xref: /openbmc/linux/net/ipv4/tcp.c (revision 2ae2e7cf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 	tcp_scaling_ratio_init(sk);
461 
462 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 	sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466 
467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 	struct sk_buff *skb = tcp_write_queue_tail(sk);
470 
471 	if (tsflags && skb) {
472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
473 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474 
475 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 			tcb->txstamp_ack = 1;
478 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 	}
481 }
482 
483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 	if (tcp_epollin_ready(sk, target))
486 		return true;
487 	return sk_is_readable(sk);
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	u8 shutdown;
503 	int state;
504 
505 	sock_poll_wait(file, sock, wait);
506 
507 	state = inet_sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * EPOLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that EPOLLHUP is incompatible
524 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	shutdown = READ_ONCE(sk->sk_shutdown);
546 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 		u16 urg_data = READ_ONCE(tp->urg_data);
556 
557 		if (unlikely(urg_data) &&
558 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE))
560 			target++;
561 
562 		if (tcp_stream_is_readable(sk, target))
563 			mask |= EPOLLIN | EPOLLRDNORM;
564 
565 		if (!(shutdown & SEND_SHUTDOWN)) {
566 			if (__sk_stream_is_writeable(sk, 1)) {
567 				mask |= EPOLLOUT | EPOLLWRNORM;
568 			} else {  /* send SIGIO later */
569 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571 
572 				/* Race breaker. If space is freed after
573 				 * wspace test but before the flags are set,
574 				 * IO signal will be lost. Memory barrier
575 				 * pairs with the input side.
576 				 */
577 				smp_mb__after_atomic();
578 				if (__sk_stream_is_writeable(sk, 1))
579 					mask |= EPOLLOUT | EPOLLWRNORM;
580 			}
581 		} else
582 			mask |= EPOLLOUT | EPOLLWRNORM;
583 
584 		if (urg_data & TCP_URG_VALID)
585 			mask |= EPOLLPRI;
586 	} else if (state == TCP_SYN_SENT &&
587 		   inet_test_bit(DEFER_CONNECT, sk)) {
588 		/* Active TCP fastopen socket with defer_connect
589 		 * Return EPOLLOUT so application can call write()
590 		 * in order for kernel to generate SYN+data
591 		 */
592 		mask |= EPOLLOUT | EPOLLWRNORM;
593 	}
594 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
595 	smp_rmb();
596 	if (READ_ONCE(sk->sk_err) ||
597 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
598 		mask |= EPOLLERR;
599 
600 	return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603 
604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	int answ;
608 	bool slow;
609 
610 	switch (cmd) {
611 	case SIOCINQ:
612 		if (sk->sk_state == TCP_LISTEN)
613 			return -EINVAL;
614 
615 		slow = lock_sock_fast(sk);
616 		answ = tcp_inq(sk);
617 		unlock_sock_fast(sk, slow);
618 		break;
619 	case SIOCATMARK:
620 		answ = READ_ONCE(tp->urg_data) &&
621 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = READ_ONCE(tp->write_seq) -
640 			       READ_ONCE(tp->snd_nxt);
641 		break;
642 	default:
643 		return -ENOIOCTLCMD;
644 	}
645 
646 	*karg = answ;
647 	return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650 
651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 	tp->pushed_seq = tp->write_seq;
655 }
656 
657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661 
662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666 
667 	tcb->seq     = tcb->end_seq = tp->write_seq;
668 	tcb->tcp_flags = TCPHDR_ACK;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk_wmem_queued_add(sk, skb->truesize);
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 	       tcp_skb_can_collapse_to(skb);
703 }
704 
705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 	      int nonagle, int size_goal)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct sk_buff *skb;
710 
711 	skb = tcp_write_queue_tail(sk);
712 	if (!skb)
713 		return;
714 	if (!(flags & MSG_MORE) || forced_push(tp))
715 		tcp_mark_push(tp, skb);
716 
717 	tcp_mark_urg(tp, flags);
718 
719 	if (tcp_should_autocork(sk, skb, size_goal)) {
720 
721 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
722 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 		}
726 		/* It is possible TX completion already happened
727 		 * before we set TSQ_THROTTLED.
728 		 */
729 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
730 			return;
731 	}
732 
733 	if (flags & MSG_MORE)
734 		nonagle = TCP_NAGLE_CORK;
735 
736 	__tcp_push_pending_frames(sk, mss_now, nonagle);
737 }
738 
739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
740 				unsigned int offset, size_t len)
741 {
742 	struct tcp_splice_state *tss = rd_desc->arg.data;
743 	int ret;
744 
745 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
746 			      min(rd_desc->count, len), tss->flags);
747 	if (ret > 0)
748 		rd_desc->count -= ret;
749 	return ret;
750 }
751 
752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
753 {
754 	/* Store TCP splice context information in read_descriptor_t. */
755 	read_descriptor_t rd_desc = {
756 		.arg.data = tss,
757 		.count	  = tss->len,
758 	};
759 
760 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
761 }
762 
763 /**
764  *  tcp_splice_read - splice data from TCP socket to a pipe
765  * @sock:	socket to splice from
766  * @ppos:	position (not valid)
767  * @pipe:	pipe to splice to
768  * @len:	number of bytes to splice
769  * @flags:	splice modifier flags
770  *
771  * Description:
772  *    Will read pages from given socket and fill them into a pipe.
773  *
774  **/
775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
776 			struct pipe_inode_info *pipe, size_t len,
777 			unsigned int flags)
778 {
779 	struct sock *sk = sock->sk;
780 	struct tcp_splice_state tss = {
781 		.pipe = pipe,
782 		.len = len,
783 		.flags = flags,
784 	};
785 	long timeo;
786 	ssize_t spliced;
787 	int ret;
788 
789 	sock_rps_record_flow(sk);
790 	/*
791 	 * We can't seek on a socket input
792 	 */
793 	if (unlikely(*ppos))
794 		return -ESPIPE;
795 
796 	ret = spliced = 0;
797 
798 	lock_sock(sk);
799 
800 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
801 	while (tss.len) {
802 		ret = __tcp_splice_read(sk, &tss);
803 		if (ret < 0)
804 			break;
805 		else if (!ret) {
806 			if (spliced)
807 				break;
808 			if (sock_flag(sk, SOCK_DONE))
809 				break;
810 			if (sk->sk_err) {
811 				ret = sock_error(sk);
812 				break;
813 			}
814 			if (sk->sk_shutdown & RCV_SHUTDOWN)
815 				break;
816 			if (sk->sk_state == TCP_CLOSE) {
817 				/*
818 				 * This occurs when user tries to read
819 				 * from never connected socket.
820 				 */
821 				ret = -ENOTCONN;
822 				break;
823 			}
824 			if (!timeo) {
825 				ret = -EAGAIN;
826 				break;
827 			}
828 			/* if __tcp_splice_read() got nothing while we have
829 			 * an skb in receive queue, we do not want to loop.
830 			 * This might happen with URG data.
831 			 */
832 			if (!skb_queue_empty(&sk->sk_receive_queue))
833 				break;
834 			ret = sk_wait_data(sk, &timeo, NULL);
835 			if (ret < 0)
836 				break;
837 			if (signal_pending(current)) {
838 				ret = sock_intr_errno(timeo);
839 				break;
840 			}
841 			continue;
842 		}
843 		tss.len -= ret;
844 		spliced += ret;
845 
846 		if (!tss.len || !timeo)
847 			break;
848 		release_sock(sk);
849 		lock_sock(sk);
850 
851 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
852 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
853 		    signal_pending(current))
854 			break;
855 	}
856 
857 	release_sock(sk);
858 
859 	if (spliced)
860 		return spliced;
861 
862 	return ret;
863 }
864 EXPORT_SYMBOL(tcp_splice_read);
865 
866 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
867 				     bool force_schedule)
868 {
869 	struct sk_buff *skb;
870 
871 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
872 	if (likely(skb)) {
873 		bool mem_scheduled;
874 
875 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
876 		if (force_schedule) {
877 			mem_scheduled = true;
878 			sk_forced_mem_schedule(sk, skb->truesize);
879 		} else {
880 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
881 		}
882 		if (likely(mem_scheduled)) {
883 			skb_reserve(skb, MAX_TCP_HEADER);
884 			skb->ip_summed = CHECKSUM_PARTIAL;
885 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
886 			return skb;
887 		}
888 		__kfree_skb(skb);
889 	} else {
890 		sk->sk_prot->enter_memory_pressure(sk);
891 		sk_stream_moderate_sndbuf(sk);
892 	}
893 	return NULL;
894 }
895 
896 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
897 				       int large_allowed)
898 {
899 	struct tcp_sock *tp = tcp_sk(sk);
900 	u32 new_size_goal, size_goal;
901 
902 	if (!large_allowed)
903 		return mss_now;
904 
905 	/* Note : tcp_tso_autosize() will eventually split this later */
906 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
907 
908 	/* We try hard to avoid divides here */
909 	size_goal = tp->gso_segs * mss_now;
910 	if (unlikely(new_size_goal < size_goal ||
911 		     new_size_goal >= size_goal + mss_now)) {
912 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
913 				     sk->sk_gso_max_segs);
914 		size_goal = tp->gso_segs * mss_now;
915 	}
916 
917 	return max(size_goal, mss_now);
918 }
919 
920 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
921 {
922 	int mss_now;
923 
924 	mss_now = tcp_current_mss(sk);
925 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
926 
927 	return mss_now;
928 }
929 
930 /* In some cases, sendmsg() could have added an skb to the write queue,
931  * but failed adding payload on it. We need to remove it to consume less
932  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
933  * epoll() users. Another reason is that tcp_write_xmit() does not like
934  * finding an empty skb in the write queue.
935  */
936 void tcp_remove_empty_skb(struct sock *sk)
937 {
938 	struct sk_buff *skb = tcp_write_queue_tail(sk);
939 
940 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
941 		tcp_unlink_write_queue(skb, sk);
942 		if (tcp_write_queue_empty(sk))
943 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
944 		tcp_wmem_free_skb(sk, skb);
945 	}
946 }
947 
948 /* skb changing from pure zc to mixed, must charge zc */
949 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
950 {
951 	if (unlikely(skb_zcopy_pure(skb))) {
952 		u32 extra = skb->truesize -
953 			    SKB_TRUESIZE(skb_end_offset(skb));
954 
955 		if (!sk_wmem_schedule(sk, extra))
956 			return -ENOMEM;
957 
958 		sk_mem_charge(sk, extra);
959 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
960 	}
961 	return 0;
962 }
963 
964 
965 int tcp_wmem_schedule(struct sock *sk, int copy)
966 {
967 	int left;
968 
969 	if (likely(sk_wmem_schedule(sk, copy)))
970 		return copy;
971 
972 	/* We could be in trouble if we have nothing queued.
973 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
974 	 * to guarantee some progress.
975 	 */
976 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
977 	if (left > 0)
978 		sk_forced_mem_schedule(sk, min(left, copy));
979 	return min(copy, sk->sk_forward_alloc);
980 }
981 
982 void tcp_free_fastopen_req(struct tcp_sock *tp)
983 {
984 	if (tp->fastopen_req) {
985 		kfree(tp->fastopen_req);
986 		tp->fastopen_req = NULL;
987 	}
988 }
989 
990 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
991 			 size_t size, struct ubuf_info *uarg)
992 {
993 	struct tcp_sock *tp = tcp_sk(sk);
994 	struct inet_sock *inet = inet_sk(sk);
995 	struct sockaddr *uaddr = msg->msg_name;
996 	int err, flags;
997 
998 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
999 	      TFO_CLIENT_ENABLE) ||
1000 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1001 	     uaddr->sa_family == AF_UNSPEC))
1002 		return -EOPNOTSUPP;
1003 	if (tp->fastopen_req)
1004 		return -EALREADY; /* Another Fast Open is in progress */
1005 
1006 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1007 				   sk->sk_allocation);
1008 	if (unlikely(!tp->fastopen_req))
1009 		return -ENOBUFS;
1010 	tp->fastopen_req->data = msg;
1011 	tp->fastopen_req->size = size;
1012 	tp->fastopen_req->uarg = uarg;
1013 
1014 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1015 		err = tcp_connect(sk);
1016 		/* Same failure procedure as in tcp_v4/6_connect */
1017 		if (err) {
1018 			tcp_set_state(sk, TCP_CLOSE);
1019 			inet->inet_dport = 0;
1020 			sk->sk_route_caps = 0;
1021 		}
1022 	}
1023 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1024 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1025 				    msg->msg_namelen, flags, 1);
1026 	/* fastopen_req could already be freed in __inet_stream_connect
1027 	 * if the connection times out or gets rst
1028 	 */
1029 	if (tp->fastopen_req) {
1030 		*copied = tp->fastopen_req->copied;
1031 		tcp_free_fastopen_req(tp);
1032 		inet_clear_bit(DEFER_CONNECT, sk);
1033 	}
1034 	return err;
1035 }
1036 
1037 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1038 {
1039 	struct tcp_sock *tp = tcp_sk(sk);
1040 	struct ubuf_info *uarg = NULL;
1041 	struct sk_buff *skb;
1042 	struct sockcm_cookie sockc;
1043 	int flags, err, copied = 0;
1044 	int mss_now = 0, size_goal, copied_syn = 0;
1045 	int process_backlog = 0;
1046 	int zc = 0;
1047 	long timeo;
1048 
1049 	flags = msg->msg_flags;
1050 
1051 	if ((flags & MSG_ZEROCOPY) && size) {
1052 		if (msg->msg_ubuf) {
1053 			uarg = msg->msg_ubuf;
1054 			if (sk->sk_route_caps & NETIF_F_SG)
1055 				zc = MSG_ZEROCOPY;
1056 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1057 			skb = tcp_write_queue_tail(sk);
1058 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1059 			if (!uarg) {
1060 				err = -ENOBUFS;
1061 				goto out_err;
1062 			}
1063 			if (sk->sk_route_caps & NETIF_F_SG)
1064 				zc = MSG_ZEROCOPY;
1065 			else
1066 				uarg_to_msgzc(uarg)->zerocopy = 0;
1067 		}
1068 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1069 		if (sk->sk_route_caps & NETIF_F_SG)
1070 			zc = MSG_SPLICE_PAGES;
1071 	}
1072 
1073 	if (unlikely(flags & MSG_FASTOPEN ||
1074 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1075 	    !tp->repair) {
1076 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1077 		if (err == -EINPROGRESS && copied_syn > 0)
1078 			goto out;
1079 		else if (err)
1080 			goto out_err;
1081 	}
1082 
1083 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1084 
1085 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1086 
1087 	/* Wait for a connection to finish. One exception is TCP Fast Open
1088 	 * (passive side) where data is allowed to be sent before a connection
1089 	 * is fully established.
1090 	 */
1091 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1092 	    !tcp_passive_fastopen(sk)) {
1093 		err = sk_stream_wait_connect(sk, &timeo);
1094 		if (err != 0)
1095 			goto do_error;
1096 	}
1097 
1098 	if (unlikely(tp->repair)) {
1099 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1100 			copied = tcp_send_rcvq(sk, msg, size);
1101 			goto out_nopush;
1102 		}
1103 
1104 		err = -EINVAL;
1105 		if (tp->repair_queue == TCP_NO_QUEUE)
1106 			goto out_err;
1107 
1108 		/* 'common' sending to sendq */
1109 	}
1110 
1111 	sockcm_init(&sockc, sk);
1112 	if (msg->msg_controllen) {
1113 		err = sock_cmsg_send(sk, msg, &sockc);
1114 		if (unlikely(err)) {
1115 			err = -EINVAL;
1116 			goto out_err;
1117 		}
1118 	}
1119 
1120 	/* This should be in poll */
1121 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1122 
1123 	/* Ok commence sending. */
1124 	copied = 0;
1125 
1126 restart:
1127 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1128 
1129 	err = -EPIPE;
1130 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1131 		goto do_error;
1132 
1133 	while (msg_data_left(msg)) {
1134 		ssize_t copy = 0;
1135 
1136 		skb = tcp_write_queue_tail(sk);
1137 		if (skb)
1138 			copy = size_goal - skb->len;
1139 
1140 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1141 			bool first_skb;
1142 
1143 new_segment:
1144 			if (!sk_stream_memory_free(sk))
1145 				goto wait_for_space;
1146 
1147 			if (unlikely(process_backlog >= 16)) {
1148 				process_backlog = 0;
1149 				if (sk_flush_backlog(sk))
1150 					goto restart;
1151 			}
1152 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1153 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1154 						   first_skb);
1155 			if (!skb)
1156 				goto wait_for_space;
1157 
1158 			process_backlog++;
1159 
1160 			tcp_skb_entail(sk, skb);
1161 			copy = size_goal;
1162 
1163 			/* All packets are restored as if they have
1164 			 * already been sent. skb_mstamp_ns isn't set to
1165 			 * avoid wrong rtt estimation.
1166 			 */
1167 			if (tp->repair)
1168 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1169 		}
1170 
1171 		/* Try to append data to the end of skb. */
1172 		if (copy > msg_data_left(msg))
1173 			copy = msg_data_left(msg);
1174 
1175 		if (zc == 0) {
1176 			bool merge = true;
1177 			int i = skb_shinfo(skb)->nr_frags;
1178 			struct page_frag *pfrag = sk_page_frag(sk);
1179 
1180 			if (!sk_page_frag_refill(sk, pfrag))
1181 				goto wait_for_space;
1182 
1183 			if (!skb_can_coalesce(skb, i, pfrag->page,
1184 					      pfrag->offset)) {
1185 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1186 					tcp_mark_push(tp, skb);
1187 					goto new_segment;
1188 				}
1189 				merge = false;
1190 			}
1191 
1192 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1193 
1194 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1195 				if (tcp_downgrade_zcopy_pure(sk, skb))
1196 					goto wait_for_space;
1197 				skb_zcopy_downgrade_managed(skb);
1198 			}
1199 
1200 			copy = tcp_wmem_schedule(sk, copy);
1201 			if (!copy)
1202 				goto wait_for_space;
1203 
1204 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1205 						       pfrag->page,
1206 						       pfrag->offset,
1207 						       copy);
1208 			if (err)
1209 				goto do_error;
1210 
1211 			/* Update the skb. */
1212 			if (merge) {
1213 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1214 			} else {
1215 				skb_fill_page_desc(skb, i, pfrag->page,
1216 						   pfrag->offset, copy);
1217 				page_ref_inc(pfrag->page);
1218 			}
1219 			pfrag->offset += copy;
1220 		} else if (zc == MSG_ZEROCOPY)  {
1221 			/* First append to a fragless skb builds initial
1222 			 * pure zerocopy skb
1223 			 */
1224 			if (!skb->len)
1225 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1226 
1227 			if (!skb_zcopy_pure(skb)) {
1228 				copy = tcp_wmem_schedule(sk, copy);
1229 				if (!copy)
1230 					goto wait_for_space;
1231 			}
1232 
1233 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1234 			if (err == -EMSGSIZE || err == -EEXIST) {
1235 				tcp_mark_push(tp, skb);
1236 				goto new_segment;
1237 			}
1238 			if (err < 0)
1239 				goto do_error;
1240 			copy = err;
1241 		} else if (zc == MSG_SPLICE_PAGES) {
1242 			/* Splice in data if we can; copy if we can't. */
1243 			if (tcp_downgrade_zcopy_pure(sk, skb))
1244 				goto wait_for_space;
1245 			copy = tcp_wmem_schedule(sk, copy);
1246 			if (!copy)
1247 				goto wait_for_space;
1248 
1249 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1250 						   sk->sk_allocation);
1251 			if (err < 0) {
1252 				if (err == -EMSGSIZE) {
1253 					tcp_mark_push(tp, skb);
1254 					goto new_segment;
1255 				}
1256 				goto do_error;
1257 			}
1258 			copy = err;
1259 
1260 			if (!(flags & MSG_NO_SHARED_FRAGS))
1261 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1262 
1263 			sk_wmem_queued_add(sk, copy);
1264 			sk_mem_charge(sk, copy);
1265 		}
1266 
1267 		if (!copied)
1268 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1269 
1270 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1271 		TCP_SKB_CB(skb)->end_seq += copy;
1272 		tcp_skb_pcount_set(skb, 0);
1273 
1274 		copied += copy;
1275 		if (!msg_data_left(msg)) {
1276 			if (unlikely(flags & MSG_EOR))
1277 				TCP_SKB_CB(skb)->eor = 1;
1278 			goto out;
1279 		}
1280 
1281 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1282 			continue;
1283 
1284 		if (forced_push(tp)) {
1285 			tcp_mark_push(tp, skb);
1286 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1287 		} else if (skb == tcp_send_head(sk))
1288 			tcp_push_one(sk, mss_now);
1289 		continue;
1290 
1291 wait_for_space:
1292 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1293 		tcp_remove_empty_skb(sk);
1294 		if (copied)
1295 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1296 				 TCP_NAGLE_PUSH, size_goal);
1297 
1298 		err = sk_stream_wait_memory(sk, &timeo);
1299 		if (err != 0)
1300 			goto do_error;
1301 
1302 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1303 	}
1304 
1305 out:
1306 	if (copied) {
1307 		tcp_tx_timestamp(sk, sockc.tsflags);
1308 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1309 	}
1310 out_nopush:
1311 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1312 	if (uarg && !msg->msg_ubuf)
1313 		net_zcopy_put(uarg);
1314 	return copied + copied_syn;
1315 
1316 do_error:
1317 	tcp_remove_empty_skb(sk);
1318 
1319 	if (copied + copied_syn)
1320 		goto out;
1321 out_err:
1322 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1323 	if (uarg && !msg->msg_ubuf)
1324 		net_zcopy_put_abort(uarg, true);
1325 	err = sk_stream_error(sk, flags, err);
1326 	/* make sure we wake any epoll edge trigger waiter */
1327 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1328 		sk->sk_write_space(sk);
1329 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1330 	}
1331 	return err;
1332 }
1333 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1334 
1335 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1336 {
1337 	int ret;
1338 
1339 	lock_sock(sk);
1340 	ret = tcp_sendmsg_locked(sk, msg, size);
1341 	release_sock(sk);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(tcp_sendmsg);
1346 
1347 void tcp_splice_eof(struct socket *sock)
1348 {
1349 	struct sock *sk = sock->sk;
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351 	int mss_now, size_goal;
1352 
1353 	if (!tcp_write_queue_tail(sk))
1354 		return;
1355 
1356 	lock_sock(sk);
1357 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1358 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1359 	release_sock(sk);
1360 }
1361 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1362 
1363 /*
1364  *	Handle reading urgent data. BSD has very simple semantics for
1365  *	this, no blocking and very strange errors 8)
1366  */
1367 
1368 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1369 {
1370 	struct tcp_sock *tp = tcp_sk(sk);
1371 
1372 	/* No URG data to read. */
1373 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1374 	    tp->urg_data == TCP_URG_READ)
1375 		return -EINVAL;	/* Yes this is right ! */
1376 
1377 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1378 		return -ENOTCONN;
1379 
1380 	if (tp->urg_data & TCP_URG_VALID) {
1381 		int err = 0;
1382 		char c = tp->urg_data;
1383 
1384 		if (!(flags & MSG_PEEK))
1385 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1386 
1387 		/* Read urgent data. */
1388 		msg->msg_flags |= MSG_OOB;
1389 
1390 		if (len > 0) {
1391 			if (!(flags & MSG_TRUNC))
1392 				err = memcpy_to_msg(msg, &c, 1);
1393 			len = 1;
1394 		} else
1395 			msg->msg_flags |= MSG_TRUNC;
1396 
1397 		return err ? -EFAULT : len;
1398 	}
1399 
1400 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1401 		return 0;
1402 
1403 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1404 	 * the available implementations agree in this case:
1405 	 * this call should never block, independent of the
1406 	 * blocking state of the socket.
1407 	 * Mike <pall@rz.uni-karlsruhe.de>
1408 	 */
1409 	return -EAGAIN;
1410 }
1411 
1412 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1413 {
1414 	struct sk_buff *skb;
1415 	int copied = 0, err = 0;
1416 
1417 	/* XXX -- need to support SO_PEEK_OFF */
1418 
1419 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1420 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1421 		if (err)
1422 			return err;
1423 		copied += skb->len;
1424 	}
1425 
1426 	skb_queue_walk(&sk->sk_write_queue, skb) {
1427 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1428 		if (err)
1429 			break;
1430 
1431 		copied += skb->len;
1432 	}
1433 
1434 	return err ?: copied;
1435 }
1436 
1437 /* Clean up the receive buffer for full frames taken by the user,
1438  * then send an ACK if necessary.  COPIED is the number of bytes
1439  * tcp_recvmsg has given to the user so far, it speeds up the
1440  * calculation of whether or not we must ACK for the sake of
1441  * a window update.
1442  */
1443 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1444 {
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 	bool time_to_ack = false;
1447 
1448 	if (inet_csk_ack_scheduled(sk)) {
1449 		const struct inet_connection_sock *icsk = inet_csk(sk);
1450 
1451 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1452 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1453 		    /*
1454 		     * If this read emptied read buffer, we send ACK, if
1455 		     * connection is not bidirectional, user drained
1456 		     * receive buffer and there was a small segment
1457 		     * in queue.
1458 		     */
1459 		    (copied > 0 &&
1460 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1461 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1462 		       !inet_csk_in_pingpong_mode(sk))) &&
1463 		      !atomic_read(&sk->sk_rmem_alloc)))
1464 			time_to_ack = true;
1465 	}
1466 
1467 	/* We send an ACK if we can now advertise a non-zero window
1468 	 * which has been raised "significantly".
1469 	 *
1470 	 * Even if window raised up to infinity, do not send window open ACK
1471 	 * in states, where we will not receive more. It is useless.
1472 	 */
1473 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1474 		__u32 rcv_window_now = tcp_receive_window(tp);
1475 
1476 		/* Optimize, __tcp_select_window() is not cheap. */
1477 		if (2*rcv_window_now <= tp->window_clamp) {
1478 			__u32 new_window = __tcp_select_window(sk);
1479 
1480 			/* Send ACK now, if this read freed lots of space
1481 			 * in our buffer. Certainly, new_window is new window.
1482 			 * We can advertise it now, if it is not less than current one.
1483 			 * "Lots" means "at least twice" here.
1484 			 */
1485 			if (new_window && new_window >= 2 * rcv_window_now)
1486 				time_to_ack = true;
1487 		}
1488 	}
1489 	if (time_to_ack)
1490 		tcp_send_ack(sk);
1491 }
1492 
1493 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1494 {
1495 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1496 	struct tcp_sock *tp = tcp_sk(sk);
1497 
1498 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1499 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1500 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1501 	__tcp_cleanup_rbuf(sk, copied);
1502 }
1503 
1504 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1505 {
1506 	__skb_unlink(skb, &sk->sk_receive_queue);
1507 	if (likely(skb->destructor == sock_rfree)) {
1508 		sock_rfree(skb);
1509 		skb->destructor = NULL;
1510 		skb->sk = NULL;
1511 		return skb_attempt_defer_free(skb);
1512 	}
1513 	__kfree_skb(skb);
1514 }
1515 
1516 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1517 {
1518 	struct sk_buff *skb;
1519 	u32 offset;
1520 
1521 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1522 		offset = seq - TCP_SKB_CB(skb)->seq;
1523 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1524 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1525 			offset--;
1526 		}
1527 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1528 			*off = offset;
1529 			return skb;
1530 		}
1531 		/* This looks weird, but this can happen if TCP collapsing
1532 		 * splitted a fat GRO packet, while we released socket lock
1533 		 * in skb_splice_bits()
1534 		 */
1535 		tcp_eat_recv_skb(sk, skb);
1536 	}
1537 	return NULL;
1538 }
1539 EXPORT_SYMBOL(tcp_recv_skb);
1540 
1541 /*
1542  * This routine provides an alternative to tcp_recvmsg() for routines
1543  * that would like to handle copying from skbuffs directly in 'sendfile'
1544  * fashion.
1545  * Note:
1546  *	- It is assumed that the socket was locked by the caller.
1547  *	- The routine does not block.
1548  *	- At present, there is no support for reading OOB data
1549  *	  or for 'peeking' the socket using this routine
1550  *	  (although both would be easy to implement).
1551  */
1552 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1553 		  sk_read_actor_t recv_actor)
1554 {
1555 	struct sk_buff *skb;
1556 	struct tcp_sock *tp = tcp_sk(sk);
1557 	u32 seq = tp->copied_seq;
1558 	u32 offset;
1559 	int copied = 0;
1560 
1561 	if (sk->sk_state == TCP_LISTEN)
1562 		return -ENOTCONN;
1563 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1564 		if (offset < skb->len) {
1565 			int used;
1566 			size_t len;
1567 
1568 			len = skb->len - offset;
1569 			/* Stop reading if we hit a patch of urgent data */
1570 			if (unlikely(tp->urg_data)) {
1571 				u32 urg_offset = tp->urg_seq - seq;
1572 				if (urg_offset < len)
1573 					len = urg_offset;
1574 				if (!len)
1575 					break;
1576 			}
1577 			used = recv_actor(desc, skb, offset, len);
1578 			if (used <= 0) {
1579 				if (!copied)
1580 					copied = used;
1581 				break;
1582 			}
1583 			if (WARN_ON_ONCE(used > len))
1584 				used = len;
1585 			seq += used;
1586 			copied += used;
1587 			offset += used;
1588 
1589 			/* If recv_actor drops the lock (e.g. TCP splice
1590 			 * receive) the skb pointer might be invalid when
1591 			 * getting here: tcp_collapse might have deleted it
1592 			 * while aggregating skbs from the socket queue.
1593 			 */
1594 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1595 			if (!skb)
1596 				break;
1597 			/* TCP coalescing might have appended data to the skb.
1598 			 * Try to splice more frags
1599 			 */
1600 			if (offset + 1 != skb->len)
1601 				continue;
1602 		}
1603 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1604 			tcp_eat_recv_skb(sk, skb);
1605 			++seq;
1606 			break;
1607 		}
1608 		tcp_eat_recv_skb(sk, skb);
1609 		if (!desc->count)
1610 			break;
1611 		WRITE_ONCE(tp->copied_seq, seq);
1612 	}
1613 	WRITE_ONCE(tp->copied_seq, seq);
1614 
1615 	tcp_rcv_space_adjust(sk);
1616 
1617 	/* Clean up data we have read: This will do ACK frames. */
1618 	if (copied > 0) {
1619 		tcp_recv_skb(sk, seq, &offset);
1620 		tcp_cleanup_rbuf(sk, copied);
1621 	}
1622 	return copied;
1623 }
1624 EXPORT_SYMBOL(tcp_read_sock);
1625 
1626 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1627 {
1628 	struct sk_buff *skb;
1629 	int copied = 0;
1630 
1631 	if (sk->sk_state == TCP_LISTEN)
1632 		return -ENOTCONN;
1633 
1634 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1635 		u8 tcp_flags;
1636 		int used;
1637 
1638 		__skb_unlink(skb, &sk->sk_receive_queue);
1639 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1640 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1641 		used = recv_actor(sk, skb);
1642 		if (used < 0) {
1643 			if (!copied)
1644 				copied = used;
1645 			break;
1646 		}
1647 		copied += used;
1648 
1649 		if (tcp_flags & TCPHDR_FIN)
1650 			break;
1651 	}
1652 	return copied;
1653 }
1654 EXPORT_SYMBOL(tcp_read_skb);
1655 
1656 void tcp_read_done(struct sock *sk, size_t len)
1657 {
1658 	struct tcp_sock *tp = tcp_sk(sk);
1659 	u32 seq = tp->copied_seq;
1660 	struct sk_buff *skb;
1661 	size_t left;
1662 	u32 offset;
1663 
1664 	if (sk->sk_state == TCP_LISTEN)
1665 		return;
1666 
1667 	left = len;
1668 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1669 		int used;
1670 
1671 		used = min_t(size_t, skb->len - offset, left);
1672 		seq += used;
1673 		left -= used;
1674 
1675 		if (skb->len > offset + used)
1676 			break;
1677 
1678 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1679 			tcp_eat_recv_skb(sk, skb);
1680 			++seq;
1681 			break;
1682 		}
1683 		tcp_eat_recv_skb(sk, skb);
1684 	}
1685 	WRITE_ONCE(tp->copied_seq, seq);
1686 
1687 	tcp_rcv_space_adjust(sk);
1688 
1689 	/* Clean up data we have read: This will do ACK frames. */
1690 	if (left != len)
1691 		tcp_cleanup_rbuf(sk, len - left);
1692 }
1693 EXPORT_SYMBOL(tcp_read_done);
1694 
1695 int tcp_peek_len(struct socket *sock)
1696 {
1697 	return tcp_inq(sock->sk);
1698 }
1699 EXPORT_SYMBOL(tcp_peek_len);
1700 
1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1702 int tcp_set_rcvlowat(struct sock *sk, int val)
1703 {
1704 	int space, cap;
1705 
1706 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 		cap = sk->sk_rcvbuf >> 1;
1708 	else
1709 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1710 	val = min(val, cap);
1711 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1712 
1713 	/* Check if we need to signal EPOLLIN right now */
1714 	tcp_data_ready(sk);
1715 
1716 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1717 		return 0;
1718 
1719 	space = tcp_space_from_win(sk, val);
1720 	if (space > sk->sk_rcvbuf) {
1721 		WRITE_ONCE(sk->sk_rcvbuf, space);
1722 		tcp_sk(sk)->window_clamp = val;
1723 	}
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(tcp_set_rcvlowat);
1727 
1728 void tcp_update_recv_tstamps(struct sk_buff *skb,
1729 			     struct scm_timestamping_internal *tss)
1730 {
1731 	if (skb->tstamp)
1732 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1733 	else
1734 		tss->ts[0] = (struct timespec64) {0};
1735 
1736 	if (skb_hwtstamps(skb)->hwtstamp)
1737 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1738 	else
1739 		tss->ts[2] = (struct timespec64) {0};
1740 }
1741 
1742 #ifdef CONFIG_MMU
1743 static const struct vm_operations_struct tcp_vm_ops = {
1744 };
1745 
1746 int tcp_mmap(struct file *file, struct socket *sock,
1747 	     struct vm_area_struct *vma)
1748 {
1749 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1750 		return -EPERM;
1751 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1752 
1753 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1754 	vm_flags_set(vma, VM_MIXEDMAP);
1755 
1756 	vma->vm_ops = &tcp_vm_ops;
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(tcp_mmap);
1760 
1761 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1762 				       u32 *offset_frag)
1763 {
1764 	skb_frag_t *frag;
1765 
1766 	if (unlikely(offset_skb >= skb->len))
1767 		return NULL;
1768 
1769 	offset_skb -= skb_headlen(skb);
1770 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1771 		return NULL;
1772 
1773 	frag = skb_shinfo(skb)->frags;
1774 	while (offset_skb) {
1775 		if (skb_frag_size(frag) > offset_skb) {
1776 			*offset_frag = offset_skb;
1777 			return frag;
1778 		}
1779 		offset_skb -= skb_frag_size(frag);
1780 		++frag;
1781 	}
1782 	*offset_frag = 0;
1783 	return frag;
1784 }
1785 
1786 static bool can_map_frag(const skb_frag_t *frag)
1787 {
1788 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1789 }
1790 
1791 static int find_next_mappable_frag(const skb_frag_t *frag,
1792 				   int remaining_in_skb)
1793 {
1794 	int offset = 0;
1795 
1796 	if (likely(can_map_frag(frag)))
1797 		return 0;
1798 
1799 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1800 		offset += skb_frag_size(frag);
1801 		++frag;
1802 	}
1803 	return offset;
1804 }
1805 
1806 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1807 					  struct tcp_zerocopy_receive *zc,
1808 					  struct sk_buff *skb, u32 offset)
1809 {
1810 	u32 frag_offset, partial_frag_remainder = 0;
1811 	int mappable_offset;
1812 	skb_frag_t *frag;
1813 
1814 	/* worst case: skip to next skb. try to improve on this case below */
1815 	zc->recv_skip_hint = skb->len - offset;
1816 
1817 	/* Find the frag containing this offset (and how far into that frag) */
1818 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1819 	if (!frag)
1820 		return;
1821 
1822 	if (frag_offset) {
1823 		struct skb_shared_info *info = skb_shinfo(skb);
1824 
1825 		/* We read part of the last frag, must recvmsg() rest of skb. */
1826 		if (frag == &info->frags[info->nr_frags - 1])
1827 			return;
1828 
1829 		/* Else, we must at least read the remainder in this frag. */
1830 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1831 		zc->recv_skip_hint -= partial_frag_remainder;
1832 		++frag;
1833 	}
1834 
1835 	/* partial_frag_remainder: If part way through a frag, must read rest.
1836 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1837 	 * in partial_frag_remainder.
1838 	 */
1839 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1840 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1841 }
1842 
1843 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1844 			      int flags, struct scm_timestamping_internal *tss,
1845 			      int *cmsg_flags);
1846 static int receive_fallback_to_copy(struct sock *sk,
1847 				    struct tcp_zerocopy_receive *zc, int inq,
1848 				    struct scm_timestamping_internal *tss)
1849 {
1850 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1851 	struct msghdr msg = {};
1852 	struct iovec iov;
1853 	int err;
1854 
1855 	zc->length = 0;
1856 	zc->recv_skip_hint = 0;
1857 
1858 	if (copy_address != zc->copybuf_address)
1859 		return -EINVAL;
1860 
1861 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1862 				  inq, &iov, &msg.msg_iter);
1863 	if (err)
1864 		return err;
1865 
1866 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1867 				 tss, &zc->msg_flags);
1868 	if (err < 0)
1869 		return err;
1870 
1871 	zc->copybuf_len = err;
1872 	if (likely(zc->copybuf_len)) {
1873 		struct sk_buff *skb;
1874 		u32 offset;
1875 
1876 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1877 		if (skb)
1878 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1879 	}
1880 	return 0;
1881 }
1882 
1883 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1884 				   struct sk_buff *skb, u32 copylen,
1885 				   u32 *offset, u32 *seq)
1886 {
1887 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1888 	struct msghdr msg = {};
1889 	struct iovec iov;
1890 	int err;
1891 
1892 	if (copy_address != zc->copybuf_address)
1893 		return -EINVAL;
1894 
1895 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1896 				  copylen, &iov, &msg.msg_iter);
1897 	if (err)
1898 		return err;
1899 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1900 	if (err)
1901 		return err;
1902 	zc->recv_skip_hint -= copylen;
1903 	*offset += copylen;
1904 	*seq += copylen;
1905 	return (__s32)copylen;
1906 }
1907 
1908 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1909 				  struct sock *sk,
1910 				  struct sk_buff *skb,
1911 				  u32 *seq,
1912 				  s32 copybuf_len,
1913 				  struct scm_timestamping_internal *tss)
1914 {
1915 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1916 
1917 	if (!copylen)
1918 		return 0;
1919 	/* skb is null if inq < PAGE_SIZE. */
1920 	if (skb) {
1921 		offset = *seq - TCP_SKB_CB(skb)->seq;
1922 	} else {
1923 		skb = tcp_recv_skb(sk, *seq, &offset);
1924 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1925 			tcp_update_recv_tstamps(skb, tss);
1926 			zc->msg_flags |= TCP_CMSG_TS;
1927 		}
1928 	}
1929 
1930 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1931 						  seq);
1932 	return zc->copybuf_len < 0 ? 0 : copylen;
1933 }
1934 
1935 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1936 					      struct page **pending_pages,
1937 					      unsigned long pages_remaining,
1938 					      unsigned long *address,
1939 					      u32 *length,
1940 					      u32 *seq,
1941 					      struct tcp_zerocopy_receive *zc,
1942 					      u32 total_bytes_to_map,
1943 					      int err)
1944 {
1945 	/* At least one page did not map. Try zapping if we skipped earlier. */
1946 	if (err == -EBUSY &&
1947 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1948 		u32 maybe_zap_len;
1949 
1950 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1951 				*length + /* Mapped or pending */
1952 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1953 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1954 		err = 0;
1955 	}
1956 
1957 	if (!err) {
1958 		unsigned long leftover_pages = pages_remaining;
1959 		int bytes_mapped;
1960 
1961 		/* We called zap_page_range_single, try to reinsert. */
1962 		err = vm_insert_pages(vma, *address,
1963 				      pending_pages,
1964 				      &pages_remaining);
1965 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1966 		*seq += bytes_mapped;
1967 		*address += bytes_mapped;
1968 	}
1969 	if (err) {
1970 		/* Either we were unable to zap, OR we zapped, retried an
1971 		 * insert, and still had an issue. Either ways, pages_remaining
1972 		 * is the number of pages we were unable to map, and we unroll
1973 		 * some state we speculatively touched before.
1974 		 */
1975 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1976 
1977 		*length -= bytes_not_mapped;
1978 		zc->recv_skip_hint += bytes_not_mapped;
1979 	}
1980 	return err;
1981 }
1982 
1983 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1984 					struct page **pages,
1985 					unsigned int pages_to_map,
1986 					unsigned long *address,
1987 					u32 *length,
1988 					u32 *seq,
1989 					struct tcp_zerocopy_receive *zc,
1990 					u32 total_bytes_to_map)
1991 {
1992 	unsigned long pages_remaining = pages_to_map;
1993 	unsigned int pages_mapped;
1994 	unsigned int bytes_mapped;
1995 	int err;
1996 
1997 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1998 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1999 	bytes_mapped = PAGE_SIZE * pages_mapped;
2000 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2001 	 * mapping (some but not all of the pages).
2002 	 */
2003 	*seq += bytes_mapped;
2004 	*address += bytes_mapped;
2005 
2006 	if (likely(!err))
2007 		return 0;
2008 
2009 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2010 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2011 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2012 		err);
2013 }
2014 
2015 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2016 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2017 				      struct tcp_zerocopy_receive *zc,
2018 				      struct scm_timestamping_internal *tss)
2019 {
2020 	unsigned long msg_control_addr;
2021 	struct msghdr cmsg_dummy;
2022 
2023 	msg_control_addr = (unsigned long)zc->msg_control;
2024 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2025 	cmsg_dummy.msg_controllen =
2026 		(__kernel_size_t)zc->msg_controllen;
2027 	cmsg_dummy.msg_flags = in_compat_syscall()
2028 		? MSG_CMSG_COMPAT : 0;
2029 	cmsg_dummy.msg_control_is_user = true;
2030 	zc->msg_flags = 0;
2031 	if (zc->msg_control == msg_control_addr &&
2032 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2033 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2034 		zc->msg_control = (__u64)
2035 			((uintptr_t)cmsg_dummy.msg_control_user);
2036 		zc->msg_controllen =
2037 			(__u64)cmsg_dummy.msg_controllen;
2038 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2039 	}
2040 }
2041 
2042 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2043 					   unsigned long address,
2044 					   bool *mmap_locked)
2045 {
2046 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2047 
2048 	if (vma) {
2049 		if (vma->vm_ops != &tcp_vm_ops) {
2050 			vma_end_read(vma);
2051 			return NULL;
2052 		}
2053 		*mmap_locked = false;
2054 		return vma;
2055 	}
2056 
2057 	mmap_read_lock(mm);
2058 	vma = vma_lookup(mm, address);
2059 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2060 		mmap_read_unlock(mm);
2061 		return NULL;
2062 	}
2063 	*mmap_locked = true;
2064 	return vma;
2065 }
2066 
2067 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2068 static int tcp_zerocopy_receive(struct sock *sk,
2069 				struct tcp_zerocopy_receive *zc,
2070 				struct scm_timestamping_internal *tss)
2071 {
2072 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2073 	unsigned long address = (unsigned long)zc->address;
2074 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2075 	s32 copybuf_len = zc->copybuf_len;
2076 	struct tcp_sock *tp = tcp_sk(sk);
2077 	const skb_frag_t *frags = NULL;
2078 	unsigned int pages_to_map = 0;
2079 	struct vm_area_struct *vma;
2080 	struct sk_buff *skb = NULL;
2081 	u32 seq = tp->copied_seq;
2082 	u32 total_bytes_to_map;
2083 	int inq = tcp_inq(sk);
2084 	bool mmap_locked;
2085 	int ret;
2086 
2087 	zc->copybuf_len = 0;
2088 	zc->msg_flags = 0;
2089 
2090 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2091 		return -EINVAL;
2092 
2093 	if (sk->sk_state == TCP_LISTEN)
2094 		return -ENOTCONN;
2095 
2096 	sock_rps_record_flow(sk);
2097 
2098 	if (inq && inq <= copybuf_len)
2099 		return receive_fallback_to_copy(sk, zc, inq, tss);
2100 
2101 	if (inq < PAGE_SIZE) {
2102 		zc->length = 0;
2103 		zc->recv_skip_hint = inq;
2104 		if (!inq && sock_flag(sk, SOCK_DONE))
2105 			return -EIO;
2106 		return 0;
2107 	}
2108 
2109 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2110 	if (!vma)
2111 		return -EINVAL;
2112 
2113 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2114 	avail_len = min_t(u32, vma_len, inq);
2115 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2116 	if (total_bytes_to_map) {
2117 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2118 			zap_page_range_single(vma, address, total_bytes_to_map,
2119 					      NULL);
2120 		zc->length = total_bytes_to_map;
2121 		zc->recv_skip_hint = 0;
2122 	} else {
2123 		zc->length = avail_len;
2124 		zc->recv_skip_hint = avail_len;
2125 	}
2126 	ret = 0;
2127 	while (length + PAGE_SIZE <= zc->length) {
2128 		int mappable_offset;
2129 		struct page *page;
2130 
2131 		if (zc->recv_skip_hint < PAGE_SIZE) {
2132 			u32 offset_frag;
2133 
2134 			if (skb) {
2135 				if (zc->recv_skip_hint > 0)
2136 					break;
2137 				skb = skb->next;
2138 				offset = seq - TCP_SKB_CB(skb)->seq;
2139 			} else {
2140 				skb = tcp_recv_skb(sk, seq, &offset);
2141 			}
2142 
2143 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2144 				tcp_update_recv_tstamps(skb, tss);
2145 				zc->msg_flags |= TCP_CMSG_TS;
2146 			}
2147 			zc->recv_skip_hint = skb->len - offset;
2148 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2149 			if (!frags || offset_frag)
2150 				break;
2151 		}
2152 
2153 		mappable_offset = find_next_mappable_frag(frags,
2154 							  zc->recv_skip_hint);
2155 		if (mappable_offset) {
2156 			zc->recv_skip_hint = mappable_offset;
2157 			break;
2158 		}
2159 		page = skb_frag_page(frags);
2160 		prefetchw(page);
2161 		pages[pages_to_map++] = page;
2162 		length += PAGE_SIZE;
2163 		zc->recv_skip_hint -= PAGE_SIZE;
2164 		frags++;
2165 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2166 		    zc->recv_skip_hint < PAGE_SIZE) {
2167 			/* Either full batch, or we're about to go to next skb
2168 			 * (and we cannot unroll failed ops across skbs).
2169 			 */
2170 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2171 							   pages_to_map,
2172 							   &address, &length,
2173 							   &seq, zc,
2174 							   total_bytes_to_map);
2175 			if (ret)
2176 				goto out;
2177 			pages_to_map = 0;
2178 		}
2179 	}
2180 	if (pages_to_map) {
2181 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2182 						   &address, &length, &seq,
2183 						   zc, total_bytes_to_map);
2184 	}
2185 out:
2186 	if (mmap_locked)
2187 		mmap_read_unlock(current->mm);
2188 	else
2189 		vma_end_read(vma);
2190 	/* Try to copy straggler data. */
2191 	if (!ret)
2192 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2193 
2194 	if (length + copylen) {
2195 		WRITE_ONCE(tp->copied_seq, seq);
2196 		tcp_rcv_space_adjust(sk);
2197 
2198 		/* Clean up data we have read: This will do ACK frames. */
2199 		tcp_recv_skb(sk, seq, &offset);
2200 		tcp_cleanup_rbuf(sk, length + copylen);
2201 		ret = 0;
2202 		if (length == zc->length)
2203 			zc->recv_skip_hint = 0;
2204 	} else {
2205 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2206 			ret = -EIO;
2207 	}
2208 	zc->length = length;
2209 	return ret;
2210 }
2211 #endif
2212 
2213 /* Similar to __sock_recv_timestamp, but does not require an skb */
2214 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2215 			struct scm_timestamping_internal *tss)
2216 {
2217 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2218 	bool has_timestamping = false;
2219 
2220 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2221 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2222 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2223 				if (new_tstamp) {
2224 					struct __kernel_timespec kts = {
2225 						.tv_sec = tss->ts[0].tv_sec,
2226 						.tv_nsec = tss->ts[0].tv_nsec,
2227 					};
2228 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2229 						 sizeof(kts), &kts);
2230 				} else {
2231 					struct __kernel_old_timespec ts_old = {
2232 						.tv_sec = tss->ts[0].tv_sec,
2233 						.tv_nsec = tss->ts[0].tv_nsec,
2234 					};
2235 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2236 						 sizeof(ts_old), &ts_old);
2237 				}
2238 			} else {
2239 				if (new_tstamp) {
2240 					struct __kernel_sock_timeval stv = {
2241 						.tv_sec = tss->ts[0].tv_sec,
2242 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2243 					};
2244 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2245 						 sizeof(stv), &stv);
2246 				} else {
2247 					struct __kernel_old_timeval tv = {
2248 						.tv_sec = tss->ts[0].tv_sec,
2249 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2250 					};
2251 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2252 						 sizeof(tv), &tv);
2253 				}
2254 			}
2255 		}
2256 
2257 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2258 			has_timestamping = true;
2259 		else
2260 			tss->ts[0] = (struct timespec64) {0};
2261 	}
2262 
2263 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2264 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2265 			has_timestamping = true;
2266 		else
2267 			tss->ts[2] = (struct timespec64) {0};
2268 	}
2269 
2270 	if (has_timestamping) {
2271 		tss->ts[1] = (struct timespec64) {0};
2272 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2273 			put_cmsg_scm_timestamping64(msg, tss);
2274 		else
2275 			put_cmsg_scm_timestamping(msg, tss);
2276 	}
2277 }
2278 
2279 static int tcp_inq_hint(struct sock *sk)
2280 {
2281 	const struct tcp_sock *tp = tcp_sk(sk);
2282 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2283 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2284 	int inq;
2285 
2286 	inq = rcv_nxt - copied_seq;
2287 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2288 		lock_sock(sk);
2289 		inq = tp->rcv_nxt - tp->copied_seq;
2290 		release_sock(sk);
2291 	}
2292 	/* After receiving a FIN, tell the user-space to continue reading
2293 	 * by returning a non-zero inq.
2294 	 */
2295 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2296 		inq = 1;
2297 	return inq;
2298 }
2299 
2300 /*
2301  *	This routine copies from a sock struct into the user buffer.
2302  *
2303  *	Technical note: in 2.3 we work on _locked_ socket, so that
2304  *	tricks with *seq access order and skb->users are not required.
2305  *	Probably, code can be easily improved even more.
2306  */
2307 
2308 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2309 			      int flags, struct scm_timestamping_internal *tss,
2310 			      int *cmsg_flags)
2311 {
2312 	struct tcp_sock *tp = tcp_sk(sk);
2313 	int copied = 0;
2314 	u32 peek_seq;
2315 	u32 *seq;
2316 	unsigned long used;
2317 	int err;
2318 	int target;		/* Read at least this many bytes */
2319 	long timeo;
2320 	struct sk_buff *skb, *last;
2321 	u32 urg_hole = 0;
2322 
2323 	err = -ENOTCONN;
2324 	if (sk->sk_state == TCP_LISTEN)
2325 		goto out;
2326 
2327 	if (tp->recvmsg_inq) {
2328 		*cmsg_flags = TCP_CMSG_INQ;
2329 		msg->msg_get_inq = 1;
2330 	}
2331 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2332 
2333 	/* Urgent data needs to be handled specially. */
2334 	if (flags & MSG_OOB)
2335 		goto recv_urg;
2336 
2337 	if (unlikely(tp->repair)) {
2338 		err = -EPERM;
2339 		if (!(flags & MSG_PEEK))
2340 			goto out;
2341 
2342 		if (tp->repair_queue == TCP_SEND_QUEUE)
2343 			goto recv_sndq;
2344 
2345 		err = -EINVAL;
2346 		if (tp->repair_queue == TCP_NO_QUEUE)
2347 			goto out;
2348 
2349 		/* 'common' recv queue MSG_PEEK-ing */
2350 	}
2351 
2352 	seq = &tp->copied_seq;
2353 	if (flags & MSG_PEEK) {
2354 		peek_seq = tp->copied_seq;
2355 		seq = &peek_seq;
2356 	}
2357 
2358 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2359 
2360 	do {
2361 		u32 offset;
2362 
2363 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2364 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2365 			if (copied)
2366 				break;
2367 			if (signal_pending(current)) {
2368 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2369 				break;
2370 			}
2371 		}
2372 
2373 		/* Next get a buffer. */
2374 
2375 		last = skb_peek_tail(&sk->sk_receive_queue);
2376 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2377 			last = skb;
2378 			/* Now that we have two receive queues this
2379 			 * shouldn't happen.
2380 			 */
2381 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2382 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2383 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2384 				 flags))
2385 				break;
2386 
2387 			offset = *seq - TCP_SKB_CB(skb)->seq;
2388 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2389 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2390 				offset--;
2391 			}
2392 			if (offset < skb->len)
2393 				goto found_ok_skb;
2394 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2395 				goto found_fin_ok;
2396 			WARN(!(flags & MSG_PEEK),
2397 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2398 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2399 		}
2400 
2401 		/* Well, if we have backlog, try to process it now yet. */
2402 
2403 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2404 			break;
2405 
2406 		if (copied) {
2407 			if (!timeo ||
2408 			    sk->sk_err ||
2409 			    sk->sk_state == TCP_CLOSE ||
2410 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2411 			    signal_pending(current))
2412 				break;
2413 		} else {
2414 			if (sock_flag(sk, SOCK_DONE))
2415 				break;
2416 
2417 			if (sk->sk_err) {
2418 				copied = sock_error(sk);
2419 				break;
2420 			}
2421 
2422 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2423 				break;
2424 
2425 			if (sk->sk_state == TCP_CLOSE) {
2426 				/* This occurs when user tries to read
2427 				 * from never connected socket.
2428 				 */
2429 				copied = -ENOTCONN;
2430 				break;
2431 			}
2432 
2433 			if (!timeo) {
2434 				copied = -EAGAIN;
2435 				break;
2436 			}
2437 
2438 			if (signal_pending(current)) {
2439 				copied = sock_intr_errno(timeo);
2440 				break;
2441 			}
2442 		}
2443 
2444 		if (copied >= target) {
2445 			/* Do not sleep, just process backlog. */
2446 			__sk_flush_backlog(sk);
2447 		} else {
2448 			tcp_cleanup_rbuf(sk, copied);
2449 			err = sk_wait_data(sk, &timeo, last);
2450 			if (err < 0) {
2451 				err = copied ? : err;
2452 				goto out;
2453 			}
2454 		}
2455 
2456 		if ((flags & MSG_PEEK) &&
2457 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2458 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2459 					    current->comm,
2460 					    task_pid_nr(current));
2461 			peek_seq = tp->copied_seq;
2462 		}
2463 		continue;
2464 
2465 found_ok_skb:
2466 		/* Ok so how much can we use? */
2467 		used = skb->len - offset;
2468 		if (len < used)
2469 			used = len;
2470 
2471 		/* Do we have urgent data here? */
2472 		if (unlikely(tp->urg_data)) {
2473 			u32 urg_offset = tp->urg_seq - *seq;
2474 			if (urg_offset < used) {
2475 				if (!urg_offset) {
2476 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2477 						WRITE_ONCE(*seq, *seq + 1);
2478 						urg_hole++;
2479 						offset++;
2480 						used--;
2481 						if (!used)
2482 							goto skip_copy;
2483 					}
2484 				} else
2485 					used = urg_offset;
2486 			}
2487 		}
2488 
2489 		if (!(flags & MSG_TRUNC)) {
2490 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2491 			if (err) {
2492 				/* Exception. Bailout! */
2493 				if (!copied)
2494 					copied = -EFAULT;
2495 				break;
2496 			}
2497 		}
2498 
2499 		WRITE_ONCE(*seq, *seq + used);
2500 		copied += used;
2501 		len -= used;
2502 
2503 		tcp_rcv_space_adjust(sk);
2504 
2505 skip_copy:
2506 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2507 			WRITE_ONCE(tp->urg_data, 0);
2508 			tcp_fast_path_check(sk);
2509 		}
2510 
2511 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2512 			tcp_update_recv_tstamps(skb, tss);
2513 			*cmsg_flags |= TCP_CMSG_TS;
2514 		}
2515 
2516 		if (used + offset < skb->len)
2517 			continue;
2518 
2519 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2520 			goto found_fin_ok;
2521 		if (!(flags & MSG_PEEK))
2522 			tcp_eat_recv_skb(sk, skb);
2523 		continue;
2524 
2525 found_fin_ok:
2526 		/* Process the FIN. */
2527 		WRITE_ONCE(*seq, *seq + 1);
2528 		if (!(flags & MSG_PEEK))
2529 			tcp_eat_recv_skb(sk, skb);
2530 		break;
2531 	} while (len > 0);
2532 
2533 	/* According to UNIX98, msg_name/msg_namelen are ignored
2534 	 * on connected socket. I was just happy when found this 8) --ANK
2535 	 */
2536 
2537 	/* Clean up data we have read: This will do ACK frames. */
2538 	tcp_cleanup_rbuf(sk, copied);
2539 	return copied;
2540 
2541 out:
2542 	return err;
2543 
2544 recv_urg:
2545 	err = tcp_recv_urg(sk, msg, len, flags);
2546 	goto out;
2547 
2548 recv_sndq:
2549 	err = tcp_peek_sndq(sk, msg, len);
2550 	goto out;
2551 }
2552 
2553 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2554 		int *addr_len)
2555 {
2556 	int cmsg_flags = 0, ret;
2557 	struct scm_timestamping_internal tss;
2558 
2559 	if (unlikely(flags & MSG_ERRQUEUE))
2560 		return inet_recv_error(sk, msg, len, addr_len);
2561 
2562 	if (sk_can_busy_loop(sk) &&
2563 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2564 	    sk->sk_state == TCP_ESTABLISHED)
2565 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2566 
2567 	lock_sock(sk);
2568 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2569 	release_sock(sk);
2570 
2571 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2572 		if (cmsg_flags & TCP_CMSG_TS)
2573 			tcp_recv_timestamp(msg, sk, &tss);
2574 		if (msg->msg_get_inq) {
2575 			msg->msg_inq = tcp_inq_hint(sk);
2576 			if (cmsg_flags & TCP_CMSG_INQ)
2577 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2578 					 sizeof(msg->msg_inq), &msg->msg_inq);
2579 		}
2580 	}
2581 	return ret;
2582 }
2583 EXPORT_SYMBOL(tcp_recvmsg);
2584 
2585 void tcp_set_state(struct sock *sk, int state)
2586 {
2587 	int oldstate = sk->sk_state;
2588 
2589 	/* We defined a new enum for TCP states that are exported in BPF
2590 	 * so as not force the internal TCP states to be frozen. The
2591 	 * following checks will detect if an internal state value ever
2592 	 * differs from the BPF value. If this ever happens, then we will
2593 	 * need to remap the internal value to the BPF value before calling
2594 	 * tcp_call_bpf_2arg.
2595 	 */
2596 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2597 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2598 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2599 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2600 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2601 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2602 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2603 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2604 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2605 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2606 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2607 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2608 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2609 
2610 	/* bpf uapi header bpf.h defines an anonymous enum with values
2611 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2612 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2613 	 * But clang built vmlinux does not have this enum in DWARF
2614 	 * since clang removes the above code before generating IR/debuginfo.
2615 	 * Let us explicitly emit the type debuginfo to ensure the
2616 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2617 	 * regardless of which compiler is used.
2618 	 */
2619 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2620 
2621 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2622 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2623 
2624 	switch (state) {
2625 	case TCP_ESTABLISHED:
2626 		if (oldstate != TCP_ESTABLISHED)
2627 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2628 		break;
2629 
2630 	case TCP_CLOSE:
2631 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2632 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2633 
2634 		sk->sk_prot->unhash(sk);
2635 		if (inet_csk(sk)->icsk_bind_hash &&
2636 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2637 			inet_put_port(sk);
2638 		fallthrough;
2639 	default:
2640 		if (oldstate == TCP_ESTABLISHED)
2641 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2642 	}
2643 
2644 	/* Change state AFTER socket is unhashed to avoid closed
2645 	 * socket sitting in hash tables.
2646 	 */
2647 	inet_sk_state_store(sk, state);
2648 }
2649 EXPORT_SYMBOL_GPL(tcp_set_state);
2650 
2651 /*
2652  *	State processing on a close. This implements the state shift for
2653  *	sending our FIN frame. Note that we only send a FIN for some
2654  *	states. A shutdown() may have already sent the FIN, or we may be
2655  *	closed.
2656  */
2657 
2658 static const unsigned char new_state[16] = {
2659   /* current state:        new state:      action:	*/
2660   [0 /* (Invalid) */]	= TCP_CLOSE,
2661   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662   [TCP_SYN_SENT]	= TCP_CLOSE,
2663   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2664   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2665   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2666   [TCP_TIME_WAIT]	= TCP_CLOSE,
2667   [TCP_CLOSE]		= TCP_CLOSE,
2668   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2669   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2670   [TCP_LISTEN]		= TCP_CLOSE,
2671   [TCP_CLOSING]		= TCP_CLOSING,
2672   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2673 };
2674 
2675 static int tcp_close_state(struct sock *sk)
2676 {
2677 	int next = (int)new_state[sk->sk_state];
2678 	int ns = next & TCP_STATE_MASK;
2679 
2680 	tcp_set_state(sk, ns);
2681 
2682 	return next & TCP_ACTION_FIN;
2683 }
2684 
2685 /*
2686  *	Shutdown the sending side of a connection. Much like close except
2687  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2688  */
2689 
2690 void tcp_shutdown(struct sock *sk, int how)
2691 {
2692 	/*	We need to grab some memory, and put together a FIN,
2693 	 *	and then put it into the queue to be sent.
2694 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2695 	 */
2696 	if (!(how & SEND_SHUTDOWN))
2697 		return;
2698 
2699 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2700 	if ((1 << sk->sk_state) &
2701 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2702 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2703 		/* Clear out any half completed packets.  FIN if needed. */
2704 		if (tcp_close_state(sk))
2705 			tcp_send_fin(sk);
2706 	}
2707 }
2708 EXPORT_SYMBOL(tcp_shutdown);
2709 
2710 int tcp_orphan_count_sum(void)
2711 {
2712 	int i, total = 0;
2713 
2714 	for_each_possible_cpu(i)
2715 		total += per_cpu(tcp_orphan_count, i);
2716 
2717 	return max(total, 0);
2718 }
2719 
2720 static int tcp_orphan_cache;
2721 static struct timer_list tcp_orphan_timer;
2722 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2723 
2724 static void tcp_orphan_update(struct timer_list *unused)
2725 {
2726 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2727 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2728 }
2729 
2730 static bool tcp_too_many_orphans(int shift)
2731 {
2732 	return READ_ONCE(tcp_orphan_cache) << shift >
2733 		READ_ONCE(sysctl_tcp_max_orphans);
2734 }
2735 
2736 bool tcp_check_oom(struct sock *sk, int shift)
2737 {
2738 	bool too_many_orphans, out_of_socket_memory;
2739 
2740 	too_many_orphans = tcp_too_many_orphans(shift);
2741 	out_of_socket_memory = tcp_out_of_memory(sk);
2742 
2743 	if (too_many_orphans)
2744 		net_info_ratelimited("too many orphaned sockets\n");
2745 	if (out_of_socket_memory)
2746 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2747 	return too_many_orphans || out_of_socket_memory;
2748 }
2749 
2750 void __tcp_close(struct sock *sk, long timeout)
2751 {
2752 	struct sk_buff *skb;
2753 	int data_was_unread = 0;
2754 	int state;
2755 
2756 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2757 
2758 	if (sk->sk_state == TCP_LISTEN) {
2759 		tcp_set_state(sk, TCP_CLOSE);
2760 
2761 		/* Special case. */
2762 		inet_csk_listen_stop(sk);
2763 
2764 		goto adjudge_to_death;
2765 	}
2766 
2767 	/*  We need to flush the recv. buffs.  We do this only on the
2768 	 *  descriptor close, not protocol-sourced closes, because the
2769 	 *  reader process may not have drained the data yet!
2770 	 */
2771 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2772 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2773 
2774 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2775 			len--;
2776 		data_was_unread += len;
2777 		__kfree_skb(skb);
2778 	}
2779 
2780 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2781 	if (sk->sk_state == TCP_CLOSE)
2782 		goto adjudge_to_death;
2783 
2784 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2785 	 * data was lost. To witness the awful effects of the old behavior of
2786 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2787 	 * GET in an FTP client, suspend the process, wait for the client to
2788 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2789 	 * Note: timeout is always zero in such a case.
2790 	 */
2791 	if (unlikely(tcp_sk(sk)->repair)) {
2792 		sk->sk_prot->disconnect(sk, 0);
2793 	} else if (data_was_unread) {
2794 		/* Unread data was tossed, zap the connection. */
2795 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2796 		tcp_set_state(sk, TCP_CLOSE);
2797 		tcp_send_active_reset(sk, sk->sk_allocation);
2798 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2799 		/* Check zero linger _after_ checking for unread data. */
2800 		sk->sk_prot->disconnect(sk, 0);
2801 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2802 	} else if (tcp_close_state(sk)) {
2803 		/* We FIN if the application ate all the data before
2804 		 * zapping the connection.
2805 		 */
2806 
2807 		/* RED-PEN. Formally speaking, we have broken TCP state
2808 		 * machine. State transitions:
2809 		 *
2810 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2811 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2812 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2813 		 *
2814 		 * are legal only when FIN has been sent (i.e. in window),
2815 		 * rather than queued out of window. Purists blame.
2816 		 *
2817 		 * F.e. "RFC state" is ESTABLISHED,
2818 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2819 		 *
2820 		 * The visible declinations are that sometimes
2821 		 * we enter time-wait state, when it is not required really
2822 		 * (harmless), do not send active resets, when they are
2823 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2824 		 * they look as CLOSING or LAST_ACK for Linux)
2825 		 * Probably, I missed some more holelets.
2826 		 * 						--ANK
2827 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2828 		 * in a single packet! (May consider it later but will
2829 		 * probably need API support or TCP_CORK SYN-ACK until
2830 		 * data is written and socket is closed.)
2831 		 */
2832 		tcp_send_fin(sk);
2833 	}
2834 
2835 	sk_stream_wait_close(sk, timeout);
2836 
2837 adjudge_to_death:
2838 	state = sk->sk_state;
2839 	sock_hold(sk);
2840 	sock_orphan(sk);
2841 
2842 	local_bh_disable();
2843 	bh_lock_sock(sk);
2844 	/* remove backlog if any, without releasing ownership. */
2845 	__release_sock(sk);
2846 
2847 	this_cpu_inc(tcp_orphan_count);
2848 
2849 	/* Have we already been destroyed by a softirq or backlog? */
2850 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2851 		goto out;
2852 
2853 	/*	This is a (useful) BSD violating of the RFC. There is a
2854 	 *	problem with TCP as specified in that the other end could
2855 	 *	keep a socket open forever with no application left this end.
2856 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2857 	 *	our end. If they send after that then tough - BUT: long enough
2858 	 *	that we won't make the old 4*rto = almost no time - whoops
2859 	 *	reset mistake.
2860 	 *
2861 	 *	Nope, it was not mistake. It is really desired behaviour
2862 	 *	f.e. on http servers, when such sockets are useless, but
2863 	 *	consume significant resources. Let's do it with special
2864 	 *	linger2	option.					--ANK
2865 	 */
2866 
2867 	if (sk->sk_state == TCP_FIN_WAIT2) {
2868 		struct tcp_sock *tp = tcp_sk(sk);
2869 		if (READ_ONCE(tp->linger2) < 0) {
2870 			tcp_set_state(sk, TCP_CLOSE);
2871 			tcp_send_active_reset(sk, GFP_ATOMIC);
2872 			__NET_INC_STATS(sock_net(sk),
2873 					LINUX_MIB_TCPABORTONLINGER);
2874 		} else {
2875 			const int tmo = tcp_fin_time(sk);
2876 
2877 			if (tmo > TCP_TIMEWAIT_LEN) {
2878 				inet_csk_reset_keepalive_timer(sk,
2879 						tmo - TCP_TIMEWAIT_LEN);
2880 			} else {
2881 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2882 				goto out;
2883 			}
2884 		}
2885 	}
2886 	if (sk->sk_state != TCP_CLOSE) {
2887 		if (tcp_check_oom(sk, 0)) {
2888 			tcp_set_state(sk, TCP_CLOSE);
2889 			tcp_send_active_reset(sk, GFP_ATOMIC);
2890 			__NET_INC_STATS(sock_net(sk),
2891 					LINUX_MIB_TCPABORTONMEMORY);
2892 		} else if (!check_net(sock_net(sk))) {
2893 			/* Not possible to send reset; just close */
2894 			tcp_set_state(sk, TCP_CLOSE);
2895 		}
2896 	}
2897 
2898 	if (sk->sk_state == TCP_CLOSE) {
2899 		struct request_sock *req;
2900 
2901 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2902 						lockdep_sock_is_held(sk));
2903 		/* We could get here with a non-NULL req if the socket is
2904 		 * aborted (e.g., closed with unread data) before 3WHS
2905 		 * finishes.
2906 		 */
2907 		if (req)
2908 			reqsk_fastopen_remove(sk, req, false);
2909 		inet_csk_destroy_sock(sk);
2910 	}
2911 	/* Otherwise, socket is reprieved until protocol close. */
2912 
2913 out:
2914 	bh_unlock_sock(sk);
2915 	local_bh_enable();
2916 }
2917 
2918 void tcp_close(struct sock *sk, long timeout)
2919 {
2920 	lock_sock(sk);
2921 	__tcp_close(sk, timeout);
2922 	release_sock(sk);
2923 	sock_put(sk);
2924 }
2925 EXPORT_SYMBOL(tcp_close);
2926 
2927 /* These states need RST on ABORT according to RFC793 */
2928 
2929 static inline bool tcp_need_reset(int state)
2930 {
2931 	return (1 << state) &
2932 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2933 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2934 }
2935 
2936 static void tcp_rtx_queue_purge(struct sock *sk)
2937 {
2938 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2939 
2940 	tcp_sk(sk)->highest_sack = NULL;
2941 	while (p) {
2942 		struct sk_buff *skb = rb_to_skb(p);
2943 
2944 		p = rb_next(p);
2945 		/* Since we are deleting whole queue, no need to
2946 		 * list_del(&skb->tcp_tsorted_anchor)
2947 		 */
2948 		tcp_rtx_queue_unlink(skb, sk);
2949 		tcp_wmem_free_skb(sk, skb);
2950 	}
2951 }
2952 
2953 void tcp_write_queue_purge(struct sock *sk)
2954 {
2955 	struct sk_buff *skb;
2956 
2957 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2958 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2959 		tcp_skb_tsorted_anchor_cleanup(skb);
2960 		tcp_wmem_free_skb(sk, skb);
2961 	}
2962 	tcp_rtx_queue_purge(sk);
2963 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2964 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2965 	tcp_sk(sk)->packets_out = 0;
2966 	inet_csk(sk)->icsk_backoff = 0;
2967 }
2968 
2969 int tcp_disconnect(struct sock *sk, int flags)
2970 {
2971 	struct inet_sock *inet = inet_sk(sk);
2972 	struct inet_connection_sock *icsk = inet_csk(sk);
2973 	struct tcp_sock *tp = tcp_sk(sk);
2974 	int old_state = sk->sk_state;
2975 	u32 seq;
2976 
2977 	if (old_state != TCP_CLOSE)
2978 		tcp_set_state(sk, TCP_CLOSE);
2979 
2980 	/* ABORT function of RFC793 */
2981 	if (old_state == TCP_LISTEN) {
2982 		inet_csk_listen_stop(sk);
2983 	} else if (unlikely(tp->repair)) {
2984 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2985 	} else if (tcp_need_reset(old_state) ||
2986 		   (tp->snd_nxt != tp->write_seq &&
2987 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2988 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2989 		 * states
2990 		 */
2991 		tcp_send_active_reset(sk, gfp_any());
2992 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2993 	} else if (old_state == TCP_SYN_SENT)
2994 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2995 
2996 	tcp_clear_xmit_timers(sk);
2997 	__skb_queue_purge(&sk->sk_receive_queue);
2998 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2999 	WRITE_ONCE(tp->urg_data, 0);
3000 	tcp_write_queue_purge(sk);
3001 	tcp_fastopen_active_disable_ofo_check(sk);
3002 	skb_rbtree_purge(&tp->out_of_order_queue);
3003 
3004 	inet->inet_dport = 0;
3005 
3006 	inet_bhash2_reset_saddr(sk);
3007 
3008 	WRITE_ONCE(sk->sk_shutdown, 0);
3009 	sock_reset_flag(sk, SOCK_DONE);
3010 	tp->srtt_us = 0;
3011 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3012 	tp->rcv_rtt_last_tsecr = 0;
3013 
3014 	seq = tp->write_seq + tp->max_window + 2;
3015 	if (!seq)
3016 		seq = 1;
3017 	WRITE_ONCE(tp->write_seq, seq);
3018 
3019 	icsk->icsk_backoff = 0;
3020 	icsk->icsk_probes_out = 0;
3021 	icsk->icsk_probes_tstamp = 0;
3022 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3023 	icsk->icsk_rto_min = TCP_RTO_MIN;
3024 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3025 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3026 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3027 	tp->snd_cwnd_cnt = 0;
3028 	tp->is_cwnd_limited = 0;
3029 	tp->max_packets_out = 0;
3030 	tp->window_clamp = 0;
3031 	tp->delivered = 0;
3032 	tp->delivered_ce = 0;
3033 	if (icsk->icsk_ca_ops->release)
3034 		icsk->icsk_ca_ops->release(sk);
3035 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3036 	icsk->icsk_ca_initialized = 0;
3037 	tcp_set_ca_state(sk, TCP_CA_Open);
3038 	tp->is_sack_reneg = 0;
3039 	tcp_clear_retrans(tp);
3040 	tp->total_retrans = 0;
3041 	inet_csk_delack_init(sk);
3042 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3043 	 * issue in __tcp_select_window()
3044 	 */
3045 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3046 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3047 	__sk_dst_reset(sk);
3048 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3049 	tcp_saved_syn_free(tp);
3050 	tp->compressed_ack = 0;
3051 	tp->segs_in = 0;
3052 	tp->segs_out = 0;
3053 	tp->bytes_sent = 0;
3054 	tp->bytes_acked = 0;
3055 	tp->bytes_received = 0;
3056 	tp->bytes_retrans = 0;
3057 	tp->data_segs_in = 0;
3058 	tp->data_segs_out = 0;
3059 	tp->duplicate_sack[0].start_seq = 0;
3060 	tp->duplicate_sack[0].end_seq = 0;
3061 	tp->dsack_dups = 0;
3062 	tp->reord_seen = 0;
3063 	tp->retrans_out = 0;
3064 	tp->sacked_out = 0;
3065 	tp->tlp_high_seq = 0;
3066 	tp->last_oow_ack_time = 0;
3067 	tp->plb_rehash = 0;
3068 	/* There's a bubble in the pipe until at least the first ACK. */
3069 	tp->app_limited = ~0U;
3070 	tp->rate_app_limited = 1;
3071 	tp->rack.mstamp = 0;
3072 	tp->rack.advanced = 0;
3073 	tp->rack.reo_wnd_steps = 1;
3074 	tp->rack.last_delivered = 0;
3075 	tp->rack.reo_wnd_persist = 0;
3076 	tp->rack.dsack_seen = 0;
3077 	tp->syn_data_acked = 0;
3078 	tp->rx_opt.saw_tstamp = 0;
3079 	tp->rx_opt.dsack = 0;
3080 	tp->rx_opt.num_sacks = 0;
3081 	tp->rcv_ooopack = 0;
3082 
3083 
3084 	/* Clean up fastopen related fields */
3085 	tcp_free_fastopen_req(tp);
3086 	inet_clear_bit(DEFER_CONNECT, sk);
3087 	tp->fastopen_client_fail = 0;
3088 
3089 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3090 
3091 	if (sk->sk_frag.page) {
3092 		put_page(sk->sk_frag.page);
3093 		sk->sk_frag.page = NULL;
3094 		sk->sk_frag.offset = 0;
3095 	}
3096 	sk_error_report(sk);
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL(tcp_disconnect);
3100 
3101 static inline bool tcp_can_repair_sock(const struct sock *sk)
3102 {
3103 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3104 		(sk->sk_state != TCP_LISTEN);
3105 }
3106 
3107 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3108 {
3109 	struct tcp_repair_window opt;
3110 
3111 	if (!tp->repair)
3112 		return -EPERM;
3113 
3114 	if (len != sizeof(opt))
3115 		return -EINVAL;
3116 
3117 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3118 		return -EFAULT;
3119 
3120 	if (opt.max_window < opt.snd_wnd)
3121 		return -EINVAL;
3122 
3123 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3124 		return -EINVAL;
3125 
3126 	if (after(opt.rcv_wup, tp->rcv_nxt))
3127 		return -EINVAL;
3128 
3129 	tp->snd_wl1	= opt.snd_wl1;
3130 	tp->snd_wnd	= opt.snd_wnd;
3131 	tp->max_window	= opt.max_window;
3132 
3133 	tp->rcv_wnd	= opt.rcv_wnd;
3134 	tp->rcv_wup	= opt.rcv_wup;
3135 
3136 	return 0;
3137 }
3138 
3139 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3140 		unsigned int len)
3141 {
3142 	struct tcp_sock *tp = tcp_sk(sk);
3143 	struct tcp_repair_opt opt;
3144 	size_t offset = 0;
3145 
3146 	while (len >= sizeof(opt)) {
3147 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3148 			return -EFAULT;
3149 
3150 		offset += sizeof(opt);
3151 		len -= sizeof(opt);
3152 
3153 		switch (opt.opt_code) {
3154 		case TCPOPT_MSS:
3155 			tp->rx_opt.mss_clamp = opt.opt_val;
3156 			tcp_mtup_init(sk);
3157 			break;
3158 		case TCPOPT_WINDOW:
3159 			{
3160 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3161 				u16 rcv_wscale = opt.opt_val >> 16;
3162 
3163 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3164 					return -EFBIG;
3165 
3166 				tp->rx_opt.snd_wscale = snd_wscale;
3167 				tp->rx_opt.rcv_wscale = rcv_wscale;
3168 				tp->rx_opt.wscale_ok = 1;
3169 			}
3170 			break;
3171 		case TCPOPT_SACK_PERM:
3172 			if (opt.opt_val != 0)
3173 				return -EINVAL;
3174 
3175 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3176 			break;
3177 		case TCPOPT_TIMESTAMP:
3178 			if (opt.opt_val != 0)
3179 				return -EINVAL;
3180 
3181 			tp->rx_opt.tstamp_ok = 1;
3182 			break;
3183 		}
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3190 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3191 
3192 static void tcp_enable_tx_delay(void)
3193 {
3194 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3195 		static int __tcp_tx_delay_enabled = 0;
3196 
3197 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3198 			static_branch_enable(&tcp_tx_delay_enabled);
3199 			pr_info("TCP_TX_DELAY enabled\n");
3200 		}
3201 	}
3202 }
3203 
3204 /* When set indicates to always queue non-full frames.  Later the user clears
3205  * this option and we transmit any pending partial frames in the queue.  This is
3206  * meant to be used alongside sendfile() to get properly filled frames when the
3207  * user (for example) must write out headers with a write() call first and then
3208  * use sendfile to send out the data parts.
3209  *
3210  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3211  * TCP_NODELAY.
3212  */
3213 void __tcp_sock_set_cork(struct sock *sk, bool on)
3214 {
3215 	struct tcp_sock *tp = tcp_sk(sk);
3216 
3217 	if (on) {
3218 		tp->nonagle |= TCP_NAGLE_CORK;
3219 	} else {
3220 		tp->nonagle &= ~TCP_NAGLE_CORK;
3221 		if (tp->nonagle & TCP_NAGLE_OFF)
3222 			tp->nonagle |= TCP_NAGLE_PUSH;
3223 		tcp_push_pending_frames(sk);
3224 	}
3225 }
3226 
3227 void tcp_sock_set_cork(struct sock *sk, bool on)
3228 {
3229 	lock_sock(sk);
3230 	__tcp_sock_set_cork(sk, on);
3231 	release_sock(sk);
3232 }
3233 EXPORT_SYMBOL(tcp_sock_set_cork);
3234 
3235 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3236  * remembered, but it is not activated until cork is cleared.
3237  *
3238  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3239  * even TCP_CORK for currently queued segments.
3240  */
3241 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3242 {
3243 	if (on) {
3244 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3245 		tcp_push_pending_frames(sk);
3246 	} else {
3247 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3248 	}
3249 }
3250 
3251 void tcp_sock_set_nodelay(struct sock *sk)
3252 {
3253 	lock_sock(sk);
3254 	__tcp_sock_set_nodelay(sk, true);
3255 	release_sock(sk);
3256 }
3257 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3258 
3259 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3260 {
3261 	if (!val) {
3262 		inet_csk_enter_pingpong_mode(sk);
3263 		return;
3264 	}
3265 
3266 	inet_csk_exit_pingpong_mode(sk);
3267 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3268 	    inet_csk_ack_scheduled(sk)) {
3269 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3270 		tcp_cleanup_rbuf(sk, 1);
3271 		if (!(val & 1))
3272 			inet_csk_enter_pingpong_mode(sk);
3273 	}
3274 }
3275 
3276 void tcp_sock_set_quickack(struct sock *sk, int val)
3277 {
3278 	lock_sock(sk);
3279 	__tcp_sock_set_quickack(sk, val);
3280 	release_sock(sk);
3281 }
3282 EXPORT_SYMBOL(tcp_sock_set_quickack);
3283 
3284 int tcp_sock_set_syncnt(struct sock *sk, int val)
3285 {
3286 	if (val < 1 || val > MAX_TCP_SYNCNT)
3287 		return -EINVAL;
3288 
3289 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3290 	return 0;
3291 }
3292 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3293 
3294 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3295 {
3296 	/* Cap the max time in ms TCP will retry or probe the window
3297 	 * before giving up and aborting (ETIMEDOUT) a connection.
3298 	 */
3299 	if (val < 0)
3300 		return -EINVAL;
3301 
3302 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3303 	return 0;
3304 }
3305 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3306 
3307 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3308 {
3309 	struct tcp_sock *tp = tcp_sk(sk);
3310 
3311 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3312 		return -EINVAL;
3313 
3314 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3315 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3316 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3317 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3318 		u32 elapsed = keepalive_time_elapsed(tp);
3319 
3320 		if (tp->keepalive_time > elapsed)
3321 			elapsed = tp->keepalive_time - elapsed;
3322 		else
3323 			elapsed = 0;
3324 		inet_csk_reset_keepalive_timer(sk, elapsed);
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 int tcp_sock_set_keepidle(struct sock *sk, int val)
3331 {
3332 	int err;
3333 
3334 	lock_sock(sk);
3335 	err = tcp_sock_set_keepidle_locked(sk, val);
3336 	release_sock(sk);
3337 	return err;
3338 }
3339 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3340 
3341 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3342 {
3343 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3344 		return -EINVAL;
3345 
3346 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3347 	return 0;
3348 }
3349 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3350 
3351 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3352 {
3353 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3354 		return -EINVAL;
3355 
3356 	/* Paired with READ_ONCE() in keepalive_probes() */
3357 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3358 	return 0;
3359 }
3360 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3361 
3362 int tcp_set_window_clamp(struct sock *sk, int val)
3363 {
3364 	struct tcp_sock *tp = tcp_sk(sk);
3365 
3366 	if (!val) {
3367 		if (sk->sk_state != TCP_CLOSE)
3368 			return -EINVAL;
3369 		tp->window_clamp = 0;
3370 	} else {
3371 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3372 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3373 						SOCK_MIN_RCVBUF / 2 : val;
3374 
3375 		if (new_window_clamp == old_window_clamp)
3376 			return 0;
3377 
3378 		tp->window_clamp = new_window_clamp;
3379 		if (new_window_clamp < old_window_clamp) {
3380 			/* need to apply the reserved mem provisioning only
3381 			 * when shrinking the window clamp
3382 			 */
3383 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3384 
3385 		} else {
3386 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3387 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3388 					       tp->rcv_ssthresh);
3389 		}
3390 	}
3391 	return 0;
3392 }
3393 
3394 /*
3395  *	Socket option code for TCP.
3396  */
3397 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3398 		      sockptr_t optval, unsigned int optlen)
3399 {
3400 	struct tcp_sock *tp = tcp_sk(sk);
3401 	struct inet_connection_sock *icsk = inet_csk(sk);
3402 	struct net *net = sock_net(sk);
3403 	int val;
3404 	int err = 0;
3405 
3406 	/* These are data/string values, all the others are ints */
3407 	switch (optname) {
3408 	case TCP_CONGESTION: {
3409 		char name[TCP_CA_NAME_MAX];
3410 
3411 		if (optlen < 1)
3412 			return -EINVAL;
3413 
3414 		val = strncpy_from_sockptr(name, optval,
3415 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3416 		if (val < 0)
3417 			return -EFAULT;
3418 		name[val] = 0;
3419 
3420 		sockopt_lock_sock(sk);
3421 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3422 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3423 								    CAP_NET_ADMIN));
3424 		sockopt_release_sock(sk);
3425 		return err;
3426 	}
3427 	case TCP_ULP: {
3428 		char name[TCP_ULP_NAME_MAX];
3429 
3430 		if (optlen < 1)
3431 			return -EINVAL;
3432 
3433 		val = strncpy_from_sockptr(name, optval,
3434 					min_t(long, TCP_ULP_NAME_MAX - 1,
3435 					      optlen));
3436 		if (val < 0)
3437 			return -EFAULT;
3438 		name[val] = 0;
3439 
3440 		sockopt_lock_sock(sk);
3441 		err = tcp_set_ulp(sk, name);
3442 		sockopt_release_sock(sk);
3443 		return err;
3444 	}
3445 	case TCP_FASTOPEN_KEY: {
3446 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3447 		__u8 *backup_key = NULL;
3448 
3449 		/* Allow a backup key as well to facilitate key rotation
3450 		 * First key is the active one.
3451 		 */
3452 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3453 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3454 			return -EINVAL;
3455 
3456 		if (copy_from_sockptr(key, optval, optlen))
3457 			return -EFAULT;
3458 
3459 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3460 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3461 
3462 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3463 	}
3464 	default:
3465 		/* fallthru */
3466 		break;
3467 	}
3468 
3469 	if (optlen < sizeof(int))
3470 		return -EINVAL;
3471 
3472 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3473 		return -EFAULT;
3474 
3475 	/* Handle options that can be set without locking the socket. */
3476 	switch (optname) {
3477 	case TCP_SYNCNT:
3478 		return tcp_sock_set_syncnt(sk, val);
3479 	case TCP_USER_TIMEOUT:
3480 		return tcp_sock_set_user_timeout(sk, val);
3481 	case TCP_KEEPINTVL:
3482 		return tcp_sock_set_keepintvl(sk, val);
3483 	case TCP_KEEPCNT:
3484 		return tcp_sock_set_keepcnt(sk, val);
3485 	case TCP_LINGER2:
3486 		if (val < 0)
3487 			WRITE_ONCE(tp->linger2, -1);
3488 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3489 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3490 		else
3491 			WRITE_ONCE(tp->linger2, val * HZ);
3492 		return 0;
3493 	case TCP_DEFER_ACCEPT:
3494 		/* Translate value in seconds to number of retransmits */
3495 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3496 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3497 					   TCP_RTO_MAX / HZ));
3498 		return 0;
3499 	}
3500 
3501 	sockopt_lock_sock(sk);
3502 
3503 	switch (optname) {
3504 	case TCP_MAXSEG:
3505 		/* Values greater than interface MTU won't take effect. However
3506 		 * at the point when this call is done we typically don't yet
3507 		 * know which interface is going to be used
3508 		 */
3509 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3510 			err = -EINVAL;
3511 			break;
3512 		}
3513 		tp->rx_opt.user_mss = val;
3514 		break;
3515 
3516 	case TCP_NODELAY:
3517 		__tcp_sock_set_nodelay(sk, val);
3518 		break;
3519 
3520 	case TCP_THIN_LINEAR_TIMEOUTS:
3521 		if (val < 0 || val > 1)
3522 			err = -EINVAL;
3523 		else
3524 			tp->thin_lto = val;
3525 		break;
3526 
3527 	case TCP_THIN_DUPACK:
3528 		if (val < 0 || val > 1)
3529 			err = -EINVAL;
3530 		break;
3531 
3532 	case TCP_REPAIR:
3533 		if (!tcp_can_repair_sock(sk))
3534 			err = -EPERM;
3535 		else if (val == TCP_REPAIR_ON) {
3536 			tp->repair = 1;
3537 			sk->sk_reuse = SK_FORCE_REUSE;
3538 			tp->repair_queue = TCP_NO_QUEUE;
3539 		} else if (val == TCP_REPAIR_OFF) {
3540 			tp->repair = 0;
3541 			sk->sk_reuse = SK_NO_REUSE;
3542 			tcp_send_window_probe(sk);
3543 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3544 			tp->repair = 0;
3545 			sk->sk_reuse = SK_NO_REUSE;
3546 		} else
3547 			err = -EINVAL;
3548 
3549 		break;
3550 
3551 	case TCP_REPAIR_QUEUE:
3552 		if (!tp->repair)
3553 			err = -EPERM;
3554 		else if ((unsigned int)val < TCP_QUEUES_NR)
3555 			tp->repair_queue = val;
3556 		else
3557 			err = -EINVAL;
3558 		break;
3559 
3560 	case TCP_QUEUE_SEQ:
3561 		if (sk->sk_state != TCP_CLOSE) {
3562 			err = -EPERM;
3563 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3564 			if (!tcp_rtx_queue_empty(sk))
3565 				err = -EPERM;
3566 			else
3567 				WRITE_ONCE(tp->write_seq, val);
3568 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3569 			if (tp->rcv_nxt != tp->copied_seq) {
3570 				err = -EPERM;
3571 			} else {
3572 				WRITE_ONCE(tp->rcv_nxt, val);
3573 				WRITE_ONCE(tp->copied_seq, val);
3574 			}
3575 		} else {
3576 			err = -EINVAL;
3577 		}
3578 		break;
3579 
3580 	case TCP_REPAIR_OPTIONS:
3581 		if (!tp->repair)
3582 			err = -EINVAL;
3583 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3584 			err = tcp_repair_options_est(sk, optval, optlen);
3585 		else
3586 			err = -EPERM;
3587 		break;
3588 
3589 	case TCP_CORK:
3590 		__tcp_sock_set_cork(sk, val);
3591 		break;
3592 
3593 	case TCP_KEEPIDLE:
3594 		err = tcp_sock_set_keepidle_locked(sk, val);
3595 		break;
3596 	case TCP_SAVE_SYN:
3597 		/* 0: disable, 1: enable, 2: start from ether_header */
3598 		if (val < 0 || val > 2)
3599 			err = -EINVAL;
3600 		else
3601 			tp->save_syn = val;
3602 		break;
3603 
3604 	case TCP_WINDOW_CLAMP:
3605 		err = tcp_set_window_clamp(sk, val);
3606 		break;
3607 
3608 	case TCP_QUICKACK:
3609 		__tcp_sock_set_quickack(sk, val);
3610 		break;
3611 
3612 #ifdef CONFIG_TCP_MD5SIG
3613 	case TCP_MD5SIG:
3614 	case TCP_MD5SIG_EXT:
3615 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3616 		break;
3617 #endif
3618 	case TCP_FASTOPEN:
3619 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3620 		    TCPF_LISTEN))) {
3621 			tcp_fastopen_init_key_once(net);
3622 
3623 			fastopen_queue_tune(sk, val);
3624 		} else {
3625 			err = -EINVAL;
3626 		}
3627 		break;
3628 	case TCP_FASTOPEN_CONNECT:
3629 		if (val > 1 || val < 0) {
3630 			err = -EINVAL;
3631 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3632 			   TFO_CLIENT_ENABLE) {
3633 			if (sk->sk_state == TCP_CLOSE)
3634 				tp->fastopen_connect = val;
3635 			else
3636 				err = -EINVAL;
3637 		} else {
3638 			err = -EOPNOTSUPP;
3639 		}
3640 		break;
3641 	case TCP_FASTOPEN_NO_COOKIE:
3642 		if (val > 1 || val < 0)
3643 			err = -EINVAL;
3644 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3645 			err = -EINVAL;
3646 		else
3647 			tp->fastopen_no_cookie = val;
3648 		break;
3649 	case TCP_TIMESTAMP:
3650 		if (!tp->repair)
3651 			err = -EPERM;
3652 		else
3653 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3654 		break;
3655 	case TCP_REPAIR_WINDOW:
3656 		err = tcp_repair_set_window(tp, optval, optlen);
3657 		break;
3658 	case TCP_NOTSENT_LOWAT:
3659 		WRITE_ONCE(tp->notsent_lowat, val);
3660 		sk->sk_write_space(sk);
3661 		break;
3662 	case TCP_INQ:
3663 		if (val > 1 || val < 0)
3664 			err = -EINVAL;
3665 		else
3666 			tp->recvmsg_inq = val;
3667 		break;
3668 	case TCP_TX_DELAY:
3669 		if (val)
3670 			tcp_enable_tx_delay();
3671 		WRITE_ONCE(tp->tcp_tx_delay, val);
3672 		break;
3673 	default:
3674 		err = -ENOPROTOOPT;
3675 		break;
3676 	}
3677 
3678 	sockopt_release_sock(sk);
3679 	return err;
3680 }
3681 
3682 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3683 		   unsigned int optlen)
3684 {
3685 	const struct inet_connection_sock *icsk = inet_csk(sk);
3686 
3687 	if (level != SOL_TCP)
3688 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3689 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3690 								optval, optlen);
3691 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3692 }
3693 EXPORT_SYMBOL(tcp_setsockopt);
3694 
3695 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3696 				      struct tcp_info *info)
3697 {
3698 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3699 	enum tcp_chrono i;
3700 
3701 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3702 		stats[i] = tp->chrono_stat[i - 1];
3703 		if (i == tp->chrono_type)
3704 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3705 		stats[i] *= USEC_PER_SEC / HZ;
3706 		total += stats[i];
3707 	}
3708 
3709 	info->tcpi_busy_time = total;
3710 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3711 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3712 }
3713 
3714 /* Return information about state of tcp endpoint in API format. */
3715 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3716 {
3717 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3718 	const struct inet_connection_sock *icsk = inet_csk(sk);
3719 	unsigned long rate;
3720 	u32 now;
3721 	u64 rate64;
3722 	bool slow;
3723 
3724 	memset(info, 0, sizeof(*info));
3725 	if (sk->sk_type != SOCK_STREAM)
3726 		return;
3727 
3728 	info->tcpi_state = inet_sk_state_load(sk);
3729 
3730 	/* Report meaningful fields for all TCP states, including listeners */
3731 	rate = READ_ONCE(sk->sk_pacing_rate);
3732 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3733 	info->tcpi_pacing_rate = rate64;
3734 
3735 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3736 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3737 	info->tcpi_max_pacing_rate = rate64;
3738 
3739 	info->tcpi_reordering = tp->reordering;
3740 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3741 
3742 	if (info->tcpi_state == TCP_LISTEN) {
3743 		/* listeners aliased fields :
3744 		 * tcpi_unacked -> Number of children ready for accept()
3745 		 * tcpi_sacked  -> max backlog
3746 		 */
3747 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3748 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3749 		return;
3750 	}
3751 
3752 	slow = lock_sock_fast(sk);
3753 
3754 	info->tcpi_ca_state = icsk->icsk_ca_state;
3755 	info->tcpi_retransmits = icsk->icsk_retransmits;
3756 	info->tcpi_probes = icsk->icsk_probes_out;
3757 	info->tcpi_backoff = icsk->icsk_backoff;
3758 
3759 	if (tp->rx_opt.tstamp_ok)
3760 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3761 	if (tcp_is_sack(tp))
3762 		info->tcpi_options |= TCPI_OPT_SACK;
3763 	if (tp->rx_opt.wscale_ok) {
3764 		info->tcpi_options |= TCPI_OPT_WSCALE;
3765 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3766 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3767 	}
3768 
3769 	if (tp->ecn_flags & TCP_ECN_OK)
3770 		info->tcpi_options |= TCPI_OPT_ECN;
3771 	if (tp->ecn_flags & TCP_ECN_SEEN)
3772 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3773 	if (tp->syn_data_acked)
3774 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3775 
3776 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3777 	info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3778 					      tcp_delack_max(sk)));
3779 	info->tcpi_snd_mss = tp->mss_cache;
3780 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3781 
3782 	info->tcpi_unacked = tp->packets_out;
3783 	info->tcpi_sacked = tp->sacked_out;
3784 
3785 	info->tcpi_lost = tp->lost_out;
3786 	info->tcpi_retrans = tp->retrans_out;
3787 
3788 	now = tcp_jiffies32;
3789 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3790 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3791 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3792 
3793 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3794 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3795 	info->tcpi_rtt = tp->srtt_us >> 3;
3796 	info->tcpi_rttvar = tp->mdev_us >> 2;
3797 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3798 	info->tcpi_advmss = tp->advmss;
3799 
3800 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3801 	info->tcpi_rcv_space = tp->rcvq_space.space;
3802 
3803 	info->tcpi_total_retrans = tp->total_retrans;
3804 
3805 	info->tcpi_bytes_acked = tp->bytes_acked;
3806 	info->tcpi_bytes_received = tp->bytes_received;
3807 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3808 	tcp_get_info_chrono_stats(tp, info);
3809 
3810 	info->tcpi_segs_out = tp->segs_out;
3811 
3812 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3813 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3814 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3815 
3816 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3817 	info->tcpi_data_segs_out = tp->data_segs_out;
3818 
3819 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3820 	rate64 = tcp_compute_delivery_rate(tp);
3821 	if (rate64)
3822 		info->tcpi_delivery_rate = rate64;
3823 	info->tcpi_delivered = tp->delivered;
3824 	info->tcpi_delivered_ce = tp->delivered_ce;
3825 	info->tcpi_bytes_sent = tp->bytes_sent;
3826 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3827 	info->tcpi_dsack_dups = tp->dsack_dups;
3828 	info->tcpi_reord_seen = tp->reord_seen;
3829 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3830 	info->tcpi_snd_wnd = tp->snd_wnd;
3831 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3832 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3833 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3834 	unlock_sock_fast(sk, slow);
3835 }
3836 EXPORT_SYMBOL_GPL(tcp_get_info);
3837 
3838 static size_t tcp_opt_stats_get_size(void)
3839 {
3840 	return
3841 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3842 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3843 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3844 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3845 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3846 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3847 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3848 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3849 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3850 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3851 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3852 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3853 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3854 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3855 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3856 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3857 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3858 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3859 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3860 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3862 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3863 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3865 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3866 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3867 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3868 		0;
3869 }
3870 
3871 /* Returns TTL or hop limit of an incoming packet from skb. */
3872 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3873 {
3874 	if (skb->protocol == htons(ETH_P_IP))
3875 		return ip_hdr(skb)->ttl;
3876 	else if (skb->protocol == htons(ETH_P_IPV6))
3877 		return ipv6_hdr(skb)->hop_limit;
3878 	else
3879 		return 0;
3880 }
3881 
3882 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3883 					       const struct sk_buff *orig_skb,
3884 					       const struct sk_buff *ack_skb)
3885 {
3886 	const struct tcp_sock *tp = tcp_sk(sk);
3887 	struct sk_buff *stats;
3888 	struct tcp_info info;
3889 	unsigned long rate;
3890 	u64 rate64;
3891 
3892 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3893 	if (!stats)
3894 		return NULL;
3895 
3896 	tcp_get_info_chrono_stats(tp, &info);
3897 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3898 			  info.tcpi_busy_time, TCP_NLA_PAD);
3899 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3900 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3901 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3902 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3903 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3904 			  tp->data_segs_out, TCP_NLA_PAD);
3905 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3906 			  tp->total_retrans, TCP_NLA_PAD);
3907 
3908 	rate = READ_ONCE(sk->sk_pacing_rate);
3909 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3910 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3911 
3912 	rate64 = tcp_compute_delivery_rate(tp);
3913 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3914 
3915 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3916 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3917 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3918 
3919 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3920 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3921 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3922 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3923 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3924 
3925 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3926 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3927 
3928 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3929 			  TCP_NLA_PAD);
3930 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3931 			  TCP_NLA_PAD);
3932 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3933 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3934 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3935 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3936 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3937 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3938 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3939 			  TCP_NLA_PAD);
3940 	if (ack_skb)
3941 		nla_put_u8(stats, TCP_NLA_TTL,
3942 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3943 
3944 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3945 	return stats;
3946 }
3947 
3948 int do_tcp_getsockopt(struct sock *sk, int level,
3949 		      int optname, sockptr_t optval, sockptr_t optlen)
3950 {
3951 	struct inet_connection_sock *icsk = inet_csk(sk);
3952 	struct tcp_sock *tp = tcp_sk(sk);
3953 	struct net *net = sock_net(sk);
3954 	int val, len;
3955 
3956 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3957 		return -EFAULT;
3958 
3959 	len = min_t(unsigned int, len, sizeof(int));
3960 
3961 	if (len < 0)
3962 		return -EINVAL;
3963 
3964 	switch (optname) {
3965 	case TCP_MAXSEG:
3966 		val = tp->mss_cache;
3967 		if (tp->rx_opt.user_mss &&
3968 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3969 			val = tp->rx_opt.user_mss;
3970 		if (tp->repair)
3971 			val = tp->rx_opt.mss_clamp;
3972 		break;
3973 	case TCP_NODELAY:
3974 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3975 		break;
3976 	case TCP_CORK:
3977 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3978 		break;
3979 	case TCP_KEEPIDLE:
3980 		val = keepalive_time_when(tp) / HZ;
3981 		break;
3982 	case TCP_KEEPINTVL:
3983 		val = keepalive_intvl_when(tp) / HZ;
3984 		break;
3985 	case TCP_KEEPCNT:
3986 		val = keepalive_probes(tp);
3987 		break;
3988 	case TCP_SYNCNT:
3989 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3990 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3991 		break;
3992 	case TCP_LINGER2:
3993 		val = READ_ONCE(tp->linger2);
3994 		if (val >= 0)
3995 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3996 		break;
3997 	case TCP_DEFER_ACCEPT:
3998 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3999 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4000 				      TCP_RTO_MAX / HZ);
4001 		break;
4002 	case TCP_WINDOW_CLAMP:
4003 		val = tp->window_clamp;
4004 		break;
4005 	case TCP_INFO: {
4006 		struct tcp_info info;
4007 
4008 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4009 			return -EFAULT;
4010 
4011 		tcp_get_info(sk, &info);
4012 
4013 		len = min_t(unsigned int, len, sizeof(info));
4014 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4015 			return -EFAULT;
4016 		if (copy_to_sockptr(optval, &info, len))
4017 			return -EFAULT;
4018 		return 0;
4019 	}
4020 	case TCP_CC_INFO: {
4021 		const struct tcp_congestion_ops *ca_ops;
4022 		union tcp_cc_info info;
4023 		size_t sz = 0;
4024 		int attr;
4025 
4026 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4027 			return -EFAULT;
4028 
4029 		ca_ops = icsk->icsk_ca_ops;
4030 		if (ca_ops && ca_ops->get_info)
4031 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4032 
4033 		len = min_t(unsigned int, len, sz);
4034 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4035 			return -EFAULT;
4036 		if (copy_to_sockptr(optval, &info, len))
4037 			return -EFAULT;
4038 		return 0;
4039 	}
4040 	case TCP_QUICKACK:
4041 		val = !inet_csk_in_pingpong_mode(sk);
4042 		break;
4043 
4044 	case TCP_CONGESTION:
4045 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4046 			return -EFAULT;
4047 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4048 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4049 			return -EFAULT;
4050 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4051 			return -EFAULT;
4052 		return 0;
4053 
4054 	case TCP_ULP:
4055 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4056 			return -EFAULT;
4057 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4058 		if (!icsk->icsk_ulp_ops) {
4059 			len = 0;
4060 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4061 				return -EFAULT;
4062 			return 0;
4063 		}
4064 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4065 			return -EFAULT;
4066 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4067 			return -EFAULT;
4068 		return 0;
4069 
4070 	case TCP_FASTOPEN_KEY: {
4071 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4072 		unsigned int key_len;
4073 
4074 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4075 			return -EFAULT;
4076 
4077 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4078 				TCP_FASTOPEN_KEY_LENGTH;
4079 		len = min_t(unsigned int, len, key_len);
4080 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4081 			return -EFAULT;
4082 		if (copy_to_sockptr(optval, key, len))
4083 			return -EFAULT;
4084 		return 0;
4085 	}
4086 	case TCP_THIN_LINEAR_TIMEOUTS:
4087 		val = tp->thin_lto;
4088 		break;
4089 
4090 	case TCP_THIN_DUPACK:
4091 		val = 0;
4092 		break;
4093 
4094 	case TCP_REPAIR:
4095 		val = tp->repair;
4096 		break;
4097 
4098 	case TCP_REPAIR_QUEUE:
4099 		if (tp->repair)
4100 			val = tp->repair_queue;
4101 		else
4102 			return -EINVAL;
4103 		break;
4104 
4105 	case TCP_REPAIR_WINDOW: {
4106 		struct tcp_repair_window opt;
4107 
4108 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4109 			return -EFAULT;
4110 
4111 		if (len != sizeof(opt))
4112 			return -EINVAL;
4113 
4114 		if (!tp->repair)
4115 			return -EPERM;
4116 
4117 		opt.snd_wl1	= tp->snd_wl1;
4118 		opt.snd_wnd	= tp->snd_wnd;
4119 		opt.max_window	= tp->max_window;
4120 		opt.rcv_wnd	= tp->rcv_wnd;
4121 		opt.rcv_wup	= tp->rcv_wup;
4122 
4123 		if (copy_to_sockptr(optval, &opt, len))
4124 			return -EFAULT;
4125 		return 0;
4126 	}
4127 	case TCP_QUEUE_SEQ:
4128 		if (tp->repair_queue == TCP_SEND_QUEUE)
4129 			val = tp->write_seq;
4130 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4131 			val = tp->rcv_nxt;
4132 		else
4133 			return -EINVAL;
4134 		break;
4135 
4136 	case TCP_USER_TIMEOUT:
4137 		val = READ_ONCE(icsk->icsk_user_timeout);
4138 		break;
4139 
4140 	case TCP_FASTOPEN:
4141 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4142 		break;
4143 
4144 	case TCP_FASTOPEN_CONNECT:
4145 		val = tp->fastopen_connect;
4146 		break;
4147 
4148 	case TCP_FASTOPEN_NO_COOKIE:
4149 		val = tp->fastopen_no_cookie;
4150 		break;
4151 
4152 	case TCP_TX_DELAY:
4153 		val = READ_ONCE(tp->tcp_tx_delay);
4154 		break;
4155 
4156 	case TCP_TIMESTAMP:
4157 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4158 		break;
4159 	case TCP_NOTSENT_LOWAT:
4160 		val = READ_ONCE(tp->notsent_lowat);
4161 		break;
4162 	case TCP_INQ:
4163 		val = tp->recvmsg_inq;
4164 		break;
4165 	case TCP_SAVE_SYN:
4166 		val = tp->save_syn;
4167 		break;
4168 	case TCP_SAVED_SYN: {
4169 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4170 			return -EFAULT;
4171 
4172 		sockopt_lock_sock(sk);
4173 		if (tp->saved_syn) {
4174 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4175 				len = tcp_saved_syn_len(tp->saved_syn);
4176 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4177 					sockopt_release_sock(sk);
4178 					return -EFAULT;
4179 				}
4180 				sockopt_release_sock(sk);
4181 				return -EINVAL;
4182 			}
4183 			len = tcp_saved_syn_len(tp->saved_syn);
4184 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4185 				sockopt_release_sock(sk);
4186 				return -EFAULT;
4187 			}
4188 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4189 				sockopt_release_sock(sk);
4190 				return -EFAULT;
4191 			}
4192 			tcp_saved_syn_free(tp);
4193 			sockopt_release_sock(sk);
4194 		} else {
4195 			sockopt_release_sock(sk);
4196 			len = 0;
4197 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4198 				return -EFAULT;
4199 		}
4200 		return 0;
4201 	}
4202 #ifdef CONFIG_MMU
4203 	case TCP_ZEROCOPY_RECEIVE: {
4204 		struct scm_timestamping_internal tss;
4205 		struct tcp_zerocopy_receive zc = {};
4206 		int err;
4207 
4208 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4209 			return -EFAULT;
4210 		if (len < 0 ||
4211 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4212 			return -EINVAL;
4213 		if (unlikely(len > sizeof(zc))) {
4214 			err = check_zeroed_sockptr(optval, sizeof(zc),
4215 						   len - sizeof(zc));
4216 			if (err < 1)
4217 				return err == 0 ? -EINVAL : err;
4218 			len = sizeof(zc);
4219 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4220 				return -EFAULT;
4221 		}
4222 		if (copy_from_sockptr(&zc, optval, len))
4223 			return -EFAULT;
4224 		if (zc.reserved)
4225 			return -EINVAL;
4226 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4227 			return -EINVAL;
4228 		sockopt_lock_sock(sk);
4229 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4230 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4231 							  &zc, &len, err);
4232 		sockopt_release_sock(sk);
4233 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4234 			goto zerocopy_rcv_cmsg;
4235 		switch (len) {
4236 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4237 			goto zerocopy_rcv_cmsg;
4238 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4239 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4240 		case offsetofend(struct tcp_zerocopy_receive, flags):
4241 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4242 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4243 		case offsetofend(struct tcp_zerocopy_receive, err):
4244 			goto zerocopy_rcv_sk_err;
4245 		case offsetofend(struct tcp_zerocopy_receive, inq):
4246 			goto zerocopy_rcv_inq;
4247 		case offsetofend(struct tcp_zerocopy_receive, length):
4248 		default:
4249 			goto zerocopy_rcv_out;
4250 		}
4251 zerocopy_rcv_cmsg:
4252 		if (zc.msg_flags & TCP_CMSG_TS)
4253 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4254 		else
4255 			zc.msg_flags = 0;
4256 zerocopy_rcv_sk_err:
4257 		if (!err)
4258 			zc.err = sock_error(sk);
4259 zerocopy_rcv_inq:
4260 		zc.inq = tcp_inq_hint(sk);
4261 zerocopy_rcv_out:
4262 		if (!err && copy_to_sockptr(optval, &zc, len))
4263 			err = -EFAULT;
4264 		return err;
4265 	}
4266 #endif
4267 	default:
4268 		return -ENOPROTOOPT;
4269 	}
4270 
4271 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4272 		return -EFAULT;
4273 	if (copy_to_sockptr(optval, &val, len))
4274 		return -EFAULT;
4275 	return 0;
4276 }
4277 
4278 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4279 {
4280 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4281 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4282 	 */
4283 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4284 		return true;
4285 
4286 	return false;
4287 }
4288 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4289 
4290 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4291 		   int __user *optlen)
4292 {
4293 	struct inet_connection_sock *icsk = inet_csk(sk);
4294 
4295 	if (level != SOL_TCP)
4296 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4297 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4298 								optval, optlen);
4299 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4300 				 USER_SOCKPTR(optlen));
4301 }
4302 EXPORT_SYMBOL(tcp_getsockopt);
4303 
4304 #ifdef CONFIG_TCP_MD5SIG
4305 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4306 static DEFINE_MUTEX(tcp_md5sig_mutex);
4307 static bool tcp_md5sig_pool_populated = false;
4308 
4309 static void __tcp_alloc_md5sig_pool(void)
4310 {
4311 	struct crypto_ahash *hash;
4312 	int cpu;
4313 
4314 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4315 	if (IS_ERR(hash))
4316 		return;
4317 
4318 	for_each_possible_cpu(cpu) {
4319 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4320 		struct ahash_request *req;
4321 
4322 		if (!scratch) {
4323 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4324 					       sizeof(struct tcphdr),
4325 					       GFP_KERNEL,
4326 					       cpu_to_node(cpu));
4327 			if (!scratch)
4328 				return;
4329 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4330 		}
4331 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4332 			continue;
4333 
4334 		req = ahash_request_alloc(hash, GFP_KERNEL);
4335 		if (!req)
4336 			return;
4337 
4338 		ahash_request_set_callback(req, 0, NULL, NULL);
4339 
4340 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4341 	}
4342 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4343 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4344 	 */
4345 	smp_wmb();
4346 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4347 	 * and tcp_get_md5sig_pool().
4348 	*/
4349 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4350 }
4351 
4352 bool tcp_alloc_md5sig_pool(void)
4353 {
4354 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4355 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4356 		mutex_lock(&tcp_md5sig_mutex);
4357 
4358 		if (!tcp_md5sig_pool_populated)
4359 			__tcp_alloc_md5sig_pool();
4360 
4361 		mutex_unlock(&tcp_md5sig_mutex);
4362 	}
4363 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4364 	return READ_ONCE(tcp_md5sig_pool_populated);
4365 }
4366 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4367 
4368 
4369 /**
4370  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4371  *
4372  *	We use percpu structure, so if we succeed, we exit with preemption
4373  *	and BH disabled, to make sure another thread or softirq handling
4374  *	wont try to get same context.
4375  */
4376 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4377 {
4378 	local_bh_disable();
4379 
4380 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4381 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4382 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4383 		smp_rmb();
4384 		return this_cpu_ptr(&tcp_md5sig_pool);
4385 	}
4386 	local_bh_enable();
4387 	return NULL;
4388 }
4389 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4390 
4391 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4392 			  const struct sk_buff *skb, unsigned int header_len)
4393 {
4394 	struct scatterlist sg;
4395 	const struct tcphdr *tp = tcp_hdr(skb);
4396 	struct ahash_request *req = hp->md5_req;
4397 	unsigned int i;
4398 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4399 					   skb_headlen(skb) - header_len : 0;
4400 	const struct skb_shared_info *shi = skb_shinfo(skb);
4401 	struct sk_buff *frag_iter;
4402 
4403 	sg_init_table(&sg, 1);
4404 
4405 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4406 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4407 	if (crypto_ahash_update(req))
4408 		return 1;
4409 
4410 	for (i = 0; i < shi->nr_frags; ++i) {
4411 		const skb_frag_t *f = &shi->frags[i];
4412 		unsigned int offset = skb_frag_off(f);
4413 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4414 
4415 		sg_set_page(&sg, page, skb_frag_size(f),
4416 			    offset_in_page(offset));
4417 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4418 		if (crypto_ahash_update(req))
4419 			return 1;
4420 	}
4421 
4422 	skb_walk_frags(skb, frag_iter)
4423 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4424 			return 1;
4425 
4426 	return 0;
4427 }
4428 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4429 
4430 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4431 {
4432 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4433 	struct scatterlist sg;
4434 
4435 	sg_init_one(&sg, key->key, keylen);
4436 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4437 
4438 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4439 	return data_race(crypto_ahash_update(hp->md5_req));
4440 }
4441 EXPORT_SYMBOL(tcp_md5_hash_key);
4442 
4443 /* Called with rcu_read_lock() */
4444 enum skb_drop_reason
4445 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4446 		     const void *saddr, const void *daddr,
4447 		     int family, int dif, int sdif)
4448 {
4449 	/*
4450 	 * This gets called for each TCP segment that arrives
4451 	 * so we want to be efficient.
4452 	 * We have 3 drop cases:
4453 	 * o No MD5 hash and one expected.
4454 	 * o MD5 hash and we're not expecting one.
4455 	 * o MD5 hash and its wrong.
4456 	 */
4457 	const __u8 *hash_location = NULL;
4458 	struct tcp_md5sig_key *hash_expected;
4459 	const struct tcphdr *th = tcp_hdr(skb);
4460 	const struct tcp_sock *tp = tcp_sk(sk);
4461 	int genhash, l3index;
4462 	u8 newhash[16];
4463 
4464 	/* sdif set, means packet ingressed via a device
4465 	 * in an L3 domain and dif is set to the l3mdev
4466 	 */
4467 	l3index = sdif ? dif : 0;
4468 
4469 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4470 	hash_location = tcp_parse_md5sig_option(th);
4471 
4472 	/* We've parsed the options - do we have a hash? */
4473 	if (!hash_expected && !hash_location)
4474 		return SKB_NOT_DROPPED_YET;
4475 
4476 	if (hash_expected && !hash_location) {
4477 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4478 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4479 	}
4480 
4481 	if (!hash_expected && hash_location) {
4482 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4483 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4484 	}
4485 
4486 	/* Check the signature.
4487 	 * To support dual stack listeners, we need to handle
4488 	 * IPv4-mapped case.
4489 	 */
4490 	if (family == AF_INET)
4491 		genhash = tcp_v4_md5_hash_skb(newhash,
4492 					      hash_expected,
4493 					      NULL, skb);
4494 	else
4495 		genhash = tp->af_specific->calc_md5_hash(newhash,
4496 							 hash_expected,
4497 							 NULL, skb);
4498 
4499 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4500 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4501 		if (family == AF_INET) {
4502 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4503 					saddr, ntohs(th->source),
4504 					daddr, ntohs(th->dest),
4505 					genhash ? " tcp_v4_calc_md5_hash failed"
4506 					: "", l3index);
4507 		} else {
4508 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4509 					genhash ? "failed" : "mismatch",
4510 					saddr, ntohs(th->source),
4511 					daddr, ntohs(th->dest), l3index);
4512 		}
4513 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4514 	}
4515 	return SKB_NOT_DROPPED_YET;
4516 }
4517 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4518 
4519 #endif
4520 
4521 void tcp_done(struct sock *sk)
4522 {
4523 	struct request_sock *req;
4524 
4525 	/* We might be called with a new socket, after
4526 	 * inet_csk_prepare_forced_close() has been called
4527 	 * so we can not use lockdep_sock_is_held(sk)
4528 	 */
4529 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4530 
4531 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4532 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4533 
4534 	tcp_set_state(sk, TCP_CLOSE);
4535 	tcp_clear_xmit_timers(sk);
4536 	if (req)
4537 		reqsk_fastopen_remove(sk, req, false);
4538 
4539 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4540 
4541 	if (!sock_flag(sk, SOCK_DEAD))
4542 		sk->sk_state_change(sk);
4543 	else
4544 		inet_csk_destroy_sock(sk);
4545 }
4546 EXPORT_SYMBOL_GPL(tcp_done);
4547 
4548 int tcp_abort(struct sock *sk, int err)
4549 {
4550 	int state = inet_sk_state_load(sk);
4551 
4552 	if (state == TCP_NEW_SYN_RECV) {
4553 		struct request_sock *req = inet_reqsk(sk);
4554 
4555 		local_bh_disable();
4556 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4557 		local_bh_enable();
4558 		return 0;
4559 	}
4560 	if (state == TCP_TIME_WAIT) {
4561 		struct inet_timewait_sock *tw = inet_twsk(sk);
4562 
4563 		refcount_inc(&tw->tw_refcnt);
4564 		local_bh_disable();
4565 		inet_twsk_deschedule_put(tw);
4566 		local_bh_enable();
4567 		return 0;
4568 	}
4569 
4570 	/* BPF context ensures sock locking. */
4571 	if (!has_current_bpf_ctx())
4572 		/* Don't race with userspace socket closes such as tcp_close. */
4573 		lock_sock(sk);
4574 
4575 	if (sk->sk_state == TCP_LISTEN) {
4576 		tcp_set_state(sk, TCP_CLOSE);
4577 		inet_csk_listen_stop(sk);
4578 	}
4579 
4580 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4581 	local_bh_disable();
4582 	bh_lock_sock(sk);
4583 
4584 	if (!sock_flag(sk, SOCK_DEAD)) {
4585 		WRITE_ONCE(sk->sk_err, err);
4586 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4587 		smp_wmb();
4588 		sk_error_report(sk);
4589 		if (tcp_need_reset(sk->sk_state))
4590 			tcp_send_active_reset(sk, GFP_ATOMIC);
4591 		tcp_done(sk);
4592 	}
4593 
4594 	bh_unlock_sock(sk);
4595 	local_bh_enable();
4596 	tcp_write_queue_purge(sk);
4597 	if (!has_current_bpf_ctx())
4598 		release_sock(sk);
4599 	return 0;
4600 }
4601 EXPORT_SYMBOL_GPL(tcp_abort);
4602 
4603 extern struct tcp_congestion_ops tcp_reno;
4604 
4605 static __initdata unsigned long thash_entries;
4606 static int __init set_thash_entries(char *str)
4607 {
4608 	ssize_t ret;
4609 
4610 	if (!str)
4611 		return 0;
4612 
4613 	ret = kstrtoul(str, 0, &thash_entries);
4614 	if (ret)
4615 		return 0;
4616 
4617 	return 1;
4618 }
4619 __setup("thash_entries=", set_thash_entries);
4620 
4621 static void __init tcp_init_mem(void)
4622 {
4623 	unsigned long limit = nr_free_buffer_pages() / 16;
4624 
4625 	limit = max(limit, 128UL);
4626 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4627 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4628 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4629 }
4630 
4631 void __init tcp_init(void)
4632 {
4633 	int max_rshare, max_wshare, cnt;
4634 	unsigned long limit;
4635 	unsigned int i;
4636 
4637 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4638 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4639 		     sizeof_field(struct sk_buff, cb));
4640 
4641 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4642 
4643 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4644 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4645 
4646 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4647 			    thash_entries, 21,  /* one slot per 2 MB*/
4648 			    0, 64 * 1024);
4649 	tcp_hashinfo.bind_bucket_cachep =
4650 		kmem_cache_create("tcp_bind_bucket",
4651 				  sizeof(struct inet_bind_bucket), 0,
4652 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4653 				  SLAB_ACCOUNT,
4654 				  NULL);
4655 	tcp_hashinfo.bind2_bucket_cachep =
4656 		kmem_cache_create("tcp_bind2_bucket",
4657 				  sizeof(struct inet_bind2_bucket), 0,
4658 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4659 				  SLAB_ACCOUNT,
4660 				  NULL);
4661 
4662 	/* Size and allocate the main established and bind bucket
4663 	 * hash tables.
4664 	 *
4665 	 * The methodology is similar to that of the buffer cache.
4666 	 */
4667 	tcp_hashinfo.ehash =
4668 		alloc_large_system_hash("TCP established",
4669 					sizeof(struct inet_ehash_bucket),
4670 					thash_entries,
4671 					17, /* one slot per 128 KB of memory */
4672 					0,
4673 					NULL,
4674 					&tcp_hashinfo.ehash_mask,
4675 					0,
4676 					thash_entries ? 0 : 512 * 1024);
4677 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4678 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4679 
4680 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4681 		panic("TCP: failed to alloc ehash_locks");
4682 	tcp_hashinfo.bhash =
4683 		alloc_large_system_hash("TCP bind",
4684 					2 * sizeof(struct inet_bind_hashbucket),
4685 					tcp_hashinfo.ehash_mask + 1,
4686 					17, /* one slot per 128 KB of memory */
4687 					0,
4688 					&tcp_hashinfo.bhash_size,
4689 					NULL,
4690 					0,
4691 					64 * 1024);
4692 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4693 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4694 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4695 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4696 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4697 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4698 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4699 	}
4700 
4701 	tcp_hashinfo.pernet = false;
4702 
4703 	cnt = tcp_hashinfo.ehash_mask + 1;
4704 	sysctl_tcp_max_orphans = cnt / 2;
4705 
4706 	tcp_init_mem();
4707 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4708 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4709 	max_wshare = min(4UL*1024*1024, limit);
4710 	max_rshare = min(6UL*1024*1024, limit);
4711 
4712 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4713 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4714 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4715 
4716 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4717 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4718 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4719 
4720 	pr_info("Hash tables configured (established %u bind %u)\n",
4721 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4722 
4723 	tcp_v4_init();
4724 	tcp_metrics_init();
4725 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4726 	tcp_tasklet_init();
4727 	mptcp_init();
4728 }
4729