1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 sk->sk_route_forced_caps = NETIF_F_GSO; 460 } 461 EXPORT_SYMBOL(tcp_init_sock); 462 463 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 464 { 465 struct sk_buff *skb = tcp_write_queue_tail(sk); 466 467 if (tsflags && skb) { 468 struct skb_shared_info *shinfo = skb_shinfo(skb); 469 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 470 471 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 472 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 473 tcb->txstamp_ack = 1; 474 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 475 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 476 } 477 } 478 479 static bool tcp_stream_is_readable(struct sock *sk, int target) 480 { 481 if (tcp_epollin_ready(sk, target)) 482 return true; 483 return sk_is_readable(sk); 484 } 485 486 /* 487 * Wait for a TCP event. 488 * 489 * Note that we don't need to lock the socket, as the upper poll layers 490 * take care of normal races (between the test and the event) and we don't 491 * go look at any of the socket buffers directly. 492 */ 493 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 494 { 495 __poll_t mask; 496 struct sock *sk = sock->sk; 497 const struct tcp_sock *tp = tcp_sk(sk); 498 int state; 499 500 sock_poll_wait(file, sock, wait); 501 502 state = inet_sk_state_load(sk); 503 if (state == TCP_LISTEN) 504 return inet_csk_listen_poll(sk); 505 506 /* Socket is not locked. We are protected from async events 507 * by poll logic and correct handling of state changes 508 * made by other threads is impossible in any case. 509 */ 510 511 mask = 0; 512 513 /* 514 * EPOLLHUP is certainly not done right. But poll() doesn't 515 * have a notion of HUP in just one direction, and for a 516 * socket the read side is more interesting. 517 * 518 * Some poll() documentation says that EPOLLHUP is incompatible 519 * with the EPOLLOUT/POLLWR flags, so somebody should check this 520 * all. But careful, it tends to be safer to return too many 521 * bits than too few, and you can easily break real applications 522 * if you don't tell them that something has hung up! 523 * 524 * Check-me. 525 * 526 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 527 * our fs/select.c). It means that after we received EOF, 528 * poll always returns immediately, making impossible poll() on write() 529 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 530 * if and only if shutdown has been made in both directions. 531 * Actually, it is interesting to look how Solaris and DUX 532 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 533 * then we could set it on SND_SHUTDOWN. BTW examples given 534 * in Stevens' books assume exactly this behaviour, it explains 535 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 536 * 537 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 538 * blocking on fresh not-connected or disconnected socket. --ANK 539 */ 540 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 541 mask |= EPOLLHUP; 542 if (sk->sk_shutdown & RCV_SHUTDOWN) 543 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 544 545 /* Connected or passive Fast Open socket? */ 546 if (state != TCP_SYN_SENT && 547 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 548 int target = sock_rcvlowat(sk, 0, INT_MAX); 549 550 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 551 !sock_flag(sk, SOCK_URGINLINE) && 552 tp->urg_data) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (tp->urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = tp->urg_data && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 846 if (spliced) 847 return spliced; 848 849 return ret; 850 } 851 EXPORT_SYMBOL(tcp_splice_read); 852 853 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 854 bool force_schedule) 855 { 856 struct sk_buff *skb; 857 858 if (unlikely(tcp_under_memory_pressure(sk))) 859 sk_mem_reclaim_partial(sk); 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 897 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 898 899 /* We try hard to avoid divides here */ 900 size_goal = tp->gso_segs * mss_now; 901 if (unlikely(new_size_goal < size_goal || 902 new_size_goal >= size_goal + mss_now)) { 903 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 904 sk->sk_gso_max_segs); 905 size_goal = tp->gso_segs * mss_now; 906 } 907 908 return max(size_goal, mss_now); 909 } 910 911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 912 { 913 int mss_now; 914 915 mss_now = tcp_current_mss(sk); 916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 917 918 return mss_now; 919 } 920 921 /* In some cases, both sendpage() and sendmsg() could have added 922 * an skb to the write queue, but failed adding payload on it. 923 * We need to remove it to consume less memory, but more 924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 925 * users. 926 */ 927 void tcp_remove_empty_skb(struct sock *sk) 928 { 929 struct sk_buff *skb = tcp_write_queue_tail(sk); 930 931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 932 tcp_unlink_write_queue(skb, sk); 933 if (tcp_write_queue_empty(sk)) 934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 935 tcp_wmem_free_skb(sk, skb); 936 } 937 } 938 939 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 940 struct page *page, int offset, size_t *size) 941 { 942 struct sk_buff *skb = tcp_write_queue_tail(sk); 943 struct tcp_sock *tp = tcp_sk(sk); 944 bool can_coalesce; 945 int copy, i; 946 947 if (!skb || (copy = size_goal - skb->len) <= 0 || 948 !tcp_skb_can_collapse_to(skb)) { 949 new_segment: 950 if (!sk_stream_memory_free(sk)) 951 return NULL; 952 953 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 954 tcp_rtx_and_write_queues_empty(sk)); 955 if (!skb) 956 return NULL; 957 958 #ifdef CONFIG_TLS_DEVICE 959 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 960 #endif 961 tcp_skb_entail(sk, skb); 962 copy = size_goal; 963 } 964 965 if (copy > *size) 966 copy = *size; 967 968 i = skb_shinfo(skb)->nr_frags; 969 can_coalesce = skb_can_coalesce(skb, i, page, offset); 970 if (!can_coalesce && i >= sysctl_max_skb_frags) { 971 tcp_mark_push(tp, skb); 972 goto new_segment; 973 } 974 if (!sk_wmem_schedule(sk, copy)) 975 return NULL; 976 977 if (can_coalesce) { 978 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 979 } else { 980 get_page(page); 981 skb_fill_page_desc(skb, i, page, offset, copy); 982 } 983 984 if (!(flags & MSG_NO_SHARED_FRAGS)) 985 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 986 987 skb->len += copy; 988 skb->data_len += copy; 989 skb->truesize += copy; 990 sk_wmem_queued_add(sk, copy); 991 sk_mem_charge(sk, copy); 992 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 993 TCP_SKB_CB(skb)->end_seq += copy; 994 tcp_skb_pcount_set(skb, 0); 995 996 *size = copy; 997 return skb; 998 } 999 1000 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1001 size_t size, int flags) 1002 { 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 int mss_now, size_goal; 1005 int err; 1006 ssize_t copied; 1007 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1008 1009 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1010 WARN_ONCE(!sendpage_ok(page), 1011 "page must not be a Slab one and have page_count > 0")) 1012 return -EINVAL; 1013 1014 /* Wait for a connection to finish. One exception is TCP Fast Open 1015 * (passive side) where data is allowed to be sent before a connection 1016 * is fully established. 1017 */ 1018 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1019 !tcp_passive_fastopen(sk)) { 1020 err = sk_stream_wait_connect(sk, &timeo); 1021 if (err != 0) 1022 goto out_err; 1023 } 1024 1025 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1026 1027 mss_now = tcp_send_mss(sk, &size_goal, flags); 1028 copied = 0; 1029 1030 err = -EPIPE; 1031 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1032 goto out_err; 1033 1034 while (size > 0) { 1035 struct sk_buff *skb; 1036 size_t copy = size; 1037 1038 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1039 if (!skb) 1040 goto wait_for_space; 1041 1042 if (!copied) 1043 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1044 1045 copied += copy; 1046 offset += copy; 1047 size -= copy; 1048 if (!size) 1049 goto out; 1050 1051 if (skb->len < size_goal || (flags & MSG_OOB)) 1052 continue; 1053 1054 if (forced_push(tp)) { 1055 tcp_mark_push(tp, skb); 1056 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1057 } else if (skb == tcp_send_head(sk)) 1058 tcp_push_one(sk, mss_now); 1059 continue; 1060 1061 wait_for_space: 1062 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1063 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1064 TCP_NAGLE_PUSH, size_goal); 1065 1066 err = sk_stream_wait_memory(sk, &timeo); 1067 if (err != 0) 1068 goto do_error; 1069 1070 mss_now = tcp_send_mss(sk, &size_goal, flags); 1071 } 1072 1073 out: 1074 if (copied) { 1075 tcp_tx_timestamp(sk, sk->sk_tsflags); 1076 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1077 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1078 } 1079 return copied; 1080 1081 do_error: 1082 tcp_remove_empty_skb(sk); 1083 if (copied) 1084 goto out; 1085 out_err: 1086 /* make sure we wake any epoll edge trigger waiter */ 1087 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1088 sk->sk_write_space(sk); 1089 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1090 } 1091 return sk_stream_error(sk, flags, err); 1092 } 1093 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1094 1095 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1096 size_t size, int flags) 1097 { 1098 if (!(sk->sk_route_caps & NETIF_F_SG)) 1099 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1100 1101 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1102 1103 return do_tcp_sendpages(sk, page, offset, size, flags); 1104 } 1105 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1106 1107 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1108 size_t size, int flags) 1109 { 1110 int ret; 1111 1112 lock_sock(sk); 1113 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1114 release_sock(sk); 1115 1116 return ret; 1117 } 1118 EXPORT_SYMBOL(tcp_sendpage); 1119 1120 void tcp_free_fastopen_req(struct tcp_sock *tp) 1121 { 1122 if (tp->fastopen_req) { 1123 kfree(tp->fastopen_req); 1124 tp->fastopen_req = NULL; 1125 } 1126 } 1127 1128 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1129 int *copied, size_t size, 1130 struct ubuf_info *uarg) 1131 { 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 struct inet_sock *inet = inet_sk(sk); 1134 struct sockaddr *uaddr = msg->msg_name; 1135 int err, flags; 1136 1137 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1138 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1139 uaddr->sa_family == AF_UNSPEC)) 1140 return -EOPNOTSUPP; 1141 if (tp->fastopen_req) 1142 return -EALREADY; /* Another Fast Open is in progress */ 1143 1144 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1145 sk->sk_allocation); 1146 if (unlikely(!tp->fastopen_req)) 1147 return -ENOBUFS; 1148 tp->fastopen_req->data = msg; 1149 tp->fastopen_req->size = size; 1150 tp->fastopen_req->uarg = uarg; 1151 1152 if (inet->defer_connect) { 1153 err = tcp_connect(sk); 1154 /* Same failure procedure as in tcp_v4/6_connect */ 1155 if (err) { 1156 tcp_set_state(sk, TCP_CLOSE); 1157 inet->inet_dport = 0; 1158 sk->sk_route_caps = 0; 1159 } 1160 } 1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1162 err = __inet_stream_connect(sk->sk_socket, uaddr, 1163 msg->msg_namelen, flags, 1); 1164 /* fastopen_req could already be freed in __inet_stream_connect 1165 * if the connection times out or gets rst 1166 */ 1167 if (tp->fastopen_req) { 1168 *copied = tp->fastopen_req->copied; 1169 tcp_free_fastopen_req(tp); 1170 inet->defer_connect = 0; 1171 } 1172 return err; 1173 } 1174 1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1176 { 1177 struct tcp_sock *tp = tcp_sk(sk); 1178 struct ubuf_info *uarg = NULL; 1179 struct sk_buff *skb; 1180 struct sockcm_cookie sockc; 1181 int flags, err, copied = 0; 1182 int mss_now = 0, size_goal, copied_syn = 0; 1183 int process_backlog = 0; 1184 bool zc = false; 1185 long timeo; 1186 1187 flags = msg->msg_flags; 1188 1189 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1190 skb = tcp_write_queue_tail(sk); 1191 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1192 if (!uarg) { 1193 err = -ENOBUFS; 1194 goto out_err; 1195 } 1196 1197 zc = sk->sk_route_caps & NETIF_F_SG; 1198 if (!zc) 1199 uarg->zerocopy = 0; 1200 } 1201 1202 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1203 !tp->repair) { 1204 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1205 if (err == -EINPROGRESS && copied_syn > 0) 1206 goto out; 1207 else if (err) 1208 goto out_err; 1209 } 1210 1211 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1212 1213 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1214 1215 /* Wait for a connection to finish. One exception is TCP Fast Open 1216 * (passive side) where data is allowed to be sent before a connection 1217 * is fully established. 1218 */ 1219 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1220 !tcp_passive_fastopen(sk)) { 1221 err = sk_stream_wait_connect(sk, &timeo); 1222 if (err != 0) 1223 goto do_error; 1224 } 1225 1226 if (unlikely(tp->repair)) { 1227 if (tp->repair_queue == TCP_RECV_QUEUE) { 1228 copied = tcp_send_rcvq(sk, msg, size); 1229 goto out_nopush; 1230 } 1231 1232 err = -EINVAL; 1233 if (tp->repair_queue == TCP_NO_QUEUE) 1234 goto out_err; 1235 1236 /* 'common' sending to sendq */ 1237 } 1238 1239 sockcm_init(&sockc, sk); 1240 if (msg->msg_controllen) { 1241 err = sock_cmsg_send(sk, msg, &sockc); 1242 if (unlikely(err)) { 1243 err = -EINVAL; 1244 goto out_err; 1245 } 1246 } 1247 1248 /* This should be in poll */ 1249 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1250 1251 /* Ok commence sending. */ 1252 copied = 0; 1253 1254 restart: 1255 mss_now = tcp_send_mss(sk, &size_goal, flags); 1256 1257 err = -EPIPE; 1258 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1259 goto do_error; 1260 1261 while (msg_data_left(msg)) { 1262 int copy = 0; 1263 1264 skb = tcp_write_queue_tail(sk); 1265 if (skb) 1266 copy = size_goal - skb->len; 1267 1268 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1269 bool first_skb; 1270 1271 new_segment: 1272 if (!sk_stream_memory_free(sk)) 1273 goto wait_for_space; 1274 1275 if (unlikely(process_backlog >= 16)) { 1276 process_backlog = 0; 1277 if (sk_flush_backlog(sk)) 1278 goto restart; 1279 } 1280 first_skb = tcp_rtx_and_write_queues_empty(sk); 1281 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1282 first_skb); 1283 if (!skb) 1284 goto wait_for_space; 1285 1286 process_backlog++; 1287 1288 tcp_skb_entail(sk, skb); 1289 copy = size_goal; 1290 1291 /* All packets are restored as if they have 1292 * already been sent. skb_mstamp_ns isn't set to 1293 * avoid wrong rtt estimation. 1294 */ 1295 if (tp->repair) 1296 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1297 } 1298 1299 /* Try to append data to the end of skb. */ 1300 if (copy > msg_data_left(msg)) 1301 copy = msg_data_left(msg); 1302 1303 if (!zc) { 1304 bool merge = true; 1305 int i = skb_shinfo(skb)->nr_frags; 1306 struct page_frag *pfrag = sk_page_frag(sk); 1307 1308 if (!sk_page_frag_refill(sk, pfrag)) 1309 goto wait_for_space; 1310 1311 if (!skb_can_coalesce(skb, i, pfrag->page, 1312 pfrag->offset)) { 1313 if (i >= sysctl_max_skb_frags) { 1314 tcp_mark_push(tp, skb); 1315 goto new_segment; 1316 } 1317 merge = false; 1318 } 1319 1320 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1321 1322 /* skb changing from pure zc to mixed, must charge zc */ 1323 if (unlikely(skb_zcopy_pure(skb))) { 1324 if (!sk_wmem_schedule(sk, skb->data_len)) 1325 goto wait_for_space; 1326 1327 sk_mem_charge(sk, skb->data_len); 1328 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 1329 } 1330 1331 if (!sk_wmem_schedule(sk, copy)) 1332 goto wait_for_space; 1333 1334 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1335 pfrag->page, 1336 pfrag->offset, 1337 copy); 1338 if (err) 1339 goto do_error; 1340 1341 /* Update the skb. */ 1342 if (merge) { 1343 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1344 } else { 1345 skb_fill_page_desc(skb, i, pfrag->page, 1346 pfrag->offset, copy); 1347 page_ref_inc(pfrag->page); 1348 } 1349 pfrag->offset += copy; 1350 } else { 1351 /* First append to a fragless skb builds initial 1352 * pure zerocopy skb 1353 */ 1354 if (!skb->len) 1355 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1356 1357 if (!skb_zcopy_pure(skb)) { 1358 if (!sk_wmem_schedule(sk, copy)) 1359 goto wait_for_space; 1360 } 1361 1362 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1363 if (err == -EMSGSIZE || err == -EEXIST) { 1364 tcp_mark_push(tp, skb); 1365 goto new_segment; 1366 } 1367 if (err < 0) 1368 goto do_error; 1369 copy = err; 1370 } 1371 1372 if (!copied) 1373 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1374 1375 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 copied += copy; 1380 if (!msg_data_left(msg)) { 1381 if (unlikely(flags & MSG_EOR)) 1382 TCP_SKB_CB(skb)->eor = 1; 1383 goto out; 1384 } 1385 1386 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1387 continue; 1388 1389 if (forced_push(tp)) { 1390 tcp_mark_push(tp, skb); 1391 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1392 } else if (skb == tcp_send_head(sk)) 1393 tcp_push_one(sk, mss_now); 1394 continue; 1395 1396 wait_for_space: 1397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1398 if (copied) 1399 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1400 TCP_NAGLE_PUSH, size_goal); 1401 1402 err = sk_stream_wait_memory(sk, &timeo); 1403 if (err != 0) 1404 goto do_error; 1405 1406 mss_now = tcp_send_mss(sk, &size_goal, flags); 1407 } 1408 1409 out: 1410 if (copied) { 1411 tcp_tx_timestamp(sk, sockc.tsflags); 1412 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1413 } 1414 out_nopush: 1415 net_zcopy_put(uarg); 1416 return copied + copied_syn; 1417 1418 do_error: 1419 tcp_remove_empty_skb(sk); 1420 1421 if (copied + copied_syn) 1422 goto out; 1423 out_err: 1424 net_zcopy_put_abort(uarg, true); 1425 err = sk_stream_error(sk, flags, err); 1426 /* make sure we wake any epoll edge trigger waiter */ 1427 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1428 sk->sk_write_space(sk); 1429 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1430 } 1431 return err; 1432 } 1433 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1434 1435 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1436 { 1437 int ret; 1438 1439 lock_sock(sk); 1440 ret = tcp_sendmsg_locked(sk, msg, size); 1441 release_sock(sk); 1442 1443 return ret; 1444 } 1445 EXPORT_SYMBOL(tcp_sendmsg); 1446 1447 /* 1448 * Handle reading urgent data. BSD has very simple semantics for 1449 * this, no blocking and very strange errors 8) 1450 */ 1451 1452 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1453 { 1454 struct tcp_sock *tp = tcp_sk(sk); 1455 1456 /* No URG data to read. */ 1457 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1458 tp->urg_data == TCP_URG_READ) 1459 return -EINVAL; /* Yes this is right ! */ 1460 1461 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1462 return -ENOTCONN; 1463 1464 if (tp->urg_data & TCP_URG_VALID) { 1465 int err = 0; 1466 char c = tp->urg_data; 1467 1468 if (!(flags & MSG_PEEK)) 1469 tp->urg_data = TCP_URG_READ; 1470 1471 /* Read urgent data. */ 1472 msg->msg_flags |= MSG_OOB; 1473 1474 if (len > 0) { 1475 if (!(flags & MSG_TRUNC)) 1476 err = memcpy_to_msg(msg, &c, 1); 1477 len = 1; 1478 } else 1479 msg->msg_flags |= MSG_TRUNC; 1480 1481 return err ? -EFAULT : len; 1482 } 1483 1484 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1485 return 0; 1486 1487 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1488 * the available implementations agree in this case: 1489 * this call should never block, independent of the 1490 * blocking state of the socket. 1491 * Mike <pall@rz.uni-karlsruhe.de> 1492 */ 1493 return -EAGAIN; 1494 } 1495 1496 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1497 { 1498 struct sk_buff *skb; 1499 int copied = 0, err = 0; 1500 1501 /* XXX -- need to support SO_PEEK_OFF */ 1502 1503 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1504 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1505 if (err) 1506 return err; 1507 copied += skb->len; 1508 } 1509 1510 skb_queue_walk(&sk->sk_write_queue, skb) { 1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1512 if (err) 1513 break; 1514 1515 copied += skb->len; 1516 } 1517 1518 return err ?: copied; 1519 } 1520 1521 /* Clean up the receive buffer for full frames taken by the user, 1522 * then send an ACK if necessary. COPIED is the number of bytes 1523 * tcp_recvmsg has given to the user so far, it speeds up the 1524 * calculation of whether or not we must ACK for the sake of 1525 * a window update. 1526 */ 1527 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1528 { 1529 struct tcp_sock *tp = tcp_sk(sk); 1530 bool time_to_ack = false; 1531 1532 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1533 1534 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1535 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1536 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1537 1538 if (inet_csk_ack_scheduled(sk)) { 1539 const struct inet_connection_sock *icsk = inet_csk(sk); 1540 1541 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1542 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1543 /* 1544 * If this read emptied read buffer, we send ACK, if 1545 * connection is not bidirectional, user drained 1546 * receive buffer and there was a small segment 1547 * in queue. 1548 */ 1549 (copied > 0 && 1550 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1552 !inet_csk_in_pingpong_mode(sk))) && 1553 !atomic_read(&sk->sk_rmem_alloc))) 1554 time_to_ack = true; 1555 } 1556 1557 /* We send an ACK if we can now advertise a non-zero window 1558 * which has been raised "significantly". 1559 * 1560 * Even if window raised up to infinity, do not send window open ACK 1561 * in states, where we will not receive more. It is useless. 1562 */ 1563 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1564 __u32 rcv_window_now = tcp_receive_window(tp); 1565 1566 /* Optimize, __tcp_select_window() is not cheap. */ 1567 if (2*rcv_window_now <= tp->window_clamp) { 1568 __u32 new_window = __tcp_select_window(sk); 1569 1570 /* Send ACK now, if this read freed lots of space 1571 * in our buffer. Certainly, new_window is new window. 1572 * We can advertise it now, if it is not less than current one. 1573 * "Lots" means "at least twice" here. 1574 */ 1575 if (new_window && new_window >= 2 * rcv_window_now) 1576 time_to_ack = true; 1577 } 1578 } 1579 if (time_to_ack) 1580 tcp_send_ack(sk); 1581 } 1582 1583 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1584 { 1585 struct sk_buff *skb; 1586 u32 offset; 1587 1588 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1589 offset = seq - TCP_SKB_CB(skb)->seq; 1590 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1591 pr_err_once("%s: found a SYN, please report !\n", __func__); 1592 offset--; 1593 } 1594 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1595 *off = offset; 1596 return skb; 1597 } 1598 /* This looks weird, but this can happen if TCP collapsing 1599 * splitted a fat GRO packet, while we released socket lock 1600 * in skb_splice_bits() 1601 */ 1602 sk_eat_skb(sk, skb); 1603 } 1604 return NULL; 1605 } 1606 1607 /* 1608 * This routine provides an alternative to tcp_recvmsg() for routines 1609 * that would like to handle copying from skbuffs directly in 'sendfile' 1610 * fashion. 1611 * Note: 1612 * - It is assumed that the socket was locked by the caller. 1613 * - The routine does not block. 1614 * - At present, there is no support for reading OOB data 1615 * or for 'peeking' the socket using this routine 1616 * (although both would be easy to implement). 1617 */ 1618 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1619 sk_read_actor_t recv_actor) 1620 { 1621 struct sk_buff *skb; 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 u32 seq = tp->copied_seq; 1624 u32 offset; 1625 int copied = 0; 1626 1627 if (sk->sk_state == TCP_LISTEN) 1628 return -ENOTCONN; 1629 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1630 if (offset < skb->len) { 1631 int used; 1632 size_t len; 1633 1634 len = skb->len - offset; 1635 /* Stop reading if we hit a patch of urgent data */ 1636 if (tp->urg_data) { 1637 u32 urg_offset = tp->urg_seq - seq; 1638 if (urg_offset < len) 1639 len = urg_offset; 1640 if (!len) 1641 break; 1642 } 1643 used = recv_actor(desc, skb, offset, len); 1644 if (used <= 0) { 1645 if (!copied) 1646 copied = used; 1647 break; 1648 } else if (used <= len) { 1649 seq += used; 1650 copied += used; 1651 offset += used; 1652 } 1653 /* If recv_actor drops the lock (e.g. TCP splice 1654 * receive) the skb pointer might be invalid when 1655 * getting here: tcp_collapse might have deleted it 1656 * while aggregating skbs from the socket queue. 1657 */ 1658 skb = tcp_recv_skb(sk, seq - 1, &offset); 1659 if (!skb) 1660 break; 1661 /* TCP coalescing might have appended data to the skb. 1662 * Try to splice more frags 1663 */ 1664 if (offset + 1 != skb->len) 1665 continue; 1666 } 1667 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1668 sk_eat_skb(sk, skb); 1669 ++seq; 1670 break; 1671 } 1672 sk_eat_skb(sk, skb); 1673 if (!desc->count) 1674 break; 1675 WRITE_ONCE(tp->copied_seq, seq); 1676 } 1677 WRITE_ONCE(tp->copied_seq, seq); 1678 1679 tcp_rcv_space_adjust(sk); 1680 1681 /* Clean up data we have read: This will do ACK frames. */ 1682 if (copied > 0) { 1683 tcp_recv_skb(sk, seq, &offset); 1684 tcp_cleanup_rbuf(sk, copied); 1685 } 1686 return copied; 1687 } 1688 EXPORT_SYMBOL(tcp_read_sock); 1689 1690 int tcp_peek_len(struct socket *sock) 1691 { 1692 return tcp_inq(sock->sk); 1693 } 1694 EXPORT_SYMBOL(tcp_peek_len); 1695 1696 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1697 int tcp_set_rcvlowat(struct sock *sk, int val) 1698 { 1699 int cap; 1700 1701 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1702 cap = sk->sk_rcvbuf >> 1; 1703 else 1704 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1705 val = min(val, cap); 1706 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1707 1708 /* Check if we need to signal EPOLLIN right now */ 1709 tcp_data_ready(sk); 1710 1711 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1712 return 0; 1713 1714 val <<= 1; 1715 if (val > sk->sk_rcvbuf) { 1716 WRITE_ONCE(sk->sk_rcvbuf, val); 1717 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1718 } 1719 return 0; 1720 } 1721 EXPORT_SYMBOL(tcp_set_rcvlowat); 1722 1723 void tcp_update_recv_tstamps(struct sk_buff *skb, 1724 struct scm_timestamping_internal *tss) 1725 { 1726 if (skb->tstamp) 1727 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1728 else 1729 tss->ts[0] = (struct timespec64) {0}; 1730 1731 if (skb_hwtstamps(skb)->hwtstamp) 1732 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1733 else 1734 tss->ts[2] = (struct timespec64) {0}; 1735 } 1736 1737 #ifdef CONFIG_MMU 1738 static const struct vm_operations_struct tcp_vm_ops = { 1739 }; 1740 1741 int tcp_mmap(struct file *file, struct socket *sock, 1742 struct vm_area_struct *vma) 1743 { 1744 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1745 return -EPERM; 1746 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1747 1748 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1749 vma->vm_flags |= VM_MIXEDMAP; 1750 1751 vma->vm_ops = &tcp_vm_ops; 1752 return 0; 1753 } 1754 EXPORT_SYMBOL(tcp_mmap); 1755 1756 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1757 u32 *offset_frag) 1758 { 1759 skb_frag_t *frag; 1760 1761 if (unlikely(offset_skb >= skb->len)) 1762 return NULL; 1763 1764 offset_skb -= skb_headlen(skb); 1765 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1766 return NULL; 1767 1768 frag = skb_shinfo(skb)->frags; 1769 while (offset_skb) { 1770 if (skb_frag_size(frag) > offset_skb) { 1771 *offset_frag = offset_skb; 1772 return frag; 1773 } 1774 offset_skb -= skb_frag_size(frag); 1775 ++frag; 1776 } 1777 *offset_frag = 0; 1778 return frag; 1779 } 1780 1781 static bool can_map_frag(const skb_frag_t *frag) 1782 { 1783 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1784 } 1785 1786 static int find_next_mappable_frag(const skb_frag_t *frag, 1787 int remaining_in_skb) 1788 { 1789 int offset = 0; 1790 1791 if (likely(can_map_frag(frag))) 1792 return 0; 1793 1794 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1795 offset += skb_frag_size(frag); 1796 ++frag; 1797 } 1798 return offset; 1799 } 1800 1801 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1802 struct tcp_zerocopy_receive *zc, 1803 struct sk_buff *skb, u32 offset) 1804 { 1805 u32 frag_offset, partial_frag_remainder = 0; 1806 int mappable_offset; 1807 skb_frag_t *frag; 1808 1809 /* worst case: skip to next skb. try to improve on this case below */ 1810 zc->recv_skip_hint = skb->len - offset; 1811 1812 /* Find the frag containing this offset (and how far into that frag) */ 1813 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1814 if (!frag) 1815 return; 1816 1817 if (frag_offset) { 1818 struct skb_shared_info *info = skb_shinfo(skb); 1819 1820 /* We read part of the last frag, must recvmsg() rest of skb. */ 1821 if (frag == &info->frags[info->nr_frags - 1]) 1822 return; 1823 1824 /* Else, we must at least read the remainder in this frag. */ 1825 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1826 zc->recv_skip_hint -= partial_frag_remainder; 1827 ++frag; 1828 } 1829 1830 /* partial_frag_remainder: If part way through a frag, must read rest. 1831 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1832 * in partial_frag_remainder. 1833 */ 1834 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1835 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1836 } 1837 1838 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1839 int nonblock, int flags, 1840 struct scm_timestamping_internal *tss, 1841 int *cmsg_flags); 1842 static int receive_fallback_to_copy(struct sock *sk, 1843 struct tcp_zerocopy_receive *zc, int inq, 1844 struct scm_timestamping_internal *tss) 1845 { 1846 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1847 struct msghdr msg = {}; 1848 struct iovec iov; 1849 int err; 1850 1851 zc->length = 0; 1852 zc->recv_skip_hint = 0; 1853 1854 if (copy_address != zc->copybuf_address) 1855 return -EINVAL; 1856 1857 err = import_single_range(READ, (void __user *)copy_address, 1858 inq, &iov, &msg.msg_iter); 1859 if (err) 1860 return err; 1861 1862 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1863 tss, &zc->msg_flags); 1864 if (err < 0) 1865 return err; 1866 1867 zc->copybuf_len = err; 1868 if (likely(zc->copybuf_len)) { 1869 struct sk_buff *skb; 1870 u32 offset; 1871 1872 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1873 if (skb) 1874 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1875 } 1876 return 0; 1877 } 1878 1879 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1880 struct sk_buff *skb, u32 copylen, 1881 u32 *offset, u32 *seq) 1882 { 1883 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1884 struct msghdr msg = {}; 1885 struct iovec iov; 1886 int err; 1887 1888 if (copy_address != zc->copybuf_address) 1889 return -EINVAL; 1890 1891 err = import_single_range(READ, (void __user *)copy_address, 1892 copylen, &iov, &msg.msg_iter); 1893 if (err) 1894 return err; 1895 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1896 if (err) 1897 return err; 1898 zc->recv_skip_hint -= copylen; 1899 *offset += copylen; 1900 *seq += copylen; 1901 return (__s32)copylen; 1902 } 1903 1904 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1905 struct sock *sk, 1906 struct sk_buff *skb, 1907 u32 *seq, 1908 s32 copybuf_len, 1909 struct scm_timestamping_internal *tss) 1910 { 1911 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1912 1913 if (!copylen) 1914 return 0; 1915 /* skb is null if inq < PAGE_SIZE. */ 1916 if (skb) { 1917 offset = *seq - TCP_SKB_CB(skb)->seq; 1918 } else { 1919 skb = tcp_recv_skb(sk, *seq, &offset); 1920 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1921 tcp_update_recv_tstamps(skb, tss); 1922 zc->msg_flags |= TCP_CMSG_TS; 1923 } 1924 } 1925 1926 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1927 seq); 1928 return zc->copybuf_len < 0 ? 0 : copylen; 1929 } 1930 1931 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1932 struct page **pending_pages, 1933 unsigned long pages_remaining, 1934 unsigned long *address, 1935 u32 *length, 1936 u32 *seq, 1937 struct tcp_zerocopy_receive *zc, 1938 u32 total_bytes_to_map, 1939 int err) 1940 { 1941 /* At least one page did not map. Try zapping if we skipped earlier. */ 1942 if (err == -EBUSY && 1943 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1944 u32 maybe_zap_len; 1945 1946 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1947 *length + /* Mapped or pending */ 1948 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1949 zap_page_range(vma, *address, maybe_zap_len); 1950 err = 0; 1951 } 1952 1953 if (!err) { 1954 unsigned long leftover_pages = pages_remaining; 1955 int bytes_mapped; 1956 1957 /* We called zap_page_range, try to reinsert. */ 1958 err = vm_insert_pages(vma, *address, 1959 pending_pages, 1960 &pages_remaining); 1961 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1962 *seq += bytes_mapped; 1963 *address += bytes_mapped; 1964 } 1965 if (err) { 1966 /* Either we were unable to zap, OR we zapped, retried an 1967 * insert, and still had an issue. Either ways, pages_remaining 1968 * is the number of pages we were unable to map, and we unroll 1969 * some state we speculatively touched before. 1970 */ 1971 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1972 1973 *length -= bytes_not_mapped; 1974 zc->recv_skip_hint += bytes_not_mapped; 1975 } 1976 return err; 1977 } 1978 1979 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1980 struct page **pages, 1981 unsigned int pages_to_map, 1982 unsigned long *address, 1983 u32 *length, 1984 u32 *seq, 1985 struct tcp_zerocopy_receive *zc, 1986 u32 total_bytes_to_map) 1987 { 1988 unsigned long pages_remaining = pages_to_map; 1989 unsigned int pages_mapped; 1990 unsigned int bytes_mapped; 1991 int err; 1992 1993 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1994 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1995 bytes_mapped = PAGE_SIZE * pages_mapped; 1996 /* Even if vm_insert_pages fails, it may have partially succeeded in 1997 * mapping (some but not all of the pages). 1998 */ 1999 *seq += bytes_mapped; 2000 *address += bytes_mapped; 2001 2002 if (likely(!err)) 2003 return 0; 2004 2005 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2006 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2007 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2008 err); 2009 } 2010 2011 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2012 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2013 struct tcp_zerocopy_receive *zc, 2014 struct scm_timestamping_internal *tss) 2015 { 2016 unsigned long msg_control_addr; 2017 struct msghdr cmsg_dummy; 2018 2019 msg_control_addr = (unsigned long)zc->msg_control; 2020 cmsg_dummy.msg_control = (void *)msg_control_addr; 2021 cmsg_dummy.msg_controllen = 2022 (__kernel_size_t)zc->msg_controllen; 2023 cmsg_dummy.msg_flags = in_compat_syscall() 2024 ? MSG_CMSG_COMPAT : 0; 2025 cmsg_dummy.msg_control_is_user = true; 2026 zc->msg_flags = 0; 2027 if (zc->msg_control == msg_control_addr && 2028 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2029 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2030 zc->msg_control = (__u64) 2031 ((uintptr_t)cmsg_dummy.msg_control); 2032 zc->msg_controllen = 2033 (__u64)cmsg_dummy.msg_controllen; 2034 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2035 } 2036 } 2037 2038 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2039 static int tcp_zerocopy_receive(struct sock *sk, 2040 struct tcp_zerocopy_receive *zc, 2041 struct scm_timestamping_internal *tss) 2042 { 2043 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2044 unsigned long address = (unsigned long)zc->address; 2045 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2046 s32 copybuf_len = zc->copybuf_len; 2047 struct tcp_sock *tp = tcp_sk(sk); 2048 const skb_frag_t *frags = NULL; 2049 unsigned int pages_to_map = 0; 2050 struct vm_area_struct *vma; 2051 struct sk_buff *skb = NULL; 2052 u32 seq = tp->copied_seq; 2053 u32 total_bytes_to_map; 2054 int inq = tcp_inq(sk); 2055 int ret; 2056 2057 zc->copybuf_len = 0; 2058 zc->msg_flags = 0; 2059 2060 if (address & (PAGE_SIZE - 1) || address != zc->address) 2061 return -EINVAL; 2062 2063 if (sk->sk_state == TCP_LISTEN) 2064 return -ENOTCONN; 2065 2066 sock_rps_record_flow(sk); 2067 2068 if (inq && inq <= copybuf_len) 2069 return receive_fallback_to_copy(sk, zc, inq, tss); 2070 2071 if (inq < PAGE_SIZE) { 2072 zc->length = 0; 2073 zc->recv_skip_hint = inq; 2074 if (!inq && sock_flag(sk, SOCK_DONE)) 2075 return -EIO; 2076 return 0; 2077 } 2078 2079 mmap_read_lock(current->mm); 2080 2081 vma = vma_lookup(current->mm, address); 2082 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2083 mmap_read_unlock(current->mm); 2084 return -EINVAL; 2085 } 2086 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2087 avail_len = min_t(u32, vma_len, inq); 2088 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2089 if (total_bytes_to_map) { 2090 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2091 zap_page_range(vma, address, total_bytes_to_map); 2092 zc->length = total_bytes_to_map; 2093 zc->recv_skip_hint = 0; 2094 } else { 2095 zc->length = avail_len; 2096 zc->recv_skip_hint = avail_len; 2097 } 2098 ret = 0; 2099 while (length + PAGE_SIZE <= zc->length) { 2100 int mappable_offset; 2101 struct page *page; 2102 2103 if (zc->recv_skip_hint < PAGE_SIZE) { 2104 u32 offset_frag; 2105 2106 if (skb) { 2107 if (zc->recv_skip_hint > 0) 2108 break; 2109 skb = skb->next; 2110 offset = seq - TCP_SKB_CB(skb)->seq; 2111 } else { 2112 skb = tcp_recv_skb(sk, seq, &offset); 2113 } 2114 2115 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2116 tcp_update_recv_tstamps(skb, tss); 2117 zc->msg_flags |= TCP_CMSG_TS; 2118 } 2119 zc->recv_skip_hint = skb->len - offset; 2120 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2121 if (!frags || offset_frag) 2122 break; 2123 } 2124 2125 mappable_offset = find_next_mappable_frag(frags, 2126 zc->recv_skip_hint); 2127 if (mappable_offset) { 2128 zc->recv_skip_hint = mappable_offset; 2129 break; 2130 } 2131 page = skb_frag_page(frags); 2132 prefetchw(page); 2133 pages[pages_to_map++] = page; 2134 length += PAGE_SIZE; 2135 zc->recv_skip_hint -= PAGE_SIZE; 2136 frags++; 2137 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2138 zc->recv_skip_hint < PAGE_SIZE) { 2139 /* Either full batch, or we're about to go to next skb 2140 * (and we cannot unroll failed ops across skbs). 2141 */ 2142 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2143 pages_to_map, 2144 &address, &length, 2145 &seq, zc, 2146 total_bytes_to_map); 2147 if (ret) 2148 goto out; 2149 pages_to_map = 0; 2150 } 2151 } 2152 if (pages_to_map) { 2153 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2154 &address, &length, &seq, 2155 zc, total_bytes_to_map); 2156 } 2157 out: 2158 mmap_read_unlock(current->mm); 2159 /* Try to copy straggler data. */ 2160 if (!ret) 2161 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2162 2163 if (length + copylen) { 2164 WRITE_ONCE(tp->copied_seq, seq); 2165 tcp_rcv_space_adjust(sk); 2166 2167 /* Clean up data we have read: This will do ACK frames. */ 2168 tcp_recv_skb(sk, seq, &offset); 2169 tcp_cleanup_rbuf(sk, length + copylen); 2170 ret = 0; 2171 if (length == zc->length) 2172 zc->recv_skip_hint = 0; 2173 } else { 2174 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2175 ret = -EIO; 2176 } 2177 zc->length = length; 2178 return ret; 2179 } 2180 #endif 2181 2182 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2183 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2184 struct scm_timestamping_internal *tss) 2185 { 2186 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2187 bool has_timestamping = false; 2188 2189 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2190 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2191 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2192 if (new_tstamp) { 2193 struct __kernel_timespec kts = { 2194 .tv_sec = tss->ts[0].tv_sec, 2195 .tv_nsec = tss->ts[0].tv_nsec, 2196 }; 2197 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2198 sizeof(kts), &kts); 2199 } else { 2200 struct __kernel_old_timespec ts_old = { 2201 .tv_sec = tss->ts[0].tv_sec, 2202 .tv_nsec = tss->ts[0].tv_nsec, 2203 }; 2204 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2205 sizeof(ts_old), &ts_old); 2206 } 2207 } else { 2208 if (new_tstamp) { 2209 struct __kernel_sock_timeval stv = { 2210 .tv_sec = tss->ts[0].tv_sec, 2211 .tv_usec = tss->ts[0].tv_nsec / 1000, 2212 }; 2213 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2214 sizeof(stv), &stv); 2215 } else { 2216 struct __kernel_old_timeval tv = { 2217 .tv_sec = tss->ts[0].tv_sec, 2218 .tv_usec = tss->ts[0].tv_nsec / 1000, 2219 }; 2220 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2221 sizeof(tv), &tv); 2222 } 2223 } 2224 } 2225 2226 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2227 has_timestamping = true; 2228 else 2229 tss->ts[0] = (struct timespec64) {0}; 2230 } 2231 2232 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2233 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2234 has_timestamping = true; 2235 else 2236 tss->ts[2] = (struct timespec64) {0}; 2237 } 2238 2239 if (has_timestamping) { 2240 tss->ts[1] = (struct timespec64) {0}; 2241 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2242 put_cmsg_scm_timestamping64(msg, tss); 2243 else 2244 put_cmsg_scm_timestamping(msg, tss); 2245 } 2246 } 2247 2248 static int tcp_inq_hint(struct sock *sk) 2249 { 2250 const struct tcp_sock *tp = tcp_sk(sk); 2251 u32 copied_seq = READ_ONCE(tp->copied_seq); 2252 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2253 int inq; 2254 2255 inq = rcv_nxt - copied_seq; 2256 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2257 lock_sock(sk); 2258 inq = tp->rcv_nxt - tp->copied_seq; 2259 release_sock(sk); 2260 } 2261 /* After receiving a FIN, tell the user-space to continue reading 2262 * by returning a non-zero inq. 2263 */ 2264 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2265 inq = 1; 2266 return inq; 2267 } 2268 2269 /* 2270 * This routine copies from a sock struct into the user buffer. 2271 * 2272 * Technical note: in 2.3 we work on _locked_ socket, so that 2273 * tricks with *seq access order and skb->users are not required. 2274 * Probably, code can be easily improved even more. 2275 */ 2276 2277 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2278 int nonblock, int flags, 2279 struct scm_timestamping_internal *tss, 2280 int *cmsg_flags) 2281 { 2282 struct tcp_sock *tp = tcp_sk(sk); 2283 int copied = 0; 2284 u32 peek_seq; 2285 u32 *seq; 2286 unsigned long used; 2287 int err; 2288 int target; /* Read at least this many bytes */ 2289 long timeo; 2290 struct sk_buff *skb, *last; 2291 u32 urg_hole = 0; 2292 2293 err = -ENOTCONN; 2294 if (sk->sk_state == TCP_LISTEN) 2295 goto out; 2296 2297 if (tp->recvmsg_inq) 2298 *cmsg_flags = TCP_CMSG_INQ; 2299 timeo = sock_rcvtimeo(sk, nonblock); 2300 2301 /* Urgent data needs to be handled specially. */ 2302 if (flags & MSG_OOB) 2303 goto recv_urg; 2304 2305 if (unlikely(tp->repair)) { 2306 err = -EPERM; 2307 if (!(flags & MSG_PEEK)) 2308 goto out; 2309 2310 if (tp->repair_queue == TCP_SEND_QUEUE) 2311 goto recv_sndq; 2312 2313 err = -EINVAL; 2314 if (tp->repair_queue == TCP_NO_QUEUE) 2315 goto out; 2316 2317 /* 'common' recv queue MSG_PEEK-ing */ 2318 } 2319 2320 seq = &tp->copied_seq; 2321 if (flags & MSG_PEEK) { 2322 peek_seq = tp->copied_seq; 2323 seq = &peek_seq; 2324 } 2325 2326 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2327 2328 do { 2329 u32 offset; 2330 2331 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2332 if (tp->urg_data && tp->urg_seq == *seq) { 2333 if (copied) 2334 break; 2335 if (signal_pending(current)) { 2336 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2337 break; 2338 } 2339 } 2340 2341 /* Next get a buffer. */ 2342 2343 last = skb_peek_tail(&sk->sk_receive_queue); 2344 skb_queue_walk(&sk->sk_receive_queue, skb) { 2345 last = skb; 2346 /* Now that we have two receive queues this 2347 * shouldn't happen. 2348 */ 2349 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2350 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2351 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2352 flags)) 2353 break; 2354 2355 offset = *seq - TCP_SKB_CB(skb)->seq; 2356 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2357 pr_err_once("%s: found a SYN, please report !\n", __func__); 2358 offset--; 2359 } 2360 if (offset < skb->len) 2361 goto found_ok_skb; 2362 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2363 goto found_fin_ok; 2364 WARN(!(flags & MSG_PEEK), 2365 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2366 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2367 } 2368 2369 /* Well, if we have backlog, try to process it now yet. */ 2370 2371 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2372 break; 2373 2374 if (copied) { 2375 if (sk->sk_err || 2376 sk->sk_state == TCP_CLOSE || 2377 (sk->sk_shutdown & RCV_SHUTDOWN) || 2378 !timeo || 2379 signal_pending(current)) 2380 break; 2381 } else { 2382 if (sock_flag(sk, SOCK_DONE)) 2383 break; 2384 2385 if (sk->sk_err) { 2386 copied = sock_error(sk); 2387 break; 2388 } 2389 2390 if (sk->sk_shutdown & RCV_SHUTDOWN) 2391 break; 2392 2393 if (sk->sk_state == TCP_CLOSE) { 2394 /* This occurs when user tries to read 2395 * from never connected socket. 2396 */ 2397 copied = -ENOTCONN; 2398 break; 2399 } 2400 2401 if (!timeo) { 2402 copied = -EAGAIN; 2403 break; 2404 } 2405 2406 if (signal_pending(current)) { 2407 copied = sock_intr_errno(timeo); 2408 break; 2409 } 2410 } 2411 2412 tcp_cleanup_rbuf(sk, copied); 2413 2414 if (copied >= target) { 2415 /* Do not sleep, just process backlog. */ 2416 release_sock(sk); 2417 lock_sock(sk); 2418 } else { 2419 sk_wait_data(sk, &timeo, last); 2420 } 2421 2422 if ((flags & MSG_PEEK) && 2423 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2424 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2425 current->comm, 2426 task_pid_nr(current)); 2427 peek_seq = tp->copied_seq; 2428 } 2429 continue; 2430 2431 found_ok_skb: 2432 /* Ok so how much can we use? */ 2433 used = skb->len - offset; 2434 if (len < used) 2435 used = len; 2436 2437 /* Do we have urgent data here? */ 2438 if (tp->urg_data) { 2439 u32 urg_offset = tp->urg_seq - *seq; 2440 if (urg_offset < used) { 2441 if (!urg_offset) { 2442 if (!sock_flag(sk, SOCK_URGINLINE)) { 2443 WRITE_ONCE(*seq, *seq + 1); 2444 urg_hole++; 2445 offset++; 2446 used--; 2447 if (!used) 2448 goto skip_copy; 2449 } 2450 } else 2451 used = urg_offset; 2452 } 2453 } 2454 2455 if (!(flags & MSG_TRUNC)) { 2456 err = skb_copy_datagram_msg(skb, offset, msg, used); 2457 if (err) { 2458 /* Exception. Bailout! */ 2459 if (!copied) 2460 copied = -EFAULT; 2461 break; 2462 } 2463 } 2464 2465 WRITE_ONCE(*seq, *seq + used); 2466 copied += used; 2467 len -= used; 2468 2469 tcp_rcv_space_adjust(sk); 2470 2471 skip_copy: 2472 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2473 tp->urg_data = 0; 2474 tcp_fast_path_check(sk); 2475 } 2476 2477 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2478 tcp_update_recv_tstamps(skb, tss); 2479 *cmsg_flags |= TCP_CMSG_TS; 2480 } 2481 2482 if (used + offset < skb->len) 2483 continue; 2484 2485 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2486 goto found_fin_ok; 2487 if (!(flags & MSG_PEEK)) 2488 sk_eat_skb(sk, skb); 2489 continue; 2490 2491 found_fin_ok: 2492 /* Process the FIN. */ 2493 WRITE_ONCE(*seq, *seq + 1); 2494 if (!(flags & MSG_PEEK)) 2495 sk_eat_skb(sk, skb); 2496 break; 2497 } while (len > 0); 2498 2499 /* According to UNIX98, msg_name/msg_namelen are ignored 2500 * on connected socket. I was just happy when found this 8) --ANK 2501 */ 2502 2503 /* Clean up data we have read: This will do ACK frames. */ 2504 tcp_cleanup_rbuf(sk, copied); 2505 return copied; 2506 2507 out: 2508 return err; 2509 2510 recv_urg: 2511 err = tcp_recv_urg(sk, msg, len, flags); 2512 goto out; 2513 2514 recv_sndq: 2515 err = tcp_peek_sndq(sk, msg, len); 2516 goto out; 2517 } 2518 2519 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2520 int flags, int *addr_len) 2521 { 2522 int cmsg_flags = 0, ret, inq; 2523 struct scm_timestamping_internal tss; 2524 2525 if (unlikely(flags & MSG_ERRQUEUE)) 2526 return inet_recv_error(sk, msg, len, addr_len); 2527 2528 if (sk_can_busy_loop(sk) && 2529 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2530 sk->sk_state == TCP_ESTABLISHED) 2531 sk_busy_loop(sk, nonblock); 2532 2533 lock_sock(sk); 2534 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2535 &cmsg_flags); 2536 release_sock(sk); 2537 2538 if (cmsg_flags && ret >= 0) { 2539 if (cmsg_flags & TCP_CMSG_TS) 2540 tcp_recv_timestamp(msg, sk, &tss); 2541 if (cmsg_flags & TCP_CMSG_INQ) { 2542 inq = tcp_inq_hint(sk); 2543 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2544 } 2545 } 2546 return ret; 2547 } 2548 EXPORT_SYMBOL(tcp_recvmsg); 2549 2550 void tcp_set_state(struct sock *sk, int state) 2551 { 2552 int oldstate = sk->sk_state; 2553 2554 /* We defined a new enum for TCP states that are exported in BPF 2555 * so as not force the internal TCP states to be frozen. The 2556 * following checks will detect if an internal state value ever 2557 * differs from the BPF value. If this ever happens, then we will 2558 * need to remap the internal value to the BPF value before calling 2559 * tcp_call_bpf_2arg. 2560 */ 2561 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2562 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2563 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2564 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2565 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2566 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2567 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2568 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2569 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2570 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2571 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2572 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2573 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2574 2575 /* bpf uapi header bpf.h defines an anonymous enum with values 2576 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2577 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2578 * But clang built vmlinux does not have this enum in DWARF 2579 * since clang removes the above code before generating IR/debuginfo. 2580 * Let us explicitly emit the type debuginfo to ensure the 2581 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2582 * regardless of which compiler is used. 2583 */ 2584 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2585 2586 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2587 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2588 2589 switch (state) { 2590 case TCP_ESTABLISHED: 2591 if (oldstate != TCP_ESTABLISHED) 2592 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2593 break; 2594 2595 case TCP_CLOSE: 2596 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2597 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2598 2599 sk->sk_prot->unhash(sk); 2600 if (inet_csk(sk)->icsk_bind_hash && 2601 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2602 inet_put_port(sk); 2603 fallthrough; 2604 default: 2605 if (oldstate == TCP_ESTABLISHED) 2606 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2607 } 2608 2609 /* Change state AFTER socket is unhashed to avoid closed 2610 * socket sitting in hash tables. 2611 */ 2612 inet_sk_state_store(sk, state); 2613 } 2614 EXPORT_SYMBOL_GPL(tcp_set_state); 2615 2616 /* 2617 * State processing on a close. This implements the state shift for 2618 * sending our FIN frame. Note that we only send a FIN for some 2619 * states. A shutdown() may have already sent the FIN, or we may be 2620 * closed. 2621 */ 2622 2623 static const unsigned char new_state[16] = { 2624 /* current state: new state: action: */ 2625 [0 /* (Invalid) */] = TCP_CLOSE, 2626 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2627 [TCP_SYN_SENT] = TCP_CLOSE, 2628 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2629 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2630 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2631 [TCP_TIME_WAIT] = TCP_CLOSE, 2632 [TCP_CLOSE] = TCP_CLOSE, 2633 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2634 [TCP_LAST_ACK] = TCP_LAST_ACK, 2635 [TCP_LISTEN] = TCP_CLOSE, 2636 [TCP_CLOSING] = TCP_CLOSING, 2637 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2638 }; 2639 2640 static int tcp_close_state(struct sock *sk) 2641 { 2642 int next = (int)new_state[sk->sk_state]; 2643 int ns = next & TCP_STATE_MASK; 2644 2645 tcp_set_state(sk, ns); 2646 2647 return next & TCP_ACTION_FIN; 2648 } 2649 2650 /* 2651 * Shutdown the sending side of a connection. Much like close except 2652 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2653 */ 2654 2655 void tcp_shutdown(struct sock *sk, int how) 2656 { 2657 /* We need to grab some memory, and put together a FIN, 2658 * and then put it into the queue to be sent. 2659 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2660 */ 2661 if (!(how & SEND_SHUTDOWN)) 2662 return; 2663 2664 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2665 if ((1 << sk->sk_state) & 2666 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2667 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2668 /* Clear out any half completed packets. FIN if needed. */ 2669 if (tcp_close_state(sk)) 2670 tcp_send_fin(sk); 2671 } 2672 } 2673 EXPORT_SYMBOL(tcp_shutdown); 2674 2675 int tcp_orphan_count_sum(void) 2676 { 2677 int i, total = 0; 2678 2679 for_each_possible_cpu(i) 2680 total += per_cpu(tcp_orphan_count, i); 2681 2682 return max(total, 0); 2683 } 2684 2685 static int tcp_orphan_cache; 2686 static struct timer_list tcp_orphan_timer; 2687 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2688 2689 static void tcp_orphan_update(struct timer_list *unused) 2690 { 2691 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2692 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2693 } 2694 2695 static bool tcp_too_many_orphans(int shift) 2696 { 2697 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2698 } 2699 2700 bool tcp_check_oom(struct sock *sk, int shift) 2701 { 2702 bool too_many_orphans, out_of_socket_memory; 2703 2704 too_many_orphans = tcp_too_many_orphans(shift); 2705 out_of_socket_memory = tcp_out_of_memory(sk); 2706 2707 if (too_many_orphans) 2708 net_info_ratelimited("too many orphaned sockets\n"); 2709 if (out_of_socket_memory) 2710 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2711 return too_many_orphans || out_of_socket_memory; 2712 } 2713 2714 void __tcp_close(struct sock *sk, long timeout) 2715 { 2716 struct sk_buff *skb; 2717 int data_was_unread = 0; 2718 int state; 2719 2720 sk->sk_shutdown = SHUTDOWN_MASK; 2721 2722 if (sk->sk_state == TCP_LISTEN) { 2723 tcp_set_state(sk, TCP_CLOSE); 2724 2725 /* Special case. */ 2726 inet_csk_listen_stop(sk); 2727 2728 goto adjudge_to_death; 2729 } 2730 2731 /* We need to flush the recv. buffs. We do this only on the 2732 * descriptor close, not protocol-sourced closes, because the 2733 * reader process may not have drained the data yet! 2734 */ 2735 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2736 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2737 2738 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2739 len--; 2740 data_was_unread += len; 2741 __kfree_skb(skb); 2742 } 2743 2744 sk_mem_reclaim(sk); 2745 2746 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2747 if (sk->sk_state == TCP_CLOSE) 2748 goto adjudge_to_death; 2749 2750 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2751 * data was lost. To witness the awful effects of the old behavior of 2752 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2753 * GET in an FTP client, suspend the process, wait for the client to 2754 * advertise a zero window, then kill -9 the FTP client, wheee... 2755 * Note: timeout is always zero in such a case. 2756 */ 2757 if (unlikely(tcp_sk(sk)->repair)) { 2758 sk->sk_prot->disconnect(sk, 0); 2759 } else if (data_was_unread) { 2760 /* Unread data was tossed, zap the connection. */ 2761 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2762 tcp_set_state(sk, TCP_CLOSE); 2763 tcp_send_active_reset(sk, sk->sk_allocation); 2764 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2765 /* Check zero linger _after_ checking for unread data. */ 2766 sk->sk_prot->disconnect(sk, 0); 2767 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2768 } else if (tcp_close_state(sk)) { 2769 /* We FIN if the application ate all the data before 2770 * zapping the connection. 2771 */ 2772 2773 /* RED-PEN. Formally speaking, we have broken TCP state 2774 * machine. State transitions: 2775 * 2776 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2777 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2778 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2779 * 2780 * are legal only when FIN has been sent (i.e. in window), 2781 * rather than queued out of window. Purists blame. 2782 * 2783 * F.e. "RFC state" is ESTABLISHED, 2784 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2785 * 2786 * The visible declinations are that sometimes 2787 * we enter time-wait state, when it is not required really 2788 * (harmless), do not send active resets, when they are 2789 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2790 * they look as CLOSING or LAST_ACK for Linux) 2791 * Probably, I missed some more holelets. 2792 * --ANK 2793 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2794 * in a single packet! (May consider it later but will 2795 * probably need API support or TCP_CORK SYN-ACK until 2796 * data is written and socket is closed.) 2797 */ 2798 tcp_send_fin(sk); 2799 } 2800 2801 sk_stream_wait_close(sk, timeout); 2802 2803 adjudge_to_death: 2804 state = sk->sk_state; 2805 sock_hold(sk); 2806 sock_orphan(sk); 2807 2808 local_bh_disable(); 2809 bh_lock_sock(sk); 2810 /* remove backlog if any, without releasing ownership. */ 2811 __release_sock(sk); 2812 2813 this_cpu_inc(tcp_orphan_count); 2814 2815 /* Have we already been destroyed by a softirq or backlog? */ 2816 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2817 goto out; 2818 2819 /* This is a (useful) BSD violating of the RFC. There is a 2820 * problem with TCP as specified in that the other end could 2821 * keep a socket open forever with no application left this end. 2822 * We use a 1 minute timeout (about the same as BSD) then kill 2823 * our end. If they send after that then tough - BUT: long enough 2824 * that we won't make the old 4*rto = almost no time - whoops 2825 * reset mistake. 2826 * 2827 * Nope, it was not mistake. It is really desired behaviour 2828 * f.e. on http servers, when such sockets are useless, but 2829 * consume significant resources. Let's do it with special 2830 * linger2 option. --ANK 2831 */ 2832 2833 if (sk->sk_state == TCP_FIN_WAIT2) { 2834 struct tcp_sock *tp = tcp_sk(sk); 2835 if (tp->linger2 < 0) { 2836 tcp_set_state(sk, TCP_CLOSE); 2837 tcp_send_active_reset(sk, GFP_ATOMIC); 2838 __NET_INC_STATS(sock_net(sk), 2839 LINUX_MIB_TCPABORTONLINGER); 2840 } else { 2841 const int tmo = tcp_fin_time(sk); 2842 2843 if (tmo > TCP_TIMEWAIT_LEN) { 2844 inet_csk_reset_keepalive_timer(sk, 2845 tmo - TCP_TIMEWAIT_LEN); 2846 } else { 2847 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2848 goto out; 2849 } 2850 } 2851 } 2852 if (sk->sk_state != TCP_CLOSE) { 2853 sk_mem_reclaim(sk); 2854 if (tcp_check_oom(sk, 0)) { 2855 tcp_set_state(sk, TCP_CLOSE); 2856 tcp_send_active_reset(sk, GFP_ATOMIC); 2857 __NET_INC_STATS(sock_net(sk), 2858 LINUX_MIB_TCPABORTONMEMORY); 2859 } else if (!check_net(sock_net(sk))) { 2860 /* Not possible to send reset; just close */ 2861 tcp_set_state(sk, TCP_CLOSE); 2862 } 2863 } 2864 2865 if (sk->sk_state == TCP_CLOSE) { 2866 struct request_sock *req; 2867 2868 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2869 lockdep_sock_is_held(sk)); 2870 /* We could get here with a non-NULL req if the socket is 2871 * aborted (e.g., closed with unread data) before 3WHS 2872 * finishes. 2873 */ 2874 if (req) 2875 reqsk_fastopen_remove(sk, req, false); 2876 inet_csk_destroy_sock(sk); 2877 } 2878 /* Otherwise, socket is reprieved until protocol close. */ 2879 2880 out: 2881 bh_unlock_sock(sk); 2882 local_bh_enable(); 2883 } 2884 2885 void tcp_close(struct sock *sk, long timeout) 2886 { 2887 lock_sock(sk); 2888 __tcp_close(sk, timeout); 2889 release_sock(sk); 2890 sock_put(sk); 2891 } 2892 EXPORT_SYMBOL(tcp_close); 2893 2894 /* These states need RST on ABORT according to RFC793 */ 2895 2896 static inline bool tcp_need_reset(int state) 2897 { 2898 return (1 << state) & 2899 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2900 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2901 } 2902 2903 static void tcp_rtx_queue_purge(struct sock *sk) 2904 { 2905 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2906 2907 tcp_sk(sk)->highest_sack = NULL; 2908 while (p) { 2909 struct sk_buff *skb = rb_to_skb(p); 2910 2911 p = rb_next(p); 2912 /* Since we are deleting whole queue, no need to 2913 * list_del(&skb->tcp_tsorted_anchor) 2914 */ 2915 tcp_rtx_queue_unlink(skb, sk); 2916 tcp_wmem_free_skb(sk, skb); 2917 } 2918 } 2919 2920 void tcp_write_queue_purge(struct sock *sk) 2921 { 2922 struct sk_buff *skb; 2923 2924 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2925 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2926 tcp_skb_tsorted_anchor_cleanup(skb); 2927 tcp_wmem_free_skb(sk, skb); 2928 } 2929 tcp_rtx_queue_purge(sk); 2930 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2931 sk_mem_reclaim(sk); 2932 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2933 tcp_sk(sk)->packets_out = 0; 2934 inet_csk(sk)->icsk_backoff = 0; 2935 } 2936 2937 int tcp_disconnect(struct sock *sk, int flags) 2938 { 2939 struct inet_sock *inet = inet_sk(sk); 2940 struct inet_connection_sock *icsk = inet_csk(sk); 2941 struct tcp_sock *tp = tcp_sk(sk); 2942 int old_state = sk->sk_state; 2943 u32 seq; 2944 2945 if (old_state != TCP_CLOSE) 2946 tcp_set_state(sk, TCP_CLOSE); 2947 2948 /* ABORT function of RFC793 */ 2949 if (old_state == TCP_LISTEN) { 2950 inet_csk_listen_stop(sk); 2951 } else if (unlikely(tp->repair)) { 2952 sk->sk_err = ECONNABORTED; 2953 } else if (tcp_need_reset(old_state) || 2954 (tp->snd_nxt != tp->write_seq && 2955 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2956 /* The last check adjusts for discrepancy of Linux wrt. RFC 2957 * states 2958 */ 2959 tcp_send_active_reset(sk, gfp_any()); 2960 sk->sk_err = ECONNRESET; 2961 } else if (old_state == TCP_SYN_SENT) 2962 sk->sk_err = ECONNRESET; 2963 2964 tcp_clear_xmit_timers(sk); 2965 __skb_queue_purge(&sk->sk_receive_queue); 2966 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2967 tp->urg_data = 0; 2968 tcp_write_queue_purge(sk); 2969 tcp_fastopen_active_disable_ofo_check(sk); 2970 skb_rbtree_purge(&tp->out_of_order_queue); 2971 2972 inet->inet_dport = 0; 2973 2974 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2975 inet_reset_saddr(sk); 2976 2977 sk->sk_shutdown = 0; 2978 sock_reset_flag(sk, SOCK_DONE); 2979 tp->srtt_us = 0; 2980 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2981 tp->rcv_rtt_last_tsecr = 0; 2982 2983 seq = tp->write_seq + tp->max_window + 2; 2984 if (!seq) 2985 seq = 1; 2986 WRITE_ONCE(tp->write_seq, seq); 2987 2988 icsk->icsk_backoff = 0; 2989 icsk->icsk_probes_out = 0; 2990 icsk->icsk_probes_tstamp = 0; 2991 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2992 icsk->icsk_rto_min = TCP_RTO_MIN; 2993 icsk->icsk_delack_max = TCP_DELACK_MAX; 2994 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2995 tp->snd_cwnd = TCP_INIT_CWND; 2996 tp->snd_cwnd_cnt = 0; 2997 tp->window_clamp = 0; 2998 tp->delivered = 0; 2999 tp->delivered_ce = 0; 3000 if (icsk->icsk_ca_ops->release) 3001 icsk->icsk_ca_ops->release(sk); 3002 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3003 icsk->icsk_ca_initialized = 0; 3004 tcp_set_ca_state(sk, TCP_CA_Open); 3005 tp->is_sack_reneg = 0; 3006 tcp_clear_retrans(tp); 3007 tp->total_retrans = 0; 3008 inet_csk_delack_init(sk); 3009 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3010 * issue in __tcp_select_window() 3011 */ 3012 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3013 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3014 __sk_dst_reset(sk); 3015 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3016 tcp_saved_syn_free(tp); 3017 tp->compressed_ack = 0; 3018 tp->segs_in = 0; 3019 tp->segs_out = 0; 3020 tp->bytes_sent = 0; 3021 tp->bytes_acked = 0; 3022 tp->bytes_received = 0; 3023 tp->bytes_retrans = 0; 3024 tp->data_segs_in = 0; 3025 tp->data_segs_out = 0; 3026 tp->duplicate_sack[0].start_seq = 0; 3027 tp->duplicate_sack[0].end_seq = 0; 3028 tp->dsack_dups = 0; 3029 tp->reord_seen = 0; 3030 tp->retrans_out = 0; 3031 tp->sacked_out = 0; 3032 tp->tlp_high_seq = 0; 3033 tp->last_oow_ack_time = 0; 3034 /* There's a bubble in the pipe until at least the first ACK. */ 3035 tp->app_limited = ~0U; 3036 tp->rack.mstamp = 0; 3037 tp->rack.advanced = 0; 3038 tp->rack.reo_wnd_steps = 1; 3039 tp->rack.last_delivered = 0; 3040 tp->rack.reo_wnd_persist = 0; 3041 tp->rack.dsack_seen = 0; 3042 tp->syn_data_acked = 0; 3043 tp->rx_opt.saw_tstamp = 0; 3044 tp->rx_opt.dsack = 0; 3045 tp->rx_opt.num_sacks = 0; 3046 tp->rcv_ooopack = 0; 3047 3048 3049 /* Clean up fastopen related fields */ 3050 tcp_free_fastopen_req(tp); 3051 inet->defer_connect = 0; 3052 tp->fastopen_client_fail = 0; 3053 3054 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3055 3056 if (sk->sk_frag.page) { 3057 put_page(sk->sk_frag.page); 3058 sk->sk_frag.page = NULL; 3059 sk->sk_frag.offset = 0; 3060 } 3061 3062 sk_error_report(sk); 3063 return 0; 3064 } 3065 EXPORT_SYMBOL(tcp_disconnect); 3066 3067 static inline bool tcp_can_repair_sock(const struct sock *sk) 3068 { 3069 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3070 (sk->sk_state != TCP_LISTEN); 3071 } 3072 3073 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3074 { 3075 struct tcp_repair_window opt; 3076 3077 if (!tp->repair) 3078 return -EPERM; 3079 3080 if (len != sizeof(opt)) 3081 return -EINVAL; 3082 3083 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3084 return -EFAULT; 3085 3086 if (opt.max_window < opt.snd_wnd) 3087 return -EINVAL; 3088 3089 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3090 return -EINVAL; 3091 3092 if (after(opt.rcv_wup, tp->rcv_nxt)) 3093 return -EINVAL; 3094 3095 tp->snd_wl1 = opt.snd_wl1; 3096 tp->snd_wnd = opt.snd_wnd; 3097 tp->max_window = opt.max_window; 3098 3099 tp->rcv_wnd = opt.rcv_wnd; 3100 tp->rcv_wup = opt.rcv_wup; 3101 3102 return 0; 3103 } 3104 3105 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3106 unsigned int len) 3107 { 3108 struct tcp_sock *tp = tcp_sk(sk); 3109 struct tcp_repair_opt opt; 3110 size_t offset = 0; 3111 3112 while (len >= sizeof(opt)) { 3113 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3114 return -EFAULT; 3115 3116 offset += sizeof(opt); 3117 len -= sizeof(opt); 3118 3119 switch (opt.opt_code) { 3120 case TCPOPT_MSS: 3121 tp->rx_opt.mss_clamp = opt.opt_val; 3122 tcp_mtup_init(sk); 3123 break; 3124 case TCPOPT_WINDOW: 3125 { 3126 u16 snd_wscale = opt.opt_val & 0xFFFF; 3127 u16 rcv_wscale = opt.opt_val >> 16; 3128 3129 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3130 return -EFBIG; 3131 3132 tp->rx_opt.snd_wscale = snd_wscale; 3133 tp->rx_opt.rcv_wscale = rcv_wscale; 3134 tp->rx_opt.wscale_ok = 1; 3135 } 3136 break; 3137 case TCPOPT_SACK_PERM: 3138 if (opt.opt_val != 0) 3139 return -EINVAL; 3140 3141 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3142 break; 3143 case TCPOPT_TIMESTAMP: 3144 if (opt.opt_val != 0) 3145 return -EINVAL; 3146 3147 tp->rx_opt.tstamp_ok = 1; 3148 break; 3149 } 3150 } 3151 3152 return 0; 3153 } 3154 3155 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3156 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3157 3158 static void tcp_enable_tx_delay(void) 3159 { 3160 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3161 static int __tcp_tx_delay_enabled = 0; 3162 3163 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3164 static_branch_enable(&tcp_tx_delay_enabled); 3165 pr_info("TCP_TX_DELAY enabled\n"); 3166 } 3167 } 3168 } 3169 3170 /* When set indicates to always queue non-full frames. Later the user clears 3171 * this option and we transmit any pending partial frames in the queue. This is 3172 * meant to be used alongside sendfile() to get properly filled frames when the 3173 * user (for example) must write out headers with a write() call first and then 3174 * use sendfile to send out the data parts. 3175 * 3176 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3177 * TCP_NODELAY. 3178 */ 3179 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3180 { 3181 struct tcp_sock *tp = tcp_sk(sk); 3182 3183 if (on) { 3184 tp->nonagle |= TCP_NAGLE_CORK; 3185 } else { 3186 tp->nonagle &= ~TCP_NAGLE_CORK; 3187 if (tp->nonagle & TCP_NAGLE_OFF) 3188 tp->nonagle |= TCP_NAGLE_PUSH; 3189 tcp_push_pending_frames(sk); 3190 } 3191 } 3192 3193 void tcp_sock_set_cork(struct sock *sk, bool on) 3194 { 3195 lock_sock(sk); 3196 __tcp_sock_set_cork(sk, on); 3197 release_sock(sk); 3198 } 3199 EXPORT_SYMBOL(tcp_sock_set_cork); 3200 3201 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3202 * remembered, but it is not activated until cork is cleared. 3203 * 3204 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3205 * even TCP_CORK for currently queued segments. 3206 */ 3207 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3208 { 3209 if (on) { 3210 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3211 tcp_push_pending_frames(sk); 3212 } else { 3213 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3214 } 3215 } 3216 3217 void tcp_sock_set_nodelay(struct sock *sk) 3218 { 3219 lock_sock(sk); 3220 __tcp_sock_set_nodelay(sk, true); 3221 release_sock(sk); 3222 } 3223 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3224 3225 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3226 { 3227 if (!val) { 3228 inet_csk_enter_pingpong_mode(sk); 3229 return; 3230 } 3231 3232 inet_csk_exit_pingpong_mode(sk); 3233 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3234 inet_csk_ack_scheduled(sk)) { 3235 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3236 tcp_cleanup_rbuf(sk, 1); 3237 if (!(val & 1)) 3238 inet_csk_enter_pingpong_mode(sk); 3239 } 3240 } 3241 3242 void tcp_sock_set_quickack(struct sock *sk, int val) 3243 { 3244 lock_sock(sk); 3245 __tcp_sock_set_quickack(sk, val); 3246 release_sock(sk); 3247 } 3248 EXPORT_SYMBOL(tcp_sock_set_quickack); 3249 3250 int tcp_sock_set_syncnt(struct sock *sk, int val) 3251 { 3252 if (val < 1 || val > MAX_TCP_SYNCNT) 3253 return -EINVAL; 3254 3255 lock_sock(sk); 3256 inet_csk(sk)->icsk_syn_retries = val; 3257 release_sock(sk); 3258 return 0; 3259 } 3260 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3261 3262 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3263 { 3264 lock_sock(sk); 3265 inet_csk(sk)->icsk_user_timeout = val; 3266 release_sock(sk); 3267 } 3268 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3269 3270 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3271 { 3272 struct tcp_sock *tp = tcp_sk(sk); 3273 3274 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3275 return -EINVAL; 3276 3277 tp->keepalive_time = val * HZ; 3278 if (sock_flag(sk, SOCK_KEEPOPEN) && 3279 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3280 u32 elapsed = keepalive_time_elapsed(tp); 3281 3282 if (tp->keepalive_time > elapsed) 3283 elapsed = tp->keepalive_time - elapsed; 3284 else 3285 elapsed = 0; 3286 inet_csk_reset_keepalive_timer(sk, elapsed); 3287 } 3288 3289 return 0; 3290 } 3291 3292 int tcp_sock_set_keepidle(struct sock *sk, int val) 3293 { 3294 int err; 3295 3296 lock_sock(sk); 3297 err = tcp_sock_set_keepidle_locked(sk, val); 3298 release_sock(sk); 3299 return err; 3300 } 3301 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3302 3303 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3304 { 3305 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3306 return -EINVAL; 3307 3308 lock_sock(sk); 3309 tcp_sk(sk)->keepalive_intvl = val * HZ; 3310 release_sock(sk); 3311 return 0; 3312 } 3313 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3314 3315 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3316 { 3317 if (val < 1 || val > MAX_TCP_KEEPCNT) 3318 return -EINVAL; 3319 3320 lock_sock(sk); 3321 tcp_sk(sk)->keepalive_probes = val; 3322 release_sock(sk); 3323 return 0; 3324 } 3325 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3326 3327 int tcp_set_window_clamp(struct sock *sk, int val) 3328 { 3329 struct tcp_sock *tp = tcp_sk(sk); 3330 3331 if (!val) { 3332 if (sk->sk_state != TCP_CLOSE) 3333 return -EINVAL; 3334 tp->window_clamp = 0; 3335 } else { 3336 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3337 SOCK_MIN_RCVBUF / 2 : val; 3338 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3339 } 3340 return 0; 3341 } 3342 3343 /* 3344 * Socket option code for TCP. 3345 */ 3346 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3347 sockptr_t optval, unsigned int optlen) 3348 { 3349 struct tcp_sock *tp = tcp_sk(sk); 3350 struct inet_connection_sock *icsk = inet_csk(sk); 3351 struct net *net = sock_net(sk); 3352 int val; 3353 int err = 0; 3354 3355 /* These are data/string values, all the others are ints */ 3356 switch (optname) { 3357 case TCP_CONGESTION: { 3358 char name[TCP_CA_NAME_MAX]; 3359 3360 if (optlen < 1) 3361 return -EINVAL; 3362 3363 val = strncpy_from_sockptr(name, optval, 3364 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3365 if (val < 0) 3366 return -EFAULT; 3367 name[val] = 0; 3368 3369 lock_sock(sk); 3370 err = tcp_set_congestion_control(sk, name, true, 3371 ns_capable(sock_net(sk)->user_ns, 3372 CAP_NET_ADMIN)); 3373 release_sock(sk); 3374 return err; 3375 } 3376 case TCP_ULP: { 3377 char name[TCP_ULP_NAME_MAX]; 3378 3379 if (optlen < 1) 3380 return -EINVAL; 3381 3382 val = strncpy_from_sockptr(name, optval, 3383 min_t(long, TCP_ULP_NAME_MAX - 1, 3384 optlen)); 3385 if (val < 0) 3386 return -EFAULT; 3387 name[val] = 0; 3388 3389 lock_sock(sk); 3390 err = tcp_set_ulp(sk, name); 3391 release_sock(sk); 3392 return err; 3393 } 3394 case TCP_FASTOPEN_KEY: { 3395 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3396 __u8 *backup_key = NULL; 3397 3398 /* Allow a backup key as well to facilitate key rotation 3399 * First key is the active one. 3400 */ 3401 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3402 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3403 return -EINVAL; 3404 3405 if (copy_from_sockptr(key, optval, optlen)) 3406 return -EFAULT; 3407 3408 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3409 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3410 3411 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3412 } 3413 default: 3414 /* fallthru */ 3415 break; 3416 } 3417 3418 if (optlen < sizeof(int)) 3419 return -EINVAL; 3420 3421 if (copy_from_sockptr(&val, optval, sizeof(val))) 3422 return -EFAULT; 3423 3424 lock_sock(sk); 3425 3426 switch (optname) { 3427 case TCP_MAXSEG: 3428 /* Values greater than interface MTU won't take effect. However 3429 * at the point when this call is done we typically don't yet 3430 * know which interface is going to be used 3431 */ 3432 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3433 err = -EINVAL; 3434 break; 3435 } 3436 tp->rx_opt.user_mss = val; 3437 break; 3438 3439 case TCP_NODELAY: 3440 __tcp_sock_set_nodelay(sk, val); 3441 break; 3442 3443 case TCP_THIN_LINEAR_TIMEOUTS: 3444 if (val < 0 || val > 1) 3445 err = -EINVAL; 3446 else 3447 tp->thin_lto = val; 3448 break; 3449 3450 case TCP_THIN_DUPACK: 3451 if (val < 0 || val > 1) 3452 err = -EINVAL; 3453 break; 3454 3455 case TCP_REPAIR: 3456 if (!tcp_can_repair_sock(sk)) 3457 err = -EPERM; 3458 else if (val == TCP_REPAIR_ON) { 3459 tp->repair = 1; 3460 sk->sk_reuse = SK_FORCE_REUSE; 3461 tp->repair_queue = TCP_NO_QUEUE; 3462 } else if (val == TCP_REPAIR_OFF) { 3463 tp->repair = 0; 3464 sk->sk_reuse = SK_NO_REUSE; 3465 tcp_send_window_probe(sk); 3466 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3467 tp->repair = 0; 3468 sk->sk_reuse = SK_NO_REUSE; 3469 } else 3470 err = -EINVAL; 3471 3472 break; 3473 3474 case TCP_REPAIR_QUEUE: 3475 if (!tp->repair) 3476 err = -EPERM; 3477 else if ((unsigned int)val < TCP_QUEUES_NR) 3478 tp->repair_queue = val; 3479 else 3480 err = -EINVAL; 3481 break; 3482 3483 case TCP_QUEUE_SEQ: 3484 if (sk->sk_state != TCP_CLOSE) { 3485 err = -EPERM; 3486 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3487 if (!tcp_rtx_queue_empty(sk)) 3488 err = -EPERM; 3489 else 3490 WRITE_ONCE(tp->write_seq, val); 3491 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3492 if (tp->rcv_nxt != tp->copied_seq) { 3493 err = -EPERM; 3494 } else { 3495 WRITE_ONCE(tp->rcv_nxt, val); 3496 WRITE_ONCE(tp->copied_seq, val); 3497 } 3498 } else { 3499 err = -EINVAL; 3500 } 3501 break; 3502 3503 case TCP_REPAIR_OPTIONS: 3504 if (!tp->repair) 3505 err = -EINVAL; 3506 else if (sk->sk_state == TCP_ESTABLISHED) 3507 err = tcp_repair_options_est(sk, optval, optlen); 3508 else 3509 err = -EPERM; 3510 break; 3511 3512 case TCP_CORK: 3513 __tcp_sock_set_cork(sk, val); 3514 break; 3515 3516 case TCP_KEEPIDLE: 3517 err = tcp_sock_set_keepidle_locked(sk, val); 3518 break; 3519 case TCP_KEEPINTVL: 3520 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3521 err = -EINVAL; 3522 else 3523 tp->keepalive_intvl = val * HZ; 3524 break; 3525 case TCP_KEEPCNT: 3526 if (val < 1 || val > MAX_TCP_KEEPCNT) 3527 err = -EINVAL; 3528 else 3529 tp->keepalive_probes = val; 3530 break; 3531 case TCP_SYNCNT: 3532 if (val < 1 || val > MAX_TCP_SYNCNT) 3533 err = -EINVAL; 3534 else 3535 icsk->icsk_syn_retries = val; 3536 break; 3537 3538 case TCP_SAVE_SYN: 3539 /* 0: disable, 1: enable, 2: start from ether_header */ 3540 if (val < 0 || val > 2) 3541 err = -EINVAL; 3542 else 3543 tp->save_syn = val; 3544 break; 3545 3546 case TCP_LINGER2: 3547 if (val < 0) 3548 tp->linger2 = -1; 3549 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3550 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3551 else 3552 tp->linger2 = val * HZ; 3553 break; 3554 3555 case TCP_DEFER_ACCEPT: 3556 /* Translate value in seconds to number of retransmits */ 3557 icsk->icsk_accept_queue.rskq_defer_accept = 3558 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3559 TCP_RTO_MAX / HZ); 3560 break; 3561 3562 case TCP_WINDOW_CLAMP: 3563 err = tcp_set_window_clamp(sk, val); 3564 break; 3565 3566 case TCP_QUICKACK: 3567 __tcp_sock_set_quickack(sk, val); 3568 break; 3569 3570 #ifdef CONFIG_TCP_MD5SIG 3571 case TCP_MD5SIG: 3572 case TCP_MD5SIG_EXT: 3573 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3574 break; 3575 #endif 3576 case TCP_USER_TIMEOUT: 3577 /* Cap the max time in ms TCP will retry or probe the window 3578 * before giving up and aborting (ETIMEDOUT) a connection. 3579 */ 3580 if (val < 0) 3581 err = -EINVAL; 3582 else 3583 icsk->icsk_user_timeout = val; 3584 break; 3585 3586 case TCP_FASTOPEN: 3587 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3588 TCPF_LISTEN))) { 3589 tcp_fastopen_init_key_once(net); 3590 3591 fastopen_queue_tune(sk, val); 3592 } else { 3593 err = -EINVAL; 3594 } 3595 break; 3596 case TCP_FASTOPEN_CONNECT: 3597 if (val > 1 || val < 0) { 3598 err = -EINVAL; 3599 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3600 if (sk->sk_state == TCP_CLOSE) 3601 tp->fastopen_connect = val; 3602 else 3603 err = -EINVAL; 3604 } else { 3605 err = -EOPNOTSUPP; 3606 } 3607 break; 3608 case TCP_FASTOPEN_NO_COOKIE: 3609 if (val > 1 || val < 0) 3610 err = -EINVAL; 3611 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3612 err = -EINVAL; 3613 else 3614 tp->fastopen_no_cookie = val; 3615 break; 3616 case TCP_TIMESTAMP: 3617 if (!tp->repair) 3618 err = -EPERM; 3619 else 3620 tp->tsoffset = val - tcp_time_stamp_raw(); 3621 break; 3622 case TCP_REPAIR_WINDOW: 3623 err = tcp_repair_set_window(tp, optval, optlen); 3624 break; 3625 case TCP_NOTSENT_LOWAT: 3626 tp->notsent_lowat = val; 3627 sk->sk_write_space(sk); 3628 break; 3629 case TCP_INQ: 3630 if (val > 1 || val < 0) 3631 err = -EINVAL; 3632 else 3633 tp->recvmsg_inq = val; 3634 break; 3635 case TCP_TX_DELAY: 3636 if (val) 3637 tcp_enable_tx_delay(); 3638 tp->tcp_tx_delay = val; 3639 break; 3640 default: 3641 err = -ENOPROTOOPT; 3642 break; 3643 } 3644 3645 release_sock(sk); 3646 return err; 3647 } 3648 3649 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3650 unsigned int optlen) 3651 { 3652 const struct inet_connection_sock *icsk = inet_csk(sk); 3653 3654 if (level != SOL_TCP) 3655 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3656 optval, optlen); 3657 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3658 } 3659 EXPORT_SYMBOL(tcp_setsockopt); 3660 3661 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3662 struct tcp_info *info) 3663 { 3664 u64 stats[__TCP_CHRONO_MAX], total = 0; 3665 enum tcp_chrono i; 3666 3667 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3668 stats[i] = tp->chrono_stat[i - 1]; 3669 if (i == tp->chrono_type) 3670 stats[i] += tcp_jiffies32 - tp->chrono_start; 3671 stats[i] *= USEC_PER_SEC / HZ; 3672 total += stats[i]; 3673 } 3674 3675 info->tcpi_busy_time = total; 3676 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3677 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3678 } 3679 3680 /* Return information about state of tcp endpoint in API format. */ 3681 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3682 { 3683 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3684 const struct inet_connection_sock *icsk = inet_csk(sk); 3685 unsigned long rate; 3686 u32 now; 3687 u64 rate64; 3688 bool slow; 3689 3690 memset(info, 0, sizeof(*info)); 3691 if (sk->sk_type != SOCK_STREAM) 3692 return; 3693 3694 info->tcpi_state = inet_sk_state_load(sk); 3695 3696 /* Report meaningful fields for all TCP states, including listeners */ 3697 rate = READ_ONCE(sk->sk_pacing_rate); 3698 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3699 info->tcpi_pacing_rate = rate64; 3700 3701 rate = READ_ONCE(sk->sk_max_pacing_rate); 3702 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3703 info->tcpi_max_pacing_rate = rate64; 3704 3705 info->tcpi_reordering = tp->reordering; 3706 info->tcpi_snd_cwnd = tp->snd_cwnd; 3707 3708 if (info->tcpi_state == TCP_LISTEN) { 3709 /* listeners aliased fields : 3710 * tcpi_unacked -> Number of children ready for accept() 3711 * tcpi_sacked -> max backlog 3712 */ 3713 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3714 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3715 return; 3716 } 3717 3718 slow = lock_sock_fast(sk); 3719 3720 info->tcpi_ca_state = icsk->icsk_ca_state; 3721 info->tcpi_retransmits = icsk->icsk_retransmits; 3722 info->tcpi_probes = icsk->icsk_probes_out; 3723 info->tcpi_backoff = icsk->icsk_backoff; 3724 3725 if (tp->rx_opt.tstamp_ok) 3726 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3727 if (tcp_is_sack(tp)) 3728 info->tcpi_options |= TCPI_OPT_SACK; 3729 if (tp->rx_opt.wscale_ok) { 3730 info->tcpi_options |= TCPI_OPT_WSCALE; 3731 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3732 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3733 } 3734 3735 if (tp->ecn_flags & TCP_ECN_OK) 3736 info->tcpi_options |= TCPI_OPT_ECN; 3737 if (tp->ecn_flags & TCP_ECN_SEEN) 3738 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3739 if (tp->syn_data_acked) 3740 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3741 3742 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3743 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3744 info->tcpi_snd_mss = tp->mss_cache; 3745 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3746 3747 info->tcpi_unacked = tp->packets_out; 3748 info->tcpi_sacked = tp->sacked_out; 3749 3750 info->tcpi_lost = tp->lost_out; 3751 info->tcpi_retrans = tp->retrans_out; 3752 3753 now = tcp_jiffies32; 3754 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3755 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3756 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3757 3758 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3759 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3760 info->tcpi_rtt = tp->srtt_us >> 3; 3761 info->tcpi_rttvar = tp->mdev_us >> 2; 3762 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3763 info->tcpi_advmss = tp->advmss; 3764 3765 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3766 info->tcpi_rcv_space = tp->rcvq_space.space; 3767 3768 info->tcpi_total_retrans = tp->total_retrans; 3769 3770 info->tcpi_bytes_acked = tp->bytes_acked; 3771 info->tcpi_bytes_received = tp->bytes_received; 3772 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3773 tcp_get_info_chrono_stats(tp, info); 3774 3775 info->tcpi_segs_out = tp->segs_out; 3776 info->tcpi_segs_in = tp->segs_in; 3777 3778 info->tcpi_min_rtt = tcp_min_rtt(tp); 3779 info->tcpi_data_segs_in = tp->data_segs_in; 3780 info->tcpi_data_segs_out = tp->data_segs_out; 3781 3782 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3783 rate64 = tcp_compute_delivery_rate(tp); 3784 if (rate64) 3785 info->tcpi_delivery_rate = rate64; 3786 info->tcpi_delivered = tp->delivered; 3787 info->tcpi_delivered_ce = tp->delivered_ce; 3788 info->tcpi_bytes_sent = tp->bytes_sent; 3789 info->tcpi_bytes_retrans = tp->bytes_retrans; 3790 info->tcpi_dsack_dups = tp->dsack_dups; 3791 info->tcpi_reord_seen = tp->reord_seen; 3792 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3793 info->tcpi_snd_wnd = tp->snd_wnd; 3794 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3795 unlock_sock_fast(sk, slow); 3796 } 3797 EXPORT_SYMBOL_GPL(tcp_get_info); 3798 3799 static size_t tcp_opt_stats_get_size(void) 3800 { 3801 return 3802 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3803 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3812 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3813 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3814 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3815 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3816 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3817 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3818 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3819 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3820 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3821 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3822 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3823 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3824 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3825 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3826 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3827 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3828 0; 3829 } 3830 3831 /* Returns TTL or hop limit of an incoming packet from skb. */ 3832 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3833 { 3834 if (skb->protocol == htons(ETH_P_IP)) 3835 return ip_hdr(skb)->ttl; 3836 else if (skb->protocol == htons(ETH_P_IPV6)) 3837 return ipv6_hdr(skb)->hop_limit; 3838 else 3839 return 0; 3840 } 3841 3842 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3843 const struct sk_buff *orig_skb, 3844 const struct sk_buff *ack_skb) 3845 { 3846 const struct tcp_sock *tp = tcp_sk(sk); 3847 struct sk_buff *stats; 3848 struct tcp_info info; 3849 unsigned long rate; 3850 u64 rate64; 3851 3852 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3853 if (!stats) 3854 return NULL; 3855 3856 tcp_get_info_chrono_stats(tp, &info); 3857 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3858 info.tcpi_busy_time, TCP_NLA_PAD); 3859 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3860 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3861 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3862 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3863 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3864 tp->data_segs_out, TCP_NLA_PAD); 3865 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3866 tp->total_retrans, TCP_NLA_PAD); 3867 3868 rate = READ_ONCE(sk->sk_pacing_rate); 3869 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3870 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3871 3872 rate64 = tcp_compute_delivery_rate(tp); 3873 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3874 3875 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3876 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3877 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3878 3879 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3880 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3881 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3882 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3883 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3884 3885 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3886 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3887 3888 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3889 TCP_NLA_PAD); 3890 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3891 TCP_NLA_PAD); 3892 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3893 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3894 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3895 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3896 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3897 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3898 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3899 TCP_NLA_PAD); 3900 if (ack_skb) 3901 nla_put_u8(stats, TCP_NLA_TTL, 3902 tcp_skb_ttl_or_hop_limit(ack_skb)); 3903 3904 return stats; 3905 } 3906 3907 static int do_tcp_getsockopt(struct sock *sk, int level, 3908 int optname, char __user *optval, int __user *optlen) 3909 { 3910 struct inet_connection_sock *icsk = inet_csk(sk); 3911 struct tcp_sock *tp = tcp_sk(sk); 3912 struct net *net = sock_net(sk); 3913 int val, len; 3914 3915 if (get_user(len, optlen)) 3916 return -EFAULT; 3917 3918 len = min_t(unsigned int, len, sizeof(int)); 3919 3920 if (len < 0) 3921 return -EINVAL; 3922 3923 switch (optname) { 3924 case TCP_MAXSEG: 3925 val = tp->mss_cache; 3926 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3927 val = tp->rx_opt.user_mss; 3928 if (tp->repair) 3929 val = tp->rx_opt.mss_clamp; 3930 break; 3931 case TCP_NODELAY: 3932 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3933 break; 3934 case TCP_CORK: 3935 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3936 break; 3937 case TCP_KEEPIDLE: 3938 val = keepalive_time_when(tp) / HZ; 3939 break; 3940 case TCP_KEEPINTVL: 3941 val = keepalive_intvl_when(tp) / HZ; 3942 break; 3943 case TCP_KEEPCNT: 3944 val = keepalive_probes(tp); 3945 break; 3946 case TCP_SYNCNT: 3947 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3948 break; 3949 case TCP_LINGER2: 3950 val = tp->linger2; 3951 if (val >= 0) 3952 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3953 break; 3954 case TCP_DEFER_ACCEPT: 3955 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3956 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3957 break; 3958 case TCP_WINDOW_CLAMP: 3959 val = tp->window_clamp; 3960 break; 3961 case TCP_INFO: { 3962 struct tcp_info info; 3963 3964 if (get_user(len, optlen)) 3965 return -EFAULT; 3966 3967 tcp_get_info(sk, &info); 3968 3969 len = min_t(unsigned int, len, sizeof(info)); 3970 if (put_user(len, optlen)) 3971 return -EFAULT; 3972 if (copy_to_user(optval, &info, len)) 3973 return -EFAULT; 3974 return 0; 3975 } 3976 case TCP_CC_INFO: { 3977 const struct tcp_congestion_ops *ca_ops; 3978 union tcp_cc_info info; 3979 size_t sz = 0; 3980 int attr; 3981 3982 if (get_user(len, optlen)) 3983 return -EFAULT; 3984 3985 ca_ops = icsk->icsk_ca_ops; 3986 if (ca_ops && ca_ops->get_info) 3987 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3988 3989 len = min_t(unsigned int, len, sz); 3990 if (put_user(len, optlen)) 3991 return -EFAULT; 3992 if (copy_to_user(optval, &info, len)) 3993 return -EFAULT; 3994 return 0; 3995 } 3996 case TCP_QUICKACK: 3997 val = !inet_csk_in_pingpong_mode(sk); 3998 break; 3999 4000 case TCP_CONGESTION: 4001 if (get_user(len, optlen)) 4002 return -EFAULT; 4003 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4004 if (put_user(len, optlen)) 4005 return -EFAULT; 4006 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4007 return -EFAULT; 4008 return 0; 4009 4010 case TCP_ULP: 4011 if (get_user(len, optlen)) 4012 return -EFAULT; 4013 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4014 if (!icsk->icsk_ulp_ops) { 4015 if (put_user(0, optlen)) 4016 return -EFAULT; 4017 return 0; 4018 } 4019 if (put_user(len, optlen)) 4020 return -EFAULT; 4021 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4022 return -EFAULT; 4023 return 0; 4024 4025 case TCP_FASTOPEN_KEY: { 4026 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4027 unsigned int key_len; 4028 4029 if (get_user(len, optlen)) 4030 return -EFAULT; 4031 4032 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4033 TCP_FASTOPEN_KEY_LENGTH; 4034 len = min_t(unsigned int, len, key_len); 4035 if (put_user(len, optlen)) 4036 return -EFAULT; 4037 if (copy_to_user(optval, key, len)) 4038 return -EFAULT; 4039 return 0; 4040 } 4041 case TCP_THIN_LINEAR_TIMEOUTS: 4042 val = tp->thin_lto; 4043 break; 4044 4045 case TCP_THIN_DUPACK: 4046 val = 0; 4047 break; 4048 4049 case TCP_REPAIR: 4050 val = tp->repair; 4051 break; 4052 4053 case TCP_REPAIR_QUEUE: 4054 if (tp->repair) 4055 val = tp->repair_queue; 4056 else 4057 return -EINVAL; 4058 break; 4059 4060 case TCP_REPAIR_WINDOW: { 4061 struct tcp_repair_window opt; 4062 4063 if (get_user(len, optlen)) 4064 return -EFAULT; 4065 4066 if (len != sizeof(opt)) 4067 return -EINVAL; 4068 4069 if (!tp->repair) 4070 return -EPERM; 4071 4072 opt.snd_wl1 = tp->snd_wl1; 4073 opt.snd_wnd = tp->snd_wnd; 4074 opt.max_window = tp->max_window; 4075 opt.rcv_wnd = tp->rcv_wnd; 4076 opt.rcv_wup = tp->rcv_wup; 4077 4078 if (copy_to_user(optval, &opt, len)) 4079 return -EFAULT; 4080 return 0; 4081 } 4082 case TCP_QUEUE_SEQ: 4083 if (tp->repair_queue == TCP_SEND_QUEUE) 4084 val = tp->write_seq; 4085 else if (tp->repair_queue == TCP_RECV_QUEUE) 4086 val = tp->rcv_nxt; 4087 else 4088 return -EINVAL; 4089 break; 4090 4091 case TCP_USER_TIMEOUT: 4092 val = icsk->icsk_user_timeout; 4093 break; 4094 4095 case TCP_FASTOPEN: 4096 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4097 break; 4098 4099 case TCP_FASTOPEN_CONNECT: 4100 val = tp->fastopen_connect; 4101 break; 4102 4103 case TCP_FASTOPEN_NO_COOKIE: 4104 val = tp->fastopen_no_cookie; 4105 break; 4106 4107 case TCP_TX_DELAY: 4108 val = tp->tcp_tx_delay; 4109 break; 4110 4111 case TCP_TIMESTAMP: 4112 val = tcp_time_stamp_raw() + tp->tsoffset; 4113 break; 4114 case TCP_NOTSENT_LOWAT: 4115 val = tp->notsent_lowat; 4116 break; 4117 case TCP_INQ: 4118 val = tp->recvmsg_inq; 4119 break; 4120 case TCP_SAVE_SYN: 4121 val = tp->save_syn; 4122 break; 4123 case TCP_SAVED_SYN: { 4124 if (get_user(len, optlen)) 4125 return -EFAULT; 4126 4127 lock_sock(sk); 4128 if (tp->saved_syn) { 4129 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4130 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4131 optlen)) { 4132 release_sock(sk); 4133 return -EFAULT; 4134 } 4135 release_sock(sk); 4136 return -EINVAL; 4137 } 4138 len = tcp_saved_syn_len(tp->saved_syn); 4139 if (put_user(len, optlen)) { 4140 release_sock(sk); 4141 return -EFAULT; 4142 } 4143 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4144 release_sock(sk); 4145 return -EFAULT; 4146 } 4147 tcp_saved_syn_free(tp); 4148 release_sock(sk); 4149 } else { 4150 release_sock(sk); 4151 len = 0; 4152 if (put_user(len, optlen)) 4153 return -EFAULT; 4154 } 4155 return 0; 4156 } 4157 #ifdef CONFIG_MMU 4158 case TCP_ZEROCOPY_RECEIVE: { 4159 struct scm_timestamping_internal tss; 4160 struct tcp_zerocopy_receive zc = {}; 4161 int err; 4162 4163 if (get_user(len, optlen)) 4164 return -EFAULT; 4165 if (len < 0 || 4166 len < offsetofend(struct tcp_zerocopy_receive, length)) 4167 return -EINVAL; 4168 if (unlikely(len > sizeof(zc))) { 4169 err = check_zeroed_user(optval + sizeof(zc), 4170 len - sizeof(zc)); 4171 if (err < 1) 4172 return err == 0 ? -EINVAL : err; 4173 len = sizeof(zc); 4174 if (put_user(len, optlen)) 4175 return -EFAULT; 4176 } 4177 if (copy_from_user(&zc, optval, len)) 4178 return -EFAULT; 4179 if (zc.reserved) 4180 return -EINVAL; 4181 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4182 return -EINVAL; 4183 lock_sock(sk); 4184 err = tcp_zerocopy_receive(sk, &zc, &tss); 4185 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4186 &zc, &len, err); 4187 release_sock(sk); 4188 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4189 goto zerocopy_rcv_cmsg; 4190 switch (len) { 4191 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4192 goto zerocopy_rcv_cmsg; 4193 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4194 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4195 case offsetofend(struct tcp_zerocopy_receive, flags): 4196 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4197 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4198 case offsetofend(struct tcp_zerocopy_receive, err): 4199 goto zerocopy_rcv_sk_err; 4200 case offsetofend(struct tcp_zerocopy_receive, inq): 4201 goto zerocopy_rcv_inq; 4202 case offsetofend(struct tcp_zerocopy_receive, length): 4203 default: 4204 goto zerocopy_rcv_out; 4205 } 4206 zerocopy_rcv_cmsg: 4207 if (zc.msg_flags & TCP_CMSG_TS) 4208 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4209 else 4210 zc.msg_flags = 0; 4211 zerocopy_rcv_sk_err: 4212 if (!err) 4213 zc.err = sock_error(sk); 4214 zerocopy_rcv_inq: 4215 zc.inq = tcp_inq_hint(sk); 4216 zerocopy_rcv_out: 4217 if (!err && copy_to_user(optval, &zc, len)) 4218 err = -EFAULT; 4219 return err; 4220 } 4221 #endif 4222 default: 4223 return -ENOPROTOOPT; 4224 } 4225 4226 if (put_user(len, optlen)) 4227 return -EFAULT; 4228 if (copy_to_user(optval, &val, len)) 4229 return -EFAULT; 4230 return 0; 4231 } 4232 4233 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4234 { 4235 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4236 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4237 */ 4238 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4239 return true; 4240 4241 return false; 4242 } 4243 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4244 4245 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4246 int __user *optlen) 4247 { 4248 struct inet_connection_sock *icsk = inet_csk(sk); 4249 4250 if (level != SOL_TCP) 4251 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4252 optval, optlen); 4253 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4254 } 4255 EXPORT_SYMBOL(tcp_getsockopt); 4256 4257 #ifdef CONFIG_TCP_MD5SIG 4258 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4259 static DEFINE_MUTEX(tcp_md5sig_mutex); 4260 static bool tcp_md5sig_pool_populated = false; 4261 4262 static void __tcp_alloc_md5sig_pool(void) 4263 { 4264 struct crypto_ahash *hash; 4265 int cpu; 4266 4267 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4268 if (IS_ERR(hash)) 4269 return; 4270 4271 for_each_possible_cpu(cpu) { 4272 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4273 struct ahash_request *req; 4274 4275 if (!scratch) { 4276 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4277 sizeof(struct tcphdr), 4278 GFP_KERNEL, 4279 cpu_to_node(cpu)); 4280 if (!scratch) 4281 return; 4282 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4283 } 4284 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4285 continue; 4286 4287 req = ahash_request_alloc(hash, GFP_KERNEL); 4288 if (!req) 4289 return; 4290 4291 ahash_request_set_callback(req, 0, NULL, NULL); 4292 4293 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4294 } 4295 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4296 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4297 */ 4298 smp_wmb(); 4299 tcp_md5sig_pool_populated = true; 4300 } 4301 4302 bool tcp_alloc_md5sig_pool(void) 4303 { 4304 if (unlikely(!tcp_md5sig_pool_populated)) { 4305 mutex_lock(&tcp_md5sig_mutex); 4306 4307 if (!tcp_md5sig_pool_populated) { 4308 __tcp_alloc_md5sig_pool(); 4309 if (tcp_md5sig_pool_populated) 4310 static_branch_inc(&tcp_md5_needed); 4311 } 4312 4313 mutex_unlock(&tcp_md5sig_mutex); 4314 } 4315 return tcp_md5sig_pool_populated; 4316 } 4317 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4318 4319 4320 /** 4321 * tcp_get_md5sig_pool - get md5sig_pool for this user 4322 * 4323 * We use percpu structure, so if we succeed, we exit with preemption 4324 * and BH disabled, to make sure another thread or softirq handling 4325 * wont try to get same context. 4326 */ 4327 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4328 { 4329 local_bh_disable(); 4330 4331 if (tcp_md5sig_pool_populated) { 4332 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4333 smp_rmb(); 4334 return this_cpu_ptr(&tcp_md5sig_pool); 4335 } 4336 local_bh_enable(); 4337 return NULL; 4338 } 4339 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4340 4341 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4342 const struct sk_buff *skb, unsigned int header_len) 4343 { 4344 struct scatterlist sg; 4345 const struct tcphdr *tp = tcp_hdr(skb); 4346 struct ahash_request *req = hp->md5_req; 4347 unsigned int i; 4348 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4349 skb_headlen(skb) - header_len : 0; 4350 const struct skb_shared_info *shi = skb_shinfo(skb); 4351 struct sk_buff *frag_iter; 4352 4353 sg_init_table(&sg, 1); 4354 4355 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4356 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4357 if (crypto_ahash_update(req)) 4358 return 1; 4359 4360 for (i = 0; i < shi->nr_frags; ++i) { 4361 const skb_frag_t *f = &shi->frags[i]; 4362 unsigned int offset = skb_frag_off(f); 4363 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4364 4365 sg_set_page(&sg, page, skb_frag_size(f), 4366 offset_in_page(offset)); 4367 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4368 if (crypto_ahash_update(req)) 4369 return 1; 4370 } 4371 4372 skb_walk_frags(skb, frag_iter) 4373 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4374 return 1; 4375 4376 return 0; 4377 } 4378 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4379 4380 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4381 { 4382 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4383 struct scatterlist sg; 4384 4385 sg_init_one(&sg, key->key, keylen); 4386 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4387 4388 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4389 return data_race(crypto_ahash_update(hp->md5_req)); 4390 } 4391 EXPORT_SYMBOL(tcp_md5_hash_key); 4392 4393 #endif 4394 4395 void tcp_done(struct sock *sk) 4396 { 4397 struct request_sock *req; 4398 4399 /* We might be called with a new socket, after 4400 * inet_csk_prepare_forced_close() has been called 4401 * so we can not use lockdep_sock_is_held(sk) 4402 */ 4403 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4404 4405 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4406 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4407 4408 tcp_set_state(sk, TCP_CLOSE); 4409 tcp_clear_xmit_timers(sk); 4410 if (req) 4411 reqsk_fastopen_remove(sk, req, false); 4412 4413 sk->sk_shutdown = SHUTDOWN_MASK; 4414 4415 if (!sock_flag(sk, SOCK_DEAD)) 4416 sk->sk_state_change(sk); 4417 else 4418 inet_csk_destroy_sock(sk); 4419 } 4420 EXPORT_SYMBOL_GPL(tcp_done); 4421 4422 int tcp_abort(struct sock *sk, int err) 4423 { 4424 if (!sk_fullsock(sk)) { 4425 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4426 struct request_sock *req = inet_reqsk(sk); 4427 4428 local_bh_disable(); 4429 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4430 local_bh_enable(); 4431 return 0; 4432 } 4433 return -EOPNOTSUPP; 4434 } 4435 4436 /* Don't race with userspace socket closes such as tcp_close. */ 4437 lock_sock(sk); 4438 4439 if (sk->sk_state == TCP_LISTEN) { 4440 tcp_set_state(sk, TCP_CLOSE); 4441 inet_csk_listen_stop(sk); 4442 } 4443 4444 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4445 local_bh_disable(); 4446 bh_lock_sock(sk); 4447 4448 if (!sock_flag(sk, SOCK_DEAD)) { 4449 sk->sk_err = err; 4450 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4451 smp_wmb(); 4452 sk_error_report(sk); 4453 if (tcp_need_reset(sk->sk_state)) 4454 tcp_send_active_reset(sk, GFP_ATOMIC); 4455 tcp_done(sk); 4456 } 4457 4458 bh_unlock_sock(sk); 4459 local_bh_enable(); 4460 tcp_write_queue_purge(sk); 4461 release_sock(sk); 4462 return 0; 4463 } 4464 EXPORT_SYMBOL_GPL(tcp_abort); 4465 4466 extern struct tcp_congestion_ops tcp_reno; 4467 4468 static __initdata unsigned long thash_entries; 4469 static int __init set_thash_entries(char *str) 4470 { 4471 ssize_t ret; 4472 4473 if (!str) 4474 return 0; 4475 4476 ret = kstrtoul(str, 0, &thash_entries); 4477 if (ret) 4478 return 0; 4479 4480 return 1; 4481 } 4482 __setup("thash_entries=", set_thash_entries); 4483 4484 static void __init tcp_init_mem(void) 4485 { 4486 unsigned long limit = nr_free_buffer_pages() / 16; 4487 4488 limit = max(limit, 128UL); 4489 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4490 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4491 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4492 } 4493 4494 void __init tcp_init(void) 4495 { 4496 int max_rshare, max_wshare, cnt; 4497 unsigned long limit; 4498 unsigned int i; 4499 4500 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4501 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4502 sizeof_field(struct sk_buff, cb)); 4503 4504 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4505 4506 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4507 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4508 4509 inet_hashinfo_init(&tcp_hashinfo); 4510 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4511 thash_entries, 21, /* one slot per 2 MB*/ 4512 0, 64 * 1024); 4513 tcp_hashinfo.bind_bucket_cachep = 4514 kmem_cache_create("tcp_bind_bucket", 4515 sizeof(struct inet_bind_bucket), 0, 4516 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4517 SLAB_ACCOUNT, 4518 NULL); 4519 4520 /* Size and allocate the main established and bind bucket 4521 * hash tables. 4522 * 4523 * The methodology is similar to that of the buffer cache. 4524 */ 4525 tcp_hashinfo.ehash = 4526 alloc_large_system_hash("TCP established", 4527 sizeof(struct inet_ehash_bucket), 4528 thash_entries, 4529 17, /* one slot per 128 KB of memory */ 4530 0, 4531 NULL, 4532 &tcp_hashinfo.ehash_mask, 4533 0, 4534 thash_entries ? 0 : 512 * 1024); 4535 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4536 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4537 4538 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4539 panic("TCP: failed to alloc ehash_locks"); 4540 tcp_hashinfo.bhash = 4541 alloc_large_system_hash("TCP bind", 4542 sizeof(struct inet_bind_hashbucket), 4543 tcp_hashinfo.ehash_mask + 1, 4544 17, /* one slot per 128 KB of memory */ 4545 0, 4546 &tcp_hashinfo.bhash_size, 4547 NULL, 4548 0, 4549 64 * 1024); 4550 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4551 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4552 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4553 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4554 } 4555 4556 4557 cnt = tcp_hashinfo.ehash_mask + 1; 4558 sysctl_tcp_max_orphans = cnt / 2; 4559 4560 tcp_init_mem(); 4561 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4562 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4563 max_wshare = min(4UL*1024*1024, limit); 4564 max_rshare = min(6UL*1024*1024, limit); 4565 4566 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4567 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4568 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4569 4570 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4571 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4572 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4573 4574 pr_info("Hash tables configured (established %u bind %u)\n", 4575 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4576 4577 tcp_v4_init(); 4578 tcp_metrics_init(); 4579 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4580 tcp_tasklet_init(); 4581 mptcp_init(); 4582 } 4583