 /* Process the FIN. */ 1884 ++*seq; 1885 if (!(flags & MSG_PEEK)) { 1886 sk_eat_skb(sk, skb, copied_early); 1887 copied_early = false; 1888 } 1889 break; 1890 } while (len > 0); 1891 1892 if (user_recv) { 1893 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1894 int chunk; 1895 1896 tp->ucopy.len = copied > 0 ? len : 0; 1897 1898 tcp_prequeue_process(sk); 1899 1900 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1901 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1902 len -= chunk; 1903 copied += chunk; 1904 } 1905 } 1906 1907 tp->ucopy.task = NULL; 1908 tp->ucopy.len = 0; 1909 } 1910 1911 #ifdef CONFIG_NET_DMA 1912 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1913 tp->ucopy.dma_chan = NULL; 1914 1915 if (tp->ucopy.pinned_list) { 1916 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1917 tp->ucopy.pinned_list = NULL; 1918 } 1919 #endif 1920 1921 /* According to UNIX98, msg_name/msg_namelen are ignored 1922 * on connected socket. I was just happy when found this 8) --ANK 1923 */ 1924 1925 /* Clean up data we have read: This will do ACK frames. */ 1926 tcp_cleanup_rbuf(sk, copied); 1927 1928 release_sock(sk); 1929 return copied; 1930 1931 out: 1932 release_sock(sk); 1933 return err; 1934 1935 recv_urg: 1936 err = tcp_recv_urg(sk, msg, len, flags); 1937 goto out; 1938 1939 recv_sndq: 1940 err = tcp_peek_sndq(sk, msg, len); 1941 goto out; 1942 } 1943 EXPORT_SYMBOL(tcp_recvmsg); 1944 1945 void tcp_set_state(struct sock *sk, int state) 1946 { 1947 int oldstate = sk->sk_state; 1948 1949 switch (state) { 1950 case TCP_ESTABLISHED: 1951 if (oldstate != TCP_ESTABLISHED) 1952 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1953 break; 1954 1955 case TCP_CLOSE: 1956 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1957 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1958 1959 sk->sk_prot->unhash(sk); 1960 if (inet_csk(sk)->icsk_bind_hash && 1961 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1962 inet_put_port(sk); 1963 /* fall through */ 1964 default: 1965 if (oldstate == TCP_ESTABLISHED) 1966 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1967 } 1968 1969 /* Change state AFTER socket is unhashed to avoid closed 1970 * socket sitting in hash tables. 1971 */ 1972 sk->sk_state = state; 1973 1974 #ifdef STATE_TRACE 1975 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1976 #endif 1977 } 1978 EXPORT_SYMBOL_GPL(tcp_set_state); 1979 1980 /* 1981 * State processing on a close. This implements the state shift for 1982 * sending our FIN frame. Note that we only send a FIN for some 1983 * states. A shutdown() may have already sent the FIN, or we may be 1984 * closed. 1985 */ 1986 1987 static const unsigned char new_state[16] = { 1988 /* current state: new state: action: */ 1989 /* (Invalid) */ TCP_CLOSE, 1990 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1991 /* TCP_SYN_SENT */ TCP_CLOSE, 1992 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1993 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1994 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1995 /* TCP_TIME_WAIT */ TCP_CLOSE, 1996 /* TCP_CLOSE */ TCP_CLOSE, 1997 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1998 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1999 /* TCP_LISTEN */ TCP_CLOSE, 2000 /* TCP_CLOSING */ TCP_CLOSING, 2001 }; 2002 2003 static int tcp_close_state(struct sock *sk) 2004 { 2005 int next = (int)new_state[sk->sk_state]; 2006 int ns = next & TCP_STATE_MASK; 2007 2008 tcp_set_state(sk, ns); 2009 2010 return next & TCP_ACTION_FIN; 2011 } 2012 2013 /* 2014 * Shutdown the sending side of a connection. Much like close except 2015 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2016 */ 2017 2018 void tcp_shutdown(struct sock *sk, int how) 2019 { 2020 /* We need to grab some memory, and put together a FIN, 2021 * and then put it into the queue to be sent. 2022 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2023 */ 2024 if (!(how & SEND_SHUTDOWN)) 2025 return; 2026 2027 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2028 if ((1 << sk->sk_state) & 2029 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2030 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2031 /* Clear out any half completed packets. FIN if needed. */ 2032 if (tcp_close_state(sk)) 2033 tcp_send_fin(sk); 2034 } 2035 } 2036 EXPORT_SYMBOL(tcp_shutdown); 2037 2038 bool tcp_check_oom(struct sock *sk, int shift) 2039 { 2040 bool too_many_orphans, out_of_socket_memory; 2041 2042 too_many_orphans = tcp_too_many_orphans(sk, shift); 2043 out_of_socket_memory = tcp_out_of_memory(sk); 2044 2045 if (too_many_orphans) 2046 net_info_ratelimited("too many orphaned sockets\n"); 2047 if (out_of_socket_memory) 2048 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2049 return too_many_orphans || out_of_socket_memory; 2050 } 2051 2052 void tcp_close(struct sock *sk, long timeout) 2053 { 2054 struct sk_buff *skb; 2055 int data_was_unread = 0; 2056 int state; 2057 2058 lock_sock(sk); 2059 sk->sk_shutdown = SHUTDOWN_MASK; 2060 2061 if (sk->sk_state == TCP_LISTEN) { 2062 tcp_set_state(sk, TCP_CLOSE); 2063 2064 /* Special case. */ 2065 inet_csk_listen_stop(sk); 2066 2067 goto adjudge_to_death; 2068 } 2069 2070 /* We need to flush the recv. buffs. We do this only on the 2071 * descriptor close, not protocol-sourced closes, because the 2072 * reader process may not have drained the data yet! 2073 */ 2074 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2075 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2076 tcp_hdr(skb)->fin; 2077 data_was_unread += len; 2078 __kfree_skb(skb); 2079 } 2080 2081 sk_mem_reclaim(sk); 2082 2083 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2084 if (sk->sk_state == TCP_CLOSE) 2085 goto adjudge_to_death; 2086 2087 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2088 * data was lost. To witness the awful effects of the old behavior of 2089 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2090 * GET in an FTP client, suspend the process, wait for the client to 2091 * advertise a zero window, then kill -9 the FTP client, wheee... 2092 * Note: timeout is always zero in such a case. 2093 */ 2094 if (unlikely(tcp_sk(sk)->repair)) { 2095 sk->sk_prot->disconnect(sk, 0); 2096 } else if (data_was_unread) { 2097 /* Unread data was tossed, zap the connection. */ 2098 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2099 tcp_set_state(sk, TCP_CLOSE); 2100 tcp_send_active_reset(sk, sk->sk_allocation); 2101 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2102 /* Check zero linger _after_ checking for unread data. */ 2103 sk->sk_prot->disconnect(sk, 0); 2104 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2105 } else if (tcp_close_state(sk)) { 2106 /* We FIN if the application ate all the data before 2107 * zapping the connection. 2108 */ 2109 2110 /* RED-PEN. Formally speaking, we have broken TCP state 2111 * machine. State transitions: 2112 * 2113 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2114 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2115 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2116 * 2117 * are legal only when FIN has been sent (i.e. in window), 2118 * rather than queued out of window. Purists blame. 2119 * 2120 * F.e. "RFC state" is ESTABLISHED, 2121 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2122 * 2123 * The visible declinations are that sometimes 2124 * we enter time-wait state, when it is not required really 2125 * (harmless), do not send active resets, when they are 2126 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2127 * they look as CLOSING or LAST_ACK for Linux) 2128 * Probably, I missed some more holelets. 2129 * --ANK 2130 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2131 * in a single packet! (May consider it later but will 2132 * probably need API support or TCP_CORK SYN-ACK until 2133 * data is written and socket is closed.) 2134 */ 2135 tcp_send_fin(sk); 2136 } 2137 2138 sk_stream_wait_close(sk, timeout); 2139 2140 adjudge_to_death: 2141 state = sk->sk_state; 2142 sock_hold(sk); 2143 sock_orphan(sk); 2144 2145 /* It is the last release_sock in its life. It will remove backlog. */ 2146 release_sock(sk); 2147 2148 2149 /* Now socket is owned by kernel and we acquire BH lock 2150 to finish close. No need to check for user refs. 2151 */ 2152 local_bh_disable(); 2153 bh_lock_sock(sk); 2154 WARN_ON(sock_owned_by_user(sk)); 2155 2156 percpu_counter_inc(sk->sk_prot->orphan_count); 2157 2158 /* Have we already been destroyed by a softirq or backlog? */ 2159 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2160 goto out; 2161 2162 /* This is a (useful) BSD violating of the RFC. There is a 2163 * problem with TCP as specified in that the other end could 2164 * keep a socket open forever with no application left this end. 2165 * We use a 3 minute timeout (about the same as BSD) then kill 2166 * our end. If they send after that then tough - BUT: long enough 2167 * that we won't make the old 4*rto = almost no time - whoops 2168 * reset mistake. 2169 * 2170 * Nope, it was not mistake. It is really desired behaviour 2171 * f.e. on http servers, when such sockets are useless, but 2172 * consume significant resources. Let's do it with special 2173 * linger2 option. --ANK 2174 */ 2175 2176 if (sk->sk_state == TCP_FIN_WAIT2) { 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 if (tp->linger2 < 0) { 2179 tcp_set_state(sk, TCP_CLOSE); 2180 tcp_send_active_reset(sk, GFP_ATOMIC); 2181 NET_INC_STATS_BH(sock_net(sk), 2182 LINUX_MIB_TCPABORTONLINGER); 2183 } else { 2184 const int tmo = tcp_fin_time(sk); 2185 2186 if (tmo > TCP_TIMEWAIT_LEN) { 2187 inet_csk_reset_keepalive_timer(sk, 2188 tmo - TCP_TIMEWAIT_LEN); 2189 } else { 2190 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2191 goto out; 2192 } 2193 } 2194 } 2195 if (sk->sk_state != TCP_CLOSE) { 2196 sk_mem_reclaim(sk); 2197 if (tcp_check_oom(sk, 0)) { 2198 tcp_set_state(sk, TCP_CLOSE); 2199 tcp_send_active_reset(sk, GFP_ATOMIC); 2200 NET_INC_STATS_BH(sock_net(sk), 2201 LINUX_MIB_TCPABORTONMEMORY); 2202 } 2203 } 2204 2205 if (sk->sk_state == TCP_CLOSE) { 2206 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2207 /* We could get here with a non-NULL req if the socket is 2208 * aborted (e.g., closed with unread data) before 3WHS 2209 * finishes. 2210 */ 2211 if (req != NULL) 2212 reqsk_fastopen_remove(sk, req, false); 2213 inet_csk_destroy_sock(sk); 2214 } 2215 /* Otherwise, socket is reprieved until protocol close. */ 2216 2217 out: 2218 bh_unlock_sock(sk); 2219 local_bh_enable(); 2220 sock_put(sk); 2221 } 2222 EXPORT_SYMBOL(tcp_close); 2223 2224 /* These states need RST on ABORT according to RFC793 */ 2225 2226 static inline bool tcp_need_reset(int state) 2227 { 2228 return (1 << state) & 2229 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2230 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2231 } 2232 2233 int tcp_disconnect(struct sock *sk, int flags) 2234 { 2235 struct inet_sock *inet = inet_sk(sk); 2236 struct inet_connection_sock *icsk = inet_csk(sk); 2237 struct tcp_sock *tp = tcp_sk(sk); 2238 int err = 0; 2239 int old_state = sk->sk_state; 2240 2241 if (old_state != TCP_CLOSE) 2242 tcp_set_state(sk, TCP_CLOSE); 2243 2244 /* ABORT function of RFC793 */ 2245 if (old_state == TCP_LISTEN) { 2246 inet_csk_listen_stop(sk); 2247 } else if (unlikely(tp->repair)) { 2248 sk->sk_err = ECONNABORTED; 2249 } else if (tcp_need_reset(old_state) || 2250 (tp->snd_nxt != tp->write_seq && 2251 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2252 /* The last check adjusts for discrepancy of Linux wrt. RFC 2253 * states 2254 */ 2255 tcp_send_active_reset(sk, gfp_any()); 2256 sk->sk_err = ECONNRESET; 2257 } else if (old_state == TCP_SYN_SENT) 2258 sk->sk_err = ECONNRESET; 2259 2260 tcp_clear_xmit_timers(sk); 2261 __skb_queue_purge(&sk->sk_receive_queue); 2262 tcp_write_queue_purge(sk); 2263 __skb_queue_purge(&tp->out_of_order_queue); 2264 #ifdef CONFIG_NET_DMA 2265 __skb_queue_purge(&sk->sk_async_wait_queue); 2266 #endif 2267 2268 inet->inet_dport = 0; 2269 2270 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2271 inet_reset_saddr(sk); 2272 2273 sk->sk_shutdown = 0; 2274 sock_reset_flag(sk, SOCK_DONE); 2275 tp->srtt = 0; 2276 if ((tp->write_seq += tp->max_window + 2) == 0) 2277 tp->write_seq = 1; 2278 icsk->icsk_backoff = 0; 2279 tp->snd_cwnd = 2; 2280 icsk->icsk_probes_out = 0; 2281 tp->packets_out = 0; 2282 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2283 tp->snd_cwnd_cnt = 0; 2284 tp->window_clamp = 0; 2285 tcp_set_ca_state(sk, TCP_CA_Open); 2286 tcp_clear_retrans(tp); 2287 inet_csk_delack_init(sk); 2288 tcp_init_send_head(sk); 2289 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2290 __sk_dst_reset(sk); 2291 2292 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2293 2294 sk->sk_error_report(sk); 2295 return err; 2296 } 2297 EXPORT_SYMBOL(tcp_disconnect); 2298 2299 void tcp_sock_destruct(struct sock *sk) 2300 { 2301 inet_sock_destruct(sk); 2302 2303 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq); 2304 } 2305 2306 static inline bool tcp_can_repair_sock(const struct sock *sk) 2307 { 2308 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2309 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2310 } 2311 2312 static int tcp_repair_options_est(struct tcp_sock *tp, 2313 struct tcp_repair_opt __user *optbuf, unsigned int len) 2314 { 2315 struct tcp_repair_opt opt; 2316 2317 while (len >= sizeof(opt)) { 2318 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2319 return -EFAULT; 2320 2321 optbuf++; 2322 len -= sizeof(opt); 2323 2324 switch (opt.opt_code) { 2325 case TCPOPT_MSS: 2326 tp->rx_opt.mss_clamp = opt.opt_val; 2327 break; 2328 case TCPOPT_WINDOW: 2329 { 2330 u16 snd_wscale = opt.opt_val & 0xFFFF; 2331 u16 rcv_wscale = opt.opt_val >> 16; 2332 2333 if (snd_wscale > 14 || rcv_wscale > 14) 2334 return -EFBIG; 2335 2336 tp->rx_opt.snd_wscale = snd_wscale; 2337 tp->rx_opt.rcv_wscale = rcv_wscale; 2338 tp->rx_opt.wscale_ok = 1; 2339 } 2340 break; 2341 case TCPOPT_SACK_PERM: 2342 if (opt.opt_val != 0) 2343 return -EINVAL; 2344 2345 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2346 if (sysctl_tcp_fack) 2347 tcp_enable_fack(tp); 2348 break; 2349 case TCPOPT_TIMESTAMP: 2350 if (opt.opt_val != 0) 2351 return -EINVAL; 2352 2353 tp->rx_opt.tstamp_ok = 1; 2354 break; 2355 } 2356 } 2357 2358 return 0; 2359 } 2360 2361 /* 2362 * Socket option code for TCP. 2363 */ 2364 static int do_tcp_setsockopt(struct sock *sk, int level, 2365 int optname, char __user *optval, unsigned int optlen) 2366 { 2367 struct tcp_sock *tp = tcp_sk(sk); 2368 struct inet_connection_sock *icsk = inet_csk(sk); 2369 int val; 2370 int err = 0; 2371 2372 /* These are data/string values, all the others are ints */ 2373 switch (optname) { 2374 case TCP_CONGESTION: { 2375 char name[TCP_CA_NAME_MAX]; 2376 2377 if (optlen < 1) 2378 return -EINVAL; 2379 2380 val = strncpy_from_user(name, optval, 2381 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2382 if (val < 0) 2383 return -EFAULT; 2384 name[val] = 0; 2385 2386 lock_sock(sk); 2387 err = tcp_set_congestion_control(sk, name); 2388 release_sock(sk); 2389 return err; 2390 } 2391 default: 2392 /* fallthru */ 2393 break; 2394 } 2395 2396 if (optlen < sizeof(int)) 2397 return -EINVAL; 2398 2399 if (get_user(val, (int __user *)optval)) 2400 return -EFAULT; 2401 2402 lock_sock(sk); 2403 2404 switch (optname) { 2405 case TCP_MAXSEG: 2406 /* Values greater than interface MTU won't take effect. However 2407 * at the point when this call is done we typically don't yet 2408 * know which interface is going to be used */ 2409 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2410 err = -EINVAL; 2411 break; 2412 } 2413 tp->rx_opt.user_mss = val; 2414 break; 2415 2416 case TCP_NODELAY: 2417 if (val) { 2418 /* TCP_NODELAY is weaker than TCP_CORK, so that 2419 * this option on corked socket is remembered, but 2420 * it is not activated until cork is cleared. 2421 * 2422 * However, when TCP_NODELAY is set we make 2423 * an explicit push, which overrides even TCP_CORK 2424 * for currently queued segments. 2425 */ 2426 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2427 tcp_push_pending_frames(sk); 2428 } else { 2429 tp->nonagle &= ~TCP_NAGLE_OFF; 2430 } 2431 break; 2432 2433 case TCP_THIN_LINEAR_TIMEOUTS: 2434 if (val < 0 || val > 1) 2435 err = -EINVAL; 2436 else 2437 tp->thin_lto = val; 2438 break; 2439 2440 case TCP_THIN_DUPACK: 2441 if (val < 0 || val > 1) 2442 err = -EINVAL; 2443 else 2444 tp->thin_dupack = val; 2445 if (tp->thin_dupack) 2446 tcp_disable_early_retrans(tp); 2447 break; 2448 2449 case TCP_REPAIR: 2450 if (!tcp_can_repair_sock(sk)) 2451 err = -EPERM; 2452 else if (val == 1) { 2453 tp->repair = 1; 2454 sk->sk_reuse = SK_FORCE_REUSE; 2455 tp->repair_queue = TCP_NO_QUEUE; 2456 } else if (val == 0) { 2457 tp->repair = 0; 2458 sk->sk_reuse = SK_NO_REUSE; 2459 tcp_send_window_probe(sk); 2460 } else 2461 err = -EINVAL; 2462 2463 break; 2464 2465 case TCP_REPAIR_QUEUE: 2466 if (!tp->repair) 2467 err = -EPERM; 2468 else if (val < TCP_QUEUES_NR) 2469 tp->repair_queue = val; 2470 else 2471 err = -EINVAL; 2472 break; 2473 2474 case TCP_QUEUE_SEQ: 2475 if (sk->sk_state != TCP_CLOSE) 2476 err = -EPERM; 2477 else if (tp->repair_queue == TCP_SEND_QUEUE) 2478 tp->write_seq = val; 2479 else if (tp->repair_queue == TCP_RECV_QUEUE) 2480 tp->rcv_nxt = val; 2481 else 2482 err = -EINVAL; 2483 break; 2484 2485 case TCP_REPAIR_OPTIONS: 2486 if (!tp->repair) 2487 err = -EINVAL; 2488 else if (sk->sk_state == TCP_ESTABLISHED) 2489 err = tcp_repair_options_est(tp, 2490 (struct tcp_repair_opt __user *)optval, 2491 optlen); 2492 else 2493 err = -EPERM; 2494 break; 2495 2496 case TCP_CORK: 2497 /* When set indicates to always queue non-full frames. 2498 * Later the user clears this option and we transmit 2499 * any pending partial frames in the queue. This is 2500 * meant to be used alongside sendfile() to get properly 2501 * filled frames when the user (for example) must write 2502 * out headers with a write() call first and then use 2503 * sendfile to send out the data parts. 2504 * 2505 * TCP_CORK can be set together with TCP_NODELAY and it is 2506 * stronger than TCP_NODELAY. 2507 */ 2508 if (val) { 2509 tp->nonagle |= TCP_NAGLE_CORK; 2510 } else { 2511 tp->nonagle &= ~TCP_NAGLE_CORK; 2512 if (tp->nonagle&TCP_NAGLE_OFF) 2513 tp->nonagle |= TCP_NAGLE_PUSH; 2514 tcp_push_pending_frames(sk); 2515 } 2516 break; 2517 2518 case TCP_KEEPIDLE: 2519 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2520 err = -EINVAL; 2521 else { 2522 tp->keepalive_time = val * HZ; 2523 if (sock_flag(sk, SOCK_KEEPOPEN) && 2524 !((1 << sk->sk_state) & 2525 (TCPF_CLOSE | TCPF_LISTEN))) { 2526 u32 elapsed = keepalive_time_elapsed(tp); 2527 if (tp->keepalive_time > elapsed) 2528 elapsed = tp->keepalive_time - elapsed; 2529 else 2530 elapsed = 0; 2531 inet_csk_reset_keepalive_timer(sk, elapsed); 2532 } 2533 } 2534 break; 2535 case TCP_KEEPINTVL: 2536 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2537 err = -EINVAL; 2538 else 2539 tp->keepalive_intvl = val * HZ; 2540 break; 2541 case TCP_KEEPCNT: 2542 if (val < 1 || val > MAX_TCP_KEEPCNT) 2543 err = -EINVAL; 2544 else 2545 tp->keepalive_probes = val; 2546 break; 2547 case TCP_SYNCNT: 2548 if (val < 1 || val > MAX_TCP_SYNCNT) 2549 err = -EINVAL; 2550 else 2551 icsk->icsk_syn_retries = val; 2552 break; 2553 2554 case TCP_LINGER2: 2555 if (val < 0) 2556 tp->linger2 = -1; 2557 else if (val > sysctl_tcp_fin_timeout / HZ) 2558 tp->linger2 = 0; 2559 else 2560 tp->linger2 = val * HZ; 2561 break; 2562 2563 case TCP_DEFER_ACCEPT: 2564 /* Translate value in seconds to number of retransmits */ 2565 icsk->icsk_accept_queue.rskq_defer_accept = 2566 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2567 TCP_RTO_MAX / HZ); 2568 break; 2569 2570 case TCP_WINDOW_CLAMP: 2571 if (!val) { 2572 if (sk->sk_state != TCP_CLOSE) { 2573 err = -EINVAL; 2574 break; 2575 } 2576 tp->window_clamp = 0; 2577 } else 2578 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2579 SOCK_MIN_RCVBUF / 2 : val; 2580 break; 2581 2582 case TCP_QUICKACK: 2583 if (!val) { 2584 icsk->icsk_ack.pingpong = 1; 2585 } else { 2586 icsk->icsk_ack.pingpong = 0; 2587 if ((1 << sk->sk_state) & 2588 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2589 inet_csk_ack_scheduled(sk)) { 2590 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2591 tcp_cleanup_rbuf(sk, 1); 2592 if (!(val & 1)) 2593 icsk->icsk_ack.pingpong = 1; 2594 } 2595 } 2596 break; 2597 2598 #ifdef CONFIG_TCP_MD5SIG 2599 case TCP_MD5SIG: 2600 /* Read the IP->Key mappings from userspace */ 2601 err = tp->af_specific->md5_parse(sk, optval, optlen); 2602 break; 2603 #endif 2604 case TCP_USER_TIMEOUT: 2605 /* Cap the max timeout in ms TCP will retry/retrans 2606 * before giving up and aborting (ETIMEDOUT) a connection. 2607 */ 2608 if (val < 0) 2609 err = -EINVAL; 2610 else 2611 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2612 break; 2613 2614 case TCP_FASTOPEN: 2615 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2616 TCPF_LISTEN))) 2617 err = fastopen_init_queue(sk, val); 2618 else 2619 err = -EINVAL; 2620 break; 2621 case TCP_TIMESTAMP: 2622 if (!tp->repair) 2623 err = -EPERM; 2624 else 2625 tp->tsoffset = val - tcp_time_stamp; 2626 break; 2627 default: 2628 err = -ENOPROTOOPT; 2629 break; 2630 } 2631 2632 release_sock(sk); 2633 return err; 2634 } 2635 2636 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2637 unsigned int optlen) 2638 { 2639 const struct inet_connection_sock *icsk = inet_csk(sk); 2640 2641 if (level != SOL_TCP) 2642 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2643 optval, optlen); 2644 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2645 } 2646 EXPORT_SYMBOL(tcp_setsockopt); 2647 2648 #ifdef CONFIG_COMPAT 2649 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2650 char __user *optval, unsigned int optlen) 2651 { 2652 if (level != SOL_TCP) 2653 return inet_csk_compat_setsockopt(sk, level, optname, 2654 optval, optlen); 2655 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2656 } 2657 EXPORT_SYMBOL(compat_tcp_setsockopt); 2658 #endif 2659 2660 /* Return information about state of tcp endpoint in API format. */ 2661 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2662 { 2663 const struct tcp_sock *tp = tcp_sk(sk); 2664 const struct inet_connection_sock *icsk = inet_csk(sk); 2665 u32 now = tcp_time_stamp; 2666 2667 memset(info, 0, sizeof(*info)); 2668 2669 info->tcpi_state = sk->sk_state; 2670 info->tcpi_ca_state = icsk->icsk_ca_state; 2671 info->tcpi_retransmits = icsk->icsk_retransmits; 2672 info->tcpi_probes = icsk->icsk_probes_out; 2673 info->tcpi_backoff = icsk->icsk_backoff; 2674 2675 if (tp->rx_opt.tstamp_ok) 2676 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2677 if (tcp_is_sack(tp)) 2678 info->tcpi_options |= TCPI_OPT_SACK; 2679 if (tp->rx_opt.wscale_ok) { 2680 info->tcpi_options |= TCPI_OPT_WSCALE; 2681 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2682 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2683 } 2684 2685 if (tp->ecn_flags & TCP_ECN_OK) 2686 info->tcpi_options |= TCPI_OPT_ECN; 2687 if (tp->ecn_flags & TCP_ECN_SEEN) 2688 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2689 if (tp->syn_data_acked) 2690 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2691 2692 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2693 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2694 info->tcpi_snd_mss = tp->mss_cache; 2695 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2696 2697 if (sk->sk_state == TCP_LISTEN) { 2698 info->tcpi_unacked = sk->sk_ack_backlog; 2699 info->tcpi_sacked = sk->sk_max_ack_backlog; 2700 } else { 2701 info->tcpi_unacked = tp->packets_out; 2702 info->tcpi_sacked = tp->sacked_out; 2703 } 2704 info->tcpi_lost = tp->lost_out; 2705 info->tcpi_retrans = tp->retrans_out; 2706 info->tcpi_fackets = tp->fackets_out; 2707 2708 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2709 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2710 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2711 2712 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2713 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2714 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2715 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2716 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2717 info->tcpi_snd_cwnd = tp->snd_cwnd; 2718 info->tcpi_advmss = tp->advmss; 2719 info->tcpi_reordering = tp->reordering; 2720 2721 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2722 info->tcpi_rcv_space = tp->rcvq_space.space; 2723 2724 info->tcpi_total_retrans = tp->total_retrans; 2725 } 2726 EXPORT_SYMBOL_GPL(tcp_get_info); 2727 2728 static int do_tcp_getsockopt(struct sock *sk, int level, 2729 int optname, char __user *optval, int __user *optlen) 2730 { 2731 struct inet_connection_sock *icsk = inet_csk(sk); 2732 struct tcp_sock *tp = tcp_sk(sk); 2733 int val, len; 2734 2735 if (get_user(len, optlen)) 2736 return -EFAULT; 2737 2738 len = min_t(unsigned int, len, sizeof(int)); 2739 2740 if (len < 0) 2741 return -EINVAL; 2742 2743 switch (optname) { 2744 case TCP_MAXSEG: 2745 val = tp->mss_cache; 2746 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2747 val = tp->rx_opt.user_mss; 2748 if (tp->repair) 2749 val = tp->rx_opt.mss_clamp; 2750 break; 2751 case TCP_NODELAY: 2752 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2753 break; 2754 case TCP_CORK: 2755 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2756 break; 2757 case TCP_KEEPIDLE: 2758 val = keepalive_time_when(tp) / HZ; 2759 break; 2760 case TCP_KEEPINTVL: 2761 val = keepalive_intvl_when(tp) / HZ; 2762 break; 2763 case TCP_KEEPCNT: 2764 val = keepalive_probes(tp); 2765 break; 2766 case TCP_SYNCNT: 2767 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2768 break; 2769 case TCP_LINGER2: 2770 val = tp->linger2; 2771 if (val >= 0) 2772 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2773 break; 2774 case TCP_DEFER_ACCEPT: 2775 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2776 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2777 break; 2778 case TCP_WINDOW_CLAMP: 2779 val = tp->window_clamp; 2780 break; 2781 case TCP_INFO: { 2782 struct tcp_info info; 2783 2784 if (get_user(len, optlen)) 2785 return -EFAULT; 2786 2787 tcp_get_info(sk, &info); 2788 2789 len = min_t(unsigned int, len, sizeof(info)); 2790 if (put_user(len, optlen)) 2791 return -EFAULT; 2792 if (copy_to_user(optval, &info, len)) 2793 return -EFAULT; 2794 return 0; 2795 } 2796 case TCP_QUICKACK: 2797 val = !icsk->icsk_ack.pingpong; 2798 break; 2799 2800 case TCP_CONGESTION: 2801 if (get_user(len, optlen)) 2802 return -EFAULT; 2803 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2804 if (put_user(len, optlen)) 2805 return -EFAULT; 2806 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2807 return -EFAULT; 2808 return 0; 2809 2810 case TCP_THIN_LINEAR_TIMEOUTS: 2811 val = tp->thin_lto; 2812 break; 2813 case TCP_THIN_DUPACK: 2814 val = tp->thin_dupack; 2815 break; 2816 2817 case TCP_REPAIR: 2818 val = tp->repair; 2819 break; 2820 2821 case TCP_REPAIR_QUEUE: 2822 if (tp->repair) 2823 val = tp->repair_queue; 2824 else 2825 return -EINVAL; 2826 break; 2827 2828 case TCP_QUEUE_SEQ: 2829 if (tp->repair_queue == TCP_SEND_QUEUE) 2830 val = tp->write_seq; 2831 else if (tp->repair_queue == TCP_RECV_QUEUE) 2832 val = tp->rcv_nxt; 2833 else 2834 return -EINVAL; 2835 break; 2836 2837 case TCP_USER_TIMEOUT: 2838 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2839 break; 2840 case TCP_TIMESTAMP: 2841 val = tcp_time_stamp + tp->tsoffset; 2842 break; 2843 default: 2844 return -ENOPROTOOPT; 2845 } 2846 2847 if (put_user(len, optlen)) 2848 return -EFAULT; 2849 if (copy_to_user(optval, &val, len)) 2850 return -EFAULT; 2851 return 0; 2852 } 2853 2854 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2855 int __user *optlen) 2856 { 2857 struct inet_connection_sock *icsk = inet_csk(sk); 2858 2859 if (level != SOL_TCP) 2860 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2861 optval, optlen); 2862 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2863 } 2864 EXPORT_SYMBOL(tcp_getsockopt); 2865 2866 #ifdef CONFIG_COMPAT 2867 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2868 char __user *optval, int __user *optlen) 2869 { 2870 if (level != SOL_TCP) 2871 return inet_csk_compat_getsockopt(sk, level, optname, 2872 optval, optlen); 2873 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2874 } 2875 EXPORT_SYMBOL(compat_tcp_getsockopt); 2876 #endif 2877 2878 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, 2879 netdev_features_t features) 2880 { 2881 struct sk_buff *segs = ERR_PTR(-EINVAL); 2882 struct tcphdr *th; 2883 unsigned int thlen; 2884 unsigned int seq; 2885 __be32 delta; 2886 unsigned int oldlen; 2887 unsigned int mss; 2888 struct sk_buff *gso_skb = skb; 2889 __sum16 newcheck; 2890 bool ooo_okay, copy_destructor; 2891 2892 if (!pskb_may_pull(skb, sizeof(*th))) 2893 goto out; 2894 2895 th = tcp_hdr(skb); 2896 thlen = th->doff * 4; 2897 if (thlen < sizeof(*th)) 2898 goto out; 2899 2900 if (!pskb_may_pull(skb, thlen)) 2901 goto out; 2902 2903 oldlen = (u16)~skb->len; 2904 __skb_pull(skb, thlen); 2905 2906 mss = skb_shinfo(skb)->gso_size; 2907 if (unlikely(skb->len <= mss)) 2908 goto out; 2909 2910 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2911 /* Packet is from an untrusted source, reset gso_segs. */ 2912 int type = skb_shinfo(skb)->gso_type; 2913 2914 if (unlikely(type & 2915 ~(SKB_GSO_TCPV4 | 2916 SKB_GSO_DODGY | 2917 SKB_GSO_TCP_ECN | 2918 SKB_GSO_TCPV6 | 2919 SKB_GSO_GRE | 2920 SKB_GSO_UDP_TUNNEL | 2921 0) || 2922 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2923 goto out; 2924 2925 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2926 2927 segs = NULL; 2928 goto out; 2929 } 2930 2931 copy_destructor = gso_skb->destructor == tcp_wfree; 2932 ooo_okay = gso_skb->ooo_okay; 2933 /* All segments but the first should have ooo_okay cleared */ 2934 skb->ooo_okay = 0; 2935 2936 segs = skb_segment(skb, features); 2937 if (IS_ERR(segs)) 2938 goto out; 2939 2940 /* Only first segment might have ooo_okay set */ 2941 segs->ooo_okay = ooo_okay; 2942 2943 delta = htonl(oldlen + (thlen + mss)); 2944 2945 skb = segs; 2946 th = tcp_hdr(skb); 2947 seq = ntohl(th->seq); 2948 2949 newcheck = ~csum_fold((__force __wsum)((__force u32)th->check + 2950 (__force u32)delta)); 2951 2952 do { 2953 th->fin = th->psh = 0; 2954 th->check = newcheck; 2955 2956 if (skb->ip_summed != CHECKSUM_PARTIAL) 2957 th->check = 2958 csum_fold(csum_partial(skb_transport_header(skb), 2959 thlen, skb->csum)); 2960 2961 seq += mss; 2962 if (copy_destructor) { 2963 skb->destructor = gso_skb->destructor; 2964 skb->sk = gso_skb->sk; 2965 /* {tcp|sock}_wfree() use exact truesize accounting : 2966 * sum(skb->truesize) MUST be exactly be gso_skb->truesize 2967 * So we account mss bytes of 'true size' for each segment. 2968 * The last segment will contain the remaining. 2969 */ 2970 skb->truesize = mss; 2971 gso_skb->truesize -= mss; 2972 } 2973 skb = skb->next; 2974 th = tcp_hdr(skb); 2975 2976 th->seq = htonl(seq); 2977 th->cwr = 0; 2978 } while (skb->next); 2979 2980 /* Following permits TCP Small Queues to work well with GSO : 2981 * The callback to TCP stack will be called at the time last frag 2982 * is freed at TX completion, and not right now when gso_skb 2983 * is freed by GSO engine 2984 */ 2985 if (copy_destructor) { 2986 swap(gso_skb->sk, skb->sk); 2987 swap(gso_skb->destructor, skb->destructor); 2988 swap(gso_skb->truesize, skb->truesize); 2989 } 2990 2991 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2992 skb->data_len); 2993 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2994 (__force u32)delta)); 2995 if (skb->ip_summed != CHECKSUM_PARTIAL) 2996 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2997 thlen, skb->csum)); 2998 2999 out: 3000 return segs; 3001 } 3002 EXPORT_SYMBOL(tcp_tso_segment); 3003 3004 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3005 { 3006 struct sk_buff **pp = NULL; 3007 struct sk_buff *p; 3008 struct tcphdr *th; 3009 struct tcphdr *th2; 3010 unsigned int len; 3011 unsigned int thlen; 3012 __be32 flags; 3013 unsigned int mss = 1; 3014 unsigned int hlen; 3015 unsigned int off; 3016 int flush = 1; 3017 int i; 3018 3019 off = skb_gro_offset(skb); 3020 hlen = off + sizeof(*th); 3021 th = skb_gro_header_fast(skb, off); 3022 if (skb_gro_header_hard(skb, hlen)) { 3023 th = skb_gro_header_slow(skb, hlen, off); 3024 if (unlikely(!th)) 3025 goto out; 3026 } 3027 3028 thlen = th->doff * 4; 3029 if (thlen < sizeof(*th)) 3030 goto out; 3031 3032 hlen = off + thlen; 3033 if (skb_gro_header_hard(skb, hlen)) { 3034 th = skb_gro_header_slow(skb, hlen, off); 3035 if (unlikely(!th)) 3036 goto out; 3037 } 3038 3039 skb_gro_pull(skb, thlen); 3040 3041 len = skb_gro_len(skb); 3042 flags = tcp_flag_word(th); 3043 3044 for (; (p = *head); head = &p->next) { 3045 if (!NAPI_GRO_CB(p)->same_flow) 3046 continue; 3047 3048 th2 = tcp_hdr(p); 3049 3050 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 3051 NAPI_GRO_CB(p)->same_flow = 0; 3052 continue; 3053 } 3054 3055 goto found; 3056 } 3057 3058 goto out_check_final; 3059 3060 found: 3061 flush = NAPI_GRO_CB(p)->flush; 3062 flush |= (__force int)(flags & TCP_FLAG_CWR); 3063 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 3064 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 3065 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 3066 for (i = sizeof(*th); i < thlen; i += 4) 3067 flush |= *(u32 *)((u8 *)th + i) ^ 3068 *(u32 *)((u8 *)th2 + i); 3069 3070 mss = skb_shinfo(p)->gso_size; 3071 3072 flush |= (len - 1) >= mss; 3073 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 3074 3075 if (flush || skb_gro_receive(head, skb)) { 3076 mss = 1; 3077 goto out_check_final; 3078 } 3079 3080 p = *head; 3081 th2 = tcp_hdr(p); 3082 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 3083 3084 out_check_final: 3085 flush = len < mss; 3086 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 3087 TCP_FLAG_RST | TCP_FLAG_SYN | 3088 TCP_FLAG_FIN)); 3089 3090 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 3091 pp = head; 3092 3093 out: 3094 NAPI_GRO_CB(skb)->flush |= flush; 3095 3096 return pp; 3097 } 3098 EXPORT_SYMBOL(tcp_gro_receive); 3099 3100 int tcp_gro_complete(struct sk_buff *skb) 3101 { 3102 struct tcphdr *th = tcp_hdr(skb); 3103 3104 skb->csum_start = skb_transport_header(skb) - skb->head; 3105 skb->csum_offset = offsetof(struct tcphdr, check); 3106 skb->ip_summed = CHECKSUM_PARTIAL; 3107 3108 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3109 3110 if (th->cwr) 3111 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3112 3113 return 0; 3114 } 3115 EXPORT_SYMBOL(tcp_gro_complete); 3116 3117 #ifdef CONFIG_TCP_MD5SIG 3118 static unsigned long tcp_md5sig_users; 3119 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 3120 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 3121 3122 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 3123 { 3124 int cpu; 3125 3126 for_each_possible_cpu(cpu) { 3127 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 3128 3129 if (p->md5_desc.tfm) 3130 crypto_free_hash(p->md5_desc.tfm); 3131 } 3132 free_percpu(pool); 3133 } 3134 3135 void tcp_free_md5sig_pool(void) 3136 { 3137 struct tcp_md5sig_pool __percpu *pool = NULL; 3138 3139 spin_lock_bh(&tcp_md5sig_pool_lock); 3140 if (--tcp_md5sig_users == 0) { 3141 pool = tcp_md5sig_pool; 3142 tcp_md5sig_pool = NULL; 3143 } 3144 spin_unlock_bh(&tcp_md5sig_pool_lock); 3145 if (pool) 3146 __tcp_free_md5sig_pool(pool); 3147 } 3148 EXPORT_SYMBOL(tcp_free_md5sig_pool); 3149 3150 static struct tcp_md5sig_pool __percpu * 3151 __tcp_alloc_md5sig_pool(struct sock *sk) 3152 { 3153 int cpu; 3154 struct tcp_md5sig_pool __percpu *pool; 3155 3156 pool = alloc_percpu(struct tcp_md5sig_pool); 3157 if (!pool) 3158 return NULL; 3159 3160 for_each_possible_cpu(cpu) { 3161 struct crypto_hash *hash; 3162 3163 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 3164 if (IS_ERR_OR_NULL(hash)) 3165 goto out_free; 3166 3167 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 3168 } 3169 return pool; 3170 out_free: 3171 __tcp_free_md5sig_pool(pool); 3172 return NULL; 3173 } 3174 3175 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 3176 { 3177 struct tcp_md5sig_pool __percpu *pool; 3178 bool alloc = false; 3179 3180 retry: 3181 spin_lock_bh(&tcp_md5sig_pool_lock); 3182 pool = tcp_md5sig_pool; 3183 if (tcp_md5sig_users++ == 0) { 3184 alloc = true; 3185 spin_unlock_bh(&tcp_md5sig_pool_lock); 3186 } else if (!pool) { 3187 tcp_md5sig_users--; 3188 spin_unlock_bh(&tcp_md5sig_pool_lock); 3189 cpu_relax(); 3190 goto retry; 3191 } else 3192 spin_unlock_bh(&tcp_md5sig_pool_lock); 3193 3194 if (alloc) { 3195 /* we cannot hold spinlock here because this may sleep. */ 3196 struct tcp_md5sig_pool __percpu *p; 3197 3198 p = __tcp_alloc_md5sig_pool(sk); 3199 spin_lock_bh(&tcp_md5sig_pool_lock); 3200 if (!p) { 3201 tcp_md5sig_users--; 3202 spin_unlock_bh(&tcp_md5sig_pool_lock); 3203 return NULL; 3204 } 3205 pool = tcp_md5sig_pool; 3206 if (pool) { 3207 /* oops, it has already been assigned. */ 3208 spin_unlock_bh(&tcp_md5sig_pool_lock); 3209 __tcp_free_md5sig_pool(p); 3210 } else { 3211 tcp_md5sig_pool = pool = p; 3212 spin_unlock_bh(&tcp_md5sig_pool_lock); 3213 } 3214 } 3215 return pool; 3216 } 3217 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3218 3219 3220 /** 3221 * tcp_get_md5sig_pool - get md5sig_pool for this user 3222 * 3223 * We use percpu structure, so if we succeed, we exit with preemption 3224 * and BH disabled, to make sure another thread or softirq handling 3225 * wont try to get same context. 3226 */ 3227 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3228 { 3229 struct tcp_md5sig_pool __percpu *p; 3230 3231 local_bh_disable(); 3232 3233 spin_lock(&tcp_md5sig_pool_lock); 3234 p = tcp_md5sig_pool; 3235 if (p) 3236 tcp_md5sig_users++; 3237 spin_unlock(&tcp_md5sig_pool_lock); 3238 3239 if (p) 3240 return this_cpu_ptr(p); 3241 3242 local_bh_enable(); 3243 return NULL; 3244 } 3245 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3246 3247 void tcp_put_md5sig_pool(void) 3248 { 3249 local_bh_enable(); 3250 tcp_free_md5sig_pool(); 3251 } 3252 EXPORT_SYMBOL(tcp_put_md5sig_pool); 3253 3254 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3255 const struct tcphdr *th) 3256 { 3257 struct scatterlist sg; 3258 struct tcphdr hdr; 3259 int err; 3260 3261 /* We are not allowed to change tcphdr, make a local copy */ 3262 memcpy(&hdr, th, sizeof(hdr)); 3263 hdr.check = 0; 3264 3265 /* options aren't included in the hash */ 3266 sg_init_one(&sg, &hdr, sizeof(hdr)); 3267 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3268 return err; 3269 } 3270 EXPORT_SYMBOL(tcp_md5_hash_header); 3271 3272 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3273 const struct sk_buff *skb, unsigned int header_len) 3274 { 3275 struct scatterlist sg; 3276 const struct tcphdr *tp = tcp_hdr(skb); 3277 struct hash_desc *desc = &hp->md5_desc; 3278 unsigned int i; 3279 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3280 skb_headlen(skb) - header_len : 0; 3281 const struct skb_shared_info *shi = skb_shinfo(skb); 3282 struct sk_buff *frag_iter; 3283 3284 sg_init_table(&sg, 1); 3285 3286 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3287 if (crypto_hash_update(desc, &sg, head_data_len)) 3288 return 1; 3289 3290 for (i = 0; i < shi->nr_frags; ++i) { 3291 const struct skb_frag_struct *f = &shi->frags[i]; 3292 unsigned int offset = f->page_offset; 3293 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3294 3295 sg_set_page(&sg, page, skb_frag_size(f), 3296 offset_in_page(offset)); 3297 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3298 return 1; 3299 } 3300 3301 skb_walk_frags(skb, frag_iter) 3302 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3303 return 1; 3304 3305 return 0; 3306 } 3307 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3308 3309 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3310 { 3311 struct scatterlist sg; 3312 3313 sg_init_one(&sg, key->key, key->keylen); 3314 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3315 } 3316 EXPORT_SYMBOL(tcp_md5_hash_key); 3317 3318 #endif 3319 3320 void tcp_done(struct sock *sk) 3321 { 3322 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3323 3324 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3325 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3326 3327 tcp_set_state(sk, TCP_CLOSE); 3328 tcp_clear_xmit_timers(sk); 3329 if (req != NULL) 3330 reqsk_fastopen_remove(sk, req, false); 3331 3332 sk->sk_shutdown = SHUTDOWN_MASK; 3333 3334 if (!sock_flag(sk, SOCK_DEAD)) 3335 sk->sk_state_change(sk); 3336 else 3337 inet_csk_destroy_sock(sk); 3338 } 3339 EXPORT_SYMBOL_GPL(tcp_done); 3340 3341 extern struct tcp_congestion_ops tcp_reno; 3342 3343 static __initdata unsigned long thash_entries; 3344 static int __init set_thash_entries(char *str) 3345 { 3346 ssize_t ret; 3347 3348 if (!str) 3349 return 0; 3350 3351 ret = kstrtoul(str, 0, &thash_entries); 3352 if (ret) 3353 return 0; 3354 3355 return 1; 3356 } 3357 __setup("thash_entries=", set_thash_entries); 3358 3359 void tcp_init_mem(struct net *net) 3360 { 3361 unsigned long limit = nr_free_buffer_pages() / 8; 3362 limit = max(limit, 128UL); 3363 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3364 net->ipv4.sysctl_tcp_mem[1] = limit; 3365 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3366 } 3367 3368 void __init tcp_init(void) 3369 { 3370 struct sk_buff *skb = NULL; 3371 unsigned long limit; 3372 int max_rshare, max_wshare, cnt; 3373 unsigned int i; 3374 3375 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3376 3377 percpu_counter_init(&tcp_sockets_allocated, 0); 3378 percpu_counter_init(&tcp_orphan_count, 0); 3379 tcp_hashinfo.bind_bucket_cachep = 3380 kmem_cache_create("tcp_bind_bucket", 3381 sizeof(struct inet_bind_bucket), 0, 3382 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3383 3384 /* Size and allocate the main established and bind bucket 3385 * hash tables. 3386 * 3387 * The methodology is similar to that of the buffer cache. 3388 */ 3389 tcp_hashinfo.ehash = 3390 alloc_large_system_hash("TCP established", 3391 sizeof(struct inet_ehash_bucket), 3392 thash_entries, 3393 17, /* one slot per 128 KB of memory */ 3394 0, 3395 NULL, 3396 &tcp_hashinfo.ehash_mask, 3397 0, 3398 thash_entries ? 0 : 512 * 1024); 3399 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3400 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3401 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3402 } 3403 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3404 panic("TCP: failed to alloc ehash_locks"); 3405 tcp_hashinfo.bhash = 3406 alloc_large_system_hash("TCP bind", 3407 sizeof(struct inet_bind_hashbucket), 3408 tcp_hashinfo.ehash_mask + 1, 3409 17, /* one slot per 128 KB of memory */ 3410 0, 3411 &tcp_hashinfo.bhash_size, 3412 NULL, 3413 0, 3414 64 * 1024); 3415 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3416 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3417 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3418 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3419 } 3420 3421 3422 cnt = tcp_hashinfo.ehash_mask + 1; 3423 3424 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3425 sysctl_tcp_max_orphans = cnt / 2; 3426 sysctl_max_syn_backlog = max(128, cnt / 256); 3427 3428 tcp_init_mem(&init_net); 3429 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3430 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3431 max_wshare = min(4UL*1024*1024, limit); 3432 max_rshare = min(6UL*1024*1024, limit); 3433 3434 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3435 sysctl_tcp_wmem[1] = 16*1024; 3436 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3437 3438 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3439 sysctl_tcp_rmem[1] = 87380; 3440 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3441 3442 pr_info("Hash tables configured (established %u bind %u)\n", 3443 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3444 3445 tcp_metrics_init(); 3446 3447 tcp_register_congestion_control(&tcp_reno); 3448 3449 tcp_tasklet_init(); 3450 } 3451