xref: /openbmc/linux/net/ipv4/tcp.c (revision 2d6bed9c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287 
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290 
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293 
294 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296 
297 /*
298  * Current number of TCP sockets.
299  */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302 
303 /*
304  * TCP splice context
305  */
306 struct tcp_splice_state {
307 	struct pipe_inode_info *pipe;
308 	size_t len;
309 	unsigned int flags;
310 };
311 
312 /*
313  * Pressure flag: try to collapse.
314  * Technical note: it is used by multiple contexts non atomically.
315  * All the __sk_mem_schedule() is of this nature: accounting
316  * is strict, actions are advisory and have some latency.
317  */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320 
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 	if (!tcp_memory_pressure) {
324 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 		tcp_memory_pressure = 1;
326 	}
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 	u8 res = 0;
334 
335 	if (seconds > 0) {
336 		int period = timeout;
337 
338 		res = 1;
339 		while (seconds > period && res < 255) {
340 			res++;
341 			timeout <<= 1;
342 			if (timeout > rto_max)
343 				timeout = rto_max;
344 			period += timeout;
345 		}
346 	}
347 	return res;
348 }
349 
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 	int period = 0;
354 
355 	if (retrans > 0) {
356 		period = timeout;
357 		while (--retrans) {
358 			timeout <<= 1;
359 			if (timeout > rto_max)
360 				timeout = rto_max;
361 			period += timeout;
362 		}
363 	}
364 	return period;
365 }
366 
367 /* Address-family independent initialization for a tcp_sock.
368  *
369  * NOTE: A lot of things set to zero explicitly by call to
370  *       sk_alloc() so need not be done here.
371  */
372 void tcp_init_sock(struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	skb_queue_head_init(&tp->out_of_order_queue);
378 	tcp_init_xmit_timers(sk);
379 	tcp_prequeue_init(tp);
380 	INIT_LIST_HEAD(&tp->tsq_node);
381 
382 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 	tp->mdev = TCP_TIMEOUT_INIT;
384 
385 	/* So many TCP implementations out there (incorrectly) count the
386 	 * initial SYN frame in their delayed-ACK and congestion control
387 	 * algorithms that we must have the following bandaid to talk
388 	 * efficiently to them.  -DaveM
389 	 */
390 	tp->snd_cwnd = TCP_INIT_CWND;
391 
392 	/* See draft-stevens-tcpca-spec-01 for discussion of the
393 	 * initialization of these values.
394 	 */
395 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 	tp->snd_cwnd_clamp = ~0;
397 	tp->mss_cache = TCP_MSS_DEFAULT;
398 
399 	tp->reordering = sysctl_tcp_reordering;
400 	tcp_enable_early_retrans(tp);
401 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402 
403 	sk->sk_state = TCP_CLOSE;
404 
405 	sk->sk_write_space = sk_stream_write_space;
406 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407 
408 	icsk->icsk_sync_mss = tcp_sync_mss;
409 
410 	/* TCP Cookie Transactions */
411 	if (sysctl_tcp_cookie_size > 0) {
412 		/* Default, cookies without s_data_payload. */
413 		tp->cookie_values =
414 			kzalloc(sizeof(*tp->cookie_values),
415 				sk->sk_allocation);
416 		if (tp->cookie_values != NULL)
417 			kref_init(&tp->cookie_values->kref);
418 	}
419 	/* Presumed zeroed, in order of appearance:
420 	 *	cookie_in_always, cookie_out_never,
421 	 *	s_data_constant, s_data_in, s_data_out
422 	 */
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	sock_update_memcg(sk);
428 	sk_sockets_allocated_inc(sk);
429 	local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432 
433 /*
434  *	Wait for a TCP event.
435  *
436  *	Note that we don't need to lock the socket, as the upper poll layers
437  *	take care of normal races (between the test and the event) and we don't
438  *	go look at any of the socket buffers directly.
439  */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442 	unsigned int mask;
443 	struct sock *sk = sock->sk;
444 	const struct tcp_sock *tp = tcp_sk(sk);
445 
446 	sock_poll_wait(file, sk_sleep(sk), wait);
447 	if (sk->sk_state == TCP_LISTEN)
448 		return inet_csk_listen_poll(sk);
449 
450 	/* Socket is not locked. We are protected from async events
451 	 * by poll logic and correct handling of state changes
452 	 * made by other threads is impossible in any case.
453 	 */
454 
455 	mask = 0;
456 
457 	/*
458 	 * POLLHUP is certainly not done right. But poll() doesn't
459 	 * have a notion of HUP in just one direction, and for a
460 	 * socket the read side is more interesting.
461 	 *
462 	 * Some poll() documentation says that POLLHUP is incompatible
463 	 * with the POLLOUT/POLLWR flags, so somebody should check this
464 	 * all. But careful, it tends to be safer to return too many
465 	 * bits than too few, and you can easily break real applications
466 	 * if you don't tell them that something has hung up!
467 	 *
468 	 * Check-me.
469 	 *
470 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 	 * our fs/select.c). It means that after we received EOF,
472 	 * poll always returns immediately, making impossible poll() on write()
473 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 	 * if and only if shutdown has been made in both directions.
475 	 * Actually, it is interesting to look how Solaris and DUX
476 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 	 * then we could set it on SND_SHUTDOWN. BTW examples given
478 	 * in Stevens' books assume exactly this behaviour, it explains
479 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
480 	 *
481 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 	 * blocking on fresh not-connected or disconnected socket. --ANK
483 	 */
484 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 		mask |= POLLHUP;
486 	if (sk->sk_shutdown & RCV_SHUTDOWN)
487 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488 
489 	/* Connected or passive Fast Open socket? */
490 	if (sk->sk_state != TCP_SYN_SENT &&
491 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 		int target = sock_rcvlowat(sk, 0, INT_MAX);
493 
494 		if (tp->urg_seq == tp->copied_seq &&
495 		    !sock_flag(sk, SOCK_URGINLINE) &&
496 		    tp->urg_data)
497 			target++;
498 
499 		/* Potential race condition. If read of tp below will
500 		 * escape above sk->sk_state, we can be illegally awaken
501 		 * in SYN_* states. */
502 		if (tp->rcv_nxt - tp->copied_seq >= target)
503 			mask |= POLLIN | POLLRDNORM;
504 
505 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 				mask |= POLLOUT | POLLWRNORM;
508 			} else {  /* send SIGIO later */
509 				set_bit(SOCK_ASYNC_NOSPACE,
510 					&sk->sk_socket->flags);
511 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
512 
513 				/* Race breaker. If space is freed after
514 				 * wspace test but before the flags are set,
515 				 * IO signal will be lost.
516 				 */
517 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 					mask |= POLLOUT | POLLWRNORM;
519 			}
520 		} else
521 			mask |= POLLOUT | POLLWRNORM;
522 
523 		if (tp->urg_data & TCP_URG_VALID)
524 			mask |= POLLPRI;
525 	}
526 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
527 	smp_rmb();
528 	if (sk->sk_err)
529 		mask |= POLLERR;
530 
531 	return mask;
532 }
533 EXPORT_SYMBOL(tcp_poll);
534 
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
536 {
537 	struct tcp_sock *tp = tcp_sk(sk);
538 	int answ;
539 
540 	switch (cmd) {
541 	case SIOCINQ:
542 		if (sk->sk_state == TCP_LISTEN)
543 			return -EINVAL;
544 
545 		lock_sock(sk);
546 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
547 			answ = 0;
548 		else if (sock_flag(sk, SOCK_URGINLINE) ||
549 			 !tp->urg_data ||
550 			 before(tp->urg_seq, tp->copied_seq) ||
551 			 !before(tp->urg_seq, tp->rcv_nxt)) {
552 
553 			answ = tp->rcv_nxt - tp->copied_seq;
554 
555 			/* Subtract 1, if FIN was received */
556 			if (answ && sock_flag(sk, SOCK_DONE))
557 				answ--;
558 		} else
559 			answ = tp->urg_seq - tp->copied_seq;
560 		release_sock(sk);
561 		break;
562 	case SIOCATMARK:
563 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
564 		break;
565 	case SIOCOUTQ:
566 		if (sk->sk_state == TCP_LISTEN)
567 			return -EINVAL;
568 
569 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
570 			answ = 0;
571 		else
572 			answ = tp->write_seq - tp->snd_una;
573 		break;
574 	case SIOCOUTQNSD:
575 		if (sk->sk_state == TCP_LISTEN)
576 			return -EINVAL;
577 
578 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579 			answ = 0;
580 		else
581 			answ = tp->write_seq - tp->snd_nxt;
582 		break;
583 	default:
584 		return -ENOIOCTLCMD;
585 	}
586 
587 	return put_user(answ, (int __user *)arg);
588 }
589 EXPORT_SYMBOL(tcp_ioctl);
590 
591 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
592 {
593 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
594 	tp->pushed_seq = tp->write_seq;
595 }
596 
597 static inline bool forced_push(const struct tcp_sock *tp)
598 {
599 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
600 }
601 
602 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
606 
607 	skb->csum    = 0;
608 	tcb->seq     = tcb->end_seq = tp->write_seq;
609 	tcb->tcp_flags = TCPHDR_ACK;
610 	tcb->sacked  = 0;
611 	skb_header_release(skb);
612 	tcp_add_write_queue_tail(sk, skb);
613 	sk->sk_wmem_queued += skb->truesize;
614 	sk_mem_charge(sk, skb->truesize);
615 	if (tp->nonagle & TCP_NAGLE_PUSH)
616 		tp->nonagle &= ~TCP_NAGLE_PUSH;
617 }
618 
619 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
620 {
621 	if (flags & MSG_OOB)
622 		tp->snd_up = tp->write_seq;
623 }
624 
625 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
626 			    int nonagle)
627 {
628 	if (tcp_send_head(sk)) {
629 		struct tcp_sock *tp = tcp_sk(sk);
630 
631 		if (!(flags & MSG_MORE) || forced_push(tp))
632 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
633 
634 		tcp_mark_urg(tp, flags);
635 		__tcp_push_pending_frames(sk, mss_now,
636 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
637 	}
638 }
639 
640 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
641 				unsigned int offset, size_t len)
642 {
643 	struct tcp_splice_state *tss = rd_desc->arg.data;
644 	int ret;
645 
646 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
647 			      tss->flags);
648 	if (ret > 0)
649 		rd_desc->count -= ret;
650 	return ret;
651 }
652 
653 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
654 {
655 	/* Store TCP splice context information in read_descriptor_t. */
656 	read_descriptor_t rd_desc = {
657 		.arg.data = tss,
658 		.count	  = tss->len,
659 	};
660 
661 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
662 }
663 
664 /**
665  *  tcp_splice_read - splice data from TCP socket to a pipe
666  * @sock:	socket to splice from
667  * @ppos:	position (not valid)
668  * @pipe:	pipe to splice to
669  * @len:	number of bytes to splice
670  * @flags:	splice modifier flags
671  *
672  * Description:
673  *    Will read pages from given socket and fill them into a pipe.
674  *
675  **/
676 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
677 			struct pipe_inode_info *pipe, size_t len,
678 			unsigned int flags)
679 {
680 	struct sock *sk = sock->sk;
681 	struct tcp_splice_state tss = {
682 		.pipe = pipe,
683 		.len = len,
684 		.flags = flags,
685 	};
686 	long timeo;
687 	ssize_t spliced;
688 	int ret;
689 
690 	sock_rps_record_flow(sk);
691 	/*
692 	 * We can't seek on a socket input
693 	 */
694 	if (unlikely(*ppos))
695 		return -ESPIPE;
696 
697 	ret = spliced = 0;
698 
699 	lock_sock(sk);
700 
701 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
702 	while (tss.len) {
703 		ret = __tcp_splice_read(sk, &tss);
704 		if (ret < 0)
705 			break;
706 		else if (!ret) {
707 			if (spliced)
708 				break;
709 			if (sock_flag(sk, SOCK_DONE))
710 				break;
711 			if (sk->sk_err) {
712 				ret = sock_error(sk);
713 				break;
714 			}
715 			if (sk->sk_shutdown & RCV_SHUTDOWN)
716 				break;
717 			if (sk->sk_state == TCP_CLOSE) {
718 				/*
719 				 * This occurs when user tries to read
720 				 * from never connected socket.
721 				 */
722 				if (!sock_flag(sk, SOCK_DONE))
723 					ret = -ENOTCONN;
724 				break;
725 			}
726 			if (!timeo) {
727 				ret = -EAGAIN;
728 				break;
729 			}
730 			sk_wait_data(sk, &timeo);
731 			if (signal_pending(current)) {
732 				ret = sock_intr_errno(timeo);
733 				break;
734 			}
735 			continue;
736 		}
737 		tss.len -= ret;
738 		spliced += ret;
739 
740 		if (!timeo)
741 			break;
742 		release_sock(sk);
743 		lock_sock(sk);
744 
745 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
746 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
747 		    signal_pending(current))
748 			break;
749 	}
750 
751 	release_sock(sk);
752 
753 	if (spliced)
754 		return spliced;
755 
756 	return ret;
757 }
758 EXPORT_SYMBOL(tcp_splice_read);
759 
760 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
761 {
762 	struct sk_buff *skb;
763 
764 	/* The TCP header must be at least 32-bit aligned.  */
765 	size = ALIGN(size, 4);
766 
767 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
768 	if (skb) {
769 		if (sk_wmem_schedule(sk, skb->truesize)) {
770 			skb_reserve(skb, sk->sk_prot->max_header);
771 			/*
772 			 * Make sure that we have exactly size bytes
773 			 * available to the caller, no more, no less.
774 			 */
775 			skb->avail_size = size;
776 			return skb;
777 		}
778 		__kfree_skb(skb);
779 	} else {
780 		sk->sk_prot->enter_memory_pressure(sk);
781 		sk_stream_moderate_sndbuf(sk);
782 	}
783 	return NULL;
784 }
785 
786 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
787 				       int large_allowed)
788 {
789 	struct tcp_sock *tp = tcp_sk(sk);
790 	u32 xmit_size_goal, old_size_goal;
791 
792 	xmit_size_goal = mss_now;
793 
794 	if (large_allowed && sk_can_gso(sk)) {
795 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
796 				  inet_csk(sk)->icsk_af_ops->net_header_len -
797 				  inet_csk(sk)->icsk_ext_hdr_len -
798 				  tp->tcp_header_len);
799 
800 		/* TSQ : try to have two TSO segments in flight */
801 		xmit_size_goal = min_t(u32, xmit_size_goal,
802 				       sysctl_tcp_limit_output_bytes >> 1);
803 
804 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
805 
806 		/* We try hard to avoid divides here */
807 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
808 
809 		if (likely(old_size_goal <= xmit_size_goal &&
810 			   old_size_goal + mss_now > xmit_size_goal)) {
811 			xmit_size_goal = old_size_goal;
812 		} else {
813 			tp->xmit_size_goal_segs =
814 				min_t(u16, xmit_size_goal / mss_now,
815 				      sk->sk_gso_max_segs);
816 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
817 		}
818 	}
819 
820 	return max(xmit_size_goal, mss_now);
821 }
822 
823 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
824 {
825 	int mss_now;
826 
827 	mss_now = tcp_current_mss(sk);
828 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
829 
830 	return mss_now;
831 }
832 
833 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
834 			 size_t psize, int flags)
835 {
836 	struct tcp_sock *tp = tcp_sk(sk);
837 	int mss_now, size_goal;
838 	int err;
839 	ssize_t copied;
840 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
841 
842 	/* Wait for a connection to finish. One exception is TCP Fast Open
843 	 * (passive side) where data is allowed to be sent before a connection
844 	 * is fully established.
845 	 */
846 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
847 	    !tcp_passive_fastopen(sk)) {
848 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
849 			goto out_err;
850 	}
851 
852 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
853 
854 	mss_now = tcp_send_mss(sk, &size_goal, flags);
855 	copied = 0;
856 
857 	err = -EPIPE;
858 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
859 		goto out_err;
860 
861 	while (psize > 0) {
862 		struct sk_buff *skb = tcp_write_queue_tail(sk);
863 		struct page *page = pages[poffset / PAGE_SIZE];
864 		int copy, i;
865 		int offset = poffset % PAGE_SIZE;
866 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
867 		bool can_coalesce;
868 
869 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
870 new_segment:
871 			if (!sk_stream_memory_free(sk))
872 				goto wait_for_sndbuf;
873 
874 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
875 			if (!skb)
876 				goto wait_for_memory;
877 
878 			skb_entail(sk, skb);
879 			copy = size_goal;
880 		}
881 
882 		if (copy > size)
883 			copy = size;
884 
885 		i = skb_shinfo(skb)->nr_frags;
886 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
887 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
888 			tcp_mark_push(tp, skb);
889 			goto new_segment;
890 		}
891 		if (!sk_wmem_schedule(sk, copy))
892 			goto wait_for_memory;
893 
894 		if (can_coalesce) {
895 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
896 		} else {
897 			get_page(page);
898 			skb_fill_page_desc(skb, i, page, offset, copy);
899 		}
900 
901 		skb->len += copy;
902 		skb->data_len += copy;
903 		skb->truesize += copy;
904 		sk->sk_wmem_queued += copy;
905 		sk_mem_charge(sk, copy);
906 		skb->ip_summed = CHECKSUM_PARTIAL;
907 		tp->write_seq += copy;
908 		TCP_SKB_CB(skb)->end_seq += copy;
909 		skb_shinfo(skb)->gso_segs = 0;
910 
911 		if (!copied)
912 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
913 
914 		copied += copy;
915 		poffset += copy;
916 		if (!(psize -= copy))
917 			goto out;
918 
919 		if (skb->len < size_goal || (flags & MSG_OOB))
920 			continue;
921 
922 		if (forced_push(tp)) {
923 			tcp_mark_push(tp, skb);
924 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
925 		} else if (skb == tcp_send_head(sk))
926 			tcp_push_one(sk, mss_now);
927 		continue;
928 
929 wait_for_sndbuf:
930 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
931 wait_for_memory:
932 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
933 
934 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
935 			goto do_error;
936 
937 		mss_now = tcp_send_mss(sk, &size_goal, flags);
938 	}
939 
940 out:
941 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
942 		tcp_push(sk, flags, mss_now, tp->nonagle);
943 	return copied;
944 
945 do_error:
946 	if (copied)
947 		goto out;
948 out_err:
949 	return sk_stream_error(sk, flags, err);
950 }
951 
952 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
953 		 size_t size, int flags)
954 {
955 	ssize_t res;
956 
957 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
958 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
959 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
960 					flags);
961 
962 	lock_sock(sk);
963 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
964 	release_sock(sk);
965 	return res;
966 }
967 EXPORT_SYMBOL(tcp_sendpage);
968 
969 static inline int select_size(const struct sock *sk, bool sg)
970 {
971 	const struct tcp_sock *tp = tcp_sk(sk);
972 	int tmp = tp->mss_cache;
973 
974 	if (sg) {
975 		if (sk_can_gso(sk)) {
976 			/* Small frames wont use a full page:
977 			 * Payload will immediately follow tcp header.
978 			 */
979 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
980 		} else {
981 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
982 
983 			if (tmp >= pgbreak &&
984 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
985 				tmp = pgbreak;
986 		}
987 	}
988 
989 	return tmp;
990 }
991 
992 void tcp_free_fastopen_req(struct tcp_sock *tp)
993 {
994 	if (tp->fastopen_req != NULL) {
995 		kfree(tp->fastopen_req);
996 		tp->fastopen_req = NULL;
997 	}
998 }
999 
1000 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1001 {
1002 	struct tcp_sock *tp = tcp_sk(sk);
1003 	int err, flags;
1004 
1005 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1006 		return -EOPNOTSUPP;
1007 	if (tp->fastopen_req != NULL)
1008 		return -EALREADY; /* Another Fast Open is in progress */
1009 
1010 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1011 				   sk->sk_allocation);
1012 	if (unlikely(tp->fastopen_req == NULL))
1013 		return -ENOBUFS;
1014 	tp->fastopen_req->data = msg;
1015 
1016 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1017 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1018 				    msg->msg_namelen, flags);
1019 	*size = tp->fastopen_req->copied;
1020 	tcp_free_fastopen_req(tp);
1021 	return err;
1022 }
1023 
1024 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1025 		size_t size)
1026 {
1027 	struct iovec *iov;
1028 	struct tcp_sock *tp = tcp_sk(sk);
1029 	struct sk_buff *skb;
1030 	int iovlen, flags, err, copied = 0;
1031 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1032 	bool sg;
1033 	long timeo;
1034 
1035 	lock_sock(sk);
1036 
1037 	flags = msg->msg_flags;
1038 	if (flags & MSG_FASTOPEN) {
1039 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1040 		if (err == -EINPROGRESS && copied_syn > 0)
1041 			goto out;
1042 		else if (err)
1043 			goto out_err;
1044 		offset = copied_syn;
1045 	}
1046 
1047 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1048 
1049 	/* Wait for a connection to finish. One exception is TCP Fast Open
1050 	 * (passive side) where data is allowed to be sent before a connection
1051 	 * is fully established.
1052 	 */
1053 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1054 	    !tcp_passive_fastopen(sk)) {
1055 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1056 			goto do_error;
1057 	}
1058 
1059 	if (unlikely(tp->repair)) {
1060 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1061 			copied = tcp_send_rcvq(sk, msg, size);
1062 			goto out;
1063 		}
1064 
1065 		err = -EINVAL;
1066 		if (tp->repair_queue == TCP_NO_QUEUE)
1067 			goto out_err;
1068 
1069 		/* 'common' sending to sendq */
1070 	}
1071 
1072 	/* This should be in poll */
1073 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1074 
1075 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1076 
1077 	/* Ok commence sending. */
1078 	iovlen = msg->msg_iovlen;
1079 	iov = msg->msg_iov;
1080 	copied = 0;
1081 
1082 	err = -EPIPE;
1083 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1084 		goto out_err;
1085 
1086 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1087 
1088 	while (--iovlen >= 0) {
1089 		size_t seglen = iov->iov_len;
1090 		unsigned char __user *from = iov->iov_base;
1091 
1092 		iov++;
1093 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1094 			if (offset >= seglen) {
1095 				offset -= seglen;
1096 				continue;
1097 			}
1098 			seglen -= offset;
1099 			from += offset;
1100 			offset = 0;
1101 		}
1102 
1103 		while (seglen > 0) {
1104 			int copy = 0;
1105 			int max = size_goal;
1106 
1107 			skb = tcp_write_queue_tail(sk);
1108 			if (tcp_send_head(sk)) {
1109 				if (skb->ip_summed == CHECKSUM_NONE)
1110 					max = mss_now;
1111 				copy = max - skb->len;
1112 			}
1113 
1114 			if (copy <= 0) {
1115 new_segment:
1116 				/* Allocate new segment. If the interface is SG,
1117 				 * allocate skb fitting to single page.
1118 				 */
1119 				if (!sk_stream_memory_free(sk))
1120 					goto wait_for_sndbuf;
1121 
1122 				skb = sk_stream_alloc_skb(sk,
1123 							  select_size(sk, sg),
1124 							  sk->sk_allocation);
1125 				if (!skb)
1126 					goto wait_for_memory;
1127 
1128 				/*
1129 				 * Check whether we can use HW checksum.
1130 				 */
1131 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1132 					skb->ip_summed = CHECKSUM_PARTIAL;
1133 
1134 				skb_entail(sk, skb);
1135 				copy = size_goal;
1136 				max = size_goal;
1137 			}
1138 
1139 			/* Try to append data to the end of skb. */
1140 			if (copy > seglen)
1141 				copy = seglen;
1142 
1143 			/* Where to copy to? */
1144 			if (skb_availroom(skb) > 0) {
1145 				/* We have some space in skb head. Superb! */
1146 				copy = min_t(int, copy, skb_availroom(skb));
1147 				err = skb_add_data_nocache(sk, skb, from, copy);
1148 				if (err)
1149 					goto do_fault;
1150 			} else {
1151 				bool merge = true;
1152 				int i = skb_shinfo(skb)->nr_frags;
1153 				struct page_frag *pfrag = sk_page_frag(sk);
1154 
1155 				if (!sk_page_frag_refill(sk, pfrag))
1156 					goto wait_for_memory;
1157 
1158 				if (!skb_can_coalesce(skb, i, pfrag->page,
1159 						      pfrag->offset)) {
1160 					if (i == MAX_SKB_FRAGS || !sg) {
1161 						tcp_mark_push(tp, skb);
1162 						goto new_segment;
1163 					}
1164 					merge = false;
1165 				}
1166 
1167 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1168 
1169 				if (!sk_wmem_schedule(sk, copy))
1170 					goto wait_for_memory;
1171 
1172 				err = skb_copy_to_page_nocache(sk, from, skb,
1173 							       pfrag->page,
1174 							       pfrag->offset,
1175 							       copy);
1176 				if (err)
1177 					goto do_error;
1178 
1179 				/* Update the skb. */
1180 				if (merge) {
1181 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1182 				} else {
1183 					skb_fill_page_desc(skb, i, pfrag->page,
1184 							   pfrag->offset, copy);
1185 					get_page(pfrag->page);
1186 				}
1187 				pfrag->offset += copy;
1188 			}
1189 
1190 			if (!copied)
1191 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1192 
1193 			tp->write_seq += copy;
1194 			TCP_SKB_CB(skb)->end_seq += copy;
1195 			skb_shinfo(skb)->gso_segs = 0;
1196 
1197 			from += copy;
1198 			copied += copy;
1199 			if ((seglen -= copy) == 0 && iovlen == 0)
1200 				goto out;
1201 
1202 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1203 				continue;
1204 
1205 			if (forced_push(tp)) {
1206 				tcp_mark_push(tp, skb);
1207 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1208 			} else if (skb == tcp_send_head(sk))
1209 				tcp_push_one(sk, mss_now);
1210 			continue;
1211 
1212 wait_for_sndbuf:
1213 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1214 wait_for_memory:
1215 			if (copied)
1216 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1217 
1218 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1219 				goto do_error;
1220 
1221 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1222 		}
1223 	}
1224 
1225 out:
1226 	if (copied)
1227 		tcp_push(sk, flags, mss_now, tp->nonagle);
1228 	release_sock(sk);
1229 	return copied + copied_syn;
1230 
1231 do_fault:
1232 	if (!skb->len) {
1233 		tcp_unlink_write_queue(skb, sk);
1234 		/* It is the one place in all of TCP, except connection
1235 		 * reset, where we can be unlinking the send_head.
1236 		 */
1237 		tcp_check_send_head(sk, skb);
1238 		sk_wmem_free_skb(sk, skb);
1239 	}
1240 
1241 do_error:
1242 	if (copied + copied_syn)
1243 		goto out;
1244 out_err:
1245 	err = sk_stream_error(sk, flags, err);
1246 	release_sock(sk);
1247 	return err;
1248 }
1249 EXPORT_SYMBOL(tcp_sendmsg);
1250 
1251 /*
1252  *	Handle reading urgent data. BSD has very simple semantics for
1253  *	this, no blocking and very strange errors 8)
1254  */
1255 
1256 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1257 {
1258 	struct tcp_sock *tp = tcp_sk(sk);
1259 
1260 	/* No URG data to read. */
1261 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1262 	    tp->urg_data == TCP_URG_READ)
1263 		return -EINVAL;	/* Yes this is right ! */
1264 
1265 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1266 		return -ENOTCONN;
1267 
1268 	if (tp->urg_data & TCP_URG_VALID) {
1269 		int err = 0;
1270 		char c = tp->urg_data;
1271 
1272 		if (!(flags & MSG_PEEK))
1273 			tp->urg_data = TCP_URG_READ;
1274 
1275 		/* Read urgent data. */
1276 		msg->msg_flags |= MSG_OOB;
1277 
1278 		if (len > 0) {
1279 			if (!(flags & MSG_TRUNC))
1280 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1281 			len = 1;
1282 		} else
1283 			msg->msg_flags |= MSG_TRUNC;
1284 
1285 		return err ? -EFAULT : len;
1286 	}
1287 
1288 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1289 		return 0;
1290 
1291 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1292 	 * the available implementations agree in this case:
1293 	 * this call should never block, independent of the
1294 	 * blocking state of the socket.
1295 	 * Mike <pall@rz.uni-karlsruhe.de>
1296 	 */
1297 	return -EAGAIN;
1298 }
1299 
1300 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1301 {
1302 	struct sk_buff *skb;
1303 	int copied = 0, err = 0;
1304 
1305 	/* XXX -- need to support SO_PEEK_OFF */
1306 
1307 	skb_queue_walk(&sk->sk_write_queue, skb) {
1308 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1309 		if (err)
1310 			break;
1311 
1312 		copied += skb->len;
1313 	}
1314 
1315 	return err ?: copied;
1316 }
1317 
1318 /* Clean up the receive buffer for full frames taken by the user,
1319  * then send an ACK if necessary.  COPIED is the number of bytes
1320  * tcp_recvmsg has given to the user so far, it speeds up the
1321  * calculation of whether or not we must ACK for the sake of
1322  * a window update.
1323  */
1324 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1325 {
1326 	struct tcp_sock *tp = tcp_sk(sk);
1327 	bool time_to_ack = false;
1328 
1329 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1330 
1331 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1332 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1333 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1334 
1335 	if (inet_csk_ack_scheduled(sk)) {
1336 		const struct inet_connection_sock *icsk = inet_csk(sk);
1337 		   /* Delayed ACKs frequently hit locked sockets during bulk
1338 		    * receive. */
1339 		if (icsk->icsk_ack.blocked ||
1340 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1341 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1342 		    /*
1343 		     * If this read emptied read buffer, we send ACK, if
1344 		     * connection is not bidirectional, user drained
1345 		     * receive buffer and there was a small segment
1346 		     * in queue.
1347 		     */
1348 		    (copied > 0 &&
1349 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1350 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1351 		       !icsk->icsk_ack.pingpong)) &&
1352 		      !atomic_read(&sk->sk_rmem_alloc)))
1353 			time_to_ack = true;
1354 	}
1355 
1356 	/* We send an ACK if we can now advertise a non-zero window
1357 	 * which has been raised "significantly".
1358 	 *
1359 	 * Even if window raised up to infinity, do not send window open ACK
1360 	 * in states, where we will not receive more. It is useless.
1361 	 */
1362 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1363 		__u32 rcv_window_now = tcp_receive_window(tp);
1364 
1365 		/* Optimize, __tcp_select_window() is not cheap. */
1366 		if (2*rcv_window_now <= tp->window_clamp) {
1367 			__u32 new_window = __tcp_select_window(sk);
1368 
1369 			/* Send ACK now, if this read freed lots of space
1370 			 * in our buffer. Certainly, new_window is new window.
1371 			 * We can advertise it now, if it is not less than current one.
1372 			 * "Lots" means "at least twice" here.
1373 			 */
1374 			if (new_window && new_window >= 2 * rcv_window_now)
1375 				time_to_ack = true;
1376 		}
1377 	}
1378 	if (time_to_ack)
1379 		tcp_send_ack(sk);
1380 }
1381 
1382 static void tcp_prequeue_process(struct sock *sk)
1383 {
1384 	struct sk_buff *skb;
1385 	struct tcp_sock *tp = tcp_sk(sk);
1386 
1387 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1388 
1389 	/* RX process wants to run with disabled BHs, though it is not
1390 	 * necessary */
1391 	local_bh_disable();
1392 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1393 		sk_backlog_rcv(sk, skb);
1394 	local_bh_enable();
1395 
1396 	/* Clear memory counter. */
1397 	tp->ucopy.memory = 0;
1398 }
1399 
1400 #ifdef CONFIG_NET_DMA
1401 static void tcp_service_net_dma(struct sock *sk, bool wait)
1402 {
1403 	dma_cookie_t done, used;
1404 	dma_cookie_t last_issued;
1405 	struct tcp_sock *tp = tcp_sk(sk);
1406 
1407 	if (!tp->ucopy.dma_chan)
1408 		return;
1409 
1410 	last_issued = tp->ucopy.dma_cookie;
1411 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1412 
1413 	do {
1414 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1415 					      last_issued, &done,
1416 					      &used) == DMA_SUCCESS) {
1417 			/* Safe to free early-copied skbs now */
1418 			__skb_queue_purge(&sk->sk_async_wait_queue);
1419 			break;
1420 		} else {
1421 			struct sk_buff *skb;
1422 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1423 			       (dma_async_is_complete(skb->dma_cookie, done,
1424 						      used) == DMA_SUCCESS)) {
1425 				__skb_dequeue(&sk->sk_async_wait_queue);
1426 				kfree_skb(skb);
1427 			}
1428 		}
1429 	} while (wait);
1430 }
1431 #endif
1432 
1433 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1434 {
1435 	struct sk_buff *skb;
1436 	u32 offset;
1437 
1438 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1439 		offset = seq - TCP_SKB_CB(skb)->seq;
1440 		if (tcp_hdr(skb)->syn)
1441 			offset--;
1442 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1443 			*off = offset;
1444 			return skb;
1445 		}
1446 	}
1447 	return NULL;
1448 }
1449 
1450 /*
1451  * This routine provides an alternative to tcp_recvmsg() for routines
1452  * that would like to handle copying from skbuffs directly in 'sendfile'
1453  * fashion.
1454  * Note:
1455  *	- It is assumed that the socket was locked by the caller.
1456  *	- The routine does not block.
1457  *	- At present, there is no support for reading OOB data
1458  *	  or for 'peeking' the socket using this routine
1459  *	  (although both would be easy to implement).
1460  */
1461 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1462 		  sk_read_actor_t recv_actor)
1463 {
1464 	struct sk_buff *skb;
1465 	struct tcp_sock *tp = tcp_sk(sk);
1466 	u32 seq = tp->copied_seq;
1467 	u32 offset;
1468 	int copied = 0;
1469 
1470 	if (sk->sk_state == TCP_LISTEN)
1471 		return -ENOTCONN;
1472 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1473 		if (offset < skb->len) {
1474 			int used;
1475 			size_t len;
1476 
1477 			len = skb->len - offset;
1478 			/* Stop reading if we hit a patch of urgent data */
1479 			if (tp->urg_data) {
1480 				u32 urg_offset = tp->urg_seq - seq;
1481 				if (urg_offset < len)
1482 					len = urg_offset;
1483 				if (!len)
1484 					break;
1485 			}
1486 			used = recv_actor(desc, skb, offset, len);
1487 			if (used < 0) {
1488 				if (!copied)
1489 					copied = used;
1490 				break;
1491 			} else if (used <= len) {
1492 				seq += used;
1493 				copied += used;
1494 				offset += used;
1495 			}
1496 			/*
1497 			 * If recv_actor drops the lock (e.g. TCP splice
1498 			 * receive) the skb pointer might be invalid when
1499 			 * getting here: tcp_collapse might have deleted it
1500 			 * while aggregating skbs from the socket queue.
1501 			 */
1502 			skb = tcp_recv_skb(sk, seq-1, &offset);
1503 			if (!skb || (offset+1 != skb->len))
1504 				break;
1505 		}
1506 		if (tcp_hdr(skb)->fin) {
1507 			sk_eat_skb(sk, skb, false);
1508 			++seq;
1509 			break;
1510 		}
1511 		sk_eat_skb(sk, skb, false);
1512 		if (!desc->count)
1513 			break;
1514 		tp->copied_seq = seq;
1515 	}
1516 	tp->copied_seq = seq;
1517 
1518 	tcp_rcv_space_adjust(sk);
1519 
1520 	/* Clean up data we have read: This will do ACK frames. */
1521 	if (copied > 0)
1522 		tcp_cleanup_rbuf(sk, copied);
1523 	return copied;
1524 }
1525 EXPORT_SYMBOL(tcp_read_sock);
1526 
1527 /*
1528  *	This routine copies from a sock struct into the user buffer.
1529  *
1530  *	Technical note: in 2.3 we work on _locked_ socket, so that
1531  *	tricks with *seq access order and skb->users are not required.
1532  *	Probably, code can be easily improved even more.
1533  */
1534 
1535 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1536 		size_t len, int nonblock, int flags, int *addr_len)
1537 {
1538 	struct tcp_sock *tp = tcp_sk(sk);
1539 	int copied = 0;
1540 	u32 peek_seq;
1541 	u32 *seq;
1542 	unsigned long used;
1543 	int err;
1544 	int target;		/* Read at least this many bytes */
1545 	long timeo;
1546 	struct task_struct *user_recv = NULL;
1547 	bool copied_early = false;
1548 	struct sk_buff *skb;
1549 	u32 urg_hole = 0;
1550 
1551 	lock_sock(sk);
1552 
1553 	err = -ENOTCONN;
1554 	if (sk->sk_state == TCP_LISTEN)
1555 		goto out;
1556 
1557 	timeo = sock_rcvtimeo(sk, nonblock);
1558 
1559 	/* Urgent data needs to be handled specially. */
1560 	if (flags & MSG_OOB)
1561 		goto recv_urg;
1562 
1563 	if (unlikely(tp->repair)) {
1564 		err = -EPERM;
1565 		if (!(flags & MSG_PEEK))
1566 			goto out;
1567 
1568 		if (tp->repair_queue == TCP_SEND_QUEUE)
1569 			goto recv_sndq;
1570 
1571 		err = -EINVAL;
1572 		if (tp->repair_queue == TCP_NO_QUEUE)
1573 			goto out;
1574 
1575 		/* 'common' recv queue MSG_PEEK-ing */
1576 	}
1577 
1578 	seq = &tp->copied_seq;
1579 	if (flags & MSG_PEEK) {
1580 		peek_seq = tp->copied_seq;
1581 		seq = &peek_seq;
1582 	}
1583 
1584 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1585 
1586 #ifdef CONFIG_NET_DMA
1587 	tp->ucopy.dma_chan = NULL;
1588 	preempt_disable();
1589 	skb = skb_peek_tail(&sk->sk_receive_queue);
1590 	{
1591 		int available = 0;
1592 
1593 		if (skb)
1594 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1595 		if ((available < target) &&
1596 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1597 		    !sysctl_tcp_low_latency &&
1598 		    net_dma_find_channel()) {
1599 			preempt_enable_no_resched();
1600 			tp->ucopy.pinned_list =
1601 					dma_pin_iovec_pages(msg->msg_iov, len);
1602 		} else {
1603 			preempt_enable_no_resched();
1604 		}
1605 	}
1606 #endif
1607 
1608 	do {
1609 		u32 offset;
1610 
1611 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1612 		if (tp->urg_data && tp->urg_seq == *seq) {
1613 			if (copied)
1614 				break;
1615 			if (signal_pending(current)) {
1616 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1617 				break;
1618 			}
1619 		}
1620 
1621 		/* Next get a buffer. */
1622 
1623 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1624 			/* Now that we have two receive queues this
1625 			 * shouldn't happen.
1626 			 */
1627 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1628 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1629 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1630 				 flags))
1631 				break;
1632 
1633 			offset = *seq - TCP_SKB_CB(skb)->seq;
1634 			if (tcp_hdr(skb)->syn)
1635 				offset--;
1636 			if (offset < skb->len)
1637 				goto found_ok_skb;
1638 			if (tcp_hdr(skb)->fin)
1639 				goto found_fin_ok;
1640 			WARN(!(flags & MSG_PEEK),
1641 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1642 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1643 		}
1644 
1645 		/* Well, if we have backlog, try to process it now yet. */
1646 
1647 		if (copied >= target && !sk->sk_backlog.tail)
1648 			break;
1649 
1650 		if (copied) {
1651 			if (sk->sk_err ||
1652 			    sk->sk_state == TCP_CLOSE ||
1653 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1654 			    !timeo ||
1655 			    signal_pending(current))
1656 				break;
1657 		} else {
1658 			if (sock_flag(sk, SOCK_DONE))
1659 				break;
1660 
1661 			if (sk->sk_err) {
1662 				copied = sock_error(sk);
1663 				break;
1664 			}
1665 
1666 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1667 				break;
1668 
1669 			if (sk->sk_state == TCP_CLOSE) {
1670 				if (!sock_flag(sk, SOCK_DONE)) {
1671 					/* This occurs when user tries to read
1672 					 * from never connected socket.
1673 					 */
1674 					copied = -ENOTCONN;
1675 					break;
1676 				}
1677 				break;
1678 			}
1679 
1680 			if (!timeo) {
1681 				copied = -EAGAIN;
1682 				break;
1683 			}
1684 
1685 			if (signal_pending(current)) {
1686 				copied = sock_intr_errno(timeo);
1687 				break;
1688 			}
1689 		}
1690 
1691 		tcp_cleanup_rbuf(sk, copied);
1692 
1693 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1694 			/* Install new reader */
1695 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1696 				user_recv = current;
1697 				tp->ucopy.task = user_recv;
1698 				tp->ucopy.iov = msg->msg_iov;
1699 			}
1700 
1701 			tp->ucopy.len = len;
1702 
1703 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1704 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1705 
1706 			/* Ugly... If prequeue is not empty, we have to
1707 			 * process it before releasing socket, otherwise
1708 			 * order will be broken at second iteration.
1709 			 * More elegant solution is required!!!
1710 			 *
1711 			 * Look: we have the following (pseudo)queues:
1712 			 *
1713 			 * 1. packets in flight
1714 			 * 2. backlog
1715 			 * 3. prequeue
1716 			 * 4. receive_queue
1717 			 *
1718 			 * Each queue can be processed only if the next ones
1719 			 * are empty. At this point we have empty receive_queue.
1720 			 * But prequeue _can_ be not empty after 2nd iteration,
1721 			 * when we jumped to start of loop because backlog
1722 			 * processing added something to receive_queue.
1723 			 * We cannot release_sock(), because backlog contains
1724 			 * packets arrived _after_ prequeued ones.
1725 			 *
1726 			 * Shortly, algorithm is clear --- to process all
1727 			 * the queues in order. We could make it more directly,
1728 			 * requeueing packets from backlog to prequeue, if
1729 			 * is not empty. It is more elegant, but eats cycles,
1730 			 * unfortunately.
1731 			 */
1732 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1733 				goto do_prequeue;
1734 
1735 			/* __ Set realtime policy in scheduler __ */
1736 		}
1737 
1738 #ifdef CONFIG_NET_DMA
1739 		if (tp->ucopy.dma_chan) {
1740 			if (tp->rcv_wnd == 0 &&
1741 			    !skb_queue_empty(&sk->sk_async_wait_queue)) {
1742 				tcp_service_net_dma(sk, true);
1743 				tcp_cleanup_rbuf(sk, copied);
1744 			} else
1745 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1746 		}
1747 #endif
1748 		if (copied >= target) {
1749 			/* Do not sleep, just process backlog. */
1750 			release_sock(sk);
1751 			lock_sock(sk);
1752 		} else
1753 			sk_wait_data(sk, &timeo);
1754 
1755 #ifdef CONFIG_NET_DMA
1756 		tcp_service_net_dma(sk, false);  /* Don't block */
1757 		tp->ucopy.wakeup = 0;
1758 #endif
1759 
1760 		if (user_recv) {
1761 			int chunk;
1762 
1763 			/* __ Restore normal policy in scheduler __ */
1764 
1765 			if ((chunk = len - tp->ucopy.len) != 0) {
1766 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1767 				len -= chunk;
1768 				copied += chunk;
1769 			}
1770 
1771 			if (tp->rcv_nxt == tp->copied_seq &&
1772 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1773 do_prequeue:
1774 				tcp_prequeue_process(sk);
1775 
1776 				if ((chunk = len - tp->ucopy.len) != 0) {
1777 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1778 					len -= chunk;
1779 					copied += chunk;
1780 				}
1781 			}
1782 		}
1783 		if ((flags & MSG_PEEK) &&
1784 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1785 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1786 					    current->comm,
1787 					    task_pid_nr(current));
1788 			peek_seq = tp->copied_seq;
1789 		}
1790 		continue;
1791 
1792 	found_ok_skb:
1793 		/* Ok so how much can we use? */
1794 		used = skb->len - offset;
1795 		if (len < used)
1796 			used = len;
1797 
1798 		/* Do we have urgent data here? */
1799 		if (tp->urg_data) {
1800 			u32 urg_offset = tp->urg_seq - *seq;
1801 			if (urg_offset < used) {
1802 				if (!urg_offset) {
1803 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1804 						++*seq;
1805 						urg_hole++;
1806 						offset++;
1807 						used--;
1808 						if (!used)
1809 							goto skip_copy;
1810 					}
1811 				} else
1812 					used = urg_offset;
1813 			}
1814 		}
1815 
1816 		if (!(flags & MSG_TRUNC)) {
1817 #ifdef CONFIG_NET_DMA
1818 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1819 				tp->ucopy.dma_chan = net_dma_find_channel();
1820 
1821 			if (tp->ucopy.dma_chan) {
1822 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1823 					tp->ucopy.dma_chan, skb, offset,
1824 					msg->msg_iov, used,
1825 					tp->ucopy.pinned_list);
1826 
1827 				if (tp->ucopy.dma_cookie < 0) {
1828 
1829 					pr_alert("%s: dma_cookie < 0\n",
1830 						 __func__);
1831 
1832 					/* Exception. Bailout! */
1833 					if (!copied)
1834 						copied = -EFAULT;
1835 					break;
1836 				}
1837 
1838 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1839 
1840 				if ((offset + used) == skb->len)
1841 					copied_early = true;
1842 
1843 			} else
1844 #endif
1845 			{
1846 				err = skb_copy_datagram_iovec(skb, offset,
1847 						msg->msg_iov, used);
1848 				if (err) {
1849 					/* Exception. Bailout! */
1850 					if (!copied)
1851 						copied = -EFAULT;
1852 					break;
1853 				}
1854 			}
1855 		}
1856 
1857 		*seq += used;
1858 		copied += used;
1859 		len -= used;
1860 
1861 		tcp_rcv_space_adjust(sk);
1862 
1863 skip_copy:
1864 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1865 			tp->urg_data = 0;
1866 			tcp_fast_path_check(sk);
1867 		}
1868 		if (used + offset < skb->len)
1869 			continue;
1870 
1871 		if (tcp_hdr(skb)->fin)
1872 			goto found_fin_ok;
1873 		if (!(flags & MSG_PEEK)) {
1874 			sk_eat_skb(sk, skb, copied_early);
1875 			copied_early = false;
1876 		}
1877 		continue;
1878 
1879 	found_fin_ok:
1880 		/* Process the FIN. */
1881 		++*seq;
1882 		if (!(flags & MSG_PEEK)) {
1883 			sk_eat_skb(sk, skb, copied_early);
1884 			copied_early = false;
1885 		}
1886 		break;
1887 	} while (len > 0);
1888 
1889 	if (user_recv) {
1890 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1891 			int chunk;
1892 
1893 			tp->ucopy.len = copied > 0 ? len : 0;
1894 
1895 			tcp_prequeue_process(sk);
1896 
1897 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1898 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1899 				len -= chunk;
1900 				copied += chunk;
1901 			}
1902 		}
1903 
1904 		tp->ucopy.task = NULL;
1905 		tp->ucopy.len = 0;
1906 	}
1907 
1908 #ifdef CONFIG_NET_DMA
1909 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1910 	tp->ucopy.dma_chan = NULL;
1911 
1912 	if (tp->ucopy.pinned_list) {
1913 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1914 		tp->ucopy.pinned_list = NULL;
1915 	}
1916 #endif
1917 
1918 	/* According to UNIX98, msg_name/msg_namelen are ignored
1919 	 * on connected socket. I was just happy when found this 8) --ANK
1920 	 */
1921 
1922 	/* Clean up data we have read: This will do ACK frames. */
1923 	tcp_cleanup_rbuf(sk, copied);
1924 
1925 	release_sock(sk);
1926 	return copied;
1927 
1928 out:
1929 	release_sock(sk);
1930 	return err;
1931 
1932 recv_urg:
1933 	err = tcp_recv_urg(sk, msg, len, flags);
1934 	goto out;
1935 
1936 recv_sndq:
1937 	err = tcp_peek_sndq(sk, msg, len);
1938 	goto out;
1939 }
1940 EXPORT_SYMBOL(tcp_recvmsg);
1941 
1942 void tcp_set_state(struct sock *sk, int state)
1943 {
1944 	int oldstate = sk->sk_state;
1945 
1946 	switch (state) {
1947 	case TCP_ESTABLISHED:
1948 		if (oldstate != TCP_ESTABLISHED)
1949 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1950 		break;
1951 
1952 	case TCP_CLOSE:
1953 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1954 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1955 
1956 		sk->sk_prot->unhash(sk);
1957 		if (inet_csk(sk)->icsk_bind_hash &&
1958 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1959 			inet_put_port(sk);
1960 		/* fall through */
1961 	default:
1962 		if (oldstate == TCP_ESTABLISHED)
1963 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1964 	}
1965 
1966 	/* Change state AFTER socket is unhashed to avoid closed
1967 	 * socket sitting in hash tables.
1968 	 */
1969 	sk->sk_state = state;
1970 
1971 #ifdef STATE_TRACE
1972 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1973 #endif
1974 }
1975 EXPORT_SYMBOL_GPL(tcp_set_state);
1976 
1977 /*
1978  *	State processing on a close. This implements the state shift for
1979  *	sending our FIN frame. Note that we only send a FIN for some
1980  *	states. A shutdown() may have already sent the FIN, or we may be
1981  *	closed.
1982  */
1983 
1984 static const unsigned char new_state[16] = {
1985   /* current state:        new state:      action:	*/
1986   /* (Invalid)		*/ TCP_CLOSE,
1987   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1988   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1989   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1990   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1991   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1992   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1993   /* TCP_CLOSE		*/ TCP_CLOSE,
1994   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1995   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1996   /* TCP_LISTEN		*/ TCP_CLOSE,
1997   /* TCP_CLOSING	*/ TCP_CLOSING,
1998 };
1999 
2000 static int tcp_close_state(struct sock *sk)
2001 {
2002 	int next = (int)new_state[sk->sk_state];
2003 	int ns = next & TCP_STATE_MASK;
2004 
2005 	tcp_set_state(sk, ns);
2006 
2007 	return next & TCP_ACTION_FIN;
2008 }
2009 
2010 /*
2011  *	Shutdown the sending side of a connection. Much like close except
2012  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2013  */
2014 
2015 void tcp_shutdown(struct sock *sk, int how)
2016 {
2017 	/*	We need to grab some memory, and put together a FIN,
2018 	 *	and then put it into the queue to be sent.
2019 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2020 	 */
2021 	if (!(how & SEND_SHUTDOWN))
2022 		return;
2023 
2024 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2025 	if ((1 << sk->sk_state) &
2026 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2027 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2028 		/* Clear out any half completed packets.  FIN if needed. */
2029 		if (tcp_close_state(sk))
2030 			tcp_send_fin(sk);
2031 	}
2032 }
2033 EXPORT_SYMBOL(tcp_shutdown);
2034 
2035 bool tcp_check_oom(struct sock *sk, int shift)
2036 {
2037 	bool too_many_orphans, out_of_socket_memory;
2038 
2039 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2040 	out_of_socket_memory = tcp_out_of_memory(sk);
2041 
2042 	if (too_many_orphans)
2043 		net_info_ratelimited("too many orphaned sockets\n");
2044 	if (out_of_socket_memory)
2045 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2046 	return too_many_orphans || out_of_socket_memory;
2047 }
2048 
2049 void tcp_close(struct sock *sk, long timeout)
2050 {
2051 	struct sk_buff *skb;
2052 	int data_was_unread = 0;
2053 	int state;
2054 
2055 	lock_sock(sk);
2056 	sk->sk_shutdown = SHUTDOWN_MASK;
2057 
2058 	if (sk->sk_state == TCP_LISTEN) {
2059 		tcp_set_state(sk, TCP_CLOSE);
2060 
2061 		/* Special case. */
2062 		inet_csk_listen_stop(sk);
2063 
2064 		goto adjudge_to_death;
2065 	}
2066 
2067 	/*  We need to flush the recv. buffs.  We do this only on the
2068 	 *  descriptor close, not protocol-sourced closes, because the
2069 	 *  reader process may not have drained the data yet!
2070 	 */
2071 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2072 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2073 			  tcp_hdr(skb)->fin;
2074 		data_was_unread += len;
2075 		__kfree_skb(skb);
2076 	}
2077 
2078 	sk_mem_reclaim(sk);
2079 
2080 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2081 	if (sk->sk_state == TCP_CLOSE)
2082 		goto adjudge_to_death;
2083 
2084 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2085 	 * data was lost. To witness the awful effects of the old behavior of
2086 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2087 	 * GET in an FTP client, suspend the process, wait for the client to
2088 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2089 	 * Note: timeout is always zero in such a case.
2090 	 */
2091 	if (unlikely(tcp_sk(sk)->repair)) {
2092 		sk->sk_prot->disconnect(sk, 0);
2093 	} else if (data_was_unread) {
2094 		/* Unread data was tossed, zap the connection. */
2095 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2096 		tcp_set_state(sk, TCP_CLOSE);
2097 		tcp_send_active_reset(sk, sk->sk_allocation);
2098 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2099 		/* Check zero linger _after_ checking for unread data. */
2100 		sk->sk_prot->disconnect(sk, 0);
2101 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2102 	} else if (tcp_close_state(sk)) {
2103 		/* We FIN if the application ate all the data before
2104 		 * zapping the connection.
2105 		 */
2106 
2107 		/* RED-PEN. Formally speaking, we have broken TCP state
2108 		 * machine. State transitions:
2109 		 *
2110 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2111 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2112 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2113 		 *
2114 		 * are legal only when FIN has been sent (i.e. in window),
2115 		 * rather than queued out of window. Purists blame.
2116 		 *
2117 		 * F.e. "RFC state" is ESTABLISHED,
2118 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2119 		 *
2120 		 * The visible declinations are that sometimes
2121 		 * we enter time-wait state, when it is not required really
2122 		 * (harmless), do not send active resets, when they are
2123 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2124 		 * they look as CLOSING or LAST_ACK for Linux)
2125 		 * Probably, I missed some more holelets.
2126 		 * 						--ANK
2127 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2128 		 * in a single packet! (May consider it later but will
2129 		 * probably need API support or TCP_CORK SYN-ACK until
2130 		 * data is written and socket is closed.)
2131 		 */
2132 		tcp_send_fin(sk);
2133 	}
2134 
2135 	sk_stream_wait_close(sk, timeout);
2136 
2137 adjudge_to_death:
2138 	state = sk->sk_state;
2139 	sock_hold(sk);
2140 	sock_orphan(sk);
2141 
2142 	/* It is the last release_sock in its life. It will remove backlog. */
2143 	release_sock(sk);
2144 
2145 
2146 	/* Now socket is owned by kernel and we acquire BH lock
2147 	   to finish close. No need to check for user refs.
2148 	 */
2149 	local_bh_disable();
2150 	bh_lock_sock(sk);
2151 	WARN_ON(sock_owned_by_user(sk));
2152 
2153 	percpu_counter_inc(sk->sk_prot->orphan_count);
2154 
2155 	/* Have we already been destroyed by a softirq or backlog? */
2156 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2157 		goto out;
2158 
2159 	/*	This is a (useful) BSD violating of the RFC. There is a
2160 	 *	problem with TCP as specified in that the other end could
2161 	 *	keep a socket open forever with no application left this end.
2162 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2163 	 *	our end. If they send after that then tough - BUT: long enough
2164 	 *	that we won't make the old 4*rto = almost no time - whoops
2165 	 *	reset mistake.
2166 	 *
2167 	 *	Nope, it was not mistake. It is really desired behaviour
2168 	 *	f.e. on http servers, when such sockets are useless, but
2169 	 *	consume significant resources. Let's do it with special
2170 	 *	linger2	option.					--ANK
2171 	 */
2172 
2173 	if (sk->sk_state == TCP_FIN_WAIT2) {
2174 		struct tcp_sock *tp = tcp_sk(sk);
2175 		if (tp->linger2 < 0) {
2176 			tcp_set_state(sk, TCP_CLOSE);
2177 			tcp_send_active_reset(sk, GFP_ATOMIC);
2178 			NET_INC_STATS_BH(sock_net(sk),
2179 					LINUX_MIB_TCPABORTONLINGER);
2180 		} else {
2181 			const int tmo = tcp_fin_time(sk);
2182 
2183 			if (tmo > TCP_TIMEWAIT_LEN) {
2184 				inet_csk_reset_keepalive_timer(sk,
2185 						tmo - TCP_TIMEWAIT_LEN);
2186 			} else {
2187 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2188 				goto out;
2189 			}
2190 		}
2191 	}
2192 	if (sk->sk_state != TCP_CLOSE) {
2193 		sk_mem_reclaim(sk);
2194 		if (tcp_check_oom(sk, 0)) {
2195 			tcp_set_state(sk, TCP_CLOSE);
2196 			tcp_send_active_reset(sk, GFP_ATOMIC);
2197 			NET_INC_STATS_BH(sock_net(sk),
2198 					LINUX_MIB_TCPABORTONMEMORY);
2199 		}
2200 	}
2201 
2202 	if (sk->sk_state == TCP_CLOSE) {
2203 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2204 		/* We could get here with a non-NULL req if the socket is
2205 		 * aborted (e.g., closed with unread data) before 3WHS
2206 		 * finishes.
2207 		 */
2208 		if (req != NULL)
2209 			reqsk_fastopen_remove(sk, req, false);
2210 		inet_csk_destroy_sock(sk);
2211 	}
2212 	/* Otherwise, socket is reprieved until protocol close. */
2213 
2214 out:
2215 	bh_unlock_sock(sk);
2216 	local_bh_enable();
2217 	sock_put(sk);
2218 }
2219 EXPORT_SYMBOL(tcp_close);
2220 
2221 /* These states need RST on ABORT according to RFC793 */
2222 
2223 static inline bool tcp_need_reset(int state)
2224 {
2225 	return (1 << state) &
2226 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2227 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2228 }
2229 
2230 int tcp_disconnect(struct sock *sk, int flags)
2231 {
2232 	struct inet_sock *inet = inet_sk(sk);
2233 	struct inet_connection_sock *icsk = inet_csk(sk);
2234 	struct tcp_sock *tp = tcp_sk(sk);
2235 	int err = 0;
2236 	int old_state = sk->sk_state;
2237 
2238 	if (old_state != TCP_CLOSE)
2239 		tcp_set_state(sk, TCP_CLOSE);
2240 
2241 	/* ABORT function of RFC793 */
2242 	if (old_state == TCP_LISTEN) {
2243 		inet_csk_listen_stop(sk);
2244 	} else if (unlikely(tp->repair)) {
2245 		sk->sk_err = ECONNABORTED;
2246 	} else if (tcp_need_reset(old_state) ||
2247 		   (tp->snd_nxt != tp->write_seq &&
2248 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2249 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2250 		 * states
2251 		 */
2252 		tcp_send_active_reset(sk, gfp_any());
2253 		sk->sk_err = ECONNRESET;
2254 	} else if (old_state == TCP_SYN_SENT)
2255 		sk->sk_err = ECONNRESET;
2256 
2257 	tcp_clear_xmit_timers(sk);
2258 	__skb_queue_purge(&sk->sk_receive_queue);
2259 	tcp_write_queue_purge(sk);
2260 	__skb_queue_purge(&tp->out_of_order_queue);
2261 #ifdef CONFIG_NET_DMA
2262 	__skb_queue_purge(&sk->sk_async_wait_queue);
2263 #endif
2264 
2265 	inet->inet_dport = 0;
2266 
2267 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2268 		inet_reset_saddr(sk);
2269 
2270 	sk->sk_shutdown = 0;
2271 	sock_reset_flag(sk, SOCK_DONE);
2272 	tp->srtt = 0;
2273 	if ((tp->write_seq += tp->max_window + 2) == 0)
2274 		tp->write_seq = 1;
2275 	icsk->icsk_backoff = 0;
2276 	tp->snd_cwnd = 2;
2277 	icsk->icsk_probes_out = 0;
2278 	tp->packets_out = 0;
2279 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2280 	tp->snd_cwnd_cnt = 0;
2281 	tp->bytes_acked = 0;
2282 	tp->window_clamp = 0;
2283 	tcp_set_ca_state(sk, TCP_CA_Open);
2284 	tcp_clear_retrans(tp);
2285 	inet_csk_delack_init(sk);
2286 	tcp_init_send_head(sk);
2287 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2288 	__sk_dst_reset(sk);
2289 
2290 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2291 
2292 	sk->sk_error_report(sk);
2293 	return err;
2294 }
2295 EXPORT_SYMBOL(tcp_disconnect);
2296 
2297 void tcp_sock_destruct(struct sock *sk)
2298 {
2299 	inet_sock_destruct(sk);
2300 
2301 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2302 }
2303 
2304 static inline bool tcp_can_repair_sock(const struct sock *sk)
2305 {
2306 	return capable(CAP_NET_ADMIN) &&
2307 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2308 }
2309 
2310 static int tcp_repair_options_est(struct tcp_sock *tp,
2311 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2312 {
2313 	struct tcp_repair_opt opt;
2314 
2315 	while (len >= sizeof(opt)) {
2316 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2317 			return -EFAULT;
2318 
2319 		optbuf++;
2320 		len -= sizeof(opt);
2321 
2322 		switch (opt.opt_code) {
2323 		case TCPOPT_MSS:
2324 			tp->rx_opt.mss_clamp = opt.opt_val;
2325 			break;
2326 		case TCPOPT_WINDOW:
2327 			{
2328 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2329 				u16 rcv_wscale = opt.opt_val >> 16;
2330 
2331 				if (snd_wscale > 14 || rcv_wscale > 14)
2332 					return -EFBIG;
2333 
2334 				tp->rx_opt.snd_wscale = snd_wscale;
2335 				tp->rx_opt.rcv_wscale = rcv_wscale;
2336 				tp->rx_opt.wscale_ok = 1;
2337 			}
2338 			break;
2339 		case TCPOPT_SACK_PERM:
2340 			if (opt.opt_val != 0)
2341 				return -EINVAL;
2342 
2343 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2344 			if (sysctl_tcp_fack)
2345 				tcp_enable_fack(tp);
2346 			break;
2347 		case TCPOPT_TIMESTAMP:
2348 			if (opt.opt_val != 0)
2349 				return -EINVAL;
2350 
2351 			tp->rx_opt.tstamp_ok = 1;
2352 			break;
2353 		}
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 /*
2360  *	Socket option code for TCP.
2361  */
2362 static int do_tcp_setsockopt(struct sock *sk, int level,
2363 		int optname, char __user *optval, unsigned int optlen)
2364 {
2365 	struct tcp_sock *tp = tcp_sk(sk);
2366 	struct inet_connection_sock *icsk = inet_csk(sk);
2367 	int val;
2368 	int err = 0;
2369 
2370 	/* These are data/string values, all the others are ints */
2371 	switch (optname) {
2372 	case TCP_CONGESTION: {
2373 		char name[TCP_CA_NAME_MAX];
2374 
2375 		if (optlen < 1)
2376 			return -EINVAL;
2377 
2378 		val = strncpy_from_user(name, optval,
2379 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2380 		if (val < 0)
2381 			return -EFAULT;
2382 		name[val] = 0;
2383 
2384 		lock_sock(sk);
2385 		err = tcp_set_congestion_control(sk, name);
2386 		release_sock(sk);
2387 		return err;
2388 	}
2389 	case TCP_COOKIE_TRANSACTIONS: {
2390 		struct tcp_cookie_transactions ctd;
2391 		struct tcp_cookie_values *cvp = NULL;
2392 
2393 		if (sizeof(ctd) > optlen)
2394 			return -EINVAL;
2395 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2396 			return -EFAULT;
2397 
2398 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2399 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2400 			return -EINVAL;
2401 
2402 		if (ctd.tcpct_cookie_desired == 0) {
2403 			/* default to global value */
2404 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2405 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2406 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2407 			return -EINVAL;
2408 		}
2409 
2410 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2411 			/* Supercedes all other values */
2412 			lock_sock(sk);
2413 			if (tp->cookie_values != NULL) {
2414 				kref_put(&tp->cookie_values->kref,
2415 					 tcp_cookie_values_release);
2416 				tp->cookie_values = NULL;
2417 			}
2418 			tp->rx_opt.cookie_in_always = 0; /* false */
2419 			tp->rx_opt.cookie_out_never = 1; /* true */
2420 			release_sock(sk);
2421 			return err;
2422 		}
2423 
2424 		/* Allocate ancillary memory before locking.
2425 		 */
2426 		if (ctd.tcpct_used > 0 ||
2427 		    (tp->cookie_values == NULL &&
2428 		     (sysctl_tcp_cookie_size > 0 ||
2429 		      ctd.tcpct_cookie_desired > 0 ||
2430 		      ctd.tcpct_s_data_desired > 0))) {
2431 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2432 				      GFP_KERNEL);
2433 			if (cvp == NULL)
2434 				return -ENOMEM;
2435 
2436 			kref_init(&cvp->kref);
2437 		}
2438 		lock_sock(sk);
2439 		tp->rx_opt.cookie_in_always =
2440 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2441 		tp->rx_opt.cookie_out_never = 0; /* false */
2442 
2443 		if (tp->cookie_values != NULL) {
2444 			if (cvp != NULL) {
2445 				/* Changed values are recorded by a changed
2446 				 * pointer, ensuring the cookie will differ,
2447 				 * without separately hashing each value later.
2448 				 */
2449 				kref_put(&tp->cookie_values->kref,
2450 					 tcp_cookie_values_release);
2451 			} else {
2452 				cvp = tp->cookie_values;
2453 			}
2454 		}
2455 
2456 		if (cvp != NULL) {
2457 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2458 
2459 			if (ctd.tcpct_used > 0) {
2460 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2461 				       ctd.tcpct_used);
2462 				cvp->s_data_desired = ctd.tcpct_used;
2463 				cvp->s_data_constant = 1; /* true */
2464 			} else {
2465 				/* No constant payload data. */
2466 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2467 				cvp->s_data_constant = 0; /* false */
2468 			}
2469 
2470 			tp->cookie_values = cvp;
2471 		}
2472 		release_sock(sk);
2473 		return err;
2474 	}
2475 	default:
2476 		/* fallthru */
2477 		break;
2478 	}
2479 
2480 	if (optlen < sizeof(int))
2481 		return -EINVAL;
2482 
2483 	if (get_user(val, (int __user *)optval))
2484 		return -EFAULT;
2485 
2486 	lock_sock(sk);
2487 
2488 	switch (optname) {
2489 	case TCP_MAXSEG:
2490 		/* Values greater than interface MTU won't take effect. However
2491 		 * at the point when this call is done we typically don't yet
2492 		 * know which interface is going to be used */
2493 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2494 			err = -EINVAL;
2495 			break;
2496 		}
2497 		tp->rx_opt.user_mss = val;
2498 		break;
2499 
2500 	case TCP_NODELAY:
2501 		if (val) {
2502 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2503 			 * this option on corked socket is remembered, but
2504 			 * it is not activated until cork is cleared.
2505 			 *
2506 			 * However, when TCP_NODELAY is set we make
2507 			 * an explicit push, which overrides even TCP_CORK
2508 			 * for currently queued segments.
2509 			 */
2510 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2511 			tcp_push_pending_frames(sk);
2512 		} else {
2513 			tp->nonagle &= ~TCP_NAGLE_OFF;
2514 		}
2515 		break;
2516 
2517 	case TCP_THIN_LINEAR_TIMEOUTS:
2518 		if (val < 0 || val > 1)
2519 			err = -EINVAL;
2520 		else
2521 			tp->thin_lto = val;
2522 		break;
2523 
2524 	case TCP_THIN_DUPACK:
2525 		if (val < 0 || val > 1)
2526 			err = -EINVAL;
2527 		else
2528 			tp->thin_dupack = val;
2529 			if (tp->thin_dupack)
2530 				tcp_disable_early_retrans(tp);
2531 		break;
2532 
2533 	case TCP_REPAIR:
2534 		if (!tcp_can_repair_sock(sk))
2535 			err = -EPERM;
2536 		else if (val == 1) {
2537 			tp->repair = 1;
2538 			sk->sk_reuse = SK_FORCE_REUSE;
2539 			tp->repair_queue = TCP_NO_QUEUE;
2540 		} else if (val == 0) {
2541 			tp->repair = 0;
2542 			sk->sk_reuse = SK_NO_REUSE;
2543 			tcp_send_window_probe(sk);
2544 		} else
2545 			err = -EINVAL;
2546 
2547 		break;
2548 
2549 	case TCP_REPAIR_QUEUE:
2550 		if (!tp->repair)
2551 			err = -EPERM;
2552 		else if (val < TCP_QUEUES_NR)
2553 			tp->repair_queue = val;
2554 		else
2555 			err = -EINVAL;
2556 		break;
2557 
2558 	case TCP_QUEUE_SEQ:
2559 		if (sk->sk_state != TCP_CLOSE)
2560 			err = -EPERM;
2561 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2562 			tp->write_seq = val;
2563 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2564 			tp->rcv_nxt = val;
2565 		else
2566 			err = -EINVAL;
2567 		break;
2568 
2569 	case TCP_REPAIR_OPTIONS:
2570 		if (!tp->repair)
2571 			err = -EINVAL;
2572 		else if (sk->sk_state == TCP_ESTABLISHED)
2573 			err = tcp_repair_options_est(tp,
2574 					(struct tcp_repair_opt __user *)optval,
2575 					optlen);
2576 		else
2577 			err = -EPERM;
2578 		break;
2579 
2580 	case TCP_CORK:
2581 		/* When set indicates to always queue non-full frames.
2582 		 * Later the user clears this option and we transmit
2583 		 * any pending partial frames in the queue.  This is
2584 		 * meant to be used alongside sendfile() to get properly
2585 		 * filled frames when the user (for example) must write
2586 		 * out headers with a write() call first and then use
2587 		 * sendfile to send out the data parts.
2588 		 *
2589 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2590 		 * stronger than TCP_NODELAY.
2591 		 */
2592 		if (val) {
2593 			tp->nonagle |= TCP_NAGLE_CORK;
2594 		} else {
2595 			tp->nonagle &= ~TCP_NAGLE_CORK;
2596 			if (tp->nonagle&TCP_NAGLE_OFF)
2597 				tp->nonagle |= TCP_NAGLE_PUSH;
2598 			tcp_push_pending_frames(sk);
2599 		}
2600 		break;
2601 
2602 	case TCP_KEEPIDLE:
2603 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2604 			err = -EINVAL;
2605 		else {
2606 			tp->keepalive_time = val * HZ;
2607 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2608 			    !((1 << sk->sk_state) &
2609 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2610 				u32 elapsed = keepalive_time_elapsed(tp);
2611 				if (tp->keepalive_time > elapsed)
2612 					elapsed = tp->keepalive_time - elapsed;
2613 				else
2614 					elapsed = 0;
2615 				inet_csk_reset_keepalive_timer(sk, elapsed);
2616 			}
2617 		}
2618 		break;
2619 	case TCP_KEEPINTVL:
2620 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2621 			err = -EINVAL;
2622 		else
2623 			tp->keepalive_intvl = val * HZ;
2624 		break;
2625 	case TCP_KEEPCNT:
2626 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2627 			err = -EINVAL;
2628 		else
2629 			tp->keepalive_probes = val;
2630 		break;
2631 	case TCP_SYNCNT:
2632 		if (val < 1 || val > MAX_TCP_SYNCNT)
2633 			err = -EINVAL;
2634 		else
2635 			icsk->icsk_syn_retries = val;
2636 		break;
2637 
2638 	case TCP_LINGER2:
2639 		if (val < 0)
2640 			tp->linger2 = -1;
2641 		else if (val > sysctl_tcp_fin_timeout / HZ)
2642 			tp->linger2 = 0;
2643 		else
2644 			tp->linger2 = val * HZ;
2645 		break;
2646 
2647 	case TCP_DEFER_ACCEPT:
2648 		/* Translate value in seconds to number of retransmits */
2649 		icsk->icsk_accept_queue.rskq_defer_accept =
2650 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2651 					TCP_RTO_MAX / HZ);
2652 		break;
2653 
2654 	case TCP_WINDOW_CLAMP:
2655 		if (!val) {
2656 			if (sk->sk_state != TCP_CLOSE) {
2657 				err = -EINVAL;
2658 				break;
2659 			}
2660 			tp->window_clamp = 0;
2661 		} else
2662 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2663 						SOCK_MIN_RCVBUF / 2 : val;
2664 		break;
2665 
2666 	case TCP_QUICKACK:
2667 		if (!val) {
2668 			icsk->icsk_ack.pingpong = 1;
2669 		} else {
2670 			icsk->icsk_ack.pingpong = 0;
2671 			if ((1 << sk->sk_state) &
2672 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2673 			    inet_csk_ack_scheduled(sk)) {
2674 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2675 				tcp_cleanup_rbuf(sk, 1);
2676 				if (!(val & 1))
2677 					icsk->icsk_ack.pingpong = 1;
2678 			}
2679 		}
2680 		break;
2681 
2682 #ifdef CONFIG_TCP_MD5SIG
2683 	case TCP_MD5SIG:
2684 		/* Read the IP->Key mappings from userspace */
2685 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2686 		break;
2687 #endif
2688 	case TCP_USER_TIMEOUT:
2689 		/* Cap the max timeout in ms TCP will retry/retrans
2690 		 * before giving up and aborting (ETIMEDOUT) a connection.
2691 		 */
2692 		if (val < 0)
2693 			err = -EINVAL;
2694 		else
2695 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2696 		break;
2697 
2698 	case TCP_FASTOPEN:
2699 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2700 		    TCPF_LISTEN)))
2701 			err = fastopen_init_queue(sk, val);
2702 		else
2703 			err = -EINVAL;
2704 		break;
2705 	default:
2706 		err = -ENOPROTOOPT;
2707 		break;
2708 	}
2709 
2710 	release_sock(sk);
2711 	return err;
2712 }
2713 
2714 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2715 		   unsigned int optlen)
2716 {
2717 	const struct inet_connection_sock *icsk = inet_csk(sk);
2718 
2719 	if (level != SOL_TCP)
2720 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2721 						     optval, optlen);
2722 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2723 }
2724 EXPORT_SYMBOL(tcp_setsockopt);
2725 
2726 #ifdef CONFIG_COMPAT
2727 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2728 			  char __user *optval, unsigned int optlen)
2729 {
2730 	if (level != SOL_TCP)
2731 		return inet_csk_compat_setsockopt(sk, level, optname,
2732 						  optval, optlen);
2733 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2734 }
2735 EXPORT_SYMBOL(compat_tcp_setsockopt);
2736 #endif
2737 
2738 /* Return information about state of tcp endpoint in API format. */
2739 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2740 {
2741 	const struct tcp_sock *tp = tcp_sk(sk);
2742 	const struct inet_connection_sock *icsk = inet_csk(sk);
2743 	u32 now = tcp_time_stamp;
2744 
2745 	memset(info, 0, sizeof(*info));
2746 
2747 	info->tcpi_state = sk->sk_state;
2748 	info->tcpi_ca_state = icsk->icsk_ca_state;
2749 	info->tcpi_retransmits = icsk->icsk_retransmits;
2750 	info->tcpi_probes = icsk->icsk_probes_out;
2751 	info->tcpi_backoff = icsk->icsk_backoff;
2752 
2753 	if (tp->rx_opt.tstamp_ok)
2754 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2755 	if (tcp_is_sack(tp))
2756 		info->tcpi_options |= TCPI_OPT_SACK;
2757 	if (tp->rx_opt.wscale_ok) {
2758 		info->tcpi_options |= TCPI_OPT_WSCALE;
2759 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2760 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2761 	}
2762 
2763 	if (tp->ecn_flags & TCP_ECN_OK)
2764 		info->tcpi_options |= TCPI_OPT_ECN;
2765 	if (tp->ecn_flags & TCP_ECN_SEEN)
2766 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2767 	if (tp->syn_data_acked)
2768 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2769 
2770 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2771 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2772 	info->tcpi_snd_mss = tp->mss_cache;
2773 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2774 
2775 	if (sk->sk_state == TCP_LISTEN) {
2776 		info->tcpi_unacked = sk->sk_ack_backlog;
2777 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2778 	} else {
2779 		info->tcpi_unacked = tp->packets_out;
2780 		info->tcpi_sacked = tp->sacked_out;
2781 	}
2782 	info->tcpi_lost = tp->lost_out;
2783 	info->tcpi_retrans = tp->retrans_out;
2784 	info->tcpi_fackets = tp->fackets_out;
2785 
2786 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2787 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2788 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2789 
2790 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2791 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2792 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2793 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2794 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2795 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2796 	info->tcpi_advmss = tp->advmss;
2797 	info->tcpi_reordering = tp->reordering;
2798 
2799 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2800 	info->tcpi_rcv_space = tp->rcvq_space.space;
2801 
2802 	info->tcpi_total_retrans = tp->total_retrans;
2803 }
2804 EXPORT_SYMBOL_GPL(tcp_get_info);
2805 
2806 static int do_tcp_getsockopt(struct sock *sk, int level,
2807 		int optname, char __user *optval, int __user *optlen)
2808 {
2809 	struct inet_connection_sock *icsk = inet_csk(sk);
2810 	struct tcp_sock *tp = tcp_sk(sk);
2811 	int val, len;
2812 
2813 	if (get_user(len, optlen))
2814 		return -EFAULT;
2815 
2816 	len = min_t(unsigned int, len, sizeof(int));
2817 
2818 	if (len < 0)
2819 		return -EINVAL;
2820 
2821 	switch (optname) {
2822 	case TCP_MAXSEG:
2823 		val = tp->mss_cache;
2824 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2825 			val = tp->rx_opt.user_mss;
2826 		if (tp->repair)
2827 			val = tp->rx_opt.mss_clamp;
2828 		break;
2829 	case TCP_NODELAY:
2830 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2831 		break;
2832 	case TCP_CORK:
2833 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2834 		break;
2835 	case TCP_KEEPIDLE:
2836 		val = keepalive_time_when(tp) / HZ;
2837 		break;
2838 	case TCP_KEEPINTVL:
2839 		val = keepalive_intvl_when(tp) / HZ;
2840 		break;
2841 	case TCP_KEEPCNT:
2842 		val = keepalive_probes(tp);
2843 		break;
2844 	case TCP_SYNCNT:
2845 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2846 		break;
2847 	case TCP_LINGER2:
2848 		val = tp->linger2;
2849 		if (val >= 0)
2850 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2851 		break;
2852 	case TCP_DEFER_ACCEPT:
2853 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2854 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2855 		break;
2856 	case TCP_WINDOW_CLAMP:
2857 		val = tp->window_clamp;
2858 		break;
2859 	case TCP_INFO: {
2860 		struct tcp_info info;
2861 
2862 		if (get_user(len, optlen))
2863 			return -EFAULT;
2864 
2865 		tcp_get_info(sk, &info);
2866 
2867 		len = min_t(unsigned int, len, sizeof(info));
2868 		if (put_user(len, optlen))
2869 			return -EFAULT;
2870 		if (copy_to_user(optval, &info, len))
2871 			return -EFAULT;
2872 		return 0;
2873 	}
2874 	case TCP_QUICKACK:
2875 		val = !icsk->icsk_ack.pingpong;
2876 		break;
2877 
2878 	case TCP_CONGESTION:
2879 		if (get_user(len, optlen))
2880 			return -EFAULT;
2881 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2882 		if (put_user(len, optlen))
2883 			return -EFAULT;
2884 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2885 			return -EFAULT;
2886 		return 0;
2887 
2888 	case TCP_COOKIE_TRANSACTIONS: {
2889 		struct tcp_cookie_transactions ctd;
2890 		struct tcp_cookie_values *cvp = tp->cookie_values;
2891 
2892 		if (get_user(len, optlen))
2893 			return -EFAULT;
2894 		if (len < sizeof(ctd))
2895 			return -EINVAL;
2896 
2897 		memset(&ctd, 0, sizeof(ctd));
2898 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2899 				   TCP_COOKIE_IN_ALWAYS : 0)
2900 				| (tp->rx_opt.cookie_out_never ?
2901 				   TCP_COOKIE_OUT_NEVER : 0);
2902 
2903 		if (cvp != NULL) {
2904 			ctd.tcpct_flags |= (cvp->s_data_in ?
2905 					    TCP_S_DATA_IN : 0)
2906 					 | (cvp->s_data_out ?
2907 					    TCP_S_DATA_OUT : 0);
2908 
2909 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2910 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2911 
2912 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2913 			       cvp->cookie_pair_size);
2914 			ctd.tcpct_used = cvp->cookie_pair_size;
2915 		}
2916 
2917 		if (put_user(sizeof(ctd), optlen))
2918 			return -EFAULT;
2919 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2920 			return -EFAULT;
2921 		return 0;
2922 	}
2923 	case TCP_THIN_LINEAR_TIMEOUTS:
2924 		val = tp->thin_lto;
2925 		break;
2926 	case TCP_THIN_DUPACK:
2927 		val = tp->thin_dupack;
2928 		break;
2929 
2930 	case TCP_REPAIR:
2931 		val = tp->repair;
2932 		break;
2933 
2934 	case TCP_REPAIR_QUEUE:
2935 		if (tp->repair)
2936 			val = tp->repair_queue;
2937 		else
2938 			return -EINVAL;
2939 		break;
2940 
2941 	case TCP_QUEUE_SEQ:
2942 		if (tp->repair_queue == TCP_SEND_QUEUE)
2943 			val = tp->write_seq;
2944 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2945 			val = tp->rcv_nxt;
2946 		else
2947 			return -EINVAL;
2948 		break;
2949 
2950 	case TCP_USER_TIMEOUT:
2951 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2952 		break;
2953 	default:
2954 		return -ENOPROTOOPT;
2955 	}
2956 
2957 	if (put_user(len, optlen))
2958 		return -EFAULT;
2959 	if (copy_to_user(optval, &val, len))
2960 		return -EFAULT;
2961 	return 0;
2962 }
2963 
2964 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2965 		   int __user *optlen)
2966 {
2967 	struct inet_connection_sock *icsk = inet_csk(sk);
2968 
2969 	if (level != SOL_TCP)
2970 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2971 						     optval, optlen);
2972 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2973 }
2974 EXPORT_SYMBOL(tcp_getsockopt);
2975 
2976 #ifdef CONFIG_COMPAT
2977 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2978 			  char __user *optval, int __user *optlen)
2979 {
2980 	if (level != SOL_TCP)
2981 		return inet_csk_compat_getsockopt(sk, level, optname,
2982 						  optval, optlen);
2983 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2984 }
2985 EXPORT_SYMBOL(compat_tcp_getsockopt);
2986 #endif
2987 
2988 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2989 	netdev_features_t features)
2990 {
2991 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2992 	struct tcphdr *th;
2993 	unsigned int thlen;
2994 	unsigned int seq;
2995 	__be32 delta;
2996 	unsigned int oldlen;
2997 	unsigned int mss;
2998 
2999 	if (!pskb_may_pull(skb, sizeof(*th)))
3000 		goto out;
3001 
3002 	th = tcp_hdr(skb);
3003 	thlen = th->doff * 4;
3004 	if (thlen < sizeof(*th))
3005 		goto out;
3006 
3007 	if (!pskb_may_pull(skb, thlen))
3008 		goto out;
3009 
3010 	oldlen = (u16)~skb->len;
3011 	__skb_pull(skb, thlen);
3012 
3013 	mss = skb_shinfo(skb)->gso_size;
3014 	if (unlikely(skb->len <= mss))
3015 		goto out;
3016 
3017 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3018 		/* Packet is from an untrusted source, reset gso_segs. */
3019 		int type = skb_shinfo(skb)->gso_type;
3020 
3021 		if (unlikely(type &
3022 			     ~(SKB_GSO_TCPV4 |
3023 			       SKB_GSO_DODGY |
3024 			       SKB_GSO_TCP_ECN |
3025 			       SKB_GSO_TCPV6 |
3026 			       0) ||
3027 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3028 			goto out;
3029 
3030 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3031 
3032 		segs = NULL;
3033 		goto out;
3034 	}
3035 
3036 	segs = skb_segment(skb, features);
3037 	if (IS_ERR(segs))
3038 		goto out;
3039 
3040 	delta = htonl(oldlen + (thlen + mss));
3041 
3042 	skb = segs;
3043 	th = tcp_hdr(skb);
3044 	seq = ntohl(th->seq);
3045 
3046 	do {
3047 		th->fin = th->psh = 0;
3048 
3049 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3050 				       (__force u32)delta));
3051 		if (skb->ip_summed != CHECKSUM_PARTIAL)
3052 			th->check =
3053 			     csum_fold(csum_partial(skb_transport_header(skb),
3054 						    thlen, skb->csum));
3055 
3056 		seq += mss;
3057 		skb = skb->next;
3058 		th = tcp_hdr(skb);
3059 
3060 		th->seq = htonl(seq);
3061 		th->cwr = 0;
3062 	} while (skb->next);
3063 
3064 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3065 		      skb->data_len);
3066 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3067 				(__force u32)delta));
3068 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3069 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
3070 						   thlen, skb->csum));
3071 
3072 out:
3073 	return segs;
3074 }
3075 EXPORT_SYMBOL(tcp_tso_segment);
3076 
3077 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3078 {
3079 	struct sk_buff **pp = NULL;
3080 	struct sk_buff *p;
3081 	struct tcphdr *th;
3082 	struct tcphdr *th2;
3083 	unsigned int len;
3084 	unsigned int thlen;
3085 	__be32 flags;
3086 	unsigned int mss = 1;
3087 	unsigned int hlen;
3088 	unsigned int off;
3089 	int flush = 1;
3090 	int i;
3091 
3092 	off = skb_gro_offset(skb);
3093 	hlen = off + sizeof(*th);
3094 	th = skb_gro_header_fast(skb, off);
3095 	if (skb_gro_header_hard(skb, hlen)) {
3096 		th = skb_gro_header_slow(skb, hlen, off);
3097 		if (unlikely(!th))
3098 			goto out;
3099 	}
3100 
3101 	thlen = th->doff * 4;
3102 	if (thlen < sizeof(*th))
3103 		goto out;
3104 
3105 	hlen = off + thlen;
3106 	if (skb_gro_header_hard(skb, hlen)) {
3107 		th = skb_gro_header_slow(skb, hlen, off);
3108 		if (unlikely(!th))
3109 			goto out;
3110 	}
3111 
3112 	skb_gro_pull(skb, thlen);
3113 
3114 	len = skb_gro_len(skb);
3115 	flags = tcp_flag_word(th);
3116 
3117 	for (; (p = *head); head = &p->next) {
3118 		if (!NAPI_GRO_CB(p)->same_flow)
3119 			continue;
3120 
3121 		th2 = tcp_hdr(p);
3122 
3123 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3124 			NAPI_GRO_CB(p)->same_flow = 0;
3125 			continue;
3126 		}
3127 
3128 		goto found;
3129 	}
3130 
3131 	goto out_check_final;
3132 
3133 found:
3134 	flush = NAPI_GRO_CB(p)->flush;
3135 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3136 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3137 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3138 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3139 	for (i = sizeof(*th); i < thlen; i += 4)
3140 		flush |= *(u32 *)((u8 *)th + i) ^
3141 			 *(u32 *)((u8 *)th2 + i);
3142 
3143 	mss = skb_shinfo(p)->gso_size;
3144 
3145 	flush |= (len - 1) >= mss;
3146 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3147 
3148 	if (flush || skb_gro_receive(head, skb)) {
3149 		mss = 1;
3150 		goto out_check_final;
3151 	}
3152 
3153 	p = *head;
3154 	th2 = tcp_hdr(p);
3155 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3156 
3157 out_check_final:
3158 	flush = len < mss;
3159 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3160 					TCP_FLAG_RST | TCP_FLAG_SYN |
3161 					TCP_FLAG_FIN));
3162 
3163 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3164 		pp = head;
3165 
3166 out:
3167 	NAPI_GRO_CB(skb)->flush |= flush;
3168 
3169 	return pp;
3170 }
3171 EXPORT_SYMBOL(tcp_gro_receive);
3172 
3173 int tcp_gro_complete(struct sk_buff *skb)
3174 {
3175 	struct tcphdr *th = tcp_hdr(skb);
3176 
3177 	skb->csum_start = skb_transport_header(skb) - skb->head;
3178 	skb->csum_offset = offsetof(struct tcphdr, check);
3179 	skb->ip_summed = CHECKSUM_PARTIAL;
3180 
3181 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3182 
3183 	if (th->cwr)
3184 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3185 
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL(tcp_gro_complete);
3189 
3190 #ifdef CONFIG_TCP_MD5SIG
3191 static unsigned long tcp_md5sig_users;
3192 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3193 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3194 
3195 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3196 {
3197 	int cpu;
3198 
3199 	for_each_possible_cpu(cpu) {
3200 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3201 
3202 		if (p->md5_desc.tfm)
3203 			crypto_free_hash(p->md5_desc.tfm);
3204 	}
3205 	free_percpu(pool);
3206 }
3207 
3208 void tcp_free_md5sig_pool(void)
3209 {
3210 	struct tcp_md5sig_pool __percpu *pool = NULL;
3211 
3212 	spin_lock_bh(&tcp_md5sig_pool_lock);
3213 	if (--tcp_md5sig_users == 0) {
3214 		pool = tcp_md5sig_pool;
3215 		tcp_md5sig_pool = NULL;
3216 	}
3217 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3218 	if (pool)
3219 		__tcp_free_md5sig_pool(pool);
3220 }
3221 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3222 
3223 static struct tcp_md5sig_pool __percpu *
3224 __tcp_alloc_md5sig_pool(struct sock *sk)
3225 {
3226 	int cpu;
3227 	struct tcp_md5sig_pool __percpu *pool;
3228 
3229 	pool = alloc_percpu(struct tcp_md5sig_pool);
3230 	if (!pool)
3231 		return NULL;
3232 
3233 	for_each_possible_cpu(cpu) {
3234 		struct crypto_hash *hash;
3235 
3236 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3237 		if (!hash || IS_ERR(hash))
3238 			goto out_free;
3239 
3240 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3241 	}
3242 	return pool;
3243 out_free:
3244 	__tcp_free_md5sig_pool(pool);
3245 	return NULL;
3246 }
3247 
3248 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3249 {
3250 	struct tcp_md5sig_pool __percpu *pool;
3251 	bool alloc = false;
3252 
3253 retry:
3254 	spin_lock_bh(&tcp_md5sig_pool_lock);
3255 	pool = tcp_md5sig_pool;
3256 	if (tcp_md5sig_users++ == 0) {
3257 		alloc = true;
3258 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3259 	} else if (!pool) {
3260 		tcp_md5sig_users--;
3261 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3262 		cpu_relax();
3263 		goto retry;
3264 	} else
3265 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3266 
3267 	if (alloc) {
3268 		/* we cannot hold spinlock here because this may sleep. */
3269 		struct tcp_md5sig_pool __percpu *p;
3270 
3271 		p = __tcp_alloc_md5sig_pool(sk);
3272 		spin_lock_bh(&tcp_md5sig_pool_lock);
3273 		if (!p) {
3274 			tcp_md5sig_users--;
3275 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3276 			return NULL;
3277 		}
3278 		pool = tcp_md5sig_pool;
3279 		if (pool) {
3280 			/* oops, it has already been assigned. */
3281 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3282 			__tcp_free_md5sig_pool(p);
3283 		} else {
3284 			tcp_md5sig_pool = pool = p;
3285 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3286 		}
3287 	}
3288 	return pool;
3289 }
3290 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3291 
3292 
3293 /**
3294  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3295  *
3296  *	We use percpu structure, so if we succeed, we exit with preemption
3297  *	and BH disabled, to make sure another thread or softirq handling
3298  *	wont try to get same context.
3299  */
3300 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3301 {
3302 	struct tcp_md5sig_pool __percpu *p;
3303 
3304 	local_bh_disable();
3305 
3306 	spin_lock(&tcp_md5sig_pool_lock);
3307 	p = tcp_md5sig_pool;
3308 	if (p)
3309 		tcp_md5sig_users++;
3310 	spin_unlock(&tcp_md5sig_pool_lock);
3311 
3312 	if (p)
3313 		return this_cpu_ptr(p);
3314 
3315 	local_bh_enable();
3316 	return NULL;
3317 }
3318 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3319 
3320 void tcp_put_md5sig_pool(void)
3321 {
3322 	local_bh_enable();
3323 	tcp_free_md5sig_pool();
3324 }
3325 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3326 
3327 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3328 			const struct tcphdr *th)
3329 {
3330 	struct scatterlist sg;
3331 	struct tcphdr hdr;
3332 	int err;
3333 
3334 	/* We are not allowed to change tcphdr, make a local copy */
3335 	memcpy(&hdr, th, sizeof(hdr));
3336 	hdr.check = 0;
3337 
3338 	/* options aren't included in the hash */
3339 	sg_init_one(&sg, &hdr, sizeof(hdr));
3340 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3341 	return err;
3342 }
3343 EXPORT_SYMBOL(tcp_md5_hash_header);
3344 
3345 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3346 			  const struct sk_buff *skb, unsigned int header_len)
3347 {
3348 	struct scatterlist sg;
3349 	const struct tcphdr *tp = tcp_hdr(skb);
3350 	struct hash_desc *desc = &hp->md5_desc;
3351 	unsigned int i;
3352 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3353 					   skb_headlen(skb) - header_len : 0;
3354 	const struct skb_shared_info *shi = skb_shinfo(skb);
3355 	struct sk_buff *frag_iter;
3356 
3357 	sg_init_table(&sg, 1);
3358 
3359 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3360 	if (crypto_hash_update(desc, &sg, head_data_len))
3361 		return 1;
3362 
3363 	for (i = 0; i < shi->nr_frags; ++i) {
3364 		const struct skb_frag_struct *f = &shi->frags[i];
3365 		struct page *page = skb_frag_page(f);
3366 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3367 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3368 			return 1;
3369 	}
3370 
3371 	skb_walk_frags(skb, frag_iter)
3372 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3373 			return 1;
3374 
3375 	return 0;
3376 }
3377 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3378 
3379 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3380 {
3381 	struct scatterlist sg;
3382 
3383 	sg_init_one(&sg, key->key, key->keylen);
3384 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3385 }
3386 EXPORT_SYMBOL(tcp_md5_hash_key);
3387 
3388 #endif
3389 
3390 /* Each Responder maintains up to two secret values concurrently for
3391  * efficient secret rollover.  Each secret value has 4 states:
3392  *
3393  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3394  *    Generates new Responder-Cookies, but not yet used for primary
3395  *    verification.  This is a short-term state, typically lasting only
3396  *    one round trip time (RTT).
3397  *
3398  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3399  *    Used both for generation and primary verification.
3400  *
3401  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3402  *    Used for verification, until the first failure that can be
3403  *    verified by the newer Generating secret.  At that time, this
3404  *    cookie's state is changed to Secondary, and the Generating
3405  *    cookie's state is changed to Primary.  This is a short-term state,
3406  *    typically lasting only one round trip time (RTT).
3407  *
3408  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3409  *    Used for secondary verification, after primary verification
3410  *    failures.  This state lasts no more than twice the Maximum Segment
3411  *    Lifetime (2MSL).  Then, the secret is discarded.
3412  */
3413 struct tcp_cookie_secret {
3414 	/* The secret is divided into two parts.  The digest part is the
3415 	 * equivalent of previously hashing a secret and saving the state,
3416 	 * and serves as an initialization vector (IV).  The message part
3417 	 * serves as the trailing secret.
3418 	 */
3419 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3420 	unsigned long			expires;
3421 };
3422 
3423 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3424 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3425 #define TCP_SECRET_LIFE (HZ * 600)
3426 
3427 static struct tcp_cookie_secret tcp_secret_one;
3428 static struct tcp_cookie_secret tcp_secret_two;
3429 
3430 /* Essentially a circular list, without dynamic allocation. */
3431 static struct tcp_cookie_secret *tcp_secret_generating;
3432 static struct tcp_cookie_secret *tcp_secret_primary;
3433 static struct tcp_cookie_secret *tcp_secret_retiring;
3434 static struct tcp_cookie_secret *tcp_secret_secondary;
3435 
3436 static DEFINE_SPINLOCK(tcp_secret_locker);
3437 
3438 /* Select a pseudo-random word in the cookie workspace.
3439  */
3440 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3441 {
3442 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3443 }
3444 
3445 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3446  * Called in softirq context.
3447  * Returns: 0 for success.
3448  */
3449 int tcp_cookie_generator(u32 *bakery)
3450 {
3451 	unsigned long jiffy = jiffies;
3452 
3453 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3454 		spin_lock_bh(&tcp_secret_locker);
3455 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3456 			/* refreshed by another */
3457 			memcpy(bakery,
3458 			       &tcp_secret_generating->secrets[0],
3459 			       COOKIE_WORKSPACE_WORDS);
3460 		} else {
3461 			/* still needs refreshing */
3462 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3463 
3464 			/* The first time, paranoia assumes that the
3465 			 * randomization function isn't as strong.  But,
3466 			 * this secret initialization is delayed until
3467 			 * the last possible moment (packet arrival).
3468 			 * Although that time is observable, it is
3469 			 * unpredictably variable.  Mash in the most
3470 			 * volatile clock bits available, and expire the
3471 			 * secret extra quickly.
3472 			 */
3473 			if (unlikely(tcp_secret_primary->expires ==
3474 				     tcp_secret_secondary->expires)) {
3475 				struct timespec tv;
3476 
3477 				getnstimeofday(&tv);
3478 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3479 					(u32)tv.tv_nsec;
3480 
3481 				tcp_secret_secondary->expires = jiffy
3482 					+ TCP_SECRET_1MSL
3483 					+ (0x0f & tcp_cookie_work(bakery, 0));
3484 			} else {
3485 				tcp_secret_secondary->expires = jiffy
3486 					+ TCP_SECRET_LIFE
3487 					+ (0xff & tcp_cookie_work(bakery, 1));
3488 				tcp_secret_primary->expires = jiffy
3489 					+ TCP_SECRET_2MSL
3490 					+ (0x1f & tcp_cookie_work(bakery, 2));
3491 			}
3492 			memcpy(&tcp_secret_secondary->secrets[0],
3493 			       bakery, COOKIE_WORKSPACE_WORDS);
3494 
3495 			rcu_assign_pointer(tcp_secret_generating,
3496 					   tcp_secret_secondary);
3497 			rcu_assign_pointer(tcp_secret_retiring,
3498 					   tcp_secret_primary);
3499 			/*
3500 			 * Neither call_rcu() nor synchronize_rcu() needed.
3501 			 * Retiring data is not freed.  It is replaced after
3502 			 * further (locked) pointer updates, and a quiet time
3503 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3504 			 */
3505 		}
3506 		spin_unlock_bh(&tcp_secret_locker);
3507 	} else {
3508 		rcu_read_lock_bh();
3509 		memcpy(bakery,
3510 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3511 		       COOKIE_WORKSPACE_WORDS);
3512 		rcu_read_unlock_bh();
3513 	}
3514 	return 0;
3515 }
3516 EXPORT_SYMBOL(tcp_cookie_generator);
3517 
3518 void tcp_done(struct sock *sk)
3519 {
3520 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3521 
3522 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3523 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3524 
3525 	tcp_set_state(sk, TCP_CLOSE);
3526 	tcp_clear_xmit_timers(sk);
3527 	if (req != NULL)
3528 		reqsk_fastopen_remove(sk, req, false);
3529 
3530 	sk->sk_shutdown = SHUTDOWN_MASK;
3531 
3532 	if (!sock_flag(sk, SOCK_DEAD))
3533 		sk->sk_state_change(sk);
3534 	else
3535 		inet_csk_destroy_sock(sk);
3536 }
3537 EXPORT_SYMBOL_GPL(tcp_done);
3538 
3539 extern struct tcp_congestion_ops tcp_reno;
3540 
3541 static __initdata unsigned long thash_entries;
3542 static int __init set_thash_entries(char *str)
3543 {
3544 	ssize_t ret;
3545 
3546 	if (!str)
3547 		return 0;
3548 
3549 	ret = kstrtoul(str, 0, &thash_entries);
3550 	if (ret)
3551 		return 0;
3552 
3553 	return 1;
3554 }
3555 __setup("thash_entries=", set_thash_entries);
3556 
3557 void tcp_init_mem(struct net *net)
3558 {
3559 	unsigned long limit = nr_free_buffer_pages() / 8;
3560 	limit = max(limit, 128UL);
3561 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3562 	net->ipv4.sysctl_tcp_mem[1] = limit;
3563 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3564 }
3565 
3566 void __init tcp_init(void)
3567 {
3568 	struct sk_buff *skb = NULL;
3569 	unsigned long limit;
3570 	int max_rshare, max_wshare, cnt;
3571 	unsigned int i;
3572 	unsigned long jiffy = jiffies;
3573 
3574 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3575 
3576 	percpu_counter_init(&tcp_sockets_allocated, 0);
3577 	percpu_counter_init(&tcp_orphan_count, 0);
3578 	tcp_hashinfo.bind_bucket_cachep =
3579 		kmem_cache_create("tcp_bind_bucket",
3580 				  sizeof(struct inet_bind_bucket), 0,
3581 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3582 
3583 	/* Size and allocate the main established and bind bucket
3584 	 * hash tables.
3585 	 *
3586 	 * The methodology is similar to that of the buffer cache.
3587 	 */
3588 	tcp_hashinfo.ehash =
3589 		alloc_large_system_hash("TCP established",
3590 					sizeof(struct inet_ehash_bucket),
3591 					thash_entries,
3592 					(totalram_pages >= 128 * 1024) ?
3593 					13 : 15,
3594 					0,
3595 					NULL,
3596 					&tcp_hashinfo.ehash_mask,
3597 					0,
3598 					thash_entries ? 0 : 512 * 1024);
3599 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3600 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3601 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3602 	}
3603 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3604 		panic("TCP: failed to alloc ehash_locks");
3605 	tcp_hashinfo.bhash =
3606 		alloc_large_system_hash("TCP bind",
3607 					sizeof(struct inet_bind_hashbucket),
3608 					tcp_hashinfo.ehash_mask + 1,
3609 					(totalram_pages >= 128 * 1024) ?
3610 					13 : 15,
3611 					0,
3612 					&tcp_hashinfo.bhash_size,
3613 					NULL,
3614 					0,
3615 					64 * 1024);
3616 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3617 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3618 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3619 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3620 	}
3621 
3622 
3623 	cnt = tcp_hashinfo.ehash_mask + 1;
3624 
3625 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3626 	sysctl_tcp_max_orphans = cnt / 2;
3627 	sysctl_max_syn_backlog = max(128, cnt / 256);
3628 
3629 	tcp_init_mem(&init_net);
3630 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3631 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3632 	max_wshare = min(4UL*1024*1024, limit);
3633 	max_rshare = min(6UL*1024*1024, limit);
3634 
3635 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3636 	sysctl_tcp_wmem[1] = 16*1024;
3637 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3638 
3639 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3640 	sysctl_tcp_rmem[1] = 87380;
3641 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3642 
3643 	pr_info("Hash tables configured (established %u bind %u)\n",
3644 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3645 
3646 	tcp_metrics_init();
3647 
3648 	tcp_register_congestion_control(&tcp_reno);
3649 
3650 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3651 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3652 	tcp_secret_one.expires = jiffy; /* past due */
3653 	tcp_secret_two.expires = jiffy; /* past due */
3654 	tcp_secret_generating = &tcp_secret_one;
3655 	tcp_secret_primary = &tcp_secret_one;
3656 	tcp_secret_retiring = &tcp_secret_two;
3657 	tcp_secret_secondary = &tcp_secret_two;
3658 	tcp_tasklet_init();
3659 }
3660