xref: /openbmc/linux/net/ipv4/tcp.c (revision 2a9eb57e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 
439 	/* See draft-stevens-tcpca-spec-01 for discussion of the
440 	 * initialization of these values.
441 	 */
442 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 	tp->snd_cwnd_clamp = ~0;
444 	tp->mss_cache = TCP_MSS_DEFAULT;
445 
446 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
447 	tcp_assign_congestion_control(sk);
448 
449 	tp->tsoffset = 0;
450 	tp->rack.reo_wnd_steps = 1;
451 
452 	sk->sk_write_space = sk_stream_write_space;
453 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454 
455 	icsk->icsk_sync_mss = tcp_sync_mss;
456 
457 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
458 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
459 
460 	sk_sockets_allocated_inc(sk);
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463 
464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 	struct sk_buff *skb = tcp_write_queue_tail(sk);
467 
468 	if (tsflags && skb) {
469 		struct skb_shared_info *shinfo = skb_shinfo(skb);
470 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471 
472 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 			tcb->txstamp_ack = 1;
475 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 	}
478 }
479 
480 static bool tcp_stream_is_readable(struct sock *sk, int target)
481 {
482 	if (tcp_epollin_ready(sk, target))
483 		return true;
484 	return sk_is_readable(sk);
485 }
486 
487 /*
488  *	Wait for a TCP event.
489  *
490  *	Note that we don't need to lock the socket, as the upper poll layers
491  *	take care of normal races (between the test and the event) and we don't
492  *	go look at any of the socket buffers directly.
493  */
494 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
495 {
496 	__poll_t mask;
497 	struct sock *sk = sock->sk;
498 	const struct tcp_sock *tp = tcp_sk(sk);
499 	int state;
500 
501 	sock_poll_wait(file, sock, wait);
502 
503 	state = inet_sk_state_load(sk);
504 	if (state == TCP_LISTEN)
505 		return inet_csk_listen_poll(sk);
506 
507 	/* Socket is not locked. We are protected from async events
508 	 * by poll logic and correct handling of state changes
509 	 * made by other threads is impossible in any case.
510 	 */
511 
512 	mask = 0;
513 
514 	/*
515 	 * EPOLLHUP is certainly not done right. But poll() doesn't
516 	 * have a notion of HUP in just one direction, and for a
517 	 * socket the read side is more interesting.
518 	 *
519 	 * Some poll() documentation says that EPOLLHUP is incompatible
520 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
521 	 * all. But careful, it tends to be safer to return too many
522 	 * bits than too few, and you can easily break real applications
523 	 * if you don't tell them that something has hung up!
524 	 *
525 	 * Check-me.
526 	 *
527 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
528 	 * our fs/select.c). It means that after we received EOF,
529 	 * poll always returns immediately, making impossible poll() on write()
530 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
531 	 * if and only if shutdown has been made in both directions.
532 	 * Actually, it is interesting to look how Solaris and DUX
533 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
534 	 * then we could set it on SND_SHUTDOWN. BTW examples given
535 	 * in Stevens' books assume exactly this behaviour, it explains
536 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
537 	 *
538 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
539 	 * blocking on fresh not-connected or disconnected socket. --ANK
540 	 */
541 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
542 		mask |= EPOLLHUP;
543 	if (sk->sk_shutdown & RCV_SHUTDOWN)
544 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
545 
546 	/* Connected or passive Fast Open socket? */
547 	if (state != TCP_SYN_SENT &&
548 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
549 		int target = sock_rcvlowat(sk, 0, INT_MAX);
550 		u16 urg_data = READ_ONCE(tp->urg_data);
551 
552 		if (unlikely(urg_data) &&
553 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
554 		    !sock_flag(sk, SOCK_URGINLINE))
555 			target++;
556 
557 		if (tcp_stream_is_readable(sk, target))
558 			mask |= EPOLLIN | EPOLLRDNORM;
559 
560 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
561 			if (__sk_stream_is_writeable(sk, 1)) {
562 				mask |= EPOLLOUT | EPOLLWRNORM;
563 			} else {  /* send SIGIO later */
564 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
565 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
566 
567 				/* Race breaker. If space is freed after
568 				 * wspace test but before the flags are set,
569 				 * IO signal will be lost. Memory barrier
570 				 * pairs with the input side.
571 				 */
572 				smp_mb__after_atomic();
573 				if (__sk_stream_is_writeable(sk, 1))
574 					mask |= EPOLLOUT | EPOLLWRNORM;
575 			}
576 		} else
577 			mask |= EPOLLOUT | EPOLLWRNORM;
578 
579 		if (urg_data & TCP_URG_VALID)
580 			mask |= EPOLLPRI;
581 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
582 		/* Active TCP fastopen socket with defer_connect
583 		 * Return EPOLLOUT so application can call write()
584 		 * in order for kernel to generate SYN+data
585 		 */
586 		mask |= EPOLLOUT | EPOLLWRNORM;
587 	}
588 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
589 	smp_rmb();
590 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
591 		mask |= EPOLLERR;
592 
593 	return mask;
594 }
595 EXPORT_SYMBOL(tcp_poll);
596 
597 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
598 {
599 	struct tcp_sock *tp = tcp_sk(sk);
600 	int answ;
601 	bool slow;
602 
603 	switch (cmd) {
604 	case SIOCINQ:
605 		if (sk->sk_state == TCP_LISTEN)
606 			return -EINVAL;
607 
608 		slow = lock_sock_fast(sk);
609 		answ = tcp_inq(sk);
610 		unlock_sock_fast(sk, slow);
611 		break;
612 	case SIOCATMARK:
613 		answ = READ_ONCE(tp->urg_data) &&
614 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
615 		break;
616 	case SIOCOUTQ:
617 		if (sk->sk_state == TCP_LISTEN)
618 			return -EINVAL;
619 
620 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
621 			answ = 0;
622 		else
623 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
624 		break;
625 	case SIOCOUTQNSD:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 			answ = 0;
631 		else
632 			answ = READ_ONCE(tp->write_seq) -
633 			       READ_ONCE(tp->snd_nxt);
634 		break;
635 	default:
636 		return -ENOIOCTLCMD;
637 	}
638 
639 	return put_user(answ, (int __user *)arg);
640 }
641 EXPORT_SYMBOL(tcp_ioctl);
642 
643 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
644 {
645 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
646 	tp->pushed_seq = tp->write_seq;
647 }
648 
649 static inline bool forced_push(const struct tcp_sock *tp)
650 {
651 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
652 }
653 
654 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
658 
659 	tcb->seq     = tcb->end_seq = tp->write_seq;
660 	tcb->tcp_flags = TCPHDR_ACK;
661 	__skb_header_release(skb);
662 	tcp_add_write_queue_tail(sk, skb);
663 	sk_wmem_queued_add(sk, skb->truesize);
664 	sk_mem_charge(sk, skb->truesize);
665 	if (tp->nonagle & TCP_NAGLE_PUSH)
666 		tp->nonagle &= ~TCP_NAGLE_PUSH;
667 
668 	tcp_slow_start_after_idle_check(sk);
669 }
670 
671 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
672 {
673 	if (flags & MSG_OOB)
674 		tp->snd_up = tp->write_seq;
675 }
676 
677 /* If a not yet filled skb is pushed, do not send it if
678  * we have data packets in Qdisc or NIC queues :
679  * Because TX completion will happen shortly, it gives a chance
680  * to coalesce future sendmsg() payload into this skb, without
681  * need for a timer, and with no latency trade off.
682  * As packets containing data payload have a bigger truesize
683  * than pure acks (dataless) packets, the last checks prevent
684  * autocorking if we only have an ACK in Qdisc/NIC queues,
685  * or if TX completion was delayed after we processed ACK packet.
686  */
687 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
688 				int size_goal)
689 {
690 	return skb->len < size_goal &&
691 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
692 	       !tcp_rtx_queue_empty(sk) &&
693 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
694 	       tcp_skb_can_collapse_to(skb);
695 }
696 
697 void tcp_push(struct sock *sk, int flags, int mss_now,
698 	      int nonagle, int size_goal)
699 {
700 	struct tcp_sock *tp = tcp_sk(sk);
701 	struct sk_buff *skb;
702 
703 	skb = tcp_write_queue_tail(sk);
704 	if (!skb)
705 		return;
706 	if (!(flags & MSG_MORE) || forced_push(tp))
707 		tcp_mark_push(tp, skb);
708 
709 	tcp_mark_urg(tp, flags);
710 
711 	if (tcp_should_autocork(sk, skb, size_goal)) {
712 
713 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
714 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
715 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
716 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
717 		}
718 		/* It is possible TX completion already happened
719 		 * before we set TSQ_THROTTLED.
720 		 */
721 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
722 			return;
723 	}
724 
725 	if (flags & MSG_MORE)
726 		nonagle = TCP_NAGLE_CORK;
727 
728 	__tcp_push_pending_frames(sk, mss_now, nonagle);
729 }
730 
731 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
732 				unsigned int offset, size_t len)
733 {
734 	struct tcp_splice_state *tss = rd_desc->arg.data;
735 	int ret;
736 
737 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
738 			      min(rd_desc->count, len), tss->flags);
739 	if (ret > 0)
740 		rd_desc->count -= ret;
741 	return ret;
742 }
743 
744 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
745 {
746 	/* Store TCP splice context information in read_descriptor_t. */
747 	read_descriptor_t rd_desc = {
748 		.arg.data = tss,
749 		.count	  = tss->len,
750 	};
751 
752 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
753 }
754 
755 /**
756  *  tcp_splice_read - splice data from TCP socket to a pipe
757  * @sock:	socket to splice from
758  * @ppos:	position (not valid)
759  * @pipe:	pipe to splice to
760  * @len:	number of bytes to splice
761  * @flags:	splice modifier flags
762  *
763  * Description:
764  *    Will read pages from given socket and fill them into a pipe.
765  *
766  **/
767 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
768 			struct pipe_inode_info *pipe, size_t len,
769 			unsigned int flags)
770 {
771 	struct sock *sk = sock->sk;
772 	struct tcp_splice_state tss = {
773 		.pipe = pipe,
774 		.len = len,
775 		.flags = flags,
776 	};
777 	long timeo;
778 	ssize_t spliced;
779 	int ret;
780 
781 	sock_rps_record_flow(sk);
782 	/*
783 	 * We can't seek on a socket input
784 	 */
785 	if (unlikely(*ppos))
786 		return -ESPIPE;
787 
788 	ret = spliced = 0;
789 
790 	lock_sock(sk);
791 
792 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
793 	while (tss.len) {
794 		ret = __tcp_splice_read(sk, &tss);
795 		if (ret < 0)
796 			break;
797 		else if (!ret) {
798 			if (spliced)
799 				break;
800 			if (sock_flag(sk, SOCK_DONE))
801 				break;
802 			if (sk->sk_err) {
803 				ret = sock_error(sk);
804 				break;
805 			}
806 			if (sk->sk_shutdown & RCV_SHUTDOWN)
807 				break;
808 			if (sk->sk_state == TCP_CLOSE) {
809 				/*
810 				 * This occurs when user tries to read
811 				 * from never connected socket.
812 				 */
813 				ret = -ENOTCONN;
814 				break;
815 			}
816 			if (!timeo) {
817 				ret = -EAGAIN;
818 				break;
819 			}
820 			/* if __tcp_splice_read() got nothing while we have
821 			 * an skb in receive queue, we do not want to loop.
822 			 * This might happen with URG data.
823 			 */
824 			if (!skb_queue_empty(&sk->sk_receive_queue))
825 				break;
826 			sk_wait_data(sk, &timeo, NULL);
827 			if (signal_pending(current)) {
828 				ret = sock_intr_errno(timeo);
829 				break;
830 			}
831 			continue;
832 		}
833 		tss.len -= ret;
834 		spliced += ret;
835 
836 		if (!timeo)
837 			break;
838 		release_sock(sk);
839 		lock_sock(sk);
840 
841 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
842 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
843 		    signal_pending(current))
844 			break;
845 	}
846 
847 	release_sock(sk);
848 
849 	if (spliced)
850 		return spliced;
851 
852 	return ret;
853 }
854 EXPORT_SYMBOL(tcp_splice_read);
855 
856 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
857 				     bool force_schedule)
858 {
859 	struct sk_buff *skb;
860 
861 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
862 	if (likely(skb)) {
863 		bool mem_scheduled;
864 
865 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
866 		if (force_schedule) {
867 			mem_scheduled = true;
868 			sk_forced_mem_schedule(sk, skb->truesize);
869 		} else {
870 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 		}
872 		if (likely(mem_scheduled)) {
873 			skb_reserve(skb, MAX_TCP_HEADER);
874 			skb->ip_summed = CHECKSUM_PARTIAL;
875 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 			return skb;
877 		}
878 		__kfree_skb(skb);
879 	} else {
880 		sk->sk_prot->enter_memory_pressure(sk);
881 		sk_stream_moderate_sndbuf(sk);
882 	}
883 	return NULL;
884 }
885 
886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 				       int large_allowed)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	u32 new_size_goal, size_goal;
891 
892 	if (!large_allowed)
893 		return mss_now;
894 
895 	/* Note : tcp_tso_autosize() will eventually split this later */
896 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
897 
898 	/* We try hard to avoid divides here */
899 	size_goal = tp->gso_segs * mss_now;
900 	if (unlikely(new_size_goal < size_goal ||
901 		     new_size_goal >= size_goal + mss_now)) {
902 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
903 				     sk->sk_gso_max_segs);
904 		size_goal = tp->gso_segs * mss_now;
905 	}
906 
907 	return max(size_goal, mss_now);
908 }
909 
910 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
911 {
912 	int mss_now;
913 
914 	mss_now = tcp_current_mss(sk);
915 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
916 
917 	return mss_now;
918 }
919 
920 /* In some cases, both sendpage() and sendmsg() could have added
921  * an skb to the write queue, but failed adding payload on it.
922  * We need to remove it to consume less memory, but more
923  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
924  * users.
925  */
926 void tcp_remove_empty_skb(struct sock *sk)
927 {
928 	struct sk_buff *skb = tcp_write_queue_tail(sk);
929 
930 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
931 		tcp_unlink_write_queue(skb, sk);
932 		if (tcp_write_queue_empty(sk))
933 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
934 		tcp_wmem_free_skb(sk, skb);
935 	}
936 }
937 
938 /* skb changing from pure zc to mixed, must charge zc */
939 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
940 {
941 	if (unlikely(skb_zcopy_pure(skb))) {
942 		u32 extra = skb->truesize -
943 			    SKB_TRUESIZE(skb_end_offset(skb));
944 
945 		if (!sk_wmem_schedule(sk, extra))
946 			return -ENOMEM;
947 
948 		sk_mem_charge(sk, extra);
949 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
950 	}
951 	return 0;
952 }
953 
954 
955 static int tcp_wmem_schedule(struct sock *sk, int copy)
956 {
957 	int left;
958 
959 	if (likely(sk_wmem_schedule(sk, copy)))
960 		return copy;
961 
962 	/* We could be in trouble if we have nothing queued.
963 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
964 	 * to guarantee some progress.
965 	 */
966 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
967 	if (left > 0)
968 		sk_forced_mem_schedule(sk, min(left, copy));
969 	return min(copy, sk->sk_forward_alloc);
970 }
971 
972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
973 				      struct page *page, int offset, size_t *size)
974 {
975 	struct sk_buff *skb = tcp_write_queue_tail(sk);
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	bool can_coalesce;
978 	int copy, i;
979 
980 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
981 	    !tcp_skb_can_collapse_to(skb)) {
982 new_segment:
983 		if (!sk_stream_memory_free(sk))
984 			return NULL;
985 
986 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
987 					   tcp_rtx_and_write_queues_empty(sk));
988 		if (!skb)
989 			return NULL;
990 
991 #ifdef CONFIG_TLS_DEVICE
992 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
993 #endif
994 		tcp_skb_entail(sk, skb);
995 		copy = size_goal;
996 	}
997 
998 	if (copy > *size)
999 		copy = *size;
1000 
1001 	i = skb_shinfo(skb)->nr_frags;
1002 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
1004 		tcp_mark_push(tp, skb);
1005 		goto new_segment;
1006 	}
1007 	if (tcp_downgrade_zcopy_pure(sk, skb))
1008 		return NULL;
1009 
1010 	copy = tcp_wmem_schedule(sk, copy);
1011 	if (!copy)
1012 		return NULL;
1013 
1014 	if (can_coalesce) {
1015 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 	} else {
1017 		get_page(page);
1018 		skb_fill_page_desc(skb, i, page, offset, copy);
1019 	}
1020 
1021 	if (!(flags & MSG_NO_SHARED_FRAGS))
1022 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1023 
1024 	skb->len += copy;
1025 	skb->data_len += copy;
1026 	skb->truesize += copy;
1027 	sk_wmem_queued_add(sk, copy);
1028 	sk_mem_charge(sk, copy);
1029 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1030 	TCP_SKB_CB(skb)->end_seq += copy;
1031 	tcp_skb_pcount_set(skb, 0);
1032 
1033 	*size = copy;
1034 	return skb;
1035 }
1036 
1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1038 			 size_t size, int flags)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	int mss_now, size_goal;
1042 	int err;
1043 	ssize_t copied;
1044 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045 
1046 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1047 	    WARN_ONCE(!sendpage_ok(page),
1048 		      "page must not be a Slab one and have page_count > 0"))
1049 		return -EINVAL;
1050 
1051 	/* Wait for a connection to finish. One exception is TCP Fast Open
1052 	 * (passive side) where data is allowed to be sent before a connection
1053 	 * is fully established.
1054 	 */
1055 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 	    !tcp_passive_fastopen(sk)) {
1057 		err = sk_stream_wait_connect(sk, &timeo);
1058 		if (err != 0)
1059 			goto out_err;
1060 	}
1061 
1062 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1063 
1064 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1065 	copied = 0;
1066 
1067 	err = -EPIPE;
1068 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1069 		goto out_err;
1070 
1071 	while (size > 0) {
1072 		struct sk_buff *skb;
1073 		size_t copy = size;
1074 
1075 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1076 		if (!skb)
1077 			goto wait_for_space;
1078 
1079 		if (!copied)
1080 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081 
1082 		copied += copy;
1083 		offset += copy;
1084 		size -= copy;
1085 		if (!size)
1086 			goto out;
1087 
1088 		if (skb->len < size_goal || (flags & MSG_OOB))
1089 			continue;
1090 
1091 		if (forced_push(tp)) {
1092 			tcp_mark_push(tp, skb);
1093 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094 		} else if (skb == tcp_send_head(sk))
1095 			tcp_push_one(sk, mss_now);
1096 		continue;
1097 
1098 wait_for_space:
1099 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1101 			 TCP_NAGLE_PUSH, size_goal);
1102 
1103 		err = sk_stream_wait_memory(sk, &timeo);
1104 		if (err != 0)
1105 			goto do_error;
1106 
1107 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1108 	}
1109 
1110 out:
1111 	if (copied) {
1112 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1113 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1114 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1115 	}
1116 	return copied;
1117 
1118 do_error:
1119 	tcp_remove_empty_skb(sk);
1120 	if (copied)
1121 		goto out;
1122 out_err:
1123 	/* make sure we wake any epoll edge trigger waiter */
1124 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1125 		sk->sk_write_space(sk);
1126 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1127 	}
1128 	return sk_stream_error(sk, flags, err);
1129 }
1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1131 
1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1133 			size_t size, int flags)
1134 {
1135 	if (!(sk->sk_route_caps & NETIF_F_SG))
1136 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1137 
1138 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1139 
1140 	return do_tcp_sendpages(sk, page, offset, size, flags);
1141 }
1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1143 
1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1145 		 size_t size, int flags)
1146 {
1147 	int ret;
1148 
1149 	lock_sock(sk);
1150 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1151 	release_sock(sk);
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL(tcp_sendpage);
1156 
1157 void tcp_free_fastopen_req(struct tcp_sock *tp)
1158 {
1159 	if (tp->fastopen_req) {
1160 		kfree(tp->fastopen_req);
1161 		tp->fastopen_req = NULL;
1162 	}
1163 }
1164 
1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1166 				int *copied, size_t size,
1167 				struct ubuf_info *uarg)
1168 {
1169 	struct tcp_sock *tp = tcp_sk(sk);
1170 	struct inet_sock *inet = inet_sk(sk);
1171 	struct sockaddr *uaddr = msg->msg_name;
1172 	int err, flags;
1173 
1174 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1175 	      TFO_CLIENT_ENABLE) ||
1176 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1177 	     uaddr->sa_family == AF_UNSPEC))
1178 		return -EOPNOTSUPP;
1179 	if (tp->fastopen_req)
1180 		return -EALREADY; /* Another Fast Open is in progress */
1181 
1182 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1183 				   sk->sk_allocation);
1184 	if (unlikely(!tp->fastopen_req))
1185 		return -ENOBUFS;
1186 	tp->fastopen_req->data = msg;
1187 	tp->fastopen_req->size = size;
1188 	tp->fastopen_req->uarg = uarg;
1189 
1190 	if (inet->defer_connect) {
1191 		err = tcp_connect(sk);
1192 		/* Same failure procedure as in tcp_v4/6_connect */
1193 		if (err) {
1194 			tcp_set_state(sk, TCP_CLOSE);
1195 			inet->inet_dport = 0;
1196 			sk->sk_route_caps = 0;
1197 		}
1198 	}
1199 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1200 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1201 				    msg->msg_namelen, flags, 1);
1202 	/* fastopen_req could already be freed in __inet_stream_connect
1203 	 * if the connection times out or gets rst
1204 	 */
1205 	if (tp->fastopen_req) {
1206 		*copied = tp->fastopen_req->copied;
1207 		tcp_free_fastopen_req(tp);
1208 		inet->defer_connect = 0;
1209 	}
1210 	return err;
1211 }
1212 
1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1214 {
1215 	struct tcp_sock *tp = tcp_sk(sk);
1216 	struct ubuf_info *uarg = NULL;
1217 	struct sk_buff *skb;
1218 	struct sockcm_cookie sockc;
1219 	int flags, err, copied = 0;
1220 	int mss_now = 0, size_goal, copied_syn = 0;
1221 	int process_backlog = 0;
1222 	bool zc = false;
1223 	long timeo;
1224 
1225 	flags = msg->msg_flags;
1226 
1227 	if ((flags & MSG_ZEROCOPY) && size) {
1228 		skb = tcp_write_queue_tail(sk);
1229 
1230 		if (msg->msg_ubuf) {
1231 			uarg = msg->msg_ubuf;
1232 			net_zcopy_get(uarg);
1233 			zc = sk->sk_route_caps & NETIF_F_SG;
1234 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1235 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1236 			if (!uarg) {
1237 				err = -ENOBUFS;
1238 				goto out_err;
1239 			}
1240 			zc = sk->sk_route_caps & NETIF_F_SG;
1241 			if (!zc)
1242 				uarg->zerocopy = 0;
1243 		}
1244 	}
1245 
1246 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1247 	    !tp->repair) {
1248 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1249 		if (err == -EINPROGRESS && copied_syn > 0)
1250 			goto out;
1251 		else if (err)
1252 			goto out_err;
1253 	}
1254 
1255 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1256 
1257 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1258 
1259 	/* Wait for a connection to finish. One exception is TCP Fast Open
1260 	 * (passive side) where data is allowed to be sent before a connection
1261 	 * is fully established.
1262 	 */
1263 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1264 	    !tcp_passive_fastopen(sk)) {
1265 		err = sk_stream_wait_connect(sk, &timeo);
1266 		if (err != 0)
1267 			goto do_error;
1268 	}
1269 
1270 	if (unlikely(tp->repair)) {
1271 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1272 			copied = tcp_send_rcvq(sk, msg, size);
1273 			goto out_nopush;
1274 		}
1275 
1276 		err = -EINVAL;
1277 		if (tp->repair_queue == TCP_NO_QUEUE)
1278 			goto out_err;
1279 
1280 		/* 'common' sending to sendq */
1281 	}
1282 
1283 	sockcm_init(&sockc, sk);
1284 	if (msg->msg_controllen) {
1285 		err = sock_cmsg_send(sk, msg, &sockc);
1286 		if (unlikely(err)) {
1287 			err = -EINVAL;
1288 			goto out_err;
1289 		}
1290 	}
1291 
1292 	/* This should be in poll */
1293 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1294 
1295 	/* Ok commence sending. */
1296 	copied = 0;
1297 
1298 restart:
1299 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1300 
1301 	err = -EPIPE;
1302 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1303 		goto do_error;
1304 
1305 	while (msg_data_left(msg)) {
1306 		int copy = 0;
1307 
1308 		skb = tcp_write_queue_tail(sk);
1309 		if (skb)
1310 			copy = size_goal - skb->len;
1311 
1312 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1313 			bool first_skb;
1314 
1315 new_segment:
1316 			if (!sk_stream_memory_free(sk))
1317 				goto wait_for_space;
1318 
1319 			if (unlikely(process_backlog >= 16)) {
1320 				process_backlog = 0;
1321 				if (sk_flush_backlog(sk))
1322 					goto restart;
1323 			}
1324 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1325 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1326 						   first_skb);
1327 			if (!skb)
1328 				goto wait_for_space;
1329 
1330 			process_backlog++;
1331 
1332 			tcp_skb_entail(sk, skb);
1333 			copy = size_goal;
1334 
1335 			/* All packets are restored as if they have
1336 			 * already been sent. skb_mstamp_ns isn't set to
1337 			 * avoid wrong rtt estimation.
1338 			 */
1339 			if (tp->repair)
1340 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1341 		}
1342 
1343 		/* Try to append data to the end of skb. */
1344 		if (copy > msg_data_left(msg))
1345 			copy = msg_data_left(msg);
1346 
1347 		if (!zc) {
1348 			bool merge = true;
1349 			int i = skb_shinfo(skb)->nr_frags;
1350 			struct page_frag *pfrag = sk_page_frag(sk);
1351 
1352 			if (!sk_page_frag_refill(sk, pfrag))
1353 				goto wait_for_space;
1354 
1355 			if (!skb_can_coalesce(skb, i, pfrag->page,
1356 					      pfrag->offset)) {
1357 				if (i >= sysctl_max_skb_frags) {
1358 					tcp_mark_push(tp, skb);
1359 					goto new_segment;
1360 				}
1361 				merge = false;
1362 			}
1363 
1364 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1365 
1366 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1367 				if (tcp_downgrade_zcopy_pure(sk, skb))
1368 					goto wait_for_space;
1369 				skb_zcopy_downgrade_managed(skb);
1370 			}
1371 
1372 			copy = tcp_wmem_schedule(sk, copy);
1373 			if (!copy)
1374 				goto wait_for_space;
1375 
1376 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1377 						       pfrag->page,
1378 						       pfrag->offset,
1379 						       copy);
1380 			if (err)
1381 				goto do_error;
1382 
1383 			/* Update the skb. */
1384 			if (merge) {
1385 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1386 			} else {
1387 				skb_fill_page_desc(skb, i, pfrag->page,
1388 						   pfrag->offset, copy);
1389 				page_ref_inc(pfrag->page);
1390 			}
1391 			pfrag->offset += copy;
1392 		} else {
1393 			/* First append to a fragless skb builds initial
1394 			 * pure zerocopy skb
1395 			 */
1396 			if (!skb->len)
1397 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1398 
1399 			if (!skb_zcopy_pure(skb)) {
1400 				copy = tcp_wmem_schedule(sk, copy);
1401 				if (!copy)
1402 					goto wait_for_space;
1403 			}
1404 
1405 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1406 			if (err == -EMSGSIZE || err == -EEXIST) {
1407 				tcp_mark_push(tp, skb);
1408 				goto new_segment;
1409 			}
1410 			if (err < 0)
1411 				goto do_error;
1412 			copy = err;
1413 		}
1414 
1415 		if (!copied)
1416 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1417 
1418 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1419 		TCP_SKB_CB(skb)->end_seq += copy;
1420 		tcp_skb_pcount_set(skb, 0);
1421 
1422 		copied += copy;
1423 		if (!msg_data_left(msg)) {
1424 			if (unlikely(flags & MSG_EOR))
1425 				TCP_SKB_CB(skb)->eor = 1;
1426 			goto out;
1427 		}
1428 
1429 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1430 			continue;
1431 
1432 		if (forced_push(tp)) {
1433 			tcp_mark_push(tp, skb);
1434 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1435 		} else if (skb == tcp_send_head(sk))
1436 			tcp_push_one(sk, mss_now);
1437 		continue;
1438 
1439 wait_for_space:
1440 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1441 		if (copied)
1442 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1443 				 TCP_NAGLE_PUSH, size_goal);
1444 
1445 		err = sk_stream_wait_memory(sk, &timeo);
1446 		if (err != 0)
1447 			goto do_error;
1448 
1449 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1450 	}
1451 
1452 out:
1453 	if (copied) {
1454 		tcp_tx_timestamp(sk, sockc.tsflags);
1455 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1456 	}
1457 out_nopush:
1458 	net_zcopy_put(uarg);
1459 	return copied + copied_syn;
1460 
1461 do_error:
1462 	tcp_remove_empty_skb(sk);
1463 
1464 	if (copied + copied_syn)
1465 		goto out;
1466 out_err:
1467 	net_zcopy_put_abort(uarg, true);
1468 	err = sk_stream_error(sk, flags, err);
1469 	/* make sure we wake any epoll edge trigger waiter */
1470 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1471 		sk->sk_write_space(sk);
1472 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1473 	}
1474 	return err;
1475 }
1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1477 
1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1479 {
1480 	int ret;
1481 
1482 	lock_sock(sk);
1483 	ret = tcp_sendmsg_locked(sk, msg, size);
1484 	release_sock(sk);
1485 
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(tcp_sendmsg);
1489 
1490 /*
1491  *	Handle reading urgent data. BSD has very simple semantics for
1492  *	this, no blocking and very strange errors 8)
1493  */
1494 
1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1496 {
1497 	struct tcp_sock *tp = tcp_sk(sk);
1498 
1499 	/* No URG data to read. */
1500 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1501 	    tp->urg_data == TCP_URG_READ)
1502 		return -EINVAL;	/* Yes this is right ! */
1503 
1504 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1505 		return -ENOTCONN;
1506 
1507 	if (tp->urg_data & TCP_URG_VALID) {
1508 		int err = 0;
1509 		char c = tp->urg_data;
1510 
1511 		if (!(flags & MSG_PEEK))
1512 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1513 
1514 		/* Read urgent data. */
1515 		msg->msg_flags |= MSG_OOB;
1516 
1517 		if (len > 0) {
1518 			if (!(flags & MSG_TRUNC))
1519 				err = memcpy_to_msg(msg, &c, 1);
1520 			len = 1;
1521 		} else
1522 			msg->msg_flags |= MSG_TRUNC;
1523 
1524 		return err ? -EFAULT : len;
1525 	}
1526 
1527 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1528 		return 0;
1529 
1530 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1531 	 * the available implementations agree in this case:
1532 	 * this call should never block, independent of the
1533 	 * blocking state of the socket.
1534 	 * Mike <pall@rz.uni-karlsruhe.de>
1535 	 */
1536 	return -EAGAIN;
1537 }
1538 
1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1540 {
1541 	struct sk_buff *skb;
1542 	int copied = 0, err = 0;
1543 
1544 	/* XXX -- need to support SO_PEEK_OFF */
1545 
1546 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1547 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1548 		if (err)
1549 			return err;
1550 		copied += skb->len;
1551 	}
1552 
1553 	skb_queue_walk(&sk->sk_write_queue, skb) {
1554 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1555 		if (err)
1556 			break;
1557 
1558 		copied += skb->len;
1559 	}
1560 
1561 	return err ?: copied;
1562 }
1563 
1564 /* Clean up the receive buffer for full frames taken by the user,
1565  * then send an ACK if necessary.  COPIED is the number of bytes
1566  * tcp_recvmsg has given to the user so far, it speeds up the
1567  * calculation of whether or not we must ACK for the sake of
1568  * a window update.
1569  */
1570 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1571 {
1572 	struct tcp_sock *tp = tcp_sk(sk);
1573 	bool time_to_ack = false;
1574 
1575 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1576 
1577 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1578 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1579 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1580 
1581 	if (inet_csk_ack_scheduled(sk)) {
1582 		const struct inet_connection_sock *icsk = inet_csk(sk);
1583 
1584 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1585 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1586 		    /*
1587 		     * If this read emptied read buffer, we send ACK, if
1588 		     * connection is not bidirectional, user drained
1589 		     * receive buffer and there was a small segment
1590 		     * in queue.
1591 		     */
1592 		    (copied > 0 &&
1593 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1594 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1595 		       !inet_csk_in_pingpong_mode(sk))) &&
1596 		      !atomic_read(&sk->sk_rmem_alloc)))
1597 			time_to_ack = true;
1598 	}
1599 
1600 	/* We send an ACK if we can now advertise a non-zero window
1601 	 * which has been raised "significantly".
1602 	 *
1603 	 * Even if window raised up to infinity, do not send window open ACK
1604 	 * in states, where we will not receive more. It is useless.
1605 	 */
1606 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1607 		__u32 rcv_window_now = tcp_receive_window(tp);
1608 
1609 		/* Optimize, __tcp_select_window() is not cheap. */
1610 		if (2*rcv_window_now <= tp->window_clamp) {
1611 			__u32 new_window = __tcp_select_window(sk);
1612 
1613 			/* Send ACK now, if this read freed lots of space
1614 			 * in our buffer. Certainly, new_window is new window.
1615 			 * We can advertise it now, if it is not less than current one.
1616 			 * "Lots" means "at least twice" here.
1617 			 */
1618 			if (new_window && new_window >= 2 * rcv_window_now)
1619 				time_to_ack = true;
1620 		}
1621 	}
1622 	if (time_to_ack)
1623 		tcp_send_ack(sk);
1624 }
1625 
1626 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1627 {
1628 	__skb_unlink(skb, &sk->sk_receive_queue);
1629 	if (likely(skb->destructor == sock_rfree)) {
1630 		sock_rfree(skb);
1631 		skb->destructor = NULL;
1632 		skb->sk = NULL;
1633 		return skb_attempt_defer_free(skb);
1634 	}
1635 	__kfree_skb(skb);
1636 }
1637 
1638 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1639 {
1640 	struct sk_buff *skb;
1641 	u32 offset;
1642 
1643 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1644 		offset = seq - TCP_SKB_CB(skb)->seq;
1645 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1646 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1647 			offset--;
1648 		}
1649 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1650 			*off = offset;
1651 			return skb;
1652 		}
1653 		/* This looks weird, but this can happen if TCP collapsing
1654 		 * splitted a fat GRO packet, while we released socket lock
1655 		 * in skb_splice_bits()
1656 		 */
1657 		tcp_eat_recv_skb(sk, skb);
1658 	}
1659 	return NULL;
1660 }
1661 EXPORT_SYMBOL(tcp_recv_skb);
1662 
1663 /*
1664  * This routine provides an alternative to tcp_recvmsg() for routines
1665  * that would like to handle copying from skbuffs directly in 'sendfile'
1666  * fashion.
1667  * Note:
1668  *	- It is assumed that the socket was locked by the caller.
1669  *	- The routine does not block.
1670  *	- At present, there is no support for reading OOB data
1671  *	  or for 'peeking' the socket using this routine
1672  *	  (although both would be easy to implement).
1673  */
1674 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1675 		  sk_read_actor_t recv_actor)
1676 {
1677 	struct sk_buff *skb;
1678 	struct tcp_sock *tp = tcp_sk(sk);
1679 	u32 seq = tp->copied_seq;
1680 	u32 offset;
1681 	int copied = 0;
1682 
1683 	if (sk->sk_state == TCP_LISTEN)
1684 		return -ENOTCONN;
1685 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1686 		if (offset < skb->len) {
1687 			int used;
1688 			size_t len;
1689 
1690 			len = skb->len - offset;
1691 			/* Stop reading if we hit a patch of urgent data */
1692 			if (unlikely(tp->urg_data)) {
1693 				u32 urg_offset = tp->urg_seq - seq;
1694 				if (urg_offset < len)
1695 					len = urg_offset;
1696 				if (!len)
1697 					break;
1698 			}
1699 			used = recv_actor(desc, skb, offset, len);
1700 			if (used <= 0) {
1701 				if (!copied)
1702 					copied = used;
1703 				break;
1704 			}
1705 			if (WARN_ON_ONCE(used > len))
1706 				used = len;
1707 			seq += used;
1708 			copied += used;
1709 			offset += used;
1710 
1711 			/* If recv_actor drops the lock (e.g. TCP splice
1712 			 * receive) the skb pointer might be invalid when
1713 			 * getting here: tcp_collapse might have deleted it
1714 			 * while aggregating skbs from the socket queue.
1715 			 */
1716 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1717 			if (!skb)
1718 				break;
1719 			/* TCP coalescing might have appended data to the skb.
1720 			 * Try to splice more frags
1721 			 */
1722 			if (offset + 1 != skb->len)
1723 				continue;
1724 		}
1725 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1726 			tcp_eat_recv_skb(sk, skb);
1727 			++seq;
1728 			break;
1729 		}
1730 		tcp_eat_recv_skb(sk, skb);
1731 		if (!desc->count)
1732 			break;
1733 		WRITE_ONCE(tp->copied_seq, seq);
1734 	}
1735 	WRITE_ONCE(tp->copied_seq, seq);
1736 
1737 	tcp_rcv_space_adjust(sk);
1738 
1739 	/* Clean up data we have read: This will do ACK frames. */
1740 	if (copied > 0) {
1741 		tcp_recv_skb(sk, seq, &offset);
1742 		tcp_cleanup_rbuf(sk, copied);
1743 	}
1744 	return copied;
1745 }
1746 EXPORT_SYMBOL(tcp_read_sock);
1747 
1748 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1749 {
1750 	struct tcp_sock *tp = tcp_sk(sk);
1751 	u32 seq = tp->copied_seq;
1752 	struct sk_buff *skb;
1753 	int copied = 0;
1754 	u32 offset;
1755 
1756 	if (sk->sk_state == TCP_LISTEN)
1757 		return -ENOTCONN;
1758 
1759 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1760 		int used;
1761 
1762 		__skb_unlink(skb, &sk->sk_receive_queue);
1763 		used = recv_actor(sk, skb);
1764 		if (used <= 0) {
1765 			if (!copied)
1766 				copied = used;
1767 			break;
1768 		}
1769 		seq += used;
1770 		copied += used;
1771 
1772 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1773 			consume_skb(skb);
1774 			++seq;
1775 			break;
1776 		}
1777 		consume_skb(skb);
1778 		break;
1779 	}
1780 	WRITE_ONCE(tp->copied_seq, seq);
1781 
1782 	tcp_rcv_space_adjust(sk);
1783 
1784 	/* Clean up data we have read: This will do ACK frames. */
1785 	if (copied > 0)
1786 		tcp_cleanup_rbuf(sk, copied);
1787 
1788 	return copied;
1789 }
1790 EXPORT_SYMBOL(tcp_read_skb);
1791 
1792 void tcp_read_done(struct sock *sk, size_t len)
1793 {
1794 	struct tcp_sock *tp = tcp_sk(sk);
1795 	u32 seq = tp->copied_seq;
1796 	struct sk_buff *skb;
1797 	size_t left;
1798 	u32 offset;
1799 
1800 	if (sk->sk_state == TCP_LISTEN)
1801 		return;
1802 
1803 	left = len;
1804 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1805 		int used;
1806 
1807 		used = min_t(size_t, skb->len - offset, left);
1808 		seq += used;
1809 		left -= used;
1810 
1811 		if (skb->len > offset + used)
1812 			break;
1813 
1814 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1815 			tcp_eat_recv_skb(sk, skb);
1816 			++seq;
1817 			break;
1818 		}
1819 		tcp_eat_recv_skb(sk, skb);
1820 	}
1821 	WRITE_ONCE(tp->copied_seq, seq);
1822 
1823 	tcp_rcv_space_adjust(sk);
1824 
1825 	/* Clean up data we have read: This will do ACK frames. */
1826 	if (left != len)
1827 		tcp_cleanup_rbuf(sk, len - left);
1828 }
1829 EXPORT_SYMBOL(tcp_read_done);
1830 
1831 int tcp_peek_len(struct socket *sock)
1832 {
1833 	return tcp_inq(sock->sk);
1834 }
1835 EXPORT_SYMBOL(tcp_peek_len);
1836 
1837 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1838 int tcp_set_rcvlowat(struct sock *sk, int val)
1839 {
1840 	int cap;
1841 
1842 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1843 		cap = sk->sk_rcvbuf >> 1;
1844 	else
1845 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1846 	val = min(val, cap);
1847 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1848 
1849 	/* Check if we need to signal EPOLLIN right now */
1850 	tcp_data_ready(sk);
1851 
1852 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1853 		return 0;
1854 
1855 	val <<= 1;
1856 	if (val > sk->sk_rcvbuf) {
1857 		WRITE_ONCE(sk->sk_rcvbuf, val);
1858 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1859 	}
1860 	return 0;
1861 }
1862 EXPORT_SYMBOL(tcp_set_rcvlowat);
1863 
1864 void tcp_update_recv_tstamps(struct sk_buff *skb,
1865 			     struct scm_timestamping_internal *tss)
1866 {
1867 	if (skb->tstamp)
1868 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1869 	else
1870 		tss->ts[0] = (struct timespec64) {0};
1871 
1872 	if (skb_hwtstamps(skb)->hwtstamp)
1873 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1874 	else
1875 		tss->ts[2] = (struct timespec64) {0};
1876 }
1877 
1878 #ifdef CONFIG_MMU
1879 static const struct vm_operations_struct tcp_vm_ops = {
1880 };
1881 
1882 int tcp_mmap(struct file *file, struct socket *sock,
1883 	     struct vm_area_struct *vma)
1884 {
1885 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1886 		return -EPERM;
1887 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1888 
1889 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1890 	vma->vm_flags |= VM_MIXEDMAP;
1891 
1892 	vma->vm_ops = &tcp_vm_ops;
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(tcp_mmap);
1896 
1897 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1898 				       u32 *offset_frag)
1899 {
1900 	skb_frag_t *frag;
1901 
1902 	if (unlikely(offset_skb >= skb->len))
1903 		return NULL;
1904 
1905 	offset_skb -= skb_headlen(skb);
1906 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1907 		return NULL;
1908 
1909 	frag = skb_shinfo(skb)->frags;
1910 	while (offset_skb) {
1911 		if (skb_frag_size(frag) > offset_skb) {
1912 			*offset_frag = offset_skb;
1913 			return frag;
1914 		}
1915 		offset_skb -= skb_frag_size(frag);
1916 		++frag;
1917 	}
1918 	*offset_frag = 0;
1919 	return frag;
1920 }
1921 
1922 static bool can_map_frag(const skb_frag_t *frag)
1923 {
1924 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1925 }
1926 
1927 static int find_next_mappable_frag(const skb_frag_t *frag,
1928 				   int remaining_in_skb)
1929 {
1930 	int offset = 0;
1931 
1932 	if (likely(can_map_frag(frag)))
1933 		return 0;
1934 
1935 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1936 		offset += skb_frag_size(frag);
1937 		++frag;
1938 	}
1939 	return offset;
1940 }
1941 
1942 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1943 					  struct tcp_zerocopy_receive *zc,
1944 					  struct sk_buff *skb, u32 offset)
1945 {
1946 	u32 frag_offset, partial_frag_remainder = 0;
1947 	int mappable_offset;
1948 	skb_frag_t *frag;
1949 
1950 	/* worst case: skip to next skb. try to improve on this case below */
1951 	zc->recv_skip_hint = skb->len - offset;
1952 
1953 	/* Find the frag containing this offset (and how far into that frag) */
1954 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1955 	if (!frag)
1956 		return;
1957 
1958 	if (frag_offset) {
1959 		struct skb_shared_info *info = skb_shinfo(skb);
1960 
1961 		/* We read part of the last frag, must recvmsg() rest of skb. */
1962 		if (frag == &info->frags[info->nr_frags - 1])
1963 			return;
1964 
1965 		/* Else, we must at least read the remainder in this frag. */
1966 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1967 		zc->recv_skip_hint -= partial_frag_remainder;
1968 		++frag;
1969 	}
1970 
1971 	/* partial_frag_remainder: If part way through a frag, must read rest.
1972 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1973 	 * in partial_frag_remainder.
1974 	 */
1975 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1976 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1977 }
1978 
1979 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1980 			      int flags, struct scm_timestamping_internal *tss,
1981 			      int *cmsg_flags);
1982 static int receive_fallback_to_copy(struct sock *sk,
1983 				    struct tcp_zerocopy_receive *zc, int inq,
1984 				    struct scm_timestamping_internal *tss)
1985 {
1986 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1987 	struct msghdr msg = {};
1988 	struct iovec iov;
1989 	int err;
1990 
1991 	zc->length = 0;
1992 	zc->recv_skip_hint = 0;
1993 
1994 	if (copy_address != zc->copybuf_address)
1995 		return -EINVAL;
1996 
1997 	err = import_single_range(READ, (void __user *)copy_address,
1998 				  inq, &iov, &msg.msg_iter);
1999 	if (err)
2000 		return err;
2001 
2002 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2003 				 tss, &zc->msg_flags);
2004 	if (err < 0)
2005 		return err;
2006 
2007 	zc->copybuf_len = err;
2008 	if (likely(zc->copybuf_len)) {
2009 		struct sk_buff *skb;
2010 		u32 offset;
2011 
2012 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2013 		if (skb)
2014 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2015 	}
2016 	return 0;
2017 }
2018 
2019 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2020 				   struct sk_buff *skb, u32 copylen,
2021 				   u32 *offset, u32 *seq)
2022 {
2023 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
2024 	struct msghdr msg = {};
2025 	struct iovec iov;
2026 	int err;
2027 
2028 	if (copy_address != zc->copybuf_address)
2029 		return -EINVAL;
2030 
2031 	err = import_single_range(READ, (void __user *)copy_address,
2032 				  copylen, &iov, &msg.msg_iter);
2033 	if (err)
2034 		return err;
2035 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2036 	if (err)
2037 		return err;
2038 	zc->recv_skip_hint -= copylen;
2039 	*offset += copylen;
2040 	*seq += copylen;
2041 	return (__s32)copylen;
2042 }
2043 
2044 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2045 				  struct sock *sk,
2046 				  struct sk_buff *skb,
2047 				  u32 *seq,
2048 				  s32 copybuf_len,
2049 				  struct scm_timestamping_internal *tss)
2050 {
2051 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2052 
2053 	if (!copylen)
2054 		return 0;
2055 	/* skb is null if inq < PAGE_SIZE. */
2056 	if (skb) {
2057 		offset = *seq - TCP_SKB_CB(skb)->seq;
2058 	} else {
2059 		skb = tcp_recv_skb(sk, *seq, &offset);
2060 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2061 			tcp_update_recv_tstamps(skb, tss);
2062 			zc->msg_flags |= TCP_CMSG_TS;
2063 		}
2064 	}
2065 
2066 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2067 						  seq);
2068 	return zc->copybuf_len < 0 ? 0 : copylen;
2069 }
2070 
2071 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2072 					      struct page **pending_pages,
2073 					      unsigned long pages_remaining,
2074 					      unsigned long *address,
2075 					      u32 *length,
2076 					      u32 *seq,
2077 					      struct tcp_zerocopy_receive *zc,
2078 					      u32 total_bytes_to_map,
2079 					      int err)
2080 {
2081 	/* At least one page did not map. Try zapping if we skipped earlier. */
2082 	if (err == -EBUSY &&
2083 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2084 		u32 maybe_zap_len;
2085 
2086 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2087 				*length + /* Mapped or pending */
2088 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2089 		zap_page_range(vma, *address, maybe_zap_len);
2090 		err = 0;
2091 	}
2092 
2093 	if (!err) {
2094 		unsigned long leftover_pages = pages_remaining;
2095 		int bytes_mapped;
2096 
2097 		/* We called zap_page_range, try to reinsert. */
2098 		err = vm_insert_pages(vma, *address,
2099 				      pending_pages,
2100 				      &pages_remaining);
2101 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2102 		*seq += bytes_mapped;
2103 		*address += bytes_mapped;
2104 	}
2105 	if (err) {
2106 		/* Either we were unable to zap, OR we zapped, retried an
2107 		 * insert, and still had an issue. Either ways, pages_remaining
2108 		 * is the number of pages we were unable to map, and we unroll
2109 		 * some state we speculatively touched before.
2110 		 */
2111 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2112 
2113 		*length -= bytes_not_mapped;
2114 		zc->recv_skip_hint += bytes_not_mapped;
2115 	}
2116 	return err;
2117 }
2118 
2119 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2120 					struct page **pages,
2121 					unsigned int pages_to_map,
2122 					unsigned long *address,
2123 					u32 *length,
2124 					u32 *seq,
2125 					struct tcp_zerocopy_receive *zc,
2126 					u32 total_bytes_to_map)
2127 {
2128 	unsigned long pages_remaining = pages_to_map;
2129 	unsigned int pages_mapped;
2130 	unsigned int bytes_mapped;
2131 	int err;
2132 
2133 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2134 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2135 	bytes_mapped = PAGE_SIZE * pages_mapped;
2136 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2137 	 * mapping (some but not all of the pages).
2138 	 */
2139 	*seq += bytes_mapped;
2140 	*address += bytes_mapped;
2141 
2142 	if (likely(!err))
2143 		return 0;
2144 
2145 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2146 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2147 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2148 		err);
2149 }
2150 
2151 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2152 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2153 				      struct tcp_zerocopy_receive *zc,
2154 				      struct scm_timestamping_internal *tss)
2155 {
2156 	unsigned long msg_control_addr;
2157 	struct msghdr cmsg_dummy;
2158 
2159 	msg_control_addr = (unsigned long)zc->msg_control;
2160 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2161 	cmsg_dummy.msg_controllen =
2162 		(__kernel_size_t)zc->msg_controllen;
2163 	cmsg_dummy.msg_flags = in_compat_syscall()
2164 		? MSG_CMSG_COMPAT : 0;
2165 	cmsg_dummy.msg_control_is_user = true;
2166 	zc->msg_flags = 0;
2167 	if (zc->msg_control == msg_control_addr &&
2168 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2169 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2170 		zc->msg_control = (__u64)
2171 			((uintptr_t)cmsg_dummy.msg_control);
2172 		zc->msg_controllen =
2173 			(__u64)cmsg_dummy.msg_controllen;
2174 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2175 	}
2176 }
2177 
2178 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2179 static int tcp_zerocopy_receive(struct sock *sk,
2180 				struct tcp_zerocopy_receive *zc,
2181 				struct scm_timestamping_internal *tss)
2182 {
2183 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2184 	unsigned long address = (unsigned long)zc->address;
2185 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2186 	s32 copybuf_len = zc->copybuf_len;
2187 	struct tcp_sock *tp = tcp_sk(sk);
2188 	const skb_frag_t *frags = NULL;
2189 	unsigned int pages_to_map = 0;
2190 	struct vm_area_struct *vma;
2191 	struct sk_buff *skb = NULL;
2192 	u32 seq = tp->copied_seq;
2193 	u32 total_bytes_to_map;
2194 	int inq = tcp_inq(sk);
2195 	int ret;
2196 
2197 	zc->copybuf_len = 0;
2198 	zc->msg_flags = 0;
2199 
2200 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2201 		return -EINVAL;
2202 
2203 	if (sk->sk_state == TCP_LISTEN)
2204 		return -ENOTCONN;
2205 
2206 	sock_rps_record_flow(sk);
2207 
2208 	if (inq && inq <= copybuf_len)
2209 		return receive_fallback_to_copy(sk, zc, inq, tss);
2210 
2211 	if (inq < PAGE_SIZE) {
2212 		zc->length = 0;
2213 		zc->recv_skip_hint = inq;
2214 		if (!inq && sock_flag(sk, SOCK_DONE))
2215 			return -EIO;
2216 		return 0;
2217 	}
2218 
2219 	mmap_read_lock(current->mm);
2220 
2221 	vma = vma_lookup(current->mm, address);
2222 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2223 		mmap_read_unlock(current->mm);
2224 		return -EINVAL;
2225 	}
2226 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2227 	avail_len = min_t(u32, vma_len, inq);
2228 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2229 	if (total_bytes_to_map) {
2230 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2231 			zap_page_range(vma, address, total_bytes_to_map);
2232 		zc->length = total_bytes_to_map;
2233 		zc->recv_skip_hint = 0;
2234 	} else {
2235 		zc->length = avail_len;
2236 		zc->recv_skip_hint = avail_len;
2237 	}
2238 	ret = 0;
2239 	while (length + PAGE_SIZE <= zc->length) {
2240 		int mappable_offset;
2241 		struct page *page;
2242 
2243 		if (zc->recv_skip_hint < PAGE_SIZE) {
2244 			u32 offset_frag;
2245 
2246 			if (skb) {
2247 				if (zc->recv_skip_hint > 0)
2248 					break;
2249 				skb = skb->next;
2250 				offset = seq - TCP_SKB_CB(skb)->seq;
2251 			} else {
2252 				skb = tcp_recv_skb(sk, seq, &offset);
2253 			}
2254 
2255 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2256 				tcp_update_recv_tstamps(skb, tss);
2257 				zc->msg_flags |= TCP_CMSG_TS;
2258 			}
2259 			zc->recv_skip_hint = skb->len - offset;
2260 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2261 			if (!frags || offset_frag)
2262 				break;
2263 		}
2264 
2265 		mappable_offset = find_next_mappable_frag(frags,
2266 							  zc->recv_skip_hint);
2267 		if (mappable_offset) {
2268 			zc->recv_skip_hint = mappable_offset;
2269 			break;
2270 		}
2271 		page = skb_frag_page(frags);
2272 		prefetchw(page);
2273 		pages[pages_to_map++] = page;
2274 		length += PAGE_SIZE;
2275 		zc->recv_skip_hint -= PAGE_SIZE;
2276 		frags++;
2277 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2278 		    zc->recv_skip_hint < PAGE_SIZE) {
2279 			/* Either full batch, or we're about to go to next skb
2280 			 * (and we cannot unroll failed ops across skbs).
2281 			 */
2282 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2283 							   pages_to_map,
2284 							   &address, &length,
2285 							   &seq, zc,
2286 							   total_bytes_to_map);
2287 			if (ret)
2288 				goto out;
2289 			pages_to_map = 0;
2290 		}
2291 	}
2292 	if (pages_to_map) {
2293 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2294 						   &address, &length, &seq,
2295 						   zc, total_bytes_to_map);
2296 	}
2297 out:
2298 	mmap_read_unlock(current->mm);
2299 	/* Try to copy straggler data. */
2300 	if (!ret)
2301 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2302 
2303 	if (length + copylen) {
2304 		WRITE_ONCE(tp->copied_seq, seq);
2305 		tcp_rcv_space_adjust(sk);
2306 
2307 		/* Clean up data we have read: This will do ACK frames. */
2308 		tcp_recv_skb(sk, seq, &offset);
2309 		tcp_cleanup_rbuf(sk, length + copylen);
2310 		ret = 0;
2311 		if (length == zc->length)
2312 			zc->recv_skip_hint = 0;
2313 	} else {
2314 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2315 			ret = -EIO;
2316 	}
2317 	zc->length = length;
2318 	return ret;
2319 }
2320 #endif
2321 
2322 /* Similar to __sock_recv_timestamp, but does not require an skb */
2323 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2324 			struct scm_timestamping_internal *tss)
2325 {
2326 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2327 	bool has_timestamping = false;
2328 
2329 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2330 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2331 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2332 				if (new_tstamp) {
2333 					struct __kernel_timespec kts = {
2334 						.tv_sec = tss->ts[0].tv_sec,
2335 						.tv_nsec = tss->ts[0].tv_nsec,
2336 					};
2337 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2338 						 sizeof(kts), &kts);
2339 				} else {
2340 					struct __kernel_old_timespec ts_old = {
2341 						.tv_sec = tss->ts[0].tv_sec,
2342 						.tv_nsec = tss->ts[0].tv_nsec,
2343 					};
2344 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2345 						 sizeof(ts_old), &ts_old);
2346 				}
2347 			} else {
2348 				if (new_tstamp) {
2349 					struct __kernel_sock_timeval stv = {
2350 						.tv_sec = tss->ts[0].tv_sec,
2351 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2352 					};
2353 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2354 						 sizeof(stv), &stv);
2355 				} else {
2356 					struct __kernel_old_timeval tv = {
2357 						.tv_sec = tss->ts[0].tv_sec,
2358 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2359 					};
2360 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2361 						 sizeof(tv), &tv);
2362 				}
2363 			}
2364 		}
2365 
2366 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2367 			has_timestamping = true;
2368 		else
2369 			tss->ts[0] = (struct timespec64) {0};
2370 	}
2371 
2372 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2373 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2374 			has_timestamping = true;
2375 		else
2376 			tss->ts[2] = (struct timespec64) {0};
2377 	}
2378 
2379 	if (has_timestamping) {
2380 		tss->ts[1] = (struct timespec64) {0};
2381 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2382 			put_cmsg_scm_timestamping64(msg, tss);
2383 		else
2384 			put_cmsg_scm_timestamping(msg, tss);
2385 	}
2386 }
2387 
2388 static int tcp_inq_hint(struct sock *sk)
2389 {
2390 	const struct tcp_sock *tp = tcp_sk(sk);
2391 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2392 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2393 	int inq;
2394 
2395 	inq = rcv_nxt - copied_seq;
2396 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2397 		lock_sock(sk);
2398 		inq = tp->rcv_nxt - tp->copied_seq;
2399 		release_sock(sk);
2400 	}
2401 	/* After receiving a FIN, tell the user-space to continue reading
2402 	 * by returning a non-zero inq.
2403 	 */
2404 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2405 		inq = 1;
2406 	return inq;
2407 }
2408 
2409 /*
2410  *	This routine copies from a sock struct into the user buffer.
2411  *
2412  *	Technical note: in 2.3 we work on _locked_ socket, so that
2413  *	tricks with *seq access order and skb->users are not required.
2414  *	Probably, code can be easily improved even more.
2415  */
2416 
2417 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2418 			      int flags, struct scm_timestamping_internal *tss,
2419 			      int *cmsg_flags)
2420 {
2421 	struct tcp_sock *tp = tcp_sk(sk);
2422 	int copied = 0;
2423 	u32 peek_seq;
2424 	u32 *seq;
2425 	unsigned long used;
2426 	int err;
2427 	int target;		/* Read at least this many bytes */
2428 	long timeo;
2429 	struct sk_buff *skb, *last;
2430 	u32 urg_hole = 0;
2431 
2432 	err = -ENOTCONN;
2433 	if (sk->sk_state == TCP_LISTEN)
2434 		goto out;
2435 
2436 	if (tp->recvmsg_inq) {
2437 		*cmsg_flags = TCP_CMSG_INQ;
2438 		msg->msg_get_inq = 1;
2439 	}
2440 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2441 
2442 	/* Urgent data needs to be handled specially. */
2443 	if (flags & MSG_OOB)
2444 		goto recv_urg;
2445 
2446 	if (unlikely(tp->repair)) {
2447 		err = -EPERM;
2448 		if (!(flags & MSG_PEEK))
2449 			goto out;
2450 
2451 		if (tp->repair_queue == TCP_SEND_QUEUE)
2452 			goto recv_sndq;
2453 
2454 		err = -EINVAL;
2455 		if (tp->repair_queue == TCP_NO_QUEUE)
2456 			goto out;
2457 
2458 		/* 'common' recv queue MSG_PEEK-ing */
2459 	}
2460 
2461 	seq = &tp->copied_seq;
2462 	if (flags & MSG_PEEK) {
2463 		peek_seq = tp->copied_seq;
2464 		seq = &peek_seq;
2465 	}
2466 
2467 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2468 
2469 	do {
2470 		u32 offset;
2471 
2472 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2473 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2474 			if (copied)
2475 				break;
2476 			if (signal_pending(current)) {
2477 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2478 				break;
2479 			}
2480 		}
2481 
2482 		/* Next get a buffer. */
2483 
2484 		last = skb_peek_tail(&sk->sk_receive_queue);
2485 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2486 			last = skb;
2487 			/* Now that we have two receive queues this
2488 			 * shouldn't happen.
2489 			 */
2490 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2491 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2492 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2493 				 flags))
2494 				break;
2495 
2496 			offset = *seq - TCP_SKB_CB(skb)->seq;
2497 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2498 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2499 				offset--;
2500 			}
2501 			if (offset < skb->len)
2502 				goto found_ok_skb;
2503 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2504 				goto found_fin_ok;
2505 			WARN(!(flags & MSG_PEEK),
2506 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2507 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2508 		}
2509 
2510 		/* Well, if we have backlog, try to process it now yet. */
2511 
2512 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2513 			break;
2514 
2515 		if (copied) {
2516 			if (!timeo ||
2517 			    sk->sk_err ||
2518 			    sk->sk_state == TCP_CLOSE ||
2519 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2520 			    signal_pending(current))
2521 				break;
2522 		} else {
2523 			if (sock_flag(sk, SOCK_DONE))
2524 				break;
2525 
2526 			if (sk->sk_err) {
2527 				copied = sock_error(sk);
2528 				break;
2529 			}
2530 
2531 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2532 				break;
2533 
2534 			if (sk->sk_state == TCP_CLOSE) {
2535 				/* This occurs when user tries to read
2536 				 * from never connected socket.
2537 				 */
2538 				copied = -ENOTCONN;
2539 				break;
2540 			}
2541 
2542 			if (!timeo) {
2543 				copied = -EAGAIN;
2544 				break;
2545 			}
2546 
2547 			if (signal_pending(current)) {
2548 				copied = sock_intr_errno(timeo);
2549 				break;
2550 			}
2551 		}
2552 
2553 		if (copied >= target) {
2554 			/* Do not sleep, just process backlog. */
2555 			__sk_flush_backlog(sk);
2556 		} else {
2557 			tcp_cleanup_rbuf(sk, copied);
2558 			sk_wait_data(sk, &timeo, last);
2559 		}
2560 
2561 		if ((flags & MSG_PEEK) &&
2562 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2563 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2564 					    current->comm,
2565 					    task_pid_nr(current));
2566 			peek_seq = tp->copied_seq;
2567 		}
2568 		continue;
2569 
2570 found_ok_skb:
2571 		/* Ok so how much can we use? */
2572 		used = skb->len - offset;
2573 		if (len < used)
2574 			used = len;
2575 
2576 		/* Do we have urgent data here? */
2577 		if (unlikely(tp->urg_data)) {
2578 			u32 urg_offset = tp->urg_seq - *seq;
2579 			if (urg_offset < used) {
2580 				if (!urg_offset) {
2581 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2582 						WRITE_ONCE(*seq, *seq + 1);
2583 						urg_hole++;
2584 						offset++;
2585 						used--;
2586 						if (!used)
2587 							goto skip_copy;
2588 					}
2589 				} else
2590 					used = urg_offset;
2591 			}
2592 		}
2593 
2594 		if (!(flags & MSG_TRUNC)) {
2595 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2596 			if (err) {
2597 				/* Exception. Bailout! */
2598 				if (!copied)
2599 					copied = -EFAULT;
2600 				break;
2601 			}
2602 		}
2603 
2604 		WRITE_ONCE(*seq, *seq + used);
2605 		copied += used;
2606 		len -= used;
2607 
2608 		tcp_rcv_space_adjust(sk);
2609 
2610 skip_copy:
2611 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2612 			WRITE_ONCE(tp->urg_data, 0);
2613 			tcp_fast_path_check(sk);
2614 		}
2615 
2616 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2617 			tcp_update_recv_tstamps(skb, tss);
2618 			*cmsg_flags |= TCP_CMSG_TS;
2619 		}
2620 
2621 		if (used + offset < skb->len)
2622 			continue;
2623 
2624 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2625 			goto found_fin_ok;
2626 		if (!(flags & MSG_PEEK))
2627 			tcp_eat_recv_skb(sk, skb);
2628 		continue;
2629 
2630 found_fin_ok:
2631 		/* Process the FIN. */
2632 		WRITE_ONCE(*seq, *seq + 1);
2633 		if (!(flags & MSG_PEEK))
2634 			tcp_eat_recv_skb(sk, skb);
2635 		break;
2636 	} while (len > 0);
2637 
2638 	/* According to UNIX98, msg_name/msg_namelen are ignored
2639 	 * on connected socket. I was just happy when found this 8) --ANK
2640 	 */
2641 
2642 	/* Clean up data we have read: This will do ACK frames. */
2643 	tcp_cleanup_rbuf(sk, copied);
2644 	return copied;
2645 
2646 out:
2647 	return err;
2648 
2649 recv_urg:
2650 	err = tcp_recv_urg(sk, msg, len, flags);
2651 	goto out;
2652 
2653 recv_sndq:
2654 	err = tcp_peek_sndq(sk, msg, len);
2655 	goto out;
2656 }
2657 
2658 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2659 		int *addr_len)
2660 {
2661 	int cmsg_flags = 0, ret;
2662 	struct scm_timestamping_internal tss;
2663 
2664 	if (unlikely(flags & MSG_ERRQUEUE))
2665 		return inet_recv_error(sk, msg, len, addr_len);
2666 
2667 	if (sk_can_busy_loop(sk) &&
2668 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2669 	    sk->sk_state == TCP_ESTABLISHED)
2670 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2671 
2672 	lock_sock(sk);
2673 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2674 	release_sock(sk);
2675 
2676 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2677 		if (cmsg_flags & TCP_CMSG_TS)
2678 			tcp_recv_timestamp(msg, sk, &tss);
2679 		if (msg->msg_get_inq) {
2680 			msg->msg_inq = tcp_inq_hint(sk);
2681 			if (cmsg_flags & TCP_CMSG_INQ)
2682 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2683 					 sizeof(msg->msg_inq), &msg->msg_inq);
2684 		}
2685 	}
2686 	return ret;
2687 }
2688 EXPORT_SYMBOL(tcp_recvmsg);
2689 
2690 void tcp_set_state(struct sock *sk, int state)
2691 {
2692 	int oldstate = sk->sk_state;
2693 
2694 	/* We defined a new enum for TCP states that are exported in BPF
2695 	 * so as not force the internal TCP states to be frozen. The
2696 	 * following checks will detect if an internal state value ever
2697 	 * differs from the BPF value. If this ever happens, then we will
2698 	 * need to remap the internal value to the BPF value before calling
2699 	 * tcp_call_bpf_2arg.
2700 	 */
2701 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2702 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2703 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2704 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2705 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2706 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2707 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2708 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2709 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2710 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2711 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2712 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2713 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2714 
2715 	/* bpf uapi header bpf.h defines an anonymous enum with values
2716 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2717 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2718 	 * But clang built vmlinux does not have this enum in DWARF
2719 	 * since clang removes the above code before generating IR/debuginfo.
2720 	 * Let us explicitly emit the type debuginfo to ensure the
2721 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2722 	 * regardless of which compiler is used.
2723 	 */
2724 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2725 
2726 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2727 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2728 
2729 	switch (state) {
2730 	case TCP_ESTABLISHED:
2731 		if (oldstate != TCP_ESTABLISHED)
2732 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2733 		break;
2734 
2735 	case TCP_CLOSE:
2736 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2737 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2738 
2739 		sk->sk_prot->unhash(sk);
2740 		if (inet_csk(sk)->icsk_bind_hash &&
2741 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2742 			inet_put_port(sk);
2743 		fallthrough;
2744 	default:
2745 		if (oldstate == TCP_ESTABLISHED)
2746 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2747 	}
2748 
2749 	/* Change state AFTER socket is unhashed to avoid closed
2750 	 * socket sitting in hash tables.
2751 	 */
2752 	inet_sk_state_store(sk, state);
2753 }
2754 EXPORT_SYMBOL_GPL(tcp_set_state);
2755 
2756 /*
2757  *	State processing on a close. This implements the state shift for
2758  *	sending our FIN frame. Note that we only send a FIN for some
2759  *	states. A shutdown() may have already sent the FIN, or we may be
2760  *	closed.
2761  */
2762 
2763 static const unsigned char new_state[16] = {
2764   /* current state:        new state:      action:	*/
2765   [0 /* (Invalid) */]	= TCP_CLOSE,
2766   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2767   [TCP_SYN_SENT]	= TCP_CLOSE,
2768   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2769   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2770   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2771   [TCP_TIME_WAIT]	= TCP_CLOSE,
2772   [TCP_CLOSE]		= TCP_CLOSE,
2773   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2774   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2775   [TCP_LISTEN]		= TCP_CLOSE,
2776   [TCP_CLOSING]		= TCP_CLOSING,
2777   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2778 };
2779 
2780 static int tcp_close_state(struct sock *sk)
2781 {
2782 	int next = (int)new_state[sk->sk_state];
2783 	int ns = next & TCP_STATE_MASK;
2784 
2785 	tcp_set_state(sk, ns);
2786 
2787 	return next & TCP_ACTION_FIN;
2788 }
2789 
2790 /*
2791  *	Shutdown the sending side of a connection. Much like close except
2792  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2793  */
2794 
2795 void tcp_shutdown(struct sock *sk, int how)
2796 {
2797 	/*	We need to grab some memory, and put together a FIN,
2798 	 *	and then put it into the queue to be sent.
2799 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2800 	 */
2801 	if (!(how & SEND_SHUTDOWN))
2802 		return;
2803 
2804 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2805 	if ((1 << sk->sk_state) &
2806 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2807 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2808 		/* Clear out any half completed packets.  FIN if needed. */
2809 		if (tcp_close_state(sk))
2810 			tcp_send_fin(sk);
2811 	}
2812 }
2813 EXPORT_SYMBOL(tcp_shutdown);
2814 
2815 int tcp_orphan_count_sum(void)
2816 {
2817 	int i, total = 0;
2818 
2819 	for_each_possible_cpu(i)
2820 		total += per_cpu(tcp_orphan_count, i);
2821 
2822 	return max(total, 0);
2823 }
2824 
2825 static int tcp_orphan_cache;
2826 static struct timer_list tcp_orphan_timer;
2827 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2828 
2829 static void tcp_orphan_update(struct timer_list *unused)
2830 {
2831 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2832 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2833 }
2834 
2835 static bool tcp_too_many_orphans(int shift)
2836 {
2837 	return READ_ONCE(tcp_orphan_cache) << shift >
2838 		READ_ONCE(sysctl_tcp_max_orphans);
2839 }
2840 
2841 bool tcp_check_oom(struct sock *sk, int shift)
2842 {
2843 	bool too_many_orphans, out_of_socket_memory;
2844 
2845 	too_many_orphans = tcp_too_many_orphans(shift);
2846 	out_of_socket_memory = tcp_out_of_memory(sk);
2847 
2848 	if (too_many_orphans)
2849 		net_info_ratelimited("too many orphaned sockets\n");
2850 	if (out_of_socket_memory)
2851 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2852 	return too_many_orphans || out_of_socket_memory;
2853 }
2854 
2855 void __tcp_close(struct sock *sk, long timeout)
2856 {
2857 	struct sk_buff *skb;
2858 	int data_was_unread = 0;
2859 	int state;
2860 
2861 	sk->sk_shutdown = SHUTDOWN_MASK;
2862 
2863 	if (sk->sk_state == TCP_LISTEN) {
2864 		tcp_set_state(sk, TCP_CLOSE);
2865 
2866 		/* Special case. */
2867 		inet_csk_listen_stop(sk);
2868 
2869 		goto adjudge_to_death;
2870 	}
2871 
2872 	/*  We need to flush the recv. buffs.  We do this only on the
2873 	 *  descriptor close, not protocol-sourced closes, because the
2874 	 *  reader process may not have drained the data yet!
2875 	 */
2876 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2877 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2878 
2879 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2880 			len--;
2881 		data_was_unread += len;
2882 		__kfree_skb(skb);
2883 	}
2884 
2885 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2886 	if (sk->sk_state == TCP_CLOSE)
2887 		goto adjudge_to_death;
2888 
2889 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2890 	 * data was lost. To witness the awful effects of the old behavior of
2891 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2892 	 * GET in an FTP client, suspend the process, wait for the client to
2893 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2894 	 * Note: timeout is always zero in such a case.
2895 	 */
2896 	if (unlikely(tcp_sk(sk)->repair)) {
2897 		sk->sk_prot->disconnect(sk, 0);
2898 	} else if (data_was_unread) {
2899 		/* Unread data was tossed, zap the connection. */
2900 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2901 		tcp_set_state(sk, TCP_CLOSE);
2902 		tcp_send_active_reset(sk, sk->sk_allocation);
2903 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2904 		/* Check zero linger _after_ checking for unread data. */
2905 		sk->sk_prot->disconnect(sk, 0);
2906 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2907 	} else if (tcp_close_state(sk)) {
2908 		/* We FIN if the application ate all the data before
2909 		 * zapping the connection.
2910 		 */
2911 
2912 		/* RED-PEN. Formally speaking, we have broken TCP state
2913 		 * machine. State transitions:
2914 		 *
2915 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2916 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2917 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2918 		 *
2919 		 * are legal only when FIN has been sent (i.e. in window),
2920 		 * rather than queued out of window. Purists blame.
2921 		 *
2922 		 * F.e. "RFC state" is ESTABLISHED,
2923 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2924 		 *
2925 		 * The visible declinations are that sometimes
2926 		 * we enter time-wait state, when it is not required really
2927 		 * (harmless), do not send active resets, when they are
2928 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2929 		 * they look as CLOSING or LAST_ACK for Linux)
2930 		 * Probably, I missed some more holelets.
2931 		 * 						--ANK
2932 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2933 		 * in a single packet! (May consider it later but will
2934 		 * probably need API support or TCP_CORK SYN-ACK until
2935 		 * data is written and socket is closed.)
2936 		 */
2937 		tcp_send_fin(sk);
2938 	}
2939 
2940 	sk_stream_wait_close(sk, timeout);
2941 
2942 adjudge_to_death:
2943 	state = sk->sk_state;
2944 	sock_hold(sk);
2945 	sock_orphan(sk);
2946 
2947 	local_bh_disable();
2948 	bh_lock_sock(sk);
2949 	/* remove backlog if any, without releasing ownership. */
2950 	__release_sock(sk);
2951 
2952 	this_cpu_inc(tcp_orphan_count);
2953 
2954 	/* Have we already been destroyed by a softirq or backlog? */
2955 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2956 		goto out;
2957 
2958 	/*	This is a (useful) BSD violating of the RFC. There is a
2959 	 *	problem with TCP as specified in that the other end could
2960 	 *	keep a socket open forever with no application left this end.
2961 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2962 	 *	our end. If they send after that then tough - BUT: long enough
2963 	 *	that we won't make the old 4*rto = almost no time - whoops
2964 	 *	reset mistake.
2965 	 *
2966 	 *	Nope, it was not mistake. It is really desired behaviour
2967 	 *	f.e. on http servers, when such sockets are useless, but
2968 	 *	consume significant resources. Let's do it with special
2969 	 *	linger2	option.					--ANK
2970 	 */
2971 
2972 	if (sk->sk_state == TCP_FIN_WAIT2) {
2973 		struct tcp_sock *tp = tcp_sk(sk);
2974 		if (tp->linger2 < 0) {
2975 			tcp_set_state(sk, TCP_CLOSE);
2976 			tcp_send_active_reset(sk, GFP_ATOMIC);
2977 			__NET_INC_STATS(sock_net(sk),
2978 					LINUX_MIB_TCPABORTONLINGER);
2979 		} else {
2980 			const int tmo = tcp_fin_time(sk);
2981 
2982 			if (tmo > TCP_TIMEWAIT_LEN) {
2983 				inet_csk_reset_keepalive_timer(sk,
2984 						tmo - TCP_TIMEWAIT_LEN);
2985 			} else {
2986 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2987 				goto out;
2988 			}
2989 		}
2990 	}
2991 	if (sk->sk_state != TCP_CLOSE) {
2992 		if (tcp_check_oom(sk, 0)) {
2993 			tcp_set_state(sk, TCP_CLOSE);
2994 			tcp_send_active_reset(sk, GFP_ATOMIC);
2995 			__NET_INC_STATS(sock_net(sk),
2996 					LINUX_MIB_TCPABORTONMEMORY);
2997 		} else if (!check_net(sock_net(sk))) {
2998 			/* Not possible to send reset; just close */
2999 			tcp_set_state(sk, TCP_CLOSE);
3000 		}
3001 	}
3002 
3003 	if (sk->sk_state == TCP_CLOSE) {
3004 		struct request_sock *req;
3005 
3006 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3007 						lockdep_sock_is_held(sk));
3008 		/* We could get here with a non-NULL req if the socket is
3009 		 * aborted (e.g., closed with unread data) before 3WHS
3010 		 * finishes.
3011 		 */
3012 		if (req)
3013 			reqsk_fastopen_remove(sk, req, false);
3014 		inet_csk_destroy_sock(sk);
3015 	}
3016 	/* Otherwise, socket is reprieved until protocol close. */
3017 
3018 out:
3019 	bh_unlock_sock(sk);
3020 	local_bh_enable();
3021 }
3022 
3023 void tcp_close(struct sock *sk, long timeout)
3024 {
3025 	lock_sock(sk);
3026 	__tcp_close(sk, timeout);
3027 	release_sock(sk);
3028 	sock_put(sk);
3029 }
3030 EXPORT_SYMBOL(tcp_close);
3031 
3032 /* These states need RST on ABORT according to RFC793 */
3033 
3034 static inline bool tcp_need_reset(int state)
3035 {
3036 	return (1 << state) &
3037 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3038 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3039 }
3040 
3041 static void tcp_rtx_queue_purge(struct sock *sk)
3042 {
3043 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3044 
3045 	tcp_sk(sk)->highest_sack = NULL;
3046 	while (p) {
3047 		struct sk_buff *skb = rb_to_skb(p);
3048 
3049 		p = rb_next(p);
3050 		/* Since we are deleting whole queue, no need to
3051 		 * list_del(&skb->tcp_tsorted_anchor)
3052 		 */
3053 		tcp_rtx_queue_unlink(skb, sk);
3054 		tcp_wmem_free_skb(sk, skb);
3055 	}
3056 }
3057 
3058 void tcp_write_queue_purge(struct sock *sk)
3059 {
3060 	struct sk_buff *skb;
3061 
3062 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3063 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3064 		tcp_skb_tsorted_anchor_cleanup(skb);
3065 		tcp_wmem_free_skb(sk, skb);
3066 	}
3067 	tcp_rtx_queue_purge(sk);
3068 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3069 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3070 	tcp_sk(sk)->packets_out = 0;
3071 	inet_csk(sk)->icsk_backoff = 0;
3072 }
3073 
3074 int tcp_disconnect(struct sock *sk, int flags)
3075 {
3076 	struct inet_sock *inet = inet_sk(sk);
3077 	struct inet_connection_sock *icsk = inet_csk(sk);
3078 	struct tcp_sock *tp = tcp_sk(sk);
3079 	int old_state = sk->sk_state;
3080 	u32 seq;
3081 
3082 	if (old_state != TCP_CLOSE)
3083 		tcp_set_state(sk, TCP_CLOSE);
3084 
3085 	/* ABORT function of RFC793 */
3086 	if (old_state == TCP_LISTEN) {
3087 		inet_csk_listen_stop(sk);
3088 	} else if (unlikely(tp->repair)) {
3089 		sk->sk_err = ECONNABORTED;
3090 	} else if (tcp_need_reset(old_state) ||
3091 		   (tp->snd_nxt != tp->write_seq &&
3092 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3093 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3094 		 * states
3095 		 */
3096 		tcp_send_active_reset(sk, gfp_any());
3097 		sk->sk_err = ECONNRESET;
3098 	} else if (old_state == TCP_SYN_SENT)
3099 		sk->sk_err = ECONNRESET;
3100 
3101 	tcp_clear_xmit_timers(sk);
3102 	__skb_queue_purge(&sk->sk_receive_queue);
3103 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3104 	WRITE_ONCE(tp->urg_data, 0);
3105 	tcp_write_queue_purge(sk);
3106 	tcp_fastopen_active_disable_ofo_check(sk);
3107 	skb_rbtree_purge(&tp->out_of_order_queue);
3108 
3109 	inet->inet_dport = 0;
3110 
3111 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3112 		inet_reset_saddr(sk);
3113 
3114 	sk->sk_shutdown = 0;
3115 	sock_reset_flag(sk, SOCK_DONE);
3116 	tp->srtt_us = 0;
3117 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3118 	tp->rcv_rtt_last_tsecr = 0;
3119 
3120 	seq = tp->write_seq + tp->max_window + 2;
3121 	if (!seq)
3122 		seq = 1;
3123 	WRITE_ONCE(tp->write_seq, seq);
3124 
3125 	icsk->icsk_backoff = 0;
3126 	icsk->icsk_probes_out = 0;
3127 	icsk->icsk_probes_tstamp = 0;
3128 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3129 	icsk->icsk_rto_min = TCP_RTO_MIN;
3130 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3131 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3132 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3133 	tp->snd_cwnd_cnt = 0;
3134 	tp->window_clamp = 0;
3135 	tp->delivered = 0;
3136 	tp->delivered_ce = 0;
3137 	if (icsk->icsk_ca_ops->release)
3138 		icsk->icsk_ca_ops->release(sk);
3139 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3140 	icsk->icsk_ca_initialized = 0;
3141 	tcp_set_ca_state(sk, TCP_CA_Open);
3142 	tp->is_sack_reneg = 0;
3143 	tcp_clear_retrans(tp);
3144 	tp->total_retrans = 0;
3145 	inet_csk_delack_init(sk);
3146 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3147 	 * issue in __tcp_select_window()
3148 	 */
3149 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3150 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3151 	__sk_dst_reset(sk);
3152 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3153 	tcp_saved_syn_free(tp);
3154 	tp->compressed_ack = 0;
3155 	tp->segs_in = 0;
3156 	tp->segs_out = 0;
3157 	tp->bytes_sent = 0;
3158 	tp->bytes_acked = 0;
3159 	tp->bytes_received = 0;
3160 	tp->bytes_retrans = 0;
3161 	tp->data_segs_in = 0;
3162 	tp->data_segs_out = 0;
3163 	tp->duplicate_sack[0].start_seq = 0;
3164 	tp->duplicate_sack[0].end_seq = 0;
3165 	tp->dsack_dups = 0;
3166 	tp->reord_seen = 0;
3167 	tp->retrans_out = 0;
3168 	tp->sacked_out = 0;
3169 	tp->tlp_high_seq = 0;
3170 	tp->last_oow_ack_time = 0;
3171 	/* There's a bubble in the pipe until at least the first ACK. */
3172 	tp->app_limited = ~0U;
3173 	tp->rack.mstamp = 0;
3174 	tp->rack.advanced = 0;
3175 	tp->rack.reo_wnd_steps = 1;
3176 	tp->rack.last_delivered = 0;
3177 	tp->rack.reo_wnd_persist = 0;
3178 	tp->rack.dsack_seen = 0;
3179 	tp->syn_data_acked = 0;
3180 	tp->rx_opt.saw_tstamp = 0;
3181 	tp->rx_opt.dsack = 0;
3182 	tp->rx_opt.num_sacks = 0;
3183 	tp->rcv_ooopack = 0;
3184 
3185 
3186 	/* Clean up fastopen related fields */
3187 	tcp_free_fastopen_req(tp);
3188 	inet->defer_connect = 0;
3189 	tp->fastopen_client_fail = 0;
3190 
3191 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3192 
3193 	if (sk->sk_frag.page) {
3194 		put_page(sk->sk_frag.page);
3195 		sk->sk_frag.page = NULL;
3196 		sk->sk_frag.offset = 0;
3197 	}
3198 	sk_error_report(sk);
3199 	return 0;
3200 }
3201 EXPORT_SYMBOL(tcp_disconnect);
3202 
3203 static inline bool tcp_can_repair_sock(const struct sock *sk)
3204 {
3205 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3206 		(sk->sk_state != TCP_LISTEN);
3207 }
3208 
3209 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3210 {
3211 	struct tcp_repair_window opt;
3212 
3213 	if (!tp->repair)
3214 		return -EPERM;
3215 
3216 	if (len != sizeof(opt))
3217 		return -EINVAL;
3218 
3219 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3220 		return -EFAULT;
3221 
3222 	if (opt.max_window < opt.snd_wnd)
3223 		return -EINVAL;
3224 
3225 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3226 		return -EINVAL;
3227 
3228 	if (after(opt.rcv_wup, tp->rcv_nxt))
3229 		return -EINVAL;
3230 
3231 	tp->snd_wl1	= opt.snd_wl1;
3232 	tp->snd_wnd	= opt.snd_wnd;
3233 	tp->max_window	= opt.max_window;
3234 
3235 	tp->rcv_wnd	= opt.rcv_wnd;
3236 	tp->rcv_wup	= opt.rcv_wup;
3237 
3238 	return 0;
3239 }
3240 
3241 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3242 		unsigned int len)
3243 {
3244 	struct tcp_sock *tp = tcp_sk(sk);
3245 	struct tcp_repair_opt opt;
3246 	size_t offset = 0;
3247 
3248 	while (len >= sizeof(opt)) {
3249 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3250 			return -EFAULT;
3251 
3252 		offset += sizeof(opt);
3253 		len -= sizeof(opt);
3254 
3255 		switch (opt.opt_code) {
3256 		case TCPOPT_MSS:
3257 			tp->rx_opt.mss_clamp = opt.opt_val;
3258 			tcp_mtup_init(sk);
3259 			break;
3260 		case TCPOPT_WINDOW:
3261 			{
3262 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3263 				u16 rcv_wscale = opt.opt_val >> 16;
3264 
3265 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3266 					return -EFBIG;
3267 
3268 				tp->rx_opt.snd_wscale = snd_wscale;
3269 				tp->rx_opt.rcv_wscale = rcv_wscale;
3270 				tp->rx_opt.wscale_ok = 1;
3271 			}
3272 			break;
3273 		case TCPOPT_SACK_PERM:
3274 			if (opt.opt_val != 0)
3275 				return -EINVAL;
3276 
3277 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3278 			break;
3279 		case TCPOPT_TIMESTAMP:
3280 			if (opt.opt_val != 0)
3281 				return -EINVAL;
3282 
3283 			tp->rx_opt.tstamp_ok = 1;
3284 			break;
3285 		}
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3292 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3293 
3294 static void tcp_enable_tx_delay(void)
3295 {
3296 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3297 		static int __tcp_tx_delay_enabled = 0;
3298 
3299 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3300 			static_branch_enable(&tcp_tx_delay_enabled);
3301 			pr_info("TCP_TX_DELAY enabled\n");
3302 		}
3303 	}
3304 }
3305 
3306 /* When set indicates to always queue non-full frames.  Later the user clears
3307  * this option and we transmit any pending partial frames in the queue.  This is
3308  * meant to be used alongside sendfile() to get properly filled frames when the
3309  * user (for example) must write out headers with a write() call first and then
3310  * use sendfile to send out the data parts.
3311  *
3312  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3313  * TCP_NODELAY.
3314  */
3315 void __tcp_sock_set_cork(struct sock *sk, bool on)
3316 {
3317 	struct tcp_sock *tp = tcp_sk(sk);
3318 
3319 	if (on) {
3320 		tp->nonagle |= TCP_NAGLE_CORK;
3321 	} else {
3322 		tp->nonagle &= ~TCP_NAGLE_CORK;
3323 		if (tp->nonagle & TCP_NAGLE_OFF)
3324 			tp->nonagle |= TCP_NAGLE_PUSH;
3325 		tcp_push_pending_frames(sk);
3326 	}
3327 }
3328 
3329 void tcp_sock_set_cork(struct sock *sk, bool on)
3330 {
3331 	lock_sock(sk);
3332 	__tcp_sock_set_cork(sk, on);
3333 	release_sock(sk);
3334 }
3335 EXPORT_SYMBOL(tcp_sock_set_cork);
3336 
3337 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3338  * remembered, but it is not activated until cork is cleared.
3339  *
3340  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3341  * even TCP_CORK for currently queued segments.
3342  */
3343 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3344 {
3345 	if (on) {
3346 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3347 		tcp_push_pending_frames(sk);
3348 	} else {
3349 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3350 	}
3351 }
3352 
3353 void tcp_sock_set_nodelay(struct sock *sk)
3354 {
3355 	lock_sock(sk);
3356 	__tcp_sock_set_nodelay(sk, true);
3357 	release_sock(sk);
3358 }
3359 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3360 
3361 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3362 {
3363 	if (!val) {
3364 		inet_csk_enter_pingpong_mode(sk);
3365 		return;
3366 	}
3367 
3368 	inet_csk_exit_pingpong_mode(sk);
3369 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3370 	    inet_csk_ack_scheduled(sk)) {
3371 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3372 		tcp_cleanup_rbuf(sk, 1);
3373 		if (!(val & 1))
3374 			inet_csk_enter_pingpong_mode(sk);
3375 	}
3376 }
3377 
3378 void tcp_sock_set_quickack(struct sock *sk, int val)
3379 {
3380 	lock_sock(sk);
3381 	__tcp_sock_set_quickack(sk, val);
3382 	release_sock(sk);
3383 }
3384 EXPORT_SYMBOL(tcp_sock_set_quickack);
3385 
3386 int tcp_sock_set_syncnt(struct sock *sk, int val)
3387 {
3388 	if (val < 1 || val > MAX_TCP_SYNCNT)
3389 		return -EINVAL;
3390 
3391 	lock_sock(sk);
3392 	inet_csk(sk)->icsk_syn_retries = val;
3393 	release_sock(sk);
3394 	return 0;
3395 }
3396 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3397 
3398 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3399 {
3400 	lock_sock(sk);
3401 	inet_csk(sk)->icsk_user_timeout = val;
3402 	release_sock(sk);
3403 }
3404 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3405 
3406 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3407 {
3408 	struct tcp_sock *tp = tcp_sk(sk);
3409 
3410 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3411 		return -EINVAL;
3412 
3413 	tp->keepalive_time = val * HZ;
3414 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3415 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3416 		u32 elapsed = keepalive_time_elapsed(tp);
3417 
3418 		if (tp->keepalive_time > elapsed)
3419 			elapsed = tp->keepalive_time - elapsed;
3420 		else
3421 			elapsed = 0;
3422 		inet_csk_reset_keepalive_timer(sk, elapsed);
3423 	}
3424 
3425 	return 0;
3426 }
3427 
3428 int tcp_sock_set_keepidle(struct sock *sk, int val)
3429 {
3430 	int err;
3431 
3432 	lock_sock(sk);
3433 	err = tcp_sock_set_keepidle_locked(sk, val);
3434 	release_sock(sk);
3435 	return err;
3436 }
3437 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3438 
3439 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3440 {
3441 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3442 		return -EINVAL;
3443 
3444 	lock_sock(sk);
3445 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3446 	release_sock(sk);
3447 	return 0;
3448 }
3449 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3450 
3451 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3452 {
3453 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3454 		return -EINVAL;
3455 
3456 	lock_sock(sk);
3457 	tcp_sk(sk)->keepalive_probes = val;
3458 	release_sock(sk);
3459 	return 0;
3460 }
3461 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3462 
3463 int tcp_set_window_clamp(struct sock *sk, int val)
3464 {
3465 	struct tcp_sock *tp = tcp_sk(sk);
3466 
3467 	if (!val) {
3468 		if (sk->sk_state != TCP_CLOSE)
3469 			return -EINVAL;
3470 		tp->window_clamp = 0;
3471 	} else {
3472 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3473 			SOCK_MIN_RCVBUF / 2 : val;
3474 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3475 	}
3476 	return 0;
3477 }
3478 
3479 /*
3480  *	Socket option code for TCP.
3481  */
3482 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3483 		sockptr_t optval, unsigned int optlen)
3484 {
3485 	struct tcp_sock *tp = tcp_sk(sk);
3486 	struct inet_connection_sock *icsk = inet_csk(sk);
3487 	struct net *net = sock_net(sk);
3488 	int val;
3489 	int err = 0;
3490 
3491 	/* These are data/string values, all the others are ints */
3492 	switch (optname) {
3493 	case TCP_CONGESTION: {
3494 		char name[TCP_CA_NAME_MAX];
3495 
3496 		if (optlen < 1)
3497 			return -EINVAL;
3498 
3499 		val = strncpy_from_sockptr(name, optval,
3500 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3501 		if (val < 0)
3502 			return -EFAULT;
3503 		name[val] = 0;
3504 
3505 		lock_sock(sk);
3506 		err = tcp_set_congestion_control(sk, name, true,
3507 						 ns_capable(sock_net(sk)->user_ns,
3508 							    CAP_NET_ADMIN));
3509 		release_sock(sk);
3510 		return err;
3511 	}
3512 	case TCP_ULP: {
3513 		char name[TCP_ULP_NAME_MAX];
3514 
3515 		if (optlen < 1)
3516 			return -EINVAL;
3517 
3518 		val = strncpy_from_sockptr(name, optval,
3519 					min_t(long, TCP_ULP_NAME_MAX - 1,
3520 					      optlen));
3521 		if (val < 0)
3522 			return -EFAULT;
3523 		name[val] = 0;
3524 
3525 		lock_sock(sk);
3526 		err = tcp_set_ulp(sk, name);
3527 		release_sock(sk);
3528 		return err;
3529 	}
3530 	case TCP_FASTOPEN_KEY: {
3531 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3532 		__u8 *backup_key = NULL;
3533 
3534 		/* Allow a backup key as well to facilitate key rotation
3535 		 * First key is the active one.
3536 		 */
3537 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3538 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3539 			return -EINVAL;
3540 
3541 		if (copy_from_sockptr(key, optval, optlen))
3542 			return -EFAULT;
3543 
3544 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3545 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3546 
3547 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3548 	}
3549 	default:
3550 		/* fallthru */
3551 		break;
3552 	}
3553 
3554 	if (optlen < sizeof(int))
3555 		return -EINVAL;
3556 
3557 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3558 		return -EFAULT;
3559 
3560 	lock_sock(sk);
3561 
3562 	switch (optname) {
3563 	case TCP_MAXSEG:
3564 		/* Values greater than interface MTU won't take effect. However
3565 		 * at the point when this call is done we typically don't yet
3566 		 * know which interface is going to be used
3567 		 */
3568 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3569 			err = -EINVAL;
3570 			break;
3571 		}
3572 		tp->rx_opt.user_mss = val;
3573 		break;
3574 
3575 	case TCP_NODELAY:
3576 		__tcp_sock_set_nodelay(sk, val);
3577 		break;
3578 
3579 	case TCP_THIN_LINEAR_TIMEOUTS:
3580 		if (val < 0 || val > 1)
3581 			err = -EINVAL;
3582 		else
3583 			tp->thin_lto = val;
3584 		break;
3585 
3586 	case TCP_THIN_DUPACK:
3587 		if (val < 0 || val > 1)
3588 			err = -EINVAL;
3589 		break;
3590 
3591 	case TCP_REPAIR:
3592 		if (!tcp_can_repair_sock(sk))
3593 			err = -EPERM;
3594 		else if (val == TCP_REPAIR_ON) {
3595 			tp->repair = 1;
3596 			sk->sk_reuse = SK_FORCE_REUSE;
3597 			tp->repair_queue = TCP_NO_QUEUE;
3598 		} else if (val == TCP_REPAIR_OFF) {
3599 			tp->repair = 0;
3600 			sk->sk_reuse = SK_NO_REUSE;
3601 			tcp_send_window_probe(sk);
3602 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3603 			tp->repair = 0;
3604 			sk->sk_reuse = SK_NO_REUSE;
3605 		} else
3606 			err = -EINVAL;
3607 
3608 		break;
3609 
3610 	case TCP_REPAIR_QUEUE:
3611 		if (!tp->repair)
3612 			err = -EPERM;
3613 		else if ((unsigned int)val < TCP_QUEUES_NR)
3614 			tp->repair_queue = val;
3615 		else
3616 			err = -EINVAL;
3617 		break;
3618 
3619 	case TCP_QUEUE_SEQ:
3620 		if (sk->sk_state != TCP_CLOSE) {
3621 			err = -EPERM;
3622 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3623 			if (!tcp_rtx_queue_empty(sk))
3624 				err = -EPERM;
3625 			else
3626 				WRITE_ONCE(tp->write_seq, val);
3627 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3628 			if (tp->rcv_nxt != tp->copied_seq) {
3629 				err = -EPERM;
3630 			} else {
3631 				WRITE_ONCE(tp->rcv_nxt, val);
3632 				WRITE_ONCE(tp->copied_seq, val);
3633 			}
3634 		} else {
3635 			err = -EINVAL;
3636 		}
3637 		break;
3638 
3639 	case TCP_REPAIR_OPTIONS:
3640 		if (!tp->repair)
3641 			err = -EINVAL;
3642 		else if (sk->sk_state == TCP_ESTABLISHED)
3643 			err = tcp_repair_options_est(sk, optval, optlen);
3644 		else
3645 			err = -EPERM;
3646 		break;
3647 
3648 	case TCP_CORK:
3649 		__tcp_sock_set_cork(sk, val);
3650 		break;
3651 
3652 	case TCP_KEEPIDLE:
3653 		err = tcp_sock_set_keepidle_locked(sk, val);
3654 		break;
3655 	case TCP_KEEPINTVL:
3656 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3657 			err = -EINVAL;
3658 		else
3659 			tp->keepalive_intvl = val * HZ;
3660 		break;
3661 	case TCP_KEEPCNT:
3662 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3663 			err = -EINVAL;
3664 		else
3665 			tp->keepalive_probes = val;
3666 		break;
3667 	case TCP_SYNCNT:
3668 		if (val < 1 || val > MAX_TCP_SYNCNT)
3669 			err = -EINVAL;
3670 		else
3671 			icsk->icsk_syn_retries = val;
3672 		break;
3673 
3674 	case TCP_SAVE_SYN:
3675 		/* 0: disable, 1: enable, 2: start from ether_header */
3676 		if (val < 0 || val > 2)
3677 			err = -EINVAL;
3678 		else
3679 			tp->save_syn = val;
3680 		break;
3681 
3682 	case TCP_LINGER2:
3683 		if (val < 0)
3684 			tp->linger2 = -1;
3685 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3686 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3687 		else
3688 			tp->linger2 = val * HZ;
3689 		break;
3690 
3691 	case TCP_DEFER_ACCEPT:
3692 		/* Translate value in seconds to number of retransmits */
3693 		icsk->icsk_accept_queue.rskq_defer_accept =
3694 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3695 					TCP_RTO_MAX / HZ);
3696 		break;
3697 
3698 	case TCP_WINDOW_CLAMP:
3699 		err = tcp_set_window_clamp(sk, val);
3700 		break;
3701 
3702 	case TCP_QUICKACK:
3703 		__tcp_sock_set_quickack(sk, val);
3704 		break;
3705 
3706 #ifdef CONFIG_TCP_MD5SIG
3707 	case TCP_MD5SIG:
3708 	case TCP_MD5SIG_EXT:
3709 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3710 		break;
3711 #endif
3712 	case TCP_USER_TIMEOUT:
3713 		/* Cap the max time in ms TCP will retry or probe the window
3714 		 * before giving up and aborting (ETIMEDOUT) a connection.
3715 		 */
3716 		if (val < 0)
3717 			err = -EINVAL;
3718 		else
3719 			icsk->icsk_user_timeout = val;
3720 		break;
3721 
3722 	case TCP_FASTOPEN:
3723 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3724 		    TCPF_LISTEN))) {
3725 			tcp_fastopen_init_key_once(net);
3726 
3727 			fastopen_queue_tune(sk, val);
3728 		} else {
3729 			err = -EINVAL;
3730 		}
3731 		break;
3732 	case TCP_FASTOPEN_CONNECT:
3733 		if (val > 1 || val < 0) {
3734 			err = -EINVAL;
3735 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3736 			   TFO_CLIENT_ENABLE) {
3737 			if (sk->sk_state == TCP_CLOSE)
3738 				tp->fastopen_connect = val;
3739 			else
3740 				err = -EINVAL;
3741 		} else {
3742 			err = -EOPNOTSUPP;
3743 		}
3744 		break;
3745 	case TCP_FASTOPEN_NO_COOKIE:
3746 		if (val > 1 || val < 0)
3747 			err = -EINVAL;
3748 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3749 			err = -EINVAL;
3750 		else
3751 			tp->fastopen_no_cookie = val;
3752 		break;
3753 	case TCP_TIMESTAMP:
3754 		if (!tp->repair)
3755 			err = -EPERM;
3756 		else
3757 			tp->tsoffset = val - tcp_time_stamp_raw();
3758 		break;
3759 	case TCP_REPAIR_WINDOW:
3760 		err = tcp_repair_set_window(tp, optval, optlen);
3761 		break;
3762 	case TCP_NOTSENT_LOWAT:
3763 		tp->notsent_lowat = val;
3764 		sk->sk_write_space(sk);
3765 		break;
3766 	case TCP_INQ:
3767 		if (val > 1 || val < 0)
3768 			err = -EINVAL;
3769 		else
3770 			tp->recvmsg_inq = val;
3771 		break;
3772 	case TCP_TX_DELAY:
3773 		if (val)
3774 			tcp_enable_tx_delay();
3775 		tp->tcp_tx_delay = val;
3776 		break;
3777 	default:
3778 		err = -ENOPROTOOPT;
3779 		break;
3780 	}
3781 
3782 	release_sock(sk);
3783 	return err;
3784 }
3785 
3786 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3787 		   unsigned int optlen)
3788 {
3789 	const struct inet_connection_sock *icsk = inet_csk(sk);
3790 
3791 	if (level != SOL_TCP)
3792 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3793 						     optval, optlen);
3794 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3795 }
3796 EXPORT_SYMBOL(tcp_setsockopt);
3797 
3798 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3799 				      struct tcp_info *info)
3800 {
3801 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3802 	enum tcp_chrono i;
3803 
3804 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3805 		stats[i] = tp->chrono_stat[i - 1];
3806 		if (i == tp->chrono_type)
3807 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3808 		stats[i] *= USEC_PER_SEC / HZ;
3809 		total += stats[i];
3810 	}
3811 
3812 	info->tcpi_busy_time = total;
3813 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3814 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3815 }
3816 
3817 /* Return information about state of tcp endpoint in API format. */
3818 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3819 {
3820 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3821 	const struct inet_connection_sock *icsk = inet_csk(sk);
3822 	unsigned long rate;
3823 	u32 now;
3824 	u64 rate64;
3825 	bool slow;
3826 
3827 	memset(info, 0, sizeof(*info));
3828 	if (sk->sk_type != SOCK_STREAM)
3829 		return;
3830 
3831 	info->tcpi_state = inet_sk_state_load(sk);
3832 
3833 	/* Report meaningful fields for all TCP states, including listeners */
3834 	rate = READ_ONCE(sk->sk_pacing_rate);
3835 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3836 	info->tcpi_pacing_rate = rate64;
3837 
3838 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3839 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3840 	info->tcpi_max_pacing_rate = rate64;
3841 
3842 	info->tcpi_reordering = tp->reordering;
3843 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3844 
3845 	if (info->tcpi_state == TCP_LISTEN) {
3846 		/* listeners aliased fields :
3847 		 * tcpi_unacked -> Number of children ready for accept()
3848 		 * tcpi_sacked  -> max backlog
3849 		 */
3850 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3851 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3852 		return;
3853 	}
3854 
3855 	slow = lock_sock_fast(sk);
3856 
3857 	info->tcpi_ca_state = icsk->icsk_ca_state;
3858 	info->tcpi_retransmits = icsk->icsk_retransmits;
3859 	info->tcpi_probes = icsk->icsk_probes_out;
3860 	info->tcpi_backoff = icsk->icsk_backoff;
3861 
3862 	if (tp->rx_opt.tstamp_ok)
3863 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3864 	if (tcp_is_sack(tp))
3865 		info->tcpi_options |= TCPI_OPT_SACK;
3866 	if (tp->rx_opt.wscale_ok) {
3867 		info->tcpi_options |= TCPI_OPT_WSCALE;
3868 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3869 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3870 	}
3871 
3872 	if (tp->ecn_flags & TCP_ECN_OK)
3873 		info->tcpi_options |= TCPI_OPT_ECN;
3874 	if (tp->ecn_flags & TCP_ECN_SEEN)
3875 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3876 	if (tp->syn_data_acked)
3877 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3878 
3879 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3880 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3881 	info->tcpi_snd_mss = tp->mss_cache;
3882 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3883 
3884 	info->tcpi_unacked = tp->packets_out;
3885 	info->tcpi_sacked = tp->sacked_out;
3886 
3887 	info->tcpi_lost = tp->lost_out;
3888 	info->tcpi_retrans = tp->retrans_out;
3889 
3890 	now = tcp_jiffies32;
3891 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3892 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3893 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3894 
3895 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3896 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3897 	info->tcpi_rtt = tp->srtt_us >> 3;
3898 	info->tcpi_rttvar = tp->mdev_us >> 2;
3899 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3900 	info->tcpi_advmss = tp->advmss;
3901 
3902 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3903 	info->tcpi_rcv_space = tp->rcvq_space.space;
3904 
3905 	info->tcpi_total_retrans = tp->total_retrans;
3906 
3907 	info->tcpi_bytes_acked = tp->bytes_acked;
3908 	info->tcpi_bytes_received = tp->bytes_received;
3909 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3910 	tcp_get_info_chrono_stats(tp, info);
3911 
3912 	info->tcpi_segs_out = tp->segs_out;
3913 
3914 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3915 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3916 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3917 
3918 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3919 	info->tcpi_data_segs_out = tp->data_segs_out;
3920 
3921 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3922 	rate64 = tcp_compute_delivery_rate(tp);
3923 	if (rate64)
3924 		info->tcpi_delivery_rate = rate64;
3925 	info->tcpi_delivered = tp->delivered;
3926 	info->tcpi_delivered_ce = tp->delivered_ce;
3927 	info->tcpi_bytes_sent = tp->bytes_sent;
3928 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3929 	info->tcpi_dsack_dups = tp->dsack_dups;
3930 	info->tcpi_reord_seen = tp->reord_seen;
3931 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3932 	info->tcpi_snd_wnd = tp->snd_wnd;
3933 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3934 	unlock_sock_fast(sk, slow);
3935 }
3936 EXPORT_SYMBOL_GPL(tcp_get_info);
3937 
3938 static size_t tcp_opt_stats_get_size(void)
3939 {
3940 	return
3941 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3942 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3943 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3944 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3945 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3946 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3947 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3948 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3949 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3950 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3951 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3952 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3953 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3954 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3955 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3956 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3957 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3958 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3959 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3960 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3961 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3962 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3963 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3964 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3965 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3966 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3967 		0;
3968 }
3969 
3970 /* Returns TTL or hop limit of an incoming packet from skb. */
3971 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3972 {
3973 	if (skb->protocol == htons(ETH_P_IP))
3974 		return ip_hdr(skb)->ttl;
3975 	else if (skb->protocol == htons(ETH_P_IPV6))
3976 		return ipv6_hdr(skb)->hop_limit;
3977 	else
3978 		return 0;
3979 }
3980 
3981 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3982 					       const struct sk_buff *orig_skb,
3983 					       const struct sk_buff *ack_skb)
3984 {
3985 	const struct tcp_sock *tp = tcp_sk(sk);
3986 	struct sk_buff *stats;
3987 	struct tcp_info info;
3988 	unsigned long rate;
3989 	u64 rate64;
3990 
3991 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3992 	if (!stats)
3993 		return NULL;
3994 
3995 	tcp_get_info_chrono_stats(tp, &info);
3996 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3997 			  info.tcpi_busy_time, TCP_NLA_PAD);
3998 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3999 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4000 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4001 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4002 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4003 			  tp->data_segs_out, TCP_NLA_PAD);
4004 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4005 			  tp->total_retrans, TCP_NLA_PAD);
4006 
4007 	rate = READ_ONCE(sk->sk_pacing_rate);
4008 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4009 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4010 
4011 	rate64 = tcp_compute_delivery_rate(tp);
4012 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4013 
4014 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4015 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4016 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4017 
4018 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4019 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4020 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4021 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4022 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4023 
4024 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4025 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4026 
4027 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4028 			  TCP_NLA_PAD);
4029 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4030 			  TCP_NLA_PAD);
4031 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4032 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4033 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4034 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4035 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4036 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4037 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4038 			  TCP_NLA_PAD);
4039 	if (ack_skb)
4040 		nla_put_u8(stats, TCP_NLA_TTL,
4041 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4042 
4043 	return stats;
4044 }
4045 
4046 static int do_tcp_getsockopt(struct sock *sk, int level,
4047 		int optname, char __user *optval, int __user *optlen)
4048 {
4049 	struct inet_connection_sock *icsk = inet_csk(sk);
4050 	struct tcp_sock *tp = tcp_sk(sk);
4051 	struct net *net = sock_net(sk);
4052 	int val, len;
4053 
4054 	if (get_user(len, optlen))
4055 		return -EFAULT;
4056 
4057 	len = min_t(unsigned int, len, sizeof(int));
4058 
4059 	if (len < 0)
4060 		return -EINVAL;
4061 
4062 	switch (optname) {
4063 	case TCP_MAXSEG:
4064 		val = tp->mss_cache;
4065 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4066 			val = tp->rx_opt.user_mss;
4067 		if (tp->repair)
4068 			val = tp->rx_opt.mss_clamp;
4069 		break;
4070 	case TCP_NODELAY:
4071 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4072 		break;
4073 	case TCP_CORK:
4074 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4075 		break;
4076 	case TCP_KEEPIDLE:
4077 		val = keepalive_time_when(tp) / HZ;
4078 		break;
4079 	case TCP_KEEPINTVL:
4080 		val = keepalive_intvl_when(tp) / HZ;
4081 		break;
4082 	case TCP_KEEPCNT:
4083 		val = keepalive_probes(tp);
4084 		break;
4085 	case TCP_SYNCNT:
4086 		val = icsk->icsk_syn_retries ? :
4087 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4088 		break;
4089 	case TCP_LINGER2:
4090 		val = tp->linger2;
4091 		if (val >= 0)
4092 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4093 		break;
4094 	case TCP_DEFER_ACCEPT:
4095 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4096 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4097 		break;
4098 	case TCP_WINDOW_CLAMP:
4099 		val = tp->window_clamp;
4100 		break;
4101 	case TCP_INFO: {
4102 		struct tcp_info info;
4103 
4104 		if (get_user(len, optlen))
4105 			return -EFAULT;
4106 
4107 		tcp_get_info(sk, &info);
4108 
4109 		len = min_t(unsigned int, len, sizeof(info));
4110 		if (put_user(len, optlen))
4111 			return -EFAULT;
4112 		if (copy_to_user(optval, &info, len))
4113 			return -EFAULT;
4114 		return 0;
4115 	}
4116 	case TCP_CC_INFO: {
4117 		const struct tcp_congestion_ops *ca_ops;
4118 		union tcp_cc_info info;
4119 		size_t sz = 0;
4120 		int attr;
4121 
4122 		if (get_user(len, optlen))
4123 			return -EFAULT;
4124 
4125 		ca_ops = icsk->icsk_ca_ops;
4126 		if (ca_ops && ca_ops->get_info)
4127 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4128 
4129 		len = min_t(unsigned int, len, sz);
4130 		if (put_user(len, optlen))
4131 			return -EFAULT;
4132 		if (copy_to_user(optval, &info, len))
4133 			return -EFAULT;
4134 		return 0;
4135 	}
4136 	case TCP_QUICKACK:
4137 		val = !inet_csk_in_pingpong_mode(sk);
4138 		break;
4139 
4140 	case TCP_CONGESTION:
4141 		if (get_user(len, optlen))
4142 			return -EFAULT;
4143 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4144 		if (put_user(len, optlen))
4145 			return -EFAULT;
4146 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4147 			return -EFAULT;
4148 		return 0;
4149 
4150 	case TCP_ULP:
4151 		if (get_user(len, optlen))
4152 			return -EFAULT;
4153 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4154 		if (!icsk->icsk_ulp_ops) {
4155 			if (put_user(0, optlen))
4156 				return -EFAULT;
4157 			return 0;
4158 		}
4159 		if (put_user(len, optlen))
4160 			return -EFAULT;
4161 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4162 			return -EFAULT;
4163 		return 0;
4164 
4165 	case TCP_FASTOPEN_KEY: {
4166 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4167 		unsigned int key_len;
4168 
4169 		if (get_user(len, optlen))
4170 			return -EFAULT;
4171 
4172 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4173 				TCP_FASTOPEN_KEY_LENGTH;
4174 		len = min_t(unsigned int, len, key_len);
4175 		if (put_user(len, optlen))
4176 			return -EFAULT;
4177 		if (copy_to_user(optval, key, len))
4178 			return -EFAULT;
4179 		return 0;
4180 	}
4181 	case TCP_THIN_LINEAR_TIMEOUTS:
4182 		val = tp->thin_lto;
4183 		break;
4184 
4185 	case TCP_THIN_DUPACK:
4186 		val = 0;
4187 		break;
4188 
4189 	case TCP_REPAIR:
4190 		val = tp->repair;
4191 		break;
4192 
4193 	case TCP_REPAIR_QUEUE:
4194 		if (tp->repair)
4195 			val = tp->repair_queue;
4196 		else
4197 			return -EINVAL;
4198 		break;
4199 
4200 	case TCP_REPAIR_WINDOW: {
4201 		struct tcp_repair_window opt;
4202 
4203 		if (get_user(len, optlen))
4204 			return -EFAULT;
4205 
4206 		if (len != sizeof(opt))
4207 			return -EINVAL;
4208 
4209 		if (!tp->repair)
4210 			return -EPERM;
4211 
4212 		opt.snd_wl1	= tp->snd_wl1;
4213 		opt.snd_wnd	= tp->snd_wnd;
4214 		opt.max_window	= tp->max_window;
4215 		opt.rcv_wnd	= tp->rcv_wnd;
4216 		opt.rcv_wup	= tp->rcv_wup;
4217 
4218 		if (copy_to_user(optval, &opt, len))
4219 			return -EFAULT;
4220 		return 0;
4221 	}
4222 	case TCP_QUEUE_SEQ:
4223 		if (tp->repair_queue == TCP_SEND_QUEUE)
4224 			val = tp->write_seq;
4225 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4226 			val = tp->rcv_nxt;
4227 		else
4228 			return -EINVAL;
4229 		break;
4230 
4231 	case TCP_USER_TIMEOUT:
4232 		val = icsk->icsk_user_timeout;
4233 		break;
4234 
4235 	case TCP_FASTOPEN:
4236 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4237 		break;
4238 
4239 	case TCP_FASTOPEN_CONNECT:
4240 		val = tp->fastopen_connect;
4241 		break;
4242 
4243 	case TCP_FASTOPEN_NO_COOKIE:
4244 		val = tp->fastopen_no_cookie;
4245 		break;
4246 
4247 	case TCP_TX_DELAY:
4248 		val = tp->tcp_tx_delay;
4249 		break;
4250 
4251 	case TCP_TIMESTAMP:
4252 		val = tcp_time_stamp_raw() + tp->tsoffset;
4253 		break;
4254 	case TCP_NOTSENT_LOWAT:
4255 		val = tp->notsent_lowat;
4256 		break;
4257 	case TCP_INQ:
4258 		val = tp->recvmsg_inq;
4259 		break;
4260 	case TCP_SAVE_SYN:
4261 		val = tp->save_syn;
4262 		break;
4263 	case TCP_SAVED_SYN: {
4264 		if (get_user(len, optlen))
4265 			return -EFAULT;
4266 
4267 		lock_sock(sk);
4268 		if (tp->saved_syn) {
4269 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4270 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4271 					     optlen)) {
4272 					release_sock(sk);
4273 					return -EFAULT;
4274 				}
4275 				release_sock(sk);
4276 				return -EINVAL;
4277 			}
4278 			len = tcp_saved_syn_len(tp->saved_syn);
4279 			if (put_user(len, optlen)) {
4280 				release_sock(sk);
4281 				return -EFAULT;
4282 			}
4283 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4284 				release_sock(sk);
4285 				return -EFAULT;
4286 			}
4287 			tcp_saved_syn_free(tp);
4288 			release_sock(sk);
4289 		} else {
4290 			release_sock(sk);
4291 			len = 0;
4292 			if (put_user(len, optlen))
4293 				return -EFAULT;
4294 		}
4295 		return 0;
4296 	}
4297 #ifdef CONFIG_MMU
4298 	case TCP_ZEROCOPY_RECEIVE: {
4299 		struct scm_timestamping_internal tss;
4300 		struct tcp_zerocopy_receive zc = {};
4301 		int err;
4302 
4303 		if (get_user(len, optlen))
4304 			return -EFAULT;
4305 		if (len < 0 ||
4306 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4307 			return -EINVAL;
4308 		if (unlikely(len > sizeof(zc))) {
4309 			err = check_zeroed_user(optval + sizeof(zc),
4310 						len - sizeof(zc));
4311 			if (err < 1)
4312 				return err == 0 ? -EINVAL : err;
4313 			len = sizeof(zc);
4314 			if (put_user(len, optlen))
4315 				return -EFAULT;
4316 		}
4317 		if (copy_from_user(&zc, optval, len))
4318 			return -EFAULT;
4319 		if (zc.reserved)
4320 			return -EINVAL;
4321 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4322 			return -EINVAL;
4323 		lock_sock(sk);
4324 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4325 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4326 							  &zc, &len, err);
4327 		release_sock(sk);
4328 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4329 			goto zerocopy_rcv_cmsg;
4330 		switch (len) {
4331 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4332 			goto zerocopy_rcv_cmsg;
4333 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4334 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4335 		case offsetofend(struct tcp_zerocopy_receive, flags):
4336 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4337 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4338 		case offsetofend(struct tcp_zerocopy_receive, err):
4339 			goto zerocopy_rcv_sk_err;
4340 		case offsetofend(struct tcp_zerocopy_receive, inq):
4341 			goto zerocopy_rcv_inq;
4342 		case offsetofend(struct tcp_zerocopy_receive, length):
4343 		default:
4344 			goto zerocopy_rcv_out;
4345 		}
4346 zerocopy_rcv_cmsg:
4347 		if (zc.msg_flags & TCP_CMSG_TS)
4348 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4349 		else
4350 			zc.msg_flags = 0;
4351 zerocopy_rcv_sk_err:
4352 		if (!err)
4353 			zc.err = sock_error(sk);
4354 zerocopy_rcv_inq:
4355 		zc.inq = tcp_inq_hint(sk);
4356 zerocopy_rcv_out:
4357 		if (!err && copy_to_user(optval, &zc, len))
4358 			err = -EFAULT;
4359 		return err;
4360 	}
4361 #endif
4362 	default:
4363 		return -ENOPROTOOPT;
4364 	}
4365 
4366 	if (put_user(len, optlen))
4367 		return -EFAULT;
4368 	if (copy_to_user(optval, &val, len))
4369 		return -EFAULT;
4370 	return 0;
4371 }
4372 
4373 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4374 {
4375 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4376 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4377 	 */
4378 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4379 		return true;
4380 
4381 	return false;
4382 }
4383 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4384 
4385 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4386 		   int __user *optlen)
4387 {
4388 	struct inet_connection_sock *icsk = inet_csk(sk);
4389 
4390 	if (level != SOL_TCP)
4391 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4392 						     optval, optlen);
4393 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4394 }
4395 EXPORT_SYMBOL(tcp_getsockopt);
4396 
4397 #ifdef CONFIG_TCP_MD5SIG
4398 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4399 static DEFINE_MUTEX(tcp_md5sig_mutex);
4400 static bool tcp_md5sig_pool_populated = false;
4401 
4402 static void __tcp_alloc_md5sig_pool(void)
4403 {
4404 	struct crypto_ahash *hash;
4405 	int cpu;
4406 
4407 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4408 	if (IS_ERR(hash))
4409 		return;
4410 
4411 	for_each_possible_cpu(cpu) {
4412 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4413 		struct ahash_request *req;
4414 
4415 		if (!scratch) {
4416 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4417 					       sizeof(struct tcphdr),
4418 					       GFP_KERNEL,
4419 					       cpu_to_node(cpu));
4420 			if (!scratch)
4421 				return;
4422 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4423 		}
4424 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4425 			continue;
4426 
4427 		req = ahash_request_alloc(hash, GFP_KERNEL);
4428 		if (!req)
4429 			return;
4430 
4431 		ahash_request_set_callback(req, 0, NULL, NULL);
4432 
4433 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4434 	}
4435 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4436 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4437 	 */
4438 	smp_wmb();
4439 	tcp_md5sig_pool_populated = true;
4440 }
4441 
4442 bool tcp_alloc_md5sig_pool(void)
4443 {
4444 	if (unlikely(!tcp_md5sig_pool_populated)) {
4445 		mutex_lock(&tcp_md5sig_mutex);
4446 
4447 		if (!tcp_md5sig_pool_populated) {
4448 			__tcp_alloc_md5sig_pool();
4449 			if (tcp_md5sig_pool_populated)
4450 				static_branch_inc(&tcp_md5_needed);
4451 		}
4452 
4453 		mutex_unlock(&tcp_md5sig_mutex);
4454 	}
4455 	return tcp_md5sig_pool_populated;
4456 }
4457 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4458 
4459 
4460 /**
4461  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4462  *
4463  *	We use percpu structure, so if we succeed, we exit with preemption
4464  *	and BH disabled, to make sure another thread or softirq handling
4465  *	wont try to get same context.
4466  */
4467 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4468 {
4469 	local_bh_disable();
4470 
4471 	if (tcp_md5sig_pool_populated) {
4472 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4473 		smp_rmb();
4474 		return this_cpu_ptr(&tcp_md5sig_pool);
4475 	}
4476 	local_bh_enable();
4477 	return NULL;
4478 }
4479 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4480 
4481 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4482 			  const struct sk_buff *skb, unsigned int header_len)
4483 {
4484 	struct scatterlist sg;
4485 	const struct tcphdr *tp = tcp_hdr(skb);
4486 	struct ahash_request *req = hp->md5_req;
4487 	unsigned int i;
4488 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4489 					   skb_headlen(skb) - header_len : 0;
4490 	const struct skb_shared_info *shi = skb_shinfo(skb);
4491 	struct sk_buff *frag_iter;
4492 
4493 	sg_init_table(&sg, 1);
4494 
4495 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4496 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4497 	if (crypto_ahash_update(req))
4498 		return 1;
4499 
4500 	for (i = 0; i < shi->nr_frags; ++i) {
4501 		const skb_frag_t *f = &shi->frags[i];
4502 		unsigned int offset = skb_frag_off(f);
4503 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4504 
4505 		sg_set_page(&sg, page, skb_frag_size(f),
4506 			    offset_in_page(offset));
4507 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4508 		if (crypto_ahash_update(req))
4509 			return 1;
4510 	}
4511 
4512 	skb_walk_frags(skb, frag_iter)
4513 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4514 			return 1;
4515 
4516 	return 0;
4517 }
4518 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4519 
4520 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4521 {
4522 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4523 	struct scatterlist sg;
4524 
4525 	sg_init_one(&sg, key->key, keylen);
4526 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4527 
4528 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4529 	return data_race(crypto_ahash_update(hp->md5_req));
4530 }
4531 EXPORT_SYMBOL(tcp_md5_hash_key);
4532 
4533 /* Called with rcu_read_lock() */
4534 enum skb_drop_reason
4535 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4536 		     const void *saddr, const void *daddr,
4537 		     int family, int dif, int sdif)
4538 {
4539 	/*
4540 	 * This gets called for each TCP segment that arrives
4541 	 * so we want to be efficient.
4542 	 * We have 3 drop cases:
4543 	 * o No MD5 hash and one expected.
4544 	 * o MD5 hash and we're not expecting one.
4545 	 * o MD5 hash and its wrong.
4546 	 */
4547 	const __u8 *hash_location = NULL;
4548 	struct tcp_md5sig_key *hash_expected;
4549 	const struct tcphdr *th = tcp_hdr(skb);
4550 	struct tcp_sock *tp = tcp_sk(sk);
4551 	int genhash, l3index;
4552 	u8 newhash[16];
4553 
4554 	/* sdif set, means packet ingressed via a device
4555 	 * in an L3 domain and dif is set to the l3mdev
4556 	 */
4557 	l3index = sdif ? dif : 0;
4558 
4559 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4560 	hash_location = tcp_parse_md5sig_option(th);
4561 
4562 	/* We've parsed the options - do we have a hash? */
4563 	if (!hash_expected && !hash_location)
4564 		return SKB_NOT_DROPPED_YET;
4565 
4566 	if (hash_expected && !hash_location) {
4567 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4568 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4569 	}
4570 
4571 	if (!hash_expected && hash_location) {
4572 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4573 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4574 	}
4575 
4576 	/* Check the signature.
4577 	 * To support dual stack listeners, we need to handle
4578 	 * IPv4-mapped case.
4579 	 */
4580 	if (family == AF_INET)
4581 		genhash = tcp_v4_md5_hash_skb(newhash,
4582 					      hash_expected,
4583 					      NULL, skb);
4584 	else
4585 		genhash = tp->af_specific->calc_md5_hash(newhash,
4586 							 hash_expected,
4587 							 NULL, skb);
4588 
4589 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4590 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4591 		if (family == AF_INET) {
4592 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4593 					saddr, ntohs(th->source),
4594 					daddr, ntohs(th->dest),
4595 					genhash ? " tcp_v4_calc_md5_hash failed"
4596 					: "", l3index);
4597 		} else {
4598 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4599 					genhash ? "failed" : "mismatch",
4600 					saddr, ntohs(th->source),
4601 					daddr, ntohs(th->dest), l3index);
4602 		}
4603 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4604 	}
4605 	return SKB_NOT_DROPPED_YET;
4606 }
4607 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4608 
4609 #endif
4610 
4611 void tcp_done(struct sock *sk)
4612 {
4613 	struct request_sock *req;
4614 
4615 	/* We might be called with a new socket, after
4616 	 * inet_csk_prepare_forced_close() has been called
4617 	 * so we can not use lockdep_sock_is_held(sk)
4618 	 */
4619 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4620 
4621 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4622 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4623 
4624 	tcp_set_state(sk, TCP_CLOSE);
4625 	tcp_clear_xmit_timers(sk);
4626 	if (req)
4627 		reqsk_fastopen_remove(sk, req, false);
4628 
4629 	sk->sk_shutdown = SHUTDOWN_MASK;
4630 
4631 	if (!sock_flag(sk, SOCK_DEAD))
4632 		sk->sk_state_change(sk);
4633 	else
4634 		inet_csk_destroy_sock(sk);
4635 }
4636 EXPORT_SYMBOL_GPL(tcp_done);
4637 
4638 int tcp_abort(struct sock *sk, int err)
4639 {
4640 	int state = inet_sk_state_load(sk);
4641 
4642 	if (state == TCP_NEW_SYN_RECV) {
4643 		struct request_sock *req = inet_reqsk(sk);
4644 
4645 		local_bh_disable();
4646 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4647 		local_bh_enable();
4648 		return 0;
4649 	}
4650 	if (state == TCP_TIME_WAIT) {
4651 		struct inet_timewait_sock *tw = inet_twsk(sk);
4652 
4653 		refcount_inc(&tw->tw_refcnt);
4654 		local_bh_disable();
4655 		inet_twsk_deschedule_put(tw);
4656 		local_bh_enable();
4657 		return 0;
4658 	}
4659 
4660 	/* Don't race with userspace socket closes such as tcp_close. */
4661 	lock_sock(sk);
4662 
4663 	if (sk->sk_state == TCP_LISTEN) {
4664 		tcp_set_state(sk, TCP_CLOSE);
4665 		inet_csk_listen_stop(sk);
4666 	}
4667 
4668 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4669 	local_bh_disable();
4670 	bh_lock_sock(sk);
4671 
4672 	if (!sock_flag(sk, SOCK_DEAD)) {
4673 		sk->sk_err = err;
4674 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4675 		smp_wmb();
4676 		sk_error_report(sk);
4677 		if (tcp_need_reset(sk->sk_state))
4678 			tcp_send_active_reset(sk, GFP_ATOMIC);
4679 		tcp_done(sk);
4680 	}
4681 
4682 	bh_unlock_sock(sk);
4683 	local_bh_enable();
4684 	tcp_write_queue_purge(sk);
4685 	release_sock(sk);
4686 	return 0;
4687 }
4688 EXPORT_SYMBOL_GPL(tcp_abort);
4689 
4690 extern struct tcp_congestion_ops tcp_reno;
4691 
4692 static __initdata unsigned long thash_entries;
4693 static int __init set_thash_entries(char *str)
4694 {
4695 	ssize_t ret;
4696 
4697 	if (!str)
4698 		return 0;
4699 
4700 	ret = kstrtoul(str, 0, &thash_entries);
4701 	if (ret)
4702 		return 0;
4703 
4704 	return 1;
4705 }
4706 __setup("thash_entries=", set_thash_entries);
4707 
4708 static void __init tcp_init_mem(void)
4709 {
4710 	unsigned long limit = nr_free_buffer_pages() / 16;
4711 
4712 	limit = max(limit, 128UL);
4713 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4714 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4715 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4716 }
4717 
4718 void __init tcp_init(void)
4719 {
4720 	int max_rshare, max_wshare, cnt;
4721 	unsigned long limit;
4722 	unsigned int i;
4723 
4724 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4725 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4726 		     sizeof_field(struct sk_buff, cb));
4727 
4728 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4729 
4730 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4731 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4732 
4733 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4734 			    thash_entries, 21,  /* one slot per 2 MB*/
4735 			    0, 64 * 1024);
4736 	tcp_hashinfo.bind_bucket_cachep =
4737 		kmem_cache_create("tcp_bind_bucket",
4738 				  sizeof(struct inet_bind_bucket), 0,
4739 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4740 				  SLAB_ACCOUNT,
4741 				  NULL);
4742 
4743 	/* Size and allocate the main established and bind bucket
4744 	 * hash tables.
4745 	 *
4746 	 * The methodology is similar to that of the buffer cache.
4747 	 */
4748 	tcp_hashinfo.ehash =
4749 		alloc_large_system_hash("TCP established",
4750 					sizeof(struct inet_ehash_bucket),
4751 					thash_entries,
4752 					17, /* one slot per 128 KB of memory */
4753 					0,
4754 					NULL,
4755 					&tcp_hashinfo.ehash_mask,
4756 					0,
4757 					thash_entries ? 0 : 512 * 1024);
4758 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4759 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4760 
4761 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4762 		panic("TCP: failed to alloc ehash_locks");
4763 	tcp_hashinfo.bhash =
4764 		alloc_large_system_hash("TCP bind",
4765 					sizeof(struct inet_bind_hashbucket),
4766 					tcp_hashinfo.ehash_mask + 1,
4767 					17, /* one slot per 128 KB of memory */
4768 					0,
4769 					&tcp_hashinfo.bhash_size,
4770 					NULL,
4771 					0,
4772 					64 * 1024);
4773 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4774 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4775 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4776 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4777 	}
4778 
4779 
4780 	cnt = tcp_hashinfo.ehash_mask + 1;
4781 	sysctl_tcp_max_orphans = cnt / 2;
4782 
4783 	tcp_init_mem();
4784 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4785 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4786 	max_wshare = min(4UL*1024*1024, limit);
4787 	max_rshare = min(6UL*1024*1024, limit);
4788 
4789 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4790 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4791 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4792 
4793 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4794 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4795 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4796 
4797 	pr_info("Hash tables configured (established %u bind %u)\n",
4798 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4799 
4800 	tcp_v4_init();
4801 	tcp_metrics_init();
4802 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4803 	tcp_tasklet_init();
4804 	mptcp_init();
4805 }
4806