xref: /openbmc/linux/net/ipv4/tcp.c (revision 36aa1e67)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 
439 	/* See draft-stevens-tcpca-spec-01 for discussion of the
440 	 * initialization of these values.
441 	 */
442 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 	tp->snd_cwnd_clamp = ~0;
444 	tp->mss_cache = TCP_MSS_DEFAULT;
445 
446 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
447 	tcp_assign_congestion_control(sk);
448 
449 	tp->tsoffset = 0;
450 	tp->rack.reo_wnd_steps = 1;
451 
452 	sk->sk_write_space = sk_stream_write_space;
453 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454 
455 	icsk->icsk_sync_mss = tcp_sync_mss;
456 
457 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
458 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
459 
460 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
461 	sk_sockets_allocated_inc(sk);
462 }
463 EXPORT_SYMBOL(tcp_init_sock);
464 
465 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
466 {
467 	struct sk_buff *skb = tcp_write_queue_tail(sk);
468 
469 	if (tsflags && skb) {
470 		struct skb_shared_info *shinfo = skb_shinfo(skb);
471 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
472 
473 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
474 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
475 			tcb->txstamp_ack = 1;
476 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
477 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
478 	}
479 }
480 
481 static bool tcp_stream_is_readable(struct sock *sk, int target)
482 {
483 	if (tcp_epollin_ready(sk, target))
484 		return true;
485 	return sk_is_readable(sk);
486 }
487 
488 /*
489  *	Wait for a TCP event.
490  *
491  *	Note that we don't need to lock the socket, as the upper poll layers
492  *	take care of normal races (between the test and the event) and we don't
493  *	go look at any of the socket buffers directly.
494  */
495 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
496 {
497 	__poll_t mask;
498 	struct sock *sk = sock->sk;
499 	const struct tcp_sock *tp = tcp_sk(sk);
500 	int state;
501 
502 	sock_poll_wait(file, sock, wait);
503 
504 	state = inet_sk_state_load(sk);
505 	if (state == TCP_LISTEN)
506 		return inet_csk_listen_poll(sk);
507 
508 	/* Socket is not locked. We are protected from async events
509 	 * by poll logic and correct handling of state changes
510 	 * made by other threads is impossible in any case.
511 	 */
512 
513 	mask = 0;
514 
515 	/*
516 	 * EPOLLHUP is certainly not done right. But poll() doesn't
517 	 * have a notion of HUP in just one direction, and for a
518 	 * socket the read side is more interesting.
519 	 *
520 	 * Some poll() documentation says that EPOLLHUP is incompatible
521 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
522 	 * all. But careful, it tends to be safer to return too many
523 	 * bits than too few, and you can easily break real applications
524 	 * if you don't tell them that something has hung up!
525 	 *
526 	 * Check-me.
527 	 *
528 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
529 	 * our fs/select.c). It means that after we received EOF,
530 	 * poll always returns immediately, making impossible poll() on write()
531 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
532 	 * if and only if shutdown has been made in both directions.
533 	 * Actually, it is interesting to look how Solaris and DUX
534 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
535 	 * then we could set it on SND_SHUTDOWN. BTW examples given
536 	 * in Stevens' books assume exactly this behaviour, it explains
537 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
538 	 *
539 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
540 	 * blocking on fresh not-connected or disconnected socket. --ANK
541 	 */
542 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
543 		mask |= EPOLLHUP;
544 	if (sk->sk_shutdown & RCV_SHUTDOWN)
545 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
546 
547 	/* Connected or passive Fast Open socket? */
548 	if (state != TCP_SYN_SENT &&
549 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
550 		int target = sock_rcvlowat(sk, 0, INT_MAX);
551 		u16 urg_data = READ_ONCE(tp->urg_data);
552 
553 		if (unlikely(urg_data) &&
554 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
555 		    !sock_flag(sk, SOCK_URGINLINE))
556 			target++;
557 
558 		if (tcp_stream_is_readable(sk, target))
559 			mask |= EPOLLIN | EPOLLRDNORM;
560 
561 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
562 			if (__sk_stream_is_writeable(sk, 1)) {
563 				mask |= EPOLLOUT | EPOLLWRNORM;
564 			} else {  /* send SIGIO later */
565 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
566 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
567 
568 				/* Race breaker. If space is freed after
569 				 * wspace test but before the flags are set,
570 				 * IO signal will be lost. Memory barrier
571 				 * pairs with the input side.
572 				 */
573 				smp_mb__after_atomic();
574 				if (__sk_stream_is_writeable(sk, 1))
575 					mask |= EPOLLOUT | EPOLLWRNORM;
576 			}
577 		} else
578 			mask |= EPOLLOUT | EPOLLWRNORM;
579 
580 		if (urg_data & TCP_URG_VALID)
581 			mask |= EPOLLPRI;
582 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
583 		/* Active TCP fastopen socket with defer_connect
584 		 * Return EPOLLOUT so application can call write()
585 		 * in order for kernel to generate SYN+data
586 		 */
587 		mask |= EPOLLOUT | EPOLLWRNORM;
588 	}
589 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
590 	smp_rmb();
591 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
592 		mask |= EPOLLERR;
593 
594 	return mask;
595 }
596 EXPORT_SYMBOL(tcp_poll);
597 
598 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
599 {
600 	struct tcp_sock *tp = tcp_sk(sk);
601 	int answ;
602 	bool slow;
603 
604 	switch (cmd) {
605 	case SIOCINQ:
606 		if (sk->sk_state == TCP_LISTEN)
607 			return -EINVAL;
608 
609 		slow = lock_sock_fast(sk);
610 		answ = tcp_inq(sk);
611 		unlock_sock_fast(sk, slow);
612 		break;
613 	case SIOCATMARK:
614 		answ = READ_ONCE(tp->urg_data) &&
615 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
616 		break;
617 	case SIOCOUTQ:
618 		if (sk->sk_state == TCP_LISTEN)
619 			return -EINVAL;
620 
621 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
622 			answ = 0;
623 		else
624 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
625 		break;
626 	case SIOCOUTQNSD:
627 		if (sk->sk_state == TCP_LISTEN)
628 			return -EINVAL;
629 
630 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
631 			answ = 0;
632 		else
633 			answ = READ_ONCE(tp->write_seq) -
634 			       READ_ONCE(tp->snd_nxt);
635 		break;
636 	default:
637 		return -ENOIOCTLCMD;
638 	}
639 
640 	return put_user(answ, (int __user *)arg);
641 }
642 EXPORT_SYMBOL(tcp_ioctl);
643 
644 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
645 {
646 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
647 	tp->pushed_seq = tp->write_seq;
648 }
649 
650 static inline bool forced_push(const struct tcp_sock *tp)
651 {
652 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
653 }
654 
655 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
656 {
657 	struct tcp_sock *tp = tcp_sk(sk);
658 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
659 
660 	tcb->seq     = tcb->end_seq = tp->write_seq;
661 	tcb->tcp_flags = TCPHDR_ACK;
662 	__skb_header_release(skb);
663 	tcp_add_write_queue_tail(sk, skb);
664 	sk_wmem_queued_add(sk, skb->truesize);
665 	sk_mem_charge(sk, skb->truesize);
666 	if (tp->nonagle & TCP_NAGLE_PUSH)
667 		tp->nonagle &= ~TCP_NAGLE_PUSH;
668 
669 	tcp_slow_start_after_idle_check(sk);
670 }
671 
672 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
673 {
674 	if (flags & MSG_OOB)
675 		tp->snd_up = tp->write_seq;
676 }
677 
678 /* If a not yet filled skb is pushed, do not send it if
679  * we have data packets in Qdisc or NIC queues :
680  * Because TX completion will happen shortly, it gives a chance
681  * to coalesce future sendmsg() payload into this skb, without
682  * need for a timer, and with no latency trade off.
683  * As packets containing data payload have a bigger truesize
684  * than pure acks (dataless) packets, the last checks prevent
685  * autocorking if we only have an ACK in Qdisc/NIC queues,
686  * or if TX completion was delayed after we processed ACK packet.
687  */
688 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
689 				int size_goal)
690 {
691 	return skb->len < size_goal &&
692 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
693 	       !tcp_rtx_queue_empty(sk) &&
694 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
695 	       tcp_skb_can_collapse_to(skb);
696 }
697 
698 void tcp_push(struct sock *sk, int flags, int mss_now,
699 	      int nonagle, int size_goal)
700 {
701 	struct tcp_sock *tp = tcp_sk(sk);
702 	struct sk_buff *skb;
703 
704 	skb = tcp_write_queue_tail(sk);
705 	if (!skb)
706 		return;
707 	if (!(flags & MSG_MORE) || forced_push(tp))
708 		tcp_mark_push(tp, skb);
709 
710 	tcp_mark_urg(tp, flags);
711 
712 	if (tcp_should_autocork(sk, skb, size_goal)) {
713 
714 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
715 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
716 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
717 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
718 		}
719 		/* It is possible TX completion already happened
720 		 * before we set TSQ_THROTTLED.
721 		 */
722 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
723 			return;
724 	}
725 
726 	if (flags & MSG_MORE)
727 		nonagle = TCP_NAGLE_CORK;
728 
729 	__tcp_push_pending_frames(sk, mss_now, nonagle);
730 }
731 
732 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
733 				unsigned int offset, size_t len)
734 {
735 	struct tcp_splice_state *tss = rd_desc->arg.data;
736 	int ret;
737 
738 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
739 			      min(rd_desc->count, len), tss->flags);
740 	if (ret > 0)
741 		rd_desc->count -= ret;
742 	return ret;
743 }
744 
745 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
746 {
747 	/* Store TCP splice context information in read_descriptor_t. */
748 	read_descriptor_t rd_desc = {
749 		.arg.data = tss,
750 		.count	  = tss->len,
751 	};
752 
753 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
754 }
755 
756 /**
757  *  tcp_splice_read - splice data from TCP socket to a pipe
758  * @sock:	socket to splice from
759  * @ppos:	position (not valid)
760  * @pipe:	pipe to splice to
761  * @len:	number of bytes to splice
762  * @flags:	splice modifier flags
763  *
764  * Description:
765  *    Will read pages from given socket and fill them into a pipe.
766  *
767  **/
768 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
769 			struct pipe_inode_info *pipe, size_t len,
770 			unsigned int flags)
771 {
772 	struct sock *sk = sock->sk;
773 	struct tcp_splice_state tss = {
774 		.pipe = pipe,
775 		.len = len,
776 		.flags = flags,
777 	};
778 	long timeo;
779 	ssize_t spliced;
780 	int ret;
781 
782 	sock_rps_record_flow(sk);
783 	/*
784 	 * We can't seek on a socket input
785 	 */
786 	if (unlikely(*ppos))
787 		return -ESPIPE;
788 
789 	ret = spliced = 0;
790 
791 	lock_sock(sk);
792 
793 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
794 	while (tss.len) {
795 		ret = __tcp_splice_read(sk, &tss);
796 		if (ret < 0)
797 			break;
798 		else if (!ret) {
799 			if (spliced)
800 				break;
801 			if (sock_flag(sk, SOCK_DONE))
802 				break;
803 			if (sk->sk_err) {
804 				ret = sock_error(sk);
805 				break;
806 			}
807 			if (sk->sk_shutdown & RCV_SHUTDOWN)
808 				break;
809 			if (sk->sk_state == TCP_CLOSE) {
810 				/*
811 				 * This occurs when user tries to read
812 				 * from never connected socket.
813 				 */
814 				ret = -ENOTCONN;
815 				break;
816 			}
817 			if (!timeo) {
818 				ret = -EAGAIN;
819 				break;
820 			}
821 			/* if __tcp_splice_read() got nothing while we have
822 			 * an skb in receive queue, we do not want to loop.
823 			 * This might happen with URG data.
824 			 */
825 			if (!skb_queue_empty(&sk->sk_receive_queue))
826 				break;
827 			sk_wait_data(sk, &timeo, NULL);
828 			if (signal_pending(current)) {
829 				ret = sock_intr_errno(timeo);
830 				break;
831 			}
832 			continue;
833 		}
834 		tss.len -= ret;
835 		spliced += ret;
836 
837 		if (!timeo)
838 			break;
839 		release_sock(sk);
840 		lock_sock(sk);
841 
842 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
843 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
844 		    signal_pending(current))
845 			break;
846 	}
847 
848 	release_sock(sk);
849 
850 	if (spliced)
851 		return spliced;
852 
853 	return ret;
854 }
855 EXPORT_SYMBOL(tcp_splice_read);
856 
857 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
858 				     bool force_schedule)
859 {
860 	struct sk_buff *skb;
861 
862 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
863 	if (likely(skb)) {
864 		bool mem_scheduled;
865 
866 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
867 		if (force_schedule) {
868 			mem_scheduled = true;
869 			sk_forced_mem_schedule(sk, skb->truesize);
870 		} else {
871 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
872 		}
873 		if (likely(mem_scheduled)) {
874 			skb_reserve(skb, MAX_TCP_HEADER);
875 			skb->ip_summed = CHECKSUM_PARTIAL;
876 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 			return skb;
878 		}
879 		__kfree_skb(skb);
880 	} else {
881 		sk->sk_prot->enter_memory_pressure(sk);
882 		sk_stream_moderate_sndbuf(sk);
883 	}
884 	return NULL;
885 }
886 
887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
888 				       int large_allowed)
889 {
890 	struct tcp_sock *tp = tcp_sk(sk);
891 	u32 new_size_goal, size_goal;
892 
893 	if (!large_allowed)
894 		return mss_now;
895 
896 	/* Note : tcp_tso_autosize() will eventually split this later */
897 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
898 
899 	/* We try hard to avoid divides here */
900 	size_goal = tp->gso_segs * mss_now;
901 	if (unlikely(new_size_goal < size_goal ||
902 		     new_size_goal >= size_goal + mss_now)) {
903 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 				     sk->sk_gso_max_segs);
905 		size_goal = tp->gso_segs * mss_now;
906 	}
907 
908 	return max(size_goal, mss_now);
909 }
910 
911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 	int mss_now;
914 
915 	mss_now = tcp_current_mss(sk);
916 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917 
918 	return mss_now;
919 }
920 
921 /* In some cases, both sendpage() and sendmsg() could have added
922  * an skb to the write queue, but failed adding payload on it.
923  * We need to remove it to consume less memory, but more
924  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925  * users.
926  */
927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 	struct sk_buff *skb = tcp_write_queue_tail(sk);
930 
931 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 		tcp_unlink_write_queue(skb, sk);
933 		if (tcp_write_queue_empty(sk))
934 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 		tcp_wmem_free_skb(sk, skb);
936 	}
937 }
938 
939 /* skb changing from pure zc to mixed, must charge zc */
940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
941 {
942 	if (unlikely(skb_zcopy_pure(skb))) {
943 		u32 extra = skb->truesize -
944 			    SKB_TRUESIZE(skb_end_offset(skb));
945 
946 		if (!sk_wmem_schedule(sk, extra))
947 			return -ENOMEM;
948 
949 		sk_mem_charge(sk, extra);
950 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
951 	}
952 	return 0;
953 }
954 
955 
956 static int tcp_wmem_schedule(struct sock *sk, int copy)
957 {
958 	int left;
959 
960 	if (likely(sk_wmem_schedule(sk, copy)))
961 		return copy;
962 
963 	/* We could be in trouble if we have nothing queued.
964 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
965 	 * to guarantee some progress.
966 	 */
967 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
968 	if (left > 0)
969 		sk_forced_mem_schedule(sk, min(left, copy));
970 	return min(copy, sk->sk_forward_alloc);
971 }
972 
973 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
974 				      struct page *page, int offset, size_t *size)
975 {
976 	struct sk_buff *skb = tcp_write_queue_tail(sk);
977 	struct tcp_sock *tp = tcp_sk(sk);
978 	bool can_coalesce;
979 	int copy, i;
980 
981 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
982 	    !tcp_skb_can_collapse_to(skb)) {
983 new_segment:
984 		if (!sk_stream_memory_free(sk))
985 			return NULL;
986 
987 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
988 					   tcp_rtx_and_write_queues_empty(sk));
989 		if (!skb)
990 			return NULL;
991 
992 #ifdef CONFIG_TLS_DEVICE
993 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
994 #endif
995 		tcp_skb_entail(sk, skb);
996 		copy = size_goal;
997 	}
998 
999 	if (copy > *size)
1000 		copy = *size;
1001 
1002 	i = skb_shinfo(skb)->nr_frags;
1003 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1004 	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1005 		tcp_mark_push(tp, skb);
1006 		goto new_segment;
1007 	}
1008 	if (tcp_downgrade_zcopy_pure(sk, skb))
1009 		return NULL;
1010 
1011 	copy = tcp_wmem_schedule(sk, copy);
1012 	if (!copy)
1013 		return NULL;
1014 
1015 	if (can_coalesce) {
1016 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1017 	} else {
1018 		get_page(page);
1019 		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1020 	}
1021 
1022 	if (!(flags & MSG_NO_SHARED_FRAGS))
1023 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1024 
1025 	skb->len += copy;
1026 	skb->data_len += copy;
1027 	skb->truesize += copy;
1028 	sk_wmem_queued_add(sk, copy);
1029 	sk_mem_charge(sk, copy);
1030 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1031 	TCP_SKB_CB(skb)->end_seq += copy;
1032 	tcp_skb_pcount_set(skb, 0);
1033 
1034 	*size = copy;
1035 	return skb;
1036 }
1037 
1038 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1039 			 size_t size, int flags)
1040 {
1041 	struct tcp_sock *tp = tcp_sk(sk);
1042 	int mss_now, size_goal;
1043 	int err;
1044 	ssize_t copied;
1045 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1046 
1047 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1048 	    WARN_ONCE(!sendpage_ok(page),
1049 		      "page must not be a Slab one and have page_count > 0"))
1050 		return -EINVAL;
1051 
1052 	/* Wait for a connection to finish. One exception is TCP Fast Open
1053 	 * (passive side) where data is allowed to be sent before a connection
1054 	 * is fully established.
1055 	 */
1056 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1057 	    !tcp_passive_fastopen(sk)) {
1058 		err = sk_stream_wait_connect(sk, &timeo);
1059 		if (err != 0)
1060 			goto out_err;
1061 	}
1062 
1063 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1064 
1065 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1066 	copied = 0;
1067 
1068 	err = -EPIPE;
1069 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1070 		goto out_err;
1071 
1072 	while (size > 0) {
1073 		struct sk_buff *skb;
1074 		size_t copy = size;
1075 
1076 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1077 		if (!skb)
1078 			goto wait_for_space;
1079 
1080 		if (!copied)
1081 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1082 
1083 		copied += copy;
1084 		offset += copy;
1085 		size -= copy;
1086 		if (!size)
1087 			goto out;
1088 
1089 		if (skb->len < size_goal || (flags & MSG_OOB))
1090 			continue;
1091 
1092 		if (forced_push(tp)) {
1093 			tcp_mark_push(tp, skb);
1094 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1095 		} else if (skb == tcp_send_head(sk))
1096 			tcp_push_one(sk, mss_now);
1097 		continue;
1098 
1099 wait_for_space:
1100 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1101 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1102 			 TCP_NAGLE_PUSH, size_goal);
1103 
1104 		err = sk_stream_wait_memory(sk, &timeo);
1105 		if (err != 0)
1106 			goto do_error;
1107 
1108 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1109 	}
1110 
1111 out:
1112 	if (copied) {
1113 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1114 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1115 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1116 	}
1117 	return copied;
1118 
1119 do_error:
1120 	tcp_remove_empty_skb(sk);
1121 	if (copied)
1122 		goto out;
1123 out_err:
1124 	/* make sure we wake any epoll edge trigger waiter */
1125 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1126 		sk->sk_write_space(sk);
1127 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1128 	}
1129 	return sk_stream_error(sk, flags, err);
1130 }
1131 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1132 
1133 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1134 			size_t size, int flags)
1135 {
1136 	if (!(sk->sk_route_caps & NETIF_F_SG))
1137 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1138 
1139 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1140 
1141 	return do_tcp_sendpages(sk, page, offset, size, flags);
1142 }
1143 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1144 
1145 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1146 		 size_t size, int flags)
1147 {
1148 	int ret;
1149 
1150 	lock_sock(sk);
1151 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1152 	release_sock(sk);
1153 
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL(tcp_sendpage);
1157 
1158 void tcp_free_fastopen_req(struct tcp_sock *tp)
1159 {
1160 	if (tp->fastopen_req) {
1161 		kfree(tp->fastopen_req);
1162 		tp->fastopen_req = NULL;
1163 	}
1164 }
1165 
1166 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1167 			 size_t size, struct ubuf_info *uarg)
1168 {
1169 	struct tcp_sock *tp = tcp_sk(sk);
1170 	struct inet_sock *inet = inet_sk(sk);
1171 	struct sockaddr *uaddr = msg->msg_name;
1172 	int err, flags;
1173 
1174 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1175 	      TFO_CLIENT_ENABLE) ||
1176 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1177 	     uaddr->sa_family == AF_UNSPEC))
1178 		return -EOPNOTSUPP;
1179 	if (tp->fastopen_req)
1180 		return -EALREADY; /* Another Fast Open is in progress */
1181 
1182 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1183 				   sk->sk_allocation);
1184 	if (unlikely(!tp->fastopen_req))
1185 		return -ENOBUFS;
1186 	tp->fastopen_req->data = msg;
1187 	tp->fastopen_req->size = size;
1188 	tp->fastopen_req->uarg = uarg;
1189 
1190 	if (inet->defer_connect) {
1191 		err = tcp_connect(sk);
1192 		/* Same failure procedure as in tcp_v4/6_connect */
1193 		if (err) {
1194 			tcp_set_state(sk, TCP_CLOSE);
1195 			inet->inet_dport = 0;
1196 			sk->sk_route_caps = 0;
1197 		}
1198 	}
1199 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1200 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1201 				    msg->msg_namelen, flags, 1);
1202 	/* fastopen_req could already be freed in __inet_stream_connect
1203 	 * if the connection times out or gets rst
1204 	 */
1205 	if (tp->fastopen_req) {
1206 		*copied = tp->fastopen_req->copied;
1207 		tcp_free_fastopen_req(tp);
1208 		inet->defer_connect = 0;
1209 	}
1210 	return err;
1211 }
1212 
1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1214 {
1215 	struct tcp_sock *tp = tcp_sk(sk);
1216 	struct ubuf_info *uarg = NULL;
1217 	struct sk_buff *skb;
1218 	struct sockcm_cookie sockc;
1219 	int flags, err, copied = 0;
1220 	int mss_now = 0, size_goal, copied_syn = 0;
1221 	int process_backlog = 0;
1222 	bool zc = false;
1223 	long timeo;
1224 
1225 	flags = msg->msg_flags;
1226 
1227 	if ((flags & MSG_ZEROCOPY) && size) {
1228 		skb = tcp_write_queue_tail(sk);
1229 
1230 		if (msg->msg_ubuf) {
1231 			uarg = msg->msg_ubuf;
1232 			net_zcopy_get(uarg);
1233 			zc = sk->sk_route_caps & NETIF_F_SG;
1234 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1235 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1236 			if (!uarg) {
1237 				err = -ENOBUFS;
1238 				goto out_err;
1239 			}
1240 			zc = sk->sk_route_caps & NETIF_F_SG;
1241 			if (!zc)
1242 				uarg_to_msgzc(uarg)->zerocopy = 0;
1243 		}
1244 	}
1245 
1246 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1247 	    !tp->repair) {
1248 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1249 		if (err == -EINPROGRESS && copied_syn > 0)
1250 			goto out;
1251 		else if (err)
1252 			goto out_err;
1253 	}
1254 
1255 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1256 
1257 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1258 
1259 	/* Wait for a connection to finish. One exception is TCP Fast Open
1260 	 * (passive side) where data is allowed to be sent before a connection
1261 	 * is fully established.
1262 	 */
1263 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1264 	    !tcp_passive_fastopen(sk)) {
1265 		err = sk_stream_wait_connect(sk, &timeo);
1266 		if (err != 0)
1267 			goto do_error;
1268 	}
1269 
1270 	if (unlikely(tp->repair)) {
1271 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1272 			copied = tcp_send_rcvq(sk, msg, size);
1273 			goto out_nopush;
1274 		}
1275 
1276 		err = -EINVAL;
1277 		if (tp->repair_queue == TCP_NO_QUEUE)
1278 			goto out_err;
1279 
1280 		/* 'common' sending to sendq */
1281 	}
1282 
1283 	sockcm_init(&sockc, sk);
1284 	if (msg->msg_controllen) {
1285 		err = sock_cmsg_send(sk, msg, &sockc);
1286 		if (unlikely(err)) {
1287 			err = -EINVAL;
1288 			goto out_err;
1289 		}
1290 	}
1291 
1292 	/* This should be in poll */
1293 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1294 
1295 	/* Ok commence sending. */
1296 	copied = 0;
1297 
1298 restart:
1299 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1300 
1301 	err = -EPIPE;
1302 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1303 		goto do_error;
1304 
1305 	while (msg_data_left(msg)) {
1306 		int copy = 0;
1307 
1308 		skb = tcp_write_queue_tail(sk);
1309 		if (skb)
1310 			copy = size_goal - skb->len;
1311 
1312 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1313 			bool first_skb;
1314 
1315 new_segment:
1316 			if (!sk_stream_memory_free(sk))
1317 				goto wait_for_space;
1318 
1319 			if (unlikely(process_backlog >= 16)) {
1320 				process_backlog = 0;
1321 				if (sk_flush_backlog(sk))
1322 					goto restart;
1323 			}
1324 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1325 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1326 						   first_skb);
1327 			if (!skb)
1328 				goto wait_for_space;
1329 
1330 			process_backlog++;
1331 
1332 			tcp_skb_entail(sk, skb);
1333 			copy = size_goal;
1334 
1335 			/* All packets are restored as if they have
1336 			 * already been sent. skb_mstamp_ns isn't set to
1337 			 * avoid wrong rtt estimation.
1338 			 */
1339 			if (tp->repair)
1340 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1341 		}
1342 
1343 		/* Try to append data to the end of skb. */
1344 		if (copy > msg_data_left(msg))
1345 			copy = msg_data_left(msg);
1346 
1347 		if (!zc) {
1348 			bool merge = true;
1349 			int i = skb_shinfo(skb)->nr_frags;
1350 			struct page_frag *pfrag = sk_page_frag(sk);
1351 
1352 			if (!sk_page_frag_refill(sk, pfrag))
1353 				goto wait_for_space;
1354 
1355 			if (!skb_can_coalesce(skb, i, pfrag->page,
1356 					      pfrag->offset)) {
1357 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1358 					tcp_mark_push(tp, skb);
1359 					goto new_segment;
1360 				}
1361 				merge = false;
1362 			}
1363 
1364 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1365 
1366 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1367 				if (tcp_downgrade_zcopy_pure(sk, skb))
1368 					goto wait_for_space;
1369 				skb_zcopy_downgrade_managed(skb);
1370 			}
1371 
1372 			copy = tcp_wmem_schedule(sk, copy);
1373 			if (!copy)
1374 				goto wait_for_space;
1375 
1376 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1377 						       pfrag->page,
1378 						       pfrag->offset,
1379 						       copy);
1380 			if (err)
1381 				goto do_error;
1382 
1383 			/* Update the skb. */
1384 			if (merge) {
1385 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1386 			} else {
1387 				skb_fill_page_desc(skb, i, pfrag->page,
1388 						   pfrag->offset, copy);
1389 				page_ref_inc(pfrag->page);
1390 			}
1391 			pfrag->offset += copy;
1392 		} else {
1393 			/* First append to a fragless skb builds initial
1394 			 * pure zerocopy skb
1395 			 */
1396 			if (!skb->len)
1397 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1398 
1399 			if (!skb_zcopy_pure(skb)) {
1400 				copy = tcp_wmem_schedule(sk, copy);
1401 				if (!copy)
1402 					goto wait_for_space;
1403 			}
1404 
1405 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1406 			if (err == -EMSGSIZE || err == -EEXIST) {
1407 				tcp_mark_push(tp, skb);
1408 				goto new_segment;
1409 			}
1410 			if (err < 0)
1411 				goto do_error;
1412 			copy = err;
1413 		}
1414 
1415 		if (!copied)
1416 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1417 
1418 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1419 		TCP_SKB_CB(skb)->end_seq += copy;
1420 		tcp_skb_pcount_set(skb, 0);
1421 
1422 		copied += copy;
1423 		if (!msg_data_left(msg)) {
1424 			if (unlikely(flags & MSG_EOR))
1425 				TCP_SKB_CB(skb)->eor = 1;
1426 			goto out;
1427 		}
1428 
1429 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1430 			continue;
1431 
1432 		if (forced_push(tp)) {
1433 			tcp_mark_push(tp, skb);
1434 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1435 		} else if (skb == tcp_send_head(sk))
1436 			tcp_push_one(sk, mss_now);
1437 		continue;
1438 
1439 wait_for_space:
1440 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1441 		if (copied)
1442 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1443 				 TCP_NAGLE_PUSH, size_goal);
1444 
1445 		err = sk_stream_wait_memory(sk, &timeo);
1446 		if (err != 0)
1447 			goto do_error;
1448 
1449 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1450 	}
1451 
1452 out:
1453 	if (copied) {
1454 		tcp_tx_timestamp(sk, sockc.tsflags);
1455 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1456 	}
1457 out_nopush:
1458 	net_zcopy_put(uarg);
1459 	return copied + copied_syn;
1460 
1461 do_error:
1462 	tcp_remove_empty_skb(sk);
1463 
1464 	if (copied + copied_syn)
1465 		goto out;
1466 out_err:
1467 	net_zcopy_put_abort(uarg, true);
1468 	err = sk_stream_error(sk, flags, err);
1469 	/* make sure we wake any epoll edge trigger waiter */
1470 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1471 		sk->sk_write_space(sk);
1472 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1473 	}
1474 	return err;
1475 }
1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1477 
1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1479 {
1480 	int ret;
1481 
1482 	lock_sock(sk);
1483 	ret = tcp_sendmsg_locked(sk, msg, size);
1484 	release_sock(sk);
1485 
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(tcp_sendmsg);
1489 
1490 /*
1491  *	Handle reading urgent data. BSD has very simple semantics for
1492  *	this, no blocking and very strange errors 8)
1493  */
1494 
1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1496 {
1497 	struct tcp_sock *tp = tcp_sk(sk);
1498 
1499 	/* No URG data to read. */
1500 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1501 	    tp->urg_data == TCP_URG_READ)
1502 		return -EINVAL;	/* Yes this is right ! */
1503 
1504 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1505 		return -ENOTCONN;
1506 
1507 	if (tp->urg_data & TCP_URG_VALID) {
1508 		int err = 0;
1509 		char c = tp->urg_data;
1510 
1511 		if (!(flags & MSG_PEEK))
1512 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1513 
1514 		/* Read urgent data. */
1515 		msg->msg_flags |= MSG_OOB;
1516 
1517 		if (len > 0) {
1518 			if (!(flags & MSG_TRUNC))
1519 				err = memcpy_to_msg(msg, &c, 1);
1520 			len = 1;
1521 		} else
1522 			msg->msg_flags |= MSG_TRUNC;
1523 
1524 		return err ? -EFAULT : len;
1525 	}
1526 
1527 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1528 		return 0;
1529 
1530 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1531 	 * the available implementations agree in this case:
1532 	 * this call should never block, independent of the
1533 	 * blocking state of the socket.
1534 	 * Mike <pall@rz.uni-karlsruhe.de>
1535 	 */
1536 	return -EAGAIN;
1537 }
1538 
1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1540 {
1541 	struct sk_buff *skb;
1542 	int copied = 0, err = 0;
1543 
1544 	/* XXX -- need to support SO_PEEK_OFF */
1545 
1546 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1547 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1548 		if (err)
1549 			return err;
1550 		copied += skb->len;
1551 	}
1552 
1553 	skb_queue_walk(&sk->sk_write_queue, skb) {
1554 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1555 		if (err)
1556 			break;
1557 
1558 		copied += skb->len;
1559 	}
1560 
1561 	return err ?: copied;
1562 }
1563 
1564 /* Clean up the receive buffer for full frames taken by the user,
1565  * then send an ACK if necessary.  COPIED is the number of bytes
1566  * tcp_recvmsg has given to the user so far, it speeds up the
1567  * calculation of whether or not we must ACK for the sake of
1568  * a window update.
1569  */
1570 static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1571 {
1572 	struct tcp_sock *tp = tcp_sk(sk);
1573 	bool time_to_ack = false;
1574 
1575 	if (inet_csk_ack_scheduled(sk)) {
1576 		const struct inet_connection_sock *icsk = inet_csk(sk);
1577 
1578 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1579 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1580 		    /*
1581 		     * If this read emptied read buffer, we send ACK, if
1582 		     * connection is not bidirectional, user drained
1583 		     * receive buffer and there was a small segment
1584 		     * in queue.
1585 		     */
1586 		    (copied > 0 &&
1587 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1588 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1589 		       !inet_csk_in_pingpong_mode(sk))) &&
1590 		      !atomic_read(&sk->sk_rmem_alloc)))
1591 			time_to_ack = true;
1592 	}
1593 
1594 	/* We send an ACK if we can now advertise a non-zero window
1595 	 * which has been raised "significantly".
1596 	 *
1597 	 * Even if window raised up to infinity, do not send window open ACK
1598 	 * in states, where we will not receive more. It is useless.
1599 	 */
1600 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1601 		__u32 rcv_window_now = tcp_receive_window(tp);
1602 
1603 		/* Optimize, __tcp_select_window() is not cheap. */
1604 		if (2*rcv_window_now <= tp->window_clamp) {
1605 			__u32 new_window = __tcp_select_window(sk);
1606 
1607 			/* Send ACK now, if this read freed lots of space
1608 			 * in our buffer. Certainly, new_window is new window.
1609 			 * We can advertise it now, if it is not less than current one.
1610 			 * "Lots" means "at least twice" here.
1611 			 */
1612 			if (new_window && new_window >= 2 * rcv_window_now)
1613 				time_to_ack = true;
1614 		}
1615 	}
1616 	if (time_to_ack)
1617 		tcp_send_ack(sk);
1618 }
1619 
1620 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1621 {
1622 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1623 	struct tcp_sock *tp = tcp_sk(sk);
1624 
1625 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1626 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1627 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1628 	__tcp_cleanup_rbuf(sk, copied);
1629 }
1630 
1631 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1632 {
1633 	__skb_unlink(skb, &sk->sk_receive_queue);
1634 	if (likely(skb->destructor == sock_rfree)) {
1635 		sock_rfree(skb);
1636 		skb->destructor = NULL;
1637 		skb->sk = NULL;
1638 		return skb_attempt_defer_free(skb);
1639 	}
1640 	__kfree_skb(skb);
1641 }
1642 
1643 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1644 {
1645 	struct sk_buff *skb;
1646 	u32 offset;
1647 
1648 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1649 		offset = seq - TCP_SKB_CB(skb)->seq;
1650 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1651 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1652 			offset--;
1653 		}
1654 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1655 			*off = offset;
1656 			return skb;
1657 		}
1658 		/* This looks weird, but this can happen if TCP collapsing
1659 		 * splitted a fat GRO packet, while we released socket lock
1660 		 * in skb_splice_bits()
1661 		 */
1662 		tcp_eat_recv_skb(sk, skb);
1663 	}
1664 	return NULL;
1665 }
1666 EXPORT_SYMBOL(tcp_recv_skb);
1667 
1668 /*
1669  * This routine provides an alternative to tcp_recvmsg() for routines
1670  * that would like to handle copying from skbuffs directly in 'sendfile'
1671  * fashion.
1672  * Note:
1673  *	- It is assumed that the socket was locked by the caller.
1674  *	- The routine does not block.
1675  *	- At present, there is no support for reading OOB data
1676  *	  or for 'peeking' the socket using this routine
1677  *	  (although both would be easy to implement).
1678  */
1679 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1680 		  sk_read_actor_t recv_actor)
1681 {
1682 	struct sk_buff *skb;
1683 	struct tcp_sock *tp = tcp_sk(sk);
1684 	u32 seq = tp->copied_seq;
1685 	u32 offset;
1686 	int copied = 0;
1687 
1688 	if (sk->sk_state == TCP_LISTEN)
1689 		return -ENOTCONN;
1690 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1691 		if (offset < skb->len) {
1692 			int used;
1693 			size_t len;
1694 
1695 			len = skb->len - offset;
1696 			/* Stop reading if we hit a patch of urgent data */
1697 			if (unlikely(tp->urg_data)) {
1698 				u32 urg_offset = tp->urg_seq - seq;
1699 				if (urg_offset < len)
1700 					len = urg_offset;
1701 				if (!len)
1702 					break;
1703 			}
1704 			used = recv_actor(desc, skb, offset, len);
1705 			if (used <= 0) {
1706 				if (!copied)
1707 					copied = used;
1708 				break;
1709 			}
1710 			if (WARN_ON_ONCE(used > len))
1711 				used = len;
1712 			seq += used;
1713 			copied += used;
1714 			offset += used;
1715 
1716 			/* If recv_actor drops the lock (e.g. TCP splice
1717 			 * receive) the skb pointer might be invalid when
1718 			 * getting here: tcp_collapse might have deleted it
1719 			 * while aggregating skbs from the socket queue.
1720 			 */
1721 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1722 			if (!skb)
1723 				break;
1724 			/* TCP coalescing might have appended data to the skb.
1725 			 * Try to splice more frags
1726 			 */
1727 			if (offset + 1 != skb->len)
1728 				continue;
1729 		}
1730 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1731 			tcp_eat_recv_skb(sk, skb);
1732 			++seq;
1733 			break;
1734 		}
1735 		tcp_eat_recv_skb(sk, skb);
1736 		if (!desc->count)
1737 			break;
1738 		WRITE_ONCE(tp->copied_seq, seq);
1739 	}
1740 	WRITE_ONCE(tp->copied_seq, seq);
1741 
1742 	tcp_rcv_space_adjust(sk);
1743 
1744 	/* Clean up data we have read: This will do ACK frames. */
1745 	if (copied > 0) {
1746 		tcp_recv_skb(sk, seq, &offset);
1747 		tcp_cleanup_rbuf(sk, copied);
1748 	}
1749 	return copied;
1750 }
1751 EXPORT_SYMBOL(tcp_read_sock);
1752 
1753 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1754 {
1755 	struct tcp_sock *tp = tcp_sk(sk);
1756 	u32 seq = tp->copied_seq;
1757 	struct sk_buff *skb;
1758 	int copied = 0;
1759 	u32 offset;
1760 
1761 	if (sk->sk_state == TCP_LISTEN)
1762 		return -ENOTCONN;
1763 
1764 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1765 		u8 tcp_flags;
1766 		int used;
1767 
1768 		__skb_unlink(skb, &sk->sk_receive_queue);
1769 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1770 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1771 		used = recv_actor(sk, skb);
1772 		consume_skb(skb);
1773 		if (used < 0) {
1774 			if (!copied)
1775 				copied = used;
1776 			break;
1777 		}
1778 		seq += used;
1779 		copied += used;
1780 
1781 		if (tcp_flags & TCPHDR_FIN) {
1782 			++seq;
1783 			break;
1784 		}
1785 	}
1786 	WRITE_ONCE(tp->copied_seq, seq);
1787 
1788 	tcp_rcv_space_adjust(sk);
1789 
1790 	/* Clean up data we have read: This will do ACK frames. */
1791 	if (copied > 0)
1792 		__tcp_cleanup_rbuf(sk, copied);
1793 
1794 	return copied;
1795 }
1796 EXPORT_SYMBOL(tcp_read_skb);
1797 
1798 void tcp_read_done(struct sock *sk, size_t len)
1799 {
1800 	struct tcp_sock *tp = tcp_sk(sk);
1801 	u32 seq = tp->copied_seq;
1802 	struct sk_buff *skb;
1803 	size_t left;
1804 	u32 offset;
1805 
1806 	if (sk->sk_state == TCP_LISTEN)
1807 		return;
1808 
1809 	left = len;
1810 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1811 		int used;
1812 
1813 		used = min_t(size_t, skb->len - offset, left);
1814 		seq += used;
1815 		left -= used;
1816 
1817 		if (skb->len > offset + used)
1818 			break;
1819 
1820 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1821 			tcp_eat_recv_skb(sk, skb);
1822 			++seq;
1823 			break;
1824 		}
1825 		tcp_eat_recv_skb(sk, skb);
1826 	}
1827 	WRITE_ONCE(tp->copied_seq, seq);
1828 
1829 	tcp_rcv_space_adjust(sk);
1830 
1831 	/* Clean up data we have read: This will do ACK frames. */
1832 	if (left != len)
1833 		tcp_cleanup_rbuf(sk, len - left);
1834 }
1835 EXPORT_SYMBOL(tcp_read_done);
1836 
1837 int tcp_peek_len(struct socket *sock)
1838 {
1839 	return tcp_inq(sock->sk);
1840 }
1841 EXPORT_SYMBOL(tcp_peek_len);
1842 
1843 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1844 int tcp_set_rcvlowat(struct sock *sk, int val)
1845 {
1846 	int cap;
1847 
1848 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1849 		cap = sk->sk_rcvbuf >> 1;
1850 	else
1851 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1852 	val = min(val, cap);
1853 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1854 
1855 	/* Check if we need to signal EPOLLIN right now */
1856 	tcp_data_ready(sk);
1857 
1858 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1859 		return 0;
1860 
1861 	val <<= 1;
1862 	if (val > sk->sk_rcvbuf) {
1863 		WRITE_ONCE(sk->sk_rcvbuf, val);
1864 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1865 	}
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL(tcp_set_rcvlowat);
1869 
1870 void tcp_update_recv_tstamps(struct sk_buff *skb,
1871 			     struct scm_timestamping_internal *tss)
1872 {
1873 	if (skb->tstamp)
1874 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1875 	else
1876 		tss->ts[0] = (struct timespec64) {0};
1877 
1878 	if (skb_hwtstamps(skb)->hwtstamp)
1879 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1880 	else
1881 		tss->ts[2] = (struct timespec64) {0};
1882 }
1883 
1884 #ifdef CONFIG_MMU
1885 static const struct vm_operations_struct tcp_vm_ops = {
1886 };
1887 
1888 int tcp_mmap(struct file *file, struct socket *sock,
1889 	     struct vm_area_struct *vma)
1890 {
1891 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1892 		return -EPERM;
1893 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1894 
1895 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1896 	vm_flags_set(vma, VM_MIXEDMAP);
1897 
1898 	vma->vm_ops = &tcp_vm_ops;
1899 	return 0;
1900 }
1901 EXPORT_SYMBOL(tcp_mmap);
1902 
1903 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1904 				       u32 *offset_frag)
1905 {
1906 	skb_frag_t *frag;
1907 
1908 	if (unlikely(offset_skb >= skb->len))
1909 		return NULL;
1910 
1911 	offset_skb -= skb_headlen(skb);
1912 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1913 		return NULL;
1914 
1915 	frag = skb_shinfo(skb)->frags;
1916 	while (offset_skb) {
1917 		if (skb_frag_size(frag) > offset_skb) {
1918 			*offset_frag = offset_skb;
1919 			return frag;
1920 		}
1921 		offset_skb -= skb_frag_size(frag);
1922 		++frag;
1923 	}
1924 	*offset_frag = 0;
1925 	return frag;
1926 }
1927 
1928 static bool can_map_frag(const skb_frag_t *frag)
1929 {
1930 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1931 }
1932 
1933 static int find_next_mappable_frag(const skb_frag_t *frag,
1934 				   int remaining_in_skb)
1935 {
1936 	int offset = 0;
1937 
1938 	if (likely(can_map_frag(frag)))
1939 		return 0;
1940 
1941 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1942 		offset += skb_frag_size(frag);
1943 		++frag;
1944 	}
1945 	return offset;
1946 }
1947 
1948 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1949 					  struct tcp_zerocopy_receive *zc,
1950 					  struct sk_buff *skb, u32 offset)
1951 {
1952 	u32 frag_offset, partial_frag_remainder = 0;
1953 	int mappable_offset;
1954 	skb_frag_t *frag;
1955 
1956 	/* worst case: skip to next skb. try to improve on this case below */
1957 	zc->recv_skip_hint = skb->len - offset;
1958 
1959 	/* Find the frag containing this offset (and how far into that frag) */
1960 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1961 	if (!frag)
1962 		return;
1963 
1964 	if (frag_offset) {
1965 		struct skb_shared_info *info = skb_shinfo(skb);
1966 
1967 		/* We read part of the last frag, must recvmsg() rest of skb. */
1968 		if (frag == &info->frags[info->nr_frags - 1])
1969 			return;
1970 
1971 		/* Else, we must at least read the remainder in this frag. */
1972 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1973 		zc->recv_skip_hint -= partial_frag_remainder;
1974 		++frag;
1975 	}
1976 
1977 	/* partial_frag_remainder: If part way through a frag, must read rest.
1978 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1979 	 * in partial_frag_remainder.
1980 	 */
1981 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1982 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1983 }
1984 
1985 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1986 			      int flags, struct scm_timestamping_internal *tss,
1987 			      int *cmsg_flags);
1988 static int receive_fallback_to_copy(struct sock *sk,
1989 				    struct tcp_zerocopy_receive *zc, int inq,
1990 				    struct scm_timestamping_internal *tss)
1991 {
1992 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1993 	struct msghdr msg = {};
1994 	struct iovec iov;
1995 	int err;
1996 
1997 	zc->length = 0;
1998 	zc->recv_skip_hint = 0;
1999 
2000 	if (copy_address != zc->copybuf_address)
2001 		return -EINVAL;
2002 
2003 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2004 				  inq, &iov, &msg.msg_iter);
2005 	if (err)
2006 		return err;
2007 
2008 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2009 				 tss, &zc->msg_flags);
2010 	if (err < 0)
2011 		return err;
2012 
2013 	zc->copybuf_len = err;
2014 	if (likely(zc->copybuf_len)) {
2015 		struct sk_buff *skb;
2016 		u32 offset;
2017 
2018 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2019 		if (skb)
2020 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2021 	}
2022 	return 0;
2023 }
2024 
2025 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2026 				   struct sk_buff *skb, u32 copylen,
2027 				   u32 *offset, u32 *seq)
2028 {
2029 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2030 	struct msghdr msg = {};
2031 	struct iovec iov;
2032 	int err;
2033 
2034 	if (copy_address != zc->copybuf_address)
2035 		return -EINVAL;
2036 
2037 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
2038 				  copylen, &iov, &msg.msg_iter);
2039 	if (err)
2040 		return err;
2041 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2042 	if (err)
2043 		return err;
2044 	zc->recv_skip_hint -= copylen;
2045 	*offset += copylen;
2046 	*seq += copylen;
2047 	return (__s32)copylen;
2048 }
2049 
2050 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2051 				  struct sock *sk,
2052 				  struct sk_buff *skb,
2053 				  u32 *seq,
2054 				  s32 copybuf_len,
2055 				  struct scm_timestamping_internal *tss)
2056 {
2057 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2058 
2059 	if (!copylen)
2060 		return 0;
2061 	/* skb is null if inq < PAGE_SIZE. */
2062 	if (skb) {
2063 		offset = *seq - TCP_SKB_CB(skb)->seq;
2064 	} else {
2065 		skb = tcp_recv_skb(sk, *seq, &offset);
2066 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2067 			tcp_update_recv_tstamps(skb, tss);
2068 			zc->msg_flags |= TCP_CMSG_TS;
2069 		}
2070 	}
2071 
2072 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2073 						  seq);
2074 	return zc->copybuf_len < 0 ? 0 : copylen;
2075 }
2076 
2077 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2078 					      struct page **pending_pages,
2079 					      unsigned long pages_remaining,
2080 					      unsigned long *address,
2081 					      u32 *length,
2082 					      u32 *seq,
2083 					      struct tcp_zerocopy_receive *zc,
2084 					      u32 total_bytes_to_map,
2085 					      int err)
2086 {
2087 	/* At least one page did not map. Try zapping if we skipped earlier. */
2088 	if (err == -EBUSY &&
2089 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2090 		u32 maybe_zap_len;
2091 
2092 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2093 				*length + /* Mapped or pending */
2094 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2095 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2096 		err = 0;
2097 	}
2098 
2099 	if (!err) {
2100 		unsigned long leftover_pages = pages_remaining;
2101 		int bytes_mapped;
2102 
2103 		/* We called zap_page_range_single, try to reinsert. */
2104 		err = vm_insert_pages(vma, *address,
2105 				      pending_pages,
2106 				      &pages_remaining);
2107 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2108 		*seq += bytes_mapped;
2109 		*address += bytes_mapped;
2110 	}
2111 	if (err) {
2112 		/* Either we were unable to zap, OR we zapped, retried an
2113 		 * insert, and still had an issue. Either ways, pages_remaining
2114 		 * is the number of pages we were unable to map, and we unroll
2115 		 * some state we speculatively touched before.
2116 		 */
2117 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2118 
2119 		*length -= bytes_not_mapped;
2120 		zc->recv_skip_hint += bytes_not_mapped;
2121 	}
2122 	return err;
2123 }
2124 
2125 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2126 					struct page **pages,
2127 					unsigned int pages_to_map,
2128 					unsigned long *address,
2129 					u32 *length,
2130 					u32 *seq,
2131 					struct tcp_zerocopy_receive *zc,
2132 					u32 total_bytes_to_map)
2133 {
2134 	unsigned long pages_remaining = pages_to_map;
2135 	unsigned int pages_mapped;
2136 	unsigned int bytes_mapped;
2137 	int err;
2138 
2139 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2140 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2141 	bytes_mapped = PAGE_SIZE * pages_mapped;
2142 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2143 	 * mapping (some but not all of the pages).
2144 	 */
2145 	*seq += bytes_mapped;
2146 	*address += bytes_mapped;
2147 
2148 	if (likely(!err))
2149 		return 0;
2150 
2151 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2152 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2153 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2154 		err);
2155 }
2156 
2157 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2158 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2159 				      struct tcp_zerocopy_receive *zc,
2160 				      struct scm_timestamping_internal *tss)
2161 {
2162 	unsigned long msg_control_addr;
2163 	struct msghdr cmsg_dummy;
2164 
2165 	msg_control_addr = (unsigned long)zc->msg_control;
2166 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2167 	cmsg_dummy.msg_controllen =
2168 		(__kernel_size_t)zc->msg_controllen;
2169 	cmsg_dummy.msg_flags = in_compat_syscall()
2170 		? MSG_CMSG_COMPAT : 0;
2171 	cmsg_dummy.msg_control_is_user = true;
2172 	zc->msg_flags = 0;
2173 	if (zc->msg_control == msg_control_addr &&
2174 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2175 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2176 		zc->msg_control = (__u64)
2177 			((uintptr_t)cmsg_dummy.msg_control);
2178 		zc->msg_controllen =
2179 			(__u64)cmsg_dummy.msg_controllen;
2180 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2181 	}
2182 }
2183 
2184 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2185 static int tcp_zerocopy_receive(struct sock *sk,
2186 				struct tcp_zerocopy_receive *zc,
2187 				struct scm_timestamping_internal *tss)
2188 {
2189 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2190 	unsigned long address = (unsigned long)zc->address;
2191 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2192 	s32 copybuf_len = zc->copybuf_len;
2193 	struct tcp_sock *tp = tcp_sk(sk);
2194 	const skb_frag_t *frags = NULL;
2195 	unsigned int pages_to_map = 0;
2196 	struct vm_area_struct *vma;
2197 	struct sk_buff *skb = NULL;
2198 	u32 seq = tp->copied_seq;
2199 	u32 total_bytes_to_map;
2200 	int inq = tcp_inq(sk);
2201 	int ret;
2202 
2203 	zc->copybuf_len = 0;
2204 	zc->msg_flags = 0;
2205 
2206 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2207 		return -EINVAL;
2208 
2209 	if (sk->sk_state == TCP_LISTEN)
2210 		return -ENOTCONN;
2211 
2212 	sock_rps_record_flow(sk);
2213 
2214 	if (inq && inq <= copybuf_len)
2215 		return receive_fallback_to_copy(sk, zc, inq, tss);
2216 
2217 	if (inq < PAGE_SIZE) {
2218 		zc->length = 0;
2219 		zc->recv_skip_hint = inq;
2220 		if (!inq && sock_flag(sk, SOCK_DONE))
2221 			return -EIO;
2222 		return 0;
2223 	}
2224 
2225 	mmap_read_lock(current->mm);
2226 
2227 	vma = vma_lookup(current->mm, address);
2228 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2229 		mmap_read_unlock(current->mm);
2230 		return -EINVAL;
2231 	}
2232 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2233 	avail_len = min_t(u32, vma_len, inq);
2234 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2235 	if (total_bytes_to_map) {
2236 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2237 			zap_page_range_single(vma, address, total_bytes_to_map,
2238 					      NULL);
2239 		zc->length = total_bytes_to_map;
2240 		zc->recv_skip_hint = 0;
2241 	} else {
2242 		zc->length = avail_len;
2243 		zc->recv_skip_hint = avail_len;
2244 	}
2245 	ret = 0;
2246 	while (length + PAGE_SIZE <= zc->length) {
2247 		int mappable_offset;
2248 		struct page *page;
2249 
2250 		if (zc->recv_skip_hint < PAGE_SIZE) {
2251 			u32 offset_frag;
2252 
2253 			if (skb) {
2254 				if (zc->recv_skip_hint > 0)
2255 					break;
2256 				skb = skb->next;
2257 				offset = seq - TCP_SKB_CB(skb)->seq;
2258 			} else {
2259 				skb = tcp_recv_skb(sk, seq, &offset);
2260 			}
2261 
2262 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2263 				tcp_update_recv_tstamps(skb, tss);
2264 				zc->msg_flags |= TCP_CMSG_TS;
2265 			}
2266 			zc->recv_skip_hint = skb->len - offset;
2267 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2268 			if (!frags || offset_frag)
2269 				break;
2270 		}
2271 
2272 		mappable_offset = find_next_mappable_frag(frags,
2273 							  zc->recv_skip_hint);
2274 		if (mappable_offset) {
2275 			zc->recv_skip_hint = mappable_offset;
2276 			break;
2277 		}
2278 		page = skb_frag_page(frags);
2279 		prefetchw(page);
2280 		pages[pages_to_map++] = page;
2281 		length += PAGE_SIZE;
2282 		zc->recv_skip_hint -= PAGE_SIZE;
2283 		frags++;
2284 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2285 		    zc->recv_skip_hint < PAGE_SIZE) {
2286 			/* Either full batch, or we're about to go to next skb
2287 			 * (and we cannot unroll failed ops across skbs).
2288 			 */
2289 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2290 							   pages_to_map,
2291 							   &address, &length,
2292 							   &seq, zc,
2293 							   total_bytes_to_map);
2294 			if (ret)
2295 				goto out;
2296 			pages_to_map = 0;
2297 		}
2298 	}
2299 	if (pages_to_map) {
2300 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2301 						   &address, &length, &seq,
2302 						   zc, total_bytes_to_map);
2303 	}
2304 out:
2305 	mmap_read_unlock(current->mm);
2306 	/* Try to copy straggler data. */
2307 	if (!ret)
2308 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2309 
2310 	if (length + copylen) {
2311 		WRITE_ONCE(tp->copied_seq, seq);
2312 		tcp_rcv_space_adjust(sk);
2313 
2314 		/* Clean up data we have read: This will do ACK frames. */
2315 		tcp_recv_skb(sk, seq, &offset);
2316 		tcp_cleanup_rbuf(sk, length + copylen);
2317 		ret = 0;
2318 		if (length == zc->length)
2319 			zc->recv_skip_hint = 0;
2320 	} else {
2321 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2322 			ret = -EIO;
2323 	}
2324 	zc->length = length;
2325 	return ret;
2326 }
2327 #endif
2328 
2329 /* Similar to __sock_recv_timestamp, but does not require an skb */
2330 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2331 			struct scm_timestamping_internal *tss)
2332 {
2333 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2334 	bool has_timestamping = false;
2335 
2336 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2337 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2338 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2339 				if (new_tstamp) {
2340 					struct __kernel_timespec kts = {
2341 						.tv_sec = tss->ts[0].tv_sec,
2342 						.tv_nsec = tss->ts[0].tv_nsec,
2343 					};
2344 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2345 						 sizeof(kts), &kts);
2346 				} else {
2347 					struct __kernel_old_timespec ts_old = {
2348 						.tv_sec = tss->ts[0].tv_sec,
2349 						.tv_nsec = tss->ts[0].tv_nsec,
2350 					};
2351 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2352 						 sizeof(ts_old), &ts_old);
2353 				}
2354 			} else {
2355 				if (new_tstamp) {
2356 					struct __kernel_sock_timeval stv = {
2357 						.tv_sec = tss->ts[0].tv_sec,
2358 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2359 					};
2360 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2361 						 sizeof(stv), &stv);
2362 				} else {
2363 					struct __kernel_old_timeval tv = {
2364 						.tv_sec = tss->ts[0].tv_sec,
2365 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2366 					};
2367 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2368 						 sizeof(tv), &tv);
2369 				}
2370 			}
2371 		}
2372 
2373 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2374 			has_timestamping = true;
2375 		else
2376 			tss->ts[0] = (struct timespec64) {0};
2377 	}
2378 
2379 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2380 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2381 			has_timestamping = true;
2382 		else
2383 			tss->ts[2] = (struct timespec64) {0};
2384 	}
2385 
2386 	if (has_timestamping) {
2387 		tss->ts[1] = (struct timespec64) {0};
2388 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2389 			put_cmsg_scm_timestamping64(msg, tss);
2390 		else
2391 			put_cmsg_scm_timestamping(msg, tss);
2392 	}
2393 }
2394 
2395 static int tcp_inq_hint(struct sock *sk)
2396 {
2397 	const struct tcp_sock *tp = tcp_sk(sk);
2398 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2399 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2400 	int inq;
2401 
2402 	inq = rcv_nxt - copied_seq;
2403 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2404 		lock_sock(sk);
2405 		inq = tp->rcv_nxt - tp->copied_seq;
2406 		release_sock(sk);
2407 	}
2408 	/* After receiving a FIN, tell the user-space to continue reading
2409 	 * by returning a non-zero inq.
2410 	 */
2411 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2412 		inq = 1;
2413 	return inq;
2414 }
2415 
2416 /*
2417  *	This routine copies from a sock struct into the user buffer.
2418  *
2419  *	Technical note: in 2.3 we work on _locked_ socket, so that
2420  *	tricks with *seq access order and skb->users are not required.
2421  *	Probably, code can be easily improved even more.
2422  */
2423 
2424 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2425 			      int flags, struct scm_timestamping_internal *tss,
2426 			      int *cmsg_flags)
2427 {
2428 	struct tcp_sock *tp = tcp_sk(sk);
2429 	int copied = 0;
2430 	u32 peek_seq;
2431 	u32 *seq;
2432 	unsigned long used;
2433 	int err;
2434 	int target;		/* Read at least this many bytes */
2435 	long timeo;
2436 	struct sk_buff *skb, *last;
2437 	u32 urg_hole = 0;
2438 
2439 	err = -ENOTCONN;
2440 	if (sk->sk_state == TCP_LISTEN)
2441 		goto out;
2442 
2443 	if (tp->recvmsg_inq) {
2444 		*cmsg_flags = TCP_CMSG_INQ;
2445 		msg->msg_get_inq = 1;
2446 	}
2447 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2448 
2449 	/* Urgent data needs to be handled specially. */
2450 	if (flags & MSG_OOB)
2451 		goto recv_urg;
2452 
2453 	if (unlikely(tp->repair)) {
2454 		err = -EPERM;
2455 		if (!(flags & MSG_PEEK))
2456 			goto out;
2457 
2458 		if (tp->repair_queue == TCP_SEND_QUEUE)
2459 			goto recv_sndq;
2460 
2461 		err = -EINVAL;
2462 		if (tp->repair_queue == TCP_NO_QUEUE)
2463 			goto out;
2464 
2465 		/* 'common' recv queue MSG_PEEK-ing */
2466 	}
2467 
2468 	seq = &tp->copied_seq;
2469 	if (flags & MSG_PEEK) {
2470 		peek_seq = tp->copied_seq;
2471 		seq = &peek_seq;
2472 	}
2473 
2474 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2475 
2476 	do {
2477 		u32 offset;
2478 
2479 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2480 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2481 			if (copied)
2482 				break;
2483 			if (signal_pending(current)) {
2484 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2485 				break;
2486 			}
2487 		}
2488 
2489 		/* Next get a buffer. */
2490 
2491 		last = skb_peek_tail(&sk->sk_receive_queue);
2492 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2493 			last = skb;
2494 			/* Now that we have two receive queues this
2495 			 * shouldn't happen.
2496 			 */
2497 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2498 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2499 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2500 				 flags))
2501 				break;
2502 
2503 			offset = *seq - TCP_SKB_CB(skb)->seq;
2504 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2505 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2506 				offset--;
2507 			}
2508 			if (offset < skb->len)
2509 				goto found_ok_skb;
2510 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2511 				goto found_fin_ok;
2512 			WARN(!(flags & MSG_PEEK),
2513 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2514 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2515 		}
2516 
2517 		/* Well, if we have backlog, try to process it now yet. */
2518 
2519 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2520 			break;
2521 
2522 		if (copied) {
2523 			if (!timeo ||
2524 			    sk->sk_err ||
2525 			    sk->sk_state == TCP_CLOSE ||
2526 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2527 			    signal_pending(current))
2528 				break;
2529 		} else {
2530 			if (sock_flag(sk, SOCK_DONE))
2531 				break;
2532 
2533 			if (sk->sk_err) {
2534 				copied = sock_error(sk);
2535 				break;
2536 			}
2537 
2538 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2539 				break;
2540 
2541 			if (sk->sk_state == TCP_CLOSE) {
2542 				/* This occurs when user tries to read
2543 				 * from never connected socket.
2544 				 */
2545 				copied = -ENOTCONN;
2546 				break;
2547 			}
2548 
2549 			if (!timeo) {
2550 				copied = -EAGAIN;
2551 				break;
2552 			}
2553 
2554 			if (signal_pending(current)) {
2555 				copied = sock_intr_errno(timeo);
2556 				break;
2557 			}
2558 		}
2559 
2560 		if (copied >= target) {
2561 			/* Do not sleep, just process backlog. */
2562 			__sk_flush_backlog(sk);
2563 		} else {
2564 			tcp_cleanup_rbuf(sk, copied);
2565 			sk_wait_data(sk, &timeo, last);
2566 		}
2567 
2568 		if ((flags & MSG_PEEK) &&
2569 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2570 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2571 					    current->comm,
2572 					    task_pid_nr(current));
2573 			peek_seq = tp->copied_seq;
2574 		}
2575 		continue;
2576 
2577 found_ok_skb:
2578 		/* Ok so how much can we use? */
2579 		used = skb->len - offset;
2580 		if (len < used)
2581 			used = len;
2582 
2583 		/* Do we have urgent data here? */
2584 		if (unlikely(tp->urg_data)) {
2585 			u32 urg_offset = tp->urg_seq - *seq;
2586 			if (urg_offset < used) {
2587 				if (!urg_offset) {
2588 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2589 						WRITE_ONCE(*seq, *seq + 1);
2590 						urg_hole++;
2591 						offset++;
2592 						used--;
2593 						if (!used)
2594 							goto skip_copy;
2595 					}
2596 				} else
2597 					used = urg_offset;
2598 			}
2599 		}
2600 
2601 		if (!(flags & MSG_TRUNC)) {
2602 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2603 			if (err) {
2604 				/* Exception. Bailout! */
2605 				if (!copied)
2606 					copied = -EFAULT;
2607 				break;
2608 			}
2609 		}
2610 
2611 		WRITE_ONCE(*seq, *seq + used);
2612 		copied += used;
2613 		len -= used;
2614 
2615 		tcp_rcv_space_adjust(sk);
2616 
2617 skip_copy:
2618 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2619 			WRITE_ONCE(tp->urg_data, 0);
2620 			tcp_fast_path_check(sk);
2621 		}
2622 
2623 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2624 			tcp_update_recv_tstamps(skb, tss);
2625 			*cmsg_flags |= TCP_CMSG_TS;
2626 		}
2627 
2628 		if (used + offset < skb->len)
2629 			continue;
2630 
2631 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2632 			goto found_fin_ok;
2633 		if (!(flags & MSG_PEEK))
2634 			tcp_eat_recv_skb(sk, skb);
2635 		continue;
2636 
2637 found_fin_ok:
2638 		/* Process the FIN. */
2639 		WRITE_ONCE(*seq, *seq + 1);
2640 		if (!(flags & MSG_PEEK))
2641 			tcp_eat_recv_skb(sk, skb);
2642 		break;
2643 	} while (len > 0);
2644 
2645 	/* According to UNIX98, msg_name/msg_namelen are ignored
2646 	 * on connected socket. I was just happy when found this 8) --ANK
2647 	 */
2648 
2649 	/* Clean up data we have read: This will do ACK frames. */
2650 	tcp_cleanup_rbuf(sk, copied);
2651 	return copied;
2652 
2653 out:
2654 	return err;
2655 
2656 recv_urg:
2657 	err = tcp_recv_urg(sk, msg, len, flags);
2658 	goto out;
2659 
2660 recv_sndq:
2661 	err = tcp_peek_sndq(sk, msg, len);
2662 	goto out;
2663 }
2664 
2665 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2666 		int *addr_len)
2667 {
2668 	int cmsg_flags = 0, ret;
2669 	struct scm_timestamping_internal tss;
2670 
2671 	if (unlikely(flags & MSG_ERRQUEUE))
2672 		return inet_recv_error(sk, msg, len, addr_len);
2673 
2674 	if (sk_can_busy_loop(sk) &&
2675 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2676 	    sk->sk_state == TCP_ESTABLISHED)
2677 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2678 
2679 	lock_sock(sk);
2680 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2681 	release_sock(sk);
2682 
2683 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2684 		if (cmsg_flags & TCP_CMSG_TS)
2685 			tcp_recv_timestamp(msg, sk, &tss);
2686 		if (msg->msg_get_inq) {
2687 			msg->msg_inq = tcp_inq_hint(sk);
2688 			if (cmsg_flags & TCP_CMSG_INQ)
2689 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2690 					 sizeof(msg->msg_inq), &msg->msg_inq);
2691 		}
2692 	}
2693 	return ret;
2694 }
2695 EXPORT_SYMBOL(tcp_recvmsg);
2696 
2697 void tcp_set_state(struct sock *sk, int state)
2698 {
2699 	int oldstate = sk->sk_state;
2700 
2701 	/* We defined a new enum for TCP states that are exported in BPF
2702 	 * so as not force the internal TCP states to be frozen. The
2703 	 * following checks will detect if an internal state value ever
2704 	 * differs from the BPF value. If this ever happens, then we will
2705 	 * need to remap the internal value to the BPF value before calling
2706 	 * tcp_call_bpf_2arg.
2707 	 */
2708 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2709 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2710 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2711 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2712 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2713 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2714 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2715 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2716 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2717 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2718 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2719 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2720 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2721 
2722 	/* bpf uapi header bpf.h defines an anonymous enum with values
2723 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2724 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2725 	 * But clang built vmlinux does not have this enum in DWARF
2726 	 * since clang removes the above code before generating IR/debuginfo.
2727 	 * Let us explicitly emit the type debuginfo to ensure the
2728 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2729 	 * regardless of which compiler is used.
2730 	 */
2731 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2732 
2733 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2734 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2735 
2736 	switch (state) {
2737 	case TCP_ESTABLISHED:
2738 		if (oldstate != TCP_ESTABLISHED)
2739 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2740 		break;
2741 
2742 	case TCP_CLOSE:
2743 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2744 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2745 
2746 		sk->sk_prot->unhash(sk);
2747 		if (inet_csk(sk)->icsk_bind_hash &&
2748 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2749 			inet_put_port(sk);
2750 		fallthrough;
2751 	default:
2752 		if (oldstate == TCP_ESTABLISHED)
2753 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2754 	}
2755 
2756 	/* Change state AFTER socket is unhashed to avoid closed
2757 	 * socket sitting in hash tables.
2758 	 */
2759 	inet_sk_state_store(sk, state);
2760 }
2761 EXPORT_SYMBOL_GPL(tcp_set_state);
2762 
2763 /*
2764  *	State processing on a close. This implements the state shift for
2765  *	sending our FIN frame. Note that we only send a FIN for some
2766  *	states. A shutdown() may have already sent the FIN, or we may be
2767  *	closed.
2768  */
2769 
2770 static const unsigned char new_state[16] = {
2771   /* current state:        new state:      action:	*/
2772   [0 /* (Invalid) */]	= TCP_CLOSE,
2773   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2774   [TCP_SYN_SENT]	= TCP_CLOSE,
2775   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2776   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2777   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2778   [TCP_TIME_WAIT]	= TCP_CLOSE,
2779   [TCP_CLOSE]		= TCP_CLOSE,
2780   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2781   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2782   [TCP_LISTEN]		= TCP_CLOSE,
2783   [TCP_CLOSING]		= TCP_CLOSING,
2784   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2785 };
2786 
2787 static int tcp_close_state(struct sock *sk)
2788 {
2789 	int next = (int)new_state[sk->sk_state];
2790 	int ns = next & TCP_STATE_MASK;
2791 
2792 	tcp_set_state(sk, ns);
2793 
2794 	return next & TCP_ACTION_FIN;
2795 }
2796 
2797 /*
2798  *	Shutdown the sending side of a connection. Much like close except
2799  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2800  */
2801 
2802 void tcp_shutdown(struct sock *sk, int how)
2803 {
2804 	/*	We need to grab some memory, and put together a FIN,
2805 	 *	and then put it into the queue to be sent.
2806 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2807 	 */
2808 	if (!(how & SEND_SHUTDOWN))
2809 		return;
2810 
2811 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2812 	if ((1 << sk->sk_state) &
2813 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2814 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2815 		/* Clear out any half completed packets.  FIN if needed. */
2816 		if (tcp_close_state(sk))
2817 			tcp_send_fin(sk);
2818 	}
2819 }
2820 EXPORT_SYMBOL(tcp_shutdown);
2821 
2822 int tcp_orphan_count_sum(void)
2823 {
2824 	int i, total = 0;
2825 
2826 	for_each_possible_cpu(i)
2827 		total += per_cpu(tcp_orphan_count, i);
2828 
2829 	return max(total, 0);
2830 }
2831 
2832 static int tcp_orphan_cache;
2833 static struct timer_list tcp_orphan_timer;
2834 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2835 
2836 static void tcp_orphan_update(struct timer_list *unused)
2837 {
2838 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2839 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2840 }
2841 
2842 static bool tcp_too_many_orphans(int shift)
2843 {
2844 	return READ_ONCE(tcp_orphan_cache) << shift >
2845 		READ_ONCE(sysctl_tcp_max_orphans);
2846 }
2847 
2848 bool tcp_check_oom(struct sock *sk, int shift)
2849 {
2850 	bool too_many_orphans, out_of_socket_memory;
2851 
2852 	too_many_orphans = tcp_too_many_orphans(shift);
2853 	out_of_socket_memory = tcp_out_of_memory(sk);
2854 
2855 	if (too_many_orphans)
2856 		net_info_ratelimited("too many orphaned sockets\n");
2857 	if (out_of_socket_memory)
2858 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2859 	return too_many_orphans || out_of_socket_memory;
2860 }
2861 
2862 void __tcp_close(struct sock *sk, long timeout)
2863 {
2864 	struct sk_buff *skb;
2865 	int data_was_unread = 0;
2866 	int state;
2867 
2868 	sk->sk_shutdown = SHUTDOWN_MASK;
2869 
2870 	if (sk->sk_state == TCP_LISTEN) {
2871 		tcp_set_state(sk, TCP_CLOSE);
2872 
2873 		/* Special case. */
2874 		inet_csk_listen_stop(sk);
2875 
2876 		goto adjudge_to_death;
2877 	}
2878 
2879 	/*  We need to flush the recv. buffs.  We do this only on the
2880 	 *  descriptor close, not protocol-sourced closes, because the
2881 	 *  reader process may not have drained the data yet!
2882 	 */
2883 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2884 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2885 
2886 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2887 			len--;
2888 		data_was_unread += len;
2889 		__kfree_skb(skb);
2890 	}
2891 
2892 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2893 	if (sk->sk_state == TCP_CLOSE)
2894 		goto adjudge_to_death;
2895 
2896 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2897 	 * data was lost. To witness the awful effects of the old behavior of
2898 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2899 	 * GET in an FTP client, suspend the process, wait for the client to
2900 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2901 	 * Note: timeout is always zero in such a case.
2902 	 */
2903 	if (unlikely(tcp_sk(sk)->repair)) {
2904 		sk->sk_prot->disconnect(sk, 0);
2905 	} else if (data_was_unread) {
2906 		/* Unread data was tossed, zap the connection. */
2907 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2908 		tcp_set_state(sk, TCP_CLOSE);
2909 		tcp_send_active_reset(sk, sk->sk_allocation);
2910 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2911 		/* Check zero linger _after_ checking for unread data. */
2912 		sk->sk_prot->disconnect(sk, 0);
2913 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2914 	} else if (tcp_close_state(sk)) {
2915 		/* We FIN if the application ate all the data before
2916 		 * zapping the connection.
2917 		 */
2918 
2919 		/* RED-PEN. Formally speaking, we have broken TCP state
2920 		 * machine. State transitions:
2921 		 *
2922 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2923 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2924 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2925 		 *
2926 		 * are legal only when FIN has been sent (i.e. in window),
2927 		 * rather than queued out of window. Purists blame.
2928 		 *
2929 		 * F.e. "RFC state" is ESTABLISHED,
2930 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2931 		 *
2932 		 * The visible declinations are that sometimes
2933 		 * we enter time-wait state, when it is not required really
2934 		 * (harmless), do not send active resets, when they are
2935 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2936 		 * they look as CLOSING or LAST_ACK for Linux)
2937 		 * Probably, I missed some more holelets.
2938 		 * 						--ANK
2939 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2940 		 * in a single packet! (May consider it later but will
2941 		 * probably need API support or TCP_CORK SYN-ACK until
2942 		 * data is written and socket is closed.)
2943 		 */
2944 		tcp_send_fin(sk);
2945 	}
2946 
2947 	sk_stream_wait_close(sk, timeout);
2948 
2949 adjudge_to_death:
2950 	state = sk->sk_state;
2951 	sock_hold(sk);
2952 	sock_orphan(sk);
2953 
2954 	local_bh_disable();
2955 	bh_lock_sock(sk);
2956 	/* remove backlog if any, without releasing ownership. */
2957 	__release_sock(sk);
2958 
2959 	this_cpu_inc(tcp_orphan_count);
2960 
2961 	/* Have we already been destroyed by a softirq or backlog? */
2962 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2963 		goto out;
2964 
2965 	/*	This is a (useful) BSD violating of the RFC. There is a
2966 	 *	problem with TCP as specified in that the other end could
2967 	 *	keep a socket open forever with no application left this end.
2968 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2969 	 *	our end. If they send after that then tough - BUT: long enough
2970 	 *	that we won't make the old 4*rto = almost no time - whoops
2971 	 *	reset mistake.
2972 	 *
2973 	 *	Nope, it was not mistake. It is really desired behaviour
2974 	 *	f.e. on http servers, when such sockets are useless, but
2975 	 *	consume significant resources. Let's do it with special
2976 	 *	linger2	option.					--ANK
2977 	 */
2978 
2979 	if (sk->sk_state == TCP_FIN_WAIT2) {
2980 		struct tcp_sock *tp = tcp_sk(sk);
2981 		if (tp->linger2 < 0) {
2982 			tcp_set_state(sk, TCP_CLOSE);
2983 			tcp_send_active_reset(sk, GFP_ATOMIC);
2984 			__NET_INC_STATS(sock_net(sk),
2985 					LINUX_MIB_TCPABORTONLINGER);
2986 		} else {
2987 			const int tmo = tcp_fin_time(sk);
2988 
2989 			if (tmo > TCP_TIMEWAIT_LEN) {
2990 				inet_csk_reset_keepalive_timer(sk,
2991 						tmo - TCP_TIMEWAIT_LEN);
2992 			} else {
2993 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2994 				goto out;
2995 			}
2996 		}
2997 	}
2998 	if (sk->sk_state != TCP_CLOSE) {
2999 		if (tcp_check_oom(sk, 0)) {
3000 			tcp_set_state(sk, TCP_CLOSE);
3001 			tcp_send_active_reset(sk, GFP_ATOMIC);
3002 			__NET_INC_STATS(sock_net(sk),
3003 					LINUX_MIB_TCPABORTONMEMORY);
3004 		} else if (!check_net(sock_net(sk))) {
3005 			/* Not possible to send reset; just close */
3006 			tcp_set_state(sk, TCP_CLOSE);
3007 		}
3008 	}
3009 
3010 	if (sk->sk_state == TCP_CLOSE) {
3011 		struct request_sock *req;
3012 
3013 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3014 						lockdep_sock_is_held(sk));
3015 		/* We could get here with a non-NULL req if the socket is
3016 		 * aborted (e.g., closed with unread data) before 3WHS
3017 		 * finishes.
3018 		 */
3019 		if (req)
3020 			reqsk_fastopen_remove(sk, req, false);
3021 		inet_csk_destroy_sock(sk);
3022 	}
3023 	/* Otherwise, socket is reprieved until protocol close. */
3024 
3025 out:
3026 	bh_unlock_sock(sk);
3027 	local_bh_enable();
3028 }
3029 
3030 void tcp_close(struct sock *sk, long timeout)
3031 {
3032 	lock_sock(sk);
3033 	__tcp_close(sk, timeout);
3034 	release_sock(sk);
3035 	sock_put(sk);
3036 }
3037 EXPORT_SYMBOL(tcp_close);
3038 
3039 /* These states need RST on ABORT according to RFC793 */
3040 
3041 static inline bool tcp_need_reset(int state)
3042 {
3043 	return (1 << state) &
3044 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3045 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3046 }
3047 
3048 static void tcp_rtx_queue_purge(struct sock *sk)
3049 {
3050 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3051 
3052 	tcp_sk(sk)->highest_sack = NULL;
3053 	while (p) {
3054 		struct sk_buff *skb = rb_to_skb(p);
3055 
3056 		p = rb_next(p);
3057 		/* Since we are deleting whole queue, no need to
3058 		 * list_del(&skb->tcp_tsorted_anchor)
3059 		 */
3060 		tcp_rtx_queue_unlink(skb, sk);
3061 		tcp_wmem_free_skb(sk, skb);
3062 	}
3063 }
3064 
3065 void tcp_write_queue_purge(struct sock *sk)
3066 {
3067 	struct sk_buff *skb;
3068 
3069 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3070 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3071 		tcp_skb_tsorted_anchor_cleanup(skb);
3072 		tcp_wmem_free_skb(sk, skb);
3073 	}
3074 	tcp_rtx_queue_purge(sk);
3075 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3076 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3077 	tcp_sk(sk)->packets_out = 0;
3078 	inet_csk(sk)->icsk_backoff = 0;
3079 }
3080 
3081 int tcp_disconnect(struct sock *sk, int flags)
3082 {
3083 	struct inet_sock *inet = inet_sk(sk);
3084 	struct inet_connection_sock *icsk = inet_csk(sk);
3085 	struct tcp_sock *tp = tcp_sk(sk);
3086 	int old_state = sk->sk_state;
3087 	u32 seq;
3088 
3089 	if (old_state != TCP_CLOSE)
3090 		tcp_set_state(sk, TCP_CLOSE);
3091 
3092 	/* ABORT function of RFC793 */
3093 	if (old_state == TCP_LISTEN) {
3094 		inet_csk_listen_stop(sk);
3095 	} else if (unlikely(tp->repair)) {
3096 		sk->sk_err = ECONNABORTED;
3097 	} else if (tcp_need_reset(old_state) ||
3098 		   (tp->snd_nxt != tp->write_seq &&
3099 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3100 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3101 		 * states
3102 		 */
3103 		tcp_send_active_reset(sk, gfp_any());
3104 		sk->sk_err = ECONNRESET;
3105 	} else if (old_state == TCP_SYN_SENT)
3106 		sk->sk_err = ECONNRESET;
3107 
3108 	tcp_clear_xmit_timers(sk);
3109 	__skb_queue_purge(&sk->sk_receive_queue);
3110 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3111 	WRITE_ONCE(tp->urg_data, 0);
3112 	tcp_write_queue_purge(sk);
3113 	tcp_fastopen_active_disable_ofo_check(sk);
3114 	skb_rbtree_purge(&tp->out_of_order_queue);
3115 
3116 	inet->inet_dport = 0;
3117 
3118 	inet_bhash2_reset_saddr(sk);
3119 
3120 	sk->sk_shutdown = 0;
3121 	sock_reset_flag(sk, SOCK_DONE);
3122 	tp->srtt_us = 0;
3123 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3124 	tp->rcv_rtt_last_tsecr = 0;
3125 
3126 	seq = tp->write_seq + tp->max_window + 2;
3127 	if (!seq)
3128 		seq = 1;
3129 	WRITE_ONCE(tp->write_seq, seq);
3130 
3131 	icsk->icsk_backoff = 0;
3132 	icsk->icsk_probes_out = 0;
3133 	icsk->icsk_probes_tstamp = 0;
3134 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3135 	icsk->icsk_rto_min = TCP_RTO_MIN;
3136 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3137 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3138 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3139 	tp->snd_cwnd_cnt = 0;
3140 	tp->is_cwnd_limited = 0;
3141 	tp->max_packets_out = 0;
3142 	tp->window_clamp = 0;
3143 	tp->delivered = 0;
3144 	tp->delivered_ce = 0;
3145 	if (icsk->icsk_ca_ops->release)
3146 		icsk->icsk_ca_ops->release(sk);
3147 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3148 	icsk->icsk_ca_initialized = 0;
3149 	tcp_set_ca_state(sk, TCP_CA_Open);
3150 	tp->is_sack_reneg = 0;
3151 	tcp_clear_retrans(tp);
3152 	tp->total_retrans = 0;
3153 	inet_csk_delack_init(sk);
3154 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3155 	 * issue in __tcp_select_window()
3156 	 */
3157 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3158 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3159 	__sk_dst_reset(sk);
3160 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3161 	tcp_saved_syn_free(tp);
3162 	tp->compressed_ack = 0;
3163 	tp->segs_in = 0;
3164 	tp->segs_out = 0;
3165 	tp->bytes_sent = 0;
3166 	tp->bytes_acked = 0;
3167 	tp->bytes_received = 0;
3168 	tp->bytes_retrans = 0;
3169 	tp->data_segs_in = 0;
3170 	tp->data_segs_out = 0;
3171 	tp->duplicate_sack[0].start_seq = 0;
3172 	tp->duplicate_sack[0].end_seq = 0;
3173 	tp->dsack_dups = 0;
3174 	tp->reord_seen = 0;
3175 	tp->retrans_out = 0;
3176 	tp->sacked_out = 0;
3177 	tp->tlp_high_seq = 0;
3178 	tp->last_oow_ack_time = 0;
3179 	tp->plb_rehash = 0;
3180 	/* There's a bubble in the pipe until at least the first ACK. */
3181 	tp->app_limited = ~0U;
3182 	tp->rack.mstamp = 0;
3183 	tp->rack.advanced = 0;
3184 	tp->rack.reo_wnd_steps = 1;
3185 	tp->rack.last_delivered = 0;
3186 	tp->rack.reo_wnd_persist = 0;
3187 	tp->rack.dsack_seen = 0;
3188 	tp->syn_data_acked = 0;
3189 	tp->rx_opt.saw_tstamp = 0;
3190 	tp->rx_opt.dsack = 0;
3191 	tp->rx_opt.num_sacks = 0;
3192 	tp->rcv_ooopack = 0;
3193 
3194 
3195 	/* Clean up fastopen related fields */
3196 	tcp_free_fastopen_req(tp);
3197 	inet->defer_connect = 0;
3198 	tp->fastopen_client_fail = 0;
3199 
3200 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3201 
3202 	if (sk->sk_frag.page) {
3203 		put_page(sk->sk_frag.page);
3204 		sk->sk_frag.page = NULL;
3205 		sk->sk_frag.offset = 0;
3206 	}
3207 	sk_error_report(sk);
3208 	return 0;
3209 }
3210 EXPORT_SYMBOL(tcp_disconnect);
3211 
3212 static inline bool tcp_can_repair_sock(const struct sock *sk)
3213 {
3214 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3215 		(sk->sk_state != TCP_LISTEN);
3216 }
3217 
3218 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3219 {
3220 	struct tcp_repair_window opt;
3221 
3222 	if (!tp->repair)
3223 		return -EPERM;
3224 
3225 	if (len != sizeof(opt))
3226 		return -EINVAL;
3227 
3228 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3229 		return -EFAULT;
3230 
3231 	if (opt.max_window < opt.snd_wnd)
3232 		return -EINVAL;
3233 
3234 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3235 		return -EINVAL;
3236 
3237 	if (after(opt.rcv_wup, tp->rcv_nxt))
3238 		return -EINVAL;
3239 
3240 	tp->snd_wl1	= opt.snd_wl1;
3241 	tp->snd_wnd	= opt.snd_wnd;
3242 	tp->max_window	= opt.max_window;
3243 
3244 	tp->rcv_wnd	= opt.rcv_wnd;
3245 	tp->rcv_wup	= opt.rcv_wup;
3246 
3247 	return 0;
3248 }
3249 
3250 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3251 		unsigned int len)
3252 {
3253 	struct tcp_sock *tp = tcp_sk(sk);
3254 	struct tcp_repair_opt opt;
3255 	size_t offset = 0;
3256 
3257 	while (len >= sizeof(opt)) {
3258 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3259 			return -EFAULT;
3260 
3261 		offset += sizeof(opt);
3262 		len -= sizeof(opt);
3263 
3264 		switch (opt.opt_code) {
3265 		case TCPOPT_MSS:
3266 			tp->rx_opt.mss_clamp = opt.opt_val;
3267 			tcp_mtup_init(sk);
3268 			break;
3269 		case TCPOPT_WINDOW:
3270 			{
3271 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3272 				u16 rcv_wscale = opt.opt_val >> 16;
3273 
3274 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3275 					return -EFBIG;
3276 
3277 				tp->rx_opt.snd_wscale = snd_wscale;
3278 				tp->rx_opt.rcv_wscale = rcv_wscale;
3279 				tp->rx_opt.wscale_ok = 1;
3280 			}
3281 			break;
3282 		case TCPOPT_SACK_PERM:
3283 			if (opt.opt_val != 0)
3284 				return -EINVAL;
3285 
3286 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3287 			break;
3288 		case TCPOPT_TIMESTAMP:
3289 			if (opt.opt_val != 0)
3290 				return -EINVAL;
3291 
3292 			tp->rx_opt.tstamp_ok = 1;
3293 			break;
3294 		}
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3301 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3302 
3303 static void tcp_enable_tx_delay(void)
3304 {
3305 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3306 		static int __tcp_tx_delay_enabled = 0;
3307 
3308 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3309 			static_branch_enable(&tcp_tx_delay_enabled);
3310 			pr_info("TCP_TX_DELAY enabled\n");
3311 		}
3312 	}
3313 }
3314 
3315 /* When set indicates to always queue non-full frames.  Later the user clears
3316  * this option and we transmit any pending partial frames in the queue.  This is
3317  * meant to be used alongside sendfile() to get properly filled frames when the
3318  * user (for example) must write out headers with a write() call first and then
3319  * use sendfile to send out the data parts.
3320  *
3321  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3322  * TCP_NODELAY.
3323  */
3324 void __tcp_sock_set_cork(struct sock *sk, bool on)
3325 {
3326 	struct tcp_sock *tp = tcp_sk(sk);
3327 
3328 	if (on) {
3329 		tp->nonagle |= TCP_NAGLE_CORK;
3330 	} else {
3331 		tp->nonagle &= ~TCP_NAGLE_CORK;
3332 		if (tp->nonagle & TCP_NAGLE_OFF)
3333 			tp->nonagle |= TCP_NAGLE_PUSH;
3334 		tcp_push_pending_frames(sk);
3335 	}
3336 }
3337 
3338 void tcp_sock_set_cork(struct sock *sk, bool on)
3339 {
3340 	lock_sock(sk);
3341 	__tcp_sock_set_cork(sk, on);
3342 	release_sock(sk);
3343 }
3344 EXPORT_SYMBOL(tcp_sock_set_cork);
3345 
3346 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3347  * remembered, but it is not activated until cork is cleared.
3348  *
3349  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3350  * even TCP_CORK for currently queued segments.
3351  */
3352 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3353 {
3354 	if (on) {
3355 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3356 		tcp_push_pending_frames(sk);
3357 	} else {
3358 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3359 	}
3360 }
3361 
3362 void tcp_sock_set_nodelay(struct sock *sk)
3363 {
3364 	lock_sock(sk);
3365 	__tcp_sock_set_nodelay(sk, true);
3366 	release_sock(sk);
3367 }
3368 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3369 
3370 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3371 {
3372 	if (!val) {
3373 		inet_csk_enter_pingpong_mode(sk);
3374 		return;
3375 	}
3376 
3377 	inet_csk_exit_pingpong_mode(sk);
3378 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3379 	    inet_csk_ack_scheduled(sk)) {
3380 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3381 		tcp_cleanup_rbuf(sk, 1);
3382 		if (!(val & 1))
3383 			inet_csk_enter_pingpong_mode(sk);
3384 	}
3385 }
3386 
3387 void tcp_sock_set_quickack(struct sock *sk, int val)
3388 {
3389 	lock_sock(sk);
3390 	__tcp_sock_set_quickack(sk, val);
3391 	release_sock(sk);
3392 }
3393 EXPORT_SYMBOL(tcp_sock_set_quickack);
3394 
3395 int tcp_sock_set_syncnt(struct sock *sk, int val)
3396 {
3397 	if (val < 1 || val > MAX_TCP_SYNCNT)
3398 		return -EINVAL;
3399 
3400 	lock_sock(sk);
3401 	inet_csk(sk)->icsk_syn_retries = val;
3402 	release_sock(sk);
3403 	return 0;
3404 }
3405 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3406 
3407 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3408 {
3409 	lock_sock(sk);
3410 	inet_csk(sk)->icsk_user_timeout = val;
3411 	release_sock(sk);
3412 }
3413 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3414 
3415 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3416 {
3417 	struct tcp_sock *tp = tcp_sk(sk);
3418 
3419 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3420 		return -EINVAL;
3421 
3422 	tp->keepalive_time = val * HZ;
3423 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3424 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3425 		u32 elapsed = keepalive_time_elapsed(tp);
3426 
3427 		if (tp->keepalive_time > elapsed)
3428 			elapsed = tp->keepalive_time - elapsed;
3429 		else
3430 			elapsed = 0;
3431 		inet_csk_reset_keepalive_timer(sk, elapsed);
3432 	}
3433 
3434 	return 0;
3435 }
3436 
3437 int tcp_sock_set_keepidle(struct sock *sk, int val)
3438 {
3439 	int err;
3440 
3441 	lock_sock(sk);
3442 	err = tcp_sock_set_keepidle_locked(sk, val);
3443 	release_sock(sk);
3444 	return err;
3445 }
3446 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3447 
3448 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3449 {
3450 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3451 		return -EINVAL;
3452 
3453 	lock_sock(sk);
3454 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3455 	release_sock(sk);
3456 	return 0;
3457 }
3458 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3459 
3460 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3461 {
3462 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3463 		return -EINVAL;
3464 
3465 	lock_sock(sk);
3466 	tcp_sk(sk)->keepalive_probes = val;
3467 	release_sock(sk);
3468 	return 0;
3469 }
3470 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3471 
3472 int tcp_set_window_clamp(struct sock *sk, int val)
3473 {
3474 	struct tcp_sock *tp = tcp_sk(sk);
3475 
3476 	if (!val) {
3477 		if (sk->sk_state != TCP_CLOSE)
3478 			return -EINVAL;
3479 		tp->window_clamp = 0;
3480 	} else {
3481 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3482 			SOCK_MIN_RCVBUF / 2 : val;
3483 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3484 	}
3485 	return 0;
3486 }
3487 
3488 /*
3489  *	Socket option code for TCP.
3490  */
3491 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3492 		      sockptr_t optval, unsigned int optlen)
3493 {
3494 	struct tcp_sock *tp = tcp_sk(sk);
3495 	struct inet_connection_sock *icsk = inet_csk(sk);
3496 	struct net *net = sock_net(sk);
3497 	int val;
3498 	int err = 0;
3499 
3500 	/* These are data/string values, all the others are ints */
3501 	switch (optname) {
3502 	case TCP_CONGESTION: {
3503 		char name[TCP_CA_NAME_MAX];
3504 
3505 		if (optlen < 1)
3506 			return -EINVAL;
3507 
3508 		val = strncpy_from_sockptr(name, optval,
3509 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3510 		if (val < 0)
3511 			return -EFAULT;
3512 		name[val] = 0;
3513 
3514 		sockopt_lock_sock(sk);
3515 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3516 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3517 								    CAP_NET_ADMIN));
3518 		sockopt_release_sock(sk);
3519 		return err;
3520 	}
3521 	case TCP_ULP: {
3522 		char name[TCP_ULP_NAME_MAX];
3523 
3524 		if (optlen < 1)
3525 			return -EINVAL;
3526 
3527 		val = strncpy_from_sockptr(name, optval,
3528 					min_t(long, TCP_ULP_NAME_MAX - 1,
3529 					      optlen));
3530 		if (val < 0)
3531 			return -EFAULT;
3532 		name[val] = 0;
3533 
3534 		sockopt_lock_sock(sk);
3535 		err = tcp_set_ulp(sk, name);
3536 		sockopt_release_sock(sk);
3537 		return err;
3538 	}
3539 	case TCP_FASTOPEN_KEY: {
3540 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3541 		__u8 *backup_key = NULL;
3542 
3543 		/* Allow a backup key as well to facilitate key rotation
3544 		 * First key is the active one.
3545 		 */
3546 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3547 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3548 			return -EINVAL;
3549 
3550 		if (copy_from_sockptr(key, optval, optlen))
3551 			return -EFAULT;
3552 
3553 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3554 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3555 
3556 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3557 	}
3558 	default:
3559 		/* fallthru */
3560 		break;
3561 	}
3562 
3563 	if (optlen < sizeof(int))
3564 		return -EINVAL;
3565 
3566 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3567 		return -EFAULT;
3568 
3569 	sockopt_lock_sock(sk);
3570 
3571 	switch (optname) {
3572 	case TCP_MAXSEG:
3573 		/* Values greater than interface MTU won't take effect. However
3574 		 * at the point when this call is done we typically don't yet
3575 		 * know which interface is going to be used
3576 		 */
3577 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3578 			err = -EINVAL;
3579 			break;
3580 		}
3581 		tp->rx_opt.user_mss = val;
3582 		break;
3583 
3584 	case TCP_NODELAY:
3585 		__tcp_sock_set_nodelay(sk, val);
3586 		break;
3587 
3588 	case TCP_THIN_LINEAR_TIMEOUTS:
3589 		if (val < 0 || val > 1)
3590 			err = -EINVAL;
3591 		else
3592 			tp->thin_lto = val;
3593 		break;
3594 
3595 	case TCP_THIN_DUPACK:
3596 		if (val < 0 || val > 1)
3597 			err = -EINVAL;
3598 		break;
3599 
3600 	case TCP_REPAIR:
3601 		if (!tcp_can_repair_sock(sk))
3602 			err = -EPERM;
3603 		else if (val == TCP_REPAIR_ON) {
3604 			tp->repair = 1;
3605 			sk->sk_reuse = SK_FORCE_REUSE;
3606 			tp->repair_queue = TCP_NO_QUEUE;
3607 		} else if (val == TCP_REPAIR_OFF) {
3608 			tp->repair = 0;
3609 			sk->sk_reuse = SK_NO_REUSE;
3610 			tcp_send_window_probe(sk);
3611 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3612 			tp->repair = 0;
3613 			sk->sk_reuse = SK_NO_REUSE;
3614 		} else
3615 			err = -EINVAL;
3616 
3617 		break;
3618 
3619 	case TCP_REPAIR_QUEUE:
3620 		if (!tp->repair)
3621 			err = -EPERM;
3622 		else if ((unsigned int)val < TCP_QUEUES_NR)
3623 			tp->repair_queue = val;
3624 		else
3625 			err = -EINVAL;
3626 		break;
3627 
3628 	case TCP_QUEUE_SEQ:
3629 		if (sk->sk_state != TCP_CLOSE) {
3630 			err = -EPERM;
3631 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3632 			if (!tcp_rtx_queue_empty(sk))
3633 				err = -EPERM;
3634 			else
3635 				WRITE_ONCE(tp->write_seq, val);
3636 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3637 			if (tp->rcv_nxt != tp->copied_seq) {
3638 				err = -EPERM;
3639 			} else {
3640 				WRITE_ONCE(tp->rcv_nxt, val);
3641 				WRITE_ONCE(tp->copied_seq, val);
3642 			}
3643 		} else {
3644 			err = -EINVAL;
3645 		}
3646 		break;
3647 
3648 	case TCP_REPAIR_OPTIONS:
3649 		if (!tp->repair)
3650 			err = -EINVAL;
3651 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3652 			err = tcp_repair_options_est(sk, optval, optlen);
3653 		else
3654 			err = -EPERM;
3655 		break;
3656 
3657 	case TCP_CORK:
3658 		__tcp_sock_set_cork(sk, val);
3659 		break;
3660 
3661 	case TCP_KEEPIDLE:
3662 		err = tcp_sock_set_keepidle_locked(sk, val);
3663 		break;
3664 	case TCP_KEEPINTVL:
3665 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3666 			err = -EINVAL;
3667 		else
3668 			tp->keepalive_intvl = val * HZ;
3669 		break;
3670 	case TCP_KEEPCNT:
3671 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3672 			err = -EINVAL;
3673 		else
3674 			tp->keepalive_probes = val;
3675 		break;
3676 	case TCP_SYNCNT:
3677 		if (val < 1 || val > MAX_TCP_SYNCNT)
3678 			err = -EINVAL;
3679 		else
3680 			icsk->icsk_syn_retries = val;
3681 		break;
3682 
3683 	case TCP_SAVE_SYN:
3684 		/* 0: disable, 1: enable, 2: start from ether_header */
3685 		if (val < 0 || val > 2)
3686 			err = -EINVAL;
3687 		else
3688 			tp->save_syn = val;
3689 		break;
3690 
3691 	case TCP_LINGER2:
3692 		if (val < 0)
3693 			tp->linger2 = -1;
3694 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3695 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3696 		else
3697 			tp->linger2 = val * HZ;
3698 		break;
3699 
3700 	case TCP_DEFER_ACCEPT:
3701 		/* Translate value in seconds to number of retransmits */
3702 		icsk->icsk_accept_queue.rskq_defer_accept =
3703 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3704 					TCP_RTO_MAX / HZ);
3705 		break;
3706 
3707 	case TCP_WINDOW_CLAMP:
3708 		err = tcp_set_window_clamp(sk, val);
3709 		break;
3710 
3711 	case TCP_QUICKACK:
3712 		__tcp_sock_set_quickack(sk, val);
3713 		break;
3714 
3715 #ifdef CONFIG_TCP_MD5SIG
3716 	case TCP_MD5SIG:
3717 	case TCP_MD5SIG_EXT:
3718 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3719 		break;
3720 #endif
3721 	case TCP_USER_TIMEOUT:
3722 		/* Cap the max time in ms TCP will retry or probe the window
3723 		 * before giving up and aborting (ETIMEDOUT) a connection.
3724 		 */
3725 		if (val < 0)
3726 			err = -EINVAL;
3727 		else
3728 			icsk->icsk_user_timeout = val;
3729 		break;
3730 
3731 	case TCP_FASTOPEN:
3732 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3733 		    TCPF_LISTEN))) {
3734 			tcp_fastopen_init_key_once(net);
3735 
3736 			fastopen_queue_tune(sk, val);
3737 		} else {
3738 			err = -EINVAL;
3739 		}
3740 		break;
3741 	case TCP_FASTOPEN_CONNECT:
3742 		if (val > 1 || val < 0) {
3743 			err = -EINVAL;
3744 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3745 			   TFO_CLIENT_ENABLE) {
3746 			if (sk->sk_state == TCP_CLOSE)
3747 				tp->fastopen_connect = val;
3748 			else
3749 				err = -EINVAL;
3750 		} else {
3751 			err = -EOPNOTSUPP;
3752 		}
3753 		break;
3754 	case TCP_FASTOPEN_NO_COOKIE:
3755 		if (val > 1 || val < 0)
3756 			err = -EINVAL;
3757 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3758 			err = -EINVAL;
3759 		else
3760 			tp->fastopen_no_cookie = val;
3761 		break;
3762 	case TCP_TIMESTAMP:
3763 		if (!tp->repair)
3764 			err = -EPERM;
3765 		else
3766 			tp->tsoffset = val - tcp_time_stamp_raw();
3767 		break;
3768 	case TCP_REPAIR_WINDOW:
3769 		err = tcp_repair_set_window(tp, optval, optlen);
3770 		break;
3771 	case TCP_NOTSENT_LOWAT:
3772 		tp->notsent_lowat = val;
3773 		sk->sk_write_space(sk);
3774 		break;
3775 	case TCP_INQ:
3776 		if (val > 1 || val < 0)
3777 			err = -EINVAL;
3778 		else
3779 			tp->recvmsg_inq = val;
3780 		break;
3781 	case TCP_TX_DELAY:
3782 		if (val)
3783 			tcp_enable_tx_delay();
3784 		tp->tcp_tx_delay = val;
3785 		break;
3786 	default:
3787 		err = -ENOPROTOOPT;
3788 		break;
3789 	}
3790 
3791 	sockopt_release_sock(sk);
3792 	return err;
3793 }
3794 
3795 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3796 		   unsigned int optlen)
3797 {
3798 	const struct inet_connection_sock *icsk = inet_csk(sk);
3799 
3800 	if (level != SOL_TCP)
3801 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3802 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3803 								optval, optlen);
3804 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3805 }
3806 EXPORT_SYMBOL(tcp_setsockopt);
3807 
3808 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3809 				      struct tcp_info *info)
3810 {
3811 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3812 	enum tcp_chrono i;
3813 
3814 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3815 		stats[i] = tp->chrono_stat[i - 1];
3816 		if (i == tp->chrono_type)
3817 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3818 		stats[i] *= USEC_PER_SEC / HZ;
3819 		total += stats[i];
3820 	}
3821 
3822 	info->tcpi_busy_time = total;
3823 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3824 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3825 }
3826 
3827 /* Return information about state of tcp endpoint in API format. */
3828 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3829 {
3830 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3831 	const struct inet_connection_sock *icsk = inet_csk(sk);
3832 	unsigned long rate;
3833 	u32 now;
3834 	u64 rate64;
3835 	bool slow;
3836 
3837 	memset(info, 0, sizeof(*info));
3838 	if (sk->sk_type != SOCK_STREAM)
3839 		return;
3840 
3841 	info->tcpi_state = inet_sk_state_load(sk);
3842 
3843 	/* Report meaningful fields for all TCP states, including listeners */
3844 	rate = READ_ONCE(sk->sk_pacing_rate);
3845 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3846 	info->tcpi_pacing_rate = rate64;
3847 
3848 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3849 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3850 	info->tcpi_max_pacing_rate = rate64;
3851 
3852 	info->tcpi_reordering = tp->reordering;
3853 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3854 
3855 	if (info->tcpi_state == TCP_LISTEN) {
3856 		/* listeners aliased fields :
3857 		 * tcpi_unacked -> Number of children ready for accept()
3858 		 * tcpi_sacked  -> max backlog
3859 		 */
3860 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3861 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3862 		return;
3863 	}
3864 
3865 	slow = lock_sock_fast(sk);
3866 
3867 	info->tcpi_ca_state = icsk->icsk_ca_state;
3868 	info->tcpi_retransmits = icsk->icsk_retransmits;
3869 	info->tcpi_probes = icsk->icsk_probes_out;
3870 	info->tcpi_backoff = icsk->icsk_backoff;
3871 
3872 	if (tp->rx_opt.tstamp_ok)
3873 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3874 	if (tcp_is_sack(tp))
3875 		info->tcpi_options |= TCPI_OPT_SACK;
3876 	if (tp->rx_opt.wscale_ok) {
3877 		info->tcpi_options |= TCPI_OPT_WSCALE;
3878 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3879 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3880 	}
3881 
3882 	if (tp->ecn_flags & TCP_ECN_OK)
3883 		info->tcpi_options |= TCPI_OPT_ECN;
3884 	if (tp->ecn_flags & TCP_ECN_SEEN)
3885 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3886 	if (tp->syn_data_acked)
3887 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3888 
3889 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3890 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3891 	info->tcpi_snd_mss = tp->mss_cache;
3892 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3893 
3894 	info->tcpi_unacked = tp->packets_out;
3895 	info->tcpi_sacked = tp->sacked_out;
3896 
3897 	info->tcpi_lost = tp->lost_out;
3898 	info->tcpi_retrans = tp->retrans_out;
3899 
3900 	now = tcp_jiffies32;
3901 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3902 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3903 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3904 
3905 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3906 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3907 	info->tcpi_rtt = tp->srtt_us >> 3;
3908 	info->tcpi_rttvar = tp->mdev_us >> 2;
3909 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3910 	info->tcpi_advmss = tp->advmss;
3911 
3912 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3913 	info->tcpi_rcv_space = tp->rcvq_space.space;
3914 
3915 	info->tcpi_total_retrans = tp->total_retrans;
3916 
3917 	info->tcpi_bytes_acked = tp->bytes_acked;
3918 	info->tcpi_bytes_received = tp->bytes_received;
3919 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3920 	tcp_get_info_chrono_stats(tp, info);
3921 
3922 	info->tcpi_segs_out = tp->segs_out;
3923 
3924 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3925 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3926 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3927 
3928 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3929 	info->tcpi_data_segs_out = tp->data_segs_out;
3930 
3931 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3932 	rate64 = tcp_compute_delivery_rate(tp);
3933 	if (rate64)
3934 		info->tcpi_delivery_rate = rate64;
3935 	info->tcpi_delivered = tp->delivered;
3936 	info->tcpi_delivered_ce = tp->delivered_ce;
3937 	info->tcpi_bytes_sent = tp->bytes_sent;
3938 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3939 	info->tcpi_dsack_dups = tp->dsack_dups;
3940 	info->tcpi_reord_seen = tp->reord_seen;
3941 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3942 	info->tcpi_snd_wnd = tp->snd_wnd;
3943 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3944 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3945 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3946 	unlock_sock_fast(sk, slow);
3947 }
3948 EXPORT_SYMBOL_GPL(tcp_get_info);
3949 
3950 static size_t tcp_opt_stats_get_size(void)
3951 {
3952 	return
3953 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3954 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3955 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3956 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3957 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3958 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3959 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3960 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3961 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3962 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3963 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3964 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3965 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3966 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3967 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3968 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3969 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3970 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3971 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3972 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3973 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3974 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3975 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3976 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3977 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3978 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3979 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3980 		0;
3981 }
3982 
3983 /* Returns TTL or hop limit of an incoming packet from skb. */
3984 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3985 {
3986 	if (skb->protocol == htons(ETH_P_IP))
3987 		return ip_hdr(skb)->ttl;
3988 	else if (skb->protocol == htons(ETH_P_IPV6))
3989 		return ipv6_hdr(skb)->hop_limit;
3990 	else
3991 		return 0;
3992 }
3993 
3994 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3995 					       const struct sk_buff *orig_skb,
3996 					       const struct sk_buff *ack_skb)
3997 {
3998 	const struct tcp_sock *tp = tcp_sk(sk);
3999 	struct sk_buff *stats;
4000 	struct tcp_info info;
4001 	unsigned long rate;
4002 	u64 rate64;
4003 
4004 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4005 	if (!stats)
4006 		return NULL;
4007 
4008 	tcp_get_info_chrono_stats(tp, &info);
4009 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4010 			  info.tcpi_busy_time, TCP_NLA_PAD);
4011 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4012 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4013 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4014 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4015 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4016 			  tp->data_segs_out, TCP_NLA_PAD);
4017 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4018 			  tp->total_retrans, TCP_NLA_PAD);
4019 
4020 	rate = READ_ONCE(sk->sk_pacing_rate);
4021 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4022 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4023 
4024 	rate64 = tcp_compute_delivery_rate(tp);
4025 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4026 
4027 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4028 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4029 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4030 
4031 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4032 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4033 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4034 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4035 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4036 
4037 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4038 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4039 
4040 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4041 			  TCP_NLA_PAD);
4042 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4043 			  TCP_NLA_PAD);
4044 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4045 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4046 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4047 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4048 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4049 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4050 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4051 			  TCP_NLA_PAD);
4052 	if (ack_skb)
4053 		nla_put_u8(stats, TCP_NLA_TTL,
4054 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4055 
4056 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4057 	return stats;
4058 }
4059 
4060 int do_tcp_getsockopt(struct sock *sk, int level,
4061 		      int optname, sockptr_t optval, sockptr_t optlen)
4062 {
4063 	struct inet_connection_sock *icsk = inet_csk(sk);
4064 	struct tcp_sock *tp = tcp_sk(sk);
4065 	struct net *net = sock_net(sk);
4066 	int val, len;
4067 
4068 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4069 		return -EFAULT;
4070 
4071 	len = min_t(unsigned int, len, sizeof(int));
4072 
4073 	if (len < 0)
4074 		return -EINVAL;
4075 
4076 	switch (optname) {
4077 	case TCP_MAXSEG:
4078 		val = tp->mss_cache;
4079 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4080 			val = tp->rx_opt.user_mss;
4081 		if (tp->repair)
4082 			val = tp->rx_opt.mss_clamp;
4083 		break;
4084 	case TCP_NODELAY:
4085 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4086 		break;
4087 	case TCP_CORK:
4088 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4089 		break;
4090 	case TCP_KEEPIDLE:
4091 		val = keepalive_time_when(tp) / HZ;
4092 		break;
4093 	case TCP_KEEPINTVL:
4094 		val = keepalive_intvl_when(tp) / HZ;
4095 		break;
4096 	case TCP_KEEPCNT:
4097 		val = keepalive_probes(tp);
4098 		break;
4099 	case TCP_SYNCNT:
4100 		val = icsk->icsk_syn_retries ? :
4101 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4102 		break;
4103 	case TCP_LINGER2:
4104 		val = tp->linger2;
4105 		if (val >= 0)
4106 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4107 		break;
4108 	case TCP_DEFER_ACCEPT:
4109 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4110 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4111 		break;
4112 	case TCP_WINDOW_CLAMP:
4113 		val = tp->window_clamp;
4114 		break;
4115 	case TCP_INFO: {
4116 		struct tcp_info info;
4117 
4118 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4119 			return -EFAULT;
4120 
4121 		tcp_get_info(sk, &info);
4122 
4123 		len = min_t(unsigned int, len, sizeof(info));
4124 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4125 			return -EFAULT;
4126 		if (copy_to_sockptr(optval, &info, len))
4127 			return -EFAULT;
4128 		return 0;
4129 	}
4130 	case TCP_CC_INFO: {
4131 		const struct tcp_congestion_ops *ca_ops;
4132 		union tcp_cc_info info;
4133 		size_t sz = 0;
4134 		int attr;
4135 
4136 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4137 			return -EFAULT;
4138 
4139 		ca_ops = icsk->icsk_ca_ops;
4140 		if (ca_ops && ca_ops->get_info)
4141 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4142 
4143 		len = min_t(unsigned int, len, sz);
4144 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4145 			return -EFAULT;
4146 		if (copy_to_sockptr(optval, &info, len))
4147 			return -EFAULT;
4148 		return 0;
4149 	}
4150 	case TCP_QUICKACK:
4151 		val = !inet_csk_in_pingpong_mode(sk);
4152 		break;
4153 
4154 	case TCP_CONGESTION:
4155 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4156 			return -EFAULT;
4157 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4158 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4159 			return -EFAULT;
4160 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4161 			return -EFAULT;
4162 		return 0;
4163 
4164 	case TCP_ULP:
4165 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4166 			return -EFAULT;
4167 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4168 		if (!icsk->icsk_ulp_ops) {
4169 			len = 0;
4170 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4171 				return -EFAULT;
4172 			return 0;
4173 		}
4174 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4175 			return -EFAULT;
4176 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4177 			return -EFAULT;
4178 		return 0;
4179 
4180 	case TCP_FASTOPEN_KEY: {
4181 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4182 		unsigned int key_len;
4183 
4184 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4185 			return -EFAULT;
4186 
4187 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4188 				TCP_FASTOPEN_KEY_LENGTH;
4189 		len = min_t(unsigned int, len, key_len);
4190 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4191 			return -EFAULT;
4192 		if (copy_to_sockptr(optval, key, len))
4193 			return -EFAULT;
4194 		return 0;
4195 	}
4196 	case TCP_THIN_LINEAR_TIMEOUTS:
4197 		val = tp->thin_lto;
4198 		break;
4199 
4200 	case TCP_THIN_DUPACK:
4201 		val = 0;
4202 		break;
4203 
4204 	case TCP_REPAIR:
4205 		val = tp->repair;
4206 		break;
4207 
4208 	case TCP_REPAIR_QUEUE:
4209 		if (tp->repair)
4210 			val = tp->repair_queue;
4211 		else
4212 			return -EINVAL;
4213 		break;
4214 
4215 	case TCP_REPAIR_WINDOW: {
4216 		struct tcp_repair_window opt;
4217 
4218 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4219 			return -EFAULT;
4220 
4221 		if (len != sizeof(opt))
4222 			return -EINVAL;
4223 
4224 		if (!tp->repair)
4225 			return -EPERM;
4226 
4227 		opt.snd_wl1	= tp->snd_wl1;
4228 		opt.snd_wnd	= tp->snd_wnd;
4229 		opt.max_window	= tp->max_window;
4230 		opt.rcv_wnd	= tp->rcv_wnd;
4231 		opt.rcv_wup	= tp->rcv_wup;
4232 
4233 		if (copy_to_sockptr(optval, &opt, len))
4234 			return -EFAULT;
4235 		return 0;
4236 	}
4237 	case TCP_QUEUE_SEQ:
4238 		if (tp->repair_queue == TCP_SEND_QUEUE)
4239 			val = tp->write_seq;
4240 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4241 			val = tp->rcv_nxt;
4242 		else
4243 			return -EINVAL;
4244 		break;
4245 
4246 	case TCP_USER_TIMEOUT:
4247 		val = icsk->icsk_user_timeout;
4248 		break;
4249 
4250 	case TCP_FASTOPEN:
4251 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4252 		break;
4253 
4254 	case TCP_FASTOPEN_CONNECT:
4255 		val = tp->fastopen_connect;
4256 		break;
4257 
4258 	case TCP_FASTOPEN_NO_COOKIE:
4259 		val = tp->fastopen_no_cookie;
4260 		break;
4261 
4262 	case TCP_TX_DELAY:
4263 		val = tp->tcp_tx_delay;
4264 		break;
4265 
4266 	case TCP_TIMESTAMP:
4267 		val = tcp_time_stamp_raw() + tp->tsoffset;
4268 		break;
4269 	case TCP_NOTSENT_LOWAT:
4270 		val = tp->notsent_lowat;
4271 		break;
4272 	case TCP_INQ:
4273 		val = tp->recvmsg_inq;
4274 		break;
4275 	case TCP_SAVE_SYN:
4276 		val = tp->save_syn;
4277 		break;
4278 	case TCP_SAVED_SYN: {
4279 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4280 			return -EFAULT;
4281 
4282 		sockopt_lock_sock(sk);
4283 		if (tp->saved_syn) {
4284 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4285 				len = tcp_saved_syn_len(tp->saved_syn);
4286 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4287 					sockopt_release_sock(sk);
4288 					return -EFAULT;
4289 				}
4290 				sockopt_release_sock(sk);
4291 				return -EINVAL;
4292 			}
4293 			len = tcp_saved_syn_len(tp->saved_syn);
4294 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4295 				sockopt_release_sock(sk);
4296 				return -EFAULT;
4297 			}
4298 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4299 				sockopt_release_sock(sk);
4300 				return -EFAULT;
4301 			}
4302 			tcp_saved_syn_free(tp);
4303 			sockopt_release_sock(sk);
4304 		} else {
4305 			sockopt_release_sock(sk);
4306 			len = 0;
4307 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4308 				return -EFAULT;
4309 		}
4310 		return 0;
4311 	}
4312 #ifdef CONFIG_MMU
4313 	case TCP_ZEROCOPY_RECEIVE: {
4314 		struct scm_timestamping_internal tss;
4315 		struct tcp_zerocopy_receive zc = {};
4316 		int err;
4317 
4318 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4319 			return -EFAULT;
4320 		if (len < 0 ||
4321 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4322 			return -EINVAL;
4323 		if (unlikely(len > sizeof(zc))) {
4324 			err = check_zeroed_sockptr(optval, sizeof(zc),
4325 						   len - sizeof(zc));
4326 			if (err < 1)
4327 				return err == 0 ? -EINVAL : err;
4328 			len = sizeof(zc);
4329 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4330 				return -EFAULT;
4331 		}
4332 		if (copy_from_sockptr(&zc, optval, len))
4333 			return -EFAULT;
4334 		if (zc.reserved)
4335 			return -EINVAL;
4336 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4337 			return -EINVAL;
4338 		sockopt_lock_sock(sk);
4339 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4340 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4341 							  &zc, &len, err);
4342 		sockopt_release_sock(sk);
4343 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4344 			goto zerocopy_rcv_cmsg;
4345 		switch (len) {
4346 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4347 			goto zerocopy_rcv_cmsg;
4348 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4349 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4350 		case offsetofend(struct tcp_zerocopy_receive, flags):
4351 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4352 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4353 		case offsetofend(struct tcp_zerocopy_receive, err):
4354 			goto zerocopy_rcv_sk_err;
4355 		case offsetofend(struct tcp_zerocopy_receive, inq):
4356 			goto zerocopy_rcv_inq;
4357 		case offsetofend(struct tcp_zerocopy_receive, length):
4358 		default:
4359 			goto zerocopy_rcv_out;
4360 		}
4361 zerocopy_rcv_cmsg:
4362 		if (zc.msg_flags & TCP_CMSG_TS)
4363 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4364 		else
4365 			zc.msg_flags = 0;
4366 zerocopy_rcv_sk_err:
4367 		if (!err)
4368 			zc.err = sock_error(sk);
4369 zerocopy_rcv_inq:
4370 		zc.inq = tcp_inq_hint(sk);
4371 zerocopy_rcv_out:
4372 		if (!err && copy_to_sockptr(optval, &zc, len))
4373 			err = -EFAULT;
4374 		return err;
4375 	}
4376 #endif
4377 	default:
4378 		return -ENOPROTOOPT;
4379 	}
4380 
4381 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4382 		return -EFAULT;
4383 	if (copy_to_sockptr(optval, &val, len))
4384 		return -EFAULT;
4385 	return 0;
4386 }
4387 
4388 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4389 {
4390 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4391 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4392 	 */
4393 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4394 		return true;
4395 
4396 	return false;
4397 }
4398 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4399 
4400 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4401 		   int __user *optlen)
4402 {
4403 	struct inet_connection_sock *icsk = inet_csk(sk);
4404 
4405 	if (level != SOL_TCP)
4406 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4407 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4408 								optval, optlen);
4409 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4410 				 USER_SOCKPTR(optlen));
4411 }
4412 EXPORT_SYMBOL(tcp_getsockopt);
4413 
4414 #ifdef CONFIG_TCP_MD5SIG
4415 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4416 static DEFINE_MUTEX(tcp_md5sig_mutex);
4417 static bool tcp_md5sig_pool_populated = false;
4418 
4419 static void __tcp_alloc_md5sig_pool(void)
4420 {
4421 	struct crypto_ahash *hash;
4422 	int cpu;
4423 
4424 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4425 	if (IS_ERR(hash))
4426 		return;
4427 
4428 	for_each_possible_cpu(cpu) {
4429 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4430 		struct ahash_request *req;
4431 
4432 		if (!scratch) {
4433 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4434 					       sizeof(struct tcphdr),
4435 					       GFP_KERNEL,
4436 					       cpu_to_node(cpu));
4437 			if (!scratch)
4438 				return;
4439 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4440 		}
4441 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4442 			continue;
4443 
4444 		req = ahash_request_alloc(hash, GFP_KERNEL);
4445 		if (!req)
4446 			return;
4447 
4448 		ahash_request_set_callback(req, 0, NULL, NULL);
4449 
4450 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4451 	}
4452 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4453 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4454 	 */
4455 	smp_wmb();
4456 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4457 	 * and tcp_get_md5sig_pool().
4458 	*/
4459 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4460 }
4461 
4462 bool tcp_alloc_md5sig_pool(void)
4463 {
4464 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4465 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4466 		mutex_lock(&tcp_md5sig_mutex);
4467 
4468 		if (!tcp_md5sig_pool_populated)
4469 			__tcp_alloc_md5sig_pool();
4470 
4471 		mutex_unlock(&tcp_md5sig_mutex);
4472 	}
4473 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4474 	return READ_ONCE(tcp_md5sig_pool_populated);
4475 }
4476 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4477 
4478 
4479 /**
4480  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4481  *
4482  *	We use percpu structure, so if we succeed, we exit with preemption
4483  *	and BH disabled, to make sure another thread or softirq handling
4484  *	wont try to get same context.
4485  */
4486 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4487 {
4488 	local_bh_disable();
4489 
4490 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4491 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4492 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4493 		smp_rmb();
4494 		return this_cpu_ptr(&tcp_md5sig_pool);
4495 	}
4496 	local_bh_enable();
4497 	return NULL;
4498 }
4499 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4500 
4501 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4502 			  const struct sk_buff *skb, unsigned int header_len)
4503 {
4504 	struct scatterlist sg;
4505 	const struct tcphdr *tp = tcp_hdr(skb);
4506 	struct ahash_request *req = hp->md5_req;
4507 	unsigned int i;
4508 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4509 					   skb_headlen(skb) - header_len : 0;
4510 	const struct skb_shared_info *shi = skb_shinfo(skb);
4511 	struct sk_buff *frag_iter;
4512 
4513 	sg_init_table(&sg, 1);
4514 
4515 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4516 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4517 	if (crypto_ahash_update(req))
4518 		return 1;
4519 
4520 	for (i = 0; i < shi->nr_frags; ++i) {
4521 		const skb_frag_t *f = &shi->frags[i];
4522 		unsigned int offset = skb_frag_off(f);
4523 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4524 
4525 		sg_set_page(&sg, page, skb_frag_size(f),
4526 			    offset_in_page(offset));
4527 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4528 		if (crypto_ahash_update(req))
4529 			return 1;
4530 	}
4531 
4532 	skb_walk_frags(skb, frag_iter)
4533 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4534 			return 1;
4535 
4536 	return 0;
4537 }
4538 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4539 
4540 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4541 {
4542 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4543 	struct scatterlist sg;
4544 
4545 	sg_init_one(&sg, key->key, keylen);
4546 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4547 
4548 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4549 	return data_race(crypto_ahash_update(hp->md5_req));
4550 }
4551 EXPORT_SYMBOL(tcp_md5_hash_key);
4552 
4553 /* Called with rcu_read_lock() */
4554 enum skb_drop_reason
4555 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4556 		     const void *saddr, const void *daddr,
4557 		     int family, int dif, int sdif)
4558 {
4559 	/*
4560 	 * This gets called for each TCP segment that arrives
4561 	 * so we want to be efficient.
4562 	 * We have 3 drop cases:
4563 	 * o No MD5 hash and one expected.
4564 	 * o MD5 hash and we're not expecting one.
4565 	 * o MD5 hash and its wrong.
4566 	 */
4567 	const __u8 *hash_location = NULL;
4568 	struct tcp_md5sig_key *hash_expected;
4569 	const struct tcphdr *th = tcp_hdr(skb);
4570 	struct tcp_sock *tp = tcp_sk(sk);
4571 	int genhash, l3index;
4572 	u8 newhash[16];
4573 
4574 	/* sdif set, means packet ingressed via a device
4575 	 * in an L3 domain and dif is set to the l3mdev
4576 	 */
4577 	l3index = sdif ? dif : 0;
4578 
4579 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4580 	hash_location = tcp_parse_md5sig_option(th);
4581 
4582 	/* We've parsed the options - do we have a hash? */
4583 	if (!hash_expected && !hash_location)
4584 		return SKB_NOT_DROPPED_YET;
4585 
4586 	if (hash_expected && !hash_location) {
4587 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4588 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4589 	}
4590 
4591 	if (!hash_expected && hash_location) {
4592 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4593 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4594 	}
4595 
4596 	/* Check the signature.
4597 	 * To support dual stack listeners, we need to handle
4598 	 * IPv4-mapped case.
4599 	 */
4600 	if (family == AF_INET)
4601 		genhash = tcp_v4_md5_hash_skb(newhash,
4602 					      hash_expected,
4603 					      NULL, skb);
4604 	else
4605 		genhash = tp->af_specific->calc_md5_hash(newhash,
4606 							 hash_expected,
4607 							 NULL, skb);
4608 
4609 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4610 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4611 		if (family == AF_INET) {
4612 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4613 					saddr, ntohs(th->source),
4614 					daddr, ntohs(th->dest),
4615 					genhash ? " tcp_v4_calc_md5_hash failed"
4616 					: "", l3index);
4617 		} else {
4618 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4619 					genhash ? "failed" : "mismatch",
4620 					saddr, ntohs(th->source),
4621 					daddr, ntohs(th->dest), l3index);
4622 		}
4623 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4624 	}
4625 	return SKB_NOT_DROPPED_YET;
4626 }
4627 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4628 
4629 #endif
4630 
4631 void tcp_done(struct sock *sk)
4632 {
4633 	struct request_sock *req;
4634 
4635 	/* We might be called with a new socket, after
4636 	 * inet_csk_prepare_forced_close() has been called
4637 	 * so we can not use lockdep_sock_is_held(sk)
4638 	 */
4639 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4640 
4641 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4642 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4643 
4644 	tcp_set_state(sk, TCP_CLOSE);
4645 	tcp_clear_xmit_timers(sk);
4646 	if (req)
4647 		reqsk_fastopen_remove(sk, req, false);
4648 
4649 	sk->sk_shutdown = SHUTDOWN_MASK;
4650 
4651 	if (!sock_flag(sk, SOCK_DEAD))
4652 		sk->sk_state_change(sk);
4653 	else
4654 		inet_csk_destroy_sock(sk);
4655 }
4656 EXPORT_SYMBOL_GPL(tcp_done);
4657 
4658 int tcp_abort(struct sock *sk, int err)
4659 {
4660 	int state = inet_sk_state_load(sk);
4661 
4662 	if (state == TCP_NEW_SYN_RECV) {
4663 		struct request_sock *req = inet_reqsk(sk);
4664 
4665 		local_bh_disable();
4666 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4667 		local_bh_enable();
4668 		return 0;
4669 	}
4670 	if (state == TCP_TIME_WAIT) {
4671 		struct inet_timewait_sock *tw = inet_twsk(sk);
4672 
4673 		refcount_inc(&tw->tw_refcnt);
4674 		local_bh_disable();
4675 		inet_twsk_deschedule_put(tw);
4676 		local_bh_enable();
4677 		return 0;
4678 	}
4679 
4680 	/* Don't race with userspace socket closes such as tcp_close. */
4681 	lock_sock(sk);
4682 
4683 	if (sk->sk_state == TCP_LISTEN) {
4684 		tcp_set_state(sk, TCP_CLOSE);
4685 		inet_csk_listen_stop(sk);
4686 	}
4687 
4688 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4689 	local_bh_disable();
4690 	bh_lock_sock(sk);
4691 
4692 	if (!sock_flag(sk, SOCK_DEAD)) {
4693 		sk->sk_err = err;
4694 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4695 		smp_wmb();
4696 		sk_error_report(sk);
4697 		if (tcp_need_reset(sk->sk_state))
4698 			tcp_send_active_reset(sk, GFP_ATOMIC);
4699 		tcp_done(sk);
4700 	}
4701 
4702 	bh_unlock_sock(sk);
4703 	local_bh_enable();
4704 	tcp_write_queue_purge(sk);
4705 	release_sock(sk);
4706 	return 0;
4707 }
4708 EXPORT_SYMBOL_GPL(tcp_abort);
4709 
4710 extern struct tcp_congestion_ops tcp_reno;
4711 
4712 static __initdata unsigned long thash_entries;
4713 static int __init set_thash_entries(char *str)
4714 {
4715 	ssize_t ret;
4716 
4717 	if (!str)
4718 		return 0;
4719 
4720 	ret = kstrtoul(str, 0, &thash_entries);
4721 	if (ret)
4722 		return 0;
4723 
4724 	return 1;
4725 }
4726 __setup("thash_entries=", set_thash_entries);
4727 
4728 static void __init tcp_init_mem(void)
4729 {
4730 	unsigned long limit = nr_free_buffer_pages() / 16;
4731 
4732 	limit = max(limit, 128UL);
4733 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4734 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4735 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4736 }
4737 
4738 void __init tcp_init(void)
4739 {
4740 	int max_rshare, max_wshare, cnt;
4741 	unsigned long limit;
4742 	unsigned int i;
4743 
4744 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4745 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4746 		     sizeof_field(struct sk_buff, cb));
4747 
4748 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4749 
4750 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4751 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4752 
4753 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4754 			    thash_entries, 21,  /* one slot per 2 MB*/
4755 			    0, 64 * 1024);
4756 	tcp_hashinfo.bind_bucket_cachep =
4757 		kmem_cache_create("tcp_bind_bucket",
4758 				  sizeof(struct inet_bind_bucket), 0,
4759 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4760 				  SLAB_ACCOUNT,
4761 				  NULL);
4762 	tcp_hashinfo.bind2_bucket_cachep =
4763 		kmem_cache_create("tcp_bind2_bucket",
4764 				  sizeof(struct inet_bind2_bucket), 0,
4765 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4766 				  SLAB_ACCOUNT,
4767 				  NULL);
4768 
4769 	/* Size and allocate the main established and bind bucket
4770 	 * hash tables.
4771 	 *
4772 	 * The methodology is similar to that of the buffer cache.
4773 	 */
4774 	tcp_hashinfo.ehash =
4775 		alloc_large_system_hash("TCP established",
4776 					sizeof(struct inet_ehash_bucket),
4777 					thash_entries,
4778 					17, /* one slot per 128 KB of memory */
4779 					0,
4780 					NULL,
4781 					&tcp_hashinfo.ehash_mask,
4782 					0,
4783 					thash_entries ? 0 : 512 * 1024);
4784 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4785 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4786 
4787 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4788 		panic("TCP: failed to alloc ehash_locks");
4789 	tcp_hashinfo.bhash =
4790 		alloc_large_system_hash("TCP bind",
4791 					2 * sizeof(struct inet_bind_hashbucket),
4792 					tcp_hashinfo.ehash_mask + 1,
4793 					17, /* one slot per 128 KB of memory */
4794 					0,
4795 					&tcp_hashinfo.bhash_size,
4796 					NULL,
4797 					0,
4798 					64 * 1024);
4799 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4800 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4801 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4802 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4803 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4804 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4805 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4806 	}
4807 
4808 	tcp_hashinfo.pernet = false;
4809 
4810 	cnt = tcp_hashinfo.ehash_mask + 1;
4811 	sysctl_tcp_max_orphans = cnt / 2;
4812 
4813 	tcp_init_mem();
4814 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4815 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4816 	max_wshare = min(4UL*1024*1024, limit);
4817 	max_rshare = min(6UL*1024*1024, limit);
4818 
4819 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4820 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4821 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4822 
4823 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4824 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4825 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4826 
4827 	pr_info("Hash tables configured (established %u bind %u)\n",
4828 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4829 
4830 	tcp_v4_init();
4831 	tcp_metrics_init();
4832 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4833 	tcp_tasklet_init();
4834 	mptcp_init();
4835 }
4836