1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 462 sk_sockets_allocated_inc(sk); 463 } 464 EXPORT_SYMBOL(tcp_init_sock); 465 466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 467 { 468 struct sk_buff *skb = tcp_write_queue_tail(sk); 469 470 if (tsflags && skb) { 471 struct skb_shared_info *shinfo = skb_shinfo(skb); 472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 473 474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 475 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 476 tcb->txstamp_ack = 1; 477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 479 } 480 } 481 482 static bool tcp_stream_is_readable(struct sock *sk, int target) 483 { 484 if (tcp_epollin_ready(sk, target)) 485 return true; 486 return sk_is_readable(sk); 487 } 488 489 /* 490 * Wait for a TCP event. 491 * 492 * Note that we don't need to lock the socket, as the upper poll layers 493 * take care of normal races (between the test and the event) and we don't 494 * go look at any of the socket buffers directly. 495 */ 496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 497 { 498 __poll_t mask; 499 struct sock *sk = sock->sk; 500 const struct tcp_sock *tp = tcp_sk(sk); 501 u8 shutdown; 502 int state; 503 504 sock_poll_wait(file, sock, wait); 505 506 state = inet_sk_state_load(sk); 507 if (state == TCP_LISTEN) 508 return inet_csk_listen_poll(sk); 509 510 /* Socket is not locked. We are protected from async events 511 * by poll logic and correct handling of state changes 512 * made by other threads is impossible in any case. 513 */ 514 515 mask = 0; 516 517 /* 518 * EPOLLHUP is certainly not done right. But poll() doesn't 519 * have a notion of HUP in just one direction, and for a 520 * socket the read side is more interesting. 521 * 522 * Some poll() documentation says that EPOLLHUP is incompatible 523 * with the EPOLLOUT/POLLWR flags, so somebody should check this 524 * all. But careful, it tends to be safer to return too many 525 * bits than too few, and you can easily break real applications 526 * if you don't tell them that something has hung up! 527 * 528 * Check-me. 529 * 530 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 531 * our fs/select.c). It means that after we received EOF, 532 * poll always returns immediately, making impossible poll() on write() 533 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 534 * if and only if shutdown has been made in both directions. 535 * Actually, it is interesting to look how Solaris and DUX 536 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 537 * then we could set it on SND_SHUTDOWN. BTW examples given 538 * in Stevens' books assume exactly this behaviour, it explains 539 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 540 * 541 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 542 * blocking on fresh not-connected or disconnected socket. --ANK 543 */ 544 shutdown = READ_ONCE(sk->sk_shutdown); 545 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 546 mask |= EPOLLHUP; 547 if (shutdown & RCV_SHUTDOWN) 548 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 549 550 /* Connected or passive Fast Open socket? */ 551 if (state != TCP_SYN_SENT && 552 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 553 int target = sock_rcvlowat(sk, 0, INT_MAX); 554 u16 urg_data = READ_ONCE(tp->urg_data); 555 556 if (unlikely(urg_data) && 557 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 558 !sock_flag(sk, SOCK_URGINLINE)) 559 target++; 560 561 if (tcp_stream_is_readable(sk, target)) 562 mask |= EPOLLIN | EPOLLRDNORM; 563 564 if (!(shutdown & SEND_SHUTDOWN)) { 565 if (__sk_stream_is_writeable(sk, 1)) { 566 mask |= EPOLLOUT | EPOLLWRNORM; 567 } else { /* send SIGIO later */ 568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 570 571 /* Race breaker. If space is freed after 572 * wspace test but before the flags are set, 573 * IO signal will be lost. Memory barrier 574 * pairs with the input side. 575 */ 576 smp_mb__after_atomic(); 577 if (__sk_stream_is_writeable(sk, 1)) 578 mask |= EPOLLOUT | EPOLLWRNORM; 579 } 580 } else 581 mask |= EPOLLOUT | EPOLLWRNORM; 582 583 if (urg_data & TCP_URG_VALID) 584 mask |= EPOLLPRI; 585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 586 /* Active TCP fastopen socket with defer_connect 587 * Return EPOLLOUT so application can call write() 588 * in order for kernel to generate SYN+data 589 */ 590 mask |= EPOLLOUT | EPOLLWRNORM; 591 } 592 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 593 smp_rmb(); 594 if (READ_ONCE(sk->sk_err) || 595 !skb_queue_empty_lockless(&sk->sk_error_queue)) 596 mask |= EPOLLERR; 597 598 return mask; 599 } 600 EXPORT_SYMBOL(tcp_poll); 601 602 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 int answ; 606 bool slow; 607 608 switch (cmd) { 609 case SIOCINQ: 610 if (sk->sk_state == TCP_LISTEN) 611 return -EINVAL; 612 613 slow = lock_sock_fast(sk); 614 answ = tcp_inq(sk); 615 unlock_sock_fast(sk, slow); 616 break; 617 case SIOCATMARK: 618 answ = READ_ONCE(tp->urg_data) && 619 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 620 break; 621 case SIOCOUTQ: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 629 break; 630 case SIOCOUTQNSD: 631 if (sk->sk_state == TCP_LISTEN) 632 return -EINVAL; 633 634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 635 answ = 0; 636 else 637 answ = READ_ONCE(tp->write_seq) - 638 READ_ONCE(tp->snd_nxt); 639 break; 640 default: 641 return -ENOIOCTLCMD; 642 } 643 644 *karg = answ; 645 return 0; 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 tcb->seq = tcb->end_seq = tp->write_seq; 666 tcb->tcp_flags = TCPHDR_ACK; 667 __skb_header_release(skb); 668 tcp_add_write_queue_tail(sk, skb); 669 sk_wmem_queued_add(sk, skb->truesize); 670 sk_mem_charge(sk, skb->truesize); 671 if (tp->nonagle & TCP_NAGLE_PUSH) 672 tp->nonagle &= ~TCP_NAGLE_PUSH; 673 674 tcp_slow_start_after_idle_check(sk); 675 } 676 677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 678 { 679 if (flags & MSG_OOB) 680 tp->snd_up = tp->write_seq; 681 } 682 683 /* If a not yet filled skb is pushed, do not send it if 684 * we have data packets in Qdisc or NIC queues : 685 * Because TX completion will happen shortly, it gives a chance 686 * to coalesce future sendmsg() payload into this skb, without 687 * need for a timer, and with no latency trade off. 688 * As packets containing data payload have a bigger truesize 689 * than pure acks (dataless) packets, the last checks prevent 690 * autocorking if we only have an ACK in Qdisc/NIC queues, 691 * or if TX completion was delayed after we processed ACK packet. 692 */ 693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 694 int size_goal) 695 { 696 return skb->len < size_goal && 697 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 698 !tcp_rtx_queue_empty(sk) && 699 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 700 tcp_skb_can_collapse_to(skb); 701 } 702 703 void tcp_push(struct sock *sk, int flags, int mss_now, 704 int nonagle, int size_goal) 705 { 706 struct tcp_sock *tp = tcp_sk(sk); 707 struct sk_buff *skb; 708 709 skb = tcp_write_queue_tail(sk); 710 if (!skb) 711 return; 712 if (!(flags & MSG_MORE) || forced_push(tp)) 713 tcp_mark_push(tp, skb); 714 715 tcp_mark_urg(tp, flags); 716 717 if (tcp_should_autocork(sk, skb, size_goal)) { 718 719 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 720 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 722 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 723 } 724 /* It is possible TX completion already happened 725 * before we set TSQ_THROTTLED. 726 */ 727 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 728 return; 729 } 730 731 if (flags & MSG_MORE) 732 nonagle = TCP_NAGLE_CORK; 733 734 __tcp_push_pending_frames(sk, mss_now, nonagle); 735 } 736 737 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 738 unsigned int offset, size_t len) 739 { 740 struct tcp_splice_state *tss = rd_desc->arg.data; 741 int ret; 742 743 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 744 min(rd_desc->count, len), tss->flags); 745 if (ret > 0) 746 rd_desc->count -= ret; 747 return ret; 748 } 749 750 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 751 { 752 /* Store TCP splice context information in read_descriptor_t. */ 753 read_descriptor_t rd_desc = { 754 .arg.data = tss, 755 .count = tss->len, 756 }; 757 758 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 759 } 760 761 /** 762 * tcp_splice_read - splice data from TCP socket to a pipe 763 * @sock: socket to splice from 764 * @ppos: position (not valid) 765 * @pipe: pipe to splice to 766 * @len: number of bytes to splice 767 * @flags: splice modifier flags 768 * 769 * Description: 770 * Will read pages from given socket and fill them into a pipe. 771 * 772 **/ 773 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 774 struct pipe_inode_info *pipe, size_t len, 775 unsigned int flags) 776 { 777 struct sock *sk = sock->sk; 778 struct tcp_splice_state tss = { 779 .pipe = pipe, 780 .len = len, 781 .flags = flags, 782 }; 783 long timeo; 784 ssize_t spliced; 785 int ret; 786 787 sock_rps_record_flow(sk); 788 /* 789 * We can't seek on a socket input 790 */ 791 if (unlikely(*ppos)) 792 return -ESPIPE; 793 794 ret = spliced = 0; 795 796 lock_sock(sk); 797 798 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 799 while (tss.len) { 800 ret = __tcp_splice_read(sk, &tss); 801 if (ret < 0) 802 break; 803 else if (!ret) { 804 if (spliced) 805 break; 806 if (sock_flag(sk, SOCK_DONE)) 807 break; 808 if (sk->sk_err) { 809 ret = sock_error(sk); 810 break; 811 } 812 if (sk->sk_shutdown & RCV_SHUTDOWN) 813 break; 814 if (sk->sk_state == TCP_CLOSE) { 815 /* 816 * This occurs when user tries to read 817 * from never connected socket. 818 */ 819 ret = -ENOTCONN; 820 break; 821 } 822 if (!timeo) { 823 ret = -EAGAIN; 824 break; 825 } 826 /* if __tcp_splice_read() got nothing while we have 827 * an skb in receive queue, we do not want to loop. 828 * This might happen with URG data. 829 */ 830 if (!skb_queue_empty(&sk->sk_receive_queue)) 831 break; 832 sk_wait_data(sk, &timeo, NULL); 833 if (signal_pending(current)) { 834 ret = sock_intr_errno(timeo); 835 break; 836 } 837 continue; 838 } 839 tss.len -= ret; 840 spliced += ret; 841 842 if (!timeo) 843 break; 844 release_sock(sk); 845 lock_sock(sk); 846 847 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 848 (sk->sk_shutdown & RCV_SHUTDOWN) || 849 signal_pending(current)) 850 break; 851 } 852 853 release_sock(sk); 854 855 if (spliced) 856 return spliced; 857 858 return ret; 859 } 860 EXPORT_SYMBOL(tcp_splice_read); 861 862 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 863 bool force_schedule) 864 { 865 struct sk_buff *skb; 866 867 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 868 if (likely(skb)) { 869 bool mem_scheduled; 870 871 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 872 if (force_schedule) { 873 mem_scheduled = true; 874 sk_forced_mem_schedule(sk, skb->truesize); 875 } else { 876 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 877 } 878 if (likely(mem_scheduled)) { 879 skb_reserve(skb, MAX_TCP_HEADER); 880 skb->ip_summed = CHECKSUM_PARTIAL; 881 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 882 return skb; 883 } 884 __kfree_skb(skb); 885 } else { 886 sk->sk_prot->enter_memory_pressure(sk); 887 sk_stream_moderate_sndbuf(sk); 888 } 889 return NULL; 890 } 891 892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 893 int large_allowed) 894 { 895 struct tcp_sock *tp = tcp_sk(sk); 896 u32 new_size_goal, size_goal; 897 898 if (!large_allowed) 899 return mss_now; 900 901 /* Note : tcp_tso_autosize() will eventually split this later */ 902 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 903 904 /* We try hard to avoid divides here */ 905 size_goal = tp->gso_segs * mss_now; 906 if (unlikely(new_size_goal < size_goal || 907 new_size_goal >= size_goal + mss_now)) { 908 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 909 sk->sk_gso_max_segs); 910 size_goal = tp->gso_segs * mss_now; 911 } 912 913 return max(size_goal, mss_now); 914 } 915 916 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 917 { 918 int mss_now; 919 920 mss_now = tcp_current_mss(sk); 921 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 922 923 return mss_now; 924 } 925 926 /* In some cases, both sendpage() and sendmsg() could have added 927 * an skb to the write queue, but failed adding payload on it. 928 * We need to remove it to consume less memory, but more 929 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 930 * users. 931 */ 932 void tcp_remove_empty_skb(struct sock *sk) 933 { 934 struct sk_buff *skb = tcp_write_queue_tail(sk); 935 936 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 937 tcp_unlink_write_queue(skb, sk); 938 if (tcp_write_queue_empty(sk)) 939 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 940 tcp_wmem_free_skb(sk, skb); 941 } 942 } 943 944 /* skb changing from pure zc to mixed, must charge zc */ 945 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 946 { 947 if (unlikely(skb_zcopy_pure(skb))) { 948 u32 extra = skb->truesize - 949 SKB_TRUESIZE(skb_end_offset(skb)); 950 951 if (!sk_wmem_schedule(sk, extra)) 952 return -ENOMEM; 953 954 sk_mem_charge(sk, extra); 955 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 956 } 957 return 0; 958 } 959 960 961 int tcp_wmem_schedule(struct sock *sk, int copy) 962 { 963 int left; 964 965 if (likely(sk_wmem_schedule(sk, copy))) 966 return copy; 967 968 /* We could be in trouble if we have nothing queued. 969 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 970 * to guarantee some progress. 971 */ 972 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 973 if (left > 0) 974 sk_forced_mem_schedule(sk, min(left, copy)); 975 return min(copy, sk->sk_forward_alloc); 976 } 977 978 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 979 size_t size, int flags) 980 { 981 struct bio_vec bvec; 982 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, }; 983 984 if (!(sk->sk_route_caps & NETIF_F_SG)) 985 return sock_no_sendpage_locked(sk, page, offset, size, flags); 986 987 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 988 989 bvec_set_page(&bvec, page, size, offset); 990 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 991 992 if (flags & MSG_SENDPAGE_NOTLAST) 993 msg.msg_flags |= MSG_MORE; 994 995 return tcp_sendmsg_locked(sk, &msg, size); 996 } 997 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 998 999 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1000 size_t size, int flags) 1001 { 1002 int ret; 1003 1004 lock_sock(sk); 1005 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1006 release_sock(sk); 1007 1008 return ret; 1009 } 1010 EXPORT_SYMBOL(tcp_sendpage); 1011 1012 void tcp_free_fastopen_req(struct tcp_sock *tp) 1013 { 1014 if (tp->fastopen_req) { 1015 kfree(tp->fastopen_req); 1016 tp->fastopen_req = NULL; 1017 } 1018 } 1019 1020 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1021 size_t size, struct ubuf_info *uarg) 1022 { 1023 struct tcp_sock *tp = tcp_sk(sk); 1024 struct inet_sock *inet = inet_sk(sk); 1025 struct sockaddr *uaddr = msg->msg_name; 1026 int err, flags; 1027 1028 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1029 TFO_CLIENT_ENABLE) || 1030 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1031 uaddr->sa_family == AF_UNSPEC)) 1032 return -EOPNOTSUPP; 1033 if (tp->fastopen_req) 1034 return -EALREADY; /* Another Fast Open is in progress */ 1035 1036 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1037 sk->sk_allocation); 1038 if (unlikely(!tp->fastopen_req)) 1039 return -ENOBUFS; 1040 tp->fastopen_req->data = msg; 1041 tp->fastopen_req->size = size; 1042 tp->fastopen_req->uarg = uarg; 1043 1044 if (inet->defer_connect) { 1045 err = tcp_connect(sk); 1046 /* Same failure procedure as in tcp_v4/6_connect */ 1047 if (err) { 1048 tcp_set_state(sk, TCP_CLOSE); 1049 inet->inet_dport = 0; 1050 sk->sk_route_caps = 0; 1051 } 1052 } 1053 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1054 err = __inet_stream_connect(sk->sk_socket, uaddr, 1055 msg->msg_namelen, flags, 1); 1056 /* fastopen_req could already be freed in __inet_stream_connect 1057 * if the connection times out or gets rst 1058 */ 1059 if (tp->fastopen_req) { 1060 *copied = tp->fastopen_req->copied; 1061 tcp_free_fastopen_req(tp); 1062 inet->defer_connect = 0; 1063 } 1064 return err; 1065 } 1066 1067 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1068 { 1069 struct tcp_sock *tp = tcp_sk(sk); 1070 struct ubuf_info *uarg = NULL; 1071 struct sk_buff *skb; 1072 struct sockcm_cookie sockc; 1073 int flags, err, copied = 0; 1074 int mss_now = 0, size_goal, copied_syn = 0; 1075 int process_backlog = 0; 1076 int zc = 0; 1077 long timeo; 1078 1079 flags = msg->msg_flags; 1080 1081 if ((flags & MSG_ZEROCOPY) && size) { 1082 if (msg->msg_ubuf) { 1083 uarg = msg->msg_ubuf; 1084 if (sk->sk_route_caps & NETIF_F_SG) 1085 zc = MSG_ZEROCOPY; 1086 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1087 skb = tcp_write_queue_tail(sk); 1088 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1089 if (!uarg) { 1090 err = -ENOBUFS; 1091 goto out_err; 1092 } 1093 if (sk->sk_route_caps & NETIF_F_SG) 1094 zc = MSG_ZEROCOPY; 1095 else 1096 uarg_to_msgzc(uarg)->zerocopy = 0; 1097 } 1098 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1099 if (sk->sk_route_caps & NETIF_F_SG) 1100 zc = MSG_SPLICE_PAGES; 1101 } 1102 1103 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1104 !tp->repair) { 1105 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1106 if (err == -EINPROGRESS && copied_syn > 0) 1107 goto out; 1108 else if (err) 1109 goto out_err; 1110 } 1111 1112 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1113 1114 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1115 1116 /* Wait for a connection to finish. One exception is TCP Fast Open 1117 * (passive side) where data is allowed to be sent before a connection 1118 * is fully established. 1119 */ 1120 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1121 !tcp_passive_fastopen(sk)) { 1122 err = sk_stream_wait_connect(sk, &timeo); 1123 if (err != 0) 1124 goto do_error; 1125 } 1126 1127 if (unlikely(tp->repair)) { 1128 if (tp->repair_queue == TCP_RECV_QUEUE) { 1129 copied = tcp_send_rcvq(sk, msg, size); 1130 goto out_nopush; 1131 } 1132 1133 err = -EINVAL; 1134 if (tp->repair_queue == TCP_NO_QUEUE) 1135 goto out_err; 1136 1137 /* 'common' sending to sendq */ 1138 } 1139 1140 sockcm_init(&sockc, sk); 1141 if (msg->msg_controllen) { 1142 err = sock_cmsg_send(sk, msg, &sockc); 1143 if (unlikely(err)) { 1144 err = -EINVAL; 1145 goto out_err; 1146 } 1147 } 1148 1149 /* This should be in poll */ 1150 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1151 1152 /* Ok commence sending. */ 1153 copied = 0; 1154 1155 restart: 1156 mss_now = tcp_send_mss(sk, &size_goal, flags); 1157 1158 err = -EPIPE; 1159 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1160 goto do_error; 1161 1162 while (msg_data_left(msg)) { 1163 ssize_t copy = 0; 1164 1165 skb = tcp_write_queue_tail(sk); 1166 if (skb) 1167 copy = size_goal - skb->len; 1168 1169 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1170 bool first_skb; 1171 1172 new_segment: 1173 if (!sk_stream_memory_free(sk)) 1174 goto wait_for_space; 1175 1176 if (unlikely(process_backlog >= 16)) { 1177 process_backlog = 0; 1178 if (sk_flush_backlog(sk)) 1179 goto restart; 1180 } 1181 first_skb = tcp_rtx_and_write_queues_empty(sk); 1182 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1183 first_skb); 1184 if (!skb) 1185 goto wait_for_space; 1186 1187 process_backlog++; 1188 1189 tcp_skb_entail(sk, skb); 1190 copy = size_goal; 1191 1192 /* All packets are restored as if they have 1193 * already been sent. skb_mstamp_ns isn't set to 1194 * avoid wrong rtt estimation. 1195 */ 1196 if (tp->repair) 1197 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1198 } 1199 1200 /* Try to append data to the end of skb. */ 1201 if (copy > msg_data_left(msg)) 1202 copy = msg_data_left(msg); 1203 1204 if (zc == 0) { 1205 bool merge = true; 1206 int i = skb_shinfo(skb)->nr_frags; 1207 struct page_frag *pfrag = sk_page_frag(sk); 1208 1209 if (!sk_page_frag_refill(sk, pfrag)) 1210 goto wait_for_space; 1211 1212 if (!skb_can_coalesce(skb, i, pfrag->page, 1213 pfrag->offset)) { 1214 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1215 tcp_mark_push(tp, skb); 1216 goto new_segment; 1217 } 1218 merge = false; 1219 } 1220 1221 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1222 1223 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1224 if (tcp_downgrade_zcopy_pure(sk, skb)) 1225 goto wait_for_space; 1226 skb_zcopy_downgrade_managed(skb); 1227 } 1228 1229 copy = tcp_wmem_schedule(sk, copy); 1230 if (!copy) 1231 goto wait_for_space; 1232 1233 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1234 pfrag->page, 1235 pfrag->offset, 1236 copy); 1237 if (err) 1238 goto do_error; 1239 1240 /* Update the skb. */ 1241 if (merge) { 1242 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1243 } else { 1244 skb_fill_page_desc(skb, i, pfrag->page, 1245 pfrag->offset, copy); 1246 page_ref_inc(pfrag->page); 1247 } 1248 pfrag->offset += copy; 1249 } else if (zc == MSG_ZEROCOPY) { 1250 /* First append to a fragless skb builds initial 1251 * pure zerocopy skb 1252 */ 1253 if (!skb->len) 1254 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1255 1256 if (!skb_zcopy_pure(skb)) { 1257 copy = tcp_wmem_schedule(sk, copy); 1258 if (!copy) 1259 goto wait_for_space; 1260 } 1261 1262 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1263 if (err == -EMSGSIZE || err == -EEXIST) { 1264 tcp_mark_push(tp, skb); 1265 goto new_segment; 1266 } 1267 if (err < 0) 1268 goto do_error; 1269 copy = err; 1270 } else if (zc == MSG_SPLICE_PAGES) { 1271 /* Splice in data if we can; copy if we can't. */ 1272 if (tcp_downgrade_zcopy_pure(sk, skb)) 1273 goto wait_for_space; 1274 copy = tcp_wmem_schedule(sk, copy); 1275 if (!copy) 1276 goto wait_for_space; 1277 1278 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1279 sk->sk_allocation); 1280 if (err < 0) { 1281 if (err == -EMSGSIZE) { 1282 tcp_mark_push(tp, skb); 1283 goto new_segment; 1284 } 1285 goto do_error; 1286 } 1287 copy = err; 1288 1289 if (!(flags & MSG_NO_SHARED_FRAGS)) 1290 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1291 1292 sk_wmem_queued_add(sk, copy); 1293 sk_mem_charge(sk, copy); 1294 } 1295 1296 if (!copied) 1297 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1298 1299 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1300 TCP_SKB_CB(skb)->end_seq += copy; 1301 tcp_skb_pcount_set(skb, 0); 1302 1303 copied += copy; 1304 if (!msg_data_left(msg)) { 1305 if (unlikely(flags & MSG_EOR)) 1306 TCP_SKB_CB(skb)->eor = 1; 1307 goto out; 1308 } 1309 1310 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1311 continue; 1312 1313 if (forced_push(tp)) { 1314 tcp_mark_push(tp, skb); 1315 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1316 } else if (skb == tcp_send_head(sk)) 1317 tcp_push_one(sk, mss_now); 1318 continue; 1319 1320 wait_for_space: 1321 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1322 if (copied) 1323 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1324 TCP_NAGLE_PUSH, size_goal); 1325 1326 err = sk_stream_wait_memory(sk, &timeo); 1327 if (err != 0) 1328 goto do_error; 1329 1330 mss_now = tcp_send_mss(sk, &size_goal, flags); 1331 } 1332 1333 out: 1334 if (copied) { 1335 tcp_tx_timestamp(sk, sockc.tsflags); 1336 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1337 } 1338 out_nopush: 1339 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1340 if (uarg && !msg->msg_ubuf) 1341 net_zcopy_put(uarg); 1342 return copied + copied_syn; 1343 1344 do_error: 1345 tcp_remove_empty_skb(sk); 1346 1347 if (copied + copied_syn) 1348 goto out; 1349 out_err: 1350 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1351 if (uarg && !msg->msg_ubuf) 1352 net_zcopy_put_abort(uarg, true); 1353 err = sk_stream_error(sk, flags, err); 1354 /* make sure we wake any epoll edge trigger waiter */ 1355 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1356 sk->sk_write_space(sk); 1357 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1358 } 1359 return err; 1360 } 1361 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1362 1363 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1364 { 1365 int ret; 1366 1367 lock_sock(sk); 1368 ret = tcp_sendmsg_locked(sk, msg, size); 1369 release_sock(sk); 1370 1371 return ret; 1372 } 1373 EXPORT_SYMBOL(tcp_sendmsg); 1374 1375 void tcp_splice_eof(struct socket *sock) 1376 { 1377 struct sock *sk = sock->sk; 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 int mss_now, size_goal; 1380 1381 if (!tcp_write_queue_tail(sk)) 1382 return; 1383 1384 lock_sock(sk); 1385 mss_now = tcp_send_mss(sk, &size_goal, 0); 1386 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1387 release_sock(sk); 1388 } 1389 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1390 1391 /* 1392 * Handle reading urgent data. BSD has very simple semantics for 1393 * this, no blocking and very strange errors 8) 1394 */ 1395 1396 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1397 { 1398 struct tcp_sock *tp = tcp_sk(sk); 1399 1400 /* No URG data to read. */ 1401 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1402 tp->urg_data == TCP_URG_READ) 1403 return -EINVAL; /* Yes this is right ! */ 1404 1405 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1406 return -ENOTCONN; 1407 1408 if (tp->urg_data & TCP_URG_VALID) { 1409 int err = 0; 1410 char c = tp->urg_data; 1411 1412 if (!(flags & MSG_PEEK)) 1413 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1414 1415 /* Read urgent data. */ 1416 msg->msg_flags |= MSG_OOB; 1417 1418 if (len > 0) { 1419 if (!(flags & MSG_TRUNC)) 1420 err = memcpy_to_msg(msg, &c, 1); 1421 len = 1; 1422 } else 1423 msg->msg_flags |= MSG_TRUNC; 1424 1425 return err ? -EFAULT : len; 1426 } 1427 1428 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1429 return 0; 1430 1431 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1432 * the available implementations agree in this case: 1433 * this call should never block, independent of the 1434 * blocking state of the socket. 1435 * Mike <pall@rz.uni-karlsruhe.de> 1436 */ 1437 return -EAGAIN; 1438 } 1439 1440 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1441 { 1442 struct sk_buff *skb; 1443 int copied = 0, err = 0; 1444 1445 /* XXX -- need to support SO_PEEK_OFF */ 1446 1447 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1448 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1449 if (err) 1450 return err; 1451 copied += skb->len; 1452 } 1453 1454 skb_queue_walk(&sk->sk_write_queue, skb) { 1455 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1456 if (err) 1457 break; 1458 1459 copied += skb->len; 1460 } 1461 1462 return err ?: copied; 1463 } 1464 1465 /* Clean up the receive buffer for full frames taken by the user, 1466 * then send an ACK if necessary. COPIED is the number of bytes 1467 * tcp_recvmsg has given to the user so far, it speeds up the 1468 * calculation of whether or not we must ACK for the sake of 1469 * a window update. 1470 */ 1471 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1472 { 1473 struct tcp_sock *tp = tcp_sk(sk); 1474 bool time_to_ack = false; 1475 1476 if (inet_csk_ack_scheduled(sk)) { 1477 const struct inet_connection_sock *icsk = inet_csk(sk); 1478 1479 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1480 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1481 /* 1482 * If this read emptied read buffer, we send ACK, if 1483 * connection is not bidirectional, user drained 1484 * receive buffer and there was a small segment 1485 * in queue. 1486 */ 1487 (copied > 0 && 1488 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1489 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1490 !inet_csk_in_pingpong_mode(sk))) && 1491 !atomic_read(&sk->sk_rmem_alloc))) 1492 time_to_ack = true; 1493 } 1494 1495 /* We send an ACK if we can now advertise a non-zero window 1496 * which has been raised "significantly". 1497 * 1498 * Even if window raised up to infinity, do not send window open ACK 1499 * in states, where we will not receive more. It is useless. 1500 */ 1501 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1502 __u32 rcv_window_now = tcp_receive_window(tp); 1503 1504 /* Optimize, __tcp_select_window() is not cheap. */ 1505 if (2*rcv_window_now <= tp->window_clamp) { 1506 __u32 new_window = __tcp_select_window(sk); 1507 1508 /* Send ACK now, if this read freed lots of space 1509 * in our buffer. Certainly, new_window is new window. 1510 * We can advertise it now, if it is not less than current one. 1511 * "Lots" means "at least twice" here. 1512 */ 1513 if (new_window && new_window >= 2 * rcv_window_now) 1514 time_to_ack = true; 1515 } 1516 } 1517 if (time_to_ack) 1518 tcp_send_ack(sk); 1519 } 1520 1521 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1522 { 1523 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1524 struct tcp_sock *tp = tcp_sk(sk); 1525 1526 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1527 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1528 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1529 __tcp_cleanup_rbuf(sk, copied); 1530 } 1531 1532 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1533 { 1534 __skb_unlink(skb, &sk->sk_receive_queue); 1535 if (likely(skb->destructor == sock_rfree)) { 1536 sock_rfree(skb); 1537 skb->destructor = NULL; 1538 skb->sk = NULL; 1539 return skb_attempt_defer_free(skb); 1540 } 1541 __kfree_skb(skb); 1542 } 1543 1544 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1545 { 1546 struct sk_buff *skb; 1547 u32 offset; 1548 1549 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1550 offset = seq - TCP_SKB_CB(skb)->seq; 1551 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1552 pr_err_once("%s: found a SYN, please report !\n", __func__); 1553 offset--; 1554 } 1555 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1556 *off = offset; 1557 return skb; 1558 } 1559 /* This looks weird, but this can happen if TCP collapsing 1560 * splitted a fat GRO packet, while we released socket lock 1561 * in skb_splice_bits() 1562 */ 1563 tcp_eat_recv_skb(sk, skb); 1564 } 1565 return NULL; 1566 } 1567 EXPORT_SYMBOL(tcp_recv_skb); 1568 1569 /* 1570 * This routine provides an alternative to tcp_recvmsg() for routines 1571 * that would like to handle copying from skbuffs directly in 'sendfile' 1572 * fashion. 1573 * Note: 1574 * - It is assumed that the socket was locked by the caller. 1575 * - The routine does not block. 1576 * - At present, there is no support for reading OOB data 1577 * or for 'peeking' the socket using this routine 1578 * (although both would be easy to implement). 1579 */ 1580 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1581 sk_read_actor_t recv_actor) 1582 { 1583 struct sk_buff *skb; 1584 struct tcp_sock *tp = tcp_sk(sk); 1585 u32 seq = tp->copied_seq; 1586 u32 offset; 1587 int copied = 0; 1588 1589 if (sk->sk_state == TCP_LISTEN) 1590 return -ENOTCONN; 1591 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1592 if (offset < skb->len) { 1593 int used; 1594 size_t len; 1595 1596 len = skb->len - offset; 1597 /* Stop reading if we hit a patch of urgent data */ 1598 if (unlikely(tp->urg_data)) { 1599 u32 urg_offset = tp->urg_seq - seq; 1600 if (urg_offset < len) 1601 len = urg_offset; 1602 if (!len) 1603 break; 1604 } 1605 used = recv_actor(desc, skb, offset, len); 1606 if (used <= 0) { 1607 if (!copied) 1608 copied = used; 1609 break; 1610 } 1611 if (WARN_ON_ONCE(used > len)) 1612 used = len; 1613 seq += used; 1614 copied += used; 1615 offset += used; 1616 1617 /* If recv_actor drops the lock (e.g. TCP splice 1618 * receive) the skb pointer might be invalid when 1619 * getting here: tcp_collapse might have deleted it 1620 * while aggregating skbs from the socket queue. 1621 */ 1622 skb = tcp_recv_skb(sk, seq - 1, &offset); 1623 if (!skb) 1624 break; 1625 /* TCP coalescing might have appended data to the skb. 1626 * Try to splice more frags 1627 */ 1628 if (offset + 1 != skb->len) 1629 continue; 1630 } 1631 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1632 tcp_eat_recv_skb(sk, skb); 1633 ++seq; 1634 break; 1635 } 1636 tcp_eat_recv_skb(sk, skb); 1637 if (!desc->count) 1638 break; 1639 WRITE_ONCE(tp->copied_seq, seq); 1640 } 1641 WRITE_ONCE(tp->copied_seq, seq); 1642 1643 tcp_rcv_space_adjust(sk); 1644 1645 /* Clean up data we have read: This will do ACK frames. */ 1646 if (copied > 0) { 1647 tcp_recv_skb(sk, seq, &offset); 1648 tcp_cleanup_rbuf(sk, copied); 1649 } 1650 return copied; 1651 } 1652 EXPORT_SYMBOL(tcp_read_sock); 1653 1654 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1655 { 1656 struct tcp_sock *tp = tcp_sk(sk); 1657 u32 seq = tp->copied_seq; 1658 struct sk_buff *skb; 1659 int copied = 0; 1660 u32 offset; 1661 1662 if (sk->sk_state == TCP_LISTEN) 1663 return -ENOTCONN; 1664 1665 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1666 u8 tcp_flags; 1667 int used; 1668 1669 __skb_unlink(skb, &sk->sk_receive_queue); 1670 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1671 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1672 used = recv_actor(sk, skb); 1673 if (used < 0) { 1674 if (!copied) 1675 copied = used; 1676 break; 1677 } 1678 seq += used; 1679 copied += used; 1680 1681 if (tcp_flags & TCPHDR_FIN) { 1682 ++seq; 1683 break; 1684 } 1685 } 1686 return copied; 1687 } 1688 EXPORT_SYMBOL(tcp_read_skb); 1689 1690 void tcp_read_done(struct sock *sk, size_t len) 1691 { 1692 struct tcp_sock *tp = tcp_sk(sk); 1693 u32 seq = tp->copied_seq; 1694 struct sk_buff *skb; 1695 size_t left; 1696 u32 offset; 1697 1698 if (sk->sk_state == TCP_LISTEN) 1699 return; 1700 1701 left = len; 1702 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1703 int used; 1704 1705 used = min_t(size_t, skb->len - offset, left); 1706 seq += used; 1707 left -= used; 1708 1709 if (skb->len > offset + used) 1710 break; 1711 1712 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1713 tcp_eat_recv_skb(sk, skb); 1714 ++seq; 1715 break; 1716 } 1717 tcp_eat_recv_skb(sk, skb); 1718 } 1719 WRITE_ONCE(tp->copied_seq, seq); 1720 1721 tcp_rcv_space_adjust(sk); 1722 1723 /* Clean up data we have read: This will do ACK frames. */ 1724 if (left != len) 1725 tcp_cleanup_rbuf(sk, len - left); 1726 } 1727 EXPORT_SYMBOL(tcp_read_done); 1728 1729 int tcp_peek_len(struct socket *sock) 1730 { 1731 return tcp_inq(sock->sk); 1732 } 1733 EXPORT_SYMBOL(tcp_peek_len); 1734 1735 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1736 int tcp_set_rcvlowat(struct sock *sk, int val) 1737 { 1738 int cap; 1739 1740 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1741 cap = sk->sk_rcvbuf >> 1; 1742 else 1743 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1744 val = min(val, cap); 1745 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1746 1747 /* Check if we need to signal EPOLLIN right now */ 1748 tcp_data_ready(sk); 1749 1750 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1751 return 0; 1752 1753 val <<= 1; 1754 if (val > sk->sk_rcvbuf) { 1755 WRITE_ONCE(sk->sk_rcvbuf, val); 1756 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1757 } 1758 return 0; 1759 } 1760 EXPORT_SYMBOL(tcp_set_rcvlowat); 1761 1762 void tcp_update_recv_tstamps(struct sk_buff *skb, 1763 struct scm_timestamping_internal *tss) 1764 { 1765 if (skb->tstamp) 1766 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1767 else 1768 tss->ts[0] = (struct timespec64) {0}; 1769 1770 if (skb_hwtstamps(skb)->hwtstamp) 1771 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1772 else 1773 tss->ts[2] = (struct timespec64) {0}; 1774 } 1775 1776 #ifdef CONFIG_MMU 1777 const struct vm_operations_struct tcp_vm_ops = { 1778 }; 1779 1780 int tcp_mmap(struct file *file, struct socket *sock, 1781 struct vm_area_struct *vma) 1782 { 1783 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1784 return -EPERM; 1785 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1786 1787 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1788 vm_flags_set(vma, VM_MIXEDMAP); 1789 1790 vma->vm_ops = &tcp_vm_ops; 1791 return 0; 1792 } 1793 EXPORT_SYMBOL(tcp_mmap); 1794 1795 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1796 u32 *offset_frag) 1797 { 1798 skb_frag_t *frag; 1799 1800 if (unlikely(offset_skb >= skb->len)) 1801 return NULL; 1802 1803 offset_skb -= skb_headlen(skb); 1804 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1805 return NULL; 1806 1807 frag = skb_shinfo(skb)->frags; 1808 while (offset_skb) { 1809 if (skb_frag_size(frag) > offset_skb) { 1810 *offset_frag = offset_skb; 1811 return frag; 1812 } 1813 offset_skb -= skb_frag_size(frag); 1814 ++frag; 1815 } 1816 *offset_frag = 0; 1817 return frag; 1818 } 1819 1820 static bool can_map_frag(const skb_frag_t *frag) 1821 { 1822 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1823 } 1824 1825 static int find_next_mappable_frag(const skb_frag_t *frag, 1826 int remaining_in_skb) 1827 { 1828 int offset = 0; 1829 1830 if (likely(can_map_frag(frag))) 1831 return 0; 1832 1833 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1834 offset += skb_frag_size(frag); 1835 ++frag; 1836 } 1837 return offset; 1838 } 1839 1840 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1841 struct tcp_zerocopy_receive *zc, 1842 struct sk_buff *skb, u32 offset) 1843 { 1844 u32 frag_offset, partial_frag_remainder = 0; 1845 int mappable_offset; 1846 skb_frag_t *frag; 1847 1848 /* worst case: skip to next skb. try to improve on this case below */ 1849 zc->recv_skip_hint = skb->len - offset; 1850 1851 /* Find the frag containing this offset (and how far into that frag) */ 1852 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1853 if (!frag) 1854 return; 1855 1856 if (frag_offset) { 1857 struct skb_shared_info *info = skb_shinfo(skb); 1858 1859 /* We read part of the last frag, must recvmsg() rest of skb. */ 1860 if (frag == &info->frags[info->nr_frags - 1]) 1861 return; 1862 1863 /* Else, we must at least read the remainder in this frag. */ 1864 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1865 zc->recv_skip_hint -= partial_frag_remainder; 1866 ++frag; 1867 } 1868 1869 /* partial_frag_remainder: If part way through a frag, must read rest. 1870 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1871 * in partial_frag_remainder. 1872 */ 1873 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1874 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1875 } 1876 1877 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1878 int flags, struct scm_timestamping_internal *tss, 1879 int *cmsg_flags); 1880 static int receive_fallback_to_copy(struct sock *sk, 1881 struct tcp_zerocopy_receive *zc, int inq, 1882 struct scm_timestamping_internal *tss) 1883 { 1884 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1885 struct msghdr msg = {}; 1886 struct iovec iov; 1887 int err; 1888 1889 zc->length = 0; 1890 zc->recv_skip_hint = 0; 1891 1892 if (copy_address != zc->copybuf_address) 1893 return -EINVAL; 1894 1895 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1896 inq, &iov, &msg.msg_iter); 1897 if (err) 1898 return err; 1899 1900 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1901 tss, &zc->msg_flags); 1902 if (err < 0) 1903 return err; 1904 1905 zc->copybuf_len = err; 1906 if (likely(zc->copybuf_len)) { 1907 struct sk_buff *skb; 1908 u32 offset; 1909 1910 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1911 if (skb) 1912 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1913 } 1914 return 0; 1915 } 1916 1917 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1918 struct sk_buff *skb, u32 copylen, 1919 u32 *offset, u32 *seq) 1920 { 1921 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1922 struct msghdr msg = {}; 1923 struct iovec iov; 1924 int err; 1925 1926 if (copy_address != zc->copybuf_address) 1927 return -EINVAL; 1928 1929 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1930 copylen, &iov, &msg.msg_iter); 1931 if (err) 1932 return err; 1933 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1934 if (err) 1935 return err; 1936 zc->recv_skip_hint -= copylen; 1937 *offset += copylen; 1938 *seq += copylen; 1939 return (__s32)copylen; 1940 } 1941 1942 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1943 struct sock *sk, 1944 struct sk_buff *skb, 1945 u32 *seq, 1946 s32 copybuf_len, 1947 struct scm_timestamping_internal *tss) 1948 { 1949 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1950 1951 if (!copylen) 1952 return 0; 1953 /* skb is null if inq < PAGE_SIZE. */ 1954 if (skb) { 1955 offset = *seq - TCP_SKB_CB(skb)->seq; 1956 } else { 1957 skb = tcp_recv_skb(sk, *seq, &offset); 1958 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1959 tcp_update_recv_tstamps(skb, tss); 1960 zc->msg_flags |= TCP_CMSG_TS; 1961 } 1962 } 1963 1964 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1965 seq); 1966 return zc->copybuf_len < 0 ? 0 : copylen; 1967 } 1968 1969 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1970 struct page **pending_pages, 1971 unsigned long pages_remaining, 1972 unsigned long *address, 1973 u32 *length, 1974 u32 *seq, 1975 struct tcp_zerocopy_receive *zc, 1976 u32 total_bytes_to_map, 1977 int err) 1978 { 1979 /* At least one page did not map. Try zapping if we skipped earlier. */ 1980 if (err == -EBUSY && 1981 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1982 u32 maybe_zap_len; 1983 1984 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1985 *length + /* Mapped or pending */ 1986 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1987 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1988 err = 0; 1989 } 1990 1991 if (!err) { 1992 unsigned long leftover_pages = pages_remaining; 1993 int bytes_mapped; 1994 1995 /* We called zap_page_range_single, try to reinsert. */ 1996 err = vm_insert_pages(vma, *address, 1997 pending_pages, 1998 &pages_remaining); 1999 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 2000 *seq += bytes_mapped; 2001 *address += bytes_mapped; 2002 } 2003 if (err) { 2004 /* Either we were unable to zap, OR we zapped, retried an 2005 * insert, and still had an issue. Either ways, pages_remaining 2006 * is the number of pages we were unable to map, and we unroll 2007 * some state we speculatively touched before. 2008 */ 2009 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2010 2011 *length -= bytes_not_mapped; 2012 zc->recv_skip_hint += bytes_not_mapped; 2013 } 2014 return err; 2015 } 2016 2017 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2018 struct page **pages, 2019 unsigned int pages_to_map, 2020 unsigned long *address, 2021 u32 *length, 2022 u32 *seq, 2023 struct tcp_zerocopy_receive *zc, 2024 u32 total_bytes_to_map) 2025 { 2026 unsigned long pages_remaining = pages_to_map; 2027 unsigned int pages_mapped; 2028 unsigned int bytes_mapped; 2029 int err; 2030 2031 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2032 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2033 bytes_mapped = PAGE_SIZE * pages_mapped; 2034 /* Even if vm_insert_pages fails, it may have partially succeeded in 2035 * mapping (some but not all of the pages). 2036 */ 2037 *seq += bytes_mapped; 2038 *address += bytes_mapped; 2039 2040 if (likely(!err)) 2041 return 0; 2042 2043 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2044 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2045 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2046 err); 2047 } 2048 2049 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2050 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2051 struct tcp_zerocopy_receive *zc, 2052 struct scm_timestamping_internal *tss) 2053 { 2054 unsigned long msg_control_addr; 2055 struct msghdr cmsg_dummy; 2056 2057 msg_control_addr = (unsigned long)zc->msg_control; 2058 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2059 cmsg_dummy.msg_controllen = 2060 (__kernel_size_t)zc->msg_controllen; 2061 cmsg_dummy.msg_flags = in_compat_syscall() 2062 ? MSG_CMSG_COMPAT : 0; 2063 cmsg_dummy.msg_control_is_user = true; 2064 zc->msg_flags = 0; 2065 if (zc->msg_control == msg_control_addr && 2066 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2067 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2068 zc->msg_control = (__u64) 2069 ((uintptr_t)cmsg_dummy.msg_control_user); 2070 zc->msg_controllen = 2071 (__u64)cmsg_dummy.msg_controllen; 2072 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2073 } 2074 } 2075 2076 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2077 unsigned long address, 2078 bool *mmap_locked) 2079 { 2080 struct vm_area_struct *vma = NULL; 2081 2082 #ifdef CONFIG_PER_VMA_LOCK 2083 vma = lock_vma_under_rcu(mm, address); 2084 #endif 2085 if (vma) { 2086 if (!vma_is_tcp(vma)) { 2087 vma_end_read(vma); 2088 return NULL; 2089 } 2090 *mmap_locked = false; 2091 return vma; 2092 } 2093 2094 mmap_read_lock(mm); 2095 vma = vma_lookup(mm, address); 2096 if (!vma || !vma_is_tcp(vma)) { 2097 mmap_read_unlock(mm); 2098 return NULL; 2099 } 2100 *mmap_locked = true; 2101 return vma; 2102 } 2103 2104 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2105 static int tcp_zerocopy_receive(struct sock *sk, 2106 struct tcp_zerocopy_receive *zc, 2107 struct scm_timestamping_internal *tss) 2108 { 2109 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2110 unsigned long address = (unsigned long)zc->address; 2111 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2112 s32 copybuf_len = zc->copybuf_len; 2113 struct tcp_sock *tp = tcp_sk(sk); 2114 const skb_frag_t *frags = NULL; 2115 unsigned int pages_to_map = 0; 2116 struct vm_area_struct *vma; 2117 struct sk_buff *skb = NULL; 2118 u32 seq = tp->copied_seq; 2119 u32 total_bytes_to_map; 2120 int inq = tcp_inq(sk); 2121 bool mmap_locked; 2122 int ret; 2123 2124 zc->copybuf_len = 0; 2125 zc->msg_flags = 0; 2126 2127 if (address & (PAGE_SIZE - 1) || address != zc->address) 2128 return -EINVAL; 2129 2130 if (sk->sk_state == TCP_LISTEN) 2131 return -ENOTCONN; 2132 2133 sock_rps_record_flow(sk); 2134 2135 if (inq && inq <= copybuf_len) 2136 return receive_fallback_to_copy(sk, zc, inq, tss); 2137 2138 if (inq < PAGE_SIZE) { 2139 zc->length = 0; 2140 zc->recv_skip_hint = inq; 2141 if (!inq && sock_flag(sk, SOCK_DONE)) 2142 return -EIO; 2143 return 0; 2144 } 2145 2146 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2147 if (!vma) 2148 return -EINVAL; 2149 2150 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2151 avail_len = min_t(u32, vma_len, inq); 2152 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2153 if (total_bytes_to_map) { 2154 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2155 zap_page_range_single(vma, address, total_bytes_to_map, 2156 NULL); 2157 zc->length = total_bytes_to_map; 2158 zc->recv_skip_hint = 0; 2159 } else { 2160 zc->length = avail_len; 2161 zc->recv_skip_hint = avail_len; 2162 } 2163 ret = 0; 2164 while (length + PAGE_SIZE <= zc->length) { 2165 int mappable_offset; 2166 struct page *page; 2167 2168 if (zc->recv_skip_hint < PAGE_SIZE) { 2169 u32 offset_frag; 2170 2171 if (skb) { 2172 if (zc->recv_skip_hint > 0) 2173 break; 2174 skb = skb->next; 2175 offset = seq - TCP_SKB_CB(skb)->seq; 2176 } else { 2177 skb = tcp_recv_skb(sk, seq, &offset); 2178 } 2179 2180 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2181 tcp_update_recv_tstamps(skb, tss); 2182 zc->msg_flags |= TCP_CMSG_TS; 2183 } 2184 zc->recv_skip_hint = skb->len - offset; 2185 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2186 if (!frags || offset_frag) 2187 break; 2188 } 2189 2190 mappable_offset = find_next_mappable_frag(frags, 2191 zc->recv_skip_hint); 2192 if (mappable_offset) { 2193 zc->recv_skip_hint = mappable_offset; 2194 break; 2195 } 2196 page = skb_frag_page(frags); 2197 prefetchw(page); 2198 pages[pages_to_map++] = page; 2199 length += PAGE_SIZE; 2200 zc->recv_skip_hint -= PAGE_SIZE; 2201 frags++; 2202 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2203 zc->recv_skip_hint < PAGE_SIZE) { 2204 /* Either full batch, or we're about to go to next skb 2205 * (and we cannot unroll failed ops across skbs). 2206 */ 2207 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2208 pages_to_map, 2209 &address, &length, 2210 &seq, zc, 2211 total_bytes_to_map); 2212 if (ret) 2213 goto out; 2214 pages_to_map = 0; 2215 } 2216 } 2217 if (pages_to_map) { 2218 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2219 &address, &length, &seq, 2220 zc, total_bytes_to_map); 2221 } 2222 out: 2223 if (mmap_locked) 2224 mmap_read_unlock(current->mm); 2225 else 2226 vma_end_read(vma); 2227 /* Try to copy straggler data. */ 2228 if (!ret) 2229 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2230 2231 if (length + copylen) { 2232 WRITE_ONCE(tp->copied_seq, seq); 2233 tcp_rcv_space_adjust(sk); 2234 2235 /* Clean up data we have read: This will do ACK frames. */ 2236 tcp_recv_skb(sk, seq, &offset); 2237 tcp_cleanup_rbuf(sk, length + copylen); 2238 ret = 0; 2239 if (length == zc->length) 2240 zc->recv_skip_hint = 0; 2241 } else { 2242 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2243 ret = -EIO; 2244 } 2245 zc->length = length; 2246 return ret; 2247 } 2248 #endif 2249 2250 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2251 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2252 struct scm_timestamping_internal *tss) 2253 { 2254 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2255 bool has_timestamping = false; 2256 2257 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2258 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2259 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2260 if (new_tstamp) { 2261 struct __kernel_timespec kts = { 2262 .tv_sec = tss->ts[0].tv_sec, 2263 .tv_nsec = tss->ts[0].tv_nsec, 2264 }; 2265 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2266 sizeof(kts), &kts); 2267 } else { 2268 struct __kernel_old_timespec ts_old = { 2269 .tv_sec = tss->ts[0].tv_sec, 2270 .tv_nsec = tss->ts[0].tv_nsec, 2271 }; 2272 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2273 sizeof(ts_old), &ts_old); 2274 } 2275 } else { 2276 if (new_tstamp) { 2277 struct __kernel_sock_timeval stv = { 2278 .tv_sec = tss->ts[0].tv_sec, 2279 .tv_usec = tss->ts[0].tv_nsec / 1000, 2280 }; 2281 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2282 sizeof(stv), &stv); 2283 } else { 2284 struct __kernel_old_timeval tv = { 2285 .tv_sec = tss->ts[0].tv_sec, 2286 .tv_usec = tss->ts[0].tv_nsec / 1000, 2287 }; 2288 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2289 sizeof(tv), &tv); 2290 } 2291 } 2292 } 2293 2294 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2295 has_timestamping = true; 2296 else 2297 tss->ts[0] = (struct timespec64) {0}; 2298 } 2299 2300 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2301 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2302 has_timestamping = true; 2303 else 2304 tss->ts[2] = (struct timespec64) {0}; 2305 } 2306 2307 if (has_timestamping) { 2308 tss->ts[1] = (struct timespec64) {0}; 2309 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2310 put_cmsg_scm_timestamping64(msg, tss); 2311 else 2312 put_cmsg_scm_timestamping(msg, tss); 2313 } 2314 } 2315 2316 static int tcp_inq_hint(struct sock *sk) 2317 { 2318 const struct tcp_sock *tp = tcp_sk(sk); 2319 u32 copied_seq = READ_ONCE(tp->copied_seq); 2320 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2321 int inq; 2322 2323 inq = rcv_nxt - copied_seq; 2324 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2325 lock_sock(sk); 2326 inq = tp->rcv_nxt - tp->copied_seq; 2327 release_sock(sk); 2328 } 2329 /* After receiving a FIN, tell the user-space to continue reading 2330 * by returning a non-zero inq. 2331 */ 2332 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2333 inq = 1; 2334 return inq; 2335 } 2336 2337 /* 2338 * This routine copies from a sock struct into the user buffer. 2339 * 2340 * Technical note: in 2.3 we work on _locked_ socket, so that 2341 * tricks with *seq access order and skb->users are not required. 2342 * Probably, code can be easily improved even more. 2343 */ 2344 2345 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2346 int flags, struct scm_timestamping_internal *tss, 2347 int *cmsg_flags) 2348 { 2349 struct tcp_sock *tp = tcp_sk(sk); 2350 int copied = 0; 2351 u32 peek_seq; 2352 u32 *seq; 2353 unsigned long used; 2354 int err; 2355 int target; /* Read at least this many bytes */ 2356 long timeo; 2357 struct sk_buff *skb, *last; 2358 u32 urg_hole = 0; 2359 2360 err = -ENOTCONN; 2361 if (sk->sk_state == TCP_LISTEN) 2362 goto out; 2363 2364 if (tp->recvmsg_inq) { 2365 *cmsg_flags = TCP_CMSG_INQ; 2366 msg->msg_get_inq = 1; 2367 } 2368 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2369 2370 /* Urgent data needs to be handled specially. */ 2371 if (flags & MSG_OOB) 2372 goto recv_urg; 2373 2374 if (unlikely(tp->repair)) { 2375 err = -EPERM; 2376 if (!(flags & MSG_PEEK)) 2377 goto out; 2378 2379 if (tp->repair_queue == TCP_SEND_QUEUE) 2380 goto recv_sndq; 2381 2382 err = -EINVAL; 2383 if (tp->repair_queue == TCP_NO_QUEUE) 2384 goto out; 2385 2386 /* 'common' recv queue MSG_PEEK-ing */ 2387 } 2388 2389 seq = &tp->copied_seq; 2390 if (flags & MSG_PEEK) { 2391 peek_seq = tp->copied_seq; 2392 seq = &peek_seq; 2393 } 2394 2395 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2396 2397 do { 2398 u32 offset; 2399 2400 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2401 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2402 if (copied) 2403 break; 2404 if (signal_pending(current)) { 2405 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2406 break; 2407 } 2408 } 2409 2410 /* Next get a buffer. */ 2411 2412 last = skb_peek_tail(&sk->sk_receive_queue); 2413 skb_queue_walk(&sk->sk_receive_queue, skb) { 2414 last = skb; 2415 /* Now that we have two receive queues this 2416 * shouldn't happen. 2417 */ 2418 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2419 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2420 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2421 flags)) 2422 break; 2423 2424 offset = *seq - TCP_SKB_CB(skb)->seq; 2425 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2426 pr_err_once("%s: found a SYN, please report !\n", __func__); 2427 offset--; 2428 } 2429 if (offset < skb->len) 2430 goto found_ok_skb; 2431 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2432 goto found_fin_ok; 2433 WARN(!(flags & MSG_PEEK), 2434 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2435 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2436 } 2437 2438 /* Well, if we have backlog, try to process it now yet. */ 2439 2440 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2441 break; 2442 2443 if (copied) { 2444 if (!timeo || 2445 sk->sk_err || 2446 sk->sk_state == TCP_CLOSE || 2447 (sk->sk_shutdown & RCV_SHUTDOWN) || 2448 signal_pending(current)) 2449 break; 2450 } else { 2451 if (sock_flag(sk, SOCK_DONE)) 2452 break; 2453 2454 if (sk->sk_err) { 2455 copied = sock_error(sk); 2456 break; 2457 } 2458 2459 if (sk->sk_shutdown & RCV_SHUTDOWN) 2460 break; 2461 2462 if (sk->sk_state == TCP_CLOSE) { 2463 /* This occurs when user tries to read 2464 * from never connected socket. 2465 */ 2466 copied = -ENOTCONN; 2467 break; 2468 } 2469 2470 if (!timeo) { 2471 copied = -EAGAIN; 2472 break; 2473 } 2474 2475 if (signal_pending(current)) { 2476 copied = sock_intr_errno(timeo); 2477 break; 2478 } 2479 } 2480 2481 if (copied >= target) { 2482 /* Do not sleep, just process backlog. */ 2483 __sk_flush_backlog(sk); 2484 } else { 2485 tcp_cleanup_rbuf(sk, copied); 2486 sk_wait_data(sk, &timeo, last); 2487 } 2488 2489 if ((flags & MSG_PEEK) && 2490 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2491 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2492 current->comm, 2493 task_pid_nr(current)); 2494 peek_seq = tp->copied_seq; 2495 } 2496 continue; 2497 2498 found_ok_skb: 2499 /* Ok so how much can we use? */ 2500 used = skb->len - offset; 2501 if (len < used) 2502 used = len; 2503 2504 /* Do we have urgent data here? */ 2505 if (unlikely(tp->urg_data)) { 2506 u32 urg_offset = tp->urg_seq - *seq; 2507 if (urg_offset < used) { 2508 if (!urg_offset) { 2509 if (!sock_flag(sk, SOCK_URGINLINE)) { 2510 WRITE_ONCE(*seq, *seq + 1); 2511 urg_hole++; 2512 offset++; 2513 used--; 2514 if (!used) 2515 goto skip_copy; 2516 } 2517 } else 2518 used = urg_offset; 2519 } 2520 } 2521 2522 if (!(flags & MSG_TRUNC)) { 2523 err = skb_copy_datagram_msg(skb, offset, msg, used); 2524 if (err) { 2525 /* Exception. Bailout! */ 2526 if (!copied) 2527 copied = -EFAULT; 2528 break; 2529 } 2530 } 2531 2532 WRITE_ONCE(*seq, *seq + used); 2533 copied += used; 2534 len -= used; 2535 2536 tcp_rcv_space_adjust(sk); 2537 2538 skip_copy: 2539 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2540 WRITE_ONCE(tp->urg_data, 0); 2541 tcp_fast_path_check(sk); 2542 } 2543 2544 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2545 tcp_update_recv_tstamps(skb, tss); 2546 *cmsg_flags |= TCP_CMSG_TS; 2547 } 2548 2549 if (used + offset < skb->len) 2550 continue; 2551 2552 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2553 goto found_fin_ok; 2554 if (!(flags & MSG_PEEK)) 2555 tcp_eat_recv_skb(sk, skb); 2556 continue; 2557 2558 found_fin_ok: 2559 /* Process the FIN. */ 2560 WRITE_ONCE(*seq, *seq + 1); 2561 if (!(flags & MSG_PEEK)) 2562 tcp_eat_recv_skb(sk, skb); 2563 break; 2564 } while (len > 0); 2565 2566 /* According to UNIX98, msg_name/msg_namelen are ignored 2567 * on connected socket. I was just happy when found this 8) --ANK 2568 */ 2569 2570 /* Clean up data we have read: This will do ACK frames. */ 2571 tcp_cleanup_rbuf(sk, copied); 2572 return copied; 2573 2574 out: 2575 return err; 2576 2577 recv_urg: 2578 err = tcp_recv_urg(sk, msg, len, flags); 2579 goto out; 2580 2581 recv_sndq: 2582 err = tcp_peek_sndq(sk, msg, len); 2583 goto out; 2584 } 2585 2586 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2587 int *addr_len) 2588 { 2589 int cmsg_flags = 0, ret; 2590 struct scm_timestamping_internal tss; 2591 2592 if (unlikely(flags & MSG_ERRQUEUE)) 2593 return inet_recv_error(sk, msg, len, addr_len); 2594 2595 if (sk_can_busy_loop(sk) && 2596 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2597 sk->sk_state == TCP_ESTABLISHED) 2598 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2599 2600 lock_sock(sk); 2601 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2602 release_sock(sk); 2603 2604 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2605 if (cmsg_flags & TCP_CMSG_TS) 2606 tcp_recv_timestamp(msg, sk, &tss); 2607 if (msg->msg_get_inq) { 2608 msg->msg_inq = tcp_inq_hint(sk); 2609 if (cmsg_flags & TCP_CMSG_INQ) 2610 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2611 sizeof(msg->msg_inq), &msg->msg_inq); 2612 } 2613 } 2614 return ret; 2615 } 2616 EXPORT_SYMBOL(tcp_recvmsg); 2617 2618 void tcp_set_state(struct sock *sk, int state) 2619 { 2620 int oldstate = sk->sk_state; 2621 2622 /* We defined a new enum for TCP states that are exported in BPF 2623 * so as not force the internal TCP states to be frozen. The 2624 * following checks will detect if an internal state value ever 2625 * differs from the BPF value. If this ever happens, then we will 2626 * need to remap the internal value to the BPF value before calling 2627 * tcp_call_bpf_2arg. 2628 */ 2629 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2630 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2631 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2632 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2633 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2634 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2635 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2636 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2637 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2638 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2639 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2640 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2641 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2642 2643 /* bpf uapi header bpf.h defines an anonymous enum with values 2644 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2645 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2646 * But clang built vmlinux does not have this enum in DWARF 2647 * since clang removes the above code before generating IR/debuginfo. 2648 * Let us explicitly emit the type debuginfo to ensure the 2649 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2650 * regardless of which compiler is used. 2651 */ 2652 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2653 2654 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2655 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2656 2657 switch (state) { 2658 case TCP_ESTABLISHED: 2659 if (oldstate != TCP_ESTABLISHED) 2660 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2661 break; 2662 2663 case TCP_CLOSE: 2664 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2665 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2666 2667 sk->sk_prot->unhash(sk); 2668 if (inet_csk(sk)->icsk_bind_hash && 2669 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2670 inet_put_port(sk); 2671 fallthrough; 2672 default: 2673 if (oldstate == TCP_ESTABLISHED) 2674 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2675 } 2676 2677 /* Change state AFTER socket is unhashed to avoid closed 2678 * socket sitting in hash tables. 2679 */ 2680 inet_sk_state_store(sk, state); 2681 } 2682 EXPORT_SYMBOL_GPL(tcp_set_state); 2683 2684 /* 2685 * State processing on a close. This implements the state shift for 2686 * sending our FIN frame. Note that we only send a FIN for some 2687 * states. A shutdown() may have already sent the FIN, or we may be 2688 * closed. 2689 */ 2690 2691 static const unsigned char new_state[16] = { 2692 /* current state: new state: action: */ 2693 [0 /* (Invalid) */] = TCP_CLOSE, 2694 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2695 [TCP_SYN_SENT] = TCP_CLOSE, 2696 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2697 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2698 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2699 [TCP_TIME_WAIT] = TCP_CLOSE, 2700 [TCP_CLOSE] = TCP_CLOSE, 2701 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2702 [TCP_LAST_ACK] = TCP_LAST_ACK, 2703 [TCP_LISTEN] = TCP_CLOSE, 2704 [TCP_CLOSING] = TCP_CLOSING, 2705 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2706 }; 2707 2708 static int tcp_close_state(struct sock *sk) 2709 { 2710 int next = (int)new_state[sk->sk_state]; 2711 int ns = next & TCP_STATE_MASK; 2712 2713 tcp_set_state(sk, ns); 2714 2715 return next & TCP_ACTION_FIN; 2716 } 2717 2718 /* 2719 * Shutdown the sending side of a connection. Much like close except 2720 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2721 */ 2722 2723 void tcp_shutdown(struct sock *sk, int how) 2724 { 2725 /* We need to grab some memory, and put together a FIN, 2726 * and then put it into the queue to be sent. 2727 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2728 */ 2729 if (!(how & SEND_SHUTDOWN)) 2730 return; 2731 2732 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2733 if ((1 << sk->sk_state) & 2734 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2735 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2736 /* Clear out any half completed packets. FIN if needed. */ 2737 if (tcp_close_state(sk)) 2738 tcp_send_fin(sk); 2739 } 2740 } 2741 EXPORT_SYMBOL(tcp_shutdown); 2742 2743 int tcp_orphan_count_sum(void) 2744 { 2745 int i, total = 0; 2746 2747 for_each_possible_cpu(i) 2748 total += per_cpu(tcp_orphan_count, i); 2749 2750 return max(total, 0); 2751 } 2752 2753 static int tcp_orphan_cache; 2754 static struct timer_list tcp_orphan_timer; 2755 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2756 2757 static void tcp_orphan_update(struct timer_list *unused) 2758 { 2759 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2760 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2761 } 2762 2763 static bool tcp_too_many_orphans(int shift) 2764 { 2765 return READ_ONCE(tcp_orphan_cache) << shift > 2766 READ_ONCE(sysctl_tcp_max_orphans); 2767 } 2768 2769 bool tcp_check_oom(struct sock *sk, int shift) 2770 { 2771 bool too_many_orphans, out_of_socket_memory; 2772 2773 too_many_orphans = tcp_too_many_orphans(shift); 2774 out_of_socket_memory = tcp_out_of_memory(sk); 2775 2776 if (too_many_orphans) 2777 net_info_ratelimited("too many orphaned sockets\n"); 2778 if (out_of_socket_memory) 2779 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2780 return too_many_orphans || out_of_socket_memory; 2781 } 2782 2783 void __tcp_close(struct sock *sk, long timeout) 2784 { 2785 struct sk_buff *skb; 2786 int data_was_unread = 0; 2787 int state; 2788 2789 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2790 2791 if (sk->sk_state == TCP_LISTEN) { 2792 tcp_set_state(sk, TCP_CLOSE); 2793 2794 /* Special case. */ 2795 inet_csk_listen_stop(sk); 2796 2797 goto adjudge_to_death; 2798 } 2799 2800 /* We need to flush the recv. buffs. We do this only on the 2801 * descriptor close, not protocol-sourced closes, because the 2802 * reader process may not have drained the data yet! 2803 */ 2804 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2805 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2806 2807 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2808 len--; 2809 data_was_unread += len; 2810 __kfree_skb(skb); 2811 } 2812 2813 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2814 if (sk->sk_state == TCP_CLOSE) 2815 goto adjudge_to_death; 2816 2817 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2818 * data was lost. To witness the awful effects of the old behavior of 2819 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2820 * GET in an FTP client, suspend the process, wait for the client to 2821 * advertise a zero window, then kill -9 the FTP client, wheee... 2822 * Note: timeout is always zero in such a case. 2823 */ 2824 if (unlikely(tcp_sk(sk)->repair)) { 2825 sk->sk_prot->disconnect(sk, 0); 2826 } else if (data_was_unread) { 2827 /* Unread data was tossed, zap the connection. */ 2828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2829 tcp_set_state(sk, TCP_CLOSE); 2830 tcp_send_active_reset(sk, sk->sk_allocation); 2831 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2832 /* Check zero linger _after_ checking for unread data. */ 2833 sk->sk_prot->disconnect(sk, 0); 2834 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2835 } else if (tcp_close_state(sk)) { 2836 /* We FIN if the application ate all the data before 2837 * zapping the connection. 2838 */ 2839 2840 /* RED-PEN. Formally speaking, we have broken TCP state 2841 * machine. State transitions: 2842 * 2843 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2844 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2845 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2846 * 2847 * are legal only when FIN has been sent (i.e. in window), 2848 * rather than queued out of window. Purists blame. 2849 * 2850 * F.e. "RFC state" is ESTABLISHED, 2851 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2852 * 2853 * The visible declinations are that sometimes 2854 * we enter time-wait state, when it is not required really 2855 * (harmless), do not send active resets, when they are 2856 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2857 * they look as CLOSING or LAST_ACK for Linux) 2858 * Probably, I missed some more holelets. 2859 * --ANK 2860 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2861 * in a single packet! (May consider it later but will 2862 * probably need API support or TCP_CORK SYN-ACK until 2863 * data is written and socket is closed.) 2864 */ 2865 tcp_send_fin(sk); 2866 } 2867 2868 sk_stream_wait_close(sk, timeout); 2869 2870 adjudge_to_death: 2871 state = sk->sk_state; 2872 sock_hold(sk); 2873 sock_orphan(sk); 2874 2875 local_bh_disable(); 2876 bh_lock_sock(sk); 2877 /* remove backlog if any, without releasing ownership. */ 2878 __release_sock(sk); 2879 2880 this_cpu_inc(tcp_orphan_count); 2881 2882 /* Have we already been destroyed by a softirq or backlog? */ 2883 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2884 goto out; 2885 2886 /* This is a (useful) BSD violating of the RFC. There is a 2887 * problem with TCP as specified in that the other end could 2888 * keep a socket open forever with no application left this end. 2889 * We use a 1 minute timeout (about the same as BSD) then kill 2890 * our end. If they send after that then tough - BUT: long enough 2891 * that we won't make the old 4*rto = almost no time - whoops 2892 * reset mistake. 2893 * 2894 * Nope, it was not mistake. It is really desired behaviour 2895 * f.e. on http servers, when such sockets are useless, but 2896 * consume significant resources. Let's do it with special 2897 * linger2 option. --ANK 2898 */ 2899 2900 if (sk->sk_state == TCP_FIN_WAIT2) { 2901 struct tcp_sock *tp = tcp_sk(sk); 2902 if (tp->linger2 < 0) { 2903 tcp_set_state(sk, TCP_CLOSE); 2904 tcp_send_active_reset(sk, GFP_ATOMIC); 2905 __NET_INC_STATS(sock_net(sk), 2906 LINUX_MIB_TCPABORTONLINGER); 2907 } else { 2908 const int tmo = tcp_fin_time(sk); 2909 2910 if (tmo > TCP_TIMEWAIT_LEN) { 2911 inet_csk_reset_keepalive_timer(sk, 2912 tmo - TCP_TIMEWAIT_LEN); 2913 } else { 2914 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2915 goto out; 2916 } 2917 } 2918 } 2919 if (sk->sk_state != TCP_CLOSE) { 2920 if (tcp_check_oom(sk, 0)) { 2921 tcp_set_state(sk, TCP_CLOSE); 2922 tcp_send_active_reset(sk, GFP_ATOMIC); 2923 __NET_INC_STATS(sock_net(sk), 2924 LINUX_MIB_TCPABORTONMEMORY); 2925 } else if (!check_net(sock_net(sk))) { 2926 /* Not possible to send reset; just close */ 2927 tcp_set_state(sk, TCP_CLOSE); 2928 } 2929 } 2930 2931 if (sk->sk_state == TCP_CLOSE) { 2932 struct request_sock *req; 2933 2934 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2935 lockdep_sock_is_held(sk)); 2936 /* We could get here with a non-NULL req if the socket is 2937 * aborted (e.g., closed with unread data) before 3WHS 2938 * finishes. 2939 */ 2940 if (req) 2941 reqsk_fastopen_remove(sk, req, false); 2942 inet_csk_destroy_sock(sk); 2943 } 2944 /* Otherwise, socket is reprieved until protocol close. */ 2945 2946 out: 2947 bh_unlock_sock(sk); 2948 local_bh_enable(); 2949 } 2950 2951 void tcp_close(struct sock *sk, long timeout) 2952 { 2953 lock_sock(sk); 2954 __tcp_close(sk, timeout); 2955 release_sock(sk); 2956 sock_put(sk); 2957 } 2958 EXPORT_SYMBOL(tcp_close); 2959 2960 /* These states need RST on ABORT according to RFC793 */ 2961 2962 static inline bool tcp_need_reset(int state) 2963 { 2964 return (1 << state) & 2965 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2966 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2967 } 2968 2969 static void tcp_rtx_queue_purge(struct sock *sk) 2970 { 2971 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2972 2973 tcp_sk(sk)->highest_sack = NULL; 2974 while (p) { 2975 struct sk_buff *skb = rb_to_skb(p); 2976 2977 p = rb_next(p); 2978 /* Since we are deleting whole queue, no need to 2979 * list_del(&skb->tcp_tsorted_anchor) 2980 */ 2981 tcp_rtx_queue_unlink(skb, sk); 2982 tcp_wmem_free_skb(sk, skb); 2983 } 2984 } 2985 2986 void tcp_write_queue_purge(struct sock *sk) 2987 { 2988 struct sk_buff *skb; 2989 2990 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2991 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2992 tcp_skb_tsorted_anchor_cleanup(skb); 2993 tcp_wmem_free_skb(sk, skb); 2994 } 2995 tcp_rtx_queue_purge(sk); 2996 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2997 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2998 tcp_sk(sk)->packets_out = 0; 2999 inet_csk(sk)->icsk_backoff = 0; 3000 } 3001 3002 int tcp_disconnect(struct sock *sk, int flags) 3003 { 3004 struct inet_sock *inet = inet_sk(sk); 3005 struct inet_connection_sock *icsk = inet_csk(sk); 3006 struct tcp_sock *tp = tcp_sk(sk); 3007 int old_state = sk->sk_state; 3008 u32 seq; 3009 3010 /* Deny disconnect if other threads are blocked in sk_wait_event() 3011 * or inet_wait_for_connect(). 3012 */ 3013 if (sk->sk_wait_pending) 3014 return -EBUSY; 3015 3016 if (old_state != TCP_CLOSE) 3017 tcp_set_state(sk, TCP_CLOSE); 3018 3019 /* ABORT function of RFC793 */ 3020 if (old_state == TCP_LISTEN) { 3021 inet_csk_listen_stop(sk); 3022 } else if (unlikely(tp->repair)) { 3023 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3024 } else if (tcp_need_reset(old_state) || 3025 (tp->snd_nxt != tp->write_seq && 3026 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3027 /* The last check adjusts for discrepancy of Linux wrt. RFC 3028 * states 3029 */ 3030 tcp_send_active_reset(sk, gfp_any()); 3031 WRITE_ONCE(sk->sk_err, ECONNRESET); 3032 } else if (old_state == TCP_SYN_SENT) 3033 WRITE_ONCE(sk->sk_err, ECONNRESET); 3034 3035 tcp_clear_xmit_timers(sk); 3036 __skb_queue_purge(&sk->sk_receive_queue); 3037 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3038 WRITE_ONCE(tp->urg_data, 0); 3039 tcp_write_queue_purge(sk); 3040 tcp_fastopen_active_disable_ofo_check(sk); 3041 skb_rbtree_purge(&tp->out_of_order_queue); 3042 3043 inet->inet_dport = 0; 3044 3045 inet_bhash2_reset_saddr(sk); 3046 3047 WRITE_ONCE(sk->sk_shutdown, 0); 3048 sock_reset_flag(sk, SOCK_DONE); 3049 tp->srtt_us = 0; 3050 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3051 tp->rcv_rtt_last_tsecr = 0; 3052 3053 seq = tp->write_seq + tp->max_window + 2; 3054 if (!seq) 3055 seq = 1; 3056 WRITE_ONCE(tp->write_seq, seq); 3057 3058 icsk->icsk_backoff = 0; 3059 icsk->icsk_probes_out = 0; 3060 icsk->icsk_probes_tstamp = 0; 3061 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3062 icsk->icsk_rto_min = TCP_RTO_MIN; 3063 icsk->icsk_delack_max = TCP_DELACK_MAX; 3064 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3065 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3066 tp->snd_cwnd_cnt = 0; 3067 tp->is_cwnd_limited = 0; 3068 tp->max_packets_out = 0; 3069 tp->window_clamp = 0; 3070 tp->delivered = 0; 3071 tp->delivered_ce = 0; 3072 if (icsk->icsk_ca_ops->release) 3073 icsk->icsk_ca_ops->release(sk); 3074 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3075 icsk->icsk_ca_initialized = 0; 3076 tcp_set_ca_state(sk, TCP_CA_Open); 3077 tp->is_sack_reneg = 0; 3078 tcp_clear_retrans(tp); 3079 tp->total_retrans = 0; 3080 inet_csk_delack_init(sk); 3081 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3082 * issue in __tcp_select_window() 3083 */ 3084 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3085 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3086 __sk_dst_reset(sk); 3087 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3088 tcp_saved_syn_free(tp); 3089 tp->compressed_ack = 0; 3090 tp->segs_in = 0; 3091 tp->segs_out = 0; 3092 tp->bytes_sent = 0; 3093 tp->bytes_acked = 0; 3094 tp->bytes_received = 0; 3095 tp->bytes_retrans = 0; 3096 tp->data_segs_in = 0; 3097 tp->data_segs_out = 0; 3098 tp->duplicate_sack[0].start_seq = 0; 3099 tp->duplicate_sack[0].end_seq = 0; 3100 tp->dsack_dups = 0; 3101 tp->reord_seen = 0; 3102 tp->retrans_out = 0; 3103 tp->sacked_out = 0; 3104 tp->tlp_high_seq = 0; 3105 tp->last_oow_ack_time = 0; 3106 tp->plb_rehash = 0; 3107 /* There's a bubble in the pipe until at least the first ACK. */ 3108 tp->app_limited = ~0U; 3109 tp->rate_app_limited = 1; 3110 tp->rack.mstamp = 0; 3111 tp->rack.advanced = 0; 3112 tp->rack.reo_wnd_steps = 1; 3113 tp->rack.last_delivered = 0; 3114 tp->rack.reo_wnd_persist = 0; 3115 tp->rack.dsack_seen = 0; 3116 tp->syn_data_acked = 0; 3117 tp->rx_opt.saw_tstamp = 0; 3118 tp->rx_opt.dsack = 0; 3119 tp->rx_opt.num_sacks = 0; 3120 tp->rcv_ooopack = 0; 3121 3122 3123 /* Clean up fastopen related fields */ 3124 tcp_free_fastopen_req(tp); 3125 inet->defer_connect = 0; 3126 tp->fastopen_client_fail = 0; 3127 3128 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3129 3130 if (sk->sk_frag.page) { 3131 put_page(sk->sk_frag.page); 3132 sk->sk_frag.page = NULL; 3133 sk->sk_frag.offset = 0; 3134 } 3135 sk_error_report(sk); 3136 return 0; 3137 } 3138 EXPORT_SYMBOL(tcp_disconnect); 3139 3140 static inline bool tcp_can_repair_sock(const struct sock *sk) 3141 { 3142 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3143 (sk->sk_state != TCP_LISTEN); 3144 } 3145 3146 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3147 { 3148 struct tcp_repair_window opt; 3149 3150 if (!tp->repair) 3151 return -EPERM; 3152 3153 if (len != sizeof(opt)) 3154 return -EINVAL; 3155 3156 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3157 return -EFAULT; 3158 3159 if (opt.max_window < opt.snd_wnd) 3160 return -EINVAL; 3161 3162 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3163 return -EINVAL; 3164 3165 if (after(opt.rcv_wup, tp->rcv_nxt)) 3166 return -EINVAL; 3167 3168 tp->snd_wl1 = opt.snd_wl1; 3169 tp->snd_wnd = opt.snd_wnd; 3170 tp->max_window = opt.max_window; 3171 3172 tp->rcv_wnd = opt.rcv_wnd; 3173 tp->rcv_wup = opt.rcv_wup; 3174 3175 return 0; 3176 } 3177 3178 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3179 unsigned int len) 3180 { 3181 struct tcp_sock *tp = tcp_sk(sk); 3182 struct tcp_repair_opt opt; 3183 size_t offset = 0; 3184 3185 while (len >= sizeof(opt)) { 3186 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3187 return -EFAULT; 3188 3189 offset += sizeof(opt); 3190 len -= sizeof(opt); 3191 3192 switch (opt.opt_code) { 3193 case TCPOPT_MSS: 3194 tp->rx_opt.mss_clamp = opt.opt_val; 3195 tcp_mtup_init(sk); 3196 break; 3197 case TCPOPT_WINDOW: 3198 { 3199 u16 snd_wscale = opt.opt_val & 0xFFFF; 3200 u16 rcv_wscale = opt.opt_val >> 16; 3201 3202 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3203 return -EFBIG; 3204 3205 tp->rx_opt.snd_wscale = snd_wscale; 3206 tp->rx_opt.rcv_wscale = rcv_wscale; 3207 tp->rx_opt.wscale_ok = 1; 3208 } 3209 break; 3210 case TCPOPT_SACK_PERM: 3211 if (opt.opt_val != 0) 3212 return -EINVAL; 3213 3214 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3215 break; 3216 case TCPOPT_TIMESTAMP: 3217 if (opt.opt_val != 0) 3218 return -EINVAL; 3219 3220 tp->rx_opt.tstamp_ok = 1; 3221 break; 3222 } 3223 } 3224 3225 return 0; 3226 } 3227 3228 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3229 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3230 3231 static void tcp_enable_tx_delay(void) 3232 { 3233 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3234 static int __tcp_tx_delay_enabled = 0; 3235 3236 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3237 static_branch_enable(&tcp_tx_delay_enabled); 3238 pr_info("TCP_TX_DELAY enabled\n"); 3239 } 3240 } 3241 } 3242 3243 /* When set indicates to always queue non-full frames. Later the user clears 3244 * this option and we transmit any pending partial frames in the queue. This is 3245 * meant to be used alongside sendfile() to get properly filled frames when the 3246 * user (for example) must write out headers with a write() call first and then 3247 * use sendfile to send out the data parts. 3248 * 3249 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3250 * TCP_NODELAY. 3251 */ 3252 void __tcp_sock_set_cork(struct sock *sk, bool on) 3253 { 3254 struct tcp_sock *tp = tcp_sk(sk); 3255 3256 if (on) { 3257 tp->nonagle |= TCP_NAGLE_CORK; 3258 } else { 3259 tp->nonagle &= ~TCP_NAGLE_CORK; 3260 if (tp->nonagle & TCP_NAGLE_OFF) 3261 tp->nonagle |= TCP_NAGLE_PUSH; 3262 tcp_push_pending_frames(sk); 3263 } 3264 } 3265 3266 void tcp_sock_set_cork(struct sock *sk, bool on) 3267 { 3268 lock_sock(sk); 3269 __tcp_sock_set_cork(sk, on); 3270 release_sock(sk); 3271 } 3272 EXPORT_SYMBOL(tcp_sock_set_cork); 3273 3274 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3275 * remembered, but it is not activated until cork is cleared. 3276 * 3277 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3278 * even TCP_CORK for currently queued segments. 3279 */ 3280 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3281 { 3282 if (on) { 3283 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3284 tcp_push_pending_frames(sk); 3285 } else { 3286 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3287 } 3288 } 3289 3290 void tcp_sock_set_nodelay(struct sock *sk) 3291 { 3292 lock_sock(sk); 3293 __tcp_sock_set_nodelay(sk, true); 3294 release_sock(sk); 3295 } 3296 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3297 3298 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3299 { 3300 if (!val) { 3301 inet_csk_enter_pingpong_mode(sk); 3302 return; 3303 } 3304 3305 inet_csk_exit_pingpong_mode(sk); 3306 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3307 inet_csk_ack_scheduled(sk)) { 3308 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3309 tcp_cleanup_rbuf(sk, 1); 3310 if (!(val & 1)) 3311 inet_csk_enter_pingpong_mode(sk); 3312 } 3313 } 3314 3315 void tcp_sock_set_quickack(struct sock *sk, int val) 3316 { 3317 lock_sock(sk); 3318 __tcp_sock_set_quickack(sk, val); 3319 release_sock(sk); 3320 } 3321 EXPORT_SYMBOL(tcp_sock_set_quickack); 3322 3323 int tcp_sock_set_syncnt(struct sock *sk, int val) 3324 { 3325 if (val < 1 || val > MAX_TCP_SYNCNT) 3326 return -EINVAL; 3327 3328 lock_sock(sk); 3329 inet_csk(sk)->icsk_syn_retries = val; 3330 release_sock(sk); 3331 return 0; 3332 } 3333 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3334 3335 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3336 { 3337 lock_sock(sk); 3338 inet_csk(sk)->icsk_user_timeout = val; 3339 release_sock(sk); 3340 } 3341 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3342 3343 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3344 { 3345 struct tcp_sock *tp = tcp_sk(sk); 3346 3347 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3348 return -EINVAL; 3349 3350 tp->keepalive_time = val * HZ; 3351 if (sock_flag(sk, SOCK_KEEPOPEN) && 3352 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3353 u32 elapsed = keepalive_time_elapsed(tp); 3354 3355 if (tp->keepalive_time > elapsed) 3356 elapsed = tp->keepalive_time - elapsed; 3357 else 3358 elapsed = 0; 3359 inet_csk_reset_keepalive_timer(sk, elapsed); 3360 } 3361 3362 return 0; 3363 } 3364 3365 int tcp_sock_set_keepidle(struct sock *sk, int val) 3366 { 3367 int err; 3368 3369 lock_sock(sk); 3370 err = tcp_sock_set_keepidle_locked(sk, val); 3371 release_sock(sk); 3372 return err; 3373 } 3374 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3375 3376 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3377 { 3378 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3379 return -EINVAL; 3380 3381 lock_sock(sk); 3382 tcp_sk(sk)->keepalive_intvl = val * HZ; 3383 release_sock(sk); 3384 return 0; 3385 } 3386 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3387 3388 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3389 { 3390 if (val < 1 || val > MAX_TCP_KEEPCNT) 3391 return -EINVAL; 3392 3393 lock_sock(sk); 3394 tcp_sk(sk)->keepalive_probes = val; 3395 release_sock(sk); 3396 return 0; 3397 } 3398 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3399 3400 int tcp_set_window_clamp(struct sock *sk, int val) 3401 { 3402 struct tcp_sock *tp = tcp_sk(sk); 3403 3404 if (!val) { 3405 if (sk->sk_state != TCP_CLOSE) 3406 return -EINVAL; 3407 tp->window_clamp = 0; 3408 } else { 3409 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3410 SOCK_MIN_RCVBUF / 2 : val; 3411 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3412 } 3413 return 0; 3414 } 3415 3416 /* 3417 * Socket option code for TCP. 3418 */ 3419 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3420 sockptr_t optval, unsigned int optlen) 3421 { 3422 struct tcp_sock *tp = tcp_sk(sk); 3423 struct inet_connection_sock *icsk = inet_csk(sk); 3424 struct net *net = sock_net(sk); 3425 int val; 3426 int err = 0; 3427 3428 /* These are data/string values, all the others are ints */ 3429 switch (optname) { 3430 case TCP_CONGESTION: { 3431 char name[TCP_CA_NAME_MAX]; 3432 3433 if (optlen < 1) 3434 return -EINVAL; 3435 3436 val = strncpy_from_sockptr(name, optval, 3437 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3438 if (val < 0) 3439 return -EFAULT; 3440 name[val] = 0; 3441 3442 sockopt_lock_sock(sk); 3443 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3444 sockopt_ns_capable(sock_net(sk)->user_ns, 3445 CAP_NET_ADMIN)); 3446 sockopt_release_sock(sk); 3447 return err; 3448 } 3449 case TCP_ULP: { 3450 char name[TCP_ULP_NAME_MAX]; 3451 3452 if (optlen < 1) 3453 return -EINVAL; 3454 3455 val = strncpy_from_sockptr(name, optval, 3456 min_t(long, TCP_ULP_NAME_MAX - 1, 3457 optlen)); 3458 if (val < 0) 3459 return -EFAULT; 3460 name[val] = 0; 3461 3462 sockopt_lock_sock(sk); 3463 err = tcp_set_ulp(sk, name); 3464 sockopt_release_sock(sk); 3465 return err; 3466 } 3467 case TCP_FASTOPEN_KEY: { 3468 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3469 __u8 *backup_key = NULL; 3470 3471 /* Allow a backup key as well to facilitate key rotation 3472 * First key is the active one. 3473 */ 3474 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3475 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3476 return -EINVAL; 3477 3478 if (copy_from_sockptr(key, optval, optlen)) 3479 return -EFAULT; 3480 3481 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3482 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3483 3484 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3485 } 3486 default: 3487 /* fallthru */ 3488 break; 3489 } 3490 3491 if (optlen < sizeof(int)) 3492 return -EINVAL; 3493 3494 if (copy_from_sockptr(&val, optval, sizeof(val))) 3495 return -EFAULT; 3496 3497 sockopt_lock_sock(sk); 3498 3499 switch (optname) { 3500 case TCP_MAXSEG: 3501 /* Values greater than interface MTU won't take effect. However 3502 * at the point when this call is done we typically don't yet 3503 * know which interface is going to be used 3504 */ 3505 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3506 err = -EINVAL; 3507 break; 3508 } 3509 tp->rx_opt.user_mss = val; 3510 break; 3511 3512 case TCP_NODELAY: 3513 __tcp_sock_set_nodelay(sk, val); 3514 break; 3515 3516 case TCP_THIN_LINEAR_TIMEOUTS: 3517 if (val < 0 || val > 1) 3518 err = -EINVAL; 3519 else 3520 tp->thin_lto = val; 3521 break; 3522 3523 case TCP_THIN_DUPACK: 3524 if (val < 0 || val > 1) 3525 err = -EINVAL; 3526 break; 3527 3528 case TCP_REPAIR: 3529 if (!tcp_can_repair_sock(sk)) 3530 err = -EPERM; 3531 else if (val == TCP_REPAIR_ON) { 3532 tp->repair = 1; 3533 sk->sk_reuse = SK_FORCE_REUSE; 3534 tp->repair_queue = TCP_NO_QUEUE; 3535 } else if (val == TCP_REPAIR_OFF) { 3536 tp->repair = 0; 3537 sk->sk_reuse = SK_NO_REUSE; 3538 tcp_send_window_probe(sk); 3539 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3540 tp->repair = 0; 3541 sk->sk_reuse = SK_NO_REUSE; 3542 } else 3543 err = -EINVAL; 3544 3545 break; 3546 3547 case TCP_REPAIR_QUEUE: 3548 if (!tp->repair) 3549 err = -EPERM; 3550 else if ((unsigned int)val < TCP_QUEUES_NR) 3551 tp->repair_queue = val; 3552 else 3553 err = -EINVAL; 3554 break; 3555 3556 case TCP_QUEUE_SEQ: 3557 if (sk->sk_state != TCP_CLOSE) { 3558 err = -EPERM; 3559 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3560 if (!tcp_rtx_queue_empty(sk)) 3561 err = -EPERM; 3562 else 3563 WRITE_ONCE(tp->write_seq, val); 3564 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3565 if (tp->rcv_nxt != tp->copied_seq) { 3566 err = -EPERM; 3567 } else { 3568 WRITE_ONCE(tp->rcv_nxt, val); 3569 WRITE_ONCE(tp->copied_seq, val); 3570 } 3571 } else { 3572 err = -EINVAL; 3573 } 3574 break; 3575 3576 case TCP_REPAIR_OPTIONS: 3577 if (!tp->repair) 3578 err = -EINVAL; 3579 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3580 err = tcp_repair_options_est(sk, optval, optlen); 3581 else 3582 err = -EPERM; 3583 break; 3584 3585 case TCP_CORK: 3586 __tcp_sock_set_cork(sk, val); 3587 break; 3588 3589 case TCP_KEEPIDLE: 3590 err = tcp_sock_set_keepidle_locked(sk, val); 3591 break; 3592 case TCP_KEEPINTVL: 3593 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3594 err = -EINVAL; 3595 else 3596 tp->keepalive_intvl = val * HZ; 3597 break; 3598 case TCP_KEEPCNT: 3599 if (val < 1 || val > MAX_TCP_KEEPCNT) 3600 err = -EINVAL; 3601 else 3602 tp->keepalive_probes = val; 3603 break; 3604 case TCP_SYNCNT: 3605 if (val < 1 || val > MAX_TCP_SYNCNT) 3606 err = -EINVAL; 3607 else 3608 icsk->icsk_syn_retries = val; 3609 break; 3610 3611 case TCP_SAVE_SYN: 3612 /* 0: disable, 1: enable, 2: start from ether_header */ 3613 if (val < 0 || val > 2) 3614 err = -EINVAL; 3615 else 3616 tp->save_syn = val; 3617 break; 3618 3619 case TCP_LINGER2: 3620 if (val < 0) 3621 tp->linger2 = -1; 3622 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3623 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3624 else 3625 tp->linger2 = val * HZ; 3626 break; 3627 3628 case TCP_DEFER_ACCEPT: 3629 /* Translate value in seconds to number of retransmits */ 3630 icsk->icsk_accept_queue.rskq_defer_accept = 3631 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3632 TCP_RTO_MAX / HZ); 3633 break; 3634 3635 case TCP_WINDOW_CLAMP: 3636 err = tcp_set_window_clamp(sk, val); 3637 break; 3638 3639 case TCP_QUICKACK: 3640 __tcp_sock_set_quickack(sk, val); 3641 break; 3642 3643 #ifdef CONFIG_TCP_MD5SIG 3644 case TCP_MD5SIG: 3645 case TCP_MD5SIG_EXT: 3646 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3647 break; 3648 #endif 3649 case TCP_USER_TIMEOUT: 3650 /* Cap the max time in ms TCP will retry or probe the window 3651 * before giving up and aborting (ETIMEDOUT) a connection. 3652 */ 3653 if (val < 0) 3654 err = -EINVAL; 3655 else 3656 icsk->icsk_user_timeout = val; 3657 break; 3658 3659 case TCP_FASTOPEN: 3660 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3661 TCPF_LISTEN))) { 3662 tcp_fastopen_init_key_once(net); 3663 3664 fastopen_queue_tune(sk, val); 3665 } else { 3666 err = -EINVAL; 3667 } 3668 break; 3669 case TCP_FASTOPEN_CONNECT: 3670 if (val > 1 || val < 0) { 3671 err = -EINVAL; 3672 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3673 TFO_CLIENT_ENABLE) { 3674 if (sk->sk_state == TCP_CLOSE) 3675 tp->fastopen_connect = val; 3676 else 3677 err = -EINVAL; 3678 } else { 3679 err = -EOPNOTSUPP; 3680 } 3681 break; 3682 case TCP_FASTOPEN_NO_COOKIE: 3683 if (val > 1 || val < 0) 3684 err = -EINVAL; 3685 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3686 err = -EINVAL; 3687 else 3688 tp->fastopen_no_cookie = val; 3689 break; 3690 case TCP_TIMESTAMP: 3691 if (!tp->repair) 3692 err = -EPERM; 3693 else 3694 tp->tsoffset = val - tcp_time_stamp_raw(); 3695 break; 3696 case TCP_REPAIR_WINDOW: 3697 err = tcp_repair_set_window(tp, optval, optlen); 3698 break; 3699 case TCP_NOTSENT_LOWAT: 3700 tp->notsent_lowat = val; 3701 sk->sk_write_space(sk); 3702 break; 3703 case TCP_INQ: 3704 if (val > 1 || val < 0) 3705 err = -EINVAL; 3706 else 3707 tp->recvmsg_inq = val; 3708 break; 3709 case TCP_TX_DELAY: 3710 if (val) 3711 tcp_enable_tx_delay(); 3712 tp->tcp_tx_delay = val; 3713 break; 3714 default: 3715 err = -ENOPROTOOPT; 3716 break; 3717 } 3718 3719 sockopt_release_sock(sk); 3720 return err; 3721 } 3722 3723 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3724 unsigned int optlen) 3725 { 3726 const struct inet_connection_sock *icsk = inet_csk(sk); 3727 3728 if (level != SOL_TCP) 3729 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3730 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3731 optval, optlen); 3732 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3733 } 3734 EXPORT_SYMBOL(tcp_setsockopt); 3735 3736 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3737 struct tcp_info *info) 3738 { 3739 u64 stats[__TCP_CHRONO_MAX], total = 0; 3740 enum tcp_chrono i; 3741 3742 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3743 stats[i] = tp->chrono_stat[i - 1]; 3744 if (i == tp->chrono_type) 3745 stats[i] += tcp_jiffies32 - tp->chrono_start; 3746 stats[i] *= USEC_PER_SEC / HZ; 3747 total += stats[i]; 3748 } 3749 3750 info->tcpi_busy_time = total; 3751 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3752 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3753 } 3754 3755 /* Return information about state of tcp endpoint in API format. */ 3756 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3757 { 3758 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3759 const struct inet_connection_sock *icsk = inet_csk(sk); 3760 unsigned long rate; 3761 u32 now; 3762 u64 rate64; 3763 bool slow; 3764 3765 memset(info, 0, sizeof(*info)); 3766 if (sk->sk_type != SOCK_STREAM) 3767 return; 3768 3769 info->tcpi_state = inet_sk_state_load(sk); 3770 3771 /* Report meaningful fields for all TCP states, including listeners */ 3772 rate = READ_ONCE(sk->sk_pacing_rate); 3773 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3774 info->tcpi_pacing_rate = rate64; 3775 3776 rate = READ_ONCE(sk->sk_max_pacing_rate); 3777 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3778 info->tcpi_max_pacing_rate = rate64; 3779 3780 info->tcpi_reordering = tp->reordering; 3781 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3782 3783 if (info->tcpi_state == TCP_LISTEN) { 3784 /* listeners aliased fields : 3785 * tcpi_unacked -> Number of children ready for accept() 3786 * tcpi_sacked -> max backlog 3787 */ 3788 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3789 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3790 return; 3791 } 3792 3793 slow = lock_sock_fast(sk); 3794 3795 info->tcpi_ca_state = icsk->icsk_ca_state; 3796 info->tcpi_retransmits = icsk->icsk_retransmits; 3797 info->tcpi_probes = icsk->icsk_probes_out; 3798 info->tcpi_backoff = icsk->icsk_backoff; 3799 3800 if (tp->rx_opt.tstamp_ok) 3801 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3802 if (tcp_is_sack(tp)) 3803 info->tcpi_options |= TCPI_OPT_SACK; 3804 if (tp->rx_opt.wscale_ok) { 3805 info->tcpi_options |= TCPI_OPT_WSCALE; 3806 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3807 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3808 } 3809 3810 if (tp->ecn_flags & TCP_ECN_OK) 3811 info->tcpi_options |= TCPI_OPT_ECN; 3812 if (tp->ecn_flags & TCP_ECN_SEEN) 3813 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3814 if (tp->syn_data_acked) 3815 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3816 3817 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3818 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3819 info->tcpi_snd_mss = tp->mss_cache; 3820 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3821 3822 info->tcpi_unacked = tp->packets_out; 3823 info->tcpi_sacked = tp->sacked_out; 3824 3825 info->tcpi_lost = tp->lost_out; 3826 info->tcpi_retrans = tp->retrans_out; 3827 3828 now = tcp_jiffies32; 3829 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3830 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3831 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3832 3833 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3834 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3835 info->tcpi_rtt = tp->srtt_us >> 3; 3836 info->tcpi_rttvar = tp->mdev_us >> 2; 3837 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3838 info->tcpi_advmss = tp->advmss; 3839 3840 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3841 info->tcpi_rcv_space = tp->rcvq_space.space; 3842 3843 info->tcpi_total_retrans = tp->total_retrans; 3844 3845 info->tcpi_bytes_acked = tp->bytes_acked; 3846 info->tcpi_bytes_received = tp->bytes_received; 3847 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3848 tcp_get_info_chrono_stats(tp, info); 3849 3850 info->tcpi_segs_out = tp->segs_out; 3851 3852 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3853 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3854 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3855 3856 info->tcpi_min_rtt = tcp_min_rtt(tp); 3857 info->tcpi_data_segs_out = tp->data_segs_out; 3858 3859 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3860 rate64 = tcp_compute_delivery_rate(tp); 3861 if (rate64) 3862 info->tcpi_delivery_rate = rate64; 3863 info->tcpi_delivered = tp->delivered; 3864 info->tcpi_delivered_ce = tp->delivered_ce; 3865 info->tcpi_bytes_sent = tp->bytes_sent; 3866 info->tcpi_bytes_retrans = tp->bytes_retrans; 3867 info->tcpi_dsack_dups = tp->dsack_dups; 3868 info->tcpi_reord_seen = tp->reord_seen; 3869 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3870 info->tcpi_snd_wnd = tp->snd_wnd; 3871 info->tcpi_rcv_wnd = tp->rcv_wnd; 3872 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3873 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3874 unlock_sock_fast(sk, slow); 3875 } 3876 EXPORT_SYMBOL_GPL(tcp_get_info); 3877 3878 static size_t tcp_opt_stats_get_size(void) 3879 { 3880 return 3881 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3882 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3883 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3884 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3885 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3886 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3887 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3888 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3889 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3890 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3891 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3892 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3893 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3894 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3895 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3897 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3898 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3899 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3900 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3901 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3902 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3903 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3904 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3905 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3906 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3907 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3908 0; 3909 } 3910 3911 /* Returns TTL or hop limit of an incoming packet from skb. */ 3912 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3913 { 3914 if (skb->protocol == htons(ETH_P_IP)) 3915 return ip_hdr(skb)->ttl; 3916 else if (skb->protocol == htons(ETH_P_IPV6)) 3917 return ipv6_hdr(skb)->hop_limit; 3918 else 3919 return 0; 3920 } 3921 3922 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3923 const struct sk_buff *orig_skb, 3924 const struct sk_buff *ack_skb) 3925 { 3926 const struct tcp_sock *tp = tcp_sk(sk); 3927 struct sk_buff *stats; 3928 struct tcp_info info; 3929 unsigned long rate; 3930 u64 rate64; 3931 3932 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3933 if (!stats) 3934 return NULL; 3935 3936 tcp_get_info_chrono_stats(tp, &info); 3937 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3938 info.tcpi_busy_time, TCP_NLA_PAD); 3939 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3940 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3941 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3942 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3943 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3944 tp->data_segs_out, TCP_NLA_PAD); 3945 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3946 tp->total_retrans, TCP_NLA_PAD); 3947 3948 rate = READ_ONCE(sk->sk_pacing_rate); 3949 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3950 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3951 3952 rate64 = tcp_compute_delivery_rate(tp); 3953 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3954 3955 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3956 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3957 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3958 3959 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3960 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3961 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3962 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3963 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3964 3965 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3966 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3967 3968 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3969 TCP_NLA_PAD); 3970 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3971 TCP_NLA_PAD); 3972 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3973 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3974 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3975 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3976 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3977 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3978 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3979 TCP_NLA_PAD); 3980 if (ack_skb) 3981 nla_put_u8(stats, TCP_NLA_TTL, 3982 tcp_skb_ttl_or_hop_limit(ack_skb)); 3983 3984 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3985 return stats; 3986 } 3987 3988 int do_tcp_getsockopt(struct sock *sk, int level, 3989 int optname, sockptr_t optval, sockptr_t optlen) 3990 { 3991 struct inet_connection_sock *icsk = inet_csk(sk); 3992 struct tcp_sock *tp = tcp_sk(sk); 3993 struct net *net = sock_net(sk); 3994 int val, len; 3995 3996 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3997 return -EFAULT; 3998 3999 len = min_t(unsigned int, len, sizeof(int)); 4000 4001 if (len < 0) 4002 return -EINVAL; 4003 4004 switch (optname) { 4005 case TCP_MAXSEG: 4006 val = tp->mss_cache; 4007 if (tp->rx_opt.user_mss && 4008 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4009 val = tp->rx_opt.user_mss; 4010 if (tp->repair) 4011 val = tp->rx_opt.mss_clamp; 4012 break; 4013 case TCP_NODELAY: 4014 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4015 break; 4016 case TCP_CORK: 4017 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4018 break; 4019 case TCP_KEEPIDLE: 4020 val = keepalive_time_when(tp) / HZ; 4021 break; 4022 case TCP_KEEPINTVL: 4023 val = keepalive_intvl_when(tp) / HZ; 4024 break; 4025 case TCP_KEEPCNT: 4026 val = keepalive_probes(tp); 4027 break; 4028 case TCP_SYNCNT: 4029 val = icsk->icsk_syn_retries ? : 4030 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4031 break; 4032 case TCP_LINGER2: 4033 val = tp->linger2; 4034 if (val >= 0) 4035 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4036 break; 4037 case TCP_DEFER_ACCEPT: 4038 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 4039 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 4040 break; 4041 case TCP_WINDOW_CLAMP: 4042 val = tp->window_clamp; 4043 break; 4044 case TCP_INFO: { 4045 struct tcp_info info; 4046 4047 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4048 return -EFAULT; 4049 4050 tcp_get_info(sk, &info); 4051 4052 len = min_t(unsigned int, len, sizeof(info)); 4053 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4054 return -EFAULT; 4055 if (copy_to_sockptr(optval, &info, len)) 4056 return -EFAULT; 4057 return 0; 4058 } 4059 case TCP_CC_INFO: { 4060 const struct tcp_congestion_ops *ca_ops; 4061 union tcp_cc_info info; 4062 size_t sz = 0; 4063 int attr; 4064 4065 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4066 return -EFAULT; 4067 4068 ca_ops = icsk->icsk_ca_ops; 4069 if (ca_ops && ca_ops->get_info) 4070 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4071 4072 len = min_t(unsigned int, len, sz); 4073 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4074 return -EFAULT; 4075 if (copy_to_sockptr(optval, &info, len)) 4076 return -EFAULT; 4077 return 0; 4078 } 4079 case TCP_QUICKACK: 4080 val = !inet_csk_in_pingpong_mode(sk); 4081 break; 4082 4083 case TCP_CONGESTION: 4084 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4085 return -EFAULT; 4086 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4087 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4088 return -EFAULT; 4089 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4090 return -EFAULT; 4091 return 0; 4092 4093 case TCP_ULP: 4094 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4095 return -EFAULT; 4096 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4097 if (!icsk->icsk_ulp_ops) { 4098 len = 0; 4099 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4100 return -EFAULT; 4101 return 0; 4102 } 4103 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4104 return -EFAULT; 4105 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4106 return -EFAULT; 4107 return 0; 4108 4109 case TCP_FASTOPEN_KEY: { 4110 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4111 unsigned int key_len; 4112 4113 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4114 return -EFAULT; 4115 4116 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4117 TCP_FASTOPEN_KEY_LENGTH; 4118 len = min_t(unsigned int, len, key_len); 4119 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4120 return -EFAULT; 4121 if (copy_to_sockptr(optval, key, len)) 4122 return -EFAULT; 4123 return 0; 4124 } 4125 case TCP_THIN_LINEAR_TIMEOUTS: 4126 val = tp->thin_lto; 4127 break; 4128 4129 case TCP_THIN_DUPACK: 4130 val = 0; 4131 break; 4132 4133 case TCP_REPAIR: 4134 val = tp->repair; 4135 break; 4136 4137 case TCP_REPAIR_QUEUE: 4138 if (tp->repair) 4139 val = tp->repair_queue; 4140 else 4141 return -EINVAL; 4142 break; 4143 4144 case TCP_REPAIR_WINDOW: { 4145 struct tcp_repair_window opt; 4146 4147 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4148 return -EFAULT; 4149 4150 if (len != sizeof(opt)) 4151 return -EINVAL; 4152 4153 if (!tp->repair) 4154 return -EPERM; 4155 4156 opt.snd_wl1 = tp->snd_wl1; 4157 opt.snd_wnd = tp->snd_wnd; 4158 opt.max_window = tp->max_window; 4159 opt.rcv_wnd = tp->rcv_wnd; 4160 opt.rcv_wup = tp->rcv_wup; 4161 4162 if (copy_to_sockptr(optval, &opt, len)) 4163 return -EFAULT; 4164 return 0; 4165 } 4166 case TCP_QUEUE_SEQ: 4167 if (tp->repair_queue == TCP_SEND_QUEUE) 4168 val = tp->write_seq; 4169 else if (tp->repair_queue == TCP_RECV_QUEUE) 4170 val = tp->rcv_nxt; 4171 else 4172 return -EINVAL; 4173 break; 4174 4175 case TCP_USER_TIMEOUT: 4176 val = icsk->icsk_user_timeout; 4177 break; 4178 4179 case TCP_FASTOPEN: 4180 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4181 break; 4182 4183 case TCP_FASTOPEN_CONNECT: 4184 val = tp->fastopen_connect; 4185 break; 4186 4187 case TCP_FASTOPEN_NO_COOKIE: 4188 val = tp->fastopen_no_cookie; 4189 break; 4190 4191 case TCP_TX_DELAY: 4192 val = tp->tcp_tx_delay; 4193 break; 4194 4195 case TCP_TIMESTAMP: 4196 val = tcp_time_stamp_raw() + tp->tsoffset; 4197 break; 4198 case TCP_NOTSENT_LOWAT: 4199 val = tp->notsent_lowat; 4200 break; 4201 case TCP_INQ: 4202 val = tp->recvmsg_inq; 4203 break; 4204 case TCP_SAVE_SYN: 4205 val = tp->save_syn; 4206 break; 4207 case TCP_SAVED_SYN: { 4208 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4209 return -EFAULT; 4210 4211 sockopt_lock_sock(sk); 4212 if (tp->saved_syn) { 4213 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4214 len = tcp_saved_syn_len(tp->saved_syn); 4215 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4216 sockopt_release_sock(sk); 4217 return -EFAULT; 4218 } 4219 sockopt_release_sock(sk); 4220 return -EINVAL; 4221 } 4222 len = tcp_saved_syn_len(tp->saved_syn); 4223 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4224 sockopt_release_sock(sk); 4225 return -EFAULT; 4226 } 4227 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4228 sockopt_release_sock(sk); 4229 return -EFAULT; 4230 } 4231 tcp_saved_syn_free(tp); 4232 sockopt_release_sock(sk); 4233 } else { 4234 sockopt_release_sock(sk); 4235 len = 0; 4236 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4237 return -EFAULT; 4238 } 4239 return 0; 4240 } 4241 #ifdef CONFIG_MMU 4242 case TCP_ZEROCOPY_RECEIVE: { 4243 struct scm_timestamping_internal tss; 4244 struct tcp_zerocopy_receive zc = {}; 4245 int err; 4246 4247 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4248 return -EFAULT; 4249 if (len < 0 || 4250 len < offsetofend(struct tcp_zerocopy_receive, length)) 4251 return -EINVAL; 4252 if (unlikely(len > sizeof(zc))) { 4253 err = check_zeroed_sockptr(optval, sizeof(zc), 4254 len - sizeof(zc)); 4255 if (err < 1) 4256 return err == 0 ? -EINVAL : err; 4257 len = sizeof(zc); 4258 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4259 return -EFAULT; 4260 } 4261 if (copy_from_sockptr(&zc, optval, len)) 4262 return -EFAULT; 4263 if (zc.reserved) 4264 return -EINVAL; 4265 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4266 return -EINVAL; 4267 sockopt_lock_sock(sk); 4268 err = tcp_zerocopy_receive(sk, &zc, &tss); 4269 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4270 &zc, &len, err); 4271 sockopt_release_sock(sk); 4272 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4273 goto zerocopy_rcv_cmsg; 4274 switch (len) { 4275 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4276 goto zerocopy_rcv_cmsg; 4277 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4278 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4279 case offsetofend(struct tcp_zerocopy_receive, flags): 4280 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4281 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4282 case offsetofend(struct tcp_zerocopy_receive, err): 4283 goto zerocopy_rcv_sk_err; 4284 case offsetofend(struct tcp_zerocopy_receive, inq): 4285 goto zerocopy_rcv_inq; 4286 case offsetofend(struct tcp_zerocopy_receive, length): 4287 default: 4288 goto zerocopy_rcv_out; 4289 } 4290 zerocopy_rcv_cmsg: 4291 if (zc.msg_flags & TCP_CMSG_TS) 4292 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4293 else 4294 zc.msg_flags = 0; 4295 zerocopy_rcv_sk_err: 4296 if (!err) 4297 zc.err = sock_error(sk); 4298 zerocopy_rcv_inq: 4299 zc.inq = tcp_inq_hint(sk); 4300 zerocopy_rcv_out: 4301 if (!err && copy_to_sockptr(optval, &zc, len)) 4302 err = -EFAULT; 4303 return err; 4304 } 4305 #endif 4306 default: 4307 return -ENOPROTOOPT; 4308 } 4309 4310 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4311 return -EFAULT; 4312 if (copy_to_sockptr(optval, &val, len)) 4313 return -EFAULT; 4314 return 0; 4315 } 4316 4317 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4318 { 4319 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4320 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4321 */ 4322 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4323 return true; 4324 4325 return false; 4326 } 4327 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4328 4329 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4330 int __user *optlen) 4331 { 4332 struct inet_connection_sock *icsk = inet_csk(sk); 4333 4334 if (level != SOL_TCP) 4335 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4336 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4337 optval, optlen); 4338 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4339 USER_SOCKPTR(optlen)); 4340 } 4341 EXPORT_SYMBOL(tcp_getsockopt); 4342 4343 #ifdef CONFIG_TCP_MD5SIG 4344 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4345 static DEFINE_MUTEX(tcp_md5sig_mutex); 4346 static bool tcp_md5sig_pool_populated = false; 4347 4348 static void __tcp_alloc_md5sig_pool(void) 4349 { 4350 struct crypto_ahash *hash; 4351 int cpu; 4352 4353 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4354 if (IS_ERR(hash)) 4355 return; 4356 4357 for_each_possible_cpu(cpu) { 4358 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4359 struct ahash_request *req; 4360 4361 if (!scratch) { 4362 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4363 sizeof(struct tcphdr), 4364 GFP_KERNEL, 4365 cpu_to_node(cpu)); 4366 if (!scratch) 4367 return; 4368 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4369 } 4370 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4371 continue; 4372 4373 req = ahash_request_alloc(hash, GFP_KERNEL); 4374 if (!req) 4375 return; 4376 4377 ahash_request_set_callback(req, 0, NULL, NULL); 4378 4379 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4380 } 4381 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4382 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4383 */ 4384 smp_wmb(); 4385 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4386 * and tcp_get_md5sig_pool(). 4387 */ 4388 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4389 } 4390 4391 bool tcp_alloc_md5sig_pool(void) 4392 { 4393 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4394 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4395 mutex_lock(&tcp_md5sig_mutex); 4396 4397 if (!tcp_md5sig_pool_populated) 4398 __tcp_alloc_md5sig_pool(); 4399 4400 mutex_unlock(&tcp_md5sig_mutex); 4401 } 4402 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4403 return READ_ONCE(tcp_md5sig_pool_populated); 4404 } 4405 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4406 4407 4408 /** 4409 * tcp_get_md5sig_pool - get md5sig_pool for this user 4410 * 4411 * We use percpu structure, so if we succeed, we exit with preemption 4412 * and BH disabled, to make sure another thread or softirq handling 4413 * wont try to get same context. 4414 */ 4415 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4416 { 4417 local_bh_disable(); 4418 4419 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4420 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4421 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4422 smp_rmb(); 4423 return this_cpu_ptr(&tcp_md5sig_pool); 4424 } 4425 local_bh_enable(); 4426 return NULL; 4427 } 4428 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4429 4430 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4431 const struct sk_buff *skb, unsigned int header_len) 4432 { 4433 struct scatterlist sg; 4434 const struct tcphdr *tp = tcp_hdr(skb); 4435 struct ahash_request *req = hp->md5_req; 4436 unsigned int i; 4437 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4438 skb_headlen(skb) - header_len : 0; 4439 const struct skb_shared_info *shi = skb_shinfo(skb); 4440 struct sk_buff *frag_iter; 4441 4442 sg_init_table(&sg, 1); 4443 4444 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4445 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4446 if (crypto_ahash_update(req)) 4447 return 1; 4448 4449 for (i = 0; i < shi->nr_frags; ++i) { 4450 const skb_frag_t *f = &shi->frags[i]; 4451 unsigned int offset = skb_frag_off(f); 4452 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4453 4454 sg_set_page(&sg, page, skb_frag_size(f), 4455 offset_in_page(offset)); 4456 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4457 if (crypto_ahash_update(req)) 4458 return 1; 4459 } 4460 4461 skb_walk_frags(skb, frag_iter) 4462 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4463 return 1; 4464 4465 return 0; 4466 } 4467 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4468 4469 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4470 { 4471 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4472 struct scatterlist sg; 4473 4474 sg_init_one(&sg, key->key, keylen); 4475 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4476 4477 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4478 return data_race(crypto_ahash_update(hp->md5_req)); 4479 } 4480 EXPORT_SYMBOL(tcp_md5_hash_key); 4481 4482 /* Called with rcu_read_lock() */ 4483 enum skb_drop_reason 4484 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4485 const void *saddr, const void *daddr, 4486 int family, int dif, int sdif) 4487 { 4488 /* 4489 * This gets called for each TCP segment that arrives 4490 * so we want to be efficient. 4491 * We have 3 drop cases: 4492 * o No MD5 hash and one expected. 4493 * o MD5 hash and we're not expecting one. 4494 * o MD5 hash and its wrong. 4495 */ 4496 const __u8 *hash_location = NULL; 4497 struct tcp_md5sig_key *hash_expected; 4498 const struct tcphdr *th = tcp_hdr(skb); 4499 const struct tcp_sock *tp = tcp_sk(sk); 4500 int genhash, l3index; 4501 u8 newhash[16]; 4502 4503 /* sdif set, means packet ingressed via a device 4504 * in an L3 domain and dif is set to the l3mdev 4505 */ 4506 l3index = sdif ? dif : 0; 4507 4508 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4509 hash_location = tcp_parse_md5sig_option(th); 4510 4511 /* We've parsed the options - do we have a hash? */ 4512 if (!hash_expected && !hash_location) 4513 return SKB_NOT_DROPPED_YET; 4514 4515 if (hash_expected && !hash_location) { 4516 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4517 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4518 } 4519 4520 if (!hash_expected && hash_location) { 4521 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4522 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4523 } 4524 4525 /* Check the signature. 4526 * To support dual stack listeners, we need to handle 4527 * IPv4-mapped case. 4528 */ 4529 if (family == AF_INET) 4530 genhash = tcp_v4_md5_hash_skb(newhash, 4531 hash_expected, 4532 NULL, skb); 4533 else 4534 genhash = tp->af_specific->calc_md5_hash(newhash, 4535 hash_expected, 4536 NULL, skb); 4537 4538 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4540 if (family == AF_INET) { 4541 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4542 saddr, ntohs(th->source), 4543 daddr, ntohs(th->dest), 4544 genhash ? " tcp_v4_calc_md5_hash failed" 4545 : "", l3index); 4546 } else { 4547 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4548 genhash ? "failed" : "mismatch", 4549 saddr, ntohs(th->source), 4550 daddr, ntohs(th->dest), l3index); 4551 } 4552 return SKB_DROP_REASON_TCP_MD5FAILURE; 4553 } 4554 return SKB_NOT_DROPPED_YET; 4555 } 4556 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4557 4558 #endif 4559 4560 void tcp_done(struct sock *sk) 4561 { 4562 struct request_sock *req; 4563 4564 /* We might be called with a new socket, after 4565 * inet_csk_prepare_forced_close() has been called 4566 * so we can not use lockdep_sock_is_held(sk) 4567 */ 4568 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4569 4570 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4571 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4572 4573 tcp_set_state(sk, TCP_CLOSE); 4574 tcp_clear_xmit_timers(sk); 4575 if (req) 4576 reqsk_fastopen_remove(sk, req, false); 4577 4578 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4579 4580 if (!sock_flag(sk, SOCK_DEAD)) 4581 sk->sk_state_change(sk); 4582 else 4583 inet_csk_destroy_sock(sk); 4584 } 4585 EXPORT_SYMBOL_GPL(tcp_done); 4586 4587 int tcp_abort(struct sock *sk, int err) 4588 { 4589 int state = inet_sk_state_load(sk); 4590 4591 if (state == TCP_NEW_SYN_RECV) { 4592 struct request_sock *req = inet_reqsk(sk); 4593 4594 local_bh_disable(); 4595 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4596 local_bh_enable(); 4597 return 0; 4598 } 4599 if (state == TCP_TIME_WAIT) { 4600 struct inet_timewait_sock *tw = inet_twsk(sk); 4601 4602 refcount_inc(&tw->tw_refcnt); 4603 local_bh_disable(); 4604 inet_twsk_deschedule_put(tw); 4605 local_bh_enable(); 4606 return 0; 4607 } 4608 4609 /* BPF context ensures sock locking. */ 4610 if (!has_current_bpf_ctx()) 4611 /* Don't race with userspace socket closes such as tcp_close. */ 4612 lock_sock(sk); 4613 4614 if (sk->sk_state == TCP_LISTEN) { 4615 tcp_set_state(sk, TCP_CLOSE); 4616 inet_csk_listen_stop(sk); 4617 } 4618 4619 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4620 local_bh_disable(); 4621 bh_lock_sock(sk); 4622 4623 if (!sock_flag(sk, SOCK_DEAD)) { 4624 WRITE_ONCE(sk->sk_err, err); 4625 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4626 smp_wmb(); 4627 sk_error_report(sk); 4628 if (tcp_need_reset(sk->sk_state)) 4629 tcp_send_active_reset(sk, GFP_ATOMIC); 4630 tcp_done(sk); 4631 } 4632 4633 bh_unlock_sock(sk); 4634 local_bh_enable(); 4635 tcp_write_queue_purge(sk); 4636 if (!has_current_bpf_ctx()) 4637 release_sock(sk); 4638 return 0; 4639 } 4640 EXPORT_SYMBOL_GPL(tcp_abort); 4641 4642 extern struct tcp_congestion_ops tcp_reno; 4643 4644 static __initdata unsigned long thash_entries; 4645 static int __init set_thash_entries(char *str) 4646 { 4647 ssize_t ret; 4648 4649 if (!str) 4650 return 0; 4651 4652 ret = kstrtoul(str, 0, &thash_entries); 4653 if (ret) 4654 return 0; 4655 4656 return 1; 4657 } 4658 __setup("thash_entries=", set_thash_entries); 4659 4660 static void __init tcp_init_mem(void) 4661 { 4662 unsigned long limit = nr_free_buffer_pages() / 16; 4663 4664 limit = max(limit, 128UL); 4665 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4666 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4667 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4668 } 4669 4670 void __init tcp_init(void) 4671 { 4672 int max_rshare, max_wshare, cnt; 4673 unsigned long limit; 4674 unsigned int i; 4675 4676 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4677 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4678 sizeof_field(struct sk_buff, cb)); 4679 4680 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4681 4682 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4683 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4684 4685 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4686 thash_entries, 21, /* one slot per 2 MB*/ 4687 0, 64 * 1024); 4688 tcp_hashinfo.bind_bucket_cachep = 4689 kmem_cache_create("tcp_bind_bucket", 4690 sizeof(struct inet_bind_bucket), 0, 4691 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4692 SLAB_ACCOUNT, 4693 NULL); 4694 tcp_hashinfo.bind2_bucket_cachep = 4695 kmem_cache_create("tcp_bind2_bucket", 4696 sizeof(struct inet_bind2_bucket), 0, 4697 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4698 SLAB_ACCOUNT, 4699 NULL); 4700 4701 /* Size and allocate the main established and bind bucket 4702 * hash tables. 4703 * 4704 * The methodology is similar to that of the buffer cache. 4705 */ 4706 tcp_hashinfo.ehash = 4707 alloc_large_system_hash("TCP established", 4708 sizeof(struct inet_ehash_bucket), 4709 thash_entries, 4710 17, /* one slot per 128 KB of memory */ 4711 0, 4712 NULL, 4713 &tcp_hashinfo.ehash_mask, 4714 0, 4715 thash_entries ? 0 : 512 * 1024); 4716 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4717 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4718 4719 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4720 panic("TCP: failed to alloc ehash_locks"); 4721 tcp_hashinfo.bhash = 4722 alloc_large_system_hash("TCP bind", 4723 2 * sizeof(struct inet_bind_hashbucket), 4724 tcp_hashinfo.ehash_mask + 1, 4725 17, /* one slot per 128 KB of memory */ 4726 0, 4727 &tcp_hashinfo.bhash_size, 4728 NULL, 4729 0, 4730 64 * 1024); 4731 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4732 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4733 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4734 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4735 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4736 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4737 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4738 } 4739 4740 tcp_hashinfo.pernet = false; 4741 4742 cnt = tcp_hashinfo.ehash_mask + 1; 4743 sysctl_tcp_max_orphans = cnt / 2; 4744 4745 tcp_init_mem(); 4746 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4747 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4748 max_wshare = min(4UL*1024*1024, limit); 4749 max_rshare = min(6UL*1024*1024, limit); 4750 4751 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4752 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4753 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4754 4755 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4756 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4757 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4758 4759 pr_info("Hash tables configured (established %u bind %u)\n", 4760 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4761 4762 tcp_v4_init(); 4763 tcp_metrics_init(); 4764 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4765 tcp_tasklet_init(); 4766 mptcp_init(); 4767 } 4768