xref: /openbmc/linux/net/ipv4/tcp.c (revision 2c935bc5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_min_tso_segs __read_mostly = 2;
285 
286 int sysctl_tcp_autocorking __read_mostly = 1;
287 
288 struct percpu_counter tcp_orphan_count;
289 EXPORT_SYMBOL_GPL(tcp_orphan_count);
290 
291 long sysctl_tcp_mem[3] __read_mostly;
292 int sysctl_tcp_wmem[3] __read_mostly;
293 int sysctl_tcp_rmem[3] __read_mostly;
294 
295 EXPORT_SYMBOL(sysctl_tcp_mem);
296 EXPORT_SYMBOL(sysctl_tcp_rmem);
297 EXPORT_SYMBOL(sysctl_tcp_wmem);
298 
299 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
300 EXPORT_SYMBOL(tcp_memory_allocated);
301 
302 /*
303  * Current number of TCP sockets.
304  */
305 struct percpu_counter tcp_sockets_allocated;
306 EXPORT_SYMBOL(tcp_sockets_allocated);
307 
308 /*
309  * TCP splice context
310  */
311 struct tcp_splice_state {
312 	struct pipe_inode_info *pipe;
313 	size_t len;
314 	unsigned int flags;
315 };
316 
317 /*
318  * Pressure flag: try to collapse.
319  * Technical note: it is used by multiple contexts non atomically.
320  * All the __sk_mem_schedule() is of this nature: accounting
321  * is strict, actions are advisory and have some latency.
322  */
323 int tcp_memory_pressure __read_mostly;
324 EXPORT_SYMBOL(tcp_memory_pressure);
325 
326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 	if (!tcp_memory_pressure) {
329 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
330 		tcp_memory_pressure = 1;
331 	}
332 }
333 EXPORT_SYMBOL(tcp_enter_memory_pressure);
334 
335 /* Convert seconds to retransmits based on initial and max timeout */
336 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
337 {
338 	u8 res = 0;
339 
340 	if (seconds > 0) {
341 		int period = timeout;
342 
343 		res = 1;
344 		while (seconds > period && res < 255) {
345 			res++;
346 			timeout <<= 1;
347 			if (timeout > rto_max)
348 				timeout = rto_max;
349 			period += timeout;
350 		}
351 	}
352 	return res;
353 }
354 
355 /* Convert retransmits to seconds based on initial and max timeout */
356 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
357 {
358 	int period = 0;
359 
360 	if (retrans > 0) {
361 		period = timeout;
362 		while (--retrans) {
363 			timeout <<= 1;
364 			if (timeout > rto_max)
365 				timeout = rto_max;
366 			period += timeout;
367 		}
368 	}
369 	return period;
370 }
371 
372 /* Address-family independent initialization for a tcp_sock.
373  *
374  * NOTE: A lot of things set to zero explicitly by call to
375  *       sk_alloc() so need not be done here.
376  */
377 void tcp_init_sock(struct sock *sk)
378 {
379 	struct inet_connection_sock *icsk = inet_csk(sk);
380 	struct tcp_sock *tp = tcp_sk(sk);
381 
382 	tp->out_of_order_queue = RB_ROOT;
383 	tcp_init_xmit_timers(sk);
384 	tcp_prequeue_init(tp);
385 	INIT_LIST_HEAD(&tp->tsq_node);
386 
387 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
388 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
389 	minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
390 
391 	/* So many TCP implementations out there (incorrectly) count the
392 	 * initial SYN frame in their delayed-ACK and congestion control
393 	 * algorithms that we must have the following bandaid to talk
394 	 * efficiently to them.  -DaveM
395 	 */
396 	tp->snd_cwnd = TCP_INIT_CWND;
397 
398 	/* There's a bubble in the pipe until at least the first ACK. */
399 	tp->app_limited = ~0U;
400 
401 	/* See draft-stevens-tcpca-spec-01 for discussion of the
402 	 * initialization of these values.
403 	 */
404 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
405 	tp->snd_cwnd_clamp = ~0;
406 	tp->mss_cache = TCP_MSS_DEFAULT;
407 
408 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
409 	tcp_enable_early_retrans(tp);
410 	tcp_assign_congestion_control(sk);
411 
412 	tp->tsoffset = 0;
413 
414 	sk->sk_state = TCP_CLOSE;
415 
416 	sk->sk_write_space = sk_stream_write_space;
417 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 
419 	icsk->icsk_sync_mss = tcp_sync_mss;
420 
421 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 
424 	local_bh_disable();
425 	sk_sockets_allocated_inc(sk);
426 	local_bh_enable();
427 }
428 EXPORT_SYMBOL(tcp_init_sock);
429 
430 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
431 {
432 	if (tsflags) {
433 		struct skb_shared_info *shinfo = skb_shinfo(skb);
434 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
435 
436 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
437 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
438 			tcb->txstamp_ack = 1;
439 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
440 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
441 	}
442 }
443 
444 /*
445  *	Wait for a TCP event.
446  *
447  *	Note that we don't need to lock the socket, as the upper poll layers
448  *	take care of normal races (between the test and the event) and we don't
449  *	go look at any of the socket buffers directly.
450  */
451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
452 {
453 	unsigned int mask;
454 	struct sock *sk = sock->sk;
455 	const struct tcp_sock *tp = tcp_sk(sk);
456 	int state;
457 
458 	sock_rps_record_flow(sk);
459 
460 	sock_poll_wait(file, sk_sleep(sk), wait);
461 
462 	state = sk_state_load(sk);
463 	if (state == TCP_LISTEN)
464 		return inet_csk_listen_poll(sk);
465 
466 	/* Socket is not locked. We are protected from async events
467 	 * by poll logic and correct handling of state changes
468 	 * made by other threads is impossible in any case.
469 	 */
470 
471 	mask = 0;
472 
473 	/*
474 	 * POLLHUP is certainly not done right. But poll() doesn't
475 	 * have a notion of HUP in just one direction, and for a
476 	 * socket the read side is more interesting.
477 	 *
478 	 * Some poll() documentation says that POLLHUP is incompatible
479 	 * with the POLLOUT/POLLWR flags, so somebody should check this
480 	 * all. But careful, it tends to be safer to return too many
481 	 * bits than too few, and you can easily break real applications
482 	 * if you don't tell them that something has hung up!
483 	 *
484 	 * Check-me.
485 	 *
486 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
487 	 * our fs/select.c). It means that after we received EOF,
488 	 * poll always returns immediately, making impossible poll() on write()
489 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
490 	 * if and only if shutdown has been made in both directions.
491 	 * Actually, it is interesting to look how Solaris and DUX
492 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
493 	 * then we could set it on SND_SHUTDOWN. BTW examples given
494 	 * in Stevens' books assume exactly this behaviour, it explains
495 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
496 	 *
497 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
498 	 * blocking on fresh not-connected or disconnected socket. --ANK
499 	 */
500 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
501 		mask |= POLLHUP;
502 	if (sk->sk_shutdown & RCV_SHUTDOWN)
503 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
504 
505 	/* Connected or passive Fast Open socket? */
506 	if (state != TCP_SYN_SENT &&
507 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
508 		int target = sock_rcvlowat(sk, 0, INT_MAX);
509 
510 		if (tp->urg_seq == tp->copied_seq &&
511 		    !sock_flag(sk, SOCK_URGINLINE) &&
512 		    tp->urg_data)
513 			target++;
514 
515 		if (tp->rcv_nxt - tp->copied_seq >= target)
516 			mask |= POLLIN | POLLRDNORM;
517 
518 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
519 			if (sk_stream_is_writeable(sk)) {
520 				mask |= POLLOUT | POLLWRNORM;
521 			} else {  /* send SIGIO later */
522 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
523 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
524 
525 				/* Race breaker. If space is freed after
526 				 * wspace test but before the flags are set,
527 				 * IO signal will be lost. Memory barrier
528 				 * pairs with the input side.
529 				 */
530 				smp_mb__after_atomic();
531 				if (sk_stream_is_writeable(sk))
532 					mask |= POLLOUT | POLLWRNORM;
533 			}
534 		} else
535 			mask |= POLLOUT | POLLWRNORM;
536 
537 		if (tp->urg_data & TCP_URG_VALID)
538 			mask |= POLLPRI;
539 	}
540 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
541 	smp_rmb();
542 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
543 		mask |= POLLERR;
544 
545 	return mask;
546 }
547 EXPORT_SYMBOL(tcp_poll);
548 
549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
550 {
551 	struct tcp_sock *tp = tcp_sk(sk);
552 	int answ;
553 	bool slow;
554 
555 	switch (cmd) {
556 	case SIOCINQ:
557 		if (sk->sk_state == TCP_LISTEN)
558 			return -EINVAL;
559 
560 		slow = lock_sock_fast(sk);
561 		answ = tcp_inq(sk);
562 		unlock_sock_fast(sk, slow);
563 		break;
564 	case SIOCATMARK:
565 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
566 		break;
567 	case SIOCOUTQ:
568 		if (sk->sk_state == TCP_LISTEN)
569 			return -EINVAL;
570 
571 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
572 			answ = 0;
573 		else
574 			answ = tp->write_seq - tp->snd_una;
575 		break;
576 	case SIOCOUTQNSD:
577 		if (sk->sk_state == TCP_LISTEN)
578 			return -EINVAL;
579 
580 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
581 			answ = 0;
582 		else
583 			answ = tp->write_seq - tp->snd_nxt;
584 		break;
585 	default:
586 		return -ENOIOCTLCMD;
587 	}
588 
589 	return put_user(answ, (int __user *)arg);
590 }
591 EXPORT_SYMBOL(tcp_ioctl);
592 
593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 {
595 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
596 	tp->pushed_seq = tp->write_seq;
597 }
598 
599 static inline bool forced_push(const struct tcp_sock *tp)
600 {
601 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
602 }
603 
604 static void skb_entail(struct sock *sk, struct sk_buff *skb)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
608 
609 	skb->csum    = 0;
610 	tcb->seq     = tcb->end_seq = tp->write_seq;
611 	tcb->tcp_flags = TCPHDR_ACK;
612 	tcb->sacked  = 0;
613 	__skb_header_release(skb);
614 	tcp_add_write_queue_tail(sk, skb);
615 	sk->sk_wmem_queued += skb->truesize;
616 	sk_mem_charge(sk, skb->truesize);
617 	if (tp->nonagle & TCP_NAGLE_PUSH)
618 		tp->nonagle &= ~TCP_NAGLE_PUSH;
619 
620 	tcp_slow_start_after_idle_check(sk);
621 }
622 
623 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
624 {
625 	if (flags & MSG_OOB)
626 		tp->snd_up = tp->write_seq;
627 }
628 
629 /* If a not yet filled skb is pushed, do not send it if
630  * we have data packets in Qdisc or NIC queues :
631  * Because TX completion will happen shortly, it gives a chance
632  * to coalesce future sendmsg() payload into this skb, without
633  * need for a timer, and with no latency trade off.
634  * As packets containing data payload have a bigger truesize
635  * than pure acks (dataless) packets, the last checks prevent
636  * autocorking if we only have an ACK in Qdisc/NIC queues,
637  * or if TX completion was delayed after we processed ACK packet.
638  */
639 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
640 				int size_goal)
641 {
642 	return skb->len < size_goal &&
643 	       sysctl_tcp_autocorking &&
644 	       skb != tcp_write_queue_head(sk) &&
645 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
646 }
647 
648 static void tcp_push(struct sock *sk, int flags, int mss_now,
649 		     int nonagle, int size_goal)
650 {
651 	struct tcp_sock *tp = tcp_sk(sk);
652 	struct sk_buff *skb;
653 
654 	if (!tcp_send_head(sk))
655 		return;
656 
657 	skb = tcp_write_queue_tail(sk);
658 	if (!(flags & MSG_MORE) || forced_push(tp))
659 		tcp_mark_push(tp, skb);
660 
661 	tcp_mark_urg(tp, flags);
662 
663 	if (tcp_should_autocork(sk, skb, size_goal)) {
664 
665 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
666 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
667 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
668 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
669 		}
670 		/* It is possible TX completion already happened
671 		 * before we set TSQ_THROTTLED.
672 		 */
673 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
674 			return;
675 	}
676 
677 	if (flags & MSG_MORE)
678 		nonagle = TCP_NAGLE_CORK;
679 
680 	__tcp_push_pending_frames(sk, mss_now, nonagle);
681 }
682 
683 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
684 				unsigned int offset, size_t len)
685 {
686 	struct tcp_splice_state *tss = rd_desc->arg.data;
687 	int ret;
688 
689 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
690 			      min(rd_desc->count, len), tss->flags);
691 	if (ret > 0)
692 		rd_desc->count -= ret;
693 	return ret;
694 }
695 
696 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
697 {
698 	/* Store TCP splice context information in read_descriptor_t. */
699 	read_descriptor_t rd_desc = {
700 		.arg.data = tss,
701 		.count	  = tss->len,
702 	};
703 
704 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
705 }
706 
707 /**
708  *  tcp_splice_read - splice data from TCP socket to a pipe
709  * @sock:	socket to splice from
710  * @ppos:	position (not valid)
711  * @pipe:	pipe to splice to
712  * @len:	number of bytes to splice
713  * @flags:	splice modifier flags
714  *
715  * Description:
716  *    Will read pages from given socket and fill them into a pipe.
717  *
718  **/
719 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
720 			struct pipe_inode_info *pipe, size_t len,
721 			unsigned int flags)
722 {
723 	struct sock *sk = sock->sk;
724 	struct tcp_splice_state tss = {
725 		.pipe = pipe,
726 		.len = len,
727 		.flags = flags,
728 	};
729 	long timeo;
730 	ssize_t spliced;
731 	int ret;
732 
733 	sock_rps_record_flow(sk);
734 	/*
735 	 * We can't seek on a socket input
736 	 */
737 	if (unlikely(*ppos))
738 		return -ESPIPE;
739 
740 	ret = spliced = 0;
741 
742 	lock_sock(sk);
743 
744 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
745 	while (tss.len) {
746 		ret = __tcp_splice_read(sk, &tss);
747 		if (ret < 0)
748 			break;
749 		else if (!ret) {
750 			if (spliced)
751 				break;
752 			if (sock_flag(sk, SOCK_DONE))
753 				break;
754 			if (sk->sk_err) {
755 				ret = sock_error(sk);
756 				break;
757 			}
758 			if (sk->sk_shutdown & RCV_SHUTDOWN)
759 				break;
760 			if (sk->sk_state == TCP_CLOSE) {
761 				/*
762 				 * This occurs when user tries to read
763 				 * from never connected socket.
764 				 */
765 				if (!sock_flag(sk, SOCK_DONE))
766 					ret = -ENOTCONN;
767 				break;
768 			}
769 			if (!timeo) {
770 				ret = -EAGAIN;
771 				break;
772 			}
773 			sk_wait_data(sk, &timeo, NULL);
774 			if (signal_pending(current)) {
775 				ret = sock_intr_errno(timeo);
776 				break;
777 			}
778 			continue;
779 		}
780 		tss.len -= ret;
781 		spliced += ret;
782 
783 		if (!timeo)
784 			break;
785 		release_sock(sk);
786 		lock_sock(sk);
787 
788 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
789 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
790 		    signal_pending(current))
791 			break;
792 	}
793 
794 	release_sock(sk);
795 
796 	if (spliced)
797 		return spliced;
798 
799 	return ret;
800 }
801 EXPORT_SYMBOL(tcp_splice_read);
802 
803 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
804 				    bool force_schedule)
805 {
806 	struct sk_buff *skb;
807 
808 	/* The TCP header must be at least 32-bit aligned.  */
809 	size = ALIGN(size, 4);
810 
811 	if (unlikely(tcp_under_memory_pressure(sk)))
812 		sk_mem_reclaim_partial(sk);
813 
814 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
815 	if (likely(skb)) {
816 		bool mem_scheduled;
817 
818 		if (force_schedule) {
819 			mem_scheduled = true;
820 			sk_forced_mem_schedule(sk, skb->truesize);
821 		} else {
822 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
823 		}
824 		if (likely(mem_scheduled)) {
825 			skb_reserve(skb, sk->sk_prot->max_header);
826 			/*
827 			 * Make sure that we have exactly size bytes
828 			 * available to the caller, no more, no less.
829 			 */
830 			skb->reserved_tailroom = skb->end - skb->tail - size;
831 			return skb;
832 		}
833 		__kfree_skb(skb);
834 	} else {
835 		sk->sk_prot->enter_memory_pressure(sk);
836 		sk_stream_moderate_sndbuf(sk);
837 	}
838 	return NULL;
839 }
840 
841 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
842 				       int large_allowed)
843 {
844 	struct tcp_sock *tp = tcp_sk(sk);
845 	u32 new_size_goal, size_goal;
846 
847 	if (!large_allowed || !sk_can_gso(sk))
848 		return mss_now;
849 
850 	/* Note : tcp_tso_autosize() will eventually split this later */
851 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
852 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
853 
854 	/* We try hard to avoid divides here */
855 	size_goal = tp->gso_segs * mss_now;
856 	if (unlikely(new_size_goal < size_goal ||
857 		     new_size_goal >= size_goal + mss_now)) {
858 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
859 				     sk->sk_gso_max_segs);
860 		size_goal = tp->gso_segs * mss_now;
861 	}
862 
863 	return max(size_goal, mss_now);
864 }
865 
866 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
867 {
868 	int mss_now;
869 
870 	mss_now = tcp_current_mss(sk);
871 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
872 
873 	return mss_now;
874 }
875 
876 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
877 				size_t size, int flags)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	int mss_now, size_goal;
881 	int err;
882 	ssize_t copied;
883 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
884 
885 	/* Wait for a connection to finish. One exception is TCP Fast Open
886 	 * (passive side) where data is allowed to be sent before a connection
887 	 * is fully established.
888 	 */
889 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
890 	    !tcp_passive_fastopen(sk)) {
891 		err = sk_stream_wait_connect(sk, &timeo);
892 		if (err != 0)
893 			goto out_err;
894 	}
895 
896 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
897 
898 	mss_now = tcp_send_mss(sk, &size_goal, flags);
899 	copied = 0;
900 
901 	err = -EPIPE;
902 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
903 		goto out_err;
904 
905 	while (size > 0) {
906 		struct sk_buff *skb = tcp_write_queue_tail(sk);
907 		int copy, i;
908 		bool can_coalesce;
909 
910 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
911 		    !tcp_skb_can_collapse_to(skb)) {
912 new_segment:
913 			if (!sk_stream_memory_free(sk))
914 				goto wait_for_sndbuf;
915 
916 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
917 						  skb_queue_empty(&sk->sk_write_queue));
918 			if (!skb)
919 				goto wait_for_memory;
920 
921 			skb_entail(sk, skb);
922 			copy = size_goal;
923 		}
924 
925 		if (copy > size)
926 			copy = size;
927 
928 		i = skb_shinfo(skb)->nr_frags;
929 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
930 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
931 			tcp_mark_push(tp, skb);
932 			goto new_segment;
933 		}
934 		if (!sk_wmem_schedule(sk, copy))
935 			goto wait_for_memory;
936 
937 		if (can_coalesce) {
938 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
939 		} else {
940 			get_page(page);
941 			skb_fill_page_desc(skb, i, page, offset, copy);
942 		}
943 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
944 
945 		skb->len += copy;
946 		skb->data_len += copy;
947 		skb->truesize += copy;
948 		sk->sk_wmem_queued += copy;
949 		sk_mem_charge(sk, copy);
950 		skb->ip_summed = CHECKSUM_PARTIAL;
951 		tp->write_seq += copy;
952 		TCP_SKB_CB(skb)->end_seq += copy;
953 		tcp_skb_pcount_set(skb, 0);
954 
955 		if (!copied)
956 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
957 
958 		copied += copy;
959 		offset += copy;
960 		size -= copy;
961 		if (!size) {
962 			tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
963 			goto out;
964 		}
965 
966 		if (skb->len < size_goal || (flags & MSG_OOB))
967 			continue;
968 
969 		if (forced_push(tp)) {
970 			tcp_mark_push(tp, skb);
971 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
972 		} else if (skb == tcp_send_head(sk))
973 			tcp_push_one(sk, mss_now);
974 		continue;
975 
976 wait_for_sndbuf:
977 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
978 wait_for_memory:
979 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
980 			 TCP_NAGLE_PUSH, size_goal);
981 
982 		err = sk_stream_wait_memory(sk, &timeo);
983 		if (err != 0)
984 			goto do_error;
985 
986 		mss_now = tcp_send_mss(sk, &size_goal, flags);
987 	}
988 
989 out:
990 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
991 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
992 	return copied;
993 
994 do_error:
995 	if (copied)
996 		goto out;
997 out_err:
998 	/* make sure we wake any epoll edge trigger waiter */
999 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1000 		     err == -EAGAIN)) {
1001 		sk->sk_write_space(sk);
1002 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1003 	}
1004 	return sk_stream_error(sk, flags, err);
1005 }
1006 
1007 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1008 		 size_t size, int flags)
1009 {
1010 	ssize_t res;
1011 
1012 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1013 	    !sk_check_csum_caps(sk))
1014 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1015 					flags);
1016 
1017 	lock_sock(sk);
1018 
1019 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1020 
1021 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1022 	release_sock(sk);
1023 	return res;
1024 }
1025 EXPORT_SYMBOL(tcp_sendpage);
1026 
1027 /* Do not bother using a page frag for very small frames.
1028  * But use this heuristic only for the first skb in write queue.
1029  *
1030  * Having no payload in skb->head allows better SACK shifting
1031  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1032  * write queue has less skbs.
1033  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1034  * This also speeds up tso_fragment(), since it wont fallback
1035  * to tcp_fragment().
1036  */
1037 static int linear_payload_sz(bool first_skb)
1038 {
1039 	if (first_skb)
1040 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1041 	return 0;
1042 }
1043 
1044 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1045 {
1046 	const struct tcp_sock *tp = tcp_sk(sk);
1047 	int tmp = tp->mss_cache;
1048 
1049 	if (sg) {
1050 		if (sk_can_gso(sk)) {
1051 			tmp = linear_payload_sz(first_skb);
1052 		} else {
1053 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1054 
1055 			if (tmp >= pgbreak &&
1056 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1057 				tmp = pgbreak;
1058 		}
1059 	}
1060 
1061 	return tmp;
1062 }
1063 
1064 void tcp_free_fastopen_req(struct tcp_sock *tp)
1065 {
1066 	if (tp->fastopen_req) {
1067 		kfree(tp->fastopen_req);
1068 		tp->fastopen_req = NULL;
1069 	}
1070 }
1071 
1072 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1073 				int *copied, size_t size)
1074 {
1075 	struct tcp_sock *tp = tcp_sk(sk);
1076 	int err, flags;
1077 
1078 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1079 		return -EOPNOTSUPP;
1080 	if (tp->fastopen_req)
1081 		return -EALREADY; /* Another Fast Open is in progress */
1082 
1083 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1084 				   sk->sk_allocation);
1085 	if (unlikely(!tp->fastopen_req))
1086 		return -ENOBUFS;
1087 	tp->fastopen_req->data = msg;
1088 	tp->fastopen_req->size = size;
1089 
1090 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1091 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1092 				    msg->msg_namelen, flags);
1093 	*copied = tp->fastopen_req->copied;
1094 	tcp_free_fastopen_req(tp);
1095 	return err;
1096 }
1097 
1098 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1099 {
1100 	struct tcp_sock *tp = tcp_sk(sk);
1101 	struct sk_buff *skb;
1102 	struct sockcm_cookie sockc;
1103 	int flags, err, copied = 0;
1104 	int mss_now = 0, size_goal, copied_syn = 0;
1105 	bool process_backlog = false;
1106 	bool sg;
1107 	long timeo;
1108 
1109 	lock_sock(sk);
1110 
1111 	flags = msg->msg_flags;
1112 	if (flags & MSG_FASTOPEN) {
1113 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1114 		if (err == -EINPROGRESS && copied_syn > 0)
1115 			goto out;
1116 		else if (err)
1117 			goto out_err;
1118 	}
1119 
1120 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1121 
1122 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1123 
1124 	/* Wait for a connection to finish. One exception is TCP Fast Open
1125 	 * (passive side) where data is allowed to be sent before a connection
1126 	 * is fully established.
1127 	 */
1128 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1129 	    !tcp_passive_fastopen(sk)) {
1130 		err = sk_stream_wait_connect(sk, &timeo);
1131 		if (err != 0)
1132 			goto do_error;
1133 	}
1134 
1135 	if (unlikely(tp->repair)) {
1136 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1137 			copied = tcp_send_rcvq(sk, msg, size);
1138 			goto out_nopush;
1139 		}
1140 
1141 		err = -EINVAL;
1142 		if (tp->repair_queue == TCP_NO_QUEUE)
1143 			goto out_err;
1144 
1145 		/* 'common' sending to sendq */
1146 	}
1147 
1148 	sockc.tsflags = sk->sk_tsflags;
1149 	if (msg->msg_controllen) {
1150 		err = sock_cmsg_send(sk, msg, &sockc);
1151 		if (unlikely(err)) {
1152 			err = -EINVAL;
1153 			goto out_err;
1154 		}
1155 	}
1156 
1157 	/* This should be in poll */
1158 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1159 
1160 	/* Ok commence sending. */
1161 	copied = 0;
1162 
1163 restart:
1164 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1165 
1166 	err = -EPIPE;
1167 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1168 		goto do_error;
1169 
1170 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1171 
1172 	while (msg_data_left(msg)) {
1173 		int copy = 0;
1174 		int max = size_goal;
1175 
1176 		skb = tcp_write_queue_tail(sk);
1177 		if (tcp_send_head(sk)) {
1178 			if (skb->ip_summed == CHECKSUM_NONE)
1179 				max = mss_now;
1180 			copy = max - skb->len;
1181 		}
1182 
1183 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1184 			bool first_skb;
1185 
1186 new_segment:
1187 			/* Allocate new segment. If the interface is SG,
1188 			 * allocate skb fitting to single page.
1189 			 */
1190 			if (!sk_stream_memory_free(sk))
1191 				goto wait_for_sndbuf;
1192 
1193 			if (process_backlog && sk_flush_backlog(sk)) {
1194 				process_backlog = false;
1195 				goto restart;
1196 			}
1197 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1198 			skb = sk_stream_alloc_skb(sk,
1199 						  select_size(sk, sg, first_skb),
1200 						  sk->sk_allocation,
1201 						  first_skb);
1202 			if (!skb)
1203 				goto wait_for_memory;
1204 
1205 			process_backlog = true;
1206 			/*
1207 			 * Check whether we can use HW checksum.
1208 			 */
1209 			if (sk_check_csum_caps(sk))
1210 				skb->ip_summed = CHECKSUM_PARTIAL;
1211 
1212 			skb_entail(sk, skb);
1213 			copy = size_goal;
1214 			max = size_goal;
1215 
1216 			/* All packets are restored as if they have
1217 			 * already been sent. skb_mstamp isn't set to
1218 			 * avoid wrong rtt estimation.
1219 			 */
1220 			if (tp->repair)
1221 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1222 		}
1223 
1224 		/* Try to append data to the end of skb. */
1225 		if (copy > msg_data_left(msg))
1226 			copy = msg_data_left(msg);
1227 
1228 		/* Where to copy to? */
1229 		if (skb_availroom(skb) > 0) {
1230 			/* We have some space in skb head. Superb! */
1231 			copy = min_t(int, copy, skb_availroom(skb));
1232 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1233 			if (err)
1234 				goto do_fault;
1235 		} else {
1236 			bool merge = true;
1237 			int i = skb_shinfo(skb)->nr_frags;
1238 			struct page_frag *pfrag = sk_page_frag(sk);
1239 
1240 			if (!sk_page_frag_refill(sk, pfrag))
1241 				goto wait_for_memory;
1242 
1243 			if (!skb_can_coalesce(skb, i, pfrag->page,
1244 					      pfrag->offset)) {
1245 				if (i >= sysctl_max_skb_frags || !sg) {
1246 					tcp_mark_push(tp, skb);
1247 					goto new_segment;
1248 				}
1249 				merge = false;
1250 			}
1251 
1252 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1253 
1254 			if (!sk_wmem_schedule(sk, copy))
1255 				goto wait_for_memory;
1256 
1257 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1258 						       pfrag->page,
1259 						       pfrag->offset,
1260 						       copy);
1261 			if (err)
1262 				goto do_error;
1263 
1264 			/* Update the skb. */
1265 			if (merge) {
1266 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1267 			} else {
1268 				skb_fill_page_desc(skb, i, pfrag->page,
1269 						   pfrag->offset, copy);
1270 				get_page(pfrag->page);
1271 			}
1272 			pfrag->offset += copy;
1273 		}
1274 
1275 		if (!copied)
1276 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1277 
1278 		tp->write_seq += copy;
1279 		TCP_SKB_CB(skb)->end_seq += copy;
1280 		tcp_skb_pcount_set(skb, 0);
1281 
1282 		copied += copy;
1283 		if (!msg_data_left(msg)) {
1284 			tcp_tx_timestamp(sk, sockc.tsflags, skb);
1285 			if (unlikely(flags & MSG_EOR))
1286 				TCP_SKB_CB(skb)->eor = 1;
1287 			goto out;
1288 		}
1289 
1290 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1291 			continue;
1292 
1293 		if (forced_push(tp)) {
1294 			tcp_mark_push(tp, skb);
1295 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1296 		} else if (skb == tcp_send_head(sk))
1297 			tcp_push_one(sk, mss_now);
1298 		continue;
1299 
1300 wait_for_sndbuf:
1301 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1302 wait_for_memory:
1303 		if (copied)
1304 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1305 				 TCP_NAGLE_PUSH, size_goal);
1306 
1307 		err = sk_stream_wait_memory(sk, &timeo);
1308 		if (err != 0)
1309 			goto do_error;
1310 
1311 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1312 	}
1313 
1314 out:
1315 	if (copied)
1316 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1317 out_nopush:
1318 	release_sock(sk);
1319 	return copied + copied_syn;
1320 
1321 do_fault:
1322 	if (!skb->len) {
1323 		tcp_unlink_write_queue(skb, sk);
1324 		/* It is the one place in all of TCP, except connection
1325 		 * reset, where we can be unlinking the send_head.
1326 		 */
1327 		tcp_check_send_head(sk, skb);
1328 		sk_wmem_free_skb(sk, skb);
1329 	}
1330 
1331 do_error:
1332 	if (copied + copied_syn)
1333 		goto out;
1334 out_err:
1335 	err = sk_stream_error(sk, flags, err);
1336 	/* make sure we wake any epoll edge trigger waiter */
1337 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1338 		     err == -EAGAIN)) {
1339 		sk->sk_write_space(sk);
1340 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1341 	}
1342 	release_sock(sk);
1343 	return err;
1344 }
1345 EXPORT_SYMBOL(tcp_sendmsg);
1346 
1347 /*
1348  *	Handle reading urgent data. BSD has very simple semantics for
1349  *	this, no blocking and very strange errors 8)
1350  */
1351 
1352 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1353 {
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355 
1356 	/* No URG data to read. */
1357 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1358 	    tp->urg_data == TCP_URG_READ)
1359 		return -EINVAL;	/* Yes this is right ! */
1360 
1361 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1362 		return -ENOTCONN;
1363 
1364 	if (tp->urg_data & TCP_URG_VALID) {
1365 		int err = 0;
1366 		char c = tp->urg_data;
1367 
1368 		if (!(flags & MSG_PEEK))
1369 			tp->urg_data = TCP_URG_READ;
1370 
1371 		/* Read urgent data. */
1372 		msg->msg_flags |= MSG_OOB;
1373 
1374 		if (len > 0) {
1375 			if (!(flags & MSG_TRUNC))
1376 				err = memcpy_to_msg(msg, &c, 1);
1377 			len = 1;
1378 		} else
1379 			msg->msg_flags |= MSG_TRUNC;
1380 
1381 		return err ? -EFAULT : len;
1382 	}
1383 
1384 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1385 		return 0;
1386 
1387 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1388 	 * the available implementations agree in this case:
1389 	 * this call should never block, independent of the
1390 	 * blocking state of the socket.
1391 	 * Mike <pall@rz.uni-karlsruhe.de>
1392 	 */
1393 	return -EAGAIN;
1394 }
1395 
1396 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1397 {
1398 	struct sk_buff *skb;
1399 	int copied = 0, err = 0;
1400 
1401 	/* XXX -- need to support SO_PEEK_OFF */
1402 
1403 	skb_queue_walk(&sk->sk_write_queue, skb) {
1404 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1405 		if (err)
1406 			break;
1407 
1408 		copied += skb->len;
1409 	}
1410 
1411 	return err ?: copied;
1412 }
1413 
1414 /* Clean up the receive buffer for full frames taken by the user,
1415  * then send an ACK if necessary.  COPIED is the number of bytes
1416  * tcp_recvmsg has given to the user so far, it speeds up the
1417  * calculation of whether or not we must ACK for the sake of
1418  * a window update.
1419  */
1420 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1421 {
1422 	struct tcp_sock *tp = tcp_sk(sk);
1423 	bool time_to_ack = false;
1424 
1425 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1426 
1427 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1428 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1429 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1430 
1431 	if (inet_csk_ack_scheduled(sk)) {
1432 		const struct inet_connection_sock *icsk = inet_csk(sk);
1433 		   /* Delayed ACKs frequently hit locked sockets during bulk
1434 		    * receive. */
1435 		if (icsk->icsk_ack.blocked ||
1436 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1437 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1438 		    /*
1439 		     * If this read emptied read buffer, we send ACK, if
1440 		     * connection is not bidirectional, user drained
1441 		     * receive buffer and there was a small segment
1442 		     * in queue.
1443 		     */
1444 		    (copied > 0 &&
1445 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1446 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1447 		       !icsk->icsk_ack.pingpong)) &&
1448 		      !atomic_read(&sk->sk_rmem_alloc)))
1449 			time_to_ack = true;
1450 	}
1451 
1452 	/* We send an ACK if we can now advertise a non-zero window
1453 	 * which has been raised "significantly".
1454 	 *
1455 	 * Even if window raised up to infinity, do not send window open ACK
1456 	 * in states, where we will not receive more. It is useless.
1457 	 */
1458 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1459 		__u32 rcv_window_now = tcp_receive_window(tp);
1460 
1461 		/* Optimize, __tcp_select_window() is not cheap. */
1462 		if (2*rcv_window_now <= tp->window_clamp) {
1463 			__u32 new_window = __tcp_select_window(sk);
1464 
1465 			/* Send ACK now, if this read freed lots of space
1466 			 * in our buffer. Certainly, new_window is new window.
1467 			 * We can advertise it now, if it is not less than current one.
1468 			 * "Lots" means "at least twice" here.
1469 			 */
1470 			if (new_window && new_window >= 2 * rcv_window_now)
1471 				time_to_ack = true;
1472 		}
1473 	}
1474 	if (time_to_ack)
1475 		tcp_send_ack(sk);
1476 }
1477 
1478 static void tcp_prequeue_process(struct sock *sk)
1479 {
1480 	struct sk_buff *skb;
1481 	struct tcp_sock *tp = tcp_sk(sk);
1482 
1483 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1484 
1485 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1486 		sk_backlog_rcv(sk, skb);
1487 
1488 	/* Clear memory counter. */
1489 	tp->ucopy.memory = 0;
1490 }
1491 
1492 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1493 {
1494 	struct sk_buff *skb;
1495 	u32 offset;
1496 
1497 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1498 		offset = seq - TCP_SKB_CB(skb)->seq;
1499 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1500 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1501 			offset--;
1502 		}
1503 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1504 			*off = offset;
1505 			return skb;
1506 		}
1507 		/* This looks weird, but this can happen if TCP collapsing
1508 		 * splitted a fat GRO packet, while we released socket lock
1509 		 * in skb_splice_bits()
1510 		 */
1511 		sk_eat_skb(sk, skb);
1512 	}
1513 	return NULL;
1514 }
1515 
1516 /*
1517  * This routine provides an alternative to tcp_recvmsg() for routines
1518  * that would like to handle copying from skbuffs directly in 'sendfile'
1519  * fashion.
1520  * Note:
1521  *	- It is assumed that the socket was locked by the caller.
1522  *	- The routine does not block.
1523  *	- At present, there is no support for reading OOB data
1524  *	  or for 'peeking' the socket using this routine
1525  *	  (although both would be easy to implement).
1526  */
1527 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1528 		  sk_read_actor_t recv_actor)
1529 {
1530 	struct sk_buff *skb;
1531 	struct tcp_sock *tp = tcp_sk(sk);
1532 	u32 seq = tp->copied_seq;
1533 	u32 offset;
1534 	int copied = 0;
1535 
1536 	if (sk->sk_state == TCP_LISTEN)
1537 		return -ENOTCONN;
1538 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1539 		if (offset < skb->len) {
1540 			int used;
1541 			size_t len;
1542 
1543 			len = skb->len - offset;
1544 			/* Stop reading if we hit a patch of urgent data */
1545 			if (tp->urg_data) {
1546 				u32 urg_offset = tp->urg_seq - seq;
1547 				if (urg_offset < len)
1548 					len = urg_offset;
1549 				if (!len)
1550 					break;
1551 			}
1552 			used = recv_actor(desc, skb, offset, len);
1553 			if (used <= 0) {
1554 				if (!copied)
1555 					copied = used;
1556 				break;
1557 			} else if (used <= len) {
1558 				seq += used;
1559 				copied += used;
1560 				offset += used;
1561 			}
1562 			/* If recv_actor drops the lock (e.g. TCP splice
1563 			 * receive) the skb pointer might be invalid when
1564 			 * getting here: tcp_collapse might have deleted it
1565 			 * while aggregating skbs from the socket queue.
1566 			 */
1567 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1568 			if (!skb)
1569 				break;
1570 			/* TCP coalescing might have appended data to the skb.
1571 			 * Try to splice more frags
1572 			 */
1573 			if (offset + 1 != skb->len)
1574 				continue;
1575 		}
1576 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1577 			sk_eat_skb(sk, skb);
1578 			++seq;
1579 			break;
1580 		}
1581 		sk_eat_skb(sk, skb);
1582 		if (!desc->count)
1583 			break;
1584 		tp->copied_seq = seq;
1585 	}
1586 	tp->copied_seq = seq;
1587 
1588 	tcp_rcv_space_adjust(sk);
1589 
1590 	/* Clean up data we have read: This will do ACK frames. */
1591 	if (copied > 0) {
1592 		tcp_recv_skb(sk, seq, &offset);
1593 		tcp_cleanup_rbuf(sk, copied);
1594 	}
1595 	return copied;
1596 }
1597 EXPORT_SYMBOL(tcp_read_sock);
1598 
1599 int tcp_peek_len(struct socket *sock)
1600 {
1601 	return tcp_inq(sock->sk);
1602 }
1603 EXPORT_SYMBOL(tcp_peek_len);
1604 
1605 /*
1606  *	This routine copies from a sock struct into the user buffer.
1607  *
1608  *	Technical note: in 2.3 we work on _locked_ socket, so that
1609  *	tricks with *seq access order and skb->users are not required.
1610  *	Probably, code can be easily improved even more.
1611  */
1612 
1613 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1614 		int flags, int *addr_len)
1615 {
1616 	struct tcp_sock *tp = tcp_sk(sk);
1617 	int copied = 0;
1618 	u32 peek_seq;
1619 	u32 *seq;
1620 	unsigned long used;
1621 	int err;
1622 	int target;		/* Read at least this many bytes */
1623 	long timeo;
1624 	struct task_struct *user_recv = NULL;
1625 	struct sk_buff *skb, *last;
1626 	u32 urg_hole = 0;
1627 
1628 	if (unlikely(flags & MSG_ERRQUEUE))
1629 		return inet_recv_error(sk, msg, len, addr_len);
1630 
1631 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1632 	    (sk->sk_state == TCP_ESTABLISHED))
1633 		sk_busy_loop(sk, nonblock);
1634 
1635 	lock_sock(sk);
1636 
1637 	err = -ENOTCONN;
1638 	if (sk->sk_state == TCP_LISTEN)
1639 		goto out;
1640 
1641 	timeo = sock_rcvtimeo(sk, nonblock);
1642 
1643 	/* Urgent data needs to be handled specially. */
1644 	if (flags & MSG_OOB)
1645 		goto recv_urg;
1646 
1647 	if (unlikely(tp->repair)) {
1648 		err = -EPERM;
1649 		if (!(flags & MSG_PEEK))
1650 			goto out;
1651 
1652 		if (tp->repair_queue == TCP_SEND_QUEUE)
1653 			goto recv_sndq;
1654 
1655 		err = -EINVAL;
1656 		if (tp->repair_queue == TCP_NO_QUEUE)
1657 			goto out;
1658 
1659 		/* 'common' recv queue MSG_PEEK-ing */
1660 	}
1661 
1662 	seq = &tp->copied_seq;
1663 	if (flags & MSG_PEEK) {
1664 		peek_seq = tp->copied_seq;
1665 		seq = &peek_seq;
1666 	}
1667 
1668 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1669 
1670 	do {
1671 		u32 offset;
1672 
1673 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1674 		if (tp->urg_data && tp->urg_seq == *seq) {
1675 			if (copied)
1676 				break;
1677 			if (signal_pending(current)) {
1678 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1679 				break;
1680 			}
1681 		}
1682 
1683 		/* Next get a buffer. */
1684 
1685 		last = skb_peek_tail(&sk->sk_receive_queue);
1686 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1687 			last = skb;
1688 			/* Now that we have two receive queues this
1689 			 * shouldn't happen.
1690 			 */
1691 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1692 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1693 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1694 				 flags))
1695 				break;
1696 
1697 			offset = *seq - TCP_SKB_CB(skb)->seq;
1698 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1699 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1700 				offset--;
1701 			}
1702 			if (offset < skb->len)
1703 				goto found_ok_skb;
1704 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1705 				goto found_fin_ok;
1706 			WARN(!(flags & MSG_PEEK),
1707 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1708 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1709 		}
1710 
1711 		/* Well, if we have backlog, try to process it now yet. */
1712 
1713 		if (copied >= target && !sk->sk_backlog.tail)
1714 			break;
1715 
1716 		if (copied) {
1717 			if (sk->sk_err ||
1718 			    sk->sk_state == TCP_CLOSE ||
1719 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1720 			    !timeo ||
1721 			    signal_pending(current))
1722 				break;
1723 		} else {
1724 			if (sock_flag(sk, SOCK_DONE))
1725 				break;
1726 
1727 			if (sk->sk_err) {
1728 				copied = sock_error(sk);
1729 				break;
1730 			}
1731 
1732 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1733 				break;
1734 
1735 			if (sk->sk_state == TCP_CLOSE) {
1736 				if (!sock_flag(sk, SOCK_DONE)) {
1737 					/* This occurs when user tries to read
1738 					 * from never connected socket.
1739 					 */
1740 					copied = -ENOTCONN;
1741 					break;
1742 				}
1743 				break;
1744 			}
1745 
1746 			if (!timeo) {
1747 				copied = -EAGAIN;
1748 				break;
1749 			}
1750 
1751 			if (signal_pending(current)) {
1752 				copied = sock_intr_errno(timeo);
1753 				break;
1754 			}
1755 		}
1756 
1757 		tcp_cleanup_rbuf(sk, copied);
1758 
1759 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1760 			/* Install new reader */
1761 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1762 				user_recv = current;
1763 				tp->ucopy.task = user_recv;
1764 				tp->ucopy.msg = msg;
1765 			}
1766 
1767 			tp->ucopy.len = len;
1768 
1769 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1770 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1771 
1772 			/* Ugly... If prequeue is not empty, we have to
1773 			 * process it before releasing socket, otherwise
1774 			 * order will be broken at second iteration.
1775 			 * More elegant solution is required!!!
1776 			 *
1777 			 * Look: we have the following (pseudo)queues:
1778 			 *
1779 			 * 1. packets in flight
1780 			 * 2. backlog
1781 			 * 3. prequeue
1782 			 * 4. receive_queue
1783 			 *
1784 			 * Each queue can be processed only if the next ones
1785 			 * are empty. At this point we have empty receive_queue.
1786 			 * But prequeue _can_ be not empty after 2nd iteration,
1787 			 * when we jumped to start of loop because backlog
1788 			 * processing added something to receive_queue.
1789 			 * We cannot release_sock(), because backlog contains
1790 			 * packets arrived _after_ prequeued ones.
1791 			 *
1792 			 * Shortly, algorithm is clear --- to process all
1793 			 * the queues in order. We could make it more directly,
1794 			 * requeueing packets from backlog to prequeue, if
1795 			 * is not empty. It is more elegant, but eats cycles,
1796 			 * unfortunately.
1797 			 */
1798 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1799 				goto do_prequeue;
1800 
1801 			/* __ Set realtime policy in scheduler __ */
1802 		}
1803 
1804 		if (copied >= target) {
1805 			/* Do not sleep, just process backlog. */
1806 			release_sock(sk);
1807 			lock_sock(sk);
1808 		} else {
1809 			sk_wait_data(sk, &timeo, last);
1810 		}
1811 
1812 		if (user_recv) {
1813 			int chunk;
1814 
1815 			/* __ Restore normal policy in scheduler __ */
1816 
1817 			chunk = len - tp->ucopy.len;
1818 			if (chunk != 0) {
1819 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1820 				len -= chunk;
1821 				copied += chunk;
1822 			}
1823 
1824 			if (tp->rcv_nxt == tp->copied_seq &&
1825 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1826 do_prequeue:
1827 				tcp_prequeue_process(sk);
1828 
1829 				chunk = len - tp->ucopy.len;
1830 				if (chunk != 0) {
1831 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1832 					len -= chunk;
1833 					copied += chunk;
1834 				}
1835 			}
1836 		}
1837 		if ((flags & MSG_PEEK) &&
1838 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1839 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1840 					    current->comm,
1841 					    task_pid_nr(current));
1842 			peek_seq = tp->copied_seq;
1843 		}
1844 		continue;
1845 
1846 	found_ok_skb:
1847 		/* Ok so how much can we use? */
1848 		used = skb->len - offset;
1849 		if (len < used)
1850 			used = len;
1851 
1852 		/* Do we have urgent data here? */
1853 		if (tp->urg_data) {
1854 			u32 urg_offset = tp->urg_seq - *seq;
1855 			if (urg_offset < used) {
1856 				if (!urg_offset) {
1857 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1858 						++*seq;
1859 						urg_hole++;
1860 						offset++;
1861 						used--;
1862 						if (!used)
1863 							goto skip_copy;
1864 					}
1865 				} else
1866 					used = urg_offset;
1867 			}
1868 		}
1869 
1870 		if (!(flags & MSG_TRUNC)) {
1871 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1872 			if (err) {
1873 				/* Exception. Bailout! */
1874 				if (!copied)
1875 					copied = -EFAULT;
1876 				break;
1877 			}
1878 		}
1879 
1880 		*seq += used;
1881 		copied += used;
1882 		len -= used;
1883 
1884 		tcp_rcv_space_adjust(sk);
1885 
1886 skip_copy:
1887 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1888 			tp->urg_data = 0;
1889 			tcp_fast_path_check(sk);
1890 		}
1891 		if (used + offset < skb->len)
1892 			continue;
1893 
1894 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1895 			goto found_fin_ok;
1896 		if (!(flags & MSG_PEEK))
1897 			sk_eat_skb(sk, skb);
1898 		continue;
1899 
1900 	found_fin_ok:
1901 		/* Process the FIN. */
1902 		++*seq;
1903 		if (!(flags & MSG_PEEK))
1904 			sk_eat_skb(sk, skb);
1905 		break;
1906 	} while (len > 0);
1907 
1908 	if (user_recv) {
1909 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1910 			int chunk;
1911 
1912 			tp->ucopy.len = copied > 0 ? len : 0;
1913 
1914 			tcp_prequeue_process(sk);
1915 
1916 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1917 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1918 				len -= chunk;
1919 				copied += chunk;
1920 			}
1921 		}
1922 
1923 		tp->ucopy.task = NULL;
1924 		tp->ucopy.len = 0;
1925 	}
1926 
1927 	/* According to UNIX98, msg_name/msg_namelen are ignored
1928 	 * on connected socket. I was just happy when found this 8) --ANK
1929 	 */
1930 
1931 	/* Clean up data we have read: This will do ACK frames. */
1932 	tcp_cleanup_rbuf(sk, copied);
1933 
1934 	release_sock(sk);
1935 	return copied;
1936 
1937 out:
1938 	release_sock(sk);
1939 	return err;
1940 
1941 recv_urg:
1942 	err = tcp_recv_urg(sk, msg, len, flags);
1943 	goto out;
1944 
1945 recv_sndq:
1946 	err = tcp_peek_sndq(sk, msg, len);
1947 	goto out;
1948 }
1949 EXPORT_SYMBOL(tcp_recvmsg);
1950 
1951 void tcp_set_state(struct sock *sk, int state)
1952 {
1953 	int oldstate = sk->sk_state;
1954 
1955 	switch (state) {
1956 	case TCP_ESTABLISHED:
1957 		if (oldstate != TCP_ESTABLISHED)
1958 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1959 		break;
1960 
1961 	case TCP_CLOSE:
1962 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1963 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1964 
1965 		sk->sk_prot->unhash(sk);
1966 		if (inet_csk(sk)->icsk_bind_hash &&
1967 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1968 			inet_put_port(sk);
1969 		/* fall through */
1970 	default:
1971 		if (oldstate == TCP_ESTABLISHED)
1972 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1973 	}
1974 
1975 	/* Change state AFTER socket is unhashed to avoid closed
1976 	 * socket sitting in hash tables.
1977 	 */
1978 	sk_state_store(sk, state);
1979 
1980 #ifdef STATE_TRACE
1981 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1982 #endif
1983 }
1984 EXPORT_SYMBOL_GPL(tcp_set_state);
1985 
1986 /*
1987  *	State processing on a close. This implements the state shift for
1988  *	sending our FIN frame. Note that we only send a FIN for some
1989  *	states. A shutdown() may have already sent the FIN, or we may be
1990  *	closed.
1991  */
1992 
1993 static const unsigned char new_state[16] = {
1994   /* current state:        new state:      action:	*/
1995   [0 /* (Invalid) */]	= TCP_CLOSE,
1996   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1997   [TCP_SYN_SENT]	= TCP_CLOSE,
1998   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1999   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2000   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2001   [TCP_TIME_WAIT]	= TCP_CLOSE,
2002   [TCP_CLOSE]		= TCP_CLOSE,
2003   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2004   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2005   [TCP_LISTEN]		= TCP_CLOSE,
2006   [TCP_CLOSING]		= TCP_CLOSING,
2007   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2008 };
2009 
2010 static int tcp_close_state(struct sock *sk)
2011 {
2012 	int next = (int)new_state[sk->sk_state];
2013 	int ns = next & TCP_STATE_MASK;
2014 
2015 	tcp_set_state(sk, ns);
2016 
2017 	return next & TCP_ACTION_FIN;
2018 }
2019 
2020 /*
2021  *	Shutdown the sending side of a connection. Much like close except
2022  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2023  */
2024 
2025 void tcp_shutdown(struct sock *sk, int how)
2026 {
2027 	/*	We need to grab some memory, and put together a FIN,
2028 	 *	and then put it into the queue to be sent.
2029 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2030 	 */
2031 	if (!(how & SEND_SHUTDOWN))
2032 		return;
2033 
2034 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2035 	if ((1 << sk->sk_state) &
2036 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2037 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2038 		/* Clear out any half completed packets.  FIN if needed. */
2039 		if (tcp_close_state(sk))
2040 			tcp_send_fin(sk);
2041 	}
2042 }
2043 EXPORT_SYMBOL(tcp_shutdown);
2044 
2045 bool tcp_check_oom(struct sock *sk, int shift)
2046 {
2047 	bool too_many_orphans, out_of_socket_memory;
2048 
2049 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2050 	out_of_socket_memory = tcp_out_of_memory(sk);
2051 
2052 	if (too_many_orphans)
2053 		net_info_ratelimited("too many orphaned sockets\n");
2054 	if (out_of_socket_memory)
2055 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2056 	return too_many_orphans || out_of_socket_memory;
2057 }
2058 
2059 void tcp_close(struct sock *sk, long timeout)
2060 {
2061 	struct sk_buff *skb;
2062 	int data_was_unread = 0;
2063 	int state;
2064 
2065 	lock_sock(sk);
2066 	sk->sk_shutdown = SHUTDOWN_MASK;
2067 
2068 	if (sk->sk_state == TCP_LISTEN) {
2069 		tcp_set_state(sk, TCP_CLOSE);
2070 
2071 		/* Special case. */
2072 		inet_csk_listen_stop(sk);
2073 
2074 		goto adjudge_to_death;
2075 	}
2076 
2077 	/*  We need to flush the recv. buffs.  We do this only on the
2078 	 *  descriptor close, not protocol-sourced closes, because the
2079 	 *  reader process may not have drained the data yet!
2080 	 */
2081 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2082 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2083 
2084 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2085 			len--;
2086 		data_was_unread += len;
2087 		__kfree_skb(skb);
2088 	}
2089 
2090 	sk_mem_reclaim(sk);
2091 
2092 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2093 	if (sk->sk_state == TCP_CLOSE)
2094 		goto adjudge_to_death;
2095 
2096 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2097 	 * data was lost. To witness the awful effects of the old behavior of
2098 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2099 	 * GET in an FTP client, suspend the process, wait for the client to
2100 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2101 	 * Note: timeout is always zero in such a case.
2102 	 */
2103 	if (unlikely(tcp_sk(sk)->repair)) {
2104 		sk->sk_prot->disconnect(sk, 0);
2105 	} else if (data_was_unread) {
2106 		/* Unread data was tossed, zap the connection. */
2107 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2108 		tcp_set_state(sk, TCP_CLOSE);
2109 		tcp_send_active_reset(sk, sk->sk_allocation);
2110 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2111 		/* Check zero linger _after_ checking for unread data. */
2112 		sk->sk_prot->disconnect(sk, 0);
2113 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2114 	} else if (tcp_close_state(sk)) {
2115 		/* We FIN if the application ate all the data before
2116 		 * zapping the connection.
2117 		 */
2118 
2119 		/* RED-PEN. Formally speaking, we have broken TCP state
2120 		 * machine. State transitions:
2121 		 *
2122 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2123 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2124 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2125 		 *
2126 		 * are legal only when FIN has been sent (i.e. in window),
2127 		 * rather than queued out of window. Purists blame.
2128 		 *
2129 		 * F.e. "RFC state" is ESTABLISHED,
2130 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2131 		 *
2132 		 * The visible declinations are that sometimes
2133 		 * we enter time-wait state, when it is not required really
2134 		 * (harmless), do not send active resets, when they are
2135 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2136 		 * they look as CLOSING or LAST_ACK for Linux)
2137 		 * Probably, I missed some more holelets.
2138 		 * 						--ANK
2139 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2140 		 * in a single packet! (May consider it later but will
2141 		 * probably need API support or TCP_CORK SYN-ACK until
2142 		 * data is written and socket is closed.)
2143 		 */
2144 		tcp_send_fin(sk);
2145 	}
2146 
2147 	sk_stream_wait_close(sk, timeout);
2148 
2149 adjudge_to_death:
2150 	state = sk->sk_state;
2151 	sock_hold(sk);
2152 	sock_orphan(sk);
2153 
2154 	/* It is the last release_sock in its life. It will remove backlog. */
2155 	release_sock(sk);
2156 
2157 
2158 	/* Now socket is owned by kernel and we acquire BH lock
2159 	   to finish close. No need to check for user refs.
2160 	 */
2161 	local_bh_disable();
2162 	bh_lock_sock(sk);
2163 	WARN_ON(sock_owned_by_user(sk));
2164 
2165 	percpu_counter_inc(sk->sk_prot->orphan_count);
2166 
2167 	/* Have we already been destroyed by a softirq or backlog? */
2168 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2169 		goto out;
2170 
2171 	/*	This is a (useful) BSD violating of the RFC. There is a
2172 	 *	problem with TCP as specified in that the other end could
2173 	 *	keep a socket open forever with no application left this end.
2174 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2175 	 *	our end. If they send after that then tough - BUT: long enough
2176 	 *	that we won't make the old 4*rto = almost no time - whoops
2177 	 *	reset mistake.
2178 	 *
2179 	 *	Nope, it was not mistake. It is really desired behaviour
2180 	 *	f.e. on http servers, when such sockets are useless, but
2181 	 *	consume significant resources. Let's do it with special
2182 	 *	linger2	option.					--ANK
2183 	 */
2184 
2185 	if (sk->sk_state == TCP_FIN_WAIT2) {
2186 		struct tcp_sock *tp = tcp_sk(sk);
2187 		if (tp->linger2 < 0) {
2188 			tcp_set_state(sk, TCP_CLOSE);
2189 			tcp_send_active_reset(sk, GFP_ATOMIC);
2190 			__NET_INC_STATS(sock_net(sk),
2191 					LINUX_MIB_TCPABORTONLINGER);
2192 		} else {
2193 			const int tmo = tcp_fin_time(sk);
2194 
2195 			if (tmo > TCP_TIMEWAIT_LEN) {
2196 				inet_csk_reset_keepalive_timer(sk,
2197 						tmo - TCP_TIMEWAIT_LEN);
2198 			} else {
2199 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2200 				goto out;
2201 			}
2202 		}
2203 	}
2204 	if (sk->sk_state != TCP_CLOSE) {
2205 		sk_mem_reclaim(sk);
2206 		if (tcp_check_oom(sk, 0)) {
2207 			tcp_set_state(sk, TCP_CLOSE);
2208 			tcp_send_active_reset(sk, GFP_ATOMIC);
2209 			__NET_INC_STATS(sock_net(sk),
2210 					LINUX_MIB_TCPABORTONMEMORY);
2211 		}
2212 	}
2213 
2214 	if (sk->sk_state == TCP_CLOSE) {
2215 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2216 		/* We could get here with a non-NULL req if the socket is
2217 		 * aborted (e.g., closed with unread data) before 3WHS
2218 		 * finishes.
2219 		 */
2220 		if (req)
2221 			reqsk_fastopen_remove(sk, req, false);
2222 		inet_csk_destroy_sock(sk);
2223 	}
2224 	/* Otherwise, socket is reprieved until protocol close. */
2225 
2226 out:
2227 	bh_unlock_sock(sk);
2228 	local_bh_enable();
2229 	sock_put(sk);
2230 }
2231 EXPORT_SYMBOL(tcp_close);
2232 
2233 /* These states need RST on ABORT according to RFC793 */
2234 
2235 static inline bool tcp_need_reset(int state)
2236 {
2237 	return (1 << state) &
2238 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2239 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2240 }
2241 
2242 int tcp_disconnect(struct sock *sk, int flags)
2243 {
2244 	struct inet_sock *inet = inet_sk(sk);
2245 	struct inet_connection_sock *icsk = inet_csk(sk);
2246 	struct tcp_sock *tp = tcp_sk(sk);
2247 	int err = 0;
2248 	int old_state = sk->sk_state;
2249 
2250 	if (old_state != TCP_CLOSE)
2251 		tcp_set_state(sk, TCP_CLOSE);
2252 
2253 	/* ABORT function of RFC793 */
2254 	if (old_state == TCP_LISTEN) {
2255 		inet_csk_listen_stop(sk);
2256 	} else if (unlikely(tp->repair)) {
2257 		sk->sk_err = ECONNABORTED;
2258 	} else if (tcp_need_reset(old_state) ||
2259 		   (tp->snd_nxt != tp->write_seq &&
2260 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2261 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2262 		 * states
2263 		 */
2264 		tcp_send_active_reset(sk, gfp_any());
2265 		sk->sk_err = ECONNRESET;
2266 	} else if (old_state == TCP_SYN_SENT)
2267 		sk->sk_err = ECONNRESET;
2268 
2269 	tcp_clear_xmit_timers(sk);
2270 	__skb_queue_purge(&sk->sk_receive_queue);
2271 	tcp_write_queue_purge(sk);
2272 	skb_rbtree_purge(&tp->out_of_order_queue);
2273 
2274 	inet->inet_dport = 0;
2275 
2276 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2277 		inet_reset_saddr(sk);
2278 
2279 	sk->sk_shutdown = 0;
2280 	sock_reset_flag(sk, SOCK_DONE);
2281 	tp->srtt_us = 0;
2282 	tp->write_seq += tp->max_window + 2;
2283 	if (tp->write_seq == 0)
2284 		tp->write_seq = 1;
2285 	icsk->icsk_backoff = 0;
2286 	tp->snd_cwnd = 2;
2287 	icsk->icsk_probes_out = 0;
2288 	tp->packets_out = 0;
2289 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2290 	tp->snd_cwnd_cnt = 0;
2291 	tp->window_clamp = 0;
2292 	tcp_set_ca_state(sk, TCP_CA_Open);
2293 	tcp_clear_retrans(tp);
2294 	inet_csk_delack_init(sk);
2295 	tcp_init_send_head(sk);
2296 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2297 	__sk_dst_reset(sk);
2298 
2299 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2300 
2301 	sk->sk_error_report(sk);
2302 	return err;
2303 }
2304 EXPORT_SYMBOL(tcp_disconnect);
2305 
2306 static inline bool tcp_can_repair_sock(const struct sock *sk)
2307 {
2308 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2309 		(sk->sk_state != TCP_LISTEN);
2310 }
2311 
2312 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2313 {
2314 	struct tcp_repair_window opt;
2315 
2316 	if (!tp->repair)
2317 		return -EPERM;
2318 
2319 	if (len != sizeof(opt))
2320 		return -EINVAL;
2321 
2322 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2323 		return -EFAULT;
2324 
2325 	if (opt.max_window < opt.snd_wnd)
2326 		return -EINVAL;
2327 
2328 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2329 		return -EINVAL;
2330 
2331 	if (after(opt.rcv_wup, tp->rcv_nxt))
2332 		return -EINVAL;
2333 
2334 	tp->snd_wl1	= opt.snd_wl1;
2335 	tp->snd_wnd	= opt.snd_wnd;
2336 	tp->max_window	= opt.max_window;
2337 
2338 	tp->rcv_wnd	= opt.rcv_wnd;
2339 	tp->rcv_wup	= opt.rcv_wup;
2340 
2341 	return 0;
2342 }
2343 
2344 static int tcp_repair_options_est(struct tcp_sock *tp,
2345 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2346 {
2347 	struct tcp_repair_opt opt;
2348 
2349 	while (len >= sizeof(opt)) {
2350 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2351 			return -EFAULT;
2352 
2353 		optbuf++;
2354 		len -= sizeof(opt);
2355 
2356 		switch (opt.opt_code) {
2357 		case TCPOPT_MSS:
2358 			tp->rx_opt.mss_clamp = opt.opt_val;
2359 			break;
2360 		case TCPOPT_WINDOW:
2361 			{
2362 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2363 				u16 rcv_wscale = opt.opt_val >> 16;
2364 
2365 				if (snd_wscale > 14 || rcv_wscale > 14)
2366 					return -EFBIG;
2367 
2368 				tp->rx_opt.snd_wscale = snd_wscale;
2369 				tp->rx_opt.rcv_wscale = rcv_wscale;
2370 				tp->rx_opt.wscale_ok = 1;
2371 			}
2372 			break;
2373 		case TCPOPT_SACK_PERM:
2374 			if (opt.opt_val != 0)
2375 				return -EINVAL;
2376 
2377 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2378 			if (sysctl_tcp_fack)
2379 				tcp_enable_fack(tp);
2380 			break;
2381 		case TCPOPT_TIMESTAMP:
2382 			if (opt.opt_val != 0)
2383 				return -EINVAL;
2384 
2385 			tp->rx_opt.tstamp_ok = 1;
2386 			break;
2387 		}
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 /*
2394  *	Socket option code for TCP.
2395  */
2396 static int do_tcp_setsockopt(struct sock *sk, int level,
2397 		int optname, char __user *optval, unsigned int optlen)
2398 {
2399 	struct tcp_sock *tp = tcp_sk(sk);
2400 	struct inet_connection_sock *icsk = inet_csk(sk);
2401 	struct net *net = sock_net(sk);
2402 	int val;
2403 	int err = 0;
2404 
2405 	/* These are data/string values, all the others are ints */
2406 	switch (optname) {
2407 	case TCP_CONGESTION: {
2408 		char name[TCP_CA_NAME_MAX];
2409 
2410 		if (optlen < 1)
2411 			return -EINVAL;
2412 
2413 		val = strncpy_from_user(name, optval,
2414 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2415 		if (val < 0)
2416 			return -EFAULT;
2417 		name[val] = 0;
2418 
2419 		lock_sock(sk);
2420 		err = tcp_set_congestion_control(sk, name);
2421 		release_sock(sk);
2422 		return err;
2423 	}
2424 	default:
2425 		/* fallthru */
2426 		break;
2427 	}
2428 
2429 	if (optlen < sizeof(int))
2430 		return -EINVAL;
2431 
2432 	if (get_user(val, (int __user *)optval))
2433 		return -EFAULT;
2434 
2435 	lock_sock(sk);
2436 
2437 	switch (optname) {
2438 	case TCP_MAXSEG:
2439 		/* Values greater than interface MTU won't take effect. However
2440 		 * at the point when this call is done we typically don't yet
2441 		 * know which interface is going to be used */
2442 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2443 			err = -EINVAL;
2444 			break;
2445 		}
2446 		tp->rx_opt.user_mss = val;
2447 		break;
2448 
2449 	case TCP_NODELAY:
2450 		if (val) {
2451 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2452 			 * this option on corked socket is remembered, but
2453 			 * it is not activated until cork is cleared.
2454 			 *
2455 			 * However, when TCP_NODELAY is set we make
2456 			 * an explicit push, which overrides even TCP_CORK
2457 			 * for currently queued segments.
2458 			 */
2459 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2460 			tcp_push_pending_frames(sk);
2461 		} else {
2462 			tp->nonagle &= ~TCP_NAGLE_OFF;
2463 		}
2464 		break;
2465 
2466 	case TCP_THIN_LINEAR_TIMEOUTS:
2467 		if (val < 0 || val > 1)
2468 			err = -EINVAL;
2469 		else
2470 			tp->thin_lto = val;
2471 		break;
2472 
2473 	case TCP_THIN_DUPACK:
2474 		if (val < 0 || val > 1)
2475 			err = -EINVAL;
2476 		else {
2477 			tp->thin_dupack = val;
2478 			if (tp->thin_dupack)
2479 				tcp_disable_early_retrans(tp);
2480 		}
2481 		break;
2482 
2483 	case TCP_REPAIR:
2484 		if (!tcp_can_repair_sock(sk))
2485 			err = -EPERM;
2486 		else if (val == 1) {
2487 			tp->repair = 1;
2488 			sk->sk_reuse = SK_FORCE_REUSE;
2489 			tp->repair_queue = TCP_NO_QUEUE;
2490 		} else if (val == 0) {
2491 			tp->repair = 0;
2492 			sk->sk_reuse = SK_NO_REUSE;
2493 			tcp_send_window_probe(sk);
2494 		} else
2495 			err = -EINVAL;
2496 
2497 		break;
2498 
2499 	case TCP_REPAIR_QUEUE:
2500 		if (!tp->repair)
2501 			err = -EPERM;
2502 		else if (val < TCP_QUEUES_NR)
2503 			tp->repair_queue = val;
2504 		else
2505 			err = -EINVAL;
2506 		break;
2507 
2508 	case TCP_QUEUE_SEQ:
2509 		if (sk->sk_state != TCP_CLOSE)
2510 			err = -EPERM;
2511 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2512 			tp->write_seq = val;
2513 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2514 			tp->rcv_nxt = val;
2515 		else
2516 			err = -EINVAL;
2517 		break;
2518 
2519 	case TCP_REPAIR_OPTIONS:
2520 		if (!tp->repair)
2521 			err = -EINVAL;
2522 		else if (sk->sk_state == TCP_ESTABLISHED)
2523 			err = tcp_repair_options_est(tp,
2524 					(struct tcp_repair_opt __user *)optval,
2525 					optlen);
2526 		else
2527 			err = -EPERM;
2528 		break;
2529 
2530 	case TCP_CORK:
2531 		/* When set indicates to always queue non-full frames.
2532 		 * Later the user clears this option and we transmit
2533 		 * any pending partial frames in the queue.  This is
2534 		 * meant to be used alongside sendfile() to get properly
2535 		 * filled frames when the user (for example) must write
2536 		 * out headers with a write() call first and then use
2537 		 * sendfile to send out the data parts.
2538 		 *
2539 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2540 		 * stronger than TCP_NODELAY.
2541 		 */
2542 		if (val) {
2543 			tp->nonagle |= TCP_NAGLE_CORK;
2544 		} else {
2545 			tp->nonagle &= ~TCP_NAGLE_CORK;
2546 			if (tp->nonagle&TCP_NAGLE_OFF)
2547 				tp->nonagle |= TCP_NAGLE_PUSH;
2548 			tcp_push_pending_frames(sk);
2549 		}
2550 		break;
2551 
2552 	case TCP_KEEPIDLE:
2553 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2554 			err = -EINVAL;
2555 		else {
2556 			tp->keepalive_time = val * HZ;
2557 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2558 			    !((1 << sk->sk_state) &
2559 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2560 				u32 elapsed = keepalive_time_elapsed(tp);
2561 				if (tp->keepalive_time > elapsed)
2562 					elapsed = tp->keepalive_time - elapsed;
2563 				else
2564 					elapsed = 0;
2565 				inet_csk_reset_keepalive_timer(sk, elapsed);
2566 			}
2567 		}
2568 		break;
2569 	case TCP_KEEPINTVL:
2570 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2571 			err = -EINVAL;
2572 		else
2573 			tp->keepalive_intvl = val * HZ;
2574 		break;
2575 	case TCP_KEEPCNT:
2576 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2577 			err = -EINVAL;
2578 		else
2579 			tp->keepalive_probes = val;
2580 		break;
2581 	case TCP_SYNCNT:
2582 		if (val < 1 || val > MAX_TCP_SYNCNT)
2583 			err = -EINVAL;
2584 		else
2585 			icsk->icsk_syn_retries = val;
2586 		break;
2587 
2588 	case TCP_SAVE_SYN:
2589 		if (val < 0 || val > 1)
2590 			err = -EINVAL;
2591 		else
2592 			tp->save_syn = val;
2593 		break;
2594 
2595 	case TCP_LINGER2:
2596 		if (val < 0)
2597 			tp->linger2 = -1;
2598 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2599 			tp->linger2 = 0;
2600 		else
2601 			tp->linger2 = val * HZ;
2602 		break;
2603 
2604 	case TCP_DEFER_ACCEPT:
2605 		/* Translate value in seconds to number of retransmits */
2606 		icsk->icsk_accept_queue.rskq_defer_accept =
2607 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2608 					TCP_RTO_MAX / HZ);
2609 		break;
2610 
2611 	case TCP_WINDOW_CLAMP:
2612 		if (!val) {
2613 			if (sk->sk_state != TCP_CLOSE) {
2614 				err = -EINVAL;
2615 				break;
2616 			}
2617 			tp->window_clamp = 0;
2618 		} else
2619 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2620 						SOCK_MIN_RCVBUF / 2 : val;
2621 		break;
2622 
2623 	case TCP_QUICKACK:
2624 		if (!val) {
2625 			icsk->icsk_ack.pingpong = 1;
2626 		} else {
2627 			icsk->icsk_ack.pingpong = 0;
2628 			if ((1 << sk->sk_state) &
2629 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2630 			    inet_csk_ack_scheduled(sk)) {
2631 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2632 				tcp_cleanup_rbuf(sk, 1);
2633 				if (!(val & 1))
2634 					icsk->icsk_ack.pingpong = 1;
2635 			}
2636 		}
2637 		break;
2638 
2639 #ifdef CONFIG_TCP_MD5SIG
2640 	case TCP_MD5SIG:
2641 		/* Read the IP->Key mappings from userspace */
2642 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2643 		break;
2644 #endif
2645 	case TCP_USER_TIMEOUT:
2646 		/* Cap the max time in ms TCP will retry or probe the window
2647 		 * before giving up and aborting (ETIMEDOUT) a connection.
2648 		 */
2649 		if (val < 0)
2650 			err = -EINVAL;
2651 		else
2652 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2653 		break;
2654 
2655 	case TCP_FASTOPEN:
2656 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2657 		    TCPF_LISTEN))) {
2658 			tcp_fastopen_init_key_once(true);
2659 
2660 			fastopen_queue_tune(sk, val);
2661 		} else {
2662 			err = -EINVAL;
2663 		}
2664 		break;
2665 	case TCP_TIMESTAMP:
2666 		if (!tp->repair)
2667 			err = -EPERM;
2668 		else
2669 			tp->tsoffset = val - tcp_time_stamp;
2670 		break;
2671 	case TCP_REPAIR_WINDOW:
2672 		err = tcp_repair_set_window(tp, optval, optlen);
2673 		break;
2674 	case TCP_NOTSENT_LOWAT:
2675 		tp->notsent_lowat = val;
2676 		sk->sk_write_space(sk);
2677 		break;
2678 	default:
2679 		err = -ENOPROTOOPT;
2680 		break;
2681 	}
2682 
2683 	release_sock(sk);
2684 	return err;
2685 }
2686 
2687 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2688 		   unsigned int optlen)
2689 {
2690 	const struct inet_connection_sock *icsk = inet_csk(sk);
2691 
2692 	if (level != SOL_TCP)
2693 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2694 						     optval, optlen);
2695 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2696 }
2697 EXPORT_SYMBOL(tcp_setsockopt);
2698 
2699 #ifdef CONFIG_COMPAT
2700 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2701 			  char __user *optval, unsigned int optlen)
2702 {
2703 	if (level != SOL_TCP)
2704 		return inet_csk_compat_setsockopt(sk, level, optname,
2705 						  optval, optlen);
2706 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2707 }
2708 EXPORT_SYMBOL(compat_tcp_setsockopt);
2709 #endif
2710 
2711 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2712 				      struct tcp_info *info)
2713 {
2714 	u64 stats[__TCP_CHRONO_MAX], total = 0;
2715 	enum tcp_chrono i;
2716 
2717 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2718 		stats[i] = tp->chrono_stat[i - 1];
2719 		if (i == tp->chrono_type)
2720 			stats[i] += tcp_time_stamp - tp->chrono_start;
2721 		stats[i] *= USEC_PER_SEC / HZ;
2722 		total += stats[i];
2723 	}
2724 
2725 	info->tcpi_busy_time = total;
2726 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2727 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2728 }
2729 
2730 /* Return information about state of tcp endpoint in API format. */
2731 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2732 {
2733 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2734 	const struct inet_connection_sock *icsk = inet_csk(sk);
2735 	u32 now = tcp_time_stamp, intv;
2736 	u64 rate64;
2737 	bool slow;
2738 	u32 rate;
2739 
2740 	memset(info, 0, sizeof(*info));
2741 	if (sk->sk_type != SOCK_STREAM)
2742 		return;
2743 
2744 	info->tcpi_state = sk_state_load(sk);
2745 
2746 	/* Report meaningful fields for all TCP states, including listeners */
2747 	rate = READ_ONCE(sk->sk_pacing_rate);
2748 	rate64 = rate != ~0U ? rate : ~0ULL;
2749 	info->tcpi_pacing_rate = rate64;
2750 
2751 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2752 	rate64 = rate != ~0U ? rate : ~0ULL;
2753 	info->tcpi_max_pacing_rate = rate64;
2754 
2755 	info->tcpi_reordering = tp->reordering;
2756 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2757 
2758 	if (info->tcpi_state == TCP_LISTEN) {
2759 		/* listeners aliased fields :
2760 		 * tcpi_unacked -> Number of children ready for accept()
2761 		 * tcpi_sacked  -> max backlog
2762 		 */
2763 		info->tcpi_unacked = sk->sk_ack_backlog;
2764 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2765 		return;
2766 	}
2767 	info->tcpi_ca_state = icsk->icsk_ca_state;
2768 	info->tcpi_retransmits = icsk->icsk_retransmits;
2769 	info->tcpi_probes = icsk->icsk_probes_out;
2770 	info->tcpi_backoff = icsk->icsk_backoff;
2771 
2772 	if (tp->rx_opt.tstamp_ok)
2773 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2774 	if (tcp_is_sack(tp))
2775 		info->tcpi_options |= TCPI_OPT_SACK;
2776 	if (tp->rx_opt.wscale_ok) {
2777 		info->tcpi_options |= TCPI_OPT_WSCALE;
2778 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2779 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2780 	}
2781 
2782 	if (tp->ecn_flags & TCP_ECN_OK)
2783 		info->tcpi_options |= TCPI_OPT_ECN;
2784 	if (tp->ecn_flags & TCP_ECN_SEEN)
2785 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2786 	if (tp->syn_data_acked)
2787 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2788 
2789 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2790 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2791 	info->tcpi_snd_mss = tp->mss_cache;
2792 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2793 
2794 	info->tcpi_unacked = tp->packets_out;
2795 	info->tcpi_sacked = tp->sacked_out;
2796 
2797 	info->tcpi_lost = tp->lost_out;
2798 	info->tcpi_retrans = tp->retrans_out;
2799 	info->tcpi_fackets = tp->fackets_out;
2800 
2801 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2802 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2803 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2804 
2805 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2806 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2807 	info->tcpi_rtt = tp->srtt_us >> 3;
2808 	info->tcpi_rttvar = tp->mdev_us >> 2;
2809 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2810 	info->tcpi_advmss = tp->advmss;
2811 
2812 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2813 	info->tcpi_rcv_space = tp->rcvq_space.space;
2814 
2815 	info->tcpi_total_retrans = tp->total_retrans;
2816 
2817 	slow = lock_sock_fast(sk);
2818 
2819 	info->tcpi_bytes_acked = tp->bytes_acked;
2820 	info->tcpi_bytes_received = tp->bytes_received;
2821 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2822 	tcp_get_info_chrono_stats(tp, info);
2823 
2824 	unlock_sock_fast(sk, slow);
2825 
2826 	info->tcpi_segs_out = tp->segs_out;
2827 	info->tcpi_segs_in = tp->segs_in;
2828 
2829 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2830 	info->tcpi_data_segs_in = tp->data_segs_in;
2831 	info->tcpi_data_segs_out = tp->data_segs_out;
2832 
2833 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2834 	rate = READ_ONCE(tp->rate_delivered);
2835 	intv = READ_ONCE(tp->rate_interval_us);
2836 	if (rate && intv) {
2837 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2838 		do_div(rate64, intv);
2839 		info->tcpi_delivery_rate = rate64;
2840 	}
2841 }
2842 EXPORT_SYMBOL_GPL(tcp_get_info);
2843 
2844 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2845 {
2846 	const struct tcp_sock *tp = tcp_sk(sk);
2847 	struct sk_buff *stats;
2848 	struct tcp_info info;
2849 
2850 	stats = alloc_skb(3 * nla_total_size_64bit(sizeof(u64)), GFP_ATOMIC);
2851 	if (!stats)
2852 		return NULL;
2853 
2854 	tcp_get_info_chrono_stats(tp, &info);
2855 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2856 			  info.tcpi_busy_time, TCP_NLA_PAD);
2857 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2858 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
2859 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2860 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2861 	return stats;
2862 }
2863 
2864 static int do_tcp_getsockopt(struct sock *sk, int level,
2865 		int optname, char __user *optval, int __user *optlen)
2866 {
2867 	struct inet_connection_sock *icsk = inet_csk(sk);
2868 	struct tcp_sock *tp = tcp_sk(sk);
2869 	struct net *net = sock_net(sk);
2870 	int val, len;
2871 
2872 	if (get_user(len, optlen))
2873 		return -EFAULT;
2874 
2875 	len = min_t(unsigned int, len, sizeof(int));
2876 
2877 	if (len < 0)
2878 		return -EINVAL;
2879 
2880 	switch (optname) {
2881 	case TCP_MAXSEG:
2882 		val = tp->mss_cache;
2883 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2884 			val = tp->rx_opt.user_mss;
2885 		if (tp->repair)
2886 			val = tp->rx_opt.mss_clamp;
2887 		break;
2888 	case TCP_NODELAY:
2889 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2890 		break;
2891 	case TCP_CORK:
2892 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2893 		break;
2894 	case TCP_KEEPIDLE:
2895 		val = keepalive_time_when(tp) / HZ;
2896 		break;
2897 	case TCP_KEEPINTVL:
2898 		val = keepalive_intvl_when(tp) / HZ;
2899 		break;
2900 	case TCP_KEEPCNT:
2901 		val = keepalive_probes(tp);
2902 		break;
2903 	case TCP_SYNCNT:
2904 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2905 		break;
2906 	case TCP_LINGER2:
2907 		val = tp->linger2;
2908 		if (val >= 0)
2909 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2910 		break;
2911 	case TCP_DEFER_ACCEPT:
2912 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2913 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2914 		break;
2915 	case TCP_WINDOW_CLAMP:
2916 		val = tp->window_clamp;
2917 		break;
2918 	case TCP_INFO: {
2919 		struct tcp_info info;
2920 
2921 		if (get_user(len, optlen))
2922 			return -EFAULT;
2923 
2924 		tcp_get_info(sk, &info);
2925 
2926 		len = min_t(unsigned int, len, sizeof(info));
2927 		if (put_user(len, optlen))
2928 			return -EFAULT;
2929 		if (copy_to_user(optval, &info, len))
2930 			return -EFAULT;
2931 		return 0;
2932 	}
2933 	case TCP_CC_INFO: {
2934 		const struct tcp_congestion_ops *ca_ops;
2935 		union tcp_cc_info info;
2936 		size_t sz = 0;
2937 		int attr;
2938 
2939 		if (get_user(len, optlen))
2940 			return -EFAULT;
2941 
2942 		ca_ops = icsk->icsk_ca_ops;
2943 		if (ca_ops && ca_ops->get_info)
2944 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2945 
2946 		len = min_t(unsigned int, len, sz);
2947 		if (put_user(len, optlen))
2948 			return -EFAULT;
2949 		if (copy_to_user(optval, &info, len))
2950 			return -EFAULT;
2951 		return 0;
2952 	}
2953 	case TCP_QUICKACK:
2954 		val = !icsk->icsk_ack.pingpong;
2955 		break;
2956 
2957 	case TCP_CONGESTION:
2958 		if (get_user(len, optlen))
2959 			return -EFAULT;
2960 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2961 		if (put_user(len, optlen))
2962 			return -EFAULT;
2963 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2964 			return -EFAULT;
2965 		return 0;
2966 
2967 	case TCP_THIN_LINEAR_TIMEOUTS:
2968 		val = tp->thin_lto;
2969 		break;
2970 	case TCP_THIN_DUPACK:
2971 		val = tp->thin_dupack;
2972 		break;
2973 
2974 	case TCP_REPAIR:
2975 		val = tp->repair;
2976 		break;
2977 
2978 	case TCP_REPAIR_QUEUE:
2979 		if (tp->repair)
2980 			val = tp->repair_queue;
2981 		else
2982 			return -EINVAL;
2983 		break;
2984 
2985 	case TCP_REPAIR_WINDOW: {
2986 		struct tcp_repair_window opt;
2987 
2988 		if (get_user(len, optlen))
2989 			return -EFAULT;
2990 
2991 		if (len != sizeof(opt))
2992 			return -EINVAL;
2993 
2994 		if (!tp->repair)
2995 			return -EPERM;
2996 
2997 		opt.snd_wl1	= tp->snd_wl1;
2998 		opt.snd_wnd	= tp->snd_wnd;
2999 		opt.max_window	= tp->max_window;
3000 		opt.rcv_wnd	= tp->rcv_wnd;
3001 		opt.rcv_wup	= tp->rcv_wup;
3002 
3003 		if (copy_to_user(optval, &opt, len))
3004 			return -EFAULT;
3005 		return 0;
3006 	}
3007 	case TCP_QUEUE_SEQ:
3008 		if (tp->repair_queue == TCP_SEND_QUEUE)
3009 			val = tp->write_seq;
3010 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3011 			val = tp->rcv_nxt;
3012 		else
3013 			return -EINVAL;
3014 		break;
3015 
3016 	case TCP_USER_TIMEOUT:
3017 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3018 		break;
3019 
3020 	case TCP_FASTOPEN:
3021 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3022 		break;
3023 
3024 	case TCP_TIMESTAMP:
3025 		val = tcp_time_stamp + tp->tsoffset;
3026 		break;
3027 	case TCP_NOTSENT_LOWAT:
3028 		val = tp->notsent_lowat;
3029 		break;
3030 	case TCP_SAVE_SYN:
3031 		val = tp->save_syn;
3032 		break;
3033 	case TCP_SAVED_SYN: {
3034 		if (get_user(len, optlen))
3035 			return -EFAULT;
3036 
3037 		lock_sock(sk);
3038 		if (tp->saved_syn) {
3039 			if (len < tp->saved_syn[0]) {
3040 				if (put_user(tp->saved_syn[0], optlen)) {
3041 					release_sock(sk);
3042 					return -EFAULT;
3043 				}
3044 				release_sock(sk);
3045 				return -EINVAL;
3046 			}
3047 			len = tp->saved_syn[0];
3048 			if (put_user(len, optlen)) {
3049 				release_sock(sk);
3050 				return -EFAULT;
3051 			}
3052 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3053 				release_sock(sk);
3054 				return -EFAULT;
3055 			}
3056 			tcp_saved_syn_free(tp);
3057 			release_sock(sk);
3058 		} else {
3059 			release_sock(sk);
3060 			len = 0;
3061 			if (put_user(len, optlen))
3062 				return -EFAULT;
3063 		}
3064 		return 0;
3065 	}
3066 	default:
3067 		return -ENOPROTOOPT;
3068 	}
3069 
3070 	if (put_user(len, optlen))
3071 		return -EFAULT;
3072 	if (copy_to_user(optval, &val, len))
3073 		return -EFAULT;
3074 	return 0;
3075 }
3076 
3077 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3078 		   int __user *optlen)
3079 {
3080 	struct inet_connection_sock *icsk = inet_csk(sk);
3081 
3082 	if (level != SOL_TCP)
3083 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3084 						     optval, optlen);
3085 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3086 }
3087 EXPORT_SYMBOL(tcp_getsockopt);
3088 
3089 #ifdef CONFIG_COMPAT
3090 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3091 			  char __user *optval, int __user *optlen)
3092 {
3093 	if (level != SOL_TCP)
3094 		return inet_csk_compat_getsockopt(sk, level, optname,
3095 						  optval, optlen);
3096 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3097 }
3098 EXPORT_SYMBOL(compat_tcp_getsockopt);
3099 #endif
3100 
3101 #ifdef CONFIG_TCP_MD5SIG
3102 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3103 static DEFINE_MUTEX(tcp_md5sig_mutex);
3104 static bool tcp_md5sig_pool_populated = false;
3105 
3106 static void __tcp_alloc_md5sig_pool(void)
3107 {
3108 	struct crypto_ahash *hash;
3109 	int cpu;
3110 
3111 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3112 	if (IS_ERR(hash))
3113 		return;
3114 
3115 	for_each_possible_cpu(cpu) {
3116 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3117 		struct ahash_request *req;
3118 
3119 		if (!scratch) {
3120 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3121 					       sizeof(struct tcphdr),
3122 					       GFP_KERNEL,
3123 					       cpu_to_node(cpu));
3124 			if (!scratch)
3125 				return;
3126 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3127 		}
3128 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3129 			continue;
3130 
3131 		req = ahash_request_alloc(hash, GFP_KERNEL);
3132 		if (!req)
3133 			return;
3134 
3135 		ahash_request_set_callback(req, 0, NULL, NULL);
3136 
3137 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3138 	}
3139 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3140 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3141 	 */
3142 	smp_wmb();
3143 	tcp_md5sig_pool_populated = true;
3144 }
3145 
3146 bool tcp_alloc_md5sig_pool(void)
3147 {
3148 	if (unlikely(!tcp_md5sig_pool_populated)) {
3149 		mutex_lock(&tcp_md5sig_mutex);
3150 
3151 		if (!tcp_md5sig_pool_populated)
3152 			__tcp_alloc_md5sig_pool();
3153 
3154 		mutex_unlock(&tcp_md5sig_mutex);
3155 	}
3156 	return tcp_md5sig_pool_populated;
3157 }
3158 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3159 
3160 
3161 /**
3162  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3163  *
3164  *	We use percpu structure, so if we succeed, we exit with preemption
3165  *	and BH disabled, to make sure another thread or softirq handling
3166  *	wont try to get same context.
3167  */
3168 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3169 {
3170 	local_bh_disable();
3171 
3172 	if (tcp_md5sig_pool_populated) {
3173 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3174 		smp_rmb();
3175 		return this_cpu_ptr(&tcp_md5sig_pool);
3176 	}
3177 	local_bh_enable();
3178 	return NULL;
3179 }
3180 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3181 
3182 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3183 			  const struct sk_buff *skb, unsigned int header_len)
3184 {
3185 	struct scatterlist sg;
3186 	const struct tcphdr *tp = tcp_hdr(skb);
3187 	struct ahash_request *req = hp->md5_req;
3188 	unsigned int i;
3189 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3190 					   skb_headlen(skb) - header_len : 0;
3191 	const struct skb_shared_info *shi = skb_shinfo(skb);
3192 	struct sk_buff *frag_iter;
3193 
3194 	sg_init_table(&sg, 1);
3195 
3196 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3197 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3198 	if (crypto_ahash_update(req))
3199 		return 1;
3200 
3201 	for (i = 0; i < shi->nr_frags; ++i) {
3202 		const struct skb_frag_struct *f = &shi->frags[i];
3203 		unsigned int offset = f->page_offset;
3204 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3205 
3206 		sg_set_page(&sg, page, skb_frag_size(f),
3207 			    offset_in_page(offset));
3208 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3209 		if (crypto_ahash_update(req))
3210 			return 1;
3211 	}
3212 
3213 	skb_walk_frags(skb, frag_iter)
3214 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3215 			return 1;
3216 
3217 	return 0;
3218 }
3219 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3220 
3221 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3222 {
3223 	struct scatterlist sg;
3224 
3225 	sg_init_one(&sg, key->key, key->keylen);
3226 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3227 	return crypto_ahash_update(hp->md5_req);
3228 }
3229 EXPORT_SYMBOL(tcp_md5_hash_key);
3230 
3231 #endif
3232 
3233 void tcp_done(struct sock *sk)
3234 {
3235 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3236 
3237 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3238 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3239 
3240 	tcp_set_state(sk, TCP_CLOSE);
3241 	tcp_clear_xmit_timers(sk);
3242 	if (req)
3243 		reqsk_fastopen_remove(sk, req, false);
3244 
3245 	sk->sk_shutdown = SHUTDOWN_MASK;
3246 
3247 	if (!sock_flag(sk, SOCK_DEAD))
3248 		sk->sk_state_change(sk);
3249 	else
3250 		inet_csk_destroy_sock(sk);
3251 }
3252 EXPORT_SYMBOL_GPL(tcp_done);
3253 
3254 int tcp_abort(struct sock *sk, int err)
3255 {
3256 	if (!sk_fullsock(sk)) {
3257 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3258 			struct request_sock *req = inet_reqsk(sk);
3259 
3260 			local_bh_disable();
3261 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3262 							  req);
3263 			local_bh_enable();
3264 			return 0;
3265 		}
3266 		return -EOPNOTSUPP;
3267 	}
3268 
3269 	/* Don't race with userspace socket closes such as tcp_close. */
3270 	lock_sock(sk);
3271 
3272 	if (sk->sk_state == TCP_LISTEN) {
3273 		tcp_set_state(sk, TCP_CLOSE);
3274 		inet_csk_listen_stop(sk);
3275 	}
3276 
3277 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3278 	local_bh_disable();
3279 	bh_lock_sock(sk);
3280 
3281 	if (!sock_flag(sk, SOCK_DEAD)) {
3282 		sk->sk_err = err;
3283 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3284 		smp_wmb();
3285 		sk->sk_error_report(sk);
3286 		if (tcp_need_reset(sk->sk_state))
3287 			tcp_send_active_reset(sk, GFP_ATOMIC);
3288 		tcp_done(sk);
3289 	}
3290 
3291 	bh_unlock_sock(sk);
3292 	local_bh_enable();
3293 	release_sock(sk);
3294 	return 0;
3295 }
3296 EXPORT_SYMBOL_GPL(tcp_abort);
3297 
3298 extern struct tcp_congestion_ops tcp_reno;
3299 
3300 static __initdata unsigned long thash_entries;
3301 static int __init set_thash_entries(char *str)
3302 {
3303 	ssize_t ret;
3304 
3305 	if (!str)
3306 		return 0;
3307 
3308 	ret = kstrtoul(str, 0, &thash_entries);
3309 	if (ret)
3310 		return 0;
3311 
3312 	return 1;
3313 }
3314 __setup("thash_entries=", set_thash_entries);
3315 
3316 static void __init tcp_init_mem(void)
3317 {
3318 	unsigned long limit = nr_free_buffer_pages() / 16;
3319 
3320 	limit = max(limit, 128UL);
3321 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3322 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3323 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3324 }
3325 
3326 void __init tcp_init(void)
3327 {
3328 	int max_rshare, max_wshare, cnt;
3329 	unsigned long limit;
3330 	unsigned int i;
3331 
3332 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3333 		     FIELD_SIZEOF(struct sk_buff, cb));
3334 
3335 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3336 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3337 	tcp_hashinfo.bind_bucket_cachep =
3338 		kmem_cache_create("tcp_bind_bucket",
3339 				  sizeof(struct inet_bind_bucket), 0,
3340 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3341 
3342 	/* Size and allocate the main established and bind bucket
3343 	 * hash tables.
3344 	 *
3345 	 * The methodology is similar to that of the buffer cache.
3346 	 */
3347 	tcp_hashinfo.ehash =
3348 		alloc_large_system_hash("TCP established",
3349 					sizeof(struct inet_ehash_bucket),
3350 					thash_entries,
3351 					17, /* one slot per 128 KB of memory */
3352 					0,
3353 					NULL,
3354 					&tcp_hashinfo.ehash_mask,
3355 					0,
3356 					thash_entries ? 0 : 512 * 1024);
3357 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3358 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3359 
3360 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3361 		panic("TCP: failed to alloc ehash_locks");
3362 	tcp_hashinfo.bhash =
3363 		alloc_large_system_hash("TCP bind",
3364 					sizeof(struct inet_bind_hashbucket),
3365 					tcp_hashinfo.ehash_mask + 1,
3366 					17, /* one slot per 128 KB of memory */
3367 					0,
3368 					&tcp_hashinfo.bhash_size,
3369 					NULL,
3370 					0,
3371 					64 * 1024);
3372 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3373 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3374 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3375 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3376 	}
3377 
3378 
3379 	cnt = tcp_hashinfo.ehash_mask + 1;
3380 
3381 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3382 	sysctl_tcp_max_orphans = cnt / 2;
3383 	sysctl_max_syn_backlog = max(128, cnt / 256);
3384 
3385 	tcp_init_mem();
3386 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3387 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3388 	max_wshare = min(4UL*1024*1024, limit);
3389 	max_rshare = min(6UL*1024*1024, limit);
3390 
3391 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3392 	sysctl_tcp_wmem[1] = 16*1024;
3393 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3394 
3395 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3396 	sysctl_tcp_rmem[1] = 87380;
3397 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3398 
3399 	pr_info("Hash tables configured (established %u bind %u)\n",
3400 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3401 
3402 	tcp_metrics_init();
3403 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3404 	tcp_tasklet_init();
3405 }
3406