xref: /openbmc/linux/net/ipv4/tcp.c (revision 3098f5eb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/sock.h>
277 
278 #include <linux/uaccess.h>
279 #include <asm/ioctls.h>
280 #include <net/busy_poll.h>
281 
282 struct percpu_counter tcp_orphan_count;
283 EXPORT_SYMBOL_GPL(tcp_orphan_count);
284 
285 long sysctl_tcp_mem[3] __read_mostly;
286 EXPORT_SYMBOL(sysctl_tcp_mem);
287 
288 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
289 EXPORT_SYMBOL(tcp_memory_allocated);
290 
291 #if IS_ENABLED(CONFIG_SMC)
292 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
293 EXPORT_SYMBOL(tcp_have_smc);
294 #endif
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 unsigned long tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
319 
320 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
321 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
322 
323 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
324 
325 void tcp_enter_memory_pressure(struct sock *sk)
326 {
327 	unsigned long val;
328 
329 	if (READ_ONCE(tcp_memory_pressure))
330 		return;
331 	val = jiffies;
332 
333 	if (!val)
334 		val--;
335 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
336 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
337 }
338 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
339 
340 void tcp_leave_memory_pressure(struct sock *sk)
341 {
342 	unsigned long val;
343 
344 	if (!READ_ONCE(tcp_memory_pressure))
345 		return;
346 	val = xchg(&tcp_memory_pressure, 0);
347 	if (val)
348 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
349 			      jiffies_to_msecs(jiffies - val));
350 }
351 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
352 
353 /* Convert seconds to retransmits based on initial and max timeout */
354 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
355 {
356 	u8 res = 0;
357 
358 	if (seconds > 0) {
359 		int period = timeout;
360 
361 		res = 1;
362 		while (seconds > period && res < 255) {
363 			res++;
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return res;
371 }
372 
373 /* Convert retransmits to seconds based on initial and max timeout */
374 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
375 {
376 	int period = 0;
377 
378 	if (retrans > 0) {
379 		period = timeout;
380 		while (--retrans) {
381 			timeout <<= 1;
382 			if (timeout > rto_max)
383 				timeout = rto_max;
384 			period += timeout;
385 		}
386 	}
387 	return period;
388 }
389 
390 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
391 {
392 	u32 rate = READ_ONCE(tp->rate_delivered);
393 	u32 intv = READ_ONCE(tp->rate_interval_us);
394 	u64 rate64 = 0;
395 
396 	if (rate && intv) {
397 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
398 		do_div(rate64, intv);
399 	}
400 	return rate64;
401 }
402 
403 /* Address-family independent initialization for a tcp_sock.
404  *
405  * NOTE: A lot of things set to zero explicitly by call to
406  *       sk_alloc() so need not be done here.
407  */
408 void tcp_init_sock(struct sock *sk)
409 {
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 	struct tcp_sock *tp = tcp_sk(sk);
412 
413 	tp->out_of_order_queue = RB_ROOT;
414 	sk->tcp_rtx_queue = RB_ROOT;
415 	tcp_init_xmit_timers(sk);
416 	INIT_LIST_HEAD(&tp->tsq_node);
417 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
418 
419 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
422 
423 	/* So many TCP implementations out there (incorrectly) count the
424 	 * initial SYN frame in their delayed-ACK and congestion control
425 	 * algorithms that we must have the following bandaid to talk
426 	 * efficiently to them.  -DaveM
427 	 */
428 	tp->snd_cwnd = TCP_INIT_CWND;
429 
430 	/* There's a bubble in the pipe until at least the first ACK. */
431 	tp->app_limited = ~0U;
432 
433 	/* See draft-stevens-tcpca-spec-01 for discussion of the
434 	 * initialization of these values.
435 	 */
436 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 	tp->snd_cwnd_clamp = ~0;
438 	tp->mss_cache = TCP_MSS_DEFAULT;
439 
440 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 	tcp_assign_congestion_control(sk);
442 
443 	tp->tsoffset = 0;
444 	tp->rack.reo_wnd_steps = 1;
445 
446 	sk->sk_state = TCP_CLOSE;
447 
448 	sk->sk_write_space = sk_stream_write_space;
449 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450 
451 	icsk->icsk_sync_mss = tcp_sync_mss;
452 
453 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
454 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
455 
456 	sk_sockets_allocated_inc(sk);
457 	sk->sk_route_forced_caps = NETIF_F_GSO;
458 }
459 EXPORT_SYMBOL(tcp_init_sock);
460 
461 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
462 {
463 	struct sk_buff *skb = tcp_write_queue_tail(sk);
464 
465 	if (tsflags && skb) {
466 		struct skb_shared_info *shinfo = skb_shinfo(skb);
467 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
468 
469 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
470 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
471 			tcb->txstamp_ack = 1;
472 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
473 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
474 	}
475 }
476 
477 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
478 					  int target, struct sock *sk)
479 {
480 	return (READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq) >= target) ||
481 		(sk->sk_prot->stream_memory_read ?
482 		sk->sk_prot->stream_memory_read(sk) : false);
483 }
484 
485 /*
486  *	Wait for a TCP event.
487  *
488  *	Note that we don't need to lock the socket, as the upper poll layers
489  *	take care of normal races (between the test and the event) and we don't
490  *	go look at any of the socket buffers directly.
491  */
492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 	__poll_t mask;
495 	struct sock *sk = sock->sk;
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	int state;
498 
499 	sock_poll_wait(file, sock, wait);
500 
501 	state = inet_sk_state_load(sk);
502 	if (state == TCP_LISTEN)
503 		return inet_csk_listen_poll(sk);
504 
505 	/* Socket is not locked. We are protected from async events
506 	 * by poll logic and correct handling of state changes
507 	 * made by other threads is impossible in any case.
508 	 */
509 
510 	mask = 0;
511 
512 	/*
513 	 * EPOLLHUP is certainly not done right. But poll() doesn't
514 	 * have a notion of HUP in just one direction, and for a
515 	 * socket the read side is more interesting.
516 	 *
517 	 * Some poll() documentation says that EPOLLHUP is incompatible
518 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 	 * all. But careful, it tends to be safer to return too many
520 	 * bits than too few, and you can easily break real applications
521 	 * if you don't tell them that something has hung up!
522 	 *
523 	 * Check-me.
524 	 *
525 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 	 * our fs/select.c). It means that after we received EOF,
527 	 * poll always returns immediately, making impossible poll() on write()
528 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 	 * if and only if shutdown has been made in both directions.
530 	 * Actually, it is interesting to look how Solaris and DUX
531 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 	 * then we could set it on SND_SHUTDOWN. BTW examples given
533 	 * in Stevens' books assume exactly this behaviour, it explains
534 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
535 	 *
536 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 	 * blocking on fresh not-connected or disconnected socket. --ANK
538 	 */
539 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 		mask |= EPOLLHUP;
541 	if (sk->sk_shutdown & RCV_SHUTDOWN)
542 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543 
544 	/* Connected or passive Fast Open socket? */
545 	if (state != TCP_SYN_SENT &&
546 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 		int target = sock_rcvlowat(sk, 0, INT_MAX);
548 
549 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
550 		    !sock_flag(sk, SOCK_URGINLINE) &&
551 		    tp->urg_data)
552 			target++;
553 
554 		if (tcp_stream_is_readable(tp, target, sk))
555 			mask |= EPOLLIN | EPOLLRDNORM;
556 
557 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
558 			if (sk_stream_is_writeable(sk)) {
559 				mask |= EPOLLOUT | EPOLLWRNORM;
560 			} else {  /* send SIGIO later */
561 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
562 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
563 
564 				/* Race breaker. If space is freed after
565 				 * wspace test but before the flags are set,
566 				 * IO signal will be lost. Memory barrier
567 				 * pairs with the input side.
568 				 */
569 				smp_mb__after_atomic();
570 				if (sk_stream_is_writeable(sk))
571 					mask |= EPOLLOUT | EPOLLWRNORM;
572 			}
573 		} else
574 			mask |= EPOLLOUT | EPOLLWRNORM;
575 
576 		if (tp->urg_data & TCP_URG_VALID)
577 			mask |= EPOLLPRI;
578 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
579 		/* Active TCP fastopen socket with defer_connect
580 		 * Return EPOLLOUT so application can call write()
581 		 * in order for kernel to generate SYN+data
582 		 */
583 		mask |= EPOLLOUT | EPOLLWRNORM;
584 	}
585 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
586 	smp_rmb();
587 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
588 		mask |= EPOLLERR;
589 
590 	return mask;
591 }
592 EXPORT_SYMBOL(tcp_poll);
593 
594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
595 {
596 	struct tcp_sock *tp = tcp_sk(sk);
597 	int answ;
598 	bool slow;
599 
600 	switch (cmd) {
601 	case SIOCINQ:
602 		if (sk->sk_state == TCP_LISTEN)
603 			return -EINVAL;
604 
605 		slow = lock_sock_fast(sk);
606 		answ = tcp_inq(sk);
607 		unlock_sock_fast(sk, slow);
608 		break;
609 	case SIOCATMARK:
610 		answ = tp->urg_data &&
611 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
612 		break;
613 	case SIOCOUTQ:
614 		if (sk->sk_state == TCP_LISTEN)
615 			return -EINVAL;
616 
617 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
618 			answ = 0;
619 		else
620 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
621 		break;
622 	case SIOCOUTQNSD:
623 		if (sk->sk_state == TCP_LISTEN)
624 			return -EINVAL;
625 
626 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
627 			answ = 0;
628 		else
629 			answ = READ_ONCE(tp->write_seq) -
630 			       READ_ONCE(tp->snd_nxt);
631 		break;
632 	default:
633 		return -ENOIOCTLCMD;
634 	}
635 
636 	return put_user(answ, (int __user *)arg);
637 }
638 EXPORT_SYMBOL(tcp_ioctl);
639 
640 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
641 {
642 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
643 	tp->pushed_seq = tp->write_seq;
644 }
645 
646 static inline bool forced_push(const struct tcp_sock *tp)
647 {
648 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
649 }
650 
651 static void skb_entail(struct sock *sk, struct sk_buff *skb)
652 {
653 	struct tcp_sock *tp = tcp_sk(sk);
654 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
655 
656 	skb->csum    = 0;
657 	tcb->seq     = tcb->end_seq = tp->write_seq;
658 	tcb->tcp_flags = TCPHDR_ACK;
659 	tcb->sacked  = 0;
660 	__skb_header_release(skb);
661 	tcp_add_write_queue_tail(sk, skb);
662 	sk_wmem_queued_add(sk, skb->truesize);
663 	sk_mem_charge(sk, skb->truesize);
664 	if (tp->nonagle & TCP_NAGLE_PUSH)
665 		tp->nonagle &= ~TCP_NAGLE_PUSH;
666 
667 	tcp_slow_start_after_idle_check(sk);
668 }
669 
670 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
671 {
672 	if (flags & MSG_OOB)
673 		tp->snd_up = tp->write_seq;
674 }
675 
676 /* If a not yet filled skb is pushed, do not send it if
677  * we have data packets in Qdisc or NIC queues :
678  * Because TX completion will happen shortly, it gives a chance
679  * to coalesce future sendmsg() payload into this skb, without
680  * need for a timer, and with no latency trade off.
681  * As packets containing data payload have a bigger truesize
682  * than pure acks (dataless) packets, the last checks prevent
683  * autocorking if we only have an ACK in Qdisc/NIC queues,
684  * or if TX completion was delayed after we processed ACK packet.
685  */
686 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
687 				int size_goal)
688 {
689 	return skb->len < size_goal &&
690 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
691 	       !tcp_rtx_queue_empty(sk) &&
692 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
693 }
694 
695 static void tcp_push(struct sock *sk, int flags, int mss_now,
696 		     int nonagle, int size_goal)
697 {
698 	struct tcp_sock *tp = tcp_sk(sk);
699 	struct sk_buff *skb;
700 
701 	skb = tcp_write_queue_tail(sk);
702 	if (!skb)
703 		return;
704 	if (!(flags & MSG_MORE) || forced_push(tp))
705 		tcp_mark_push(tp, skb);
706 
707 	tcp_mark_urg(tp, flags);
708 
709 	if (tcp_should_autocork(sk, skb, size_goal)) {
710 
711 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
712 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 		}
716 		/* It is possible TX completion already happened
717 		 * before we set TSQ_THROTTLED.
718 		 */
719 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 			return;
721 	}
722 
723 	if (flags & MSG_MORE)
724 		nonagle = TCP_NAGLE_CORK;
725 
726 	__tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728 
729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 				unsigned int offset, size_t len)
731 {
732 	struct tcp_splice_state *tss = rd_desc->arg.data;
733 	int ret;
734 
735 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 			      min(rd_desc->count, len), tss->flags);
737 	if (ret > 0)
738 		rd_desc->count -= ret;
739 	return ret;
740 }
741 
742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 	/* Store TCP splice context information in read_descriptor_t. */
745 	read_descriptor_t rd_desc = {
746 		.arg.data = tss,
747 		.count	  = tss->len,
748 	};
749 
750 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752 
753 /**
754  *  tcp_splice_read - splice data from TCP socket to a pipe
755  * @sock:	socket to splice from
756  * @ppos:	position (not valid)
757  * @pipe:	pipe to splice to
758  * @len:	number of bytes to splice
759  * @flags:	splice modifier flags
760  *
761  * Description:
762  *    Will read pages from given socket and fill them into a pipe.
763  *
764  **/
765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 			struct pipe_inode_info *pipe, size_t len,
767 			unsigned int flags)
768 {
769 	struct sock *sk = sock->sk;
770 	struct tcp_splice_state tss = {
771 		.pipe = pipe,
772 		.len = len,
773 		.flags = flags,
774 	};
775 	long timeo;
776 	ssize_t spliced;
777 	int ret;
778 
779 	sock_rps_record_flow(sk);
780 	/*
781 	 * We can't seek on a socket input
782 	 */
783 	if (unlikely(*ppos))
784 		return -ESPIPE;
785 
786 	ret = spliced = 0;
787 
788 	lock_sock(sk);
789 
790 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 	while (tss.len) {
792 		ret = __tcp_splice_read(sk, &tss);
793 		if (ret < 0)
794 			break;
795 		else if (!ret) {
796 			if (spliced)
797 				break;
798 			if (sock_flag(sk, SOCK_DONE))
799 				break;
800 			if (sk->sk_err) {
801 				ret = sock_error(sk);
802 				break;
803 			}
804 			if (sk->sk_shutdown & RCV_SHUTDOWN)
805 				break;
806 			if (sk->sk_state == TCP_CLOSE) {
807 				/*
808 				 * This occurs when user tries to read
809 				 * from never connected socket.
810 				 */
811 				ret = -ENOTCONN;
812 				break;
813 			}
814 			if (!timeo) {
815 				ret = -EAGAIN;
816 				break;
817 			}
818 			/* if __tcp_splice_read() got nothing while we have
819 			 * an skb in receive queue, we do not want to loop.
820 			 * This might happen with URG data.
821 			 */
822 			if (!skb_queue_empty(&sk->sk_receive_queue))
823 				break;
824 			sk_wait_data(sk, &timeo, NULL);
825 			if (signal_pending(current)) {
826 				ret = sock_intr_errno(timeo);
827 				break;
828 			}
829 			continue;
830 		}
831 		tss.len -= ret;
832 		spliced += ret;
833 
834 		if (!timeo)
835 			break;
836 		release_sock(sk);
837 		lock_sock(sk);
838 
839 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
840 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
841 		    signal_pending(current))
842 			break;
843 	}
844 
845 	release_sock(sk);
846 
847 	if (spliced)
848 		return spliced;
849 
850 	return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853 
854 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 				    bool force_schedule)
856 {
857 	struct sk_buff *skb;
858 
859 	if (likely(!size)) {
860 		skb = sk->sk_tx_skb_cache;
861 		if (skb) {
862 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
863 			sk->sk_tx_skb_cache = NULL;
864 			pskb_trim(skb, 0);
865 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
866 			skb_shinfo(skb)->tx_flags = 0;
867 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
868 			return skb;
869 		}
870 	}
871 	/* The TCP header must be at least 32-bit aligned.  */
872 	size = ALIGN(size, 4);
873 
874 	if (unlikely(tcp_under_memory_pressure(sk)))
875 		sk_mem_reclaim_partial(sk);
876 
877 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
878 	if (likely(skb)) {
879 		bool mem_scheduled;
880 
881 		if (force_schedule) {
882 			mem_scheduled = true;
883 			sk_forced_mem_schedule(sk, skb->truesize);
884 		} else {
885 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
886 		}
887 		if (likely(mem_scheduled)) {
888 			skb_reserve(skb, sk->sk_prot->max_header);
889 			/*
890 			 * Make sure that we have exactly size bytes
891 			 * available to the caller, no more, no less.
892 			 */
893 			skb->reserved_tailroom = skb->end - skb->tail - size;
894 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
895 			return skb;
896 		}
897 		__kfree_skb(skb);
898 	} else {
899 		sk->sk_prot->enter_memory_pressure(sk);
900 		sk_stream_moderate_sndbuf(sk);
901 	}
902 	return NULL;
903 }
904 
905 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
906 				       int large_allowed)
907 {
908 	struct tcp_sock *tp = tcp_sk(sk);
909 	u32 new_size_goal, size_goal;
910 
911 	if (!large_allowed)
912 		return mss_now;
913 
914 	/* Note : tcp_tso_autosize() will eventually split this later */
915 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
916 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
917 
918 	/* We try hard to avoid divides here */
919 	size_goal = tp->gso_segs * mss_now;
920 	if (unlikely(new_size_goal < size_goal ||
921 		     new_size_goal >= size_goal + mss_now)) {
922 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
923 				     sk->sk_gso_max_segs);
924 		size_goal = tp->gso_segs * mss_now;
925 	}
926 
927 	return max(size_goal, mss_now);
928 }
929 
930 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
931 {
932 	int mss_now;
933 
934 	mss_now = tcp_current_mss(sk);
935 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
936 
937 	return mss_now;
938 }
939 
940 /* In some cases, both sendpage() and sendmsg() could have added
941  * an skb to the write queue, but failed adding payload on it.
942  * We need to remove it to consume less memory, but more
943  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
944  * users.
945  */
946 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
947 {
948 	if (skb && !skb->len) {
949 		tcp_unlink_write_queue(skb, sk);
950 		if (tcp_write_queue_empty(sk))
951 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
952 		sk_wmem_free_skb(sk, skb);
953 	}
954 }
955 
956 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
957 			 size_t size, int flags)
958 {
959 	struct tcp_sock *tp = tcp_sk(sk);
960 	int mss_now, size_goal;
961 	int err;
962 	ssize_t copied;
963 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
964 
965 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
966 	    WARN_ONCE(PageSlab(page), "page must not be a Slab one"))
967 		return -EINVAL;
968 
969 	/* Wait for a connection to finish. One exception is TCP Fast Open
970 	 * (passive side) where data is allowed to be sent before a connection
971 	 * is fully established.
972 	 */
973 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
974 	    !tcp_passive_fastopen(sk)) {
975 		err = sk_stream_wait_connect(sk, &timeo);
976 		if (err != 0)
977 			goto out_err;
978 	}
979 
980 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
981 
982 	mss_now = tcp_send_mss(sk, &size_goal, flags);
983 	copied = 0;
984 
985 	err = -EPIPE;
986 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
987 		goto out_err;
988 
989 	while (size > 0) {
990 		struct sk_buff *skb = tcp_write_queue_tail(sk);
991 		int copy, i;
992 		bool can_coalesce;
993 
994 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
995 		    !tcp_skb_can_collapse_to(skb)) {
996 new_segment:
997 			if (!sk_stream_memory_free(sk))
998 				goto wait_for_sndbuf;
999 
1000 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1001 					tcp_rtx_and_write_queues_empty(sk));
1002 			if (!skb)
1003 				goto wait_for_memory;
1004 
1005 #ifdef CONFIG_TLS_DEVICE
1006 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1007 #endif
1008 			skb_entail(sk, skb);
1009 			copy = size_goal;
1010 		}
1011 
1012 		if (copy > size)
1013 			copy = size;
1014 
1015 		i = skb_shinfo(skb)->nr_frags;
1016 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1017 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1018 			tcp_mark_push(tp, skb);
1019 			goto new_segment;
1020 		}
1021 		if (!sk_wmem_schedule(sk, copy))
1022 			goto wait_for_memory;
1023 
1024 		if (can_coalesce) {
1025 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1026 		} else {
1027 			get_page(page);
1028 			skb_fill_page_desc(skb, i, page, offset, copy);
1029 		}
1030 
1031 		if (!(flags & MSG_NO_SHARED_FRAGS))
1032 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1033 
1034 		skb->len += copy;
1035 		skb->data_len += copy;
1036 		skb->truesize += copy;
1037 		sk_wmem_queued_add(sk, copy);
1038 		sk_mem_charge(sk, copy);
1039 		skb->ip_summed = CHECKSUM_PARTIAL;
1040 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1041 		TCP_SKB_CB(skb)->end_seq += copy;
1042 		tcp_skb_pcount_set(skb, 0);
1043 
1044 		if (!copied)
1045 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1046 
1047 		copied += copy;
1048 		offset += copy;
1049 		size -= copy;
1050 		if (!size)
1051 			goto out;
1052 
1053 		if (skb->len < size_goal || (flags & MSG_OOB))
1054 			continue;
1055 
1056 		if (forced_push(tp)) {
1057 			tcp_mark_push(tp, skb);
1058 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1059 		} else if (skb == tcp_send_head(sk))
1060 			tcp_push_one(sk, mss_now);
1061 		continue;
1062 
1063 wait_for_sndbuf:
1064 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1065 wait_for_memory:
1066 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1067 			 TCP_NAGLE_PUSH, size_goal);
1068 
1069 		err = sk_stream_wait_memory(sk, &timeo);
1070 		if (err != 0)
1071 			goto do_error;
1072 
1073 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1074 	}
1075 
1076 out:
1077 	if (copied) {
1078 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1079 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1080 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1081 	}
1082 	return copied;
1083 
1084 do_error:
1085 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1086 	if (copied)
1087 		goto out;
1088 out_err:
1089 	/* make sure we wake any epoll edge trigger waiter */
1090 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1091 		     err == -EAGAIN)) {
1092 		sk->sk_write_space(sk);
1093 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1094 	}
1095 	return sk_stream_error(sk, flags, err);
1096 }
1097 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1098 
1099 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1100 			size_t size, int flags)
1101 {
1102 	if (!(sk->sk_route_caps & NETIF_F_SG))
1103 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1104 
1105 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1106 
1107 	return do_tcp_sendpages(sk, page, offset, size, flags);
1108 }
1109 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1110 
1111 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1112 		 size_t size, int flags)
1113 {
1114 	int ret;
1115 
1116 	lock_sock(sk);
1117 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1118 	release_sock(sk);
1119 
1120 	return ret;
1121 }
1122 EXPORT_SYMBOL(tcp_sendpage);
1123 
1124 void tcp_free_fastopen_req(struct tcp_sock *tp)
1125 {
1126 	if (tp->fastopen_req) {
1127 		kfree(tp->fastopen_req);
1128 		tp->fastopen_req = NULL;
1129 	}
1130 }
1131 
1132 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1133 				int *copied, size_t size,
1134 				struct ubuf_info *uarg)
1135 {
1136 	struct tcp_sock *tp = tcp_sk(sk);
1137 	struct inet_sock *inet = inet_sk(sk);
1138 	struct sockaddr *uaddr = msg->msg_name;
1139 	int err, flags;
1140 
1141 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1142 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1143 	     uaddr->sa_family == AF_UNSPEC))
1144 		return -EOPNOTSUPP;
1145 	if (tp->fastopen_req)
1146 		return -EALREADY; /* Another Fast Open is in progress */
1147 
1148 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1149 				   sk->sk_allocation);
1150 	if (unlikely(!tp->fastopen_req))
1151 		return -ENOBUFS;
1152 	tp->fastopen_req->data = msg;
1153 	tp->fastopen_req->size = size;
1154 	tp->fastopen_req->uarg = uarg;
1155 
1156 	if (inet->defer_connect) {
1157 		err = tcp_connect(sk);
1158 		/* Same failure procedure as in tcp_v4/6_connect */
1159 		if (err) {
1160 			tcp_set_state(sk, TCP_CLOSE);
1161 			inet->inet_dport = 0;
1162 			sk->sk_route_caps = 0;
1163 		}
1164 	}
1165 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1166 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1167 				    msg->msg_namelen, flags, 1);
1168 	/* fastopen_req could already be freed in __inet_stream_connect
1169 	 * if the connection times out or gets rst
1170 	 */
1171 	if (tp->fastopen_req) {
1172 		*copied = tp->fastopen_req->copied;
1173 		tcp_free_fastopen_req(tp);
1174 		inet->defer_connect = 0;
1175 	}
1176 	return err;
1177 }
1178 
1179 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1180 {
1181 	struct tcp_sock *tp = tcp_sk(sk);
1182 	struct ubuf_info *uarg = NULL;
1183 	struct sk_buff *skb;
1184 	struct sockcm_cookie sockc;
1185 	int flags, err, copied = 0;
1186 	int mss_now = 0, size_goal, copied_syn = 0;
1187 	int process_backlog = 0;
1188 	bool zc = false;
1189 	long timeo;
1190 
1191 	flags = msg->msg_flags;
1192 
1193 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1194 		skb = tcp_write_queue_tail(sk);
1195 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1196 		if (!uarg) {
1197 			err = -ENOBUFS;
1198 			goto out_err;
1199 		}
1200 
1201 		zc = sk->sk_route_caps & NETIF_F_SG;
1202 		if (!zc)
1203 			uarg->zerocopy = 0;
1204 	}
1205 
1206 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1207 	    !tp->repair) {
1208 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1209 		if (err == -EINPROGRESS && copied_syn > 0)
1210 			goto out;
1211 		else if (err)
1212 			goto out_err;
1213 	}
1214 
1215 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1216 
1217 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1218 
1219 	/* Wait for a connection to finish. One exception is TCP Fast Open
1220 	 * (passive side) where data is allowed to be sent before a connection
1221 	 * is fully established.
1222 	 */
1223 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1224 	    !tcp_passive_fastopen(sk)) {
1225 		err = sk_stream_wait_connect(sk, &timeo);
1226 		if (err != 0)
1227 			goto do_error;
1228 	}
1229 
1230 	if (unlikely(tp->repair)) {
1231 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1232 			copied = tcp_send_rcvq(sk, msg, size);
1233 			goto out_nopush;
1234 		}
1235 
1236 		err = -EINVAL;
1237 		if (tp->repair_queue == TCP_NO_QUEUE)
1238 			goto out_err;
1239 
1240 		/* 'common' sending to sendq */
1241 	}
1242 
1243 	sockcm_init(&sockc, sk);
1244 	if (msg->msg_controllen) {
1245 		err = sock_cmsg_send(sk, msg, &sockc);
1246 		if (unlikely(err)) {
1247 			err = -EINVAL;
1248 			goto out_err;
1249 		}
1250 	}
1251 
1252 	/* This should be in poll */
1253 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1254 
1255 	/* Ok commence sending. */
1256 	copied = 0;
1257 
1258 restart:
1259 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1260 
1261 	err = -EPIPE;
1262 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1263 		goto do_error;
1264 
1265 	while (msg_data_left(msg)) {
1266 		int copy = 0;
1267 
1268 		skb = tcp_write_queue_tail(sk);
1269 		if (skb)
1270 			copy = size_goal - skb->len;
1271 
1272 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1273 			bool first_skb;
1274 
1275 new_segment:
1276 			if (!sk_stream_memory_free(sk))
1277 				goto wait_for_sndbuf;
1278 
1279 			if (unlikely(process_backlog >= 16)) {
1280 				process_backlog = 0;
1281 				if (sk_flush_backlog(sk))
1282 					goto restart;
1283 			}
1284 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1285 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1286 						  first_skb);
1287 			if (!skb)
1288 				goto wait_for_memory;
1289 
1290 			process_backlog++;
1291 			skb->ip_summed = CHECKSUM_PARTIAL;
1292 
1293 			skb_entail(sk, skb);
1294 			copy = size_goal;
1295 
1296 			/* All packets are restored as if they have
1297 			 * already been sent. skb_mstamp_ns isn't set to
1298 			 * avoid wrong rtt estimation.
1299 			 */
1300 			if (tp->repair)
1301 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1302 		}
1303 
1304 		/* Try to append data to the end of skb. */
1305 		if (copy > msg_data_left(msg))
1306 			copy = msg_data_left(msg);
1307 
1308 		/* Where to copy to? */
1309 		if (skb_availroom(skb) > 0 && !zc) {
1310 			/* We have some space in skb head. Superb! */
1311 			copy = min_t(int, copy, skb_availroom(skb));
1312 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1313 			if (err)
1314 				goto do_fault;
1315 		} else if (!zc) {
1316 			bool merge = true;
1317 			int i = skb_shinfo(skb)->nr_frags;
1318 			struct page_frag *pfrag = sk_page_frag(sk);
1319 
1320 			if (!sk_page_frag_refill(sk, pfrag))
1321 				goto wait_for_memory;
1322 
1323 			if (!skb_can_coalesce(skb, i, pfrag->page,
1324 					      pfrag->offset)) {
1325 				if (i >= sysctl_max_skb_frags) {
1326 					tcp_mark_push(tp, skb);
1327 					goto new_segment;
1328 				}
1329 				merge = false;
1330 			}
1331 
1332 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1333 
1334 			if (!sk_wmem_schedule(sk, copy))
1335 				goto wait_for_memory;
1336 
1337 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1338 						       pfrag->page,
1339 						       pfrag->offset,
1340 						       copy);
1341 			if (err)
1342 				goto do_error;
1343 
1344 			/* Update the skb. */
1345 			if (merge) {
1346 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1347 			} else {
1348 				skb_fill_page_desc(skb, i, pfrag->page,
1349 						   pfrag->offset, copy);
1350 				page_ref_inc(pfrag->page);
1351 			}
1352 			pfrag->offset += copy;
1353 		} else {
1354 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1355 			if (err == -EMSGSIZE || err == -EEXIST) {
1356 				tcp_mark_push(tp, skb);
1357 				goto new_segment;
1358 			}
1359 			if (err < 0)
1360 				goto do_error;
1361 			copy = err;
1362 		}
1363 
1364 		if (!copied)
1365 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1366 
1367 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1368 		TCP_SKB_CB(skb)->end_seq += copy;
1369 		tcp_skb_pcount_set(skb, 0);
1370 
1371 		copied += copy;
1372 		if (!msg_data_left(msg)) {
1373 			if (unlikely(flags & MSG_EOR))
1374 				TCP_SKB_CB(skb)->eor = 1;
1375 			goto out;
1376 		}
1377 
1378 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1379 			continue;
1380 
1381 		if (forced_push(tp)) {
1382 			tcp_mark_push(tp, skb);
1383 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1384 		} else if (skb == tcp_send_head(sk))
1385 			tcp_push_one(sk, mss_now);
1386 		continue;
1387 
1388 wait_for_sndbuf:
1389 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1390 wait_for_memory:
1391 		if (copied)
1392 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1393 				 TCP_NAGLE_PUSH, size_goal);
1394 
1395 		err = sk_stream_wait_memory(sk, &timeo);
1396 		if (err != 0)
1397 			goto do_error;
1398 
1399 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1400 	}
1401 
1402 out:
1403 	if (copied) {
1404 		tcp_tx_timestamp(sk, sockc.tsflags);
1405 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1406 	}
1407 out_nopush:
1408 	sock_zerocopy_put(uarg);
1409 	return copied + copied_syn;
1410 
1411 do_error:
1412 	skb = tcp_write_queue_tail(sk);
1413 do_fault:
1414 	tcp_remove_empty_skb(sk, skb);
1415 
1416 	if (copied + copied_syn)
1417 		goto out;
1418 out_err:
1419 	sock_zerocopy_put_abort(uarg, true);
1420 	err = sk_stream_error(sk, flags, err);
1421 	/* make sure we wake any epoll edge trigger waiter */
1422 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1423 		     err == -EAGAIN)) {
1424 		sk->sk_write_space(sk);
1425 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1426 	}
1427 	return err;
1428 }
1429 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1430 
1431 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1432 {
1433 	int ret;
1434 
1435 	lock_sock(sk);
1436 	ret = tcp_sendmsg_locked(sk, msg, size);
1437 	release_sock(sk);
1438 
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL(tcp_sendmsg);
1442 
1443 /*
1444  *	Handle reading urgent data. BSD has very simple semantics for
1445  *	this, no blocking and very strange errors 8)
1446  */
1447 
1448 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1449 {
1450 	struct tcp_sock *tp = tcp_sk(sk);
1451 
1452 	/* No URG data to read. */
1453 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1454 	    tp->urg_data == TCP_URG_READ)
1455 		return -EINVAL;	/* Yes this is right ! */
1456 
1457 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1458 		return -ENOTCONN;
1459 
1460 	if (tp->urg_data & TCP_URG_VALID) {
1461 		int err = 0;
1462 		char c = tp->urg_data;
1463 
1464 		if (!(flags & MSG_PEEK))
1465 			tp->urg_data = TCP_URG_READ;
1466 
1467 		/* Read urgent data. */
1468 		msg->msg_flags |= MSG_OOB;
1469 
1470 		if (len > 0) {
1471 			if (!(flags & MSG_TRUNC))
1472 				err = memcpy_to_msg(msg, &c, 1);
1473 			len = 1;
1474 		} else
1475 			msg->msg_flags |= MSG_TRUNC;
1476 
1477 		return err ? -EFAULT : len;
1478 	}
1479 
1480 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1481 		return 0;
1482 
1483 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1484 	 * the available implementations agree in this case:
1485 	 * this call should never block, independent of the
1486 	 * blocking state of the socket.
1487 	 * Mike <pall@rz.uni-karlsruhe.de>
1488 	 */
1489 	return -EAGAIN;
1490 }
1491 
1492 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1493 {
1494 	struct sk_buff *skb;
1495 	int copied = 0, err = 0;
1496 
1497 	/* XXX -- need to support SO_PEEK_OFF */
1498 
1499 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1500 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1501 		if (err)
1502 			return err;
1503 		copied += skb->len;
1504 	}
1505 
1506 	skb_queue_walk(&sk->sk_write_queue, skb) {
1507 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1508 		if (err)
1509 			break;
1510 
1511 		copied += skb->len;
1512 	}
1513 
1514 	return err ?: copied;
1515 }
1516 
1517 /* Clean up the receive buffer for full frames taken by the user,
1518  * then send an ACK if necessary.  COPIED is the number of bytes
1519  * tcp_recvmsg has given to the user so far, it speeds up the
1520  * calculation of whether or not we must ACK for the sake of
1521  * a window update.
1522  */
1523 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1524 {
1525 	struct tcp_sock *tp = tcp_sk(sk);
1526 	bool time_to_ack = false;
1527 
1528 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1529 
1530 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1531 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1532 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1533 
1534 	if (inet_csk_ack_scheduled(sk)) {
1535 		const struct inet_connection_sock *icsk = inet_csk(sk);
1536 		   /* Delayed ACKs frequently hit locked sockets during bulk
1537 		    * receive. */
1538 		if (icsk->icsk_ack.blocked ||
1539 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1540 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1541 		    /*
1542 		     * If this read emptied read buffer, we send ACK, if
1543 		     * connection is not bidirectional, user drained
1544 		     * receive buffer and there was a small segment
1545 		     * in queue.
1546 		     */
1547 		    (copied > 0 &&
1548 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1549 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1550 		       !inet_csk_in_pingpong_mode(sk))) &&
1551 		      !atomic_read(&sk->sk_rmem_alloc)))
1552 			time_to_ack = true;
1553 	}
1554 
1555 	/* We send an ACK if we can now advertise a non-zero window
1556 	 * which has been raised "significantly".
1557 	 *
1558 	 * Even if window raised up to infinity, do not send window open ACK
1559 	 * in states, where we will not receive more. It is useless.
1560 	 */
1561 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1562 		__u32 rcv_window_now = tcp_receive_window(tp);
1563 
1564 		/* Optimize, __tcp_select_window() is not cheap. */
1565 		if (2*rcv_window_now <= tp->window_clamp) {
1566 			__u32 new_window = __tcp_select_window(sk);
1567 
1568 			/* Send ACK now, if this read freed lots of space
1569 			 * in our buffer. Certainly, new_window is new window.
1570 			 * We can advertise it now, if it is not less than current one.
1571 			 * "Lots" means "at least twice" here.
1572 			 */
1573 			if (new_window && new_window >= 2 * rcv_window_now)
1574 				time_to_ack = true;
1575 		}
1576 	}
1577 	if (time_to_ack)
1578 		tcp_send_ack(sk);
1579 }
1580 
1581 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1582 {
1583 	struct sk_buff *skb;
1584 	u32 offset;
1585 
1586 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1587 		offset = seq - TCP_SKB_CB(skb)->seq;
1588 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1589 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1590 			offset--;
1591 		}
1592 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1593 			*off = offset;
1594 			return skb;
1595 		}
1596 		/* This looks weird, but this can happen if TCP collapsing
1597 		 * splitted a fat GRO packet, while we released socket lock
1598 		 * in skb_splice_bits()
1599 		 */
1600 		sk_eat_skb(sk, skb);
1601 	}
1602 	return NULL;
1603 }
1604 
1605 /*
1606  * This routine provides an alternative to tcp_recvmsg() for routines
1607  * that would like to handle copying from skbuffs directly in 'sendfile'
1608  * fashion.
1609  * Note:
1610  *	- It is assumed that the socket was locked by the caller.
1611  *	- The routine does not block.
1612  *	- At present, there is no support for reading OOB data
1613  *	  or for 'peeking' the socket using this routine
1614  *	  (although both would be easy to implement).
1615  */
1616 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1617 		  sk_read_actor_t recv_actor)
1618 {
1619 	struct sk_buff *skb;
1620 	struct tcp_sock *tp = tcp_sk(sk);
1621 	u32 seq = tp->copied_seq;
1622 	u32 offset;
1623 	int copied = 0;
1624 
1625 	if (sk->sk_state == TCP_LISTEN)
1626 		return -ENOTCONN;
1627 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1628 		if (offset < skb->len) {
1629 			int used;
1630 			size_t len;
1631 
1632 			len = skb->len - offset;
1633 			/* Stop reading if we hit a patch of urgent data */
1634 			if (tp->urg_data) {
1635 				u32 urg_offset = tp->urg_seq - seq;
1636 				if (urg_offset < len)
1637 					len = urg_offset;
1638 				if (!len)
1639 					break;
1640 			}
1641 			used = recv_actor(desc, skb, offset, len);
1642 			if (used <= 0) {
1643 				if (!copied)
1644 					copied = used;
1645 				break;
1646 			} else if (used <= len) {
1647 				seq += used;
1648 				copied += used;
1649 				offset += used;
1650 			}
1651 			/* If recv_actor drops the lock (e.g. TCP splice
1652 			 * receive) the skb pointer might be invalid when
1653 			 * getting here: tcp_collapse might have deleted it
1654 			 * while aggregating skbs from the socket queue.
1655 			 */
1656 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1657 			if (!skb)
1658 				break;
1659 			/* TCP coalescing might have appended data to the skb.
1660 			 * Try to splice more frags
1661 			 */
1662 			if (offset + 1 != skb->len)
1663 				continue;
1664 		}
1665 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1666 			sk_eat_skb(sk, skb);
1667 			++seq;
1668 			break;
1669 		}
1670 		sk_eat_skb(sk, skb);
1671 		if (!desc->count)
1672 			break;
1673 		WRITE_ONCE(tp->copied_seq, seq);
1674 	}
1675 	WRITE_ONCE(tp->copied_seq, seq);
1676 
1677 	tcp_rcv_space_adjust(sk);
1678 
1679 	/* Clean up data we have read: This will do ACK frames. */
1680 	if (copied > 0) {
1681 		tcp_recv_skb(sk, seq, &offset);
1682 		tcp_cleanup_rbuf(sk, copied);
1683 	}
1684 	return copied;
1685 }
1686 EXPORT_SYMBOL(tcp_read_sock);
1687 
1688 int tcp_peek_len(struct socket *sock)
1689 {
1690 	return tcp_inq(sock->sk);
1691 }
1692 EXPORT_SYMBOL(tcp_peek_len);
1693 
1694 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1695 int tcp_set_rcvlowat(struct sock *sk, int val)
1696 {
1697 	int cap;
1698 
1699 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1700 		cap = sk->sk_rcvbuf >> 1;
1701 	else
1702 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1703 	val = min(val, cap);
1704 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1705 
1706 	/* Check if we need to signal EPOLLIN right now */
1707 	tcp_data_ready(sk);
1708 
1709 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1710 		return 0;
1711 
1712 	val <<= 1;
1713 	if (val > sk->sk_rcvbuf) {
1714 		WRITE_ONCE(sk->sk_rcvbuf, val);
1715 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1716 	}
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL(tcp_set_rcvlowat);
1720 
1721 #ifdef CONFIG_MMU
1722 static const struct vm_operations_struct tcp_vm_ops = {
1723 };
1724 
1725 int tcp_mmap(struct file *file, struct socket *sock,
1726 	     struct vm_area_struct *vma)
1727 {
1728 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1729 		return -EPERM;
1730 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1731 
1732 	/* Instruct vm_insert_page() to not down_read(mmap_sem) */
1733 	vma->vm_flags |= VM_MIXEDMAP;
1734 
1735 	vma->vm_ops = &tcp_vm_ops;
1736 	return 0;
1737 }
1738 EXPORT_SYMBOL(tcp_mmap);
1739 
1740 static int tcp_zerocopy_receive(struct sock *sk,
1741 				struct tcp_zerocopy_receive *zc)
1742 {
1743 	unsigned long address = (unsigned long)zc->address;
1744 	u32 length = 0, seq, offset, zap_len;
1745 	const skb_frag_t *frags = NULL;
1746 	struct vm_area_struct *vma;
1747 	struct sk_buff *skb = NULL;
1748 	struct tcp_sock *tp;
1749 	int inq;
1750 	int ret;
1751 
1752 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1753 		return -EINVAL;
1754 
1755 	if (sk->sk_state == TCP_LISTEN)
1756 		return -ENOTCONN;
1757 
1758 	sock_rps_record_flow(sk);
1759 
1760 	down_read(&current->mm->mmap_sem);
1761 
1762 	ret = -EINVAL;
1763 	vma = find_vma(current->mm, address);
1764 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
1765 		goto out;
1766 	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1767 
1768 	tp = tcp_sk(sk);
1769 	seq = tp->copied_seq;
1770 	inq = tcp_inq(sk);
1771 	zc->length = min_t(u32, zc->length, inq);
1772 	zap_len = zc->length & ~(PAGE_SIZE - 1);
1773 	if (zap_len) {
1774 		zap_page_range(vma, address, zap_len);
1775 		zc->recv_skip_hint = 0;
1776 	} else {
1777 		zc->recv_skip_hint = zc->length;
1778 	}
1779 	ret = 0;
1780 	while (length + PAGE_SIZE <= zc->length) {
1781 		if (zc->recv_skip_hint < PAGE_SIZE) {
1782 			if (skb) {
1783 				skb = skb->next;
1784 				offset = seq - TCP_SKB_CB(skb)->seq;
1785 			} else {
1786 				skb = tcp_recv_skb(sk, seq, &offset);
1787 			}
1788 
1789 			zc->recv_skip_hint = skb->len - offset;
1790 			offset -= skb_headlen(skb);
1791 			if ((int)offset < 0 || skb_has_frag_list(skb))
1792 				break;
1793 			frags = skb_shinfo(skb)->frags;
1794 			while (offset) {
1795 				if (skb_frag_size(frags) > offset)
1796 					goto out;
1797 				offset -= skb_frag_size(frags);
1798 				frags++;
1799 			}
1800 		}
1801 		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1802 			int remaining = zc->recv_skip_hint;
1803 
1804 			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1805 					     skb_frag_off(frags))) {
1806 				remaining -= skb_frag_size(frags);
1807 				frags++;
1808 			}
1809 			zc->recv_skip_hint -= remaining;
1810 			break;
1811 		}
1812 		ret = vm_insert_page(vma, address + length,
1813 				     skb_frag_page(frags));
1814 		if (ret)
1815 			break;
1816 		length += PAGE_SIZE;
1817 		seq += PAGE_SIZE;
1818 		zc->recv_skip_hint -= PAGE_SIZE;
1819 		frags++;
1820 	}
1821 out:
1822 	up_read(&current->mm->mmap_sem);
1823 	if (length) {
1824 		WRITE_ONCE(tp->copied_seq, seq);
1825 		tcp_rcv_space_adjust(sk);
1826 
1827 		/* Clean up data we have read: This will do ACK frames. */
1828 		tcp_recv_skb(sk, seq, &offset);
1829 		tcp_cleanup_rbuf(sk, length);
1830 		ret = 0;
1831 		if (length == zc->length)
1832 			zc->recv_skip_hint = 0;
1833 	} else {
1834 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1835 			ret = -EIO;
1836 	}
1837 	zc->length = length;
1838 	return ret;
1839 }
1840 #endif
1841 
1842 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1843 				    struct scm_timestamping_internal *tss)
1844 {
1845 	if (skb->tstamp)
1846 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1847 	else
1848 		tss->ts[0] = (struct timespec64) {0};
1849 
1850 	if (skb_hwtstamps(skb)->hwtstamp)
1851 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1852 	else
1853 		tss->ts[2] = (struct timespec64) {0};
1854 }
1855 
1856 /* Similar to __sock_recv_timestamp, but does not require an skb */
1857 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1858 			       struct scm_timestamping_internal *tss)
1859 {
1860 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1861 	bool has_timestamping = false;
1862 
1863 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1864 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1865 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1866 				if (new_tstamp) {
1867 					struct __kernel_timespec kts = {
1868 						.tv_sec = tss->ts[0].tv_sec,
1869 						.tv_nsec = tss->ts[0].tv_nsec,
1870 					};
1871 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1872 						 sizeof(kts), &kts);
1873 				} else {
1874 					struct __kernel_old_timespec ts_old = {
1875 						.tv_sec = tss->ts[0].tv_sec,
1876 						.tv_nsec = tss->ts[0].tv_nsec,
1877 					};
1878 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1879 						 sizeof(ts_old), &ts_old);
1880 				}
1881 			} else {
1882 				if (new_tstamp) {
1883 					struct __kernel_sock_timeval stv = {
1884 						.tv_sec = tss->ts[0].tv_sec,
1885 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1886 					};
1887 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1888 						 sizeof(stv), &stv);
1889 				} else {
1890 					struct __kernel_old_timeval tv = {
1891 						.tv_sec = tss->ts[0].tv_sec,
1892 						.tv_usec = tss->ts[0].tv_nsec / 1000,
1893 					};
1894 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1895 						 sizeof(tv), &tv);
1896 				}
1897 			}
1898 		}
1899 
1900 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1901 			has_timestamping = true;
1902 		else
1903 			tss->ts[0] = (struct timespec64) {0};
1904 	}
1905 
1906 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1907 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1908 			has_timestamping = true;
1909 		else
1910 			tss->ts[2] = (struct timespec64) {0};
1911 	}
1912 
1913 	if (has_timestamping) {
1914 		tss->ts[1] = (struct timespec64) {0};
1915 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1916 			put_cmsg_scm_timestamping64(msg, tss);
1917 		else
1918 			put_cmsg_scm_timestamping(msg, tss);
1919 	}
1920 }
1921 
1922 static int tcp_inq_hint(struct sock *sk)
1923 {
1924 	const struct tcp_sock *tp = tcp_sk(sk);
1925 	u32 copied_seq = READ_ONCE(tp->copied_seq);
1926 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1927 	int inq;
1928 
1929 	inq = rcv_nxt - copied_seq;
1930 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1931 		lock_sock(sk);
1932 		inq = tp->rcv_nxt - tp->copied_seq;
1933 		release_sock(sk);
1934 	}
1935 	/* After receiving a FIN, tell the user-space to continue reading
1936 	 * by returning a non-zero inq.
1937 	 */
1938 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
1939 		inq = 1;
1940 	return inq;
1941 }
1942 
1943 /*
1944  *	This routine copies from a sock struct into the user buffer.
1945  *
1946  *	Technical note: in 2.3 we work on _locked_ socket, so that
1947  *	tricks with *seq access order and skb->users are not required.
1948  *	Probably, code can be easily improved even more.
1949  */
1950 
1951 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1952 		int flags, int *addr_len)
1953 {
1954 	struct tcp_sock *tp = tcp_sk(sk);
1955 	int copied = 0;
1956 	u32 peek_seq;
1957 	u32 *seq;
1958 	unsigned long used;
1959 	int err, inq;
1960 	int target;		/* Read at least this many bytes */
1961 	long timeo;
1962 	struct sk_buff *skb, *last;
1963 	u32 urg_hole = 0;
1964 	struct scm_timestamping_internal tss;
1965 	int cmsg_flags;
1966 
1967 	if (unlikely(flags & MSG_ERRQUEUE))
1968 		return inet_recv_error(sk, msg, len, addr_len);
1969 
1970 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
1971 	    (sk->sk_state == TCP_ESTABLISHED))
1972 		sk_busy_loop(sk, nonblock);
1973 
1974 	lock_sock(sk);
1975 
1976 	err = -ENOTCONN;
1977 	if (sk->sk_state == TCP_LISTEN)
1978 		goto out;
1979 
1980 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
1981 	timeo = sock_rcvtimeo(sk, nonblock);
1982 
1983 	/* Urgent data needs to be handled specially. */
1984 	if (flags & MSG_OOB)
1985 		goto recv_urg;
1986 
1987 	if (unlikely(tp->repair)) {
1988 		err = -EPERM;
1989 		if (!(flags & MSG_PEEK))
1990 			goto out;
1991 
1992 		if (tp->repair_queue == TCP_SEND_QUEUE)
1993 			goto recv_sndq;
1994 
1995 		err = -EINVAL;
1996 		if (tp->repair_queue == TCP_NO_QUEUE)
1997 			goto out;
1998 
1999 		/* 'common' recv queue MSG_PEEK-ing */
2000 	}
2001 
2002 	seq = &tp->copied_seq;
2003 	if (flags & MSG_PEEK) {
2004 		peek_seq = tp->copied_seq;
2005 		seq = &peek_seq;
2006 	}
2007 
2008 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2009 
2010 	do {
2011 		u32 offset;
2012 
2013 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2014 		if (tp->urg_data && tp->urg_seq == *seq) {
2015 			if (copied)
2016 				break;
2017 			if (signal_pending(current)) {
2018 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2019 				break;
2020 			}
2021 		}
2022 
2023 		/* Next get a buffer. */
2024 
2025 		last = skb_peek_tail(&sk->sk_receive_queue);
2026 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2027 			last = skb;
2028 			/* Now that we have two receive queues this
2029 			 * shouldn't happen.
2030 			 */
2031 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2032 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2033 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2034 				 flags))
2035 				break;
2036 
2037 			offset = *seq - TCP_SKB_CB(skb)->seq;
2038 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2039 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2040 				offset--;
2041 			}
2042 			if (offset < skb->len)
2043 				goto found_ok_skb;
2044 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2045 				goto found_fin_ok;
2046 			WARN(!(flags & MSG_PEEK),
2047 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2048 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2049 		}
2050 
2051 		/* Well, if we have backlog, try to process it now yet. */
2052 
2053 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2054 			break;
2055 
2056 		if (copied) {
2057 			if (sk->sk_err ||
2058 			    sk->sk_state == TCP_CLOSE ||
2059 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2060 			    !timeo ||
2061 			    signal_pending(current))
2062 				break;
2063 		} else {
2064 			if (sock_flag(sk, SOCK_DONE))
2065 				break;
2066 
2067 			if (sk->sk_err) {
2068 				copied = sock_error(sk);
2069 				break;
2070 			}
2071 
2072 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2073 				break;
2074 
2075 			if (sk->sk_state == TCP_CLOSE) {
2076 				/* This occurs when user tries to read
2077 				 * from never connected socket.
2078 				 */
2079 				copied = -ENOTCONN;
2080 				break;
2081 			}
2082 
2083 			if (!timeo) {
2084 				copied = -EAGAIN;
2085 				break;
2086 			}
2087 
2088 			if (signal_pending(current)) {
2089 				copied = sock_intr_errno(timeo);
2090 				break;
2091 			}
2092 		}
2093 
2094 		tcp_cleanup_rbuf(sk, copied);
2095 
2096 		if (copied >= target) {
2097 			/* Do not sleep, just process backlog. */
2098 			release_sock(sk);
2099 			lock_sock(sk);
2100 		} else {
2101 			sk_wait_data(sk, &timeo, last);
2102 		}
2103 
2104 		if ((flags & MSG_PEEK) &&
2105 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2106 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2107 					    current->comm,
2108 					    task_pid_nr(current));
2109 			peek_seq = tp->copied_seq;
2110 		}
2111 		continue;
2112 
2113 found_ok_skb:
2114 		/* Ok so how much can we use? */
2115 		used = skb->len - offset;
2116 		if (len < used)
2117 			used = len;
2118 
2119 		/* Do we have urgent data here? */
2120 		if (tp->urg_data) {
2121 			u32 urg_offset = tp->urg_seq - *seq;
2122 			if (urg_offset < used) {
2123 				if (!urg_offset) {
2124 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2125 						WRITE_ONCE(*seq, *seq + 1);
2126 						urg_hole++;
2127 						offset++;
2128 						used--;
2129 						if (!used)
2130 							goto skip_copy;
2131 					}
2132 				} else
2133 					used = urg_offset;
2134 			}
2135 		}
2136 
2137 		if (!(flags & MSG_TRUNC)) {
2138 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2139 			if (err) {
2140 				/* Exception. Bailout! */
2141 				if (!copied)
2142 					copied = -EFAULT;
2143 				break;
2144 			}
2145 		}
2146 
2147 		WRITE_ONCE(*seq, *seq + used);
2148 		copied += used;
2149 		len -= used;
2150 
2151 		tcp_rcv_space_adjust(sk);
2152 
2153 skip_copy:
2154 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2155 			tp->urg_data = 0;
2156 			tcp_fast_path_check(sk);
2157 		}
2158 		if (used + offset < skb->len)
2159 			continue;
2160 
2161 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2162 			tcp_update_recv_tstamps(skb, &tss);
2163 			cmsg_flags |= 2;
2164 		}
2165 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2166 			goto found_fin_ok;
2167 		if (!(flags & MSG_PEEK))
2168 			sk_eat_skb(sk, skb);
2169 		continue;
2170 
2171 found_fin_ok:
2172 		/* Process the FIN. */
2173 		WRITE_ONCE(*seq, *seq + 1);
2174 		if (!(flags & MSG_PEEK))
2175 			sk_eat_skb(sk, skb);
2176 		break;
2177 	} while (len > 0);
2178 
2179 	/* According to UNIX98, msg_name/msg_namelen are ignored
2180 	 * on connected socket. I was just happy when found this 8) --ANK
2181 	 */
2182 
2183 	/* Clean up data we have read: This will do ACK frames. */
2184 	tcp_cleanup_rbuf(sk, copied);
2185 
2186 	release_sock(sk);
2187 
2188 	if (cmsg_flags) {
2189 		if (cmsg_flags & 2)
2190 			tcp_recv_timestamp(msg, sk, &tss);
2191 		if (cmsg_flags & 1) {
2192 			inq = tcp_inq_hint(sk);
2193 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2194 		}
2195 	}
2196 
2197 	return copied;
2198 
2199 out:
2200 	release_sock(sk);
2201 	return err;
2202 
2203 recv_urg:
2204 	err = tcp_recv_urg(sk, msg, len, flags);
2205 	goto out;
2206 
2207 recv_sndq:
2208 	err = tcp_peek_sndq(sk, msg, len);
2209 	goto out;
2210 }
2211 EXPORT_SYMBOL(tcp_recvmsg);
2212 
2213 void tcp_set_state(struct sock *sk, int state)
2214 {
2215 	int oldstate = sk->sk_state;
2216 
2217 	/* We defined a new enum for TCP states that are exported in BPF
2218 	 * so as not force the internal TCP states to be frozen. The
2219 	 * following checks will detect if an internal state value ever
2220 	 * differs from the BPF value. If this ever happens, then we will
2221 	 * need to remap the internal value to the BPF value before calling
2222 	 * tcp_call_bpf_2arg.
2223 	 */
2224 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2225 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2226 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2227 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2228 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2229 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2230 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2231 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2232 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2233 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2234 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2235 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2236 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2237 
2238 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2239 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2240 
2241 	switch (state) {
2242 	case TCP_ESTABLISHED:
2243 		if (oldstate != TCP_ESTABLISHED)
2244 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2245 		break;
2246 
2247 	case TCP_CLOSE:
2248 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2249 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2250 
2251 		sk->sk_prot->unhash(sk);
2252 		if (inet_csk(sk)->icsk_bind_hash &&
2253 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2254 			inet_put_port(sk);
2255 		/* fall through */
2256 	default:
2257 		if (oldstate == TCP_ESTABLISHED)
2258 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2259 	}
2260 
2261 	/* Change state AFTER socket is unhashed to avoid closed
2262 	 * socket sitting in hash tables.
2263 	 */
2264 	inet_sk_state_store(sk, state);
2265 }
2266 EXPORT_SYMBOL_GPL(tcp_set_state);
2267 
2268 /*
2269  *	State processing on a close. This implements the state shift for
2270  *	sending our FIN frame. Note that we only send a FIN for some
2271  *	states. A shutdown() may have already sent the FIN, or we may be
2272  *	closed.
2273  */
2274 
2275 static const unsigned char new_state[16] = {
2276   /* current state:        new state:      action:	*/
2277   [0 /* (Invalid) */]	= TCP_CLOSE,
2278   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2279   [TCP_SYN_SENT]	= TCP_CLOSE,
2280   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2281   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2282   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2283   [TCP_TIME_WAIT]	= TCP_CLOSE,
2284   [TCP_CLOSE]		= TCP_CLOSE,
2285   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2286   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2287   [TCP_LISTEN]		= TCP_CLOSE,
2288   [TCP_CLOSING]		= TCP_CLOSING,
2289   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2290 };
2291 
2292 static int tcp_close_state(struct sock *sk)
2293 {
2294 	int next = (int)new_state[sk->sk_state];
2295 	int ns = next & TCP_STATE_MASK;
2296 
2297 	tcp_set_state(sk, ns);
2298 
2299 	return next & TCP_ACTION_FIN;
2300 }
2301 
2302 /*
2303  *	Shutdown the sending side of a connection. Much like close except
2304  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2305  */
2306 
2307 void tcp_shutdown(struct sock *sk, int how)
2308 {
2309 	/*	We need to grab some memory, and put together a FIN,
2310 	 *	and then put it into the queue to be sent.
2311 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2312 	 */
2313 	if (!(how & SEND_SHUTDOWN))
2314 		return;
2315 
2316 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2317 	if ((1 << sk->sk_state) &
2318 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2319 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2320 		/* Clear out any half completed packets.  FIN if needed. */
2321 		if (tcp_close_state(sk))
2322 			tcp_send_fin(sk);
2323 	}
2324 }
2325 EXPORT_SYMBOL(tcp_shutdown);
2326 
2327 bool tcp_check_oom(struct sock *sk, int shift)
2328 {
2329 	bool too_many_orphans, out_of_socket_memory;
2330 
2331 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2332 	out_of_socket_memory = tcp_out_of_memory(sk);
2333 
2334 	if (too_many_orphans)
2335 		net_info_ratelimited("too many orphaned sockets\n");
2336 	if (out_of_socket_memory)
2337 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2338 	return too_many_orphans || out_of_socket_memory;
2339 }
2340 
2341 void tcp_close(struct sock *sk, long timeout)
2342 {
2343 	struct sk_buff *skb;
2344 	int data_was_unread = 0;
2345 	int state;
2346 
2347 	lock_sock(sk);
2348 	sk->sk_shutdown = SHUTDOWN_MASK;
2349 
2350 	if (sk->sk_state == TCP_LISTEN) {
2351 		tcp_set_state(sk, TCP_CLOSE);
2352 
2353 		/* Special case. */
2354 		inet_csk_listen_stop(sk);
2355 
2356 		goto adjudge_to_death;
2357 	}
2358 
2359 	/*  We need to flush the recv. buffs.  We do this only on the
2360 	 *  descriptor close, not protocol-sourced closes, because the
2361 	 *  reader process may not have drained the data yet!
2362 	 */
2363 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2364 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2365 
2366 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2367 			len--;
2368 		data_was_unread += len;
2369 		__kfree_skb(skb);
2370 	}
2371 
2372 	sk_mem_reclaim(sk);
2373 
2374 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2375 	if (sk->sk_state == TCP_CLOSE)
2376 		goto adjudge_to_death;
2377 
2378 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2379 	 * data was lost. To witness the awful effects of the old behavior of
2380 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2381 	 * GET in an FTP client, suspend the process, wait for the client to
2382 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2383 	 * Note: timeout is always zero in such a case.
2384 	 */
2385 	if (unlikely(tcp_sk(sk)->repair)) {
2386 		sk->sk_prot->disconnect(sk, 0);
2387 	} else if (data_was_unread) {
2388 		/* Unread data was tossed, zap the connection. */
2389 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2390 		tcp_set_state(sk, TCP_CLOSE);
2391 		tcp_send_active_reset(sk, sk->sk_allocation);
2392 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2393 		/* Check zero linger _after_ checking for unread data. */
2394 		sk->sk_prot->disconnect(sk, 0);
2395 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2396 	} else if (tcp_close_state(sk)) {
2397 		/* We FIN if the application ate all the data before
2398 		 * zapping the connection.
2399 		 */
2400 
2401 		/* RED-PEN. Formally speaking, we have broken TCP state
2402 		 * machine. State transitions:
2403 		 *
2404 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2405 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2406 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2407 		 *
2408 		 * are legal only when FIN has been sent (i.e. in window),
2409 		 * rather than queued out of window. Purists blame.
2410 		 *
2411 		 * F.e. "RFC state" is ESTABLISHED,
2412 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2413 		 *
2414 		 * The visible declinations are that sometimes
2415 		 * we enter time-wait state, when it is not required really
2416 		 * (harmless), do not send active resets, when they are
2417 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2418 		 * they look as CLOSING or LAST_ACK for Linux)
2419 		 * Probably, I missed some more holelets.
2420 		 * 						--ANK
2421 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2422 		 * in a single packet! (May consider it later but will
2423 		 * probably need API support or TCP_CORK SYN-ACK until
2424 		 * data is written and socket is closed.)
2425 		 */
2426 		tcp_send_fin(sk);
2427 	}
2428 
2429 	sk_stream_wait_close(sk, timeout);
2430 
2431 adjudge_to_death:
2432 	state = sk->sk_state;
2433 	sock_hold(sk);
2434 	sock_orphan(sk);
2435 
2436 	local_bh_disable();
2437 	bh_lock_sock(sk);
2438 	/* remove backlog if any, without releasing ownership. */
2439 	__release_sock(sk);
2440 
2441 	percpu_counter_inc(sk->sk_prot->orphan_count);
2442 
2443 	/* Have we already been destroyed by a softirq or backlog? */
2444 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2445 		goto out;
2446 
2447 	/*	This is a (useful) BSD violating of the RFC. There is a
2448 	 *	problem with TCP as specified in that the other end could
2449 	 *	keep a socket open forever with no application left this end.
2450 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2451 	 *	our end. If they send after that then tough - BUT: long enough
2452 	 *	that we won't make the old 4*rto = almost no time - whoops
2453 	 *	reset mistake.
2454 	 *
2455 	 *	Nope, it was not mistake. It is really desired behaviour
2456 	 *	f.e. on http servers, when such sockets are useless, but
2457 	 *	consume significant resources. Let's do it with special
2458 	 *	linger2	option.					--ANK
2459 	 */
2460 
2461 	if (sk->sk_state == TCP_FIN_WAIT2) {
2462 		struct tcp_sock *tp = tcp_sk(sk);
2463 		if (tp->linger2 < 0) {
2464 			tcp_set_state(sk, TCP_CLOSE);
2465 			tcp_send_active_reset(sk, GFP_ATOMIC);
2466 			__NET_INC_STATS(sock_net(sk),
2467 					LINUX_MIB_TCPABORTONLINGER);
2468 		} else {
2469 			const int tmo = tcp_fin_time(sk);
2470 
2471 			if (tmo > TCP_TIMEWAIT_LEN) {
2472 				inet_csk_reset_keepalive_timer(sk,
2473 						tmo - TCP_TIMEWAIT_LEN);
2474 			} else {
2475 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2476 				goto out;
2477 			}
2478 		}
2479 	}
2480 	if (sk->sk_state != TCP_CLOSE) {
2481 		sk_mem_reclaim(sk);
2482 		if (tcp_check_oom(sk, 0)) {
2483 			tcp_set_state(sk, TCP_CLOSE);
2484 			tcp_send_active_reset(sk, GFP_ATOMIC);
2485 			__NET_INC_STATS(sock_net(sk),
2486 					LINUX_MIB_TCPABORTONMEMORY);
2487 		} else if (!check_net(sock_net(sk))) {
2488 			/* Not possible to send reset; just close */
2489 			tcp_set_state(sk, TCP_CLOSE);
2490 		}
2491 	}
2492 
2493 	if (sk->sk_state == TCP_CLOSE) {
2494 		struct request_sock *req;
2495 
2496 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2497 						lockdep_sock_is_held(sk));
2498 		/* We could get here with a non-NULL req if the socket is
2499 		 * aborted (e.g., closed with unread data) before 3WHS
2500 		 * finishes.
2501 		 */
2502 		if (req)
2503 			reqsk_fastopen_remove(sk, req, false);
2504 		inet_csk_destroy_sock(sk);
2505 	}
2506 	/* Otherwise, socket is reprieved until protocol close. */
2507 
2508 out:
2509 	bh_unlock_sock(sk);
2510 	local_bh_enable();
2511 	release_sock(sk);
2512 	sock_put(sk);
2513 }
2514 EXPORT_SYMBOL(tcp_close);
2515 
2516 /* These states need RST on ABORT according to RFC793 */
2517 
2518 static inline bool tcp_need_reset(int state)
2519 {
2520 	return (1 << state) &
2521 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2522 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2523 }
2524 
2525 static void tcp_rtx_queue_purge(struct sock *sk)
2526 {
2527 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2528 
2529 	while (p) {
2530 		struct sk_buff *skb = rb_to_skb(p);
2531 
2532 		p = rb_next(p);
2533 		/* Since we are deleting whole queue, no need to
2534 		 * list_del(&skb->tcp_tsorted_anchor)
2535 		 */
2536 		tcp_rtx_queue_unlink(skb, sk);
2537 		sk_wmem_free_skb(sk, skb);
2538 	}
2539 }
2540 
2541 void tcp_write_queue_purge(struct sock *sk)
2542 {
2543 	struct sk_buff *skb;
2544 
2545 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2546 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2547 		tcp_skb_tsorted_anchor_cleanup(skb);
2548 		sk_wmem_free_skb(sk, skb);
2549 	}
2550 	tcp_rtx_queue_purge(sk);
2551 	skb = sk->sk_tx_skb_cache;
2552 	if (skb) {
2553 		__kfree_skb(skb);
2554 		sk->sk_tx_skb_cache = NULL;
2555 	}
2556 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2557 	sk_mem_reclaim(sk);
2558 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2559 	tcp_sk(sk)->packets_out = 0;
2560 	inet_csk(sk)->icsk_backoff = 0;
2561 }
2562 
2563 int tcp_disconnect(struct sock *sk, int flags)
2564 {
2565 	struct inet_sock *inet = inet_sk(sk);
2566 	struct inet_connection_sock *icsk = inet_csk(sk);
2567 	struct tcp_sock *tp = tcp_sk(sk);
2568 	int old_state = sk->sk_state;
2569 	u32 seq;
2570 
2571 	if (old_state != TCP_CLOSE)
2572 		tcp_set_state(sk, TCP_CLOSE);
2573 
2574 	/* ABORT function of RFC793 */
2575 	if (old_state == TCP_LISTEN) {
2576 		inet_csk_listen_stop(sk);
2577 	} else if (unlikely(tp->repair)) {
2578 		sk->sk_err = ECONNABORTED;
2579 	} else if (tcp_need_reset(old_state) ||
2580 		   (tp->snd_nxt != tp->write_seq &&
2581 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2582 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2583 		 * states
2584 		 */
2585 		tcp_send_active_reset(sk, gfp_any());
2586 		sk->sk_err = ECONNRESET;
2587 	} else if (old_state == TCP_SYN_SENT)
2588 		sk->sk_err = ECONNRESET;
2589 
2590 	tcp_clear_xmit_timers(sk);
2591 	__skb_queue_purge(&sk->sk_receive_queue);
2592 	if (sk->sk_rx_skb_cache) {
2593 		__kfree_skb(sk->sk_rx_skb_cache);
2594 		sk->sk_rx_skb_cache = NULL;
2595 	}
2596 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2597 	tp->urg_data = 0;
2598 	tcp_write_queue_purge(sk);
2599 	tcp_fastopen_active_disable_ofo_check(sk);
2600 	skb_rbtree_purge(&tp->out_of_order_queue);
2601 
2602 	inet->inet_dport = 0;
2603 
2604 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2605 		inet_reset_saddr(sk);
2606 
2607 	sk->sk_shutdown = 0;
2608 	sock_reset_flag(sk, SOCK_DONE);
2609 	tp->srtt_us = 0;
2610 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2611 	tp->rcv_rtt_last_tsecr = 0;
2612 
2613 	seq = tp->write_seq + tp->max_window + 2;
2614 	if (!seq)
2615 		seq = 1;
2616 	WRITE_ONCE(tp->write_seq, seq);
2617 
2618 	icsk->icsk_backoff = 0;
2619 	tp->snd_cwnd = 2;
2620 	icsk->icsk_probes_out = 0;
2621 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2622 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2623 	tp->snd_cwnd = TCP_INIT_CWND;
2624 	tp->snd_cwnd_cnt = 0;
2625 	tp->window_clamp = 0;
2626 	tp->delivered_ce = 0;
2627 	tcp_set_ca_state(sk, TCP_CA_Open);
2628 	tp->is_sack_reneg = 0;
2629 	tcp_clear_retrans(tp);
2630 	inet_csk_delack_init(sk);
2631 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2632 	 * issue in __tcp_select_window()
2633 	 */
2634 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2635 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2636 	__sk_dst_reset(sk);
2637 	dst_release(sk->sk_rx_dst);
2638 	sk->sk_rx_dst = NULL;
2639 	tcp_saved_syn_free(tp);
2640 	tp->compressed_ack = 0;
2641 	tp->bytes_sent = 0;
2642 	tp->bytes_acked = 0;
2643 	tp->bytes_received = 0;
2644 	tp->bytes_retrans = 0;
2645 	tp->duplicate_sack[0].start_seq = 0;
2646 	tp->duplicate_sack[0].end_seq = 0;
2647 	tp->dsack_dups = 0;
2648 	tp->reord_seen = 0;
2649 	tp->retrans_out = 0;
2650 	tp->sacked_out = 0;
2651 	tp->tlp_high_seq = 0;
2652 	tp->last_oow_ack_time = 0;
2653 	/* There's a bubble in the pipe until at least the first ACK. */
2654 	tp->app_limited = ~0U;
2655 	tp->rack.mstamp = 0;
2656 	tp->rack.advanced = 0;
2657 	tp->rack.reo_wnd_steps = 1;
2658 	tp->rack.last_delivered = 0;
2659 	tp->rack.reo_wnd_persist = 0;
2660 	tp->rack.dsack_seen = 0;
2661 	tp->syn_data_acked = 0;
2662 	tp->rx_opt.saw_tstamp = 0;
2663 	tp->rx_opt.dsack = 0;
2664 	tp->rx_opt.num_sacks = 0;
2665 	tp->rcv_ooopack = 0;
2666 
2667 
2668 	/* Clean up fastopen related fields */
2669 	tcp_free_fastopen_req(tp);
2670 	inet->defer_connect = 0;
2671 	tp->fastopen_client_fail = 0;
2672 
2673 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2674 
2675 	if (sk->sk_frag.page) {
2676 		put_page(sk->sk_frag.page);
2677 		sk->sk_frag.page = NULL;
2678 		sk->sk_frag.offset = 0;
2679 	}
2680 
2681 	sk->sk_error_report(sk);
2682 	return 0;
2683 }
2684 EXPORT_SYMBOL(tcp_disconnect);
2685 
2686 static inline bool tcp_can_repair_sock(const struct sock *sk)
2687 {
2688 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2689 		(sk->sk_state != TCP_LISTEN);
2690 }
2691 
2692 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2693 {
2694 	struct tcp_repair_window opt;
2695 
2696 	if (!tp->repair)
2697 		return -EPERM;
2698 
2699 	if (len != sizeof(opt))
2700 		return -EINVAL;
2701 
2702 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2703 		return -EFAULT;
2704 
2705 	if (opt.max_window < opt.snd_wnd)
2706 		return -EINVAL;
2707 
2708 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2709 		return -EINVAL;
2710 
2711 	if (after(opt.rcv_wup, tp->rcv_nxt))
2712 		return -EINVAL;
2713 
2714 	tp->snd_wl1	= opt.snd_wl1;
2715 	tp->snd_wnd	= opt.snd_wnd;
2716 	tp->max_window	= opt.max_window;
2717 
2718 	tp->rcv_wnd	= opt.rcv_wnd;
2719 	tp->rcv_wup	= opt.rcv_wup;
2720 
2721 	return 0;
2722 }
2723 
2724 static int tcp_repair_options_est(struct sock *sk,
2725 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2726 {
2727 	struct tcp_sock *tp = tcp_sk(sk);
2728 	struct tcp_repair_opt opt;
2729 
2730 	while (len >= sizeof(opt)) {
2731 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2732 			return -EFAULT;
2733 
2734 		optbuf++;
2735 		len -= sizeof(opt);
2736 
2737 		switch (opt.opt_code) {
2738 		case TCPOPT_MSS:
2739 			tp->rx_opt.mss_clamp = opt.opt_val;
2740 			tcp_mtup_init(sk);
2741 			break;
2742 		case TCPOPT_WINDOW:
2743 			{
2744 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2745 				u16 rcv_wscale = opt.opt_val >> 16;
2746 
2747 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2748 					return -EFBIG;
2749 
2750 				tp->rx_opt.snd_wscale = snd_wscale;
2751 				tp->rx_opt.rcv_wscale = rcv_wscale;
2752 				tp->rx_opt.wscale_ok = 1;
2753 			}
2754 			break;
2755 		case TCPOPT_SACK_PERM:
2756 			if (opt.opt_val != 0)
2757 				return -EINVAL;
2758 
2759 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2760 			break;
2761 		case TCPOPT_TIMESTAMP:
2762 			if (opt.opt_val != 0)
2763 				return -EINVAL;
2764 
2765 			tp->rx_opt.tstamp_ok = 1;
2766 			break;
2767 		}
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2774 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2775 
2776 static void tcp_enable_tx_delay(void)
2777 {
2778 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2779 		static int __tcp_tx_delay_enabled = 0;
2780 
2781 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2782 			static_branch_enable(&tcp_tx_delay_enabled);
2783 			pr_info("TCP_TX_DELAY enabled\n");
2784 		}
2785 	}
2786 }
2787 
2788 /*
2789  *	Socket option code for TCP.
2790  */
2791 static int do_tcp_setsockopt(struct sock *sk, int level,
2792 		int optname, char __user *optval, unsigned int optlen)
2793 {
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 	struct inet_connection_sock *icsk = inet_csk(sk);
2796 	struct net *net = sock_net(sk);
2797 	int val;
2798 	int err = 0;
2799 
2800 	/* These are data/string values, all the others are ints */
2801 	switch (optname) {
2802 	case TCP_CONGESTION: {
2803 		char name[TCP_CA_NAME_MAX];
2804 
2805 		if (optlen < 1)
2806 			return -EINVAL;
2807 
2808 		val = strncpy_from_user(name, optval,
2809 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2810 		if (val < 0)
2811 			return -EFAULT;
2812 		name[val] = 0;
2813 
2814 		lock_sock(sk);
2815 		err = tcp_set_congestion_control(sk, name, true, true,
2816 						 ns_capable(sock_net(sk)->user_ns,
2817 							    CAP_NET_ADMIN));
2818 		release_sock(sk);
2819 		return err;
2820 	}
2821 	case TCP_ULP: {
2822 		char name[TCP_ULP_NAME_MAX];
2823 
2824 		if (optlen < 1)
2825 			return -EINVAL;
2826 
2827 		val = strncpy_from_user(name, optval,
2828 					min_t(long, TCP_ULP_NAME_MAX - 1,
2829 					      optlen));
2830 		if (val < 0)
2831 			return -EFAULT;
2832 		name[val] = 0;
2833 
2834 		lock_sock(sk);
2835 		err = tcp_set_ulp(sk, name);
2836 		release_sock(sk);
2837 		return err;
2838 	}
2839 	case TCP_FASTOPEN_KEY: {
2840 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
2841 		__u8 *backup_key = NULL;
2842 
2843 		/* Allow a backup key as well to facilitate key rotation
2844 		 * First key is the active one.
2845 		 */
2846 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
2847 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
2848 			return -EINVAL;
2849 
2850 		if (copy_from_user(key, optval, optlen))
2851 			return -EFAULT;
2852 
2853 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
2854 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
2855 
2856 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
2857 	}
2858 	default:
2859 		/* fallthru */
2860 		break;
2861 	}
2862 
2863 	if (optlen < sizeof(int))
2864 		return -EINVAL;
2865 
2866 	if (get_user(val, (int __user *)optval))
2867 		return -EFAULT;
2868 
2869 	lock_sock(sk);
2870 
2871 	switch (optname) {
2872 	case TCP_MAXSEG:
2873 		/* Values greater than interface MTU won't take effect. However
2874 		 * at the point when this call is done we typically don't yet
2875 		 * know which interface is going to be used
2876 		 */
2877 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2878 			err = -EINVAL;
2879 			break;
2880 		}
2881 		tp->rx_opt.user_mss = val;
2882 		break;
2883 
2884 	case TCP_NODELAY:
2885 		if (val) {
2886 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2887 			 * this option on corked socket is remembered, but
2888 			 * it is not activated until cork is cleared.
2889 			 *
2890 			 * However, when TCP_NODELAY is set we make
2891 			 * an explicit push, which overrides even TCP_CORK
2892 			 * for currently queued segments.
2893 			 */
2894 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2895 			tcp_push_pending_frames(sk);
2896 		} else {
2897 			tp->nonagle &= ~TCP_NAGLE_OFF;
2898 		}
2899 		break;
2900 
2901 	case TCP_THIN_LINEAR_TIMEOUTS:
2902 		if (val < 0 || val > 1)
2903 			err = -EINVAL;
2904 		else
2905 			tp->thin_lto = val;
2906 		break;
2907 
2908 	case TCP_THIN_DUPACK:
2909 		if (val < 0 || val > 1)
2910 			err = -EINVAL;
2911 		break;
2912 
2913 	case TCP_REPAIR:
2914 		if (!tcp_can_repair_sock(sk))
2915 			err = -EPERM;
2916 		else if (val == TCP_REPAIR_ON) {
2917 			tp->repair = 1;
2918 			sk->sk_reuse = SK_FORCE_REUSE;
2919 			tp->repair_queue = TCP_NO_QUEUE;
2920 		} else if (val == TCP_REPAIR_OFF) {
2921 			tp->repair = 0;
2922 			sk->sk_reuse = SK_NO_REUSE;
2923 			tcp_send_window_probe(sk);
2924 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
2925 			tp->repair = 0;
2926 			sk->sk_reuse = SK_NO_REUSE;
2927 		} else
2928 			err = -EINVAL;
2929 
2930 		break;
2931 
2932 	case TCP_REPAIR_QUEUE:
2933 		if (!tp->repair)
2934 			err = -EPERM;
2935 		else if ((unsigned int)val < TCP_QUEUES_NR)
2936 			tp->repair_queue = val;
2937 		else
2938 			err = -EINVAL;
2939 		break;
2940 
2941 	case TCP_QUEUE_SEQ:
2942 		if (sk->sk_state != TCP_CLOSE)
2943 			err = -EPERM;
2944 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2945 			WRITE_ONCE(tp->write_seq, val);
2946 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2947 			WRITE_ONCE(tp->rcv_nxt, val);
2948 		else
2949 			err = -EINVAL;
2950 		break;
2951 
2952 	case TCP_REPAIR_OPTIONS:
2953 		if (!tp->repair)
2954 			err = -EINVAL;
2955 		else if (sk->sk_state == TCP_ESTABLISHED)
2956 			err = tcp_repair_options_est(sk,
2957 					(struct tcp_repair_opt __user *)optval,
2958 					optlen);
2959 		else
2960 			err = -EPERM;
2961 		break;
2962 
2963 	case TCP_CORK:
2964 		/* When set indicates to always queue non-full frames.
2965 		 * Later the user clears this option and we transmit
2966 		 * any pending partial frames in the queue.  This is
2967 		 * meant to be used alongside sendfile() to get properly
2968 		 * filled frames when the user (for example) must write
2969 		 * out headers with a write() call first and then use
2970 		 * sendfile to send out the data parts.
2971 		 *
2972 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2973 		 * stronger than TCP_NODELAY.
2974 		 */
2975 		if (val) {
2976 			tp->nonagle |= TCP_NAGLE_CORK;
2977 		} else {
2978 			tp->nonagle &= ~TCP_NAGLE_CORK;
2979 			if (tp->nonagle&TCP_NAGLE_OFF)
2980 				tp->nonagle |= TCP_NAGLE_PUSH;
2981 			tcp_push_pending_frames(sk);
2982 		}
2983 		break;
2984 
2985 	case TCP_KEEPIDLE:
2986 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2987 			err = -EINVAL;
2988 		else {
2989 			tp->keepalive_time = val * HZ;
2990 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2991 			    !((1 << sk->sk_state) &
2992 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2993 				u32 elapsed = keepalive_time_elapsed(tp);
2994 				if (tp->keepalive_time > elapsed)
2995 					elapsed = tp->keepalive_time - elapsed;
2996 				else
2997 					elapsed = 0;
2998 				inet_csk_reset_keepalive_timer(sk, elapsed);
2999 			}
3000 		}
3001 		break;
3002 	case TCP_KEEPINTVL:
3003 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3004 			err = -EINVAL;
3005 		else
3006 			tp->keepalive_intvl = val * HZ;
3007 		break;
3008 	case TCP_KEEPCNT:
3009 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3010 			err = -EINVAL;
3011 		else
3012 			tp->keepalive_probes = val;
3013 		break;
3014 	case TCP_SYNCNT:
3015 		if (val < 1 || val > MAX_TCP_SYNCNT)
3016 			err = -EINVAL;
3017 		else
3018 			icsk->icsk_syn_retries = val;
3019 		break;
3020 
3021 	case TCP_SAVE_SYN:
3022 		if (val < 0 || val > 1)
3023 			err = -EINVAL;
3024 		else
3025 			tp->save_syn = val;
3026 		break;
3027 
3028 	case TCP_LINGER2:
3029 		if (val < 0)
3030 			tp->linger2 = -1;
3031 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
3032 			tp->linger2 = 0;
3033 		else
3034 			tp->linger2 = val * HZ;
3035 		break;
3036 
3037 	case TCP_DEFER_ACCEPT:
3038 		/* Translate value in seconds to number of retransmits */
3039 		icsk->icsk_accept_queue.rskq_defer_accept =
3040 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3041 					TCP_RTO_MAX / HZ);
3042 		break;
3043 
3044 	case TCP_WINDOW_CLAMP:
3045 		if (!val) {
3046 			if (sk->sk_state != TCP_CLOSE) {
3047 				err = -EINVAL;
3048 				break;
3049 			}
3050 			tp->window_clamp = 0;
3051 		} else
3052 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3053 						SOCK_MIN_RCVBUF / 2 : val;
3054 		break;
3055 
3056 	case TCP_QUICKACK:
3057 		if (!val) {
3058 			inet_csk_enter_pingpong_mode(sk);
3059 		} else {
3060 			inet_csk_exit_pingpong_mode(sk);
3061 			if ((1 << sk->sk_state) &
3062 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3063 			    inet_csk_ack_scheduled(sk)) {
3064 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
3065 				tcp_cleanup_rbuf(sk, 1);
3066 				if (!(val & 1))
3067 					inet_csk_enter_pingpong_mode(sk);
3068 			}
3069 		}
3070 		break;
3071 
3072 #ifdef CONFIG_TCP_MD5SIG
3073 	case TCP_MD5SIG:
3074 	case TCP_MD5SIG_EXT:
3075 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
3076 			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3077 		else
3078 			err = -EINVAL;
3079 		break;
3080 #endif
3081 	case TCP_USER_TIMEOUT:
3082 		/* Cap the max time in ms TCP will retry or probe the window
3083 		 * before giving up and aborting (ETIMEDOUT) a connection.
3084 		 */
3085 		if (val < 0)
3086 			err = -EINVAL;
3087 		else
3088 			icsk->icsk_user_timeout = val;
3089 		break;
3090 
3091 	case TCP_FASTOPEN:
3092 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3093 		    TCPF_LISTEN))) {
3094 			tcp_fastopen_init_key_once(net);
3095 
3096 			fastopen_queue_tune(sk, val);
3097 		} else {
3098 			err = -EINVAL;
3099 		}
3100 		break;
3101 	case TCP_FASTOPEN_CONNECT:
3102 		if (val > 1 || val < 0) {
3103 			err = -EINVAL;
3104 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3105 			if (sk->sk_state == TCP_CLOSE)
3106 				tp->fastopen_connect = val;
3107 			else
3108 				err = -EINVAL;
3109 		} else {
3110 			err = -EOPNOTSUPP;
3111 		}
3112 		break;
3113 	case TCP_FASTOPEN_NO_COOKIE:
3114 		if (val > 1 || val < 0)
3115 			err = -EINVAL;
3116 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3117 			err = -EINVAL;
3118 		else
3119 			tp->fastopen_no_cookie = val;
3120 		break;
3121 	case TCP_TIMESTAMP:
3122 		if (!tp->repair)
3123 			err = -EPERM;
3124 		else
3125 			tp->tsoffset = val - tcp_time_stamp_raw();
3126 		break;
3127 	case TCP_REPAIR_WINDOW:
3128 		err = tcp_repair_set_window(tp, optval, optlen);
3129 		break;
3130 	case TCP_NOTSENT_LOWAT:
3131 		tp->notsent_lowat = val;
3132 		sk->sk_write_space(sk);
3133 		break;
3134 	case TCP_INQ:
3135 		if (val > 1 || val < 0)
3136 			err = -EINVAL;
3137 		else
3138 			tp->recvmsg_inq = val;
3139 		break;
3140 	case TCP_TX_DELAY:
3141 		if (val)
3142 			tcp_enable_tx_delay();
3143 		tp->tcp_tx_delay = val;
3144 		break;
3145 	default:
3146 		err = -ENOPROTOOPT;
3147 		break;
3148 	}
3149 
3150 	release_sock(sk);
3151 	return err;
3152 }
3153 
3154 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
3155 		   unsigned int optlen)
3156 {
3157 	const struct inet_connection_sock *icsk = inet_csk(sk);
3158 
3159 	if (level != SOL_TCP)
3160 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3161 						     optval, optlen);
3162 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3163 }
3164 EXPORT_SYMBOL(tcp_setsockopt);
3165 
3166 #ifdef CONFIG_COMPAT
3167 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
3168 			  char __user *optval, unsigned int optlen)
3169 {
3170 	if (level != SOL_TCP)
3171 		return inet_csk_compat_setsockopt(sk, level, optname,
3172 						  optval, optlen);
3173 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3174 }
3175 EXPORT_SYMBOL(compat_tcp_setsockopt);
3176 #endif
3177 
3178 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3179 				      struct tcp_info *info)
3180 {
3181 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3182 	enum tcp_chrono i;
3183 
3184 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3185 		stats[i] = tp->chrono_stat[i - 1];
3186 		if (i == tp->chrono_type)
3187 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3188 		stats[i] *= USEC_PER_SEC / HZ;
3189 		total += stats[i];
3190 	}
3191 
3192 	info->tcpi_busy_time = total;
3193 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3194 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3195 }
3196 
3197 /* Return information about state of tcp endpoint in API format. */
3198 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3199 {
3200 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3201 	const struct inet_connection_sock *icsk = inet_csk(sk);
3202 	unsigned long rate;
3203 	u32 now;
3204 	u64 rate64;
3205 	bool slow;
3206 
3207 	memset(info, 0, sizeof(*info));
3208 	if (sk->sk_type != SOCK_STREAM)
3209 		return;
3210 
3211 	info->tcpi_state = inet_sk_state_load(sk);
3212 
3213 	/* Report meaningful fields for all TCP states, including listeners */
3214 	rate = READ_ONCE(sk->sk_pacing_rate);
3215 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3216 	info->tcpi_pacing_rate = rate64;
3217 
3218 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3219 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3220 	info->tcpi_max_pacing_rate = rate64;
3221 
3222 	info->tcpi_reordering = tp->reordering;
3223 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3224 
3225 	if (info->tcpi_state == TCP_LISTEN) {
3226 		/* listeners aliased fields :
3227 		 * tcpi_unacked -> Number of children ready for accept()
3228 		 * tcpi_sacked  -> max backlog
3229 		 */
3230 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3231 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3232 		return;
3233 	}
3234 
3235 	slow = lock_sock_fast(sk);
3236 
3237 	info->tcpi_ca_state = icsk->icsk_ca_state;
3238 	info->tcpi_retransmits = icsk->icsk_retransmits;
3239 	info->tcpi_probes = icsk->icsk_probes_out;
3240 	info->tcpi_backoff = icsk->icsk_backoff;
3241 
3242 	if (tp->rx_opt.tstamp_ok)
3243 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3244 	if (tcp_is_sack(tp))
3245 		info->tcpi_options |= TCPI_OPT_SACK;
3246 	if (tp->rx_opt.wscale_ok) {
3247 		info->tcpi_options |= TCPI_OPT_WSCALE;
3248 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3249 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3250 	}
3251 
3252 	if (tp->ecn_flags & TCP_ECN_OK)
3253 		info->tcpi_options |= TCPI_OPT_ECN;
3254 	if (tp->ecn_flags & TCP_ECN_SEEN)
3255 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3256 	if (tp->syn_data_acked)
3257 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3258 
3259 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3260 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3261 	info->tcpi_snd_mss = tp->mss_cache;
3262 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3263 
3264 	info->tcpi_unacked = tp->packets_out;
3265 	info->tcpi_sacked = tp->sacked_out;
3266 
3267 	info->tcpi_lost = tp->lost_out;
3268 	info->tcpi_retrans = tp->retrans_out;
3269 
3270 	now = tcp_jiffies32;
3271 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3272 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3273 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3274 
3275 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3276 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3277 	info->tcpi_rtt = tp->srtt_us >> 3;
3278 	info->tcpi_rttvar = tp->mdev_us >> 2;
3279 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3280 	info->tcpi_advmss = tp->advmss;
3281 
3282 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3283 	info->tcpi_rcv_space = tp->rcvq_space.space;
3284 
3285 	info->tcpi_total_retrans = tp->total_retrans;
3286 
3287 	info->tcpi_bytes_acked = tp->bytes_acked;
3288 	info->tcpi_bytes_received = tp->bytes_received;
3289 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3290 	tcp_get_info_chrono_stats(tp, info);
3291 
3292 	info->tcpi_segs_out = tp->segs_out;
3293 	info->tcpi_segs_in = tp->segs_in;
3294 
3295 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3296 	info->tcpi_data_segs_in = tp->data_segs_in;
3297 	info->tcpi_data_segs_out = tp->data_segs_out;
3298 
3299 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3300 	rate64 = tcp_compute_delivery_rate(tp);
3301 	if (rate64)
3302 		info->tcpi_delivery_rate = rate64;
3303 	info->tcpi_delivered = tp->delivered;
3304 	info->tcpi_delivered_ce = tp->delivered_ce;
3305 	info->tcpi_bytes_sent = tp->bytes_sent;
3306 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3307 	info->tcpi_dsack_dups = tp->dsack_dups;
3308 	info->tcpi_reord_seen = tp->reord_seen;
3309 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3310 	info->tcpi_snd_wnd = tp->snd_wnd;
3311 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3312 	unlock_sock_fast(sk, slow);
3313 }
3314 EXPORT_SYMBOL_GPL(tcp_get_info);
3315 
3316 static size_t tcp_opt_stats_get_size(void)
3317 {
3318 	return
3319 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3320 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3321 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3322 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3323 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3324 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3325 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3326 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3327 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3328 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3329 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3330 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3331 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3332 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3333 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3334 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3335 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3336 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3337 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3338 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3339 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3340 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3341 		0;
3342 }
3343 
3344 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
3345 {
3346 	const struct tcp_sock *tp = tcp_sk(sk);
3347 	struct sk_buff *stats;
3348 	struct tcp_info info;
3349 	unsigned long rate;
3350 	u64 rate64;
3351 
3352 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3353 	if (!stats)
3354 		return NULL;
3355 
3356 	tcp_get_info_chrono_stats(tp, &info);
3357 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3358 			  info.tcpi_busy_time, TCP_NLA_PAD);
3359 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3360 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3361 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3362 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3363 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3364 			  tp->data_segs_out, TCP_NLA_PAD);
3365 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3366 			  tp->total_retrans, TCP_NLA_PAD);
3367 
3368 	rate = READ_ONCE(sk->sk_pacing_rate);
3369 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3370 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3371 
3372 	rate64 = tcp_compute_delivery_rate(tp);
3373 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3374 
3375 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3376 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3377 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3378 
3379 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3380 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3381 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3382 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3383 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3384 
3385 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3386 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3387 
3388 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3389 			  TCP_NLA_PAD);
3390 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3391 			  TCP_NLA_PAD);
3392 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3393 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3394 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3395 
3396 	return stats;
3397 }
3398 
3399 static int do_tcp_getsockopt(struct sock *sk, int level,
3400 		int optname, char __user *optval, int __user *optlen)
3401 {
3402 	struct inet_connection_sock *icsk = inet_csk(sk);
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 	struct net *net = sock_net(sk);
3405 	int val, len;
3406 
3407 	if (get_user(len, optlen))
3408 		return -EFAULT;
3409 
3410 	len = min_t(unsigned int, len, sizeof(int));
3411 
3412 	if (len < 0)
3413 		return -EINVAL;
3414 
3415 	switch (optname) {
3416 	case TCP_MAXSEG:
3417 		val = tp->mss_cache;
3418 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3419 			val = tp->rx_opt.user_mss;
3420 		if (tp->repair)
3421 			val = tp->rx_opt.mss_clamp;
3422 		break;
3423 	case TCP_NODELAY:
3424 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3425 		break;
3426 	case TCP_CORK:
3427 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3428 		break;
3429 	case TCP_KEEPIDLE:
3430 		val = keepalive_time_when(tp) / HZ;
3431 		break;
3432 	case TCP_KEEPINTVL:
3433 		val = keepalive_intvl_when(tp) / HZ;
3434 		break;
3435 	case TCP_KEEPCNT:
3436 		val = keepalive_probes(tp);
3437 		break;
3438 	case TCP_SYNCNT:
3439 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3440 		break;
3441 	case TCP_LINGER2:
3442 		val = tp->linger2;
3443 		if (val >= 0)
3444 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3445 		break;
3446 	case TCP_DEFER_ACCEPT:
3447 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3448 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3449 		break;
3450 	case TCP_WINDOW_CLAMP:
3451 		val = tp->window_clamp;
3452 		break;
3453 	case TCP_INFO: {
3454 		struct tcp_info info;
3455 
3456 		if (get_user(len, optlen))
3457 			return -EFAULT;
3458 
3459 		tcp_get_info(sk, &info);
3460 
3461 		len = min_t(unsigned int, len, sizeof(info));
3462 		if (put_user(len, optlen))
3463 			return -EFAULT;
3464 		if (copy_to_user(optval, &info, len))
3465 			return -EFAULT;
3466 		return 0;
3467 	}
3468 	case TCP_CC_INFO: {
3469 		const struct tcp_congestion_ops *ca_ops;
3470 		union tcp_cc_info info;
3471 		size_t sz = 0;
3472 		int attr;
3473 
3474 		if (get_user(len, optlen))
3475 			return -EFAULT;
3476 
3477 		ca_ops = icsk->icsk_ca_ops;
3478 		if (ca_ops && ca_ops->get_info)
3479 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3480 
3481 		len = min_t(unsigned int, len, sz);
3482 		if (put_user(len, optlen))
3483 			return -EFAULT;
3484 		if (copy_to_user(optval, &info, len))
3485 			return -EFAULT;
3486 		return 0;
3487 	}
3488 	case TCP_QUICKACK:
3489 		val = !inet_csk_in_pingpong_mode(sk);
3490 		break;
3491 
3492 	case TCP_CONGESTION:
3493 		if (get_user(len, optlen))
3494 			return -EFAULT;
3495 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3496 		if (put_user(len, optlen))
3497 			return -EFAULT;
3498 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3499 			return -EFAULT;
3500 		return 0;
3501 
3502 	case TCP_ULP:
3503 		if (get_user(len, optlen))
3504 			return -EFAULT;
3505 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3506 		if (!icsk->icsk_ulp_ops) {
3507 			if (put_user(0, optlen))
3508 				return -EFAULT;
3509 			return 0;
3510 		}
3511 		if (put_user(len, optlen))
3512 			return -EFAULT;
3513 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3514 			return -EFAULT;
3515 		return 0;
3516 
3517 	case TCP_FASTOPEN_KEY: {
3518 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3519 		struct tcp_fastopen_context *ctx;
3520 		unsigned int key_len = 0;
3521 
3522 		if (get_user(len, optlen))
3523 			return -EFAULT;
3524 
3525 		rcu_read_lock();
3526 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
3527 		if (ctx) {
3528 			key_len = tcp_fastopen_context_len(ctx) *
3529 					TCP_FASTOPEN_KEY_LENGTH;
3530 			memcpy(&key[0], &ctx->key[0], key_len);
3531 		}
3532 		rcu_read_unlock();
3533 
3534 		len = min_t(unsigned int, len, key_len);
3535 		if (put_user(len, optlen))
3536 			return -EFAULT;
3537 		if (copy_to_user(optval, key, len))
3538 			return -EFAULT;
3539 		return 0;
3540 	}
3541 	case TCP_THIN_LINEAR_TIMEOUTS:
3542 		val = tp->thin_lto;
3543 		break;
3544 
3545 	case TCP_THIN_DUPACK:
3546 		val = 0;
3547 		break;
3548 
3549 	case TCP_REPAIR:
3550 		val = tp->repair;
3551 		break;
3552 
3553 	case TCP_REPAIR_QUEUE:
3554 		if (tp->repair)
3555 			val = tp->repair_queue;
3556 		else
3557 			return -EINVAL;
3558 		break;
3559 
3560 	case TCP_REPAIR_WINDOW: {
3561 		struct tcp_repair_window opt;
3562 
3563 		if (get_user(len, optlen))
3564 			return -EFAULT;
3565 
3566 		if (len != sizeof(opt))
3567 			return -EINVAL;
3568 
3569 		if (!tp->repair)
3570 			return -EPERM;
3571 
3572 		opt.snd_wl1	= tp->snd_wl1;
3573 		opt.snd_wnd	= tp->snd_wnd;
3574 		opt.max_window	= tp->max_window;
3575 		opt.rcv_wnd	= tp->rcv_wnd;
3576 		opt.rcv_wup	= tp->rcv_wup;
3577 
3578 		if (copy_to_user(optval, &opt, len))
3579 			return -EFAULT;
3580 		return 0;
3581 	}
3582 	case TCP_QUEUE_SEQ:
3583 		if (tp->repair_queue == TCP_SEND_QUEUE)
3584 			val = tp->write_seq;
3585 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3586 			val = tp->rcv_nxt;
3587 		else
3588 			return -EINVAL;
3589 		break;
3590 
3591 	case TCP_USER_TIMEOUT:
3592 		val = icsk->icsk_user_timeout;
3593 		break;
3594 
3595 	case TCP_FASTOPEN:
3596 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3597 		break;
3598 
3599 	case TCP_FASTOPEN_CONNECT:
3600 		val = tp->fastopen_connect;
3601 		break;
3602 
3603 	case TCP_FASTOPEN_NO_COOKIE:
3604 		val = tp->fastopen_no_cookie;
3605 		break;
3606 
3607 	case TCP_TX_DELAY:
3608 		val = tp->tcp_tx_delay;
3609 		break;
3610 
3611 	case TCP_TIMESTAMP:
3612 		val = tcp_time_stamp_raw() + tp->tsoffset;
3613 		break;
3614 	case TCP_NOTSENT_LOWAT:
3615 		val = tp->notsent_lowat;
3616 		break;
3617 	case TCP_INQ:
3618 		val = tp->recvmsg_inq;
3619 		break;
3620 	case TCP_SAVE_SYN:
3621 		val = tp->save_syn;
3622 		break;
3623 	case TCP_SAVED_SYN: {
3624 		if (get_user(len, optlen))
3625 			return -EFAULT;
3626 
3627 		lock_sock(sk);
3628 		if (tp->saved_syn) {
3629 			if (len < tp->saved_syn[0]) {
3630 				if (put_user(tp->saved_syn[0], optlen)) {
3631 					release_sock(sk);
3632 					return -EFAULT;
3633 				}
3634 				release_sock(sk);
3635 				return -EINVAL;
3636 			}
3637 			len = tp->saved_syn[0];
3638 			if (put_user(len, optlen)) {
3639 				release_sock(sk);
3640 				return -EFAULT;
3641 			}
3642 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3643 				release_sock(sk);
3644 				return -EFAULT;
3645 			}
3646 			tcp_saved_syn_free(tp);
3647 			release_sock(sk);
3648 		} else {
3649 			release_sock(sk);
3650 			len = 0;
3651 			if (put_user(len, optlen))
3652 				return -EFAULT;
3653 		}
3654 		return 0;
3655 	}
3656 #ifdef CONFIG_MMU
3657 	case TCP_ZEROCOPY_RECEIVE: {
3658 		struct tcp_zerocopy_receive zc;
3659 		int err;
3660 
3661 		if (get_user(len, optlen))
3662 			return -EFAULT;
3663 		if (len != sizeof(zc))
3664 			return -EINVAL;
3665 		if (copy_from_user(&zc, optval, len))
3666 			return -EFAULT;
3667 		lock_sock(sk);
3668 		err = tcp_zerocopy_receive(sk, &zc);
3669 		release_sock(sk);
3670 		if (!err && copy_to_user(optval, &zc, len))
3671 			err = -EFAULT;
3672 		return err;
3673 	}
3674 #endif
3675 	default:
3676 		return -ENOPROTOOPT;
3677 	}
3678 
3679 	if (put_user(len, optlen))
3680 		return -EFAULT;
3681 	if (copy_to_user(optval, &val, len))
3682 		return -EFAULT;
3683 	return 0;
3684 }
3685 
3686 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3687 		   int __user *optlen)
3688 {
3689 	struct inet_connection_sock *icsk = inet_csk(sk);
3690 
3691 	if (level != SOL_TCP)
3692 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3693 						     optval, optlen);
3694 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3695 }
3696 EXPORT_SYMBOL(tcp_getsockopt);
3697 
3698 #ifdef CONFIG_COMPAT
3699 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3700 			  char __user *optval, int __user *optlen)
3701 {
3702 	if (level != SOL_TCP)
3703 		return inet_csk_compat_getsockopt(sk, level, optname,
3704 						  optval, optlen);
3705 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3706 }
3707 EXPORT_SYMBOL(compat_tcp_getsockopt);
3708 #endif
3709 
3710 #ifdef CONFIG_TCP_MD5SIG
3711 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3712 static DEFINE_MUTEX(tcp_md5sig_mutex);
3713 static bool tcp_md5sig_pool_populated = false;
3714 
3715 static void __tcp_alloc_md5sig_pool(void)
3716 {
3717 	struct crypto_ahash *hash;
3718 	int cpu;
3719 
3720 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3721 	if (IS_ERR(hash))
3722 		return;
3723 
3724 	for_each_possible_cpu(cpu) {
3725 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3726 		struct ahash_request *req;
3727 
3728 		if (!scratch) {
3729 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3730 					       sizeof(struct tcphdr),
3731 					       GFP_KERNEL,
3732 					       cpu_to_node(cpu));
3733 			if (!scratch)
3734 				return;
3735 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3736 		}
3737 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3738 			continue;
3739 
3740 		req = ahash_request_alloc(hash, GFP_KERNEL);
3741 		if (!req)
3742 			return;
3743 
3744 		ahash_request_set_callback(req, 0, NULL, NULL);
3745 
3746 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3747 	}
3748 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3749 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3750 	 */
3751 	smp_wmb();
3752 	tcp_md5sig_pool_populated = true;
3753 }
3754 
3755 bool tcp_alloc_md5sig_pool(void)
3756 {
3757 	if (unlikely(!tcp_md5sig_pool_populated)) {
3758 		mutex_lock(&tcp_md5sig_mutex);
3759 
3760 		if (!tcp_md5sig_pool_populated) {
3761 			__tcp_alloc_md5sig_pool();
3762 			if (tcp_md5sig_pool_populated)
3763 				static_branch_inc(&tcp_md5_needed);
3764 		}
3765 
3766 		mutex_unlock(&tcp_md5sig_mutex);
3767 	}
3768 	return tcp_md5sig_pool_populated;
3769 }
3770 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3771 
3772 
3773 /**
3774  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3775  *
3776  *	We use percpu structure, so if we succeed, we exit with preemption
3777  *	and BH disabled, to make sure another thread or softirq handling
3778  *	wont try to get same context.
3779  */
3780 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3781 {
3782 	local_bh_disable();
3783 
3784 	if (tcp_md5sig_pool_populated) {
3785 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3786 		smp_rmb();
3787 		return this_cpu_ptr(&tcp_md5sig_pool);
3788 	}
3789 	local_bh_enable();
3790 	return NULL;
3791 }
3792 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3793 
3794 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3795 			  const struct sk_buff *skb, unsigned int header_len)
3796 {
3797 	struct scatterlist sg;
3798 	const struct tcphdr *tp = tcp_hdr(skb);
3799 	struct ahash_request *req = hp->md5_req;
3800 	unsigned int i;
3801 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3802 					   skb_headlen(skb) - header_len : 0;
3803 	const struct skb_shared_info *shi = skb_shinfo(skb);
3804 	struct sk_buff *frag_iter;
3805 
3806 	sg_init_table(&sg, 1);
3807 
3808 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3809 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3810 	if (crypto_ahash_update(req))
3811 		return 1;
3812 
3813 	for (i = 0; i < shi->nr_frags; ++i) {
3814 		const skb_frag_t *f = &shi->frags[i];
3815 		unsigned int offset = skb_frag_off(f);
3816 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3817 
3818 		sg_set_page(&sg, page, skb_frag_size(f),
3819 			    offset_in_page(offset));
3820 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3821 		if (crypto_ahash_update(req))
3822 			return 1;
3823 	}
3824 
3825 	skb_walk_frags(skb, frag_iter)
3826 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3827 			return 1;
3828 
3829 	return 0;
3830 }
3831 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3832 
3833 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3834 {
3835 	struct scatterlist sg;
3836 
3837 	sg_init_one(&sg, key->key, key->keylen);
3838 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3839 	return crypto_ahash_update(hp->md5_req);
3840 }
3841 EXPORT_SYMBOL(tcp_md5_hash_key);
3842 
3843 #endif
3844 
3845 void tcp_done(struct sock *sk)
3846 {
3847 	struct request_sock *req;
3848 
3849 	/* We might be called with a new socket, after
3850 	 * inet_csk_prepare_forced_close() has been called
3851 	 * so we can not use lockdep_sock_is_held(sk)
3852 	 */
3853 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
3854 
3855 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3856 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3857 
3858 	tcp_set_state(sk, TCP_CLOSE);
3859 	tcp_clear_xmit_timers(sk);
3860 	if (req)
3861 		reqsk_fastopen_remove(sk, req, false);
3862 
3863 	sk->sk_shutdown = SHUTDOWN_MASK;
3864 
3865 	if (!sock_flag(sk, SOCK_DEAD))
3866 		sk->sk_state_change(sk);
3867 	else
3868 		inet_csk_destroy_sock(sk);
3869 }
3870 EXPORT_SYMBOL_GPL(tcp_done);
3871 
3872 int tcp_abort(struct sock *sk, int err)
3873 {
3874 	if (!sk_fullsock(sk)) {
3875 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3876 			struct request_sock *req = inet_reqsk(sk);
3877 
3878 			local_bh_disable();
3879 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
3880 			local_bh_enable();
3881 			return 0;
3882 		}
3883 		return -EOPNOTSUPP;
3884 	}
3885 
3886 	/* Don't race with userspace socket closes such as tcp_close. */
3887 	lock_sock(sk);
3888 
3889 	if (sk->sk_state == TCP_LISTEN) {
3890 		tcp_set_state(sk, TCP_CLOSE);
3891 		inet_csk_listen_stop(sk);
3892 	}
3893 
3894 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3895 	local_bh_disable();
3896 	bh_lock_sock(sk);
3897 
3898 	if (!sock_flag(sk, SOCK_DEAD)) {
3899 		sk->sk_err = err;
3900 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3901 		smp_wmb();
3902 		sk->sk_error_report(sk);
3903 		if (tcp_need_reset(sk->sk_state))
3904 			tcp_send_active_reset(sk, GFP_ATOMIC);
3905 		tcp_done(sk);
3906 	}
3907 
3908 	bh_unlock_sock(sk);
3909 	local_bh_enable();
3910 	tcp_write_queue_purge(sk);
3911 	release_sock(sk);
3912 	return 0;
3913 }
3914 EXPORT_SYMBOL_GPL(tcp_abort);
3915 
3916 extern struct tcp_congestion_ops tcp_reno;
3917 
3918 static __initdata unsigned long thash_entries;
3919 static int __init set_thash_entries(char *str)
3920 {
3921 	ssize_t ret;
3922 
3923 	if (!str)
3924 		return 0;
3925 
3926 	ret = kstrtoul(str, 0, &thash_entries);
3927 	if (ret)
3928 		return 0;
3929 
3930 	return 1;
3931 }
3932 __setup("thash_entries=", set_thash_entries);
3933 
3934 static void __init tcp_init_mem(void)
3935 {
3936 	unsigned long limit = nr_free_buffer_pages() / 16;
3937 
3938 	limit = max(limit, 128UL);
3939 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3940 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3941 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3942 }
3943 
3944 void __init tcp_init(void)
3945 {
3946 	int max_rshare, max_wshare, cnt;
3947 	unsigned long limit;
3948 	unsigned int i;
3949 
3950 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
3951 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3952 		     FIELD_SIZEOF(struct sk_buff, cb));
3953 
3954 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3955 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3956 	inet_hashinfo_init(&tcp_hashinfo);
3957 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
3958 			    thash_entries, 21,  /* one slot per 2 MB*/
3959 			    0, 64 * 1024);
3960 	tcp_hashinfo.bind_bucket_cachep =
3961 		kmem_cache_create("tcp_bind_bucket",
3962 				  sizeof(struct inet_bind_bucket), 0,
3963 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3964 
3965 	/* Size and allocate the main established and bind bucket
3966 	 * hash tables.
3967 	 *
3968 	 * The methodology is similar to that of the buffer cache.
3969 	 */
3970 	tcp_hashinfo.ehash =
3971 		alloc_large_system_hash("TCP established",
3972 					sizeof(struct inet_ehash_bucket),
3973 					thash_entries,
3974 					17, /* one slot per 128 KB of memory */
3975 					0,
3976 					NULL,
3977 					&tcp_hashinfo.ehash_mask,
3978 					0,
3979 					thash_entries ? 0 : 512 * 1024);
3980 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3981 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3982 
3983 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3984 		panic("TCP: failed to alloc ehash_locks");
3985 	tcp_hashinfo.bhash =
3986 		alloc_large_system_hash("TCP bind",
3987 					sizeof(struct inet_bind_hashbucket),
3988 					tcp_hashinfo.ehash_mask + 1,
3989 					17, /* one slot per 128 KB of memory */
3990 					0,
3991 					&tcp_hashinfo.bhash_size,
3992 					NULL,
3993 					0,
3994 					64 * 1024);
3995 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3996 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3997 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3998 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3999 	}
4000 
4001 
4002 	cnt = tcp_hashinfo.ehash_mask + 1;
4003 	sysctl_tcp_max_orphans = cnt / 2;
4004 
4005 	tcp_init_mem();
4006 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4007 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4008 	max_wshare = min(4UL*1024*1024, limit);
4009 	max_rshare = min(6UL*1024*1024, limit);
4010 
4011 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4012 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4013 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4014 
4015 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4016 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4017 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4018 
4019 	pr_info("Hash tables configured (established %u bind %u)\n",
4020 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4021 
4022 	tcp_v4_init();
4023 	tcp_metrics_init();
4024 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4025 	tcp_tasklet_init();
4026 }
4027