1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 } 726 /* It is possible TX completion already happened 727 * before we set TSQ_THROTTLED. 728 */ 729 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 730 return; 731 } 732 733 if (flags & MSG_MORE) 734 nonagle = TCP_NAGLE_CORK; 735 736 __tcp_push_pending_frames(sk, mss_now, nonagle); 737 } 738 739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 740 unsigned int offset, size_t len) 741 { 742 struct tcp_splice_state *tss = rd_desc->arg.data; 743 int ret; 744 745 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 746 min(rd_desc->count, len), tss->flags); 747 if (ret > 0) 748 rd_desc->count -= ret; 749 return ret; 750 } 751 752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 753 { 754 /* Store TCP splice context information in read_descriptor_t. */ 755 read_descriptor_t rd_desc = { 756 .arg.data = tss, 757 .count = tss->len, 758 }; 759 760 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 761 } 762 763 /** 764 * tcp_splice_read - splice data from TCP socket to a pipe 765 * @sock: socket to splice from 766 * @ppos: position (not valid) 767 * @pipe: pipe to splice to 768 * @len: number of bytes to splice 769 * @flags: splice modifier flags 770 * 771 * Description: 772 * Will read pages from given socket and fill them into a pipe. 773 * 774 **/ 775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 776 struct pipe_inode_info *pipe, size_t len, 777 unsigned int flags) 778 { 779 struct sock *sk = sock->sk; 780 struct tcp_splice_state tss = { 781 .pipe = pipe, 782 .len = len, 783 .flags = flags, 784 }; 785 long timeo; 786 ssize_t spliced; 787 int ret; 788 789 sock_rps_record_flow(sk); 790 /* 791 * We can't seek on a socket input 792 */ 793 if (unlikely(*ppos)) 794 return -ESPIPE; 795 796 ret = spliced = 0; 797 798 lock_sock(sk); 799 800 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 801 while (tss.len) { 802 ret = __tcp_splice_read(sk, &tss); 803 if (ret < 0) 804 break; 805 else if (!ret) { 806 if (spliced) 807 break; 808 if (sock_flag(sk, SOCK_DONE)) 809 break; 810 if (sk->sk_err) { 811 ret = sock_error(sk); 812 break; 813 } 814 if (sk->sk_shutdown & RCV_SHUTDOWN) 815 break; 816 if (sk->sk_state == TCP_CLOSE) { 817 /* 818 * This occurs when user tries to read 819 * from never connected socket. 820 */ 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 ret = sk_wait_data(sk, &timeo, NULL); 835 if (ret < 0) 836 break; 837 if (signal_pending(current)) { 838 ret = sock_intr_errno(timeo); 839 break; 840 } 841 continue; 842 } 843 tss.len -= ret; 844 spliced += ret; 845 846 if (!tss.len || !timeo) 847 break; 848 release_sock(sk); 849 lock_sock(sk); 850 851 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 852 (sk->sk_shutdown & RCV_SHUTDOWN) || 853 signal_pending(current)) 854 break; 855 } 856 857 release_sock(sk); 858 859 if (spliced) 860 return spliced; 861 862 return ret; 863 } 864 EXPORT_SYMBOL(tcp_splice_read); 865 866 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 867 bool force_schedule) 868 { 869 struct sk_buff *skb; 870 871 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 872 if (likely(skb)) { 873 bool mem_scheduled; 874 875 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 876 if (force_schedule) { 877 mem_scheduled = true; 878 sk_forced_mem_schedule(sk, skb->truesize); 879 } else { 880 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 881 } 882 if (likely(mem_scheduled)) { 883 skb_reserve(skb, MAX_TCP_HEADER); 884 skb->ip_summed = CHECKSUM_PARTIAL; 885 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 886 return skb; 887 } 888 __kfree_skb(skb); 889 } else { 890 sk->sk_prot->enter_memory_pressure(sk); 891 sk_stream_moderate_sndbuf(sk); 892 } 893 return NULL; 894 } 895 896 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 897 int large_allowed) 898 { 899 struct tcp_sock *tp = tcp_sk(sk); 900 u32 new_size_goal, size_goal; 901 902 if (!large_allowed) 903 return mss_now; 904 905 /* Note : tcp_tso_autosize() will eventually split this later */ 906 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 907 908 /* We try hard to avoid divides here */ 909 size_goal = tp->gso_segs * mss_now; 910 if (unlikely(new_size_goal < size_goal || 911 new_size_goal >= size_goal + mss_now)) { 912 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 913 sk->sk_gso_max_segs); 914 size_goal = tp->gso_segs * mss_now; 915 } 916 917 return max(size_goal, mss_now); 918 } 919 920 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 921 { 922 int mss_now; 923 924 mss_now = tcp_current_mss(sk); 925 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 926 927 return mss_now; 928 } 929 930 /* In some cases, sendmsg() could have added an skb to the write queue, 931 * but failed adding payload on it. We need to remove it to consume less 932 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 933 * epoll() users. Another reason is that tcp_write_xmit() does not like 934 * finding an empty skb in the write queue. 935 */ 936 void tcp_remove_empty_skb(struct sock *sk) 937 { 938 struct sk_buff *skb = tcp_write_queue_tail(sk); 939 940 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 941 tcp_unlink_write_queue(skb, sk); 942 if (tcp_write_queue_empty(sk)) 943 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 944 tcp_wmem_free_skb(sk, skb); 945 } 946 } 947 948 /* skb changing from pure zc to mixed, must charge zc */ 949 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 950 { 951 if (unlikely(skb_zcopy_pure(skb))) { 952 u32 extra = skb->truesize - 953 SKB_TRUESIZE(skb_end_offset(skb)); 954 955 if (!sk_wmem_schedule(sk, extra)) 956 return -ENOMEM; 957 958 sk_mem_charge(sk, extra); 959 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 960 } 961 return 0; 962 } 963 964 965 int tcp_wmem_schedule(struct sock *sk, int copy) 966 { 967 int left; 968 969 if (likely(sk_wmem_schedule(sk, copy))) 970 return copy; 971 972 /* We could be in trouble if we have nothing queued. 973 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 974 * to guarantee some progress. 975 */ 976 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 977 if (left > 0) 978 sk_forced_mem_schedule(sk, min(left, copy)); 979 return min(copy, sk->sk_forward_alloc); 980 } 981 982 void tcp_free_fastopen_req(struct tcp_sock *tp) 983 { 984 if (tp->fastopen_req) { 985 kfree(tp->fastopen_req); 986 tp->fastopen_req = NULL; 987 } 988 } 989 990 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 991 size_t size, struct ubuf_info *uarg) 992 { 993 struct tcp_sock *tp = tcp_sk(sk); 994 struct inet_sock *inet = inet_sk(sk); 995 struct sockaddr *uaddr = msg->msg_name; 996 int err, flags; 997 998 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 999 TFO_CLIENT_ENABLE) || 1000 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1001 uaddr->sa_family == AF_UNSPEC)) 1002 return -EOPNOTSUPP; 1003 if (tp->fastopen_req) 1004 return -EALREADY; /* Another Fast Open is in progress */ 1005 1006 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1007 sk->sk_allocation); 1008 if (unlikely(!tp->fastopen_req)) 1009 return -ENOBUFS; 1010 tp->fastopen_req->data = msg; 1011 tp->fastopen_req->size = size; 1012 tp->fastopen_req->uarg = uarg; 1013 1014 if (inet_test_bit(DEFER_CONNECT, sk)) { 1015 err = tcp_connect(sk); 1016 /* Same failure procedure as in tcp_v4/6_connect */ 1017 if (err) { 1018 tcp_set_state(sk, TCP_CLOSE); 1019 inet->inet_dport = 0; 1020 sk->sk_route_caps = 0; 1021 } 1022 } 1023 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1024 err = __inet_stream_connect(sk->sk_socket, uaddr, 1025 msg->msg_namelen, flags, 1); 1026 /* fastopen_req could already be freed in __inet_stream_connect 1027 * if the connection times out or gets rst 1028 */ 1029 if (tp->fastopen_req) { 1030 *copied = tp->fastopen_req->copied; 1031 tcp_free_fastopen_req(tp); 1032 inet_clear_bit(DEFER_CONNECT, sk); 1033 } 1034 return err; 1035 } 1036 1037 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1038 { 1039 struct tcp_sock *tp = tcp_sk(sk); 1040 struct ubuf_info *uarg = NULL; 1041 struct sk_buff *skb; 1042 struct sockcm_cookie sockc; 1043 int flags, err, copied = 0; 1044 int mss_now = 0, size_goal, copied_syn = 0; 1045 int process_backlog = 0; 1046 int zc = 0; 1047 long timeo; 1048 1049 flags = msg->msg_flags; 1050 1051 if ((flags & MSG_ZEROCOPY) && size) { 1052 if (msg->msg_ubuf) { 1053 uarg = msg->msg_ubuf; 1054 if (sk->sk_route_caps & NETIF_F_SG) 1055 zc = MSG_ZEROCOPY; 1056 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1057 skb = tcp_write_queue_tail(sk); 1058 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1059 if (!uarg) { 1060 err = -ENOBUFS; 1061 goto out_err; 1062 } 1063 if (sk->sk_route_caps & NETIF_F_SG) 1064 zc = MSG_ZEROCOPY; 1065 else 1066 uarg_to_msgzc(uarg)->zerocopy = 0; 1067 } 1068 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1069 if (sk->sk_route_caps & NETIF_F_SG) 1070 zc = MSG_SPLICE_PAGES; 1071 } 1072 1073 if (unlikely(flags & MSG_FASTOPEN || 1074 inet_test_bit(DEFER_CONNECT, sk)) && 1075 !tp->repair) { 1076 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1077 if (err == -EINPROGRESS && copied_syn > 0) 1078 goto out; 1079 else if (err) 1080 goto out_err; 1081 } 1082 1083 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1084 1085 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1086 1087 /* Wait for a connection to finish. One exception is TCP Fast Open 1088 * (passive side) where data is allowed to be sent before a connection 1089 * is fully established. 1090 */ 1091 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1092 !tcp_passive_fastopen(sk)) { 1093 err = sk_stream_wait_connect(sk, &timeo); 1094 if (err != 0) 1095 goto do_error; 1096 } 1097 1098 if (unlikely(tp->repair)) { 1099 if (tp->repair_queue == TCP_RECV_QUEUE) { 1100 copied = tcp_send_rcvq(sk, msg, size); 1101 goto out_nopush; 1102 } 1103 1104 err = -EINVAL; 1105 if (tp->repair_queue == TCP_NO_QUEUE) 1106 goto out_err; 1107 1108 /* 'common' sending to sendq */ 1109 } 1110 1111 sockcm_init(&sockc, sk); 1112 if (msg->msg_controllen) { 1113 err = sock_cmsg_send(sk, msg, &sockc); 1114 if (unlikely(err)) { 1115 err = -EINVAL; 1116 goto out_err; 1117 } 1118 } 1119 1120 /* This should be in poll */ 1121 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1122 1123 /* Ok commence sending. */ 1124 copied = 0; 1125 1126 restart: 1127 mss_now = tcp_send_mss(sk, &size_goal, flags); 1128 1129 err = -EPIPE; 1130 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1131 goto do_error; 1132 1133 while (msg_data_left(msg)) { 1134 ssize_t copy = 0; 1135 1136 skb = tcp_write_queue_tail(sk); 1137 if (skb) 1138 copy = size_goal - skb->len; 1139 1140 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1141 bool first_skb; 1142 1143 new_segment: 1144 if (!sk_stream_memory_free(sk)) 1145 goto wait_for_space; 1146 1147 if (unlikely(process_backlog >= 16)) { 1148 process_backlog = 0; 1149 if (sk_flush_backlog(sk)) 1150 goto restart; 1151 } 1152 first_skb = tcp_rtx_and_write_queues_empty(sk); 1153 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1154 first_skb); 1155 if (!skb) 1156 goto wait_for_space; 1157 1158 process_backlog++; 1159 1160 tcp_skb_entail(sk, skb); 1161 copy = size_goal; 1162 1163 /* All packets are restored as if they have 1164 * already been sent. skb_mstamp_ns isn't set to 1165 * avoid wrong rtt estimation. 1166 */ 1167 if (tp->repair) 1168 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1169 } 1170 1171 /* Try to append data to the end of skb. */ 1172 if (copy > msg_data_left(msg)) 1173 copy = msg_data_left(msg); 1174 1175 if (zc == 0) { 1176 bool merge = true; 1177 int i = skb_shinfo(skb)->nr_frags; 1178 struct page_frag *pfrag = sk_page_frag(sk); 1179 1180 if (!sk_page_frag_refill(sk, pfrag)) 1181 goto wait_for_space; 1182 1183 if (!skb_can_coalesce(skb, i, pfrag->page, 1184 pfrag->offset)) { 1185 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1186 tcp_mark_push(tp, skb); 1187 goto new_segment; 1188 } 1189 merge = false; 1190 } 1191 1192 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1193 1194 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1195 if (tcp_downgrade_zcopy_pure(sk, skb)) 1196 goto wait_for_space; 1197 skb_zcopy_downgrade_managed(skb); 1198 } 1199 1200 copy = tcp_wmem_schedule(sk, copy); 1201 if (!copy) 1202 goto wait_for_space; 1203 1204 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1205 pfrag->page, 1206 pfrag->offset, 1207 copy); 1208 if (err) 1209 goto do_error; 1210 1211 /* Update the skb. */ 1212 if (merge) { 1213 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1214 } else { 1215 skb_fill_page_desc(skb, i, pfrag->page, 1216 pfrag->offset, copy); 1217 page_ref_inc(pfrag->page); 1218 } 1219 pfrag->offset += copy; 1220 } else if (zc == MSG_ZEROCOPY) { 1221 /* First append to a fragless skb builds initial 1222 * pure zerocopy skb 1223 */ 1224 if (!skb->len) 1225 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1226 1227 if (!skb_zcopy_pure(skb)) { 1228 copy = tcp_wmem_schedule(sk, copy); 1229 if (!copy) 1230 goto wait_for_space; 1231 } 1232 1233 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1234 if (err == -EMSGSIZE || err == -EEXIST) { 1235 tcp_mark_push(tp, skb); 1236 goto new_segment; 1237 } 1238 if (err < 0) 1239 goto do_error; 1240 copy = err; 1241 } else if (zc == MSG_SPLICE_PAGES) { 1242 /* Splice in data if we can; copy if we can't. */ 1243 if (tcp_downgrade_zcopy_pure(sk, skb)) 1244 goto wait_for_space; 1245 copy = tcp_wmem_schedule(sk, copy); 1246 if (!copy) 1247 goto wait_for_space; 1248 1249 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1250 sk->sk_allocation); 1251 if (err < 0) { 1252 if (err == -EMSGSIZE) { 1253 tcp_mark_push(tp, skb); 1254 goto new_segment; 1255 } 1256 goto do_error; 1257 } 1258 copy = err; 1259 1260 if (!(flags & MSG_NO_SHARED_FRAGS)) 1261 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1262 1263 sk_wmem_queued_add(sk, copy); 1264 sk_mem_charge(sk, copy); 1265 } 1266 1267 if (!copied) 1268 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1269 1270 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1271 TCP_SKB_CB(skb)->end_seq += copy; 1272 tcp_skb_pcount_set(skb, 0); 1273 1274 copied += copy; 1275 if (!msg_data_left(msg)) { 1276 if (unlikely(flags & MSG_EOR)) 1277 TCP_SKB_CB(skb)->eor = 1; 1278 goto out; 1279 } 1280 1281 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1282 continue; 1283 1284 if (forced_push(tp)) { 1285 tcp_mark_push(tp, skb); 1286 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1287 } else if (skb == tcp_send_head(sk)) 1288 tcp_push_one(sk, mss_now); 1289 continue; 1290 1291 wait_for_space: 1292 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1293 tcp_remove_empty_skb(sk); 1294 if (copied) 1295 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1296 TCP_NAGLE_PUSH, size_goal); 1297 1298 err = sk_stream_wait_memory(sk, &timeo); 1299 if (err != 0) 1300 goto do_error; 1301 1302 mss_now = tcp_send_mss(sk, &size_goal, flags); 1303 } 1304 1305 out: 1306 if (copied) { 1307 tcp_tx_timestamp(sk, sockc.tsflags); 1308 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1309 } 1310 out_nopush: 1311 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1312 if (uarg && !msg->msg_ubuf) 1313 net_zcopy_put(uarg); 1314 return copied + copied_syn; 1315 1316 do_error: 1317 tcp_remove_empty_skb(sk); 1318 1319 if (copied + copied_syn) 1320 goto out; 1321 out_err: 1322 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1323 if (uarg && !msg->msg_ubuf) 1324 net_zcopy_put_abort(uarg, true); 1325 err = sk_stream_error(sk, flags, err); 1326 /* make sure we wake any epoll edge trigger waiter */ 1327 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1328 sk->sk_write_space(sk); 1329 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1330 } 1331 return err; 1332 } 1333 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1334 1335 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1336 { 1337 int ret; 1338 1339 lock_sock(sk); 1340 ret = tcp_sendmsg_locked(sk, msg, size); 1341 release_sock(sk); 1342 1343 return ret; 1344 } 1345 EXPORT_SYMBOL(tcp_sendmsg); 1346 1347 void tcp_splice_eof(struct socket *sock) 1348 { 1349 struct sock *sk = sock->sk; 1350 struct tcp_sock *tp = tcp_sk(sk); 1351 int mss_now, size_goal; 1352 1353 if (!tcp_write_queue_tail(sk)) 1354 return; 1355 1356 lock_sock(sk); 1357 mss_now = tcp_send_mss(sk, &size_goal, 0); 1358 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1359 release_sock(sk); 1360 } 1361 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1362 1363 /* 1364 * Handle reading urgent data. BSD has very simple semantics for 1365 * this, no blocking and very strange errors 8) 1366 */ 1367 1368 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1369 { 1370 struct tcp_sock *tp = tcp_sk(sk); 1371 1372 /* No URG data to read. */ 1373 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1374 tp->urg_data == TCP_URG_READ) 1375 return -EINVAL; /* Yes this is right ! */ 1376 1377 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1378 return -ENOTCONN; 1379 1380 if (tp->urg_data & TCP_URG_VALID) { 1381 int err = 0; 1382 char c = tp->urg_data; 1383 1384 if (!(flags & MSG_PEEK)) 1385 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1386 1387 /* Read urgent data. */ 1388 msg->msg_flags |= MSG_OOB; 1389 1390 if (len > 0) { 1391 if (!(flags & MSG_TRUNC)) 1392 err = memcpy_to_msg(msg, &c, 1); 1393 len = 1; 1394 } else 1395 msg->msg_flags |= MSG_TRUNC; 1396 1397 return err ? -EFAULT : len; 1398 } 1399 1400 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1401 return 0; 1402 1403 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1404 * the available implementations agree in this case: 1405 * this call should never block, independent of the 1406 * blocking state of the socket. 1407 * Mike <pall@rz.uni-karlsruhe.de> 1408 */ 1409 return -EAGAIN; 1410 } 1411 1412 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1413 { 1414 struct sk_buff *skb; 1415 int copied = 0, err = 0; 1416 1417 /* XXX -- need to support SO_PEEK_OFF */ 1418 1419 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1420 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1421 if (err) 1422 return err; 1423 copied += skb->len; 1424 } 1425 1426 skb_queue_walk(&sk->sk_write_queue, skb) { 1427 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1428 if (err) 1429 break; 1430 1431 copied += skb->len; 1432 } 1433 1434 return err ?: copied; 1435 } 1436 1437 /* Clean up the receive buffer for full frames taken by the user, 1438 * then send an ACK if necessary. COPIED is the number of bytes 1439 * tcp_recvmsg has given to the user so far, it speeds up the 1440 * calculation of whether or not we must ACK for the sake of 1441 * a window update. 1442 */ 1443 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1444 { 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 bool time_to_ack = false; 1447 1448 if (inet_csk_ack_scheduled(sk)) { 1449 const struct inet_connection_sock *icsk = inet_csk(sk); 1450 1451 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1452 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1453 /* 1454 * If this read emptied read buffer, we send ACK, if 1455 * connection is not bidirectional, user drained 1456 * receive buffer and there was a small segment 1457 * in queue. 1458 */ 1459 (copied > 0 && 1460 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1462 !inet_csk_in_pingpong_mode(sk))) && 1463 !atomic_read(&sk->sk_rmem_alloc))) 1464 time_to_ack = true; 1465 } 1466 1467 /* We send an ACK if we can now advertise a non-zero window 1468 * which has been raised "significantly". 1469 * 1470 * Even if window raised up to infinity, do not send window open ACK 1471 * in states, where we will not receive more. It is useless. 1472 */ 1473 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1474 __u32 rcv_window_now = tcp_receive_window(tp); 1475 1476 /* Optimize, __tcp_select_window() is not cheap. */ 1477 if (2*rcv_window_now <= tp->window_clamp) { 1478 __u32 new_window = __tcp_select_window(sk); 1479 1480 /* Send ACK now, if this read freed lots of space 1481 * in our buffer. Certainly, new_window is new window. 1482 * We can advertise it now, if it is not less than current one. 1483 * "Lots" means "at least twice" here. 1484 */ 1485 if (new_window && new_window >= 2 * rcv_window_now) 1486 time_to_ack = true; 1487 } 1488 } 1489 if (time_to_ack) 1490 tcp_send_ack(sk); 1491 } 1492 1493 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1494 { 1495 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 1498 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1499 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1500 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1501 __tcp_cleanup_rbuf(sk, copied); 1502 } 1503 1504 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1505 { 1506 __skb_unlink(skb, &sk->sk_receive_queue); 1507 if (likely(skb->destructor == sock_rfree)) { 1508 sock_rfree(skb); 1509 skb->destructor = NULL; 1510 skb->sk = NULL; 1511 return skb_attempt_defer_free(skb); 1512 } 1513 __kfree_skb(skb); 1514 } 1515 1516 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1517 { 1518 struct sk_buff *skb; 1519 u32 offset; 1520 1521 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1522 offset = seq - TCP_SKB_CB(skb)->seq; 1523 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1524 pr_err_once("%s: found a SYN, please report !\n", __func__); 1525 offset--; 1526 } 1527 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1528 *off = offset; 1529 return skb; 1530 } 1531 /* This looks weird, but this can happen if TCP collapsing 1532 * splitted a fat GRO packet, while we released socket lock 1533 * in skb_splice_bits() 1534 */ 1535 tcp_eat_recv_skb(sk, skb); 1536 } 1537 return NULL; 1538 } 1539 EXPORT_SYMBOL(tcp_recv_skb); 1540 1541 /* 1542 * This routine provides an alternative to tcp_recvmsg() for routines 1543 * that would like to handle copying from skbuffs directly in 'sendfile' 1544 * fashion. 1545 * Note: 1546 * - It is assumed that the socket was locked by the caller. 1547 * - The routine does not block. 1548 * - At present, there is no support for reading OOB data 1549 * or for 'peeking' the socket using this routine 1550 * (although both would be easy to implement). 1551 */ 1552 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1553 sk_read_actor_t recv_actor) 1554 { 1555 struct sk_buff *skb; 1556 struct tcp_sock *tp = tcp_sk(sk); 1557 u32 seq = tp->copied_seq; 1558 u32 offset; 1559 int copied = 0; 1560 1561 if (sk->sk_state == TCP_LISTEN) 1562 return -ENOTCONN; 1563 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1564 if (offset < skb->len) { 1565 int used; 1566 size_t len; 1567 1568 len = skb->len - offset; 1569 /* Stop reading if we hit a patch of urgent data */ 1570 if (unlikely(tp->urg_data)) { 1571 u32 urg_offset = tp->urg_seq - seq; 1572 if (urg_offset < len) 1573 len = urg_offset; 1574 if (!len) 1575 break; 1576 } 1577 used = recv_actor(desc, skb, offset, len); 1578 if (used <= 0) { 1579 if (!copied) 1580 copied = used; 1581 break; 1582 } 1583 if (WARN_ON_ONCE(used > len)) 1584 used = len; 1585 seq += used; 1586 copied += used; 1587 offset += used; 1588 1589 /* If recv_actor drops the lock (e.g. TCP splice 1590 * receive) the skb pointer might be invalid when 1591 * getting here: tcp_collapse might have deleted it 1592 * while aggregating skbs from the socket queue. 1593 */ 1594 skb = tcp_recv_skb(sk, seq - 1, &offset); 1595 if (!skb) 1596 break; 1597 /* TCP coalescing might have appended data to the skb. 1598 * Try to splice more frags 1599 */ 1600 if (offset + 1 != skb->len) 1601 continue; 1602 } 1603 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1604 tcp_eat_recv_skb(sk, skb); 1605 ++seq; 1606 break; 1607 } 1608 tcp_eat_recv_skb(sk, skb); 1609 if (!desc->count) 1610 break; 1611 WRITE_ONCE(tp->copied_seq, seq); 1612 } 1613 WRITE_ONCE(tp->copied_seq, seq); 1614 1615 tcp_rcv_space_adjust(sk); 1616 1617 /* Clean up data we have read: This will do ACK frames. */ 1618 if (copied > 0) { 1619 tcp_recv_skb(sk, seq, &offset); 1620 tcp_cleanup_rbuf(sk, copied); 1621 } 1622 return copied; 1623 } 1624 EXPORT_SYMBOL(tcp_read_sock); 1625 1626 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1627 { 1628 struct sk_buff *skb; 1629 int copied = 0; 1630 1631 if (sk->sk_state == TCP_LISTEN) 1632 return -ENOTCONN; 1633 1634 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1635 u8 tcp_flags; 1636 int used; 1637 1638 __skb_unlink(skb, &sk->sk_receive_queue); 1639 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1640 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1641 used = recv_actor(sk, skb); 1642 if (used < 0) { 1643 if (!copied) 1644 copied = used; 1645 break; 1646 } 1647 copied += used; 1648 1649 if (tcp_flags & TCPHDR_FIN) 1650 break; 1651 } 1652 return copied; 1653 } 1654 EXPORT_SYMBOL(tcp_read_skb); 1655 1656 void tcp_read_done(struct sock *sk, size_t len) 1657 { 1658 struct tcp_sock *tp = tcp_sk(sk); 1659 u32 seq = tp->copied_seq; 1660 struct sk_buff *skb; 1661 size_t left; 1662 u32 offset; 1663 1664 if (sk->sk_state == TCP_LISTEN) 1665 return; 1666 1667 left = len; 1668 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1669 int used; 1670 1671 used = min_t(size_t, skb->len - offset, left); 1672 seq += used; 1673 left -= used; 1674 1675 if (skb->len > offset + used) 1676 break; 1677 1678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1679 tcp_eat_recv_skb(sk, skb); 1680 ++seq; 1681 break; 1682 } 1683 tcp_eat_recv_skb(sk, skb); 1684 } 1685 WRITE_ONCE(tp->copied_seq, seq); 1686 1687 tcp_rcv_space_adjust(sk); 1688 1689 /* Clean up data we have read: This will do ACK frames. */ 1690 if (left != len) 1691 tcp_cleanup_rbuf(sk, len - left); 1692 } 1693 EXPORT_SYMBOL(tcp_read_done); 1694 1695 int tcp_peek_len(struct socket *sock) 1696 { 1697 return tcp_inq(sock->sk); 1698 } 1699 EXPORT_SYMBOL(tcp_peek_len); 1700 1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1702 int tcp_set_rcvlowat(struct sock *sk, int val) 1703 { 1704 int space, cap; 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 cap = sk->sk_rcvbuf >> 1; 1708 else 1709 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1710 val = min(val, cap); 1711 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1712 1713 /* Check if we need to signal EPOLLIN right now */ 1714 tcp_data_ready(sk); 1715 1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1717 return 0; 1718 1719 space = tcp_space_from_win(sk, val); 1720 if (space > sk->sk_rcvbuf) { 1721 WRITE_ONCE(sk->sk_rcvbuf, space); 1722 tcp_sk(sk)->window_clamp = val; 1723 } 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(tcp_set_rcvlowat); 1727 1728 void tcp_update_recv_tstamps(struct sk_buff *skb, 1729 struct scm_timestamping_internal *tss) 1730 { 1731 if (skb->tstamp) 1732 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1733 else 1734 tss->ts[0] = (struct timespec64) {0}; 1735 1736 if (skb_hwtstamps(skb)->hwtstamp) 1737 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1738 else 1739 tss->ts[2] = (struct timespec64) {0}; 1740 } 1741 1742 #ifdef CONFIG_MMU 1743 static const struct vm_operations_struct tcp_vm_ops = { 1744 }; 1745 1746 int tcp_mmap(struct file *file, struct socket *sock, 1747 struct vm_area_struct *vma) 1748 { 1749 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1750 return -EPERM; 1751 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1752 1753 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1754 vm_flags_set(vma, VM_MIXEDMAP); 1755 1756 vma->vm_ops = &tcp_vm_ops; 1757 return 0; 1758 } 1759 EXPORT_SYMBOL(tcp_mmap); 1760 1761 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1762 u32 *offset_frag) 1763 { 1764 skb_frag_t *frag; 1765 1766 if (unlikely(offset_skb >= skb->len)) 1767 return NULL; 1768 1769 offset_skb -= skb_headlen(skb); 1770 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1771 return NULL; 1772 1773 frag = skb_shinfo(skb)->frags; 1774 while (offset_skb) { 1775 if (skb_frag_size(frag) > offset_skb) { 1776 *offset_frag = offset_skb; 1777 return frag; 1778 } 1779 offset_skb -= skb_frag_size(frag); 1780 ++frag; 1781 } 1782 *offset_frag = 0; 1783 return frag; 1784 } 1785 1786 static bool can_map_frag(const skb_frag_t *frag) 1787 { 1788 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1789 } 1790 1791 static int find_next_mappable_frag(const skb_frag_t *frag, 1792 int remaining_in_skb) 1793 { 1794 int offset = 0; 1795 1796 if (likely(can_map_frag(frag))) 1797 return 0; 1798 1799 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1800 offset += skb_frag_size(frag); 1801 ++frag; 1802 } 1803 return offset; 1804 } 1805 1806 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1807 struct tcp_zerocopy_receive *zc, 1808 struct sk_buff *skb, u32 offset) 1809 { 1810 u32 frag_offset, partial_frag_remainder = 0; 1811 int mappable_offset; 1812 skb_frag_t *frag; 1813 1814 /* worst case: skip to next skb. try to improve on this case below */ 1815 zc->recv_skip_hint = skb->len - offset; 1816 1817 /* Find the frag containing this offset (and how far into that frag) */ 1818 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1819 if (!frag) 1820 return; 1821 1822 if (frag_offset) { 1823 struct skb_shared_info *info = skb_shinfo(skb); 1824 1825 /* We read part of the last frag, must recvmsg() rest of skb. */ 1826 if (frag == &info->frags[info->nr_frags - 1]) 1827 return; 1828 1829 /* Else, we must at least read the remainder in this frag. */ 1830 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1831 zc->recv_skip_hint -= partial_frag_remainder; 1832 ++frag; 1833 } 1834 1835 /* partial_frag_remainder: If part way through a frag, must read rest. 1836 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1837 * in partial_frag_remainder. 1838 */ 1839 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1840 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1841 } 1842 1843 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1844 int flags, struct scm_timestamping_internal *tss, 1845 int *cmsg_flags); 1846 static int receive_fallback_to_copy(struct sock *sk, 1847 struct tcp_zerocopy_receive *zc, int inq, 1848 struct scm_timestamping_internal *tss) 1849 { 1850 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1851 struct msghdr msg = {}; 1852 struct iovec iov; 1853 int err; 1854 1855 zc->length = 0; 1856 zc->recv_skip_hint = 0; 1857 1858 if (copy_address != zc->copybuf_address) 1859 return -EINVAL; 1860 1861 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1862 inq, &iov, &msg.msg_iter); 1863 if (err) 1864 return err; 1865 1866 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1867 tss, &zc->msg_flags); 1868 if (err < 0) 1869 return err; 1870 1871 zc->copybuf_len = err; 1872 if (likely(zc->copybuf_len)) { 1873 struct sk_buff *skb; 1874 u32 offset; 1875 1876 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1877 if (skb) 1878 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1879 } 1880 return 0; 1881 } 1882 1883 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1884 struct sk_buff *skb, u32 copylen, 1885 u32 *offset, u32 *seq) 1886 { 1887 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1888 struct msghdr msg = {}; 1889 struct iovec iov; 1890 int err; 1891 1892 if (copy_address != zc->copybuf_address) 1893 return -EINVAL; 1894 1895 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1896 copylen, &iov, &msg.msg_iter); 1897 if (err) 1898 return err; 1899 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1900 if (err) 1901 return err; 1902 zc->recv_skip_hint -= copylen; 1903 *offset += copylen; 1904 *seq += copylen; 1905 return (__s32)copylen; 1906 } 1907 1908 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1909 struct sock *sk, 1910 struct sk_buff *skb, 1911 u32 *seq, 1912 s32 copybuf_len, 1913 struct scm_timestamping_internal *tss) 1914 { 1915 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1916 1917 if (!copylen) 1918 return 0; 1919 /* skb is null if inq < PAGE_SIZE. */ 1920 if (skb) { 1921 offset = *seq - TCP_SKB_CB(skb)->seq; 1922 } else { 1923 skb = tcp_recv_skb(sk, *seq, &offset); 1924 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1925 tcp_update_recv_tstamps(skb, tss); 1926 zc->msg_flags |= TCP_CMSG_TS; 1927 } 1928 } 1929 1930 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1931 seq); 1932 return zc->copybuf_len < 0 ? 0 : copylen; 1933 } 1934 1935 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1936 struct page **pending_pages, 1937 unsigned long pages_remaining, 1938 unsigned long *address, 1939 u32 *length, 1940 u32 *seq, 1941 struct tcp_zerocopy_receive *zc, 1942 u32 total_bytes_to_map, 1943 int err) 1944 { 1945 /* At least one page did not map. Try zapping if we skipped earlier. */ 1946 if (err == -EBUSY && 1947 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1948 u32 maybe_zap_len; 1949 1950 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1951 *length + /* Mapped or pending */ 1952 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1953 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1954 err = 0; 1955 } 1956 1957 if (!err) { 1958 unsigned long leftover_pages = pages_remaining; 1959 int bytes_mapped; 1960 1961 /* We called zap_page_range_single, try to reinsert. */ 1962 err = vm_insert_pages(vma, *address, 1963 pending_pages, 1964 &pages_remaining); 1965 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1966 *seq += bytes_mapped; 1967 *address += bytes_mapped; 1968 } 1969 if (err) { 1970 /* Either we were unable to zap, OR we zapped, retried an 1971 * insert, and still had an issue. Either ways, pages_remaining 1972 * is the number of pages we were unable to map, and we unroll 1973 * some state we speculatively touched before. 1974 */ 1975 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1976 1977 *length -= bytes_not_mapped; 1978 zc->recv_skip_hint += bytes_not_mapped; 1979 } 1980 return err; 1981 } 1982 1983 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1984 struct page **pages, 1985 unsigned int pages_to_map, 1986 unsigned long *address, 1987 u32 *length, 1988 u32 *seq, 1989 struct tcp_zerocopy_receive *zc, 1990 u32 total_bytes_to_map) 1991 { 1992 unsigned long pages_remaining = pages_to_map; 1993 unsigned int pages_mapped; 1994 unsigned int bytes_mapped; 1995 int err; 1996 1997 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1998 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1999 bytes_mapped = PAGE_SIZE * pages_mapped; 2000 /* Even if vm_insert_pages fails, it may have partially succeeded in 2001 * mapping (some but not all of the pages). 2002 */ 2003 *seq += bytes_mapped; 2004 *address += bytes_mapped; 2005 2006 if (likely(!err)) 2007 return 0; 2008 2009 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2010 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2011 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2012 err); 2013 } 2014 2015 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2016 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2017 struct tcp_zerocopy_receive *zc, 2018 struct scm_timestamping_internal *tss) 2019 { 2020 unsigned long msg_control_addr; 2021 struct msghdr cmsg_dummy; 2022 2023 msg_control_addr = (unsigned long)zc->msg_control; 2024 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2025 cmsg_dummy.msg_controllen = 2026 (__kernel_size_t)zc->msg_controllen; 2027 cmsg_dummy.msg_flags = in_compat_syscall() 2028 ? MSG_CMSG_COMPAT : 0; 2029 cmsg_dummy.msg_control_is_user = true; 2030 zc->msg_flags = 0; 2031 if (zc->msg_control == msg_control_addr && 2032 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2033 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2034 zc->msg_control = (__u64) 2035 ((uintptr_t)cmsg_dummy.msg_control_user); 2036 zc->msg_controllen = 2037 (__u64)cmsg_dummy.msg_controllen; 2038 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2039 } 2040 } 2041 2042 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2043 unsigned long address, 2044 bool *mmap_locked) 2045 { 2046 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2047 2048 if (vma) { 2049 if (vma->vm_ops != &tcp_vm_ops) { 2050 vma_end_read(vma); 2051 return NULL; 2052 } 2053 *mmap_locked = false; 2054 return vma; 2055 } 2056 2057 mmap_read_lock(mm); 2058 vma = vma_lookup(mm, address); 2059 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2060 mmap_read_unlock(mm); 2061 return NULL; 2062 } 2063 *mmap_locked = true; 2064 return vma; 2065 } 2066 2067 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2068 static int tcp_zerocopy_receive(struct sock *sk, 2069 struct tcp_zerocopy_receive *zc, 2070 struct scm_timestamping_internal *tss) 2071 { 2072 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2073 unsigned long address = (unsigned long)zc->address; 2074 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2075 s32 copybuf_len = zc->copybuf_len; 2076 struct tcp_sock *tp = tcp_sk(sk); 2077 const skb_frag_t *frags = NULL; 2078 unsigned int pages_to_map = 0; 2079 struct vm_area_struct *vma; 2080 struct sk_buff *skb = NULL; 2081 u32 seq = tp->copied_seq; 2082 u32 total_bytes_to_map; 2083 int inq = tcp_inq(sk); 2084 bool mmap_locked; 2085 int ret; 2086 2087 zc->copybuf_len = 0; 2088 zc->msg_flags = 0; 2089 2090 if (address & (PAGE_SIZE - 1) || address != zc->address) 2091 return -EINVAL; 2092 2093 if (sk->sk_state == TCP_LISTEN) 2094 return -ENOTCONN; 2095 2096 sock_rps_record_flow(sk); 2097 2098 if (inq && inq <= copybuf_len) 2099 return receive_fallback_to_copy(sk, zc, inq, tss); 2100 2101 if (inq < PAGE_SIZE) { 2102 zc->length = 0; 2103 zc->recv_skip_hint = inq; 2104 if (!inq && sock_flag(sk, SOCK_DONE)) 2105 return -EIO; 2106 return 0; 2107 } 2108 2109 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2110 if (!vma) 2111 return -EINVAL; 2112 2113 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2114 avail_len = min_t(u32, vma_len, inq); 2115 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2116 if (total_bytes_to_map) { 2117 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2118 zap_page_range_single(vma, address, total_bytes_to_map, 2119 NULL); 2120 zc->length = total_bytes_to_map; 2121 zc->recv_skip_hint = 0; 2122 } else { 2123 zc->length = avail_len; 2124 zc->recv_skip_hint = avail_len; 2125 } 2126 ret = 0; 2127 while (length + PAGE_SIZE <= zc->length) { 2128 int mappable_offset; 2129 struct page *page; 2130 2131 if (zc->recv_skip_hint < PAGE_SIZE) { 2132 u32 offset_frag; 2133 2134 if (skb) { 2135 if (zc->recv_skip_hint > 0) 2136 break; 2137 skb = skb->next; 2138 offset = seq - TCP_SKB_CB(skb)->seq; 2139 } else { 2140 skb = tcp_recv_skb(sk, seq, &offset); 2141 } 2142 2143 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2144 tcp_update_recv_tstamps(skb, tss); 2145 zc->msg_flags |= TCP_CMSG_TS; 2146 } 2147 zc->recv_skip_hint = skb->len - offset; 2148 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2149 if (!frags || offset_frag) 2150 break; 2151 } 2152 2153 mappable_offset = find_next_mappable_frag(frags, 2154 zc->recv_skip_hint); 2155 if (mappable_offset) { 2156 zc->recv_skip_hint = mappable_offset; 2157 break; 2158 } 2159 page = skb_frag_page(frags); 2160 prefetchw(page); 2161 pages[pages_to_map++] = page; 2162 length += PAGE_SIZE; 2163 zc->recv_skip_hint -= PAGE_SIZE; 2164 frags++; 2165 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2166 zc->recv_skip_hint < PAGE_SIZE) { 2167 /* Either full batch, or we're about to go to next skb 2168 * (and we cannot unroll failed ops across skbs). 2169 */ 2170 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2171 pages_to_map, 2172 &address, &length, 2173 &seq, zc, 2174 total_bytes_to_map); 2175 if (ret) 2176 goto out; 2177 pages_to_map = 0; 2178 } 2179 } 2180 if (pages_to_map) { 2181 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2182 &address, &length, &seq, 2183 zc, total_bytes_to_map); 2184 } 2185 out: 2186 if (mmap_locked) 2187 mmap_read_unlock(current->mm); 2188 else 2189 vma_end_read(vma); 2190 /* Try to copy straggler data. */ 2191 if (!ret) 2192 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2193 2194 if (length + copylen) { 2195 WRITE_ONCE(tp->copied_seq, seq); 2196 tcp_rcv_space_adjust(sk); 2197 2198 /* Clean up data we have read: This will do ACK frames. */ 2199 tcp_recv_skb(sk, seq, &offset); 2200 tcp_cleanup_rbuf(sk, length + copylen); 2201 ret = 0; 2202 if (length == zc->length) 2203 zc->recv_skip_hint = 0; 2204 } else { 2205 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2206 ret = -EIO; 2207 } 2208 zc->length = length; 2209 return ret; 2210 } 2211 #endif 2212 2213 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2214 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2215 struct scm_timestamping_internal *tss) 2216 { 2217 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2218 bool has_timestamping = false; 2219 2220 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2221 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2222 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2223 if (new_tstamp) { 2224 struct __kernel_timespec kts = { 2225 .tv_sec = tss->ts[0].tv_sec, 2226 .tv_nsec = tss->ts[0].tv_nsec, 2227 }; 2228 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2229 sizeof(kts), &kts); 2230 } else { 2231 struct __kernel_old_timespec ts_old = { 2232 .tv_sec = tss->ts[0].tv_sec, 2233 .tv_nsec = tss->ts[0].tv_nsec, 2234 }; 2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2236 sizeof(ts_old), &ts_old); 2237 } 2238 } else { 2239 if (new_tstamp) { 2240 struct __kernel_sock_timeval stv = { 2241 .tv_sec = tss->ts[0].tv_sec, 2242 .tv_usec = tss->ts[0].tv_nsec / 1000, 2243 }; 2244 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2245 sizeof(stv), &stv); 2246 } else { 2247 struct __kernel_old_timeval tv = { 2248 .tv_sec = tss->ts[0].tv_sec, 2249 .tv_usec = tss->ts[0].tv_nsec / 1000, 2250 }; 2251 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2252 sizeof(tv), &tv); 2253 } 2254 } 2255 } 2256 2257 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2258 has_timestamping = true; 2259 else 2260 tss->ts[0] = (struct timespec64) {0}; 2261 } 2262 2263 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2264 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2265 has_timestamping = true; 2266 else 2267 tss->ts[2] = (struct timespec64) {0}; 2268 } 2269 2270 if (has_timestamping) { 2271 tss->ts[1] = (struct timespec64) {0}; 2272 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2273 put_cmsg_scm_timestamping64(msg, tss); 2274 else 2275 put_cmsg_scm_timestamping(msg, tss); 2276 } 2277 } 2278 2279 static int tcp_inq_hint(struct sock *sk) 2280 { 2281 const struct tcp_sock *tp = tcp_sk(sk); 2282 u32 copied_seq = READ_ONCE(tp->copied_seq); 2283 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2284 int inq; 2285 2286 inq = rcv_nxt - copied_seq; 2287 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2288 lock_sock(sk); 2289 inq = tp->rcv_nxt - tp->copied_seq; 2290 release_sock(sk); 2291 } 2292 /* After receiving a FIN, tell the user-space to continue reading 2293 * by returning a non-zero inq. 2294 */ 2295 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2296 inq = 1; 2297 return inq; 2298 } 2299 2300 /* 2301 * This routine copies from a sock struct into the user buffer. 2302 * 2303 * Technical note: in 2.3 we work on _locked_ socket, so that 2304 * tricks with *seq access order and skb->users are not required. 2305 * Probably, code can be easily improved even more. 2306 */ 2307 2308 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2309 int flags, struct scm_timestamping_internal *tss, 2310 int *cmsg_flags) 2311 { 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 int copied = 0; 2314 u32 peek_seq; 2315 u32 *seq; 2316 unsigned long used; 2317 int err; 2318 int target; /* Read at least this many bytes */ 2319 long timeo; 2320 struct sk_buff *skb, *last; 2321 u32 urg_hole = 0; 2322 2323 err = -ENOTCONN; 2324 if (sk->sk_state == TCP_LISTEN) 2325 goto out; 2326 2327 if (tp->recvmsg_inq) { 2328 *cmsg_flags = TCP_CMSG_INQ; 2329 msg->msg_get_inq = 1; 2330 } 2331 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2332 2333 /* Urgent data needs to be handled specially. */ 2334 if (flags & MSG_OOB) 2335 goto recv_urg; 2336 2337 if (unlikely(tp->repair)) { 2338 err = -EPERM; 2339 if (!(flags & MSG_PEEK)) 2340 goto out; 2341 2342 if (tp->repair_queue == TCP_SEND_QUEUE) 2343 goto recv_sndq; 2344 2345 err = -EINVAL; 2346 if (tp->repair_queue == TCP_NO_QUEUE) 2347 goto out; 2348 2349 /* 'common' recv queue MSG_PEEK-ing */ 2350 } 2351 2352 seq = &tp->copied_seq; 2353 if (flags & MSG_PEEK) { 2354 peek_seq = tp->copied_seq; 2355 seq = &peek_seq; 2356 } 2357 2358 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2359 2360 do { 2361 u32 offset; 2362 2363 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2364 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2365 if (copied) 2366 break; 2367 if (signal_pending(current)) { 2368 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2369 break; 2370 } 2371 } 2372 2373 /* Next get a buffer. */ 2374 2375 last = skb_peek_tail(&sk->sk_receive_queue); 2376 skb_queue_walk(&sk->sk_receive_queue, skb) { 2377 last = skb; 2378 /* Now that we have two receive queues this 2379 * shouldn't happen. 2380 */ 2381 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2382 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2383 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2384 flags)) 2385 break; 2386 2387 offset = *seq - TCP_SKB_CB(skb)->seq; 2388 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2389 pr_err_once("%s: found a SYN, please report !\n", __func__); 2390 offset--; 2391 } 2392 if (offset < skb->len) 2393 goto found_ok_skb; 2394 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2395 goto found_fin_ok; 2396 WARN(!(flags & MSG_PEEK), 2397 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2398 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2399 } 2400 2401 /* Well, if we have backlog, try to process it now yet. */ 2402 2403 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2404 break; 2405 2406 if (copied) { 2407 if (!timeo || 2408 sk->sk_err || 2409 sk->sk_state == TCP_CLOSE || 2410 (sk->sk_shutdown & RCV_SHUTDOWN) || 2411 signal_pending(current)) 2412 break; 2413 } else { 2414 if (sock_flag(sk, SOCK_DONE)) 2415 break; 2416 2417 if (sk->sk_err) { 2418 copied = sock_error(sk); 2419 break; 2420 } 2421 2422 if (sk->sk_shutdown & RCV_SHUTDOWN) 2423 break; 2424 2425 if (sk->sk_state == TCP_CLOSE) { 2426 /* This occurs when user tries to read 2427 * from never connected socket. 2428 */ 2429 copied = -ENOTCONN; 2430 break; 2431 } 2432 2433 if (!timeo) { 2434 copied = -EAGAIN; 2435 break; 2436 } 2437 2438 if (signal_pending(current)) { 2439 copied = sock_intr_errno(timeo); 2440 break; 2441 } 2442 } 2443 2444 if (copied >= target) { 2445 /* Do not sleep, just process backlog. */ 2446 __sk_flush_backlog(sk); 2447 } else { 2448 tcp_cleanup_rbuf(sk, copied); 2449 err = sk_wait_data(sk, &timeo, last); 2450 if (err < 0) { 2451 err = copied ? : err; 2452 goto out; 2453 } 2454 } 2455 2456 if ((flags & MSG_PEEK) && 2457 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2458 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2459 current->comm, 2460 task_pid_nr(current)); 2461 peek_seq = tp->copied_seq; 2462 } 2463 continue; 2464 2465 found_ok_skb: 2466 /* Ok so how much can we use? */ 2467 used = skb->len - offset; 2468 if (len < used) 2469 used = len; 2470 2471 /* Do we have urgent data here? */ 2472 if (unlikely(tp->urg_data)) { 2473 u32 urg_offset = tp->urg_seq - *seq; 2474 if (urg_offset < used) { 2475 if (!urg_offset) { 2476 if (!sock_flag(sk, SOCK_URGINLINE)) { 2477 WRITE_ONCE(*seq, *seq + 1); 2478 urg_hole++; 2479 offset++; 2480 used--; 2481 if (!used) 2482 goto skip_copy; 2483 } 2484 } else 2485 used = urg_offset; 2486 } 2487 } 2488 2489 if (!(flags & MSG_TRUNC)) { 2490 err = skb_copy_datagram_msg(skb, offset, msg, used); 2491 if (err) { 2492 /* Exception. Bailout! */ 2493 if (!copied) 2494 copied = -EFAULT; 2495 break; 2496 } 2497 } 2498 2499 WRITE_ONCE(*seq, *seq + used); 2500 copied += used; 2501 len -= used; 2502 2503 tcp_rcv_space_adjust(sk); 2504 2505 skip_copy: 2506 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2507 WRITE_ONCE(tp->urg_data, 0); 2508 tcp_fast_path_check(sk); 2509 } 2510 2511 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2512 tcp_update_recv_tstamps(skb, tss); 2513 *cmsg_flags |= TCP_CMSG_TS; 2514 } 2515 2516 if (used + offset < skb->len) 2517 continue; 2518 2519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2520 goto found_fin_ok; 2521 if (!(flags & MSG_PEEK)) 2522 tcp_eat_recv_skb(sk, skb); 2523 continue; 2524 2525 found_fin_ok: 2526 /* Process the FIN. */ 2527 WRITE_ONCE(*seq, *seq + 1); 2528 if (!(flags & MSG_PEEK)) 2529 tcp_eat_recv_skb(sk, skb); 2530 break; 2531 } while (len > 0); 2532 2533 /* According to UNIX98, msg_name/msg_namelen are ignored 2534 * on connected socket. I was just happy when found this 8) --ANK 2535 */ 2536 2537 /* Clean up data we have read: This will do ACK frames. */ 2538 tcp_cleanup_rbuf(sk, copied); 2539 return copied; 2540 2541 out: 2542 return err; 2543 2544 recv_urg: 2545 err = tcp_recv_urg(sk, msg, len, flags); 2546 goto out; 2547 2548 recv_sndq: 2549 err = tcp_peek_sndq(sk, msg, len); 2550 goto out; 2551 } 2552 2553 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2554 int *addr_len) 2555 { 2556 int cmsg_flags = 0, ret; 2557 struct scm_timestamping_internal tss; 2558 2559 if (unlikely(flags & MSG_ERRQUEUE)) 2560 return inet_recv_error(sk, msg, len, addr_len); 2561 2562 if (sk_can_busy_loop(sk) && 2563 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2564 sk->sk_state == TCP_ESTABLISHED) 2565 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2566 2567 lock_sock(sk); 2568 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2569 release_sock(sk); 2570 2571 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2572 if (cmsg_flags & TCP_CMSG_TS) 2573 tcp_recv_timestamp(msg, sk, &tss); 2574 if (msg->msg_get_inq) { 2575 msg->msg_inq = tcp_inq_hint(sk); 2576 if (cmsg_flags & TCP_CMSG_INQ) 2577 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2578 sizeof(msg->msg_inq), &msg->msg_inq); 2579 } 2580 } 2581 return ret; 2582 } 2583 EXPORT_SYMBOL(tcp_recvmsg); 2584 2585 void tcp_set_state(struct sock *sk, int state) 2586 { 2587 int oldstate = sk->sk_state; 2588 2589 /* We defined a new enum for TCP states that are exported in BPF 2590 * so as not force the internal TCP states to be frozen. The 2591 * following checks will detect if an internal state value ever 2592 * differs from the BPF value. If this ever happens, then we will 2593 * need to remap the internal value to the BPF value before calling 2594 * tcp_call_bpf_2arg. 2595 */ 2596 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2597 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2598 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2599 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2600 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2601 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2602 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2603 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2604 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2605 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2606 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2607 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2608 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2609 2610 /* bpf uapi header bpf.h defines an anonymous enum with values 2611 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2612 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2613 * But clang built vmlinux does not have this enum in DWARF 2614 * since clang removes the above code before generating IR/debuginfo. 2615 * Let us explicitly emit the type debuginfo to ensure the 2616 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2617 * regardless of which compiler is used. 2618 */ 2619 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2620 2621 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2622 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2623 2624 switch (state) { 2625 case TCP_ESTABLISHED: 2626 if (oldstate != TCP_ESTABLISHED) 2627 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2628 break; 2629 2630 case TCP_CLOSE: 2631 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2632 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2633 2634 sk->sk_prot->unhash(sk); 2635 if (inet_csk(sk)->icsk_bind_hash && 2636 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2637 inet_put_port(sk); 2638 fallthrough; 2639 default: 2640 if (oldstate == TCP_ESTABLISHED) 2641 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2642 } 2643 2644 /* Change state AFTER socket is unhashed to avoid closed 2645 * socket sitting in hash tables. 2646 */ 2647 inet_sk_state_store(sk, state); 2648 } 2649 EXPORT_SYMBOL_GPL(tcp_set_state); 2650 2651 /* 2652 * State processing on a close. This implements the state shift for 2653 * sending our FIN frame. Note that we only send a FIN for some 2654 * states. A shutdown() may have already sent the FIN, or we may be 2655 * closed. 2656 */ 2657 2658 static const unsigned char new_state[16] = { 2659 /* current state: new state: action: */ 2660 [0 /* (Invalid) */] = TCP_CLOSE, 2661 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2662 [TCP_SYN_SENT] = TCP_CLOSE, 2663 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2664 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2665 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2666 [TCP_TIME_WAIT] = TCP_CLOSE, 2667 [TCP_CLOSE] = TCP_CLOSE, 2668 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2669 [TCP_LAST_ACK] = TCP_LAST_ACK, 2670 [TCP_LISTEN] = TCP_CLOSE, 2671 [TCP_CLOSING] = TCP_CLOSING, 2672 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2673 }; 2674 2675 static int tcp_close_state(struct sock *sk) 2676 { 2677 int next = (int)new_state[sk->sk_state]; 2678 int ns = next & TCP_STATE_MASK; 2679 2680 tcp_set_state(sk, ns); 2681 2682 return next & TCP_ACTION_FIN; 2683 } 2684 2685 /* 2686 * Shutdown the sending side of a connection. Much like close except 2687 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2688 */ 2689 2690 void tcp_shutdown(struct sock *sk, int how) 2691 { 2692 /* We need to grab some memory, and put together a FIN, 2693 * and then put it into the queue to be sent. 2694 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2695 */ 2696 if (!(how & SEND_SHUTDOWN)) 2697 return; 2698 2699 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2700 if ((1 << sk->sk_state) & 2701 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2702 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2703 /* Clear out any half completed packets. FIN if needed. */ 2704 if (tcp_close_state(sk)) 2705 tcp_send_fin(sk); 2706 } 2707 } 2708 EXPORT_SYMBOL(tcp_shutdown); 2709 2710 int tcp_orphan_count_sum(void) 2711 { 2712 int i, total = 0; 2713 2714 for_each_possible_cpu(i) 2715 total += per_cpu(tcp_orphan_count, i); 2716 2717 return max(total, 0); 2718 } 2719 2720 static int tcp_orphan_cache; 2721 static struct timer_list tcp_orphan_timer; 2722 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2723 2724 static void tcp_orphan_update(struct timer_list *unused) 2725 { 2726 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2727 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2728 } 2729 2730 static bool tcp_too_many_orphans(int shift) 2731 { 2732 return READ_ONCE(tcp_orphan_cache) << shift > 2733 READ_ONCE(sysctl_tcp_max_orphans); 2734 } 2735 2736 bool tcp_check_oom(struct sock *sk, int shift) 2737 { 2738 bool too_many_orphans, out_of_socket_memory; 2739 2740 too_many_orphans = tcp_too_many_orphans(shift); 2741 out_of_socket_memory = tcp_out_of_memory(sk); 2742 2743 if (too_many_orphans) 2744 net_info_ratelimited("too many orphaned sockets\n"); 2745 if (out_of_socket_memory) 2746 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2747 return too_many_orphans || out_of_socket_memory; 2748 } 2749 2750 void __tcp_close(struct sock *sk, long timeout) 2751 { 2752 struct sk_buff *skb; 2753 int data_was_unread = 0; 2754 int state; 2755 2756 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2757 2758 if (sk->sk_state == TCP_LISTEN) { 2759 tcp_set_state(sk, TCP_CLOSE); 2760 2761 /* Special case. */ 2762 inet_csk_listen_stop(sk); 2763 2764 goto adjudge_to_death; 2765 } 2766 2767 /* We need to flush the recv. buffs. We do this only on the 2768 * descriptor close, not protocol-sourced closes, because the 2769 * reader process may not have drained the data yet! 2770 */ 2771 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2772 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2773 2774 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2775 len--; 2776 data_was_unread += len; 2777 __kfree_skb(skb); 2778 } 2779 2780 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2781 if (sk->sk_state == TCP_CLOSE) 2782 goto adjudge_to_death; 2783 2784 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2785 * data was lost. To witness the awful effects of the old behavior of 2786 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2787 * GET in an FTP client, suspend the process, wait for the client to 2788 * advertise a zero window, then kill -9 the FTP client, wheee... 2789 * Note: timeout is always zero in such a case. 2790 */ 2791 if (unlikely(tcp_sk(sk)->repair)) { 2792 sk->sk_prot->disconnect(sk, 0); 2793 } else if (data_was_unread) { 2794 /* Unread data was tossed, zap the connection. */ 2795 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2796 tcp_set_state(sk, TCP_CLOSE); 2797 tcp_send_active_reset(sk, sk->sk_allocation); 2798 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2799 /* Check zero linger _after_ checking for unread data. */ 2800 sk->sk_prot->disconnect(sk, 0); 2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2802 } else if (tcp_close_state(sk)) { 2803 /* We FIN if the application ate all the data before 2804 * zapping the connection. 2805 */ 2806 2807 /* RED-PEN. Formally speaking, we have broken TCP state 2808 * machine. State transitions: 2809 * 2810 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2811 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2812 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2813 * 2814 * are legal only when FIN has been sent (i.e. in window), 2815 * rather than queued out of window. Purists blame. 2816 * 2817 * F.e. "RFC state" is ESTABLISHED, 2818 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2819 * 2820 * The visible declinations are that sometimes 2821 * we enter time-wait state, when it is not required really 2822 * (harmless), do not send active resets, when they are 2823 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2824 * they look as CLOSING or LAST_ACK for Linux) 2825 * Probably, I missed some more holelets. 2826 * --ANK 2827 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2828 * in a single packet! (May consider it later but will 2829 * probably need API support or TCP_CORK SYN-ACK until 2830 * data is written and socket is closed.) 2831 */ 2832 tcp_send_fin(sk); 2833 } 2834 2835 sk_stream_wait_close(sk, timeout); 2836 2837 adjudge_to_death: 2838 state = sk->sk_state; 2839 sock_hold(sk); 2840 sock_orphan(sk); 2841 2842 local_bh_disable(); 2843 bh_lock_sock(sk); 2844 /* remove backlog if any, without releasing ownership. */ 2845 __release_sock(sk); 2846 2847 this_cpu_inc(tcp_orphan_count); 2848 2849 /* Have we already been destroyed by a softirq or backlog? */ 2850 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2851 goto out; 2852 2853 /* This is a (useful) BSD violating of the RFC. There is a 2854 * problem with TCP as specified in that the other end could 2855 * keep a socket open forever with no application left this end. 2856 * We use a 1 minute timeout (about the same as BSD) then kill 2857 * our end. If they send after that then tough - BUT: long enough 2858 * that we won't make the old 4*rto = almost no time - whoops 2859 * reset mistake. 2860 * 2861 * Nope, it was not mistake. It is really desired behaviour 2862 * f.e. on http servers, when such sockets are useless, but 2863 * consume significant resources. Let's do it with special 2864 * linger2 option. --ANK 2865 */ 2866 2867 if (sk->sk_state == TCP_FIN_WAIT2) { 2868 struct tcp_sock *tp = tcp_sk(sk); 2869 if (READ_ONCE(tp->linger2) < 0) { 2870 tcp_set_state(sk, TCP_CLOSE); 2871 tcp_send_active_reset(sk, GFP_ATOMIC); 2872 __NET_INC_STATS(sock_net(sk), 2873 LINUX_MIB_TCPABORTONLINGER); 2874 } else { 2875 const int tmo = tcp_fin_time(sk); 2876 2877 if (tmo > TCP_TIMEWAIT_LEN) { 2878 inet_csk_reset_keepalive_timer(sk, 2879 tmo - TCP_TIMEWAIT_LEN); 2880 } else { 2881 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2882 goto out; 2883 } 2884 } 2885 } 2886 if (sk->sk_state != TCP_CLOSE) { 2887 if (tcp_check_oom(sk, 0)) { 2888 tcp_set_state(sk, TCP_CLOSE); 2889 tcp_send_active_reset(sk, GFP_ATOMIC); 2890 __NET_INC_STATS(sock_net(sk), 2891 LINUX_MIB_TCPABORTONMEMORY); 2892 } else if (!check_net(sock_net(sk))) { 2893 /* Not possible to send reset; just close */ 2894 tcp_set_state(sk, TCP_CLOSE); 2895 } 2896 } 2897 2898 if (sk->sk_state == TCP_CLOSE) { 2899 struct request_sock *req; 2900 2901 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2902 lockdep_sock_is_held(sk)); 2903 /* We could get here with a non-NULL req if the socket is 2904 * aborted (e.g., closed with unread data) before 3WHS 2905 * finishes. 2906 */ 2907 if (req) 2908 reqsk_fastopen_remove(sk, req, false); 2909 inet_csk_destroy_sock(sk); 2910 } 2911 /* Otherwise, socket is reprieved until protocol close. */ 2912 2913 out: 2914 bh_unlock_sock(sk); 2915 local_bh_enable(); 2916 } 2917 2918 void tcp_close(struct sock *sk, long timeout) 2919 { 2920 lock_sock(sk); 2921 __tcp_close(sk, timeout); 2922 release_sock(sk); 2923 sock_put(sk); 2924 } 2925 EXPORT_SYMBOL(tcp_close); 2926 2927 /* These states need RST on ABORT according to RFC793 */ 2928 2929 static inline bool tcp_need_reset(int state) 2930 { 2931 return (1 << state) & 2932 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2933 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2934 } 2935 2936 static void tcp_rtx_queue_purge(struct sock *sk) 2937 { 2938 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2939 2940 tcp_sk(sk)->highest_sack = NULL; 2941 while (p) { 2942 struct sk_buff *skb = rb_to_skb(p); 2943 2944 p = rb_next(p); 2945 /* Since we are deleting whole queue, no need to 2946 * list_del(&skb->tcp_tsorted_anchor) 2947 */ 2948 tcp_rtx_queue_unlink(skb, sk); 2949 tcp_wmem_free_skb(sk, skb); 2950 } 2951 } 2952 2953 void tcp_write_queue_purge(struct sock *sk) 2954 { 2955 struct sk_buff *skb; 2956 2957 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2958 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2959 tcp_skb_tsorted_anchor_cleanup(skb); 2960 tcp_wmem_free_skb(sk, skb); 2961 } 2962 tcp_rtx_queue_purge(sk); 2963 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2964 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2965 tcp_sk(sk)->packets_out = 0; 2966 inet_csk(sk)->icsk_backoff = 0; 2967 } 2968 2969 int tcp_disconnect(struct sock *sk, int flags) 2970 { 2971 struct inet_sock *inet = inet_sk(sk); 2972 struct inet_connection_sock *icsk = inet_csk(sk); 2973 struct tcp_sock *tp = tcp_sk(sk); 2974 int old_state = sk->sk_state; 2975 u32 seq; 2976 2977 if (old_state != TCP_CLOSE) 2978 tcp_set_state(sk, TCP_CLOSE); 2979 2980 /* ABORT function of RFC793 */ 2981 if (old_state == TCP_LISTEN) { 2982 inet_csk_listen_stop(sk); 2983 } else if (unlikely(tp->repair)) { 2984 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2985 } else if (tcp_need_reset(old_state) || 2986 (tp->snd_nxt != tp->write_seq && 2987 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2988 /* The last check adjusts for discrepancy of Linux wrt. RFC 2989 * states 2990 */ 2991 tcp_send_active_reset(sk, gfp_any()); 2992 WRITE_ONCE(sk->sk_err, ECONNRESET); 2993 } else if (old_state == TCP_SYN_SENT) 2994 WRITE_ONCE(sk->sk_err, ECONNRESET); 2995 2996 tcp_clear_xmit_timers(sk); 2997 __skb_queue_purge(&sk->sk_receive_queue); 2998 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2999 WRITE_ONCE(tp->urg_data, 0); 3000 tcp_write_queue_purge(sk); 3001 tcp_fastopen_active_disable_ofo_check(sk); 3002 skb_rbtree_purge(&tp->out_of_order_queue); 3003 3004 inet->inet_dport = 0; 3005 3006 inet_bhash2_reset_saddr(sk); 3007 3008 WRITE_ONCE(sk->sk_shutdown, 0); 3009 sock_reset_flag(sk, SOCK_DONE); 3010 tp->srtt_us = 0; 3011 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3012 tp->rcv_rtt_last_tsecr = 0; 3013 3014 seq = tp->write_seq + tp->max_window + 2; 3015 if (!seq) 3016 seq = 1; 3017 WRITE_ONCE(tp->write_seq, seq); 3018 3019 icsk->icsk_backoff = 0; 3020 icsk->icsk_probes_out = 0; 3021 icsk->icsk_probes_tstamp = 0; 3022 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3023 icsk->icsk_rto_min = TCP_RTO_MIN; 3024 icsk->icsk_delack_max = TCP_DELACK_MAX; 3025 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3026 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3027 tp->snd_cwnd_cnt = 0; 3028 tp->is_cwnd_limited = 0; 3029 tp->max_packets_out = 0; 3030 tp->window_clamp = 0; 3031 tp->delivered = 0; 3032 tp->delivered_ce = 0; 3033 if (icsk->icsk_ca_ops->release) 3034 icsk->icsk_ca_ops->release(sk); 3035 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3036 icsk->icsk_ca_initialized = 0; 3037 tcp_set_ca_state(sk, TCP_CA_Open); 3038 tp->is_sack_reneg = 0; 3039 tcp_clear_retrans(tp); 3040 tp->total_retrans = 0; 3041 inet_csk_delack_init(sk); 3042 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3043 * issue in __tcp_select_window() 3044 */ 3045 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3046 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3047 __sk_dst_reset(sk); 3048 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3049 tcp_saved_syn_free(tp); 3050 tp->compressed_ack = 0; 3051 tp->segs_in = 0; 3052 tp->segs_out = 0; 3053 tp->bytes_sent = 0; 3054 tp->bytes_acked = 0; 3055 tp->bytes_received = 0; 3056 tp->bytes_retrans = 0; 3057 tp->data_segs_in = 0; 3058 tp->data_segs_out = 0; 3059 tp->duplicate_sack[0].start_seq = 0; 3060 tp->duplicate_sack[0].end_seq = 0; 3061 tp->dsack_dups = 0; 3062 tp->reord_seen = 0; 3063 tp->retrans_out = 0; 3064 tp->sacked_out = 0; 3065 tp->tlp_high_seq = 0; 3066 tp->last_oow_ack_time = 0; 3067 tp->plb_rehash = 0; 3068 /* There's a bubble in the pipe until at least the first ACK. */ 3069 tp->app_limited = ~0U; 3070 tp->rate_app_limited = 1; 3071 tp->rack.mstamp = 0; 3072 tp->rack.advanced = 0; 3073 tp->rack.reo_wnd_steps = 1; 3074 tp->rack.last_delivered = 0; 3075 tp->rack.reo_wnd_persist = 0; 3076 tp->rack.dsack_seen = 0; 3077 tp->syn_data_acked = 0; 3078 tp->rx_opt.saw_tstamp = 0; 3079 tp->rx_opt.dsack = 0; 3080 tp->rx_opt.num_sacks = 0; 3081 tp->rcv_ooopack = 0; 3082 3083 3084 /* Clean up fastopen related fields */ 3085 tcp_free_fastopen_req(tp); 3086 inet_clear_bit(DEFER_CONNECT, sk); 3087 tp->fastopen_client_fail = 0; 3088 3089 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3090 3091 if (sk->sk_frag.page) { 3092 put_page(sk->sk_frag.page); 3093 sk->sk_frag.page = NULL; 3094 sk->sk_frag.offset = 0; 3095 } 3096 sk_error_report(sk); 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(tcp_disconnect); 3100 3101 static inline bool tcp_can_repair_sock(const struct sock *sk) 3102 { 3103 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3104 (sk->sk_state != TCP_LISTEN); 3105 } 3106 3107 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3108 { 3109 struct tcp_repair_window opt; 3110 3111 if (!tp->repair) 3112 return -EPERM; 3113 3114 if (len != sizeof(opt)) 3115 return -EINVAL; 3116 3117 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3118 return -EFAULT; 3119 3120 if (opt.max_window < opt.snd_wnd) 3121 return -EINVAL; 3122 3123 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3124 return -EINVAL; 3125 3126 if (after(opt.rcv_wup, tp->rcv_nxt)) 3127 return -EINVAL; 3128 3129 tp->snd_wl1 = opt.snd_wl1; 3130 tp->snd_wnd = opt.snd_wnd; 3131 tp->max_window = opt.max_window; 3132 3133 tp->rcv_wnd = opt.rcv_wnd; 3134 tp->rcv_wup = opt.rcv_wup; 3135 3136 return 0; 3137 } 3138 3139 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3140 unsigned int len) 3141 { 3142 struct tcp_sock *tp = tcp_sk(sk); 3143 struct tcp_repair_opt opt; 3144 size_t offset = 0; 3145 3146 while (len >= sizeof(opt)) { 3147 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3148 return -EFAULT; 3149 3150 offset += sizeof(opt); 3151 len -= sizeof(opt); 3152 3153 switch (opt.opt_code) { 3154 case TCPOPT_MSS: 3155 tp->rx_opt.mss_clamp = opt.opt_val; 3156 tcp_mtup_init(sk); 3157 break; 3158 case TCPOPT_WINDOW: 3159 { 3160 u16 snd_wscale = opt.opt_val & 0xFFFF; 3161 u16 rcv_wscale = opt.opt_val >> 16; 3162 3163 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3164 return -EFBIG; 3165 3166 tp->rx_opt.snd_wscale = snd_wscale; 3167 tp->rx_opt.rcv_wscale = rcv_wscale; 3168 tp->rx_opt.wscale_ok = 1; 3169 } 3170 break; 3171 case TCPOPT_SACK_PERM: 3172 if (opt.opt_val != 0) 3173 return -EINVAL; 3174 3175 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3176 break; 3177 case TCPOPT_TIMESTAMP: 3178 if (opt.opt_val != 0) 3179 return -EINVAL; 3180 3181 tp->rx_opt.tstamp_ok = 1; 3182 break; 3183 } 3184 } 3185 3186 return 0; 3187 } 3188 3189 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3190 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3191 3192 static void tcp_enable_tx_delay(void) 3193 { 3194 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3195 static int __tcp_tx_delay_enabled = 0; 3196 3197 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3198 static_branch_enable(&tcp_tx_delay_enabled); 3199 pr_info("TCP_TX_DELAY enabled\n"); 3200 } 3201 } 3202 } 3203 3204 /* When set indicates to always queue non-full frames. Later the user clears 3205 * this option and we transmit any pending partial frames in the queue. This is 3206 * meant to be used alongside sendfile() to get properly filled frames when the 3207 * user (for example) must write out headers with a write() call first and then 3208 * use sendfile to send out the data parts. 3209 * 3210 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3211 * TCP_NODELAY. 3212 */ 3213 void __tcp_sock_set_cork(struct sock *sk, bool on) 3214 { 3215 struct tcp_sock *tp = tcp_sk(sk); 3216 3217 if (on) { 3218 tp->nonagle |= TCP_NAGLE_CORK; 3219 } else { 3220 tp->nonagle &= ~TCP_NAGLE_CORK; 3221 if (tp->nonagle & TCP_NAGLE_OFF) 3222 tp->nonagle |= TCP_NAGLE_PUSH; 3223 tcp_push_pending_frames(sk); 3224 } 3225 } 3226 3227 void tcp_sock_set_cork(struct sock *sk, bool on) 3228 { 3229 lock_sock(sk); 3230 __tcp_sock_set_cork(sk, on); 3231 release_sock(sk); 3232 } 3233 EXPORT_SYMBOL(tcp_sock_set_cork); 3234 3235 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3236 * remembered, but it is not activated until cork is cleared. 3237 * 3238 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3239 * even TCP_CORK for currently queued segments. 3240 */ 3241 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3242 { 3243 if (on) { 3244 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3245 tcp_push_pending_frames(sk); 3246 } else { 3247 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3248 } 3249 } 3250 3251 void tcp_sock_set_nodelay(struct sock *sk) 3252 { 3253 lock_sock(sk); 3254 __tcp_sock_set_nodelay(sk, true); 3255 release_sock(sk); 3256 } 3257 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3258 3259 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3260 { 3261 if (!val) { 3262 inet_csk_enter_pingpong_mode(sk); 3263 return; 3264 } 3265 3266 inet_csk_exit_pingpong_mode(sk); 3267 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3268 inet_csk_ack_scheduled(sk)) { 3269 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3270 tcp_cleanup_rbuf(sk, 1); 3271 if (!(val & 1)) 3272 inet_csk_enter_pingpong_mode(sk); 3273 } 3274 } 3275 3276 void tcp_sock_set_quickack(struct sock *sk, int val) 3277 { 3278 lock_sock(sk); 3279 __tcp_sock_set_quickack(sk, val); 3280 release_sock(sk); 3281 } 3282 EXPORT_SYMBOL(tcp_sock_set_quickack); 3283 3284 int tcp_sock_set_syncnt(struct sock *sk, int val) 3285 { 3286 if (val < 1 || val > MAX_TCP_SYNCNT) 3287 return -EINVAL; 3288 3289 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3290 return 0; 3291 } 3292 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3293 3294 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3295 { 3296 /* Cap the max time in ms TCP will retry or probe the window 3297 * before giving up and aborting (ETIMEDOUT) a connection. 3298 */ 3299 if (val < 0) 3300 return -EINVAL; 3301 3302 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3303 return 0; 3304 } 3305 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3306 3307 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3308 { 3309 struct tcp_sock *tp = tcp_sk(sk); 3310 3311 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3312 return -EINVAL; 3313 3314 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3315 WRITE_ONCE(tp->keepalive_time, val * HZ); 3316 if (sock_flag(sk, SOCK_KEEPOPEN) && 3317 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3318 u32 elapsed = keepalive_time_elapsed(tp); 3319 3320 if (tp->keepalive_time > elapsed) 3321 elapsed = tp->keepalive_time - elapsed; 3322 else 3323 elapsed = 0; 3324 inet_csk_reset_keepalive_timer(sk, elapsed); 3325 } 3326 3327 return 0; 3328 } 3329 3330 int tcp_sock_set_keepidle(struct sock *sk, int val) 3331 { 3332 int err; 3333 3334 lock_sock(sk); 3335 err = tcp_sock_set_keepidle_locked(sk, val); 3336 release_sock(sk); 3337 return err; 3338 } 3339 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3340 3341 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3342 { 3343 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3344 return -EINVAL; 3345 3346 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3347 return 0; 3348 } 3349 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3350 3351 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3352 { 3353 if (val < 1 || val > MAX_TCP_KEEPCNT) 3354 return -EINVAL; 3355 3356 /* Paired with READ_ONCE() in keepalive_probes() */ 3357 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3358 return 0; 3359 } 3360 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3361 3362 int tcp_set_window_clamp(struct sock *sk, int val) 3363 { 3364 struct tcp_sock *tp = tcp_sk(sk); 3365 3366 if (!val) { 3367 if (sk->sk_state != TCP_CLOSE) 3368 return -EINVAL; 3369 tp->window_clamp = 0; 3370 } else { 3371 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3372 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3373 SOCK_MIN_RCVBUF / 2 : val; 3374 3375 if (new_window_clamp == old_window_clamp) 3376 return 0; 3377 3378 tp->window_clamp = new_window_clamp; 3379 if (new_window_clamp < old_window_clamp) { 3380 /* need to apply the reserved mem provisioning only 3381 * when shrinking the window clamp 3382 */ 3383 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3384 3385 } else { 3386 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3387 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3388 tp->rcv_ssthresh); 3389 } 3390 } 3391 return 0; 3392 } 3393 3394 /* 3395 * Socket option code for TCP. 3396 */ 3397 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3398 sockptr_t optval, unsigned int optlen) 3399 { 3400 struct tcp_sock *tp = tcp_sk(sk); 3401 struct inet_connection_sock *icsk = inet_csk(sk); 3402 struct net *net = sock_net(sk); 3403 int val; 3404 int err = 0; 3405 3406 /* These are data/string values, all the others are ints */ 3407 switch (optname) { 3408 case TCP_CONGESTION: { 3409 char name[TCP_CA_NAME_MAX]; 3410 3411 if (optlen < 1) 3412 return -EINVAL; 3413 3414 val = strncpy_from_sockptr(name, optval, 3415 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3416 if (val < 0) 3417 return -EFAULT; 3418 name[val] = 0; 3419 3420 sockopt_lock_sock(sk); 3421 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3422 sockopt_ns_capable(sock_net(sk)->user_ns, 3423 CAP_NET_ADMIN)); 3424 sockopt_release_sock(sk); 3425 return err; 3426 } 3427 case TCP_ULP: { 3428 char name[TCP_ULP_NAME_MAX]; 3429 3430 if (optlen < 1) 3431 return -EINVAL; 3432 3433 val = strncpy_from_sockptr(name, optval, 3434 min_t(long, TCP_ULP_NAME_MAX - 1, 3435 optlen)); 3436 if (val < 0) 3437 return -EFAULT; 3438 name[val] = 0; 3439 3440 sockopt_lock_sock(sk); 3441 err = tcp_set_ulp(sk, name); 3442 sockopt_release_sock(sk); 3443 return err; 3444 } 3445 case TCP_FASTOPEN_KEY: { 3446 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3447 __u8 *backup_key = NULL; 3448 3449 /* Allow a backup key as well to facilitate key rotation 3450 * First key is the active one. 3451 */ 3452 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3453 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3454 return -EINVAL; 3455 3456 if (copy_from_sockptr(key, optval, optlen)) 3457 return -EFAULT; 3458 3459 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3460 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3461 3462 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3463 } 3464 default: 3465 /* fallthru */ 3466 break; 3467 } 3468 3469 if (optlen < sizeof(int)) 3470 return -EINVAL; 3471 3472 if (copy_from_sockptr(&val, optval, sizeof(val))) 3473 return -EFAULT; 3474 3475 /* Handle options that can be set without locking the socket. */ 3476 switch (optname) { 3477 case TCP_SYNCNT: 3478 return tcp_sock_set_syncnt(sk, val); 3479 case TCP_USER_TIMEOUT: 3480 return tcp_sock_set_user_timeout(sk, val); 3481 case TCP_KEEPINTVL: 3482 return tcp_sock_set_keepintvl(sk, val); 3483 case TCP_KEEPCNT: 3484 return tcp_sock_set_keepcnt(sk, val); 3485 case TCP_LINGER2: 3486 if (val < 0) 3487 WRITE_ONCE(tp->linger2, -1); 3488 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3489 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3490 else 3491 WRITE_ONCE(tp->linger2, val * HZ); 3492 return 0; 3493 case TCP_DEFER_ACCEPT: 3494 /* Translate value in seconds to number of retransmits */ 3495 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3496 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3497 TCP_RTO_MAX / HZ)); 3498 return 0; 3499 } 3500 3501 sockopt_lock_sock(sk); 3502 3503 switch (optname) { 3504 case TCP_MAXSEG: 3505 /* Values greater than interface MTU won't take effect. However 3506 * at the point when this call is done we typically don't yet 3507 * know which interface is going to be used 3508 */ 3509 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3510 err = -EINVAL; 3511 break; 3512 } 3513 tp->rx_opt.user_mss = val; 3514 break; 3515 3516 case TCP_NODELAY: 3517 __tcp_sock_set_nodelay(sk, val); 3518 break; 3519 3520 case TCP_THIN_LINEAR_TIMEOUTS: 3521 if (val < 0 || val > 1) 3522 err = -EINVAL; 3523 else 3524 tp->thin_lto = val; 3525 break; 3526 3527 case TCP_THIN_DUPACK: 3528 if (val < 0 || val > 1) 3529 err = -EINVAL; 3530 break; 3531 3532 case TCP_REPAIR: 3533 if (!tcp_can_repair_sock(sk)) 3534 err = -EPERM; 3535 else if (val == TCP_REPAIR_ON) { 3536 tp->repair = 1; 3537 sk->sk_reuse = SK_FORCE_REUSE; 3538 tp->repair_queue = TCP_NO_QUEUE; 3539 } else if (val == TCP_REPAIR_OFF) { 3540 tp->repair = 0; 3541 sk->sk_reuse = SK_NO_REUSE; 3542 tcp_send_window_probe(sk); 3543 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3544 tp->repair = 0; 3545 sk->sk_reuse = SK_NO_REUSE; 3546 } else 3547 err = -EINVAL; 3548 3549 break; 3550 3551 case TCP_REPAIR_QUEUE: 3552 if (!tp->repair) 3553 err = -EPERM; 3554 else if ((unsigned int)val < TCP_QUEUES_NR) 3555 tp->repair_queue = val; 3556 else 3557 err = -EINVAL; 3558 break; 3559 3560 case TCP_QUEUE_SEQ: 3561 if (sk->sk_state != TCP_CLOSE) { 3562 err = -EPERM; 3563 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3564 if (!tcp_rtx_queue_empty(sk)) 3565 err = -EPERM; 3566 else 3567 WRITE_ONCE(tp->write_seq, val); 3568 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3569 if (tp->rcv_nxt != tp->copied_seq) { 3570 err = -EPERM; 3571 } else { 3572 WRITE_ONCE(tp->rcv_nxt, val); 3573 WRITE_ONCE(tp->copied_seq, val); 3574 } 3575 } else { 3576 err = -EINVAL; 3577 } 3578 break; 3579 3580 case TCP_REPAIR_OPTIONS: 3581 if (!tp->repair) 3582 err = -EINVAL; 3583 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3584 err = tcp_repair_options_est(sk, optval, optlen); 3585 else 3586 err = -EPERM; 3587 break; 3588 3589 case TCP_CORK: 3590 __tcp_sock_set_cork(sk, val); 3591 break; 3592 3593 case TCP_KEEPIDLE: 3594 err = tcp_sock_set_keepidle_locked(sk, val); 3595 break; 3596 case TCP_SAVE_SYN: 3597 /* 0: disable, 1: enable, 2: start from ether_header */ 3598 if (val < 0 || val > 2) 3599 err = -EINVAL; 3600 else 3601 tp->save_syn = val; 3602 break; 3603 3604 case TCP_WINDOW_CLAMP: 3605 err = tcp_set_window_clamp(sk, val); 3606 break; 3607 3608 case TCP_QUICKACK: 3609 __tcp_sock_set_quickack(sk, val); 3610 break; 3611 3612 #ifdef CONFIG_TCP_MD5SIG 3613 case TCP_MD5SIG: 3614 case TCP_MD5SIG_EXT: 3615 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3616 break; 3617 #endif 3618 case TCP_FASTOPEN: 3619 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3620 TCPF_LISTEN))) { 3621 tcp_fastopen_init_key_once(net); 3622 3623 fastopen_queue_tune(sk, val); 3624 } else { 3625 err = -EINVAL; 3626 } 3627 break; 3628 case TCP_FASTOPEN_CONNECT: 3629 if (val > 1 || val < 0) { 3630 err = -EINVAL; 3631 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3632 TFO_CLIENT_ENABLE) { 3633 if (sk->sk_state == TCP_CLOSE) 3634 tp->fastopen_connect = val; 3635 else 3636 err = -EINVAL; 3637 } else { 3638 err = -EOPNOTSUPP; 3639 } 3640 break; 3641 case TCP_FASTOPEN_NO_COOKIE: 3642 if (val > 1 || val < 0) 3643 err = -EINVAL; 3644 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3645 err = -EINVAL; 3646 else 3647 tp->fastopen_no_cookie = val; 3648 break; 3649 case TCP_TIMESTAMP: 3650 if (!tp->repair) 3651 err = -EPERM; 3652 else 3653 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3654 break; 3655 case TCP_REPAIR_WINDOW: 3656 err = tcp_repair_set_window(tp, optval, optlen); 3657 break; 3658 case TCP_NOTSENT_LOWAT: 3659 WRITE_ONCE(tp->notsent_lowat, val); 3660 sk->sk_write_space(sk); 3661 break; 3662 case TCP_INQ: 3663 if (val > 1 || val < 0) 3664 err = -EINVAL; 3665 else 3666 tp->recvmsg_inq = val; 3667 break; 3668 case TCP_TX_DELAY: 3669 if (val) 3670 tcp_enable_tx_delay(); 3671 WRITE_ONCE(tp->tcp_tx_delay, val); 3672 break; 3673 default: 3674 err = -ENOPROTOOPT; 3675 break; 3676 } 3677 3678 sockopt_release_sock(sk); 3679 return err; 3680 } 3681 3682 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3683 unsigned int optlen) 3684 { 3685 const struct inet_connection_sock *icsk = inet_csk(sk); 3686 3687 if (level != SOL_TCP) 3688 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3689 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3690 optval, optlen); 3691 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3692 } 3693 EXPORT_SYMBOL(tcp_setsockopt); 3694 3695 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3696 struct tcp_info *info) 3697 { 3698 u64 stats[__TCP_CHRONO_MAX], total = 0; 3699 enum tcp_chrono i; 3700 3701 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3702 stats[i] = tp->chrono_stat[i - 1]; 3703 if (i == tp->chrono_type) 3704 stats[i] += tcp_jiffies32 - tp->chrono_start; 3705 stats[i] *= USEC_PER_SEC / HZ; 3706 total += stats[i]; 3707 } 3708 3709 info->tcpi_busy_time = total; 3710 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3711 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3712 } 3713 3714 /* Return information about state of tcp endpoint in API format. */ 3715 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3716 { 3717 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3718 const struct inet_connection_sock *icsk = inet_csk(sk); 3719 unsigned long rate; 3720 u32 now; 3721 u64 rate64; 3722 bool slow; 3723 3724 memset(info, 0, sizeof(*info)); 3725 if (sk->sk_type != SOCK_STREAM) 3726 return; 3727 3728 info->tcpi_state = inet_sk_state_load(sk); 3729 3730 /* Report meaningful fields for all TCP states, including listeners */ 3731 rate = READ_ONCE(sk->sk_pacing_rate); 3732 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3733 info->tcpi_pacing_rate = rate64; 3734 3735 rate = READ_ONCE(sk->sk_max_pacing_rate); 3736 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3737 info->tcpi_max_pacing_rate = rate64; 3738 3739 info->tcpi_reordering = tp->reordering; 3740 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3741 3742 if (info->tcpi_state == TCP_LISTEN) { 3743 /* listeners aliased fields : 3744 * tcpi_unacked -> Number of children ready for accept() 3745 * tcpi_sacked -> max backlog 3746 */ 3747 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3748 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3749 return; 3750 } 3751 3752 slow = lock_sock_fast(sk); 3753 3754 info->tcpi_ca_state = icsk->icsk_ca_state; 3755 info->tcpi_retransmits = icsk->icsk_retransmits; 3756 info->tcpi_probes = icsk->icsk_probes_out; 3757 info->tcpi_backoff = icsk->icsk_backoff; 3758 3759 if (tp->rx_opt.tstamp_ok) 3760 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3761 if (tcp_is_sack(tp)) 3762 info->tcpi_options |= TCPI_OPT_SACK; 3763 if (tp->rx_opt.wscale_ok) { 3764 info->tcpi_options |= TCPI_OPT_WSCALE; 3765 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3766 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3767 } 3768 3769 if (tp->ecn_flags & TCP_ECN_OK) 3770 info->tcpi_options |= TCPI_OPT_ECN; 3771 if (tp->ecn_flags & TCP_ECN_SEEN) 3772 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3773 if (tp->syn_data_acked) 3774 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3775 3776 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3777 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato, 3778 tcp_delack_max(sk))); 3779 info->tcpi_snd_mss = tp->mss_cache; 3780 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3781 3782 info->tcpi_unacked = tp->packets_out; 3783 info->tcpi_sacked = tp->sacked_out; 3784 3785 info->tcpi_lost = tp->lost_out; 3786 info->tcpi_retrans = tp->retrans_out; 3787 3788 now = tcp_jiffies32; 3789 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3790 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3791 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3792 3793 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3794 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3795 info->tcpi_rtt = tp->srtt_us >> 3; 3796 info->tcpi_rttvar = tp->mdev_us >> 2; 3797 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3798 info->tcpi_advmss = tp->advmss; 3799 3800 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3801 info->tcpi_rcv_space = tp->rcvq_space.space; 3802 3803 info->tcpi_total_retrans = tp->total_retrans; 3804 3805 info->tcpi_bytes_acked = tp->bytes_acked; 3806 info->tcpi_bytes_received = tp->bytes_received; 3807 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3808 tcp_get_info_chrono_stats(tp, info); 3809 3810 info->tcpi_segs_out = tp->segs_out; 3811 3812 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3813 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3814 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3815 3816 info->tcpi_min_rtt = tcp_min_rtt(tp); 3817 info->tcpi_data_segs_out = tp->data_segs_out; 3818 3819 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3820 rate64 = tcp_compute_delivery_rate(tp); 3821 if (rate64) 3822 info->tcpi_delivery_rate = rate64; 3823 info->tcpi_delivered = tp->delivered; 3824 info->tcpi_delivered_ce = tp->delivered_ce; 3825 info->tcpi_bytes_sent = tp->bytes_sent; 3826 info->tcpi_bytes_retrans = tp->bytes_retrans; 3827 info->tcpi_dsack_dups = tp->dsack_dups; 3828 info->tcpi_reord_seen = tp->reord_seen; 3829 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3830 info->tcpi_snd_wnd = tp->snd_wnd; 3831 info->tcpi_rcv_wnd = tp->rcv_wnd; 3832 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3833 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3834 unlock_sock_fast(sk, slow); 3835 } 3836 EXPORT_SYMBOL_GPL(tcp_get_info); 3837 3838 static size_t tcp_opt_stats_get_size(void) 3839 { 3840 return 3841 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3842 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3843 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3844 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3845 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3847 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3848 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3849 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3851 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3852 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3853 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3854 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3855 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3856 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3858 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3859 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3860 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3862 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3863 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3865 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3866 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3867 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3868 0; 3869 } 3870 3871 /* Returns TTL or hop limit of an incoming packet from skb. */ 3872 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3873 { 3874 if (skb->protocol == htons(ETH_P_IP)) 3875 return ip_hdr(skb)->ttl; 3876 else if (skb->protocol == htons(ETH_P_IPV6)) 3877 return ipv6_hdr(skb)->hop_limit; 3878 else 3879 return 0; 3880 } 3881 3882 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3883 const struct sk_buff *orig_skb, 3884 const struct sk_buff *ack_skb) 3885 { 3886 const struct tcp_sock *tp = tcp_sk(sk); 3887 struct sk_buff *stats; 3888 struct tcp_info info; 3889 unsigned long rate; 3890 u64 rate64; 3891 3892 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3893 if (!stats) 3894 return NULL; 3895 3896 tcp_get_info_chrono_stats(tp, &info); 3897 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3898 info.tcpi_busy_time, TCP_NLA_PAD); 3899 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3900 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3901 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3902 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3903 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3904 tp->data_segs_out, TCP_NLA_PAD); 3905 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3906 tp->total_retrans, TCP_NLA_PAD); 3907 3908 rate = READ_ONCE(sk->sk_pacing_rate); 3909 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3910 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3911 3912 rate64 = tcp_compute_delivery_rate(tp); 3913 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3914 3915 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3916 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3917 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3918 3919 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3920 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3921 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3922 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3923 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3924 3925 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3926 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3927 3928 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3929 TCP_NLA_PAD); 3930 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3931 TCP_NLA_PAD); 3932 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3933 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3934 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3935 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3936 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3937 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3938 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3939 TCP_NLA_PAD); 3940 if (ack_skb) 3941 nla_put_u8(stats, TCP_NLA_TTL, 3942 tcp_skb_ttl_or_hop_limit(ack_skb)); 3943 3944 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3945 return stats; 3946 } 3947 3948 int do_tcp_getsockopt(struct sock *sk, int level, 3949 int optname, sockptr_t optval, sockptr_t optlen) 3950 { 3951 struct inet_connection_sock *icsk = inet_csk(sk); 3952 struct tcp_sock *tp = tcp_sk(sk); 3953 struct net *net = sock_net(sk); 3954 int val, len; 3955 3956 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3957 return -EFAULT; 3958 3959 len = min_t(unsigned int, len, sizeof(int)); 3960 3961 if (len < 0) 3962 return -EINVAL; 3963 3964 switch (optname) { 3965 case TCP_MAXSEG: 3966 val = tp->mss_cache; 3967 if (tp->rx_opt.user_mss && 3968 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3969 val = tp->rx_opt.user_mss; 3970 if (tp->repair) 3971 val = tp->rx_opt.mss_clamp; 3972 break; 3973 case TCP_NODELAY: 3974 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3975 break; 3976 case TCP_CORK: 3977 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3978 break; 3979 case TCP_KEEPIDLE: 3980 val = keepalive_time_when(tp) / HZ; 3981 break; 3982 case TCP_KEEPINTVL: 3983 val = keepalive_intvl_when(tp) / HZ; 3984 break; 3985 case TCP_KEEPCNT: 3986 val = keepalive_probes(tp); 3987 break; 3988 case TCP_SYNCNT: 3989 val = READ_ONCE(icsk->icsk_syn_retries) ? : 3990 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3991 break; 3992 case TCP_LINGER2: 3993 val = READ_ONCE(tp->linger2); 3994 if (val >= 0) 3995 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 3996 break; 3997 case TCP_DEFER_ACCEPT: 3998 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 3999 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4000 TCP_RTO_MAX / HZ); 4001 break; 4002 case TCP_WINDOW_CLAMP: 4003 val = tp->window_clamp; 4004 break; 4005 case TCP_INFO: { 4006 struct tcp_info info; 4007 4008 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4009 return -EFAULT; 4010 4011 tcp_get_info(sk, &info); 4012 4013 len = min_t(unsigned int, len, sizeof(info)); 4014 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4015 return -EFAULT; 4016 if (copy_to_sockptr(optval, &info, len)) 4017 return -EFAULT; 4018 return 0; 4019 } 4020 case TCP_CC_INFO: { 4021 const struct tcp_congestion_ops *ca_ops; 4022 union tcp_cc_info info; 4023 size_t sz = 0; 4024 int attr; 4025 4026 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4027 return -EFAULT; 4028 4029 ca_ops = icsk->icsk_ca_ops; 4030 if (ca_ops && ca_ops->get_info) 4031 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4032 4033 len = min_t(unsigned int, len, sz); 4034 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4035 return -EFAULT; 4036 if (copy_to_sockptr(optval, &info, len)) 4037 return -EFAULT; 4038 return 0; 4039 } 4040 case TCP_QUICKACK: 4041 val = !inet_csk_in_pingpong_mode(sk); 4042 break; 4043 4044 case TCP_CONGESTION: 4045 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4046 return -EFAULT; 4047 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4048 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4049 return -EFAULT; 4050 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4051 return -EFAULT; 4052 return 0; 4053 4054 case TCP_ULP: 4055 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4056 return -EFAULT; 4057 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4058 if (!icsk->icsk_ulp_ops) { 4059 len = 0; 4060 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4061 return -EFAULT; 4062 return 0; 4063 } 4064 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4065 return -EFAULT; 4066 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4067 return -EFAULT; 4068 return 0; 4069 4070 case TCP_FASTOPEN_KEY: { 4071 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4072 unsigned int key_len; 4073 4074 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4075 return -EFAULT; 4076 4077 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4078 TCP_FASTOPEN_KEY_LENGTH; 4079 len = min_t(unsigned int, len, key_len); 4080 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4081 return -EFAULT; 4082 if (copy_to_sockptr(optval, key, len)) 4083 return -EFAULT; 4084 return 0; 4085 } 4086 case TCP_THIN_LINEAR_TIMEOUTS: 4087 val = tp->thin_lto; 4088 break; 4089 4090 case TCP_THIN_DUPACK: 4091 val = 0; 4092 break; 4093 4094 case TCP_REPAIR: 4095 val = tp->repair; 4096 break; 4097 4098 case TCP_REPAIR_QUEUE: 4099 if (tp->repair) 4100 val = tp->repair_queue; 4101 else 4102 return -EINVAL; 4103 break; 4104 4105 case TCP_REPAIR_WINDOW: { 4106 struct tcp_repair_window opt; 4107 4108 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4109 return -EFAULT; 4110 4111 if (len != sizeof(opt)) 4112 return -EINVAL; 4113 4114 if (!tp->repair) 4115 return -EPERM; 4116 4117 opt.snd_wl1 = tp->snd_wl1; 4118 opt.snd_wnd = tp->snd_wnd; 4119 opt.max_window = tp->max_window; 4120 opt.rcv_wnd = tp->rcv_wnd; 4121 opt.rcv_wup = tp->rcv_wup; 4122 4123 if (copy_to_sockptr(optval, &opt, len)) 4124 return -EFAULT; 4125 return 0; 4126 } 4127 case TCP_QUEUE_SEQ: 4128 if (tp->repair_queue == TCP_SEND_QUEUE) 4129 val = tp->write_seq; 4130 else if (tp->repair_queue == TCP_RECV_QUEUE) 4131 val = tp->rcv_nxt; 4132 else 4133 return -EINVAL; 4134 break; 4135 4136 case TCP_USER_TIMEOUT: 4137 val = READ_ONCE(icsk->icsk_user_timeout); 4138 break; 4139 4140 case TCP_FASTOPEN: 4141 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4142 break; 4143 4144 case TCP_FASTOPEN_CONNECT: 4145 val = tp->fastopen_connect; 4146 break; 4147 4148 case TCP_FASTOPEN_NO_COOKIE: 4149 val = tp->fastopen_no_cookie; 4150 break; 4151 4152 case TCP_TX_DELAY: 4153 val = READ_ONCE(tp->tcp_tx_delay); 4154 break; 4155 4156 case TCP_TIMESTAMP: 4157 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4158 break; 4159 case TCP_NOTSENT_LOWAT: 4160 val = READ_ONCE(tp->notsent_lowat); 4161 break; 4162 case TCP_INQ: 4163 val = tp->recvmsg_inq; 4164 break; 4165 case TCP_SAVE_SYN: 4166 val = tp->save_syn; 4167 break; 4168 case TCP_SAVED_SYN: { 4169 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4170 return -EFAULT; 4171 4172 sockopt_lock_sock(sk); 4173 if (tp->saved_syn) { 4174 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4175 len = tcp_saved_syn_len(tp->saved_syn); 4176 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4177 sockopt_release_sock(sk); 4178 return -EFAULT; 4179 } 4180 sockopt_release_sock(sk); 4181 return -EINVAL; 4182 } 4183 len = tcp_saved_syn_len(tp->saved_syn); 4184 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4185 sockopt_release_sock(sk); 4186 return -EFAULT; 4187 } 4188 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4189 sockopt_release_sock(sk); 4190 return -EFAULT; 4191 } 4192 tcp_saved_syn_free(tp); 4193 sockopt_release_sock(sk); 4194 } else { 4195 sockopt_release_sock(sk); 4196 len = 0; 4197 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4198 return -EFAULT; 4199 } 4200 return 0; 4201 } 4202 #ifdef CONFIG_MMU 4203 case TCP_ZEROCOPY_RECEIVE: { 4204 struct scm_timestamping_internal tss; 4205 struct tcp_zerocopy_receive zc = {}; 4206 int err; 4207 4208 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4209 return -EFAULT; 4210 if (len < 0 || 4211 len < offsetofend(struct tcp_zerocopy_receive, length)) 4212 return -EINVAL; 4213 if (unlikely(len > sizeof(zc))) { 4214 err = check_zeroed_sockptr(optval, sizeof(zc), 4215 len - sizeof(zc)); 4216 if (err < 1) 4217 return err == 0 ? -EINVAL : err; 4218 len = sizeof(zc); 4219 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4220 return -EFAULT; 4221 } 4222 if (copy_from_sockptr(&zc, optval, len)) 4223 return -EFAULT; 4224 if (zc.reserved) 4225 return -EINVAL; 4226 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4227 return -EINVAL; 4228 sockopt_lock_sock(sk); 4229 err = tcp_zerocopy_receive(sk, &zc, &tss); 4230 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4231 &zc, &len, err); 4232 sockopt_release_sock(sk); 4233 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4234 goto zerocopy_rcv_cmsg; 4235 switch (len) { 4236 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4237 goto zerocopy_rcv_cmsg; 4238 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4239 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4240 case offsetofend(struct tcp_zerocopy_receive, flags): 4241 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4242 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4243 case offsetofend(struct tcp_zerocopy_receive, err): 4244 goto zerocopy_rcv_sk_err; 4245 case offsetofend(struct tcp_zerocopy_receive, inq): 4246 goto zerocopy_rcv_inq; 4247 case offsetofend(struct tcp_zerocopy_receive, length): 4248 default: 4249 goto zerocopy_rcv_out; 4250 } 4251 zerocopy_rcv_cmsg: 4252 if (zc.msg_flags & TCP_CMSG_TS) 4253 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4254 else 4255 zc.msg_flags = 0; 4256 zerocopy_rcv_sk_err: 4257 if (!err) 4258 zc.err = sock_error(sk); 4259 zerocopy_rcv_inq: 4260 zc.inq = tcp_inq_hint(sk); 4261 zerocopy_rcv_out: 4262 if (!err && copy_to_sockptr(optval, &zc, len)) 4263 err = -EFAULT; 4264 return err; 4265 } 4266 #endif 4267 default: 4268 return -ENOPROTOOPT; 4269 } 4270 4271 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4272 return -EFAULT; 4273 if (copy_to_sockptr(optval, &val, len)) 4274 return -EFAULT; 4275 return 0; 4276 } 4277 4278 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4279 { 4280 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4281 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4282 */ 4283 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4284 return true; 4285 4286 return false; 4287 } 4288 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4289 4290 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4291 int __user *optlen) 4292 { 4293 struct inet_connection_sock *icsk = inet_csk(sk); 4294 4295 if (level != SOL_TCP) 4296 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4297 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4298 optval, optlen); 4299 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4300 USER_SOCKPTR(optlen)); 4301 } 4302 EXPORT_SYMBOL(tcp_getsockopt); 4303 4304 #ifdef CONFIG_TCP_MD5SIG 4305 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4306 static DEFINE_MUTEX(tcp_md5sig_mutex); 4307 static bool tcp_md5sig_pool_populated = false; 4308 4309 static void __tcp_alloc_md5sig_pool(void) 4310 { 4311 struct crypto_ahash *hash; 4312 int cpu; 4313 4314 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4315 if (IS_ERR(hash)) 4316 return; 4317 4318 for_each_possible_cpu(cpu) { 4319 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4320 struct ahash_request *req; 4321 4322 if (!scratch) { 4323 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4324 sizeof(struct tcphdr), 4325 GFP_KERNEL, 4326 cpu_to_node(cpu)); 4327 if (!scratch) 4328 return; 4329 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4330 } 4331 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4332 continue; 4333 4334 req = ahash_request_alloc(hash, GFP_KERNEL); 4335 if (!req) 4336 return; 4337 4338 ahash_request_set_callback(req, 0, NULL, NULL); 4339 4340 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4341 } 4342 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4343 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4344 */ 4345 smp_wmb(); 4346 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4347 * and tcp_get_md5sig_pool(). 4348 */ 4349 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4350 } 4351 4352 bool tcp_alloc_md5sig_pool(void) 4353 { 4354 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4355 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4356 mutex_lock(&tcp_md5sig_mutex); 4357 4358 if (!tcp_md5sig_pool_populated) 4359 __tcp_alloc_md5sig_pool(); 4360 4361 mutex_unlock(&tcp_md5sig_mutex); 4362 } 4363 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4364 return READ_ONCE(tcp_md5sig_pool_populated); 4365 } 4366 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4367 4368 4369 /** 4370 * tcp_get_md5sig_pool - get md5sig_pool for this user 4371 * 4372 * We use percpu structure, so if we succeed, we exit with preemption 4373 * and BH disabled, to make sure another thread or softirq handling 4374 * wont try to get same context. 4375 */ 4376 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4377 { 4378 local_bh_disable(); 4379 4380 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4381 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4382 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4383 smp_rmb(); 4384 return this_cpu_ptr(&tcp_md5sig_pool); 4385 } 4386 local_bh_enable(); 4387 return NULL; 4388 } 4389 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4390 4391 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4392 const struct sk_buff *skb, unsigned int header_len) 4393 { 4394 struct scatterlist sg; 4395 const struct tcphdr *tp = tcp_hdr(skb); 4396 struct ahash_request *req = hp->md5_req; 4397 unsigned int i; 4398 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4399 skb_headlen(skb) - header_len : 0; 4400 const struct skb_shared_info *shi = skb_shinfo(skb); 4401 struct sk_buff *frag_iter; 4402 4403 sg_init_table(&sg, 1); 4404 4405 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4406 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4407 if (crypto_ahash_update(req)) 4408 return 1; 4409 4410 for (i = 0; i < shi->nr_frags; ++i) { 4411 const skb_frag_t *f = &shi->frags[i]; 4412 unsigned int offset = skb_frag_off(f); 4413 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4414 4415 sg_set_page(&sg, page, skb_frag_size(f), 4416 offset_in_page(offset)); 4417 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4418 if (crypto_ahash_update(req)) 4419 return 1; 4420 } 4421 4422 skb_walk_frags(skb, frag_iter) 4423 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4424 return 1; 4425 4426 return 0; 4427 } 4428 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4429 4430 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4431 { 4432 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4433 struct scatterlist sg; 4434 4435 sg_init_one(&sg, key->key, keylen); 4436 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4437 4438 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4439 return data_race(crypto_ahash_update(hp->md5_req)); 4440 } 4441 EXPORT_SYMBOL(tcp_md5_hash_key); 4442 4443 /* Called with rcu_read_lock() */ 4444 enum skb_drop_reason 4445 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4446 const void *saddr, const void *daddr, 4447 int family, int dif, int sdif) 4448 { 4449 /* 4450 * This gets called for each TCP segment that arrives 4451 * so we want to be efficient. 4452 * We have 3 drop cases: 4453 * o No MD5 hash and one expected. 4454 * o MD5 hash and we're not expecting one. 4455 * o MD5 hash and its wrong. 4456 */ 4457 const __u8 *hash_location = NULL; 4458 struct tcp_md5sig_key *hash_expected; 4459 const struct tcphdr *th = tcp_hdr(skb); 4460 const struct tcp_sock *tp = tcp_sk(sk); 4461 int genhash, l3index; 4462 u8 newhash[16]; 4463 4464 /* sdif set, means packet ingressed via a device 4465 * in an L3 domain and dif is set to the l3mdev 4466 */ 4467 l3index = sdif ? dif : 0; 4468 4469 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4470 hash_location = tcp_parse_md5sig_option(th); 4471 4472 /* We've parsed the options - do we have a hash? */ 4473 if (!hash_expected && !hash_location) 4474 return SKB_NOT_DROPPED_YET; 4475 4476 if (hash_expected && !hash_location) { 4477 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4478 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4479 } 4480 4481 if (!hash_expected && hash_location) { 4482 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4483 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4484 } 4485 4486 /* Check the signature. 4487 * To support dual stack listeners, we need to handle 4488 * IPv4-mapped case. 4489 */ 4490 if (family == AF_INET) 4491 genhash = tcp_v4_md5_hash_skb(newhash, 4492 hash_expected, 4493 NULL, skb); 4494 else 4495 genhash = tp->af_specific->calc_md5_hash(newhash, 4496 hash_expected, 4497 NULL, skb); 4498 4499 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4500 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4501 if (family == AF_INET) { 4502 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4503 saddr, ntohs(th->source), 4504 daddr, ntohs(th->dest), 4505 genhash ? " tcp_v4_calc_md5_hash failed" 4506 : "", l3index); 4507 } else { 4508 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4509 genhash ? "failed" : "mismatch", 4510 saddr, ntohs(th->source), 4511 daddr, ntohs(th->dest), l3index); 4512 } 4513 return SKB_DROP_REASON_TCP_MD5FAILURE; 4514 } 4515 return SKB_NOT_DROPPED_YET; 4516 } 4517 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4518 4519 #endif 4520 4521 void tcp_done(struct sock *sk) 4522 { 4523 struct request_sock *req; 4524 4525 /* We might be called with a new socket, after 4526 * inet_csk_prepare_forced_close() has been called 4527 * so we can not use lockdep_sock_is_held(sk) 4528 */ 4529 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4530 4531 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4532 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4533 4534 tcp_set_state(sk, TCP_CLOSE); 4535 tcp_clear_xmit_timers(sk); 4536 if (req) 4537 reqsk_fastopen_remove(sk, req, false); 4538 4539 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4540 4541 if (!sock_flag(sk, SOCK_DEAD)) 4542 sk->sk_state_change(sk); 4543 else 4544 inet_csk_destroy_sock(sk); 4545 } 4546 EXPORT_SYMBOL_GPL(tcp_done); 4547 4548 int tcp_abort(struct sock *sk, int err) 4549 { 4550 int state = inet_sk_state_load(sk); 4551 4552 if (state == TCP_NEW_SYN_RECV) { 4553 struct request_sock *req = inet_reqsk(sk); 4554 4555 local_bh_disable(); 4556 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4557 local_bh_enable(); 4558 return 0; 4559 } 4560 if (state == TCP_TIME_WAIT) { 4561 struct inet_timewait_sock *tw = inet_twsk(sk); 4562 4563 refcount_inc(&tw->tw_refcnt); 4564 local_bh_disable(); 4565 inet_twsk_deschedule_put(tw); 4566 local_bh_enable(); 4567 return 0; 4568 } 4569 4570 /* BPF context ensures sock locking. */ 4571 if (!has_current_bpf_ctx()) 4572 /* Don't race with userspace socket closes such as tcp_close. */ 4573 lock_sock(sk); 4574 4575 if (sk->sk_state == TCP_LISTEN) { 4576 tcp_set_state(sk, TCP_CLOSE); 4577 inet_csk_listen_stop(sk); 4578 } 4579 4580 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4581 local_bh_disable(); 4582 bh_lock_sock(sk); 4583 4584 if (!sock_flag(sk, SOCK_DEAD)) { 4585 WRITE_ONCE(sk->sk_err, err); 4586 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4587 smp_wmb(); 4588 sk_error_report(sk); 4589 if (tcp_need_reset(sk->sk_state)) 4590 tcp_send_active_reset(sk, GFP_ATOMIC); 4591 tcp_done(sk); 4592 } 4593 4594 bh_unlock_sock(sk); 4595 local_bh_enable(); 4596 tcp_write_queue_purge(sk); 4597 if (!has_current_bpf_ctx()) 4598 release_sock(sk); 4599 return 0; 4600 } 4601 EXPORT_SYMBOL_GPL(tcp_abort); 4602 4603 extern struct tcp_congestion_ops tcp_reno; 4604 4605 static __initdata unsigned long thash_entries; 4606 static int __init set_thash_entries(char *str) 4607 { 4608 ssize_t ret; 4609 4610 if (!str) 4611 return 0; 4612 4613 ret = kstrtoul(str, 0, &thash_entries); 4614 if (ret) 4615 return 0; 4616 4617 return 1; 4618 } 4619 __setup("thash_entries=", set_thash_entries); 4620 4621 static void __init tcp_init_mem(void) 4622 { 4623 unsigned long limit = nr_free_buffer_pages() / 16; 4624 4625 limit = max(limit, 128UL); 4626 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4627 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4628 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4629 } 4630 4631 void __init tcp_init(void) 4632 { 4633 int max_rshare, max_wshare, cnt; 4634 unsigned long limit; 4635 unsigned int i; 4636 4637 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4638 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4639 sizeof_field(struct sk_buff, cb)); 4640 4641 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4642 4643 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4644 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4645 4646 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4647 thash_entries, 21, /* one slot per 2 MB*/ 4648 0, 64 * 1024); 4649 tcp_hashinfo.bind_bucket_cachep = 4650 kmem_cache_create("tcp_bind_bucket", 4651 sizeof(struct inet_bind_bucket), 0, 4652 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4653 SLAB_ACCOUNT, 4654 NULL); 4655 tcp_hashinfo.bind2_bucket_cachep = 4656 kmem_cache_create("tcp_bind2_bucket", 4657 sizeof(struct inet_bind2_bucket), 0, 4658 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4659 SLAB_ACCOUNT, 4660 NULL); 4661 4662 /* Size and allocate the main established and bind bucket 4663 * hash tables. 4664 * 4665 * The methodology is similar to that of the buffer cache. 4666 */ 4667 tcp_hashinfo.ehash = 4668 alloc_large_system_hash("TCP established", 4669 sizeof(struct inet_ehash_bucket), 4670 thash_entries, 4671 17, /* one slot per 128 KB of memory */ 4672 0, 4673 NULL, 4674 &tcp_hashinfo.ehash_mask, 4675 0, 4676 thash_entries ? 0 : 512 * 1024); 4677 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4678 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4679 4680 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4681 panic("TCP: failed to alloc ehash_locks"); 4682 tcp_hashinfo.bhash = 4683 alloc_large_system_hash("TCP bind", 4684 2 * sizeof(struct inet_bind_hashbucket), 4685 tcp_hashinfo.ehash_mask + 1, 4686 17, /* one slot per 128 KB of memory */ 4687 0, 4688 &tcp_hashinfo.bhash_size, 4689 NULL, 4690 0, 4691 64 * 1024); 4692 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4693 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4694 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4695 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4696 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4697 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4698 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4699 } 4700 4701 tcp_hashinfo.pernet = false; 4702 4703 cnt = tcp_hashinfo.ehash_mask + 1; 4704 sysctl_tcp_max_orphans = cnt / 2; 4705 4706 tcp_init_mem(); 4707 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4708 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4709 max_wshare = min(4UL*1024*1024, limit); 4710 max_rshare = min(6UL*1024*1024, limit); 4711 4712 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4713 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4714 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4715 4716 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4717 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4718 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4719 4720 pr_info("Hash tables configured (established %u bind %u)\n", 4721 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4722 4723 tcp_v4_init(); 4724 tcp_metrics_init(); 4725 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4726 tcp_tasklet_init(); 4727 mptcp_init(); 4728 } 4729