xref: /openbmc/linux/net/ipv4/tcp.c (revision 2c684d89)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/inet_diag.h>
256 #include <linux/init.h>
257 #include <linux/fs.h>
258 #include <linux/skbuff.h>
259 #include <linux/scatterlist.h>
260 #include <linux/splice.h>
261 #include <linux/net.h>
262 #include <linux/socket.h>
263 #include <linux/random.h>
264 #include <linux/bootmem.h>
265 #include <linux/highmem.h>
266 #include <linux/swap.h>
267 #include <linux/cache.h>
268 #include <linux/err.h>
269 #include <linux/crypto.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 int sysctl_tcp_autocorking __read_mostly = 1;
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296 
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 
301 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327 
328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	if (!tcp_memory_pressure) {
331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 		tcp_memory_pressure = 1;
333 	}
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 	u8 res = 0;
341 
342 	if (seconds > 0) {
343 		int period = timeout;
344 
345 		res = 1;
346 		while (seconds > period && res < 255) {
347 			res++;
348 			timeout <<= 1;
349 			if (timeout > rto_max)
350 				timeout = rto_max;
351 			period += timeout;
352 		}
353 	}
354 	return res;
355 }
356 
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 	int period = 0;
361 
362 	if (retrans > 0) {
363 		period = timeout;
364 		while (--retrans) {
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return period;
372 }
373 
374 /* Address-family independent initialization for a tcp_sock.
375  *
376  * NOTE: A lot of things set to zero explicitly by call to
377  *       sk_alloc() so need not be done here.
378  */
379 void tcp_init_sock(struct sock *sk)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	__skb_queue_head_init(&tp->out_of_order_queue);
385 	tcp_init_xmit_timers(sk);
386 	tcp_prequeue_init(tp);
387 	INIT_LIST_HEAD(&tp->tsq_node);
388 
389 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391 	tp->rtt_min[0].rtt = ~0U;
392 
393 	/* So many TCP implementations out there (incorrectly) count the
394 	 * initial SYN frame in their delayed-ACK and congestion control
395 	 * algorithms that we must have the following bandaid to talk
396 	 * efficiently to them.  -DaveM
397 	 */
398 	tp->snd_cwnd = TCP_INIT_CWND;
399 
400 	/* See draft-stevens-tcpca-spec-01 for discussion of the
401 	 * initialization of these values.
402 	 */
403 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
404 	tp->snd_cwnd_clamp = ~0;
405 	tp->mss_cache = TCP_MSS_DEFAULT;
406 	u64_stats_init(&tp->syncp);
407 
408 	tp->reordering = sysctl_tcp_reordering;
409 	tcp_enable_early_retrans(tp);
410 	tcp_assign_congestion_control(sk);
411 
412 	tp->tsoffset = 0;
413 
414 	sk->sk_state = TCP_CLOSE;
415 
416 	sk->sk_write_space = sk_stream_write_space;
417 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
418 
419 	icsk->icsk_sync_mss = tcp_sync_mss;
420 
421 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423 
424 	local_bh_disable();
425 	sock_update_memcg(sk);
426 	sk_sockets_allocated_inc(sk);
427 	local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430 
431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
432 {
433 	if (sk->sk_tsflags) {
434 		struct skb_shared_info *shinfo = skb_shinfo(skb);
435 
436 		sock_tx_timestamp(sk, &shinfo->tx_flags);
437 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
438 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
439 	}
440 }
441 
442 /*
443  *	Wait for a TCP event.
444  *
445  *	Note that we don't need to lock the socket, as the upper poll layers
446  *	take care of normal races (between the test and the event) and we don't
447  *	go look at any of the socket buffers directly.
448  */
449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
450 {
451 	unsigned int mask;
452 	struct sock *sk = sock->sk;
453 	const struct tcp_sock *tp = tcp_sk(sk);
454 	int state;
455 
456 	sock_rps_record_flow(sk);
457 
458 	sock_poll_wait(file, sk_sleep(sk), wait);
459 
460 	state = sk_state_load(sk);
461 	if (state == TCP_LISTEN)
462 		return inet_csk_listen_poll(sk);
463 
464 	/* Socket is not locked. We are protected from async events
465 	 * by poll logic and correct handling of state changes
466 	 * made by other threads is impossible in any case.
467 	 */
468 
469 	mask = 0;
470 
471 	/*
472 	 * POLLHUP is certainly not done right. But poll() doesn't
473 	 * have a notion of HUP in just one direction, and for a
474 	 * socket the read side is more interesting.
475 	 *
476 	 * Some poll() documentation says that POLLHUP is incompatible
477 	 * with the POLLOUT/POLLWR flags, so somebody should check this
478 	 * all. But careful, it tends to be safer to return too many
479 	 * bits than too few, and you can easily break real applications
480 	 * if you don't tell them that something has hung up!
481 	 *
482 	 * Check-me.
483 	 *
484 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
485 	 * our fs/select.c). It means that after we received EOF,
486 	 * poll always returns immediately, making impossible poll() on write()
487 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
488 	 * if and only if shutdown has been made in both directions.
489 	 * Actually, it is interesting to look how Solaris and DUX
490 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
491 	 * then we could set it on SND_SHUTDOWN. BTW examples given
492 	 * in Stevens' books assume exactly this behaviour, it explains
493 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
494 	 *
495 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
496 	 * blocking on fresh not-connected or disconnected socket. --ANK
497 	 */
498 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
499 		mask |= POLLHUP;
500 	if (sk->sk_shutdown & RCV_SHUTDOWN)
501 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
502 
503 	/* Connected or passive Fast Open socket? */
504 	if (state != TCP_SYN_SENT &&
505 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
506 		int target = sock_rcvlowat(sk, 0, INT_MAX);
507 
508 		if (tp->urg_seq == tp->copied_seq &&
509 		    !sock_flag(sk, SOCK_URGINLINE) &&
510 		    tp->urg_data)
511 			target++;
512 
513 		if (tp->rcv_nxt - tp->copied_seq >= target)
514 			mask |= POLLIN | POLLRDNORM;
515 
516 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
517 			if (sk_stream_is_writeable(sk)) {
518 				mask |= POLLOUT | POLLWRNORM;
519 			} else {  /* send SIGIO later */
520 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
521 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
522 
523 				/* Race breaker. If space is freed after
524 				 * wspace test but before the flags are set,
525 				 * IO signal will be lost. Memory barrier
526 				 * pairs with the input side.
527 				 */
528 				smp_mb__after_atomic();
529 				if (sk_stream_is_writeable(sk))
530 					mask |= POLLOUT | POLLWRNORM;
531 			}
532 		} else
533 			mask |= POLLOUT | POLLWRNORM;
534 
535 		if (tp->urg_data & TCP_URG_VALID)
536 			mask |= POLLPRI;
537 	}
538 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
539 	smp_rmb();
540 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
541 		mask |= POLLERR;
542 
543 	return mask;
544 }
545 EXPORT_SYMBOL(tcp_poll);
546 
547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
548 {
549 	struct tcp_sock *tp = tcp_sk(sk);
550 	int answ;
551 	bool slow;
552 
553 	switch (cmd) {
554 	case SIOCINQ:
555 		if (sk->sk_state == TCP_LISTEN)
556 			return -EINVAL;
557 
558 		slow = lock_sock_fast(sk);
559 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
560 			answ = 0;
561 		else if (sock_flag(sk, SOCK_URGINLINE) ||
562 			 !tp->urg_data ||
563 			 before(tp->urg_seq, tp->copied_seq) ||
564 			 !before(tp->urg_seq, tp->rcv_nxt)) {
565 
566 			answ = tp->rcv_nxt - tp->copied_seq;
567 
568 			/* Subtract 1, if FIN was received */
569 			if (answ && sock_flag(sk, SOCK_DONE))
570 				answ--;
571 		} else
572 			answ = tp->urg_seq - tp->copied_seq;
573 		unlock_sock_fast(sk, slow);
574 		break;
575 	case SIOCATMARK:
576 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
577 		break;
578 	case SIOCOUTQ:
579 		if (sk->sk_state == TCP_LISTEN)
580 			return -EINVAL;
581 
582 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
583 			answ = 0;
584 		else
585 			answ = tp->write_seq - tp->snd_una;
586 		break;
587 	case SIOCOUTQNSD:
588 		if (sk->sk_state == TCP_LISTEN)
589 			return -EINVAL;
590 
591 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
592 			answ = 0;
593 		else
594 			answ = tp->write_seq - tp->snd_nxt;
595 		break;
596 	default:
597 		return -ENOIOCTLCMD;
598 	}
599 
600 	return put_user(answ, (int __user *)arg);
601 }
602 EXPORT_SYMBOL(tcp_ioctl);
603 
604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
605 {
606 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
607 	tp->pushed_seq = tp->write_seq;
608 }
609 
610 static inline bool forced_push(const struct tcp_sock *tp)
611 {
612 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
613 }
614 
615 static void skb_entail(struct sock *sk, struct sk_buff *skb)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
619 
620 	skb->csum    = 0;
621 	tcb->seq     = tcb->end_seq = tp->write_seq;
622 	tcb->tcp_flags = TCPHDR_ACK;
623 	tcb->sacked  = 0;
624 	__skb_header_release(skb);
625 	tcp_add_write_queue_tail(sk, skb);
626 	sk->sk_wmem_queued += skb->truesize;
627 	sk_mem_charge(sk, skb->truesize);
628 	if (tp->nonagle & TCP_NAGLE_PUSH)
629 		tp->nonagle &= ~TCP_NAGLE_PUSH;
630 
631 	tcp_slow_start_after_idle_check(sk);
632 }
633 
634 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
635 {
636 	if (flags & MSG_OOB)
637 		tp->snd_up = tp->write_seq;
638 }
639 
640 /* If a not yet filled skb is pushed, do not send it if
641  * we have data packets in Qdisc or NIC queues :
642  * Because TX completion will happen shortly, it gives a chance
643  * to coalesce future sendmsg() payload into this skb, without
644  * need for a timer, and with no latency trade off.
645  * As packets containing data payload have a bigger truesize
646  * than pure acks (dataless) packets, the last checks prevent
647  * autocorking if we only have an ACK in Qdisc/NIC queues,
648  * or if TX completion was delayed after we processed ACK packet.
649  */
650 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
651 				int size_goal)
652 {
653 	return skb->len < size_goal &&
654 	       sysctl_tcp_autocorking &&
655 	       skb != tcp_write_queue_head(sk) &&
656 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
657 }
658 
659 static void tcp_push(struct sock *sk, int flags, int mss_now,
660 		     int nonagle, int size_goal)
661 {
662 	struct tcp_sock *tp = tcp_sk(sk);
663 	struct sk_buff *skb;
664 
665 	if (!tcp_send_head(sk))
666 		return;
667 
668 	skb = tcp_write_queue_tail(sk);
669 	if (!(flags & MSG_MORE) || forced_push(tp))
670 		tcp_mark_push(tp, skb);
671 
672 	tcp_mark_urg(tp, flags);
673 
674 	if (tcp_should_autocork(sk, skb, size_goal)) {
675 
676 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
677 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
678 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
679 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
680 		}
681 		/* It is possible TX completion already happened
682 		 * before we set TSQ_THROTTLED.
683 		 */
684 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
685 			return;
686 	}
687 
688 	if (flags & MSG_MORE)
689 		nonagle = TCP_NAGLE_CORK;
690 
691 	__tcp_push_pending_frames(sk, mss_now, nonagle);
692 }
693 
694 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
695 				unsigned int offset, size_t len)
696 {
697 	struct tcp_splice_state *tss = rd_desc->arg.data;
698 	int ret;
699 
700 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
701 			      min(rd_desc->count, len), tss->flags,
702 			      skb_socket_splice);
703 	if (ret > 0)
704 		rd_desc->count -= ret;
705 	return ret;
706 }
707 
708 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
709 {
710 	/* Store TCP splice context information in read_descriptor_t. */
711 	read_descriptor_t rd_desc = {
712 		.arg.data = tss,
713 		.count	  = tss->len,
714 	};
715 
716 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
717 }
718 
719 /**
720  *  tcp_splice_read - splice data from TCP socket to a pipe
721  * @sock:	socket to splice from
722  * @ppos:	position (not valid)
723  * @pipe:	pipe to splice to
724  * @len:	number of bytes to splice
725  * @flags:	splice modifier flags
726  *
727  * Description:
728  *    Will read pages from given socket and fill them into a pipe.
729  *
730  **/
731 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
732 			struct pipe_inode_info *pipe, size_t len,
733 			unsigned int flags)
734 {
735 	struct sock *sk = sock->sk;
736 	struct tcp_splice_state tss = {
737 		.pipe = pipe,
738 		.len = len,
739 		.flags = flags,
740 	};
741 	long timeo;
742 	ssize_t spliced;
743 	int ret;
744 
745 	sock_rps_record_flow(sk);
746 	/*
747 	 * We can't seek on a socket input
748 	 */
749 	if (unlikely(*ppos))
750 		return -ESPIPE;
751 
752 	ret = spliced = 0;
753 
754 	lock_sock(sk);
755 
756 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
757 	while (tss.len) {
758 		ret = __tcp_splice_read(sk, &tss);
759 		if (ret < 0)
760 			break;
761 		else if (!ret) {
762 			if (spliced)
763 				break;
764 			if (sock_flag(sk, SOCK_DONE))
765 				break;
766 			if (sk->sk_err) {
767 				ret = sock_error(sk);
768 				break;
769 			}
770 			if (sk->sk_shutdown & RCV_SHUTDOWN)
771 				break;
772 			if (sk->sk_state == TCP_CLOSE) {
773 				/*
774 				 * This occurs when user tries to read
775 				 * from never connected socket.
776 				 */
777 				if (!sock_flag(sk, SOCK_DONE))
778 					ret = -ENOTCONN;
779 				break;
780 			}
781 			if (!timeo) {
782 				ret = -EAGAIN;
783 				break;
784 			}
785 			sk_wait_data(sk, &timeo, NULL);
786 			if (signal_pending(current)) {
787 				ret = sock_intr_errno(timeo);
788 				break;
789 			}
790 			continue;
791 		}
792 		tss.len -= ret;
793 		spliced += ret;
794 
795 		if (!timeo)
796 			break;
797 		release_sock(sk);
798 		lock_sock(sk);
799 
800 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
801 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
802 		    signal_pending(current))
803 			break;
804 	}
805 
806 	release_sock(sk);
807 
808 	if (spliced)
809 		return spliced;
810 
811 	return ret;
812 }
813 EXPORT_SYMBOL(tcp_splice_read);
814 
815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
816 				    bool force_schedule)
817 {
818 	struct sk_buff *skb;
819 
820 	/* The TCP header must be at least 32-bit aligned.  */
821 	size = ALIGN(size, 4);
822 
823 	if (unlikely(tcp_under_memory_pressure(sk)))
824 		sk_mem_reclaim_partial(sk);
825 
826 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
827 	if (likely(skb)) {
828 		bool mem_scheduled;
829 
830 		if (force_schedule) {
831 			mem_scheduled = true;
832 			sk_forced_mem_schedule(sk, skb->truesize);
833 		} else {
834 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
835 		}
836 		if (likely(mem_scheduled)) {
837 			skb_reserve(skb, sk->sk_prot->max_header);
838 			/*
839 			 * Make sure that we have exactly size bytes
840 			 * available to the caller, no more, no less.
841 			 */
842 			skb->reserved_tailroom = skb->end - skb->tail - size;
843 			return skb;
844 		}
845 		__kfree_skb(skb);
846 	} else {
847 		sk->sk_prot->enter_memory_pressure(sk);
848 		sk_stream_moderate_sndbuf(sk);
849 	}
850 	return NULL;
851 }
852 
853 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
854 				       int large_allowed)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	u32 new_size_goal, size_goal;
858 
859 	if (!large_allowed || !sk_can_gso(sk))
860 		return mss_now;
861 
862 	/* Note : tcp_tso_autosize() will eventually split this later */
863 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
864 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
865 
866 	/* We try hard to avoid divides here */
867 	size_goal = tp->gso_segs * mss_now;
868 	if (unlikely(new_size_goal < size_goal ||
869 		     new_size_goal >= size_goal + mss_now)) {
870 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
871 				     sk->sk_gso_max_segs);
872 		size_goal = tp->gso_segs * mss_now;
873 	}
874 
875 	return max(size_goal, mss_now);
876 }
877 
878 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
879 {
880 	int mss_now;
881 
882 	mss_now = tcp_current_mss(sk);
883 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
884 
885 	return mss_now;
886 }
887 
888 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
889 				size_t size, int flags)
890 {
891 	struct tcp_sock *tp = tcp_sk(sk);
892 	int mss_now, size_goal;
893 	int err;
894 	ssize_t copied;
895 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
896 
897 	/* Wait for a connection to finish. One exception is TCP Fast Open
898 	 * (passive side) where data is allowed to be sent before a connection
899 	 * is fully established.
900 	 */
901 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
902 	    !tcp_passive_fastopen(sk)) {
903 		err = sk_stream_wait_connect(sk, &timeo);
904 		if (err != 0)
905 			goto out_err;
906 	}
907 
908 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
909 
910 	mss_now = tcp_send_mss(sk, &size_goal, flags);
911 	copied = 0;
912 
913 	err = -EPIPE;
914 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
915 		goto out_err;
916 
917 	while (size > 0) {
918 		struct sk_buff *skb = tcp_write_queue_tail(sk);
919 		int copy, i;
920 		bool can_coalesce;
921 
922 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
923 new_segment:
924 			if (!sk_stream_memory_free(sk))
925 				goto wait_for_sndbuf;
926 
927 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
928 						  skb_queue_empty(&sk->sk_write_queue));
929 			if (!skb)
930 				goto wait_for_memory;
931 
932 			skb_entail(sk, skb);
933 			copy = size_goal;
934 		}
935 
936 		if (copy > size)
937 			copy = size;
938 
939 		i = skb_shinfo(skb)->nr_frags;
940 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
941 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
942 			tcp_mark_push(tp, skb);
943 			goto new_segment;
944 		}
945 		if (!sk_wmem_schedule(sk, copy))
946 			goto wait_for_memory;
947 
948 		if (can_coalesce) {
949 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
950 		} else {
951 			get_page(page);
952 			skb_fill_page_desc(skb, i, page, offset, copy);
953 		}
954 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
955 
956 		skb->len += copy;
957 		skb->data_len += copy;
958 		skb->truesize += copy;
959 		sk->sk_wmem_queued += copy;
960 		sk_mem_charge(sk, copy);
961 		skb->ip_summed = CHECKSUM_PARTIAL;
962 		tp->write_seq += copy;
963 		TCP_SKB_CB(skb)->end_seq += copy;
964 		tcp_skb_pcount_set(skb, 0);
965 
966 		if (!copied)
967 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
968 
969 		copied += copy;
970 		offset += copy;
971 		size -= copy;
972 		if (!size) {
973 			tcp_tx_timestamp(sk, skb);
974 			goto out;
975 		}
976 
977 		if (skb->len < size_goal || (flags & MSG_OOB))
978 			continue;
979 
980 		if (forced_push(tp)) {
981 			tcp_mark_push(tp, skb);
982 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
983 		} else if (skb == tcp_send_head(sk))
984 			tcp_push_one(sk, mss_now);
985 		continue;
986 
987 wait_for_sndbuf:
988 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
989 wait_for_memory:
990 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
991 			 TCP_NAGLE_PUSH, size_goal);
992 
993 		err = sk_stream_wait_memory(sk, &timeo);
994 		if (err != 0)
995 			goto do_error;
996 
997 		mss_now = tcp_send_mss(sk, &size_goal, flags);
998 	}
999 
1000 out:
1001 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1002 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1003 	return copied;
1004 
1005 do_error:
1006 	if (copied)
1007 		goto out;
1008 out_err:
1009 	/* make sure we wake any epoll edge trigger waiter */
1010 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1011 		sk->sk_write_space(sk);
1012 	return sk_stream_error(sk, flags, err);
1013 }
1014 
1015 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1016 		 size_t size, int flags)
1017 {
1018 	ssize_t res;
1019 
1020 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1021 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1022 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1023 					flags);
1024 
1025 	lock_sock(sk);
1026 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1027 	release_sock(sk);
1028 	return res;
1029 }
1030 EXPORT_SYMBOL(tcp_sendpage);
1031 
1032 static inline int select_size(const struct sock *sk, bool sg)
1033 {
1034 	const struct tcp_sock *tp = tcp_sk(sk);
1035 	int tmp = tp->mss_cache;
1036 
1037 	if (sg) {
1038 		if (sk_can_gso(sk)) {
1039 			/* Small frames wont use a full page:
1040 			 * Payload will immediately follow tcp header.
1041 			 */
1042 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1043 		} else {
1044 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1045 
1046 			if (tmp >= pgbreak &&
1047 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1048 				tmp = pgbreak;
1049 		}
1050 	}
1051 
1052 	return tmp;
1053 }
1054 
1055 void tcp_free_fastopen_req(struct tcp_sock *tp)
1056 {
1057 	if (tp->fastopen_req) {
1058 		kfree(tp->fastopen_req);
1059 		tp->fastopen_req = NULL;
1060 	}
1061 }
1062 
1063 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1064 				int *copied, size_t size)
1065 {
1066 	struct tcp_sock *tp = tcp_sk(sk);
1067 	int err, flags;
1068 
1069 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1070 		return -EOPNOTSUPP;
1071 	if (tp->fastopen_req)
1072 		return -EALREADY; /* Another Fast Open is in progress */
1073 
1074 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1075 				   sk->sk_allocation);
1076 	if (unlikely(!tp->fastopen_req))
1077 		return -ENOBUFS;
1078 	tp->fastopen_req->data = msg;
1079 	tp->fastopen_req->size = size;
1080 
1081 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1082 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1083 				    msg->msg_namelen, flags);
1084 	*copied = tp->fastopen_req->copied;
1085 	tcp_free_fastopen_req(tp);
1086 	return err;
1087 }
1088 
1089 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1090 {
1091 	struct tcp_sock *tp = tcp_sk(sk);
1092 	struct sk_buff *skb;
1093 	int flags, err, copied = 0;
1094 	int mss_now = 0, size_goal, copied_syn = 0;
1095 	bool sg;
1096 	long timeo;
1097 
1098 	lock_sock(sk);
1099 
1100 	flags = msg->msg_flags;
1101 	if (flags & MSG_FASTOPEN) {
1102 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1103 		if (err == -EINPROGRESS && copied_syn > 0)
1104 			goto out;
1105 		else if (err)
1106 			goto out_err;
1107 	}
1108 
1109 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1110 
1111 	/* Wait for a connection to finish. One exception is TCP Fast Open
1112 	 * (passive side) where data is allowed to be sent before a connection
1113 	 * is fully established.
1114 	 */
1115 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1116 	    !tcp_passive_fastopen(sk)) {
1117 		err = sk_stream_wait_connect(sk, &timeo);
1118 		if (err != 0)
1119 			goto do_error;
1120 	}
1121 
1122 	if (unlikely(tp->repair)) {
1123 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1124 			copied = tcp_send_rcvq(sk, msg, size);
1125 			goto out_nopush;
1126 		}
1127 
1128 		err = -EINVAL;
1129 		if (tp->repair_queue == TCP_NO_QUEUE)
1130 			goto out_err;
1131 
1132 		/* 'common' sending to sendq */
1133 	}
1134 
1135 	/* This should be in poll */
1136 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1137 
1138 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1139 
1140 	/* Ok commence sending. */
1141 	copied = 0;
1142 
1143 	err = -EPIPE;
1144 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1145 		goto out_err;
1146 
1147 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1148 
1149 	while (msg_data_left(msg)) {
1150 		int copy = 0;
1151 		int max = size_goal;
1152 
1153 		skb = tcp_write_queue_tail(sk);
1154 		if (tcp_send_head(sk)) {
1155 			if (skb->ip_summed == CHECKSUM_NONE)
1156 				max = mss_now;
1157 			copy = max - skb->len;
1158 		}
1159 
1160 		if (copy <= 0) {
1161 new_segment:
1162 			/* Allocate new segment. If the interface is SG,
1163 			 * allocate skb fitting to single page.
1164 			 */
1165 			if (!sk_stream_memory_free(sk))
1166 				goto wait_for_sndbuf;
1167 
1168 			skb = sk_stream_alloc_skb(sk,
1169 						  select_size(sk, sg),
1170 						  sk->sk_allocation,
1171 						  skb_queue_empty(&sk->sk_write_queue));
1172 			if (!skb)
1173 				goto wait_for_memory;
1174 
1175 			/*
1176 			 * Check whether we can use HW checksum.
1177 			 */
1178 			if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1179 				skb->ip_summed = CHECKSUM_PARTIAL;
1180 
1181 			skb_entail(sk, skb);
1182 			copy = size_goal;
1183 			max = size_goal;
1184 
1185 			/* All packets are restored as if they have
1186 			 * already been sent. skb_mstamp isn't set to
1187 			 * avoid wrong rtt estimation.
1188 			 */
1189 			if (tp->repair)
1190 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1191 		}
1192 
1193 		/* Try to append data to the end of skb. */
1194 		if (copy > msg_data_left(msg))
1195 			copy = msg_data_left(msg);
1196 
1197 		/* Where to copy to? */
1198 		if (skb_availroom(skb) > 0) {
1199 			/* We have some space in skb head. Superb! */
1200 			copy = min_t(int, copy, skb_availroom(skb));
1201 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1202 			if (err)
1203 				goto do_fault;
1204 		} else {
1205 			bool merge = true;
1206 			int i = skb_shinfo(skb)->nr_frags;
1207 			struct page_frag *pfrag = sk_page_frag(sk);
1208 
1209 			if (!sk_page_frag_refill(sk, pfrag))
1210 				goto wait_for_memory;
1211 
1212 			if (!skb_can_coalesce(skb, i, pfrag->page,
1213 					      pfrag->offset)) {
1214 				if (i == MAX_SKB_FRAGS || !sg) {
1215 					tcp_mark_push(tp, skb);
1216 					goto new_segment;
1217 				}
1218 				merge = false;
1219 			}
1220 
1221 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1222 
1223 			if (!sk_wmem_schedule(sk, copy))
1224 				goto wait_for_memory;
1225 
1226 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1227 						       pfrag->page,
1228 						       pfrag->offset,
1229 						       copy);
1230 			if (err)
1231 				goto do_error;
1232 
1233 			/* Update the skb. */
1234 			if (merge) {
1235 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1236 			} else {
1237 				skb_fill_page_desc(skb, i, pfrag->page,
1238 						   pfrag->offset, copy);
1239 				get_page(pfrag->page);
1240 			}
1241 			pfrag->offset += copy;
1242 		}
1243 
1244 		if (!copied)
1245 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1246 
1247 		tp->write_seq += copy;
1248 		TCP_SKB_CB(skb)->end_seq += copy;
1249 		tcp_skb_pcount_set(skb, 0);
1250 
1251 		copied += copy;
1252 		if (!msg_data_left(msg)) {
1253 			tcp_tx_timestamp(sk, skb);
1254 			goto out;
1255 		}
1256 
1257 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1258 			continue;
1259 
1260 		if (forced_push(tp)) {
1261 			tcp_mark_push(tp, skb);
1262 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1263 		} else if (skb == tcp_send_head(sk))
1264 			tcp_push_one(sk, mss_now);
1265 		continue;
1266 
1267 wait_for_sndbuf:
1268 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1269 wait_for_memory:
1270 		if (copied)
1271 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1272 				 TCP_NAGLE_PUSH, size_goal);
1273 
1274 		err = sk_stream_wait_memory(sk, &timeo);
1275 		if (err != 0)
1276 			goto do_error;
1277 
1278 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1279 	}
1280 
1281 out:
1282 	if (copied)
1283 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1284 out_nopush:
1285 	release_sock(sk);
1286 	return copied + copied_syn;
1287 
1288 do_fault:
1289 	if (!skb->len) {
1290 		tcp_unlink_write_queue(skb, sk);
1291 		/* It is the one place in all of TCP, except connection
1292 		 * reset, where we can be unlinking the send_head.
1293 		 */
1294 		tcp_check_send_head(sk, skb);
1295 		sk_wmem_free_skb(sk, skb);
1296 	}
1297 
1298 do_error:
1299 	if (copied + copied_syn)
1300 		goto out;
1301 out_err:
1302 	err = sk_stream_error(sk, flags, err);
1303 	/* make sure we wake any epoll edge trigger waiter */
1304 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1305 		sk->sk_write_space(sk);
1306 	release_sock(sk);
1307 	return err;
1308 }
1309 EXPORT_SYMBOL(tcp_sendmsg);
1310 
1311 /*
1312  *	Handle reading urgent data. BSD has very simple semantics for
1313  *	this, no blocking and very strange errors 8)
1314  */
1315 
1316 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1317 {
1318 	struct tcp_sock *tp = tcp_sk(sk);
1319 
1320 	/* No URG data to read. */
1321 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1322 	    tp->urg_data == TCP_URG_READ)
1323 		return -EINVAL;	/* Yes this is right ! */
1324 
1325 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1326 		return -ENOTCONN;
1327 
1328 	if (tp->urg_data & TCP_URG_VALID) {
1329 		int err = 0;
1330 		char c = tp->urg_data;
1331 
1332 		if (!(flags & MSG_PEEK))
1333 			tp->urg_data = TCP_URG_READ;
1334 
1335 		/* Read urgent data. */
1336 		msg->msg_flags |= MSG_OOB;
1337 
1338 		if (len > 0) {
1339 			if (!(flags & MSG_TRUNC))
1340 				err = memcpy_to_msg(msg, &c, 1);
1341 			len = 1;
1342 		} else
1343 			msg->msg_flags |= MSG_TRUNC;
1344 
1345 		return err ? -EFAULT : len;
1346 	}
1347 
1348 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1349 		return 0;
1350 
1351 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1352 	 * the available implementations agree in this case:
1353 	 * this call should never block, independent of the
1354 	 * blocking state of the socket.
1355 	 * Mike <pall@rz.uni-karlsruhe.de>
1356 	 */
1357 	return -EAGAIN;
1358 }
1359 
1360 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1361 {
1362 	struct sk_buff *skb;
1363 	int copied = 0, err = 0;
1364 
1365 	/* XXX -- need to support SO_PEEK_OFF */
1366 
1367 	skb_queue_walk(&sk->sk_write_queue, skb) {
1368 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1369 		if (err)
1370 			break;
1371 
1372 		copied += skb->len;
1373 	}
1374 
1375 	return err ?: copied;
1376 }
1377 
1378 /* Clean up the receive buffer for full frames taken by the user,
1379  * then send an ACK if necessary.  COPIED is the number of bytes
1380  * tcp_recvmsg has given to the user so far, it speeds up the
1381  * calculation of whether or not we must ACK for the sake of
1382  * a window update.
1383  */
1384 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1385 {
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 	bool time_to_ack = false;
1388 
1389 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1390 
1391 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1392 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1393 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1394 
1395 	if (inet_csk_ack_scheduled(sk)) {
1396 		const struct inet_connection_sock *icsk = inet_csk(sk);
1397 		   /* Delayed ACKs frequently hit locked sockets during bulk
1398 		    * receive. */
1399 		if (icsk->icsk_ack.blocked ||
1400 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1401 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1402 		    /*
1403 		     * If this read emptied read buffer, we send ACK, if
1404 		     * connection is not bidirectional, user drained
1405 		     * receive buffer and there was a small segment
1406 		     * in queue.
1407 		     */
1408 		    (copied > 0 &&
1409 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1410 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1411 		       !icsk->icsk_ack.pingpong)) &&
1412 		      !atomic_read(&sk->sk_rmem_alloc)))
1413 			time_to_ack = true;
1414 	}
1415 
1416 	/* We send an ACK if we can now advertise a non-zero window
1417 	 * which has been raised "significantly".
1418 	 *
1419 	 * Even if window raised up to infinity, do not send window open ACK
1420 	 * in states, where we will not receive more. It is useless.
1421 	 */
1422 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1423 		__u32 rcv_window_now = tcp_receive_window(tp);
1424 
1425 		/* Optimize, __tcp_select_window() is not cheap. */
1426 		if (2*rcv_window_now <= tp->window_clamp) {
1427 			__u32 new_window = __tcp_select_window(sk);
1428 
1429 			/* Send ACK now, if this read freed lots of space
1430 			 * in our buffer. Certainly, new_window is new window.
1431 			 * We can advertise it now, if it is not less than current one.
1432 			 * "Lots" means "at least twice" here.
1433 			 */
1434 			if (new_window && new_window >= 2 * rcv_window_now)
1435 				time_to_ack = true;
1436 		}
1437 	}
1438 	if (time_to_ack)
1439 		tcp_send_ack(sk);
1440 }
1441 
1442 static void tcp_prequeue_process(struct sock *sk)
1443 {
1444 	struct sk_buff *skb;
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 
1447 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1448 
1449 	/* RX process wants to run with disabled BHs, though it is not
1450 	 * necessary */
1451 	local_bh_disable();
1452 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1453 		sk_backlog_rcv(sk, skb);
1454 	local_bh_enable();
1455 
1456 	/* Clear memory counter. */
1457 	tp->ucopy.memory = 0;
1458 }
1459 
1460 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1461 {
1462 	struct sk_buff *skb;
1463 	u32 offset;
1464 
1465 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1466 		offset = seq - TCP_SKB_CB(skb)->seq;
1467 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1468 			offset--;
1469 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1470 			*off = offset;
1471 			return skb;
1472 		}
1473 		/* This looks weird, but this can happen if TCP collapsing
1474 		 * splitted a fat GRO packet, while we released socket lock
1475 		 * in skb_splice_bits()
1476 		 */
1477 		sk_eat_skb(sk, skb);
1478 	}
1479 	return NULL;
1480 }
1481 
1482 /*
1483  * This routine provides an alternative to tcp_recvmsg() for routines
1484  * that would like to handle copying from skbuffs directly in 'sendfile'
1485  * fashion.
1486  * Note:
1487  *	- It is assumed that the socket was locked by the caller.
1488  *	- The routine does not block.
1489  *	- At present, there is no support for reading OOB data
1490  *	  or for 'peeking' the socket using this routine
1491  *	  (although both would be easy to implement).
1492  */
1493 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1494 		  sk_read_actor_t recv_actor)
1495 {
1496 	struct sk_buff *skb;
1497 	struct tcp_sock *tp = tcp_sk(sk);
1498 	u32 seq = tp->copied_seq;
1499 	u32 offset;
1500 	int copied = 0;
1501 
1502 	if (sk->sk_state == TCP_LISTEN)
1503 		return -ENOTCONN;
1504 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1505 		if (offset < skb->len) {
1506 			int used;
1507 			size_t len;
1508 
1509 			len = skb->len - offset;
1510 			/* Stop reading if we hit a patch of urgent data */
1511 			if (tp->urg_data) {
1512 				u32 urg_offset = tp->urg_seq - seq;
1513 				if (urg_offset < len)
1514 					len = urg_offset;
1515 				if (!len)
1516 					break;
1517 			}
1518 			used = recv_actor(desc, skb, offset, len);
1519 			if (used <= 0) {
1520 				if (!copied)
1521 					copied = used;
1522 				break;
1523 			} else if (used <= len) {
1524 				seq += used;
1525 				copied += used;
1526 				offset += used;
1527 			}
1528 			/* If recv_actor drops the lock (e.g. TCP splice
1529 			 * receive) the skb pointer might be invalid when
1530 			 * getting here: tcp_collapse might have deleted it
1531 			 * while aggregating skbs from the socket queue.
1532 			 */
1533 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1534 			if (!skb)
1535 				break;
1536 			/* TCP coalescing might have appended data to the skb.
1537 			 * Try to splice more frags
1538 			 */
1539 			if (offset + 1 != skb->len)
1540 				continue;
1541 		}
1542 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1543 			sk_eat_skb(sk, skb);
1544 			++seq;
1545 			break;
1546 		}
1547 		sk_eat_skb(sk, skb);
1548 		if (!desc->count)
1549 			break;
1550 		tp->copied_seq = seq;
1551 	}
1552 	tp->copied_seq = seq;
1553 
1554 	tcp_rcv_space_adjust(sk);
1555 
1556 	/* Clean up data we have read: This will do ACK frames. */
1557 	if (copied > 0) {
1558 		tcp_recv_skb(sk, seq, &offset);
1559 		tcp_cleanup_rbuf(sk, copied);
1560 	}
1561 	return copied;
1562 }
1563 EXPORT_SYMBOL(tcp_read_sock);
1564 
1565 /*
1566  *	This routine copies from a sock struct into the user buffer.
1567  *
1568  *	Technical note: in 2.3 we work on _locked_ socket, so that
1569  *	tricks with *seq access order and skb->users are not required.
1570  *	Probably, code can be easily improved even more.
1571  */
1572 
1573 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1574 		int flags, int *addr_len)
1575 {
1576 	struct tcp_sock *tp = tcp_sk(sk);
1577 	int copied = 0;
1578 	u32 peek_seq;
1579 	u32 *seq;
1580 	unsigned long used;
1581 	int err;
1582 	int target;		/* Read at least this many bytes */
1583 	long timeo;
1584 	struct task_struct *user_recv = NULL;
1585 	struct sk_buff *skb, *last;
1586 	u32 urg_hole = 0;
1587 
1588 	if (unlikely(flags & MSG_ERRQUEUE))
1589 		return inet_recv_error(sk, msg, len, addr_len);
1590 
1591 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1592 	    (sk->sk_state == TCP_ESTABLISHED))
1593 		sk_busy_loop(sk, nonblock);
1594 
1595 	lock_sock(sk);
1596 
1597 	err = -ENOTCONN;
1598 	if (sk->sk_state == TCP_LISTEN)
1599 		goto out;
1600 
1601 	timeo = sock_rcvtimeo(sk, nonblock);
1602 
1603 	/* Urgent data needs to be handled specially. */
1604 	if (flags & MSG_OOB)
1605 		goto recv_urg;
1606 
1607 	if (unlikely(tp->repair)) {
1608 		err = -EPERM;
1609 		if (!(flags & MSG_PEEK))
1610 			goto out;
1611 
1612 		if (tp->repair_queue == TCP_SEND_QUEUE)
1613 			goto recv_sndq;
1614 
1615 		err = -EINVAL;
1616 		if (tp->repair_queue == TCP_NO_QUEUE)
1617 			goto out;
1618 
1619 		/* 'common' recv queue MSG_PEEK-ing */
1620 	}
1621 
1622 	seq = &tp->copied_seq;
1623 	if (flags & MSG_PEEK) {
1624 		peek_seq = tp->copied_seq;
1625 		seq = &peek_seq;
1626 	}
1627 
1628 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1629 
1630 	do {
1631 		u32 offset;
1632 
1633 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1634 		if (tp->urg_data && tp->urg_seq == *seq) {
1635 			if (copied)
1636 				break;
1637 			if (signal_pending(current)) {
1638 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1639 				break;
1640 			}
1641 		}
1642 
1643 		/* Next get a buffer. */
1644 
1645 		last = skb_peek_tail(&sk->sk_receive_queue);
1646 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1647 			last = skb;
1648 			/* Now that we have two receive queues this
1649 			 * shouldn't happen.
1650 			 */
1651 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1652 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1653 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1654 				 flags))
1655 				break;
1656 
1657 			offset = *seq - TCP_SKB_CB(skb)->seq;
1658 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1659 				offset--;
1660 			if (offset < skb->len)
1661 				goto found_ok_skb;
1662 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1663 				goto found_fin_ok;
1664 			WARN(!(flags & MSG_PEEK),
1665 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1666 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1667 		}
1668 
1669 		/* Well, if we have backlog, try to process it now yet. */
1670 
1671 		if (copied >= target && !sk->sk_backlog.tail)
1672 			break;
1673 
1674 		if (copied) {
1675 			if (sk->sk_err ||
1676 			    sk->sk_state == TCP_CLOSE ||
1677 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1678 			    !timeo ||
1679 			    signal_pending(current))
1680 				break;
1681 		} else {
1682 			if (sock_flag(sk, SOCK_DONE))
1683 				break;
1684 
1685 			if (sk->sk_err) {
1686 				copied = sock_error(sk);
1687 				break;
1688 			}
1689 
1690 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1691 				break;
1692 
1693 			if (sk->sk_state == TCP_CLOSE) {
1694 				if (!sock_flag(sk, SOCK_DONE)) {
1695 					/* This occurs when user tries to read
1696 					 * from never connected socket.
1697 					 */
1698 					copied = -ENOTCONN;
1699 					break;
1700 				}
1701 				break;
1702 			}
1703 
1704 			if (!timeo) {
1705 				copied = -EAGAIN;
1706 				break;
1707 			}
1708 
1709 			if (signal_pending(current)) {
1710 				copied = sock_intr_errno(timeo);
1711 				break;
1712 			}
1713 		}
1714 
1715 		tcp_cleanup_rbuf(sk, copied);
1716 
1717 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1718 			/* Install new reader */
1719 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1720 				user_recv = current;
1721 				tp->ucopy.task = user_recv;
1722 				tp->ucopy.msg = msg;
1723 			}
1724 
1725 			tp->ucopy.len = len;
1726 
1727 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1728 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1729 
1730 			/* Ugly... If prequeue is not empty, we have to
1731 			 * process it before releasing socket, otherwise
1732 			 * order will be broken at second iteration.
1733 			 * More elegant solution is required!!!
1734 			 *
1735 			 * Look: we have the following (pseudo)queues:
1736 			 *
1737 			 * 1. packets in flight
1738 			 * 2. backlog
1739 			 * 3. prequeue
1740 			 * 4. receive_queue
1741 			 *
1742 			 * Each queue can be processed only if the next ones
1743 			 * are empty. At this point we have empty receive_queue.
1744 			 * But prequeue _can_ be not empty after 2nd iteration,
1745 			 * when we jumped to start of loop because backlog
1746 			 * processing added something to receive_queue.
1747 			 * We cannot release_sock(), because backlog contains
1748 			 * packets arrived _after_ prequeued ones.
1749 			 *
1750 			 * Shortly, algorithm is clear --- to process all
1751 			 * the queues in order. We could make it more directly,
1752 			 * requeueing packets from backlog to prequeue, if
1753 			 * is not empty. It is more elegant, but eats cycles,
1754 			 * unfortunately.
1755 			 */
1756 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1757 				goto do_prequeue;
1758 
1759 			/* __ Set realtime policy in scheduler __ */
1760 		}
1761 
1762 		if (copied >= target) {
1763 			/* Do not sleep, just process backlog. */
1764 			release_sock(sk);
1765 			lock_sock(sk);
1766 		} else {
1767 			sk_wait_data(sk, &timeo, last);
1768 		}
1769 
1770 		if (user_recv) {
1771 			int chunk;
1772 
1773 			/* __ Restore normal policy in scheduler __ */
1774 
1775 			chunk = len - tp->ucopy.len;
1776 			if (chunk != 0) {
1777 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1778 				len -= chunk;
1779 				copied += chunk;
1780 			}
1781 
1782 			if (tp->rcv_nxt == tp->copied_seq &&
1783 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1784 do_prequeue:
1785 				tcp_prequeue_process(sk);
1786 
1787 				chunk = len - tp->ucopy.len;
1788 				if (chunk != 0) {
1789 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1790 					len -= chunk;
1791 					copied += chunk;
1792 				}
1793 			}
1794 		}
1795 		if ((flags & MSG_PEEK) &&
1796 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1797 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1798 					    current->comm,
1799 					    task_pid_nr(current));
1800 			peek_seq = tp->copied_seq;
1801 		}
1802 		continue;
1803 
1804 	found_ok_skb:
1805 		/* Ok so how much can we use? */
1806 		used = skb->len - offset;
1807 		if (len < used)
1808 			used = len;
1809 
1810 		/* Do we have urgent data here? */
1811 		if (tp->urg_data) {
1812 			u32 urg_offset = tp->urg_seq - *seq;
1813 			if (urg_offset < used) {
1814 				if (!urg_offset) {
1815 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1816 						++*seq;
1817 						urg_hole++;
1818 						offset++;
1819 						used--;
1820 						if (!used)
1821 							goto skip_copy;
1822 					}
1823 				} else
1824 					used = urg_offset;
1825 			}
1826 		}
1827 
1828 		if (!(flags & MSG_TRUNC)) {
1829 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1830 			if (err) {
1831 				/* Exception. Bailout! */
1832 				if (!copied)
1833 					copied = -EFAULT;
1834 				break;
1835 			}
1836 		}
1837 
1838 		*seq += used;
1839 		copied += used;
1840 		len -= used;
1841 
1842 		tcp_rcv_space_adjust(sk);
1843 
1844 skip_copy:
1845 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1846 			tp->urg_data = 0;
1847 			tcp_fast_path_check(sk);
1848 		}
1849 		if (used + offset < skb->len)
1850 			continue;
1851 
1852 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1853 			goto found_fin_ok;
1854 		if (!(flags & MSG_PEEK))
1855 			sk_eat_skb(sk, skb);
1856 		continue;
1857 
1858 	found_fin_ok:
1859 		/* Process the FIN. */
1860 		++*seq;
1861 		if (!(flags & MSG_PEEK))
1862 			sk_eat_skb(sk, skb);
1863 		break;
1864 	} while (len > 0);
1865 
1866 	if (user_recv) {
1867 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1868 			int chunk;
1869 
1870 			tp->ucopy.len = copied > 0 ? len : 0;
1871 
1872 			tcp_prequeue_process(sk);
1873 
1874 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1875 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1876 				len -= chunk;
1877 				copied += chunk;
1878 			}
1879 		}
1880 
1881 		tp->ucopy.task = NULL;
1882 		tp->ucopy.len = 0;
1883 	}
1884 
1885 	/* According to UNIX98, msg_name/msg_namelen are ignored
1886 	 * on connected socket. I was just happy when found this 8) --ANK
1887 	 */
1888 
1889 	/* Clean up data we have read: This will do ACK frames. */
1890 	tcp_cleanup_rbuf(sk, copied);
1891 
1892 	release_sock(sk);
1893 	return copied;
1894 
1895 out:
1896 	release_sock(sk);
1897 	return err;
1898 
1899 recv_urg:
1900 	err = tcp_recv_urg(sk, msg, len, flags);
1901 	goto out;
1902 
1903 recv_sndq:
1904 	err = tcp_peek_sndq(sk, msg, len);
1905 	goto out;
1906 }
1907 EXPORT_SYMBOL(tcp_recvmsg);
1908 
1909 void tcp_set_state(struct sock *sk, int state)
1910 {
1911 	int oldstate = sk->sk_state;
1912 
1913 	switch (state) {
1914 	case TCP_ESTABLISHED:
1915 		if (oldstate != TCP_ESTABLISHED)
1916 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1917 		break;
1918 
1919 	case TCP_CLOSE:
1920 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1921 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1922 
1923 		sk->sk_prot->unhash(sk);
1924 		if (inet_csk(sk)->icsk_bind_hash &&
1925 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1926 			inet_put_port(sk);
1927 		/* fall through */
1928 	default:
1929 		if (oldstate == TCP_ESTABLISHED)
1930 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1931 	}
1932 
1933 	/* Change state AFTER socket is unhashed to avoid closed
1934 	 * socket sitting in hash tables.
1935 	 */
1936 	sk_state_store(sk, state);
1937 
1938 #ifdef STATE_TRACE
1939 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1940 #endif
1941 }
1942 EXPORT_SYMBOL_GPL(tcp_set_state);
1943 
1944 /*
1945  *	State processing on a close. This implements the state shift for
1946  *	sending our FIN frame. Note that we only send a FIN for some
1947  *	states. A shutdown() may have already sent the FIN, or we may be
1948  *	closed.
1949  */
1950 
1951 static const unsigned char new_state[16] = {
1952   /* current state:        new state:      action:	*/
1953   [0 /* (Invalid) */]	= TCP_CLOSE,
1954   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1955   [TCP_SYN_SENT]	= TCP_CLOSE,
1956   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1957   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1958   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1959   [TCP_TIME_WAIT]	= TCP_CLOSE,
1960   [TCP_CLOSE]		= TCP_CLOSE,
1961   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1962   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1963   [TCP_LISTEN]		= TCP_CLOSE,
1964   [TCP_CLOSING]		= TCP_CLOSING,
1965   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1966 };
1967 
1968 static int tcp_close_state(struct sock *sk)
1969 {
1970 	int next = (int)new_state[sk->sk_state];
1971 	int ns = next & TCP_STATE_MASK;
1972 
1973 	tcp_set_state(sk, ns);
1974 
1975 	return next & TCP_ACTION_FIN;
1976 }
1977 
1978 /*
1979  *	Shutdown the sending side of a connection. Much like close except
1980  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1981  */
1982 
1983 void tcp_shutdown(struct sock *sk, int how)
1984 {
1985 	/*	We need to grab some memory, and put together a FIN,
1986 	 *	and then put it into the queue to be sent.
1987 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1988 	 */
1989 	if (!(how & SEND_SHUTDOWN))
1990 		return;
1991 
1992 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1993 	if ((1 << sk->sk_state) &
1994 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1995 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1996 		/* Clear out any half completed packets.  FIN if needed. */
1997 		if (tcp_close_state(sk))
1998 			tcp_send_fin(sk);
1999 	}
2000 }
2001 EXPORT_SYMBOL(tcp_shutdown);
2002 
2003 bool tcp_check_oom(struct sock *sk, int shift)
2004 {
2005 	bool too_many_orphans, out_of_socket_memory;
2006 
2007 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2008 	out_of_socket_memory = tcp_out_of_memory(sk);
2009 
2010 	if (too_many_orphans)
2011 		net_info_ratelimited("too many orphaned sockets\n");
2012 	if (out_of_socket_memory)
2013 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2014 	return too_many_orphans || out_of_socket_memory;
2015 }
2016 
2017 void tcp_close(struct sock *sk, long timeout)
2018 {
2019 	struct sk_buff *skb;
2020 	int data_was_unread = 0;
2021 	int state;
2022 
2023 	lock_sock(sk);
2024 	sk->sk_shutdown = SHUTDOWN_MASK;
2025 
2026 	if (sk->sk_state == TCP_LISTEN) {
2027 		tcp_set_state(sk, TCP_CLOSE);
2028 
2029 		/* Special case. */
2030 		inet_csk_listen_stop(sk);
2031 
2032 		goto adjudge_to_death;
2033 	}
2034 
2035 	/*  We need to flush the recv. buffs.  We do this only on the
2036 	 *  descriptor close, not protocol-sourced closes, because the
2037 	 *  reader process may not have drained the data yet!
2038 	 */
2039 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2040 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2041 
2042 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2043 			len--;
2044 		data_was_unread += len;
2045 		__kfree_skb(skb);
2046 	}
2047 
2048 	sk_mem_reclaim(sk);
2049 
2050 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2051 	if (sk->sk_state == TCP_CLOSE)
2052 		goto adjudge_to_death;
2053 
2054 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2055 	 * data was lost. To witness the awful effects of the old behavior of
2056 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2057 	 * GET in an FTP client, suspend the process, wait for the client to
2058 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2059 	 * Note: timeout is always zero in such a case.
2060 	 */
2061 	if (unlikely(tcp_sk(sk)->repair)) {
2062 		sk->sk_prot->disconnect(sk, 0);
2063 	} else if (data_was_unread) {
2064 		/* Unread data was tossed, zap the connection. */
2065 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2066 		tcp_set_state(sk, TCP_CLOSE);
2067 		tcp_send_active_reset(sk, sk->sk_allocation);
2068 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2069 		/* Check zero linger _after_ checking for unread data. */
2070 		sk->sk_prot->disconnect(sk, 0);
2071 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2072 	} else if (tcp_close_state(sk)) {
2073 		/* We FIN if the application ate all the data before
2074 		 * zapping the connection.
2075 		 */
2076 
2077 		/* RED-PEN. Formally speaking, we have broken TCP state
2078 		 * machine. State transitions:
2079 		 *
2080 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2081 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2082 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2083 		 *
2084 		 * are legal only when FIN has been sent (i.e. in window),
2085 		 * rather than queued out of window. Purists blame.
2086 		 *
2087 		 * F.e. "RFC state" is ESTABLISHED,
2088 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2089 		 *
2090 		 * The visible declinations are that sometimes
2091 		 * we enter time-wait state, when it is not required really
2092 		 * (harmless), do not send active resets, when they are
2093 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2094 		 * they look as CLOSING or LAST_ACK for Linux)
2095 		 * Probably, I missed some more holelets.
2096 		 * 						--ANK
2097 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2098 		 * in a single packet! (May consider it later but will
2099 		 * probably need API support or TCP_CORK SYN-ACK until
2100 		 * data is written and socket is closed.)
2101 		 */
2102 		tcp_send_fin(sk);
2103 	}
2104 
2105 	sk_stream_wait_close(sk, timeout);
2106 
2107 adjudge_to_death:
2108 	state = sk->sk_state;
2109 	sock_hold(sk);
2110 	sock_orphan(sk);
2111 
2112 	/* It is the last release_sock in its life. It will remove backlog. */
2113 	release_sock(sk);
2114 
2115 
2116 	/* Now socket is owned by kernel and we acquire BH lock
2117 	   to finish close. No need to check for user refs.
2118 	 */
2119 	local_bh_disable();
2120 	bh_lock_sock(sk);
2121 	WARN_ON(sock_owned_by_user(sk));
2122 
2123 	percpu_counter_inc(sk->sk_prot->orphan_count);
2124 
2125 	/* Have we already been destroyed by a softirq or backlog? */
2126 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2127 		goto out;
2128 
2129 	/*	This is a (useful) BSD violating of the RFC. There is a
2130 	 *	problem with TCP as specified in that the other end could
2131 	 *	keep a socket open forever with no application left this end.
2132 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2133 	 *	our end. If they send after that then tough - BUT: long enough
2134 	 *	that we won't make the old 4*rto = almost no time - whoops
2135 	 *	reset mistake.
2136 	 *
2137 	 *	Nope, it was not mistake. It is really desired behaviour
2138 	 *	f.e. on http servers, when such sockets are useless, but
2139 	 *	consume significant resources. Let's do it with special
2140 	 *	linger2	option.					--ANK
2141 	 */
2142 
2143 	if (sk->sk_state == TCP_FIN_WAIT2) {
2144 		struct tcp_sock *tp = tcp_sk(sk);
2145 		if (tp->linger2 < 0) {
2146 			tcp_set_state(sk, TCP_CLOSE);
2147 			tcp_send_active_reset(sk, GFP_ATOMIC);
2148 			NET_INC_STATS_BH(sock_net(sk),
2149 					LINUX_MIB_TCPABORTONLINGER);
2150 		} else {
2151 			const int tmo = tcp_fin_time(sk);
2152 
2153 			if (tmo > TCP_TIMEWAIT_LEN) {
2154 				inet_csk_reset_keepalive_timer(sk,
2155 						tmo - TCP_TIMEWAIT_LEN);
2156 			} else {
2157 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2158 				goto out;
2159 			}
2160 		}
2161 	}
2162 	if (sk->sk_state != TCP_CLOSE) {
2163 		sk_mem_reclaim(sk);
2164 		if (tcp_check_oom(sk, 0)) {
2165 			tcp_set_state(sk, TCP_CLOSE);
2166 			tcp_send_active_reset(sk, GFP_ATOMIC);
2167 			NET_INC_STATS_BH(sock_net(sk),
2168 					LINUX_MIB_TCPABORTONMEMORY);
2169 		}
2170 	}
2171 
2172 	if (sk->sk_state == TCP_CLOSE) {
2173 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2174 		/* We could get here with a non-NULL req if the socket is
2175 		 * aborted (e.g., closed with unread data) before 3WHS
2176 		 * finishes.
2177 		 */
2178 		if (req)
2179 			reqsk_fastopen_remove(sk, req, false);
2180 		inet_csk_destroy_sock(sk);
2181 	}
2182 	/* Otherwise, socket is reprieved until protocol close. */
2183 
2184 out:
2185 	bh_unlock_sock(sk);
2186 	local_bh_enable();
2187 	sock_put(sk);
2188 }
2189 EXPORT_SYMBOL(tcp_close);
2190 
2191 /* These states need RST on ABORT according to RFC793 */
2192 
2193 static inline bool tcp_need_reset(int state)
2194 {
2195 	return (1 << state) &
2196 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2197 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2198 }
2199 
2200 int tcp_disconnect(struct sock *sk, int flags)
2201 {
2202 	struct inet_sock *inet = inet_sk(sk);
2203 	struct inet_connection_sock *icsk = inet_csk(sk);
2204 	struct tcp_sock *tp = tcp_sk(sk);
2205 	int err = 0;
2206 	int old_state = sk->sk_state;
2207 
2208 	if (old_state != TCP_CLOSE)
2209 		tcp_set_state(sk, TCP_CLOSE);
2210 
2211 	/* ABORT function of RFC793 */
2212 	if (old_state == TCP_LISTEN) {
2213 		inet_csk_listen_stop(sk);
2214 	} else if (unlikely(tp->repair)) {
2215 		sk->sk_err = ECONNABORTED;
2216 	} else if (tcp_need_reset(old_state) ||
2217 		   (tp->snd_nxt != tp->write_seq &&
2218 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2219 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2220 		 * states
2221 		 */
2222 		tcp_send_active_reset(sk, gfp_any());
2223 		sk->sk_err = ECONNRESET;
2224 	} else if (old_state == TCP_SYN_SENT)
2225 		sk->sk_err = ECONNRESET;
2226 
2227 	tcp_clear_xmit_timers(sk);
2228 	__skb_queue_purge(&sk->sk_receive_queue);
2229 	tcp_write_queue_purge(sk);
2230 	__skb_queue_purge(&tp->out_of_order_queue);
2231 
2232 	inet->inet_dport = 0;
2233 
2234 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2235 		inet_reset_saddr(sk);
2236 
2237 	sk->sk_shutdown = 0;
2238 	sock_reset_flag(sk, SOCK_DONE);
2239 	tp->srtt_us = 0;
2240 	tp->write_seq += tp->max_window + 2;
2241 	if (tp->write_seq == 0)
2242 		tp->write_seq = 1;
2243 	icsk->icsk_backoff = 0;
2244 	tp->snd_cwnd = 2;
2245 	icsk->icsk_probes_out = 0;
2246 	tp->packets_out = 0;
2247 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2248 	tp->snd_cwnd_cnt = 0;
2249 	tp->window_clamp = 0;
2250 	tcp_set_ca_state(sk, TCP_CA_Open);
2251 	tcp_clear_retrans(tp);
2252 	inet_csk_delack_init(sk);
2253 	tcp_init_send_head(sk);
2254 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2255 	__sk_dst_reset(sk);
2256 
2257 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2258 
2259 	sk->sk_error_report(sk);
2260 	return err;
2261 }
2262 EXPORT_SYMBOL(tcp_disconnect);
2263 
2264 static inline bool tcp_can_repair_sock(const struct sock *sk)
2265 {
2266 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2267 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2268 }
2269 
2270 static int tcp_repair_options_est(struct tcp_sock *tp,
2271 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2272 {
2273 	struct tcp_repair_opt opt;
2274 
2275 	while (len >= sizeof(opt)) {
2276 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2277 			return -EFAULT;
2278 
2279 		optbuf++;
2280 		len -= sizeof(opt);
2281 
2282 		switch (opt.opt_code) {
2283 		case TCPOPT_MSS:
2284 			tp->rx_opt.mss_clamp = opt.opt_val;
2285 			break;
2286 		case TCPOPT_WINDOW:
2287 			{
2288 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2289 				u16 rcv_wscale = opt.opt_val >> 16;
2290 
2291 				if (snd_wscale > 14 || rcv_wscale > 14)
2292 					return -EFBIG;
2293 
2294 				tp->rx_opt.snd_wscale = snd_wscale;
2295 				tp->rx_opt.rcv_wscale = rcv_wscale;
2296 				tp->rx_opt.wscale_ok = 1;
2297 			}
2298 			break;
2299 		case TCPOPT_SACK_PERM:
2300 			if (opt.opt_val != 0)
2301 				return -EINVAL;
2302 
2303 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2304 			if (sysctl_tcp_fack)
2305 				tcp_enable_fack(tp);
2306 			break;
2307 		case TCPOPT_TIMESTAMP:
2308 			if (opt.opt_val != 0)
2309 				return -EINVAL;
2310 
2311 			tp->rx_opt.tstamp_ok = 1;
2312 			break;
2313 		}
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 /*
2320  *	Socket option code for TCP.
2321  */
2322 static int do_tcp_setsockopt(struct sock *sk, int level,
2323 		int optname, char __user *optval, unsigned int optlen)
2324 {
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 	struct inet_connection_sock *icsk = inet_csk(sk);
2327 	int val;
2328 	int err = 0;
2329 
2330 	/* These are data/string values, all the others are ints */
2331 	switch (optname) {
2332 	case TCP_CONGESTION: {
2333 		char name[TCP_CA_NAME_MAX];
2334 
2335 		if (optlen < 1)
2336 			return -EINVAL;
2337 
2338 		val = strncpy_from_user(name, optval,
2339 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2340 		if (val < 0)
2341 			return -EFAULT;
2342 		name[val] = 0;
2343 
2344 		lock_sock(sk);
2345 		err = tcp_set_congestion_control(sk, name);
2346 		release_sock(sk);
2347 		return err;
2348 	}
2349 	default:
2350 		/* fallthru */
2351 		break;
2352 	}
2353 
2354 	if (optlen < sizeof(int))
2355 		return -EINVAL;
2356 
2357 	if (get_user(val, (int __user *)optval))
2358 		return -EFAULT;
2359 
2360 	lock_sock(sk);
2361 
2362 	switch (optname) {
2363 	case TCP_MAXSEG:
2364 		/* Values greater than interface MTU won't take effect. However
2365 		 * at the point when this call is done we typically don't yet
2366 		 * know which interface is going to be used */
2367 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2368 			err = -EINVAL;
2369 			break;
2370 		}
2371 		tp->rx_opt.user_mss = val;
2372 		break;
2373 
2374 	case TCP_NODELAY:
2375 		if (val) {
2376 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2377 			 * this option on corked socket is remembered, but
2378 			 * it is not activated until cork is cleared.
2379 			 *
2380 			 * However, when TCP_NODELAY is set we make
2381 			 * an explicit push, which overrides even TCP_CORK
2382 			 * for currently queued segments.
2383 			 */
2384 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2385 			tcp_push_pending_frames(sk);
2386 		} else {
2387 			tp->nonagle &= ~TCP_NAGLE_OFF;
2388 		}
2389 		break;
2390 
2391 	case TCP_THIN_LINEAR_TIMEOUTS:
2392 		if (val < 0 || val > 1)
2393 			err = -EINVAL;
2394 		else
2395 			tp->thin_lto = val;
2396 		break;
2397 
2398 	case TCP_THIN_DUPACK:
2399 		if (val < 0 || val > 1)
2400 			err = -EINVAL;
2401 		else {
2402 			tp->thin_dupack = val;
2403 			if (tp->thin_dupack)
2404 				tcp_disable_early_retrans(tp);
2405 		}
2406 		break;
2407 
2408 	case TCP_REPAIR:
2409 		if (!tcp_can_repair_sock(sk))
2410 			err = -EPERM;
2411 		else if (val == 1) {
2412 			tp->repair = 1;
2413 			sk->sk_reuse = SK_FORCE_REUSE;
2414 			tp->repair_queue = TCP_NO_QUEUE;
2415 		} else if (val == 0) {
2416 			tp->repair = 0;
2417 			sk->sk_reuse = SK_NO_REUSE;
2418 			tcp_send_window_probe(sk);
2419 		} else
2420 			err = -EINVAL;
2421 
2422 		break;
2423 
2424 	case TCP_REPAIR_QUEUE:
2425 		if (!tp->repair)
2426 			err = -EPERM;
2427 		else if (val < TCP_QUEUES_NR)
2428 			tp->repair_queue = val;
2429 		else
2430 			err = -EINVAL;
2431 		break;
2432 
2433 	case TCP_QUEUE_SEQ:
2434 		if (sk->sk_state != TCP_CLOSE)
2435 			err = -EPERM;
2436 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2437 			tp->write_seq = val;
2438 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2439 			tp->rcv_nxt = val;
2440 		else
2441 			err = -EINVAL;
2442 		break;
2443 
2444 	case TCP_REPAIR_OPTIONS:
2445 		if (!tp->repair)
2446 			err = -EINVAL;
2447 		else if (sk->sk_state == TCP_ESTABLISHED)
2448 			err = tcp_repair_options_est(tp,
2449 					(struct tcp_repair_opt __user *)optval,
2450 					optlen);
2451 		else
2452 			err = -EPERM;
2453 		break;
2454 
2455 	case TCP_CORK:
2456 		/* When set indicates to always queue non-full frames.
2457 		 * Later the user clears this option and we transmit
2458 		 * any pending partial frames in the queue.  This is
2459 		 * meant to be used alongside sendfile() to get properly
2460 		 * filled frames when the user (for example) must write
2461 		 * out headers with a write() call first and then use
2462 		 * sendfile to send out the data parts.
2463 		 *
2464 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2465 		 * stronger than TCP_NODELAY.
2466 		 */
2467 		if (val) {
2468 			tp->nonagle |= TCP_NAGLE_CORK;
2469 		} else {
2470 			tp->nonagle &= ~TCP_NAGLE_CORK;
2471 			if (tp->nonagle&TCP_NAGLE_OFF)
2472 				tp->nonagle |= TCP_NAGLE_PUSH;
2473 			tcp_push_pending_frames(sk);
2474 		}
2475 		break;
2476 
2477 	case TCP_KEEPIDLE:
2478 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2479 			err = -EINVAL;
2480 		else {
2481 			tp->keepalive_time = val * HZ;
2482 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2483 			    !((1 << sk->sk_state) &
2484 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2485 				u32 elapsed = keepalive_time_elapsed(tp);
2486 				if (tp->keepalive_time > elapsed)
2487 					elapsed = tp->keepalive_time - elapsed;
2488 				else
2489 					elapsed = 0;
2490 				inet_csk_reset_keepalive_timer(sk, elapsed);
2491 			}
2492 		}
2493 		break;
2494 	case TCP_KEEPINTVL:
2495 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2496 			err = -EINVAL;
2497 		else
2498 			tp->keepalive_intvl = val * HZ;
2499 		break;
2500 	case TCP_KEEPCNT:
2501 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2502 			err = -EINVAL;
2503 		else
2504 			tp->keepalive_probes = val;
2505 		break;
2506 	case TCP_SYNCNT:
2507 		if (val < 1 || val > MAX_TCP_SYNCNT)
2508 			err = -EINVAL;
2509 		else
2510 			icsk->icsk_syn_retries = val;
2511 		break;
2512 
2513 	case TCP_SAVE_SYN:
2514 		if (val < 0 || val > 1)
2515 			err = -EINVAL;
2516 		else
2517 			tp->save_syn = val;
2518 		break;
2519 
2520 	case TCP_LINGER2:
2521 		if (val < 0)
2522 			tp->linger2 = -1;
2523 		else if (val > sysctl_tcp_fin_timeout / HZ)
2524 			tp->linger2 = 0;
2525 		else
2526 			tp->linger2 = val * HZ;
2527 		break;
2528 
2529 	case TCP_DEFER_ACCEPT:
2530 		/* Translate value in seconds to number of retransmits */
2531 		icsk->icsk_accept_queue.rskq_defer_accept =
2532 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2533 					TCP_RTO_MAX / HZ);
2534 		break;
2535 
2536 	case TCP_WINDOW_CLAMP:
2537 		if (!val) {
2538 			if (sk->sk_state != TCP_CLOSE) {
2539 				err = -EINVAL;
2540 				break;
2541 			}
2542 			tp->window_clamp = 0;
2543 		} else
2544 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2545 						SOCK_MIN_RCVBUF / 2 : val;
2546 		break;
2547 
2548 	case TCP_QUICKACK:
2549 		if (!val) {
2550 			icsk->icsk_ack.pingpong = 1;
2551 		} else {
2552 			icsk->icsk_ack.pingpong = 0;
2553 			if ((1 << sk->sk_state) &
2554 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2555 			    inet_csk_ack_scheduled(sk)) {
2556 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2557 				tcp_cleanup_rbuf(sk, 1);
2558 				if (!(val & 1))
2559 					icsk->icsk_ack.pingpong = 1;
2560 			}
2561 		}
2562 		break;
2563 
2564 #ifdef CONFIG_TCP_MD5SIG
2565 	case TCP_MD5SIG:
2566 		/* Read the IP->Key mappings from userspace */
2567 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2568 		break;
2569 #endif
2570 	case TCP_USER_TIMEOUT:
2571 		/* Cap the max time in ms TCP will retry or probe the window
2572 		 * before giving up and aborting (ETIMEDOUT) a connection.
2573 		 */
2574 		if (val < 0)
2575 			err = -EINVAL;
2576 		else
2577 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2578 		break;
2579 
2580 	case TCP_FASTOPEN:
2581 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2582 		    TCPF_LISTEN))) {
2583 			tcp_fastopen_init_key_once(true);
2584 
2585 			fastopen_queue_tune(sk, val);
2586 		} else {
2587 			err = -EINVAL;
2588 		}
2589 		break;
2590 	case TCP_TIMESTAMP:
2591 		if (!tp->repair)
2592 			err = -EPERM;
2593 		else
2594 			tp->tsoffset = val - tcp_time_stamp;
2595 		break;
2596 	case TCP_NOTSENT_LOWAT:
2597 		tp->notsent_lowat = val;
2598 		sk->sk_write_space(sk);
2599 		break;
2600 	default:
2601 		err = -ENOPROTOOPT;
2602 		break;
2603 	}
2604 
2605 	release_sock(sk);
2606 	return err;
2607 }
2608 
2609 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2610 		   unsigned int optlen)
2611 {
2612 	const struct inet_connection_sock *icsk = inet_csk(sk);
2613 
2614 	if (level != SOL_TCP)
2615 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2616 						     optval, optlen);
2617 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2618 }
2619 EXPORT_SYMBOL(tcp_setsockopt);
2620 
2621 #ifdef CONFIG_COMPAT
2622 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2623 			  char __user *optval, unsigned int optlen)
2624 {
2625 	if (level != SOL_TCP)
2626 		return inet_csk_compat_setsockopt(sk, level, optname,
2627 						  optval, optlen);
2628 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2629 }
2630 EXPORT_SYMBOL(compat_tcp_setsockopt);
2631 #endif
2632 
2633 /* Return information about state of tcp endpoint in API format. */
2634 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2635 {
2636 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2637 	const struct inet_connection_sock *icsk = inet_csk(sk);
2638 	u32 now = tcp_time_stamp;
2639 	unsigned int start;
2640 	u32 rate;
2641 
2642 	memset(info, 0, sizeof(*info));
2643 	if (sk->sk_type != SOCK_STREAM)
2644 		return;
2645 
2646 	info->tcpi_state = sk_state_load(sk);
2647 
2648 	info->tcpi_ca_state = icsk->icsk_ca_state;
2649 	info->tcpi_retransmits = icsk->icsk_retransmits;
2650 	info->tcpi_probes = icsk->icsk_probes_out;
2651 	info->tcpi_backoff = icsk->icsk_backoff;
2652 
2653 	if (tp->rx_opt.tstamp_ok)
2654 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2655 	if (tcp_is_sack(tp))
2656 		info->tcpi_options |= TCPI_OPT_SACK;
2657 	if (tp->rx_opt.wscale_ok) {
2658 		info->tcpi_options |= TCPI_OPT_WSCALE;
2659 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2660 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2661 	}
2662 
2663 	if (tp->ecn_flags & TCP_ECN_OK)
2664 		info->tcpi_options |= TCPI_OPT_ECN;
2665 	if (tp->ecn_flags & TCP_ECN_SEEN)
2666 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2667 	if (tp->syn_data_acked)
2668 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2669 
2670 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2671 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2672 	info->tcpi_snd_mss = tp->mss_cache;
2673 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2674 
2675 	if (info->tcpi_state == TCP_LISTEN) {
2676 		info->tcpi_unacked = sk->sk_ack_backlog;
2677 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2678 	} else {
2679 		info->tcpi_unacked = tp->packets_out;
2680 		info->tcpi_sacked = tp->sacked_out;
2681 	}
2682 	info->tcpi_lost = tp->lost_out;
2683 	info->tcpi_retrans = tp->retrans_out;
2684 	info->tcpi_fackets = tp->fackets_out;
2685 
2686 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2687 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2688 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2689 
2690 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2691 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2692 	info->tcpi_rtt = tp->srtt_us >> 3;
2693 	info->tcpi_rttvar = tp->mdev_us >> 2;
2694 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2695 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2696 	info->tcpi_advmss = tp->advmss;
2697 	info->tcpi_reordering = tp->reordering;
2698 
2699 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2700 	info->tcpi_rcv_space = tp->rcvq_space.space;
2701 
2702 	info->tcpi_total_retrans = tp->total_retrans;
2703 
2704 	rate = READ_ONCE(sk->sk_pacing_rate);
2705 	info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2706 
2707 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2708 	info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2709 
2710 	do {
2711 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2712 		info->tcpi_bytes_acked = tp->bytes_acked;
2713 		info->tcpi_bytes_received = tp->bytes_received;
2714 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2715 	info->tcpi_segs_out = tp->segs_out;
2716 	info->tcpi_segs_in = tp->segs_in;
2717 }
2718 EXPORT_SYMBOL_GPL(tcp_get_info);
2719 
2720 static int do_tcp_getsockopt(struct sock *sk, int level,
2721 		int optname, char __user *optval, int __user *optlen)
2722 {
2723 	struct inet_connection_sock *icsk = inet_csk(sk);
2724 	struct tcp_sock *tp = tcp_sk(sk);
2725 	int val, len;
2726 
2727 	if (get_user(len, optlen))
2728 		return -EFAULT;
2729 
2730 	len = min_t(unsigned int, len, sizeof(int));
2731 
2732 	if (len < 0)
2733 		return -EINVAL;
2734 
2735 	switch (optname) {
2736 	case TCP_MAXSEG:
2737 		val = tp->mss_cache;
2738 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2739 			val = tp->rx_opt.user_mss;
2740 		if (tp->repair)
2741 			val = tp->rx_opt.mss_clamp;
2742 		break;
2743 	case TCP_NODELAY:
2744 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2745 		break;
2746 	case TCP_CORK:
2747 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2748 		break;
2749 	case TCP_KEEPIDLE:
2750 		val = keepalive_time_when(tp) / HZ;
2751 		break;
2752 	case TCP_KEEPINTVL:
2753 		val = keepalive_intvl_when(tp) / HZ;
2754 		break;
2755 	case TCP_KEEPCNT:
2756 		val = keepalive_probes(tp);
2757 		break;
2758 	case TCP_SYNCNT:
2759 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2760 		break;
2761 	case TCP_LINGER2:
2762 		val = tp->linger2;
2763 		if (val >= 0)
2764 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2765 		break;
2766 	case TCP_DEFER_ACCEPT:
2767 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2768 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2769 		break;
2770 	case TCP_WINDOW_CLAMP:
2771 		val = tp->window_clamp;
2772 		break;
2773 	case TCP_INFO: {
2774 		struct tcp_info info;
2775 
2776 		if (get_user(len, optlen))
2777 			return -EFAULT;
2778 
2779 		tcp_get_info(sk, &info);
2780 
2781 		len = min_t(unsigned int, len, sizeof(info));
2782 		if (put_user(len, optlen))
2783 			return -EFAULT;
2784 		if (copy_to_user(optval, &info, len))
2785 			return -EFAULT;
2786 		return 0;
2787 	}
2788 	case TCP_CC_INFO: {
2789 		const struct tcp_congestion_ops *ca_ops;
2790 		union tcp_cc_info info;
2791 		size_t sz = 0;
2792 		int attr;
2793 
2794 		if (get_user(len, optlen))
2795 			return -EFAULT;
2796 
2797 		ca_ops = icsk->icsk_ca_ops;
2798 		if (ca_ops && ca_ops->get_info)
2799 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2800 
2801 		len = min_t(unsigned int, len, sz);
2802 		if (put_user(len, optlen))
2803 			return -EFAULT;
2804 		if (copy_to_user(optval, &info, len))
2805 			return -EFAULT;
2806 		return 0;
2807 	}
2808 	case TCP_QUICKACK:
2809 		val = !icsk->icsk_ack.pingpong;
2810 		break;
2811 
2812 	case TCP_CONGESTION:
2813 		if (get_user(len, optlen))
2814 			return -EFAULT;
2815 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2816 		if (put_user(len, optlen))
2817 			return -EFAULT;
2818 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2819 			return -EFAULT;
2820 		return 0;
2821 
2822 	case TCP_THIN_LINEAR_TIMEOUTS:
2823 		val = tp->thin_lto;
2824 		break;
2825 	case TCP_THIN_DUPACK:
2826 		val = tp->thin_dupack;
2827 		break;
2828 
2829 	case TCP_REPAIR:
2830 		val = tp->repair;
2831 		break;
2832 
2833 	case TCP_REPAIR_QUEUE:
2834 		if (tp->repair)
2835 			val = tp->repair_queue;
2836 		else
2837 			return -EINVAL;
2838 		break;
2839 
2840 	case TCP_QUEUE_SEQ:
2841 		if (tp->repair_queue == TCP_SEND_QUEUE)
2842 			val = tp->write_seq;
2843 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2844 			val = tp->rcv_nxt;
2845 		else
2846 			return -EINVAL;
2847 		break;
2848 
2849 	case TCP_USER_TIMEOUT:
2850 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2851 		break;
2852 
2853 	case TCP_FASTOPEN:
2854 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2855 		break;
2856 
2857 	case TCP_TIMESTAMP:
2858 		val = tcp_time_stamp + tp->tsoffset;
2859 		break;
2860 	case TCP_NOTSENT_LOWAT:
2861 		val = tp->notsent_lowat;
2862 		break;
2863 	case TCP_SAVE_SYN:
2864 		val = tp->save_syn;
2865 		break;
2866 	case TCP_SAVED_SYN: {
2867 		if (get_user(len, optlen))
2868 			return -EFAULT;
2869 
2870 		lock_sock(sk);
2871 		if (tp->saved_syn) {
2872 			if (len < tp->saved_syn[0]) {
2873 				if (put_user(tp->saved_syn[0], optlen)) {
2874 					release_sock(sk);
2875 					return -EFAULT;
2876 				}
2877 				release_sock(sk);
2878 				return -EINVAL;
2879 			}
2880 			len = tp->saved_syn[0];
2881 			if (put_user(len, optlen)) {
2882 				release_sock(sk);
2883 				return -EFAULT;
2884 			}
2885 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2886 				release_sock(sk);
2887 				return -EFAULT;
2888 			}
2889 			tcp_saved_syn_free(tp);
2890 			release_sock(sk);
2891 		} else {
2892 			release_sock(sk);
2893 			len = 0;
2894 			if (put_user(len, optlen))
2895 				return -EFAULT;
2896 		}
2897 		return 0;
2898 	}
2899 	default:
2900 		return -ENOPROTOOPT;
2901 	}
2902 
2903 	if (put_user(len, optlen))
2904 		return -EFAULT;
2905 	if (copy_to_user(optval, &val, len))
2906 		return -EFAULT;
2907 	return 0;
2908 }
2909 
2910 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2911 		   int __user *optlen)
2912 {
2913 	struct inet_connection_sock *icsk = inet_csk(sk);
2914 
2915 	if (level != SOL_TCP)
2916 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2917 						     optval, optlen);
2918 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2919 }
2920 EXPORT_SYMBOL(tcp_getsockopt);
2921 
2922 #ifdef CONFIG_COMPAT
2923 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2924 			  char __user *optval, int __user *optlen)
2925 {
2926 	if (level != SOL_TCP)
2927 		return inet_csk_compat_getsockopt(sk, level, optname,
2928 						  optval, optlen);
2929 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2930 }
2931 EXPORT_SYMBOL(compat_tcp_getsockopt);
2932 #endif
2933 
2934 #ifdef CONFIG_TCP_MD5SIG
2935 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2936 static DEFINE_MUTEX(tcp_md5sig_mutex);
2937 static bool tcp_md5sig_pool_populated = false;
2938 
2939 static void __tcp_alloc_md5sig_pool(void)
2940 {
2941 	int cpu;
2942 
2943 	for_each_possible_cpu(cpu) {
2944 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2945 			struct crypto_hash *hash;
2946 
2947 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2948 			if (IS_ERR_OR_NULL(hash))
2949 				return;
2950 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2951 		}
2952 	}
2953 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2954 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2955 	 */
2956 	smp_wmb();
2957 	tcp_md5sig_pool_populated = true;
2958 }
2959 
2960 bool tcp_alloc_md5sig_pool(void)
2961 {
2962 	if (unlikely(!tcp_md5sig_pool_populated)) {
2963 		mutex_lock(&tcp_md5sig_mutex);
2964 
2965 		if (!tcp_md5sig_pool_populated)
2966 			__tcp_alloc_md5sig_pool();
2967 
2968 		mutex_unlock(&tcp_md5sig_mutex);
2969 	}
2970 	return tcp_md5sig_pool_populated;
2971 }
2972 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2973 
2974 
2975 /**
2976  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2977  *
2978  *	We use percpu structure, so if we succeed, we exit with preemption
2979  *	and BH disabled, to make sure another thread or softirq handling
2980  *	wont try to get same context.
2981  */
2982 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2983 {
2984 	local_bh_disable();
2985 
2986 	if (tcp_md5sig_pool_populated) {
2987 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2988 		smp_rmb();
2989 		return this_cpu_ptr(&tcp_md5sig_pool);
2990 	}
2991 	local_bh_enable();
2992 	return NULL;
2993 }
2994 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2995 
2996 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2997 			const struct tcphdr *th)
2998 {
2999 	struct scatterlist sg;
3000 	struct tcphdr hdr;
3001 	int err;
3002 
3003 	/* We are not allowed to change tcphdr, make a local copy */
3004 	memcpy(&hdr, th, sizeof(hdr));
3005 	hdr.check = 0;
3006 
3007 	/* options aren't included in the hash */
3008 	sg_init_one(&sg, &hdr, sizeof(hdr));
3009 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3010 	return err;
3011 }
3012 EXPORT_SYMBOL(tcp_md5_hash_header);
3013 
3014 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3015 			  const struct sk_buff *skb, unsigned int header_len)
3016 {
3017 	struct scatterlist sg;
3018 	const struct tcphdr *tp = tcp_hdr(skb);
3019 	struct hash_desc *desc = &hp->md5_desc;
3020 	unsigned int i;
3021 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3022 					   skb_headlen(skb) - header_len : 0;
3023 	const struct skb_shared_info *shi = skb_shinfo(skb);
3024 	struct sk_buff *frag_iter;
3025 
3026 	sg_init_table(&sg, 1);
3027 
3028 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3029 	if (crypto_hash_update(desc, &sg, head_data_len))
3030 		return 1;
3031 
3032 	for (i = 0; i < shi->nr_frags; ++i) {
3033 		const struct skb_frag_struct *f = &shi->frags[i];
3034 		unsigned int offset = f->page_offset;
3035 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3036 
3037 		sg_set_page(&sg, page, skb_frag_size(f),
3038 			    offset_in_page(offset));
3039 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3040 			return 1;
3041 	}
3042 
3043 	skb_walk_frags(skb, frag_iter)
3044 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3045 			return 1;
3046 
3047 	return 0;
3048 }
3049 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3050 
3051 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3052 {
3053 	struct scatterlist sg;
3054 
3055 	sg_init_one(&sg, key->key, key->keylen);
3056 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3057 }
3058 EXPORT_SYMBOL(tcp_md5_hash_key);
3059 
3060 #endif
3061 
3062 void tcp_done(struct sock *sk)
3063 {
3064 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3065 
3066 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3067 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3068 
3069 	tcp_set_state(sk, TCP_CLOSE);
3070 	tcp_clear_xmit_timers(sk);
3071 	if (req)
3072 		reqsk_fastopen_remove(sk, req, false);
3073 
3074 	sk->sk_shutdown = SHUTDOWN_MASK;
3075 
3076 	if (!sock_flag(sk, SOCK_DEAD))
3077 		sk->sk_state_change(sk);
3078 	else
3079 		inet_csk_destroy_sock(sk);
3080 }
3081 EXPORT_SYMBOL_GPL(tcp_done);
3082 
3083 extern struct tcp_congestion_ops tcp_reno;
3084 
3085 static __initdata unsigned long thash_entries;
3086 static int __init set_thash_entries(char *str)
3087 {
3088 	ssize_t ret;
3089 
3090 	if (!str)
3091 		return 0;
3092 
3093 	ret = kstrtoul(str, 0, &thash_entries);
3094 	if (ret)
3095 		return 0;
3096 
3097 	return 1;
3098 }
3099 __setup("thash_entries=", set_thash_entries);
3100 
3101 static void __init tcp_init_mem(void)
3102 {
3103 	unsigned long limit = nr_free_buffer_pages() / 16;
3104 
3105 	limit = max(limit, 128UL);
3106 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3107 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3108 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3109 }
3110 
3111 void __init tcp_init(void)
3112 {
3113 	unsigned long limit;
3114 	int max_rshare, max_wshare, cnt;
3115 	unsigned int i;
3116 
3117 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3118 
3119 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3120 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3121 	tcp_hashinfo.bind_bucket_cachep =
3122 		kmem_cache_create("tcp_bind_bucket",
3123 				  sizeof(struct inet_bind_bucket), 0,
3124 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3125 
3126 	/* Size and allocate the main established and bind bucket
3127 	 * hash tables.
3128 	 *
3129 	 * The methodology is similar to that of the buffer cache.
3130 	 */
3131 	tcp_hashinfo.ehash =
3132 		alloc_large_system_hash("TCP established",
3133 					sizeof(struct inet_ehash_bucket),
3134 					thash_entries,
3135 					17, /* one slot per 128 KB of memory */
3136 					0,
3137 					NULL,
3138 					&tcp_hashinfo.ehash_mask,
3139 					0,
3140 					thash_entries ? 0 : 512 * 1024);
3141 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3142 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3143 
3144 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3145 		panic("TCP: failed to alloc ehash_locks");
3146 	tcp_hashinfo.bhash =
3147 		alloc_large_system_hash("TCP bind",
3148 					sizeof(struct inet_bind_hashbucket),
3149 					tcp_hashinfo.ehash_mask + 1,
3150 					17, /* one slot per 128 KB of memory */
3151 					0,
3152 					&tcp_hashinfo.bhash_size,
3153 					NULL,
3154 					0,
3155 					64 * 1024);
3156 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3157 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3158 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3159 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3160 	}
3161 
3162 
3163 	cnt = tcp_hashinfo.ehash_mask + 1;
3164 
3165 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3166 	sysctl_tcp_max_orphans = cnt / 2;
3167 	sysctl_max_syn_backlog = max(128, cnt / 256);
3168 
3169 	tcp_init_mem();
3170 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3171 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3172 	max_wshare = min(4UL*1024*1024, limit);
3173 	max_rshare = min(6UL*1024*1024, limit);
3174 
3175 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3176 	sysctl_tcp_wmem[1] = 16*1024;
3177 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3178 
3179 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3180 	sysctl_tcp_rmem[1] = 87380;
3181 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3182 
3183 	pr_info("Hash tables configured (established %u bind %u)\n",
3184 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3185 
3186 	tcp_metrics_init();
3187 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3188 	tcp_tasklet_init();
3189 }
3190