1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/inet_diag.h> 256 #include <linux/init.h> 257 #include <linux/fs.h> 258 #include <linux/skbuff.h> 259 #include <linux/scatterlist.h> 260 #include <linux/splice.h> 261 #include <linux/net.h> 262 #include <linux/socket.h> 263 #include <linux/random.h> 264 #include <linux/bootmem.h> 265 #include <linux/highmem.h> 266 #include <linux/swap.h> 267 #include <linux/cache.h> 268 #include <linux/err.h> 269 #include <linux/crypto.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <asm/unaligned.h> 283 #include <net/busy_poll.h> 284 285 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 286 287 int sysctl_tcp_min_tso_segs __read_mostly = 2; 288 289 int sysctl_tcp_autocorking __read_mostly = 1; 290 291 struct percpu_counter tcp_orphan_count; 292 EXPORT_SYMBOL_GPL(tcp_orphan_count); 293 294 long sysctl_tcp_mem[3] __read_mostly; 295 int sysctl_tcp_wmem[3] __read_mostly; 296 int sysctl_tcp_rmem[3] __read_mostly; 297 298 EXPORT_SYMBOL(sysctl_tcp_mem); 299 EXPORT_SYMBOL(sysctl_tcp_rmem); 300 EXPORT_SYMBOL(sysctl_tcp_wmem); 301 302 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 303 EXPORT_SYMBOL(tcp_memory_allocated); 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 int tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 if (!tcp_memory_pressure) { 332 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 333 tcp_memory_pressure = 1; 334 } 335 } 336 EXPORT_SYMBOL(tcp_enter_memory_pressure); 337 338 /* Convert seconds to retransmits based on initial and max timeout */ 339 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 340 { 341 u8 res = 0; 342 343 if (seconds > 0) { 344 int period = timeout; 345 346 res = 1; 347 while (seconds > period && res < 255) { 348 res++; 349 timeout <<= 1; 350 if (timeout > rto_max) 351 timeout = rto_max; 352 period += timeout; 353 } 354 } 355 return res; 356 } 357 358 /* Convert retransmits to seconds based on initial and max timeout */ 359 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 360 { 361 int period = 0; 362 363 if (retrans > 0) { 364 period = timeout; 365 while (--retrans) { 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return period; 373 } 374 375 /* Address-family independent initialization for a tcp_sock. 376 * 377 * NOTE: A lot of things set to zero explicitly by call to 378 * sk_alloc() so need not be done here. 379 */ 380 void tcp_init_sock(struct sock *sk) 381 { 382 struct inet_connection_sock *icsk = inet_csk(sk); 383 struct tcp_sock *tp = tcp_sk(sk); 384 385 __skb_queue_head_init(&tp->out_of_order_queue); 386 tcp_init_xmit_timers(sk); 387 tcp_prequeue_init(tp); 388 INIT_LIST_HEAD(&tp->tsq_node); 389 390 icsk->icsk_rto = TCP_TIMEOUT_INIT; 391 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 392 tp->rtt_min[0].rtt = ~0U; 393 394 /* So many TCP implementations out there (incorrectly) count the 395 * initial SYN frame in their delayed-ACK and congestion control 396 * algorithms that we must have the following bandaid to talk 397 * efficiently to them. -DaveM 398 */ 399 tp->snd_cwnd = TCP_INIT_CWND; 400 401 /* See draft-stevens-tcpca-spec-01 for discussion of the 402 * initialization of these values. 403 */ 404 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 405 tp->snd_cwnd_clamp = ~0; 406 tp->mss_cache = TCP_MSS_DEFAULT; 407 u64_stats_init(&tp->syncp); 408 409 tp->reordering = sysctl_tcp_reordering; 410 tcp_enable_early_retrans(tp); 411 tcp_assign_congestion_control(sk); 412 413 tp->tsoffset = 0; 414 415 sk->sk_state = TCP_CLOSE; 416 417 sk->sk_write_space = sk_stream_write_space; 418 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 419 420 icsk->icsk_sync_mss = tcp_sync_mss; 421 422 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 423 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 424 425 local_bh_disable(); 426 if (mem_cgroup_sockets_enabled) 427 sock_update_memcg(sk); 428 sk_sockets_allocated_inc(sk); 429 local_bh_enable(); 430 } 431 EXPORT_SYMBOL(tcp_init_sock); 432 433 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 434 { 435 if (sk->sk_tsflags) { 436 struct skb_shared_info *shinfo = skb_shinfo(skb); 437 438 sock_tx_timestamp(sk, &shinfo->tx_flags); 439 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 440 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 441 } 442 } 443 444 /* 445 * Wait for a TCP event. 446 * 447 * Note that we don't need to lock the socket, as the upper poll layers 448 * take care of normal races (between the test and the event) and we don't 449 * go look at any of the socket buffers directly. 450 */ 451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 452 { 453 unsigned int mask; 454 struct sock *sk = sock->sk; 455 const struct tcp_sock *tp = tcp_sk(sk); 456 int state; 457 458 sock_rps_record_flow(sk); 459 460 sock_poll_wait(file, sk_sleep(sk), wait); 461 462 state = sk_state_load(sk); 463 if (state == TCP_LISTEN) 464 return inet_csk_listen_poll(sk); 465 466 /* Socket is not locked. We are protected from async events 467 * by poll logic and correct handling of state changes 468 * made by other threads is impossible in any case. 469 */ 470 471 mask = 0; 472 473 /* 474 * POLLHUP is certainly not done right. But poll() doesn't 475 * have a notion of HUP in just one direction, and for a 476 * socket the read side is more interesting. 477 * 478 * Some poll() documentation says that POLLHUP is incompatible 479 * with the POLLOUT/POLLWR flags, so somebody should check this 480 * all. But careful, it tends to be safer to return too many 481 * bits than too few, and you can easily break real applications 482 * if you don't tell them that something has hung up! 483 * 484 * Check-me. 485 * 486 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 487 * our fs/select.c). It means that after we received EOF, 488 * poll always returns immediately, making impossible poll() on write() 489 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 490 * if and only if shutdown has been made in both directions. 491 * Actually, it is interesting to look how Solaris and DUX 492 * solve this dilemma. I would prefer, if POLLHUP were maskable, 493 * then we could set it on SND_SHUTDOWN. BTW examples given 494 * in Stevens' books assume exactly this behaviour, it explains 495 * why POLLHUP is incompatible with POLLOUT. --ANK 496 * 497 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 498 * blocking on fresh not-connected or disconnected socket. --ANK 499 */ 500 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 501 mask |= POLLHUP; 502 if (sk->sk_shutdown & RCV_SHUTDOWN) 503 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 504 505 /* Connected or passive Fast Open socket? */ 506 if (state != TCP_SYN_SENT && 507 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 508 int target = sock_rcvlowat(sk, 0, INT_MAX); 509 510 if (tp->urg_seq == tp->copied_seq && 511 !sock_flag(sk, SOCK_URGINLINE) && 512 tp->urg_data) 513 target++; 514 515 if (tp->rcv_nxt - tp->copied_seq >= target) 516 mask |= POLLIN | POLLRDNORM; 517 518 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 519 if (sk_stream_is_writeable(sk)) { 520 mask |= POLLOUT | POLLWRNORM; 521 } else { /* send SIGIO later */ 522 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 523 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 524 525 /* Race breaker. If space is freed after 526 * wspace test but before the flags are set, 527 * IO signal will be lost. Memory barrier 528 * pairs with the input side. 529 */ 530 smp_mb__after_atomic(); 531 if (sk_stream_is_writeable(sk)) 532 mask |= POLLOUT | POLLWRNORM; 533 } 534 } else 535 mask |= POLLOUT | POLLWRNORM; 536 537 if (tp->urg_data & TCP_URG_VALID) 538 mask |= POLLPRI; 539 } 540 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 541 smp_rmb(); 542 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 543 mask |= POLLERR; 544 545 return mask; 546 } 547 EXPORT_SYMBOL(tcp_poll); 548 549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 550 { 551 struct tcp_sock *tp = tcp_sk(sk); 552 int answ; 553 bool slow; 554 555 switch (cmd) { 556 case SIOCINQ: 557 if (sk->sk_state == TCP_LISTEN) 558 return -EINVAL; 559 560 slow = lock_sock_fast(sk); 561 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 562 answ = 0; 563 else if (sock_flag(sk, SOCK_URGINLINE) || 564 !tp->urg_data || 565 before(tp->urg_seq, tp->copied_seq) || 566 !before(tp->urg_seq, tp->rcv_nxt)) { 567 568 answ = tp->rcv_nxt - tp->copied_seq; 569 570 /* Subtract 1, if FIN was received */ 571 if (answ && sock_flag(sk, SOCK_DONE)) 572 answ--; 573 } else 574 answ = tp->urg_seq - tp->copied_seq; 575 unlock_sock_fast(sk, slow); 576 break; 577 case SIOCATMARK: 578 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 579 break; 580 case SIOCOUTQ: 581 if (sk->sk_state == TCP_LISTEN) 582 return -EINVAL; 583 584 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 585 answ = 0; 586 else 587 answ = tp->write_seq - tp->snd_una; 588 break; 589 case SIOCOUTQNSD: 590 if (sk->sk_state == TCP_LISTEN) 591 return -EINVAL; 592 593 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 594 answ = 0; 595 else 596 answ = tp->write_seq - tp->snd_nxt; 597 break; 598 default: 599 return -ENOIOCTLCMD; 600 } 601 602 return put_user(answ, (int __user *)arg); 603 } 604 EXPORT_SYMBOL(tcp_ioctl); 605 606 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 607 { 608 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 609 tp->pushed_seq = tp->write_seq; 610 } 611 612 static inline bool forced_push(const struct tcp_sock *tp) 613 { 614 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 615 } 616 617 static void skb_entail(struct sock *sk, struct sk_buff *skb) 618 { 619 struct tcp_sock *tp = tcp_sk(sk); 620 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 621 622 skb->csum = 0; 623 tcb->seq = tcb->end_seq = tp->write_seq; 624 tcb->tcp_flags = TCPHDR_ACK; 625 tcb->sacked = 0; 626 __skb_header_release(skb); 627 tcp_add_write_queue_tail(sk, skb); 628 sk->sk_wmem_queued += skb->truesize; 629 sk_mem_charge(sk, skb->truesize); 630 if (tp->nonagle & TCP_NAGLE_PUSH) 631 tp->nonagle &= ~TCP_NAGLE_PUSH; 632 633 tcp_slow_start_after_idle_check(sk); 634 } 635 636 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 637 { 638 if (flags & MSG_OOB) 639 tp->snd_up = tp->write_seq; 640 } 641 642 /* If a not yet filled skb is pushed, do not send it if 643 * we have data packets in Qdisc or NIC queues : 644 * Because TX completion will happen shortly, it gives a chance 645 * to coalesce future sendmsg() payload into this skb, without 646 * need for a timer, and with no latency trade off. 647 * As packets containing data payload have a bigger truesize 648 * than pure acks (dataless) packets, the last checks prevent 649 * autocorking if we only have an ACK in Qdisc/NIC queues, 650 * or if TX completion was delayed after we processed ACK packet. 651 */ 652 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 653 int size_goal) 654 { 655 return skb->len < size_goal && 656 sysctl_tcp_autocorking && 657 skb != tcp_write_queue_head(sk) && 658 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 659 } 660 661 static void tcp_push(struct sock *sk, int flags, int mss_now, 662 int nonagle, int size_goal) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct sk_buff *skb; 666 667 if (!tcp_send_head(sk)) 668 return; 669 670 skb = tcp_write_queue_tail(sk); 671 if (!(flags & MSG_MORE) || forced_push(tp)) 672 tcp_mark_push(tp, skb); 673 674 tcp_mark_urg(tp, flags); 675 676 if (tcp_should_autocork(sk, skb, size_goal)) { 677 678 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 679 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 680 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 681 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 682 } 683 /* It is possible TX completion already happened 684 * before we set TSQ_THROTTLED. 685 */ 686 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 687 return; 688 } 689 690 if (flags & MSG_MORE) 691 nonagle = TCP_NAGLE_CORK; 692 693 __tcp_push_pending_frames(sk, mss_now, nonagle); 694 } 695 696 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 697 unsigned int offset, size_t len) 698 { 699 struct tcp_splice_state *tss = rd_desc->arg.data; 700 int ret; 701 702 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 703 min(rd_desc->count, len), tss->flags, 704 skb_socket_splice); 705 if (ret > 0) 706 rd_desc->count -= ret; 707 return ret; 708 } 709 710 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 711 { 712 /* Store TCP splice context information in read_descriptor_t. */ 713 read_descriptor_t rd_desc = { 714 .arg.data = tss, 715 .count = tss->len, 716 }; 717 718 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 719 } 720 721 /** 722 * tcp_splice_read - splice data from TCP socket to a pipe 723 * @sock: socket to splice from 724 * @ppos: position (not valid) 725 * @pipe: pipe to splice to 726 * @len: number of bytes to splice 727 * @flags: splice modifier flags 728 * 729 * Description: 730 * Will read pages from given socket and fill them into a pipe. 731 * 732 **/ 733 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 734 struct pipe_inode_info *pipe, size_t len, 735 unsigned int flags) 736 { 737 struct sock *sk = sock->sk; 738 struct tcp_splice_state tss = { 739 .pipe = pipe, 740 .len = len, 741 .flags = flags, 742 }; 743 long timeo; 744 ssize_t spliced; 745 int ret; 746 747 sock_rps_record_flow(sk); 748 /* 749 * We can't seek on a socket input 750 */ 751 if (unlikely(*ppos)) 752 return -ESPIPE; 753 754 ret = spliced = 0; 755 756 lock_sock(sk); 757 758 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 759 while (tss.len) { 760 ret = __tcp_splice_read(sk, &tss); 761 if (ret < 0) 762 break; 763 else if (!ret) { 764 if (spliced) 765 break; 766 if (sock_flag(sk, SOCK_DONE)) 767 break; 768 if (sk->sk_err) { 769 ret = sock_error(sk); 770 break; 771 } 772 if (sk->sk_shutdown & RCV_SHUTDOWN) 773 break; 774 if (sk->sk_state == TCP_CLOSE) { 775 /* 776 * This occurs when user tries to read 777 * from never connected socket. 778 */ 779 if (!sock_flag(sk, SOCK_DONE)) 780 ret = -ENOTCONN; 781 break; 782 } 783 if (!timeo) { 784 ret = -EAGAIN; 785 break; 786 } 787 sk_wait_data(sk, &timeo, NULL); 788 if (signal_pending(current)) { 789 ret = sock_intr_errno(timeo); 790 break; 791 } 792 continue; 793 } 794 tss.len -= ret; 795 spliced += ret; 796 797 if (!timeo) 798 break; 799 release_sock(sk); 800 lock_sock(sk); 801 802 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 803 (sk->sk_shutdown & RCV_SHUTDOWN) || 804 signal_pending(current)) 805 break; 806 } 807 808 release_sock(sk); 809 810 if (spliced) 811 return spliced; 812 813 return ret; 814 } 815 EXPORT_SYMBOL(tcp_splice_read); 816 817 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 818 bool force_schedule) 819 { 820 struct sk_buff *skb; 821 822 /* The TCP header must be at least 32-bit aligned. */ 823 size = ALIGN(size, 4); 824 825 if (unlikely(tcp_under_memory_pressure(sk))) 826 sk_mem_reclaim_partial(sk); 827 828 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 829 if (likely(skb)) { 830 bool mem_scheduled; 831 832 if (force_schedule) { 833 mem_scheduled = true; 834 sk_forced_mem_schedule(sk, skb->truesize); 835 } else { 836 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 837 } 838 if (likely(mem_scheduled)) { 839 skb_reserve(skb, sk->sk_prot->max_header); 840 /* 841 * Make sure that we have exactly size bytes 842 * available to the caller, no more, no less. 843 */ 844 skb->reserved_tailroom = skb->end - skb->tail - size; 845 return skb; 846 } 847 __kfree_skb(skb); 848 } else { 849 sk->sk_prot->enter_memory_pressure(sk); 850 sk_stream_moderate_sndbuf(sk); 851 } 852 return NULL; 853 } 854 855 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 856 int large_allowed) 857 { 858 struct tcp_sock *tp = tcp_sk(sk); 859 u32 new_size_goal, size_goal; 860 861 if (!large_allowed || !sk_can_gso(sk)) 862 return mss_now; 863 864 /* Note : tcp_tso_autosize() will eventually split this later */ 865 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 866 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 867 868 /* We try hard to avoid divides here */ 869 size_goal = tp->gso_segs * mss_now; 870 if (unlikely(new_size_goal < size_goal || 871 new_size_goal >= size_goal + mss_now)) { 872 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 873 sk->sk_gso_max_segs); 874 size_goal = tp->gso_segs * mss_now; 875 } 876 877 return max(size_goal, mss_now); 878 } 879 880 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 881 { 882 int mss_now; 883 884 mss_now = tcp_current_mss(sk); 885 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 886 887 return mss_now; 888 } 889 890 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 891 size_t size, int flags) 892 { 893 struct tcp_sock *tp = tcp_sk(sk); 894 int mss_now, size_goal; 895 int err; 896 ssize_t copied; 897 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 898 899 /* Wait for a connection to finish. One exception is TCP Fast Open 900 * (passive side) where data is allowed to be sent before a connection 901 * is fully established. 902 */ 903 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 904 !tcp_passive_fastopen(sk)) { 905 err = sk_stream_wait_connect(sk, &timeo); 906 if (err != 0) 907 goto out_err; 908 } 909 910 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 911 912 mss_now = tcp_send_mss(sk, &size_goal, flags); 913 copied = 0; 914 915 err = -EPIPE; 916 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 917 goto out_err; 918 919 while (size > 0) { 920 struct sk_buff *skb = tcp_write_queue_tail(sk); 921 int copy, i; 922 bool can_coalesce; 923 924 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 925 new_segment: 926 if (!sk_stream_memory_free(sk)) 927 goto wait_for_sndbuf; 928 929 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 930 skb_queue_empty(&sk->sk_write_queue)); 931 if (!skb) 932 goto wait_for_memory; 933 934 skb_entail(sk, skb); 935 copy = size_goal; 936 } 937 938 if (copy > size) 939 copy = size; 940 941 i = skb_shinfo(skb)->nr_frags; 942 can_coalesce = skb_can_coalesce(skb, i, page, offset); 943 if (!can_coalesce && i >= sysctl_max_skb_frags) { 944 tcp_mark_push(tp, skb); 945 goto new_segment; 946 } 947 if (!sk_wmem_schedule(sk, copy)) 948 goto wait_for_memory; 949 950 if (can_coalesce) { 951 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 952 } else { 953 get_page(page); 954 skb_fill_page_desc(skb, i, page, offset, copy); 955 } 956 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 957 958 skb->len += copy; 959 skb->data_len += copy; 960 skb->truesize += copy; 961 sk->sk_wmem_queued += copy; 962 sk_mem_charge(sk, copy); 963 skb->ip_summed = CHECKSUM_PARTIAL; 964 tp->write_seq += copy; 965 TCP_SKB_CB(skb)->end_seq += copy; 966 tcp_skb_pcount_set(skb, 0); 967 968 if (!copied) 969 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 970 971 copied += copy; 972 offset += copy; 973 size -= copy; 974 if (!size) { 975 tcp_tx_timestamp(sk, skb); 976 goto out; 977 } 978 979 if (skb->len < size_goal || (flags & MSG_OOB)) 980 continue; 981 982 if (forced_push(tp)) { 983 tcp_mark_push(tp, skb); 984 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 985 } else if (skb == tcp_send_head(sk)) 986 tcp_push_one(sk, mss_now); 987 continue; 988 989 wait_for_sndbuf: 990 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 991 wait_for_memory: 992 tcp_push(sk, flags & ~MSG_MORE, mss_now, 993 TCP_NAGLE_PUSH, size_goal); 994 995 err = sk_stream_wait_memory(sk, &timeo); 996 if (err != 0) 997 goto do_error; 998 999 mss_now = tcp_send_mss(sk, &size_goal, flags); 1000 } 1001 1002 out: 1003 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 1004 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1005 return copied; 1006 1007 do_error: 1008 if (copied) 1009 goto out; 1010 out_err: 1011 /* make sure we wake any epoll edge trigger waiter */ 1012 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1013 sk->sk_write_space(sk); 1014 return sk_stream_error(sk, flags, err); 1015 } 1016 1017 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1018 size_t size, int flags) 1019 { 1020 ssize_t res; 1021 1022 if (!(sk->sk_route_caps & NETIF_F_SG) || 1023 !sk_check_csum_caps(sk)) 1024 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1025 flags); 1026 1027 lock_sock(sk); 1028 res = do_tcp_sendpages(sk, page, offset, size, flags); 1029 release_sock(sk); 1030 return res; 1031 } 1032 EXPORT_SYMBOL(tcp_sendpage); 1033 1034 static inline int select_size(const struct sock *sk, bool sg) 1035 { 1036 const struct tcp_sock *tp = tcp_sk(sk); 1037 int tmp = tp->mss_cache; 1038 1039 if (sg) { 1040 if (sk_can_gso(sk)) { 1041 /* Small frames wont use a full page: 1042 * Payload will immediately follow tcp header. 1043 */ 1044 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1045 } else { 1046 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1047 1048 if (tmp >= pgbreak && 1049 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1050 tmp = pgbreak; 1051 } 1052 } 1053 1054 return tmp; 1055 } 1056 1057 void tcp_free_fastopen_req(struct tcp_sock *tp) 1058 { 1059 if (tp->fastopen_req) { 1060 kfree(tp->fastopen_req); 1061 tp->fastopen_req = NULL; 1062 } 1063 } 1064 1065 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1066 int *copied, size_t size) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 int err, flags; 1070 1071 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1072 return -EOPNOTSUPP; 1073 if (tp->fastopen_req) 1074 return -EALREADY; /* Another Fast Open is in progress */ 1075 1076 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1077 sk->sk_allocation); 1078 if (unlikely(!tp->fastopen_req)) 1079 return -ENOBUFS; 1080 tp->fastopen_req->data = msg; 1081 tp->fastopen_req->size = size; 1082 1083 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1084 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1085 msg->msg_namelen, flags); 1086 *copied = tp->fastopen_req->copied; 1087 tcp_free_fastopen_req(tp); 1088 return err; 1089 } 1090 1091 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1092 { 1093 struct tcp_sock *tp = tcp_sk(sk); 1094 struct sk_buff *skb; 1095 int flags, err, copied = 0; 1096 int mss_now = 0, size_goal, copied_syn = 0; 1097 bool sg; 1098 long timeo; 1099 1100 lock_sock(sk); 1101 1102 flags = msg->msg_flags; 1103 if (flags & MSG_FASTOPEN) { 1104 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1105 if (err == -EINPROGRESS && copied_syn > 0) 1106 goto out; 1107 else if (err) 1108 goto out_err; 1109 } 1110 1111 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1112 1113 /* Wait for a connection to finish. One exception is TCP Fast Open 1114 * (passive side) where data is allowed to be sent before a connection 1115 * is fully established. 1116 */ 1117 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1118 !tcp_passive_fastopen(sk)) { 1119 err = sk_stream_wait_connect(sk, &timeo); 1120 if (err != 0) 1121 goto do_error; 1122 } 1123 1124 if (unlikely(tp->repair)) { 1125 if (tp->repair_queue == TCP_RECV_QUEUE) { 1126 copied = tcp_send_rcvq(sk, msg, size); 1127 goto out_nopush; 1128 } 1129 1130 err = -EINVAL; 1131 if (tp->repair_queue == TCP_NO_QUEUE) 1132 goto out_err; 1133 1134 /* 'common' sending to sendq */ 1135 } 1136 1137 /* This should be in poll */ 1138 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1139 1140 mss_now = tcp_send_mss(sk, &size_goal, flags); 1141 1142 /* Ok commence sending. */ 1143 copied = 0; 1144 1145 err = -EPIPE; 1146 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1147 goto out_err; 1148 1149 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1150 1151 while (msg_data_left(msg)) { 1152 int copy = 0; 1153 int max = size_goal; 1154 1155 skb = tcp_write_queue_tail(sk); 1156 if (tcp_send_head(sk)) { 1157 if (skb->ip_summed == CHECKSUM_NONE) 1158 max = mss_now; 1159 copy = max - skb->len; 1160 } 1161 1162 if (copy <= 0) { 1163 new_segment: 1164 /* Allocate new segment. If the interface is SG, 1165 * allocate skb fitting to single page. 1166 */ 1167 if (!sk_stream_memory_free(sk)) 1168 goto wait_for_sndbuf; 1169 1170 skb = sk_stream_alloc_skb(sk, 1171 select_size(sk, sg), 1172 sk->sk_allocation, 1173 skb_queue_empty(&sk->sk_write_queue)); 1174 if (!skb) 1175 goto wait_for_memory; 1176 1177 /* 1178 * Check whether we can use HW checksum. 1179 */ 1180 if (sk_check_csum_caps(sk)) 1181 skb->ip_summed = CHECKSUM_PARTIAL; 1182 1183 skb_entail(sk, skb); 1184 copy = size_goal; 1185 max = size_goal; 1186 1187 /* All packets are restored as if they have 1188 * already been sent. skb_mstamp isn't set to 1189 * avoid wrong rtt estimation. 1190 */ 1191 if (tp->repair) 1192 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1193 } 1194 1195 /* Try to append data to the end of skb. */ 1196 if (copy > msg_data_left(msg)) 1197 copy = msg_data_left(msg); 1198 1199 /* Where to copy to? */ 1200 if (skb_availroom(skb) > 0) { 1201 /* We have some space in skb head. Superb! */ 1202 copy = min_t(int, copy, skb_availroom(skb)); 1203 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1204 if (err) 1205 goto do_fault; 1206 } else { 1207 bool merge = true; 1208 int i = skb_shinfo(skb)->nr_frags; 1209 struct page_frag *pfrag = sk_page_frag(sk); 1210 1211 if (!sk_page_frag_refill(sk, pfrag)) 1212 goto wait_for_memory; 1213 1214 if (!skb_can_coalesce(skb, i, pfrag->page, 1215 pfrag->offset)) { 1216 if (i == sysctl_max_skb_frags || !sg) { 1217 tcp_mark_push(tp, skb); 1218 goto new_segment; 1219 } 1220 merge = false; 1221 } 1222 1223 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1224 1225 if (!sk_wmem_schedule(sk, copy)) 1226 goto wait_for_memory; 1227 1228 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1229 pfrag->page, 1230 pfrag->offset, 1231 copy); 1232 if (err) 1233 goto do_error; 1234 1235 /* Update the skb. */ 1236 if (merge) { 1237 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1238 } else { 1239 skb_fill_page_desc(skb, i, pfrag->page, 1240 pfrag->offset, copy); 1241 get_page(pfrag->page); 1242 } 1243 pfrag->offset += copy; 1244 } 1245 1246 if (!copied) 1247 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1248 1249 tp->write_seq += copy; 1250 TCP_SKB_CB(skb)->end_seq += copy; 1251 tcp_skb_pcount_set(skb, 0); 1252 1253 copied += copy; 1254 if (!msg_data_left(msg)) { 1255 tcp_tx_timestamp(sk, skb); 1256 goto out; 1257 } 1258 1259 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1260 continue; 1261 1262 if (forced_push(tp)) { 1263 tcp_mark_push(tp, skb); 1264 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1265 } else if (skb == tcp_send_head(sk)) 1266 tcp_push_one(sk, mss_now); 1267 continue; 1268 1269 wait_for_sndbuf: 1270 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1271 wait_for_memory: 1272 if (copied) 1273 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1274 TCP_NAGLE_PUSH, size_goal); 1275 1276 err = sk_stream_wait_memory(sk, &timeo); 1277 if (err != 0) 1278 goto do_error; 1279 1280 mss_now = tcp_send_mss(sk, &size_goal, flags); 1281 } 1282 1283 out: 1284 if (copied) 1285 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1286 out_nopush: 1287 release_sock(sk); 1288 return copied + copied_syn; 1289 1290 do_fault: 1291 if (!skb->len) { 1292 tcp_unlink_write_queue(skb, sk); 1293 /* It is the one place in all of TCP, except connection 1294 * reset, where we can be unlinking the send_head. 1295 */ 1296 tcp_check_send_head(sk, skb); 1297 sk_wmem_free_skb(sk, skb); 1298 } 1299 1300 do_error: 1301 if (copied + copied_syn) 1302 goto out; 1303 out_err: 1304 err = sk_stream_error(sk, flags, err); 1305 /* make sure we wake any epoll edge trigger waiter */ 1306 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1307 sk->sk_write_space(sk); 1308 release_sock(sk); 1309 return err; 1310 } 1311 EXPORT_SYMBOL(tcp_sendmsg); 1312 1313 /* 1314 * Handle reading urgent data. BSD has very simple semantics for 1315 * this, no blocking and very strange errors 8) 1316 */ 1317 1318 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1319 { 1320 struct tcp_sock *tp = tcp_sk(sk); 1321 1322 /* No URG data to read. */ 1323 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1324 tp->urg_data == TCP_URG_READ) 1325 return -EINVAL; /* Yes this is right ! */ 1326 1327 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1328 return -ENOTCONN; 1329 1330 if (tp->urg_data & TCP_URG_VALID) { 1331 int err = 0; 1332 char c = tp->urg_data; 1333 1334 if (!(flags & MSG_PEEK)) 1335 tp->urg_data = TCP_URG_READ; 1336 1337 /* Read urgent data. */ 1338 msg->msg_flags |= MSG_OOB; 1339 1340 if (len > 0) { 1341 if (!(flags & MSG_TRUNC)) 1342 err = memcpy_to_msg(msg, &c, 1); 1343 len = 1; 1344 } else 1345 msg->msg_flags |= MSG_TRUNC; 1346 1347 return err ? -EFAULT : len; 1348 } 1349 1350 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1351 return 0; 1352 1353 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1354 * the available implementations agree in this case: 1355 * this call should never block, independent of the 1356 * blocking state of the socket. 1357 * Mike <pall@rz.uni-karlsruhe.de> 1358 */ 1359 return -EAGAIN; 1360 } 1361 1362 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1363 { 1364 struct sk_buff *skb; 1365 int copied = 0, err = 0; 1366 1367 /* XXX -- need to support SO_PEEK_OFF */ 1368 1369 skb_queue_walk(&sk->sk_write_queue, skb) { 1370 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1371 if (err) 1372 break; 1373 1374 copied += skb->len; 1375 } 1376 1377 return err ?: copied; 1378 } 1379 1380 /* Clean up the receive buffer for full frames taken by the user, 1381 * then send an ACK if necessary. COPIED is the number of bytes 1382 * tcp_recvmsg has given to the user so far, it speeds up the 1383 * calculation of whether or not we must ACK for the sake of 1384 * a window update. 1385 */ 1386 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1387 { 1388 struct tcp_sock *tp = tcp_sk(sk); 1389 bool time_to_ack = false; 1390 1391 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1392 1393 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1394 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1395 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1396 1397 if (inet_csk_ack_scheduled(sk)) { 1398 const struct inet_connection_sock *icsk = inet_csk(sk); 1399 /* Delayed ACKs frequently hit locked sockets during bulk 1400 * receive. */ 1401 if (icsk->icsk_ack.blocked || 1402 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1403 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1404 /* 1405 * If this read emptied read buffer, we send ACK, if 1406 * connection is not bidirectional, user drained 1407 * receive buffer and there was a small segment 1408 * in queue. 1409 */ 1410 (copied > 0 && 1411 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1412 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1413 !icsk->icsk_ack.pingpong)) && 1414 !atomic_read(&sk->sk_rmem_alloc))) 1415 time_to_ack = true; 1416 } 1417 1418 /* We send an ACK if we can now advertise a non-zero window 1419 * which has been raised "significantly". 1420 * 1421 * Even if window raised up to infinity, do not send window open ACK 1422 * in states, where we will not receive more. It is useless. 1423 */ 1424 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1425 __u32 rcv_window_now = tcp_receive_window(tp); 1426 1427 /* Optimize, __tcp_select_window() is not cheap. */ 1428 if (2*rcv_window_now <= tp->window_clamp) { 1429 __u32 new_window = __tcp_select_window(sk); 1430 1431 /* Send ACK now, if this read freed lots of space 1432 * in our buffer. Certainly, new_window is new window. 1433 * We can advertise it now, if it is not less than current one. 1434 * "Lots" means "at least twice" here. 1435 */ 1436 if (new_window && new_window >= 2 * rcv_window_now) 1437 time_to_ack = true; 1438 } 1439 } 1440 if (time_to_ack) 1441 tcp_send_ack(sk); 1442 } 1443 1444 static void tcp_prequeue_process(struct sock *sk) 1445 { 1446 struct sk_buff *skb; 1447 struct tcp_sock *tp = tcp_sk(sk); 1448 1449 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1450 1451 /* RX process wants to run with disabled BHs, though it is not 1452 * necessary */ 1453 local_bh_disable(); 1454 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1455 sk_backlog_rcv(sk, skb); 1456 local_bh_enable(); 1457 1458 /* Clear memory counter. */ 1459 tp->ucopy.memory = 0; 1460 } 1461 1462 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1463 { 1464 struct sk_buff *skb; 1465 u32 offset; 1466 1467 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1468 offset = seq - TCP_SKB_CB(skb)->seq; 1469 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1470 offset--; 1471 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1472 *off = offset; 1473 return skb; 1474 } 1475 /* This looks weird, but this can happen if TCP collapsing 1476 * splitted a fat GRO packet, while we released socket lock 1477 * in skb_splice_bits() 1478 */ 1479 sk_eat_skb(sk, skb); 1480 } 1481 return NULL; 1482 } 1483 1484 /* 1485 * This routine provides an alternative to tcp_recvmsg() for routines 1486 * that would like to handle copying from skbuffs directly in 'sendfile' 1487 * fashion. 1488 * Note: 1489 * - It is assumed that the socket was locked by the caller. 1490 * - The routine does not block. 1491 * - At present, there is no support for reading OOB data 1492 * or for 'peeking' the socket using this routine 1493 * (although both would be easy to implement). 1494 */ 1495 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1496 sk_read_actor_t recv_actor) 1497 { 1498 struct sk_buff *skb; 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 u32 seq = tp->copied_seq; 1501 u32 offset; 1502 int copied = 0; 1503 1504 if (sk->sk_state == TCP_LISTEN) 1505 return -ENOTCONN; 1506 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1507 if (offset < skb->len) { 1508 int used; 1509 size_t len; 1510 1511 len = skb->len - offset; 1512 /* Stop reading if we hit a patch of urgent data */ 1513 if (tp->urg_data) { 1514 u32 urg_offset = tp->urg_seq - seq; 1515 if (urg_offset < len) 1516 len = urg_offset; 1517 if (!len) 1518 break; 1519 } 1520 used = recv_actor(desc, skb, offset, len); 1521 if (used <= 0) { 1522 if (!copied) 1523 copied = used; 1524 break; 1525 } else if (used <= len) { 1526 seq += used; 1527 copied += used; 1528 offset += used; 1529 } 1530 /* If recv_actor drops the lock (e.g. TCP splice 1531 * receive) the skb pointer might be invalid when 1532 * getting here: tcp_collapse might have deleted it 1533 * while aggregating skbs from the socket queue. 1534 */ 1535 skb = tcp_recv_skb(sk, seq - 1, &offset); 1536 if (!skb) 1537 break; 1538 /* TCP coalescing might have appended data to the skb. 1539 * Try to splice more frags 1540 */ 1541 if (offset + 1 != skb->len) 1542 continue; 1543 } 1544 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1545 sk_eat_skb(sk, skb); 1546 ++seq; 1547 break; 1548 } 1549 sk_eat_skb(sk, skb); 1550 if (!desc->count) 1551 break; 1552 tp->copied_seq = seq; 1553 } 1554 tp->copied_seq = seq; 1555 1556 tcp_rcv_space_adjust(sk); 1557 1558 /* Clean up data we have read: This will do ACK frames. */ 1559 if (copied > 0) { 1560 tcp_recv_skb(sk, seq, &offset); 1561 tcp_cleanup_rbuf(sk, copied); 1562 } 1563 return copied; 1564 } 1565 EXPORT_SYMBOL(tcp_read_sock); 1566 1567 /* 1568 * This routine copies from a sock struct into the user buffer. 1569 * 1570 * Technical note: in 2.3 we work on _locked_ socket, so that 1571 * tricks with *seq access order and skb->users are not required. 1572 * Probably, code can be easily improved even more. 1573 */ 1574 1575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1576 int flags, int *addr_len) 1577 { 1578 struct tcp_sock *tp = tcp_sk(sk); 1579 int copied = 0; 1580 u32 peek_seq; 1581 u32 *seq; 1582 unsigned long used; 1583 int err; 1584 int target; /* Read at least this many bytes */ 1585 long timeo; 1586 struct task_struct *user_recv = NULL; 1587 struct sk_buff *skb, *last; 1588 u32 urg_hole = 0; 1589 1590 if (unlikely(flags & MSG_ERRQUEUE)) 1591 return inet_recv_error(sk, msg, len, addr_len); 1592 1593 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1594 (sk->sk_state == TCP_ESTABLISHED)) 1595 sk_busy_loop(sk, nonblock); 1596 1597 lock_sock(sk); 1598 1599 err = -ENOTCONN; 1600 if (sk->sk_state == TCP_LISTEN) 1601 goto out; 1602 1603 timeo = sock_rcvtimeo(sk, nonblock); 1604 1605 /* Urgent data needs to be handled specially. */ 1606 if (flags & MSG_OOB) 1607 goto recv_urg; 1608 1609 if (unlikely(tp->repair)) { 1610 err = -EPERM; 1611 if (!(flags & MSG_PEEK)) 1612 goto out; 1613 1614 if (tp->repair_queue == TCP_SEND_QUEUE) 1615 goto recv_sndq; 1616 1617 err = -EINVAL; 1618 if (tp->repair_queue == TCP_NO_QUEUE) 1619 goto out; 1620 1621 /* 'common' recv queue MSG_PEEK-ing */ 1622 } 1623 1624 seq = &tp->copied_seq; 1625 if (flags & MSG_PEEK) { 1626 peek_seq = tp->copied_seq; 1627 seq = &peek_seq; 1628 } 1629 1630 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1631 1632 do { 1633 u32 offset; 1634 1635 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1636 if (tp->urg_data && tp->urg_seq == *seq) { 1637 if (copied) 1638 break; 1639 if (signal_pending(current)) { 1640 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1641 break; 1642 } 1643 } 1644 1645 /* Next get a buffer. */ 1646 1647 last = skb_peek_tail(&sk->sk_receive_queue); 1648 skb_queue_walk(&sk->sk_receive_queue, skb) { 1649 last = skb; 1650 /* Now that we have two receive queues this 1651 * shouldn't happen. 1652 */ 1653 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1654 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1655 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1656 flags)) 1657 break; 1658 1659 offset = *seq - TCP_SKB_CB(skb)->seq; 1660 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1661 offset--; 1662 if (offset < skb->len) 1663 goto found_ok_skb; 1664 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1665 goto found_fin_ok; 1666 WARN(!(flags & MSG_PEEK), 1667 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1668 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1669 } 1670 1671 /* Well, if we have backlog, try to process it now yet. */ 1672 1673 if (copied >= target && !sk->sk_backlog.tail) 1674 break; 1675 1676 if (copied) { 1677 if (sk->sk_err || 1678 sk->sk_state == TCP_CLOSE || 1679 (sk->sk_shutdown & RCV_SHUTDOWN) || 1680 !timeo || 1681 signal_pending(current)) 1682 break; 1683 } else { 1684 if (sock_flag(sk, SOCK_DONE)) 1685 break; 1686 1687 if (sk->sk_err) { 1688 copied = sock_error(sk); 1689 break; 1690 } 1691 1692 if (sk->sk_shutdown & RCV_SHUTDOWN) 1693 break; 1694 1695 if (sk->sk_state == TCP_CLOSE) { 1696 if (!sock_flag(sk, SOCK_DONE)) { 1697 /* This occurs when user tries to read 1698 * from never connected socket. 1699 */ 1700 copied = -ENOTCONN; 1701 break; 1702 } 1703 break; 1704 } 1705 1706 if (!timeo) { 1707 copied = -EAGAIN; 1708 break; 1709 } 1710 1711 if (signal_pending(current)) { 1712 copied = sock_intr_errno(timeo); 1713 break; 1714 } 1715 } 1716 1717 tcp_cleanup_rbuf(sk, copied); 1718 1719 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1720 /* Install new reader */ 1721 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1722 user_recv = current; 1723 tp->ucopy.task = user_recv; 1724 tp->ucopy.msg = msg; 1725 } 1726 1727 tp->ucopy.len = len; 1728 1729 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1730 !(flags & (MSG_PEEK | MSG_TRUNC))); 1731 1732 /* Ugly... If prequeue is not empty, we have to 1733 * process it before releasing socket, otherwise 1734 * order will be broken at second iteration. 1735 * More elegant solution is required!!! 1736 * 1737 * Look: we have the following (pseudo)queues: 1738 * 1739 * 1. packets in flight 1740 * 2. backlog 1741 * 3. prequeue 1742 * 4. receive_queue 1743 * 1744 * Each queue can be processed only if the next ones 1745 * are empty. At this point we have empty receive_queue. 1746 * But prequeue _can_ be not empty after 2nd iteration, 1747 * when we jumped to start of loop because backlog 1748 * processing added something to receive_queue. 1749 * We cannot release_sock(), because backlog contains 1750 * packets arrived _after_ prequeued ones. 1751 * 1752 * Shortly, algorithm is clear --- to process all 1753 * the queues in order. We could make it more directly, 1754 * requeueing packets from backlog to prequeue, if 1755 * is not empty. It is more elegant, but eats cycles, 1756 * unfortunately. 1757 */ 1758 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1759 goto do_prequeue; 1760 1761 /* __ Set realtime policy in scheduler __ */ 1762 } 1763 1764 if (copied >= target) { 1765 /* Do not sleep, just process backlog. */ 1766 release_sock(sk); 1767 lock_sock(sk); 1768 } else { 1769 sk_wait_data(sk, &timeo, last); 1770 } 1771 1772 if (user_recv) { 1773 int chunk; 1774 1775 /* __ Restore normal policy in scheduler __ */ 1776 1777 chunk = len - tp->ucopy.len; 1778 if (chunk != 0) { 1779 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1780 len -= chunk; 1781 copied += chunk; 1782 } 1783 1784 if (tp->rcv_nxt == tp->copied_seq && 1785 !skb_queue_empty(&tp->ucopy.prequeue)) { 1786 do_prequeue: 1787 tcp_prequeue_process(sk); 1788 1789 chunk = len - tp->ucopy.len; 1790 if (chunk != 0) { 1791 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1792 len -= chunk; 1793 copied += chunk; 1794 } 1795 } 1796 } 1797 if ((flags & MSG_PEEK) && 1798 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1799 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1800 current->comm, 1801 task_pid_nr(current)); 1802 peek_seq = tp->copied_seq; 1803 } 1804 continue; 1805 1806 found_ok_skb: 1807 /* Ok so how much can we use? */ 1808 used = skb->len - offset; 1809 if (len < used) 1810 used = len; 1811 1812 /* Do we have urgent data here? */ 1813 if (tp->urg_data) { 1814 u32 urg_offset = tp->urg_seq - *seq; 1815 if (urg_offset < used) { 1816 if (!urg_offset) { 1817 if (!sock_flag(sk, SOCK_URGINLINE)) { 1818 ++*seq; 1819 urg_hole++; 1820 offset++; 1821 used--; 1822 if (!used) 1823 goto skip_copy; 1824 } 1825 } else 1826 used = urg_offset; 1827 } 1828 } 1829 1830 if (!(flags & MSG_TRUNC)) { 1831 err = skb_copy_datagram_msg(skb, offset, msg, used); 1832 if (err) { 1833 /* Exception. Bailout! */ 1834 if (!copied) 1835 copied = -EFAULT; 1836 break; 1837 } 1838 } 1839 1840 *seq += used; 1841 copied += used; 1842 len -= used; 1843 1844 tcp_rcv_space_adjust(sk); 1845 1846 skip_copy: 1847 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1848 tp->urg_data = 0; 1849 tcp_fast_path_check(sk); 1850 } 1851 if (used + offset < skb->len) 1852 continue; 1853 1854 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1855 goto found_fin_ok; 1856 if (!(flags & MSG_PEEK)) 1857 sk_eat_skb(sk, skb); 1858 continue; 1859 1860 found_fin_ok: 1861 /* Process the FIN. */ 1862 ++*seq; 1863 if (!(flags & MSG_PEEK)) 1864 sk_eat_skb(sk, skb); 1865 break; 1866 } while (len > 0); 1867 1868 if (user_recv) { 1869 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1870 int chunk; 1871 1872 tp->ucopy.len = copied > 0 ? len : 0; 1873 1874 tcp_prequeue_process(sk); 1875 1876 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1877 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1878 len -= chunk; 1879 copied += chunk; 1880 } 1881 } 1882 1883 tp->ucopy.task = NULL; 1884 tp->ucopy.len = 0; 1885 } 1886 1887 /* According to UNIX98, msg_name/msg_namelen are ignored 1888 * on connected socket. I was just happy when found this 8) --ANK 1889 */ 1890 1891 /* Clean up data we have read: This will do ACK frames. */ 1892 tcp_cleanup_rbuf(sk, copied); 1893 1894 release_sock(sk); 1895 return copied; 1896 1897 out: 1898 release_sock(sk); 1899 return err; 1900 1901 recv_urg: 1902 err = tcp_recv_urg(sk, msg, len, flags); 1903 goto out; 1904 1905 recv_sndq: 1906 err = tcp_peek_sndq(sk, msg, len); 1907 goto out; 1908 } 1909 EXPORT_SYMBOL(tcp_recvmsg); 1910 1911 void tcp_set_state(struct sock *sk, int state) 1912 { 1913 int oldstate = sk->sk_state; 1914 1915 switch (state) { 1916 case TCP_ESTABLISHED: 1917 if (oldstate != TCP_ESTABLISHED) 1918 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1919 break; 1920 1921 case TCP_CLOSE: 1922 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1923 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1924 1925 sk->sk_prot->unhash(sk); 1926 if (inet_csk(sk)->icsk_bind_hash && 1927 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1928 inet_put_port(sk); 1929 /* fall through */ 1930 default: 1931 if (oldstate == TCP_ESTABLISHED) 1932 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1933 } 1934 1935 /* Change state AFTER socket is unhashed to avoid closed 1936 * socket sitting in hash tables. 1937 */ 1938 sk_state_store(sk, state); 1939 1940 #ifdef STATE_TRACE 1941 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1942 #endif 1943 } 1944 EXPORT_SYMBOL_GPL(tcp_set_state); 1945 1946 /* 1947 * State processing on a close. This implements the state shift for 1948 * sending our FIN frame. Note that we only send a FIN for some 1949 * states. A shutdown() may have already sent the FIN, or we may be 1950 * closed. 1951 */ 1952 1953 static const unsigned char new_state[16] = { 1954 /* current state: new state: action: */ 1955 [0 /* (Invalid) */] = TCP_CLOSE, 1956 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1957 [TCP_SYN_SENT] = TCP_CLOSE, 1958 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1959 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1960 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1961 [TCP_TIME_WAIT] = TCP_CLOSE, 1962 [TCP_CLOSE] = TCP_CLOSE, 1963 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1964 [TCP_LAST_ACK] = TCP_LAST_ACK, 1965 [TCP_LISTEN] = TCP_CLOSE, 1966 [TCP_CLOSING] = TCP_CLOSING, 1967 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1968 }; 1969 1970 static int tcp_close_state(struct sock *sk) 1971 { 1972 int next = (int)new_state[sk->sk_state]; 1973 int ns = next & TCP_STATE_MASK; 1974 1975 tcp_set_state(sk, ns); 1976 1977 return next & TCP_ACTION_FIN; 1978 } 1979 1980 /* 1981 * Shutdown the sending side of a connection. Much like close except 1982 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1983 */ 1984 1985 void tcp_shutdown(struct sock *sk, int how) 1986 { 1987 /* We need to grab some memory, and put together a FIN, 1988 * and then put it into the queue to be sent. 1989 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1990 */ 1991 if (!(how & SEND_SHUTDOWN)) 1992 return; 1993 1994 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1995 if ((1 << sk->sk_state) & 1996 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1997 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1998 /* Clear out any half completed packets. FIN if needed. */ 1999 if (tcp_close_state(sk)) 2000 tcp_send_fin(sk); 2001 } 2002 } 2003 EXPORT_SYMBOL(tcp_shutdown); 2004 2005 bool tcp_check_oom(struct sock *sk, int shift) 2006 { 2007 bool too_many_orphans, out_of_socket_memory; 2008 2009 too_many_orphans = tcp_too_many_orphans(sk, shift); 2010 out_of_socket_memory = tcp_out_of_memory(sk); 2011 2012 if (too_many_orphans) 2013 net_info_ratelimited("too many orphaned sockets\n"); 2014 if (out_of_socket_memory) 2015 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2016 return too_many_orphans || out_of_socket_memory; 2017 } 2018 2019 void tcp_close(struct sock *sk, long timeout) 2020 { 2021 struct sk_buff *skb; 2022 int data_was_unread = 0; 2023 int state; 2024 2025 lock_sock(sk); 2026 sk->sk_shutdown = SHUTDOWN_MASK; 2027 2028 if (sk->sk_state == TCP_LISTEN) { 2029 tcp_set_state(sk, TCP_CLOSE); 2030 2031 /* Special case. */ 2032 inet_csk_listen_stop(sk); 2033 2034 goto adjudge_to_death; 2035 } 2036 2037 /* We need to flush the recv. buffs. We do this only on the 2038 * descriptor close, not protocol-sourced closes, because the 2039 * reader process may not have drained the data yet! 2040 */ 2041 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2042 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2043 2044 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2045 len--; 2046 data_was_unread += len; 2047 __kfree_skb(skb); 2048 } 2049 2050 sk_mem_reclaim(sk); 2051 2052 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2053 if (sk->sk_state == TCP_CLOSE) 2054 goto adjudge_to_death; 2055 2056 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2057 * data was lost. To witness the awful effects of the old behavior of 2058 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2059 * GET in an FTP client, suspend the process, wait for the client to 2060 * advertise a zero window, then kill -9 the FTP client, wheee... 2061 * Note: timeout is always zero in such a case. 2062 */ 2063 if (unlikely(tcp_sk(sk)->repair)) { 2064 sk->sk_prot->disconnect(sk, 0); 2065 } else if (data_was_unread) { 2066 /* Unread data was tossed, zap the connection. */ 2067 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2068 tcp_set_state(sk, TCP_CLOSE); 2069 tcp_send_active_reset(sk, sk->sk_allocation); 2070 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2071 /* Check zero linger _after_ checking for unread data. */ 2072 sk->sk_prot->disconnect(sk, 0); 2073 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2074 } else if (tcp_close_state(sk)) { 2075 /* We FIN if the application ate all the data before 2076 * zapping the connection. 2077 */ 2078 2079 /* RED-PEN. Formally speaking, we have broken TCP state 2080 * machine. State transitions: 2081 * 2082 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2083 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2084 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2085 * 2086 * are legal only when FIN has been sent (i.e. in window), 2087 * rather than queued out of window. Purists blame. 2088 * 2089 * F.e. "RFC state" is ESTABLISHED, 2090 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2091 * 2092 * The visible declinations are that sometimes 2093 * we enter time-wait state, when it is not required really 2094 * (harmless), do not send active resets, when they are 2095 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2096 * they look as CLOSING or LAST_ACK for Linux) 2097 * Probably, I missed some more holelets. 2098 * --ANK 2099 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2100 * in a single packet! (May consider it later but will 2101 * probably need API support or TCP_CORK SYN-ACK until 2102 * data is written and socket is closed.) 2103 */ 2104 tcp_send_fin(sk); 2105 } 2106 2107 sk_stream_wait_close(sk, timeout); 2108 2109 adjudge_to_death: 2110 state = sk->sk_state; 2111 sock_hold(sk); 2112 sock_orphan(sk); 2113 2114 /* It is the last release_sock in its life. It will remove backlog. */ 2115 release_sock(sk); 2116 2117 2118 /* Now socket is owned by kernel and we acquire BH lock 2119 to finish close. No need to check for user refs. 2120 */ 2121 local_bh_disable(); 2122 bh_lock_sock(sk); 2123 WARN_ON(sock_owned_by_user(sk)); 2124 2125 percpu_counter_inc(sk->sk_prot->orphan_count); 2126 2127 /* Have we already been destroyed by a softirq or backlog? */ 2128 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2129 goto out; 2130 2131 /* This is a (useful) BSD violating of the RFC. There is a 2132 * problem with TCP as specified in that the other end could 2133 * keep a socket open forever with no application left this end. 2134 * We use a 1 minute timeout (about the same as BSD) then kill 2135 * our end. If they send after that then tough - BUT: long enough 2136 * that we won't make the old 4*rto = almost no time - whoops 2137 * reset mistake. 2138 * 2139 * Nope, it was not mistake. It is really desired behaviour 2140 * f.e. on http servers, when such sockets are useless, but 2141 * consume significant resources. Let's do it with special 2142 * linger2 option. --ANK 2143 */ 2144 2145 if (sk->sk_state == TCP_FIN_WAIT2) { 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 if (tp->linger2 < 0) { 2148 tcp_set_state(sk, TCP_CLOSE); 2149 tcp_send_active_reset(sk, GFP_ATOMIC); 2150 NET_INC_STATS_BH(sock_net(sk), 2151 LINUX_MIB_TCPABORTONLINGER); 2152 } else { 2153 const int tmo = tcp_fin_time(sk); 2154 2155 if (tmo > TCP_TIMEWAIT_LEN) { 2156 inet_csk_reset_keepalive_timer(sk, 2157 tmo - TCP_TIMEWAIT_LEN); 2158 } else { 2159 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2160 goto out; 2161 } 2162 } 2163 } 2164 if (sk->sk_state != TCP_CLOSE) { 2165 sk_mem_reclaim(sk); 2166 if (tcp_check_oom(sk, 0)) { 2167 tcp_set_state(sk, TCP_CLOSE); 2168 tcp_send_active_reset(sk, GFP_ATOMIC); 2169 NET_INC_STATS_BH(sock_net(sk), 2170 LINUX_MIB_TCPABORTONMEMORY); 2171 } 2172 } 2173 2174 if (sk->sk_state == TCP_CLOSE) { 2175 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2176 /* We could get here with a non-NULL req if the socket is 2177 * aborted (e.g., closed with unread data) before 3WHS 2178 * finishes. 2179 */ 2180 if (req) 2181 reqsk_fastopen_remove(sk, req, false); 2182 inet_csk_destroy_sock(sk); 2183 } 2184 /* Otherwise, socket is reprieved until protocol close. */ 2185 2186 out: 2187 bh_unlock_sock(sk); 2188 local_bh_enable(); 2189 sock_put(sk); 2190 } 2191 EXPORT_SYMBOL(tcp_close); 2192 2193 /* These states need RST on ABORT according to RFC793 */ 2194 2195 static inline bool tcp_need_reset(int state) 2196 { 2197 return (1 << state) & 2198 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2199 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2200 } 2201 2202 int tcp_disconnect(struct sock *sk, int flags) 2203 { 2204 struct inet_sock *inet = inet_sk(sk); 2205 struct inet_connection_sock *icsk = inet_csk(sk); 2206 struct tcp_sock *tp = tcp_sk(sk); 2207 int err = 0; 2208 int old_state = sk->sk_state; 2209 2210 if (old_state != TCP_CLOSE) 2211 tcp_set_state(sk, TCP_CLOSE); 2212 2213 /* ABORT function of RFC793 */ 2214 if (old_state == TCP_LISTEN) { 2215 inet_csk_listen_stop(sk); 2216 } else if (unlikely(tp->repair)) { 2217 sk->sk_err = ECONNABORTED; 2218 } else if (tcp_need_reset(old_state) || 2219 (tp->snd_nxt != tp->write_seq && 2220 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2221 /* The last check adjusts for discrepancy of Linux wrt. RFC 2222 * states 2223 */ 2224 tcp_send_active_reset(sk, gfp_any()); 2225 sk->sk_err = ECONNRESET; 2226 } else if (old_state == TCP_SYN_SENT) 2227 sk->sk_err = ECONNRESET; 2228 2229 tcp_clear_xmit_timers(sk); 2230 __skb_queue_purge(&sk->sk_receive_queue); 2231 tcp_write_queue_purge(sk); 2232 __skb_queue_purge(&tp->out_of_order_queue); 2233 2234 inet->inet_dport = 0; 2235 2236 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2237 inet_reset_saddr(sk); 2238 2239 sk->sk_shutdown = 0; 2240 sock_reset_flag(sk, SOCK_DONE); 2241 tp->srtt_us = 0; 2242 tp->write_seq += tp->max_window + 2; 2243 if (tp->write_seq == 0) 2244 tp->write_seq = 1; 2245 icsk->icsk_backoff = 0; 2246 tp->snd_cwnd = 2; 2247 icsk->icsk_probes_out = 0; 2248 tp->packets_out = 0; 2249 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2250 tp->snd_cwnd_cnt = 0; 2251 tp->window_clamp = 0; 2252 tcp_set_ca_state(sk, TCP_CA_Open); 2253 tcp_clear_retrans(tp); 2254 inet_csk_delack_init(sk); 2255 tcp_init_send_head(sk); 2256 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2257 __sk_dst_reset(sk); 2258 2259 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2260 2261 sk->sk_error_report(sk); 2262 return err; 2263 } 2264 EXPORT_SYMBOL(tcp_disconnect); 2265 2266 static inline bool tcp_can_repair_sock(const struct sock *sk) 2267 { 2268 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2269 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2270 } 2271 2272 static int tcp_repair_options_est(struct tcp_sock *tp, 2273 struct tcp_repair_opt __user *optbuf, unsigned int len) 2274 { 2275 struct tcp_repair_opt opt; 2276 2277 while (len >= sizeof(opt)) { 2278 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2279 return -EFAULT; 2280 2281 optbuf++; 2282 len -= sizeof(opt); 2283 2284 switch (opt.opt_code) { 2285 case TCPOPT_MSS: 2286 tp->rx_opt.mss_clamp = opt.opt_val; 2287 break; 2288 case TCPOPT_WINDOW: 2289 { 2290 u16 snd_wscale = opt.opt_val & 0xFFFF; 2291 u16 rcv_wscale = opt.opt_val >> 16; 2292 2293 if (snd_wscale > 14 || rcv_wscale > 14) 2294 return -EFBIG; 2295 2296 tp->rx_opt.snd_wscale = snd_wscale; 2297 tp->rx_opt.rcv_wscale = rcv_wscale; 2298 tp->rx_opt.wscale_ok = 1; 2299 } 2300 break; 2301 case TCPOPT_SACK_PERM: 2302 if (opt.opt_val != 0) 2303 return -EINVAL; 2304 2305 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2306 if (sysctl_tcp_fack) 2307 tcp_enable_fack(tp); 2308 break; 2309 case TCPOPT_TIMESTAMP: 2310 if (opt.opt_val != 0) 2311 return -EINVAL; 2312 2313 tp->rx_opt.tstamp_ok = 1; 2314 break; 2315 } 2316 } 2317 2318 return 0; 2319 } 2320 2321 /* 2322 * Socket option code for TCP. 2323 */ 2324 static int do_tcp_setsockopt(struct sock *sk, int level, 2325 int optname, char __user *optval, unsigned int optlen) 2326 { 2327 struct tcp_sock *tp = tcp_sk(sk); 2328 struct inet_connection_sock *icsk = inet_csk(sk); 2329 int val; 2330 int err = 0; 2331 2332 /* These are data/string values, all the others are ints */ 2333 switch (optname) { 2334 case TCP_CONGESTION: { 2335 char name[TCP_CA_NAME_MAX]; 2336 2337 if (optlen < 1) 2338 return -EINVAL; 2339 2340 val = strncpy_from_user(name, optval, 2341 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2342 if (val < 0) 2343 return -EFAULT; 2344 name[val] = 0; 2345 2346 lock_sock(sk); 2347 err = tcp_set_congestion_control(sk, name); 2348 release_sock(sk); 2349 return err; 2350 } 2351 default: 2352 /* fallthru */ 2353 break; 2354 } 2355 2356 if (optlen < sizeof(int)) 2357 return -EINVAL; 2358 2359 if (get_user(val, (int __user *)optval)) 2360 return -EFAULT; 2361 2362 lock_sock(sk); 2363 2364 switch (optname) { 2365 case TCP_MAXSEG: 2366 /* Values greater than interface MTU won't take effect. However 2367 * at the point when this call is done we typically don't yet 2368 * know which interface is going to be used */ 2369 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2370 err = -EINVAL; 2371 break; 2372 } 2373 tp->rx_opt.user_mss = val; 2374 break; 2375 2376 case TCP_NODELAY: 2377 if (val) { 2378 /* TCP_NODELAY is weaker than TCP_CORK, so that 2379 * this option on corked socket is remembered, but 2380 * it is not activated until cork is cleared. 2381 * 2382 * However, when TCP_NODELAY is set we make 2383 * an explicit push, which overrides even TCP_CORK 2384 * for currently queued segments. 2385 */ 2386 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2387 tcp_push_pending_frames(sk); 2388 } else { 2389 tp->nonagle &= ~TCP_NAGLE_OFF; 2390 } 2391 break; 2392 2393 case TCP_THIN_LINEAR_TIMEOUTS: 2394 if (val < 0 || val > 1) 2395 err = -EINVAL; 2396 else 2397 tp->thin_lto = val; 2398 break; 2399 2400 case TCP_THIN_DUPACK: 2401 if (val < 0 || val > 1) 2402 err = -EINVAL; 2403 else { 2404 tp->thin_dupack = val; 2405 if (tp->thin_dupack) 2406 tcp_disable_early_retrans(tp); 2407 } 2408 break; 2409 2410 case TCP_REPAIR: 2411 if (!tcp_can_repair_sock(sk)) 2412 err = -EPERM; 2413 else if (val == 1) { 2414 tp->repair = 1; 2415 sk->sk_reuse = SK_FORCE_REUSE; 2416 tp->repair_queue = TCP_NO_QUEUE; 2417 } else if (val == 0) { 2418 tp->repair = 0; 2419 sk->sk_reuse = SK_NO_REUSE; 2420 tcp_send_window_probe(sk); 2421 } else 2422 err = -EINVAL; 2423 2424 break; 2425 2426 case TCP_REPAIR_QUEUE: 2427 if (!tp->repair) 2428 err = -EPERM; 2429 else if (val < TCP_QUEUES_NR) 2430 tp->repair_queue = val; 2431 else 2432 err = -EINVAL; 2433 break; 2434 2435 case TCP_QUEUE_SEQ: 2436 if (sk->sk_state != TCP_CLOSE) 2437 err = -EPERM; 2438 else if (tp->repair_queue == TCP_SEND_QUEUE) 2439 tp->write_seq = val; 2440 else if (tp->repair_queue == TCP_RECV_QUEUE) 2441 tp->rcv_nxt = val; 2442 else 2443 err = -EINVAL; 2444 break; 2445 2446 case TCP_REPAIR_OPTIONS: 2447 if (!tp->repair) 2448 err = -EINVAL; 2449 else if (sk->sk_state == TCP_ESTABLISHED) 2450 err = tcp_repair_options_est(tp, 2451 (struct tcp_repair_opt __user *)optval, 2452 optlen); 2453 else 2454 err = -EPERM; 2455 break; 2456 2457 case TCP_CORK: 2458 /* When set indicates to always queue non-full frames. 2459 * Later the user clears this option and we transmit 2460 * any pending partial frames in the queue. This is 2461 * meant to be used alongside sendfile() to get properly 2462 * filled frames when the user (for example) must write 2463 * out headers with a write() call first and then use 2464 * sendfile to send out the data parts. 2465 * 2466 * TCP_CORK can be set together with TCP_NODELAY and it is 2467 * stronger than TCP_NODELAY. 2468 */ 2469 if (val) { 2470 tp->nonagle |= TCP_NAGLE_CORK; 2471 } else { 2472 tp->nonagle &= ~TCP_NAGLE_CORK; 2473 if (tp->nonagle&TCP_NAGLE_OFF) 2474 tp->nonagle |= TCP_NAGLE_PUSH; 2475 tcp_push_pending_frames(sk); 2476 } 2477 break; 2478 2479 case TCP_KEEPIDLE: 2480 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2481 err = -EINVAL; 2482 else { 2483 tp->keepalive_time = val * HZ; 2484 if (sock_flag(sk, SOCK_KEEPOPEN) && 2485 !((1 << sk->sk_state) & 2486 (TCPF_CLOSE | TCPF_LISTEN))) { 2487 u32 elapsed = keepalive_time_elapsed(tp); 2488 if (tp->keepalive_time > elapsed) 2489 elapsed = tp->keepalive_time - elapsed; 2490 else 2491 elapsed = 0; 2492 inet_csk_reset_keepalive_timer(sk, elapsed); 2493 } 2494 } 2495 break; 2496 case TCP_KEEPINTVL: 2497 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2498 err = -EINVAL; 2499 else 2500 tp->keepalive_intvl = val * HZ; 2501 break; 2502 case TCP_KEEPCNT: 2503 if (val < 1 || val > MAX_TCP_KEEPCNT) 2504 err = -EINVAL; 2505 else 2506 tp->keepalive_probes = val; 2507 break; 2508 case TCP_SYNCNT: 2509 if (val < 1 || val > MAX_TCP_SYNCNT) 2510 err = -EINVAL; 2511 else 2512 icsk->icsk_syn_retries = val; 2513 break; 2514 2515 case TCP_SAVE_SYN: 2516 if (val < 0 || val > 1) 2517 err = -EINVAL; 2518 else 2519 tp->save_syn = val; 2520 break; 2521 2522 case TCP_LINGER2: 2523 if (val < 0) 2524 tp->linger2 = -1; 2525 else if (val > sysctl_tcp_fin_timeout / HZ) 2526 tp->linger2 = 0; 2527 else 2528 tp->linger2 = val * HZ; 2529 break; 2530 2531 case TCP_DEFER_ACCEPT: 2532 /* Translate value in seconds to number of retransmits */ 2533 icsk->icsk_accept_queue.rskq_defer_accept = 2534 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2535 TCP_RTO_MAX / HZ); 2536 break; 2537 2538 case TCP_WINDOW_CLAMP: 2539 if (!val) { 2540 if (sk->sk_state != TCP_CLOSE) { 2541 err = -EINVAL; 2542 break; 2543 } 2544 tp->window_clamp = 0; 2545 } else 2546 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2547 SOCK_MIN_RCVBUF / 2 : val; 2548 break; 2549 2550 case TCP_QUICKACK: 2551 if (!val) { 2552 icsk->icsk_ack.pingpong = 1; 2553 } else { 2554 icsk->icsk_ack.pingpong = 0; 2555 if ((1 << sk->sk_state) & 2556 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2557 inet_csk_ack_scheduled(sk)) { 2558 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2559 tcp_cleanup_rbuf(sk, 1); 2560 if (!(val & 1)) 2561 icsk->icsk_ack.pingpong = 1; 2562 } 2563 } 2564 break; 2565 2566 #ifdef CONFIG_TCP_MD5SIG 2567 case TCP_MD5SIG: 2568 /* Read the IP->Key mappings from userspace */ 2569 err = tp->af_specific->md5_parse(sk, optval, optlen); 2570 break; 2571 #endif 2572 case TCP_USER_TIMEOUT: 2573 /* Cap the max time in ms TCP will retry or probe the window 2574 * before giving up and aborting (ETIMEDOUT) a connection. 2575 */ 2576 if (val < 0) 2577 err = -EINVAL; 2578 else 2579 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2580 break; 2581 2582 case TCP_FASTOPEN: 2583 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2584 TCPF_LISTEN))) { 2585 tcp_fastopen_init_key_once(true); 2586 2587 fastopen_queue_tune(sk, val); 2588 } else { 2589 err = -EINVAL; 2590 } 2591 break; 2592 case TCP_TIMESTAMP: 2593 if (!tp->repair) 2594 err = -EPERM; 2595 else 2596 tp->tsoffset = val - tcp_time_stamp; 2597 break; 2598 case TCP_NOTSENT_LOWAT: 2599 tp->notsent_lowat = val; 2600 sk->sk_write_space(sk); 2601 break; 2602 default: 2603 err = -ENOPROTOOPT; 2604 break; 2605 } 2606 2607 release_sock(sk); 2608 return err; 2609 } 2610 2611 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2612 unsigned int optlen) 2613 { 2614 const struct inet_connection_sock *icsk = inet_csk(sk); 2615 2616 if (level != SOL_TCP) 2617 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2618 optval, optlen); 2619 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2620 } 2621 EXPORT_SYMBOL(tcp_setsockopt); 2622 2623 #ifdef CONFIG_COMPAT 2624 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2625 char __user *optval, unsigned int optlen) 2626 { 2627 if (level != SOL_TCP) 2628 return inet_csk_compat_setsockopt(sk, level, optname, 2629 optval, optlen); 2630 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2631 } 2632 EXPORT_SYMBOL(compat_tcp_setsockopt); 2633 #endif 2634 2635 /* Return information about state of tcp endpoint in API format. */ 2636 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2637 { 2638 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2639 const struct inet_connection_sock *icsk = inet_csk(sk); 2640 u32 now = tcp_time_stamp; 2641 unsigned int start; 2642 u64 rate64; 2643 u32 rate; 2644 2645 memset(info, 0, sizeof(*info)); 2646 if (sk->sk_type != SOCK_STREAM) 2647 return; 2648 2649 info->tcpi_state = sk_state_load(sk); 2650 2651 info->tcpi_ca_state = icsk->icsk_ca_state; 2652 info->tcpi_retransmits = icsk->icsk_retransmits; 2653 info->tcpi_probes = icsk->icsk_probes_out; 2654 info->tcpi_backoff = icsk->icsk_backoff; 2655 2656 if (tp->rx_opt.tstamp_ok) 2657 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2658 if (tcp_is_sack(tp)) 2659 info->tcpi_options |= TCPI_OPT_SACK; 2660 if (tp->rx_opt.wscale_ok) { 2661 info->tcpi_options |= TCPI_OPT_WSCALE; 2662 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2663 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2664 } 2665 2666 if (tp->ecn_flags & TCP_ECN_OK) 2667 info->tcpi_options |= TCPI_OPT_ECN; 2668 if (tp->ecn_flags & TCP_ECN_SEEN) 2669 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2670 if (tp->syn_data_acked) 2671 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2672 2673 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2674 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2675 info->tcpi_snd_mss = tp->mss_cache; 2676 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2677 2678 if (info->tcpi_state == TCP_LISTEN) { 2679 info->tcpi_unacked = sk->sk_ack_backlog; 2680 info->tcpi_sacked = sk->sk_max_ack_backlog; 2681 } else { 2682 info->tcpi_unacked = tp->packets_out; 2683 info->tcpi_sacked = tp->sacked_out; 2684 } 2685 info->tcpi_lost = tp->lost_out; 2686 info->tcpi_retrans = tp->retrans_out; 2687 info->tcpi_fackets = tp->fackets_out; 2688 2689 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2690 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2691 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2692 2693 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2694 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2695 info->tcpi_rtt = tp->srtt_us >> 3; 2696 info->tcpi_rttvar = tp->mdev_us >> 2; 2697 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2698 info->tcpi_snd_cwnd = tp->snd_cwnd; 2699 info->tcpi_advmss = tp->advmss; 2700 info->tcpi_reordering = tp->reordering; 2701 2702 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2703 info->tcpi_rcv_space = tp->rcvq_space.space; 2704 2705 info->tcpi_total_retrans = tp->total_retrans; 2706 2707 rate = READ_ONCE(sk->sk_pacing_rate); 2708 rate64 = rate != ~0U ? rate : ~0ULL; 2709 put_unaligned(rate64, &info->tcpi_pacing_rate); 2710 2711 rate = READ_ONCE(sk->sk_max_pacing_rate); 2712 rate64 = rate != ~0U ? rate : ~0ULL; 2713 put_unaligned(rate64, &info->tcpi_max_pacing_rate); 2714 2715 do { 2716 start = u64_stats_fetch_begin_irq(&tp->syncp); 2717 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked); 2718 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received); 2719 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2720 info->tcpi_segs_out = tp->segs_out; 2721 info->tcpi_segs_in = tp->segs_in; 2722 } 2723 EXPORT_SYMBOL_GPL(tcp_get_info); 2724 2725 static int do_tcp_getsockopt(struct sock *sk, int level, 2726 int optname, char __user *optval, int __user *optlen) 2727 { 2728 struct inet_connection_sock *icsk = inet_csk(sk); 2729 struct tcp_sock *tp = tcp_sk(sk); 2730 int val, len; 2731 2732 if (get_user(len, optlen)) 2733 return -EFAULT; 2734 2735 len = min_t(unsigned int, len, sizeof(int)); 2736 2737 if (len < 0) 2738 return -EINVAL; 2739 2740 switch (optname) { 2741 case TCP_MAXSEG: 2742 val = tp->mss_cache; 2743 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2744 val = tp->rx_opt.user_mss; 2745 if (tp->repair) 2746 val = tp->rx_opt.mss_clamp; 2747 break; 2748 case TCP_NODELAY: 2749 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2750 break; 2751 case TCP_CORK: 2752 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2753 break; 2754 case TCP_KEEPIDLE: 2755 val = keepalive_time_when(tp) / HZ; 2756 break; 2757 case TCP_KEEPINTVL: 2758 val = keepalive_intvl_when(tp) / HZ; 2759 break; 2760 case TCP_KEEPCNT: 2761 val = keepalive_probes(tp); 2762 break; 2763 case TCP_SYNCNT: 2764 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2765 break; 2766 case TCP_LINGER2: 2767 val = tp->linger2; 2768 if (val >= 0) 2769 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2770 break; 2771 case TCP_DEFER_ACCEPT: 2772 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2773 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2774 break; 2775 case TCP_WINDOW_CLAMP: 2776 val = tp->window_clamp; 2777 break; 2778 case TCP_INFO: { 2779 struct tcp_info info; 2780 2781 if (get_user(len, optlen)) 2782 return -EFAULT; 2783 2784 tcp_get_info(sk, &info); 2785 2786 len = min_t(unsigned int, len, sizeof(info)); 2787 if (put_user(len, optlen)) 2788 return -EFAULT; 2789 if (copy_to_user(optval, &info, len)) 2790 return -EFAULT; 2791 return 0; 2792 } 2793 case TCP_CC_INFO: { 2794 const struct tcp_congestion_ops *ca_ops; 2795 union tcp_cc_info info; 2796 size_t sz = 0; 2797 int attr; 2798 2799 if (get_user(len, optlen)) 2800 return -EFAULT; 2801 2802 ca_ops = icsk->icsk_ca_ops; 2803 if (ca_ops && ca_ops->get_info) 2804 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2805 2806 len = min_t(unsigned int, len, sz); 2807 if (put_user(len, optlen)) 2808 return -EFAULT; 2809 if (copy_to_user(optval, &info, len)) 2810 return -EFAULT; 2811 return 0; 2812 } 2813 case TCP_QUICKACK: 2814 val = !icsk->icsk_ack.pingpong; 2815 break; 2816 2817 case TCP_CONGESTION: 2818 if (get_user(len, optlen)) 2819 return -EFAULT; 2820 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2821 if (put_user(len, optlen)) 2822 return -EFAULT; 2823 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2824 return -EFAULT; 2825 return 0; 2826 2827 case TCP_THIN_LINEAR_TIMEOUTS: 2828 val = tp->thin_lto; 2829 break; 2830 case TCP_THIN_DUPACK: 2831 val = tp->thin_dupack; 2832 break; 2833 2834 case TCP_REPAIR: 2835 val = tp->repair; 2836 break; 2837 2838 case TCP_REPAIR_QUEUE: 2839 if (tp->repair) 2840 val = tp->repair_queue; 2841 else 2842 return -EINVAL; 2843 break; 2844 2845 case TCP_QUEUE_SEQ: 2846 if (tp->repair_queue == TCP_SEND_QUEUE) 2847 val = tp->write_seq; 2848 else if (tp->repair_queue == TCP_RECV_QUEUE) 2849 val = tp->rcv_nxt; 2850 else 2851 return -EINVAL; 2852 break; 2853 2854 case TCP_USER_TIMEOUT: 2855 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2856 break; 2857 2858 case TCP_FASTOPEN: 2859 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2860 break; 2861 2862 case TCP_TIMESTAMP: 2863 val = tcp_time_stamp + tp->tsoffset; 2864 break; 2865 case TCP_NOTSENT_LOWAT: 2866 val = tp->notsent_lowat; 2867 break; 2868 case TCP_SAVE_SYN: 2869 val = tp->save_syn; 2870 break; 2871 case TCP_SAVED_SYN: { 2872 if (get_user(len, optlen)) 2873 return -EFAULT; 2874 2875 lock_sock(sk); 2876 if (tp->saved_syn) { 2877 if (len < tp->saved_syn[0]) { 2878 if (put_user(tp->saved_syn[0], optlen)) { 2879 release_sock(sk); 2880 return -EFAULT; 2881 } 2882 release_sock(sk); 2883 return -EINVAL; 2884 } 2885 len = tp->saved_syn[0]; 2886 if (put_user(len, optlen)) { 2887 release_sock(sk); 2888 return -EFAULT; 2889 } 2890 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 2891 release_sock(sk); 2892 return -EFAULT; 2893 } 2894 tcp_saved_syn_free(tp); 2895 release_sock(sk); 2896 } else { 2897 release_sock(sk); 2898 len = 0; 2899 if (put_user(len, optlen)) 2900 return -EFAULT; 2901 } 2902 return 0; 2903 } 2904 default: 2905 return -ENOPROTOOPT; 2906 } 2907 2908 if (put_user(len, optlen)) 2909 return -EFAULT; 2910 if (copy_to_user(optval, &val, len)) 2911 return -EFAULT; 2912 return 0; 2913 } 2914 2915 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2916 int __user *optlen) 2917 { 2918 struct inet_connection_sock *icsk = inet_csk(sk); 2919 2920 if (level != SOL_TCP) 2921 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2922 optval, optlen); 2923 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2924 } 2925 EXPORT_SYMBOL(tcp_getsockopt); 2926 2927 #ifdef CONFIG_COMPAT 2928 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2929 char __user *optval, int __user *optlen) 2930 { 2931 if (level != SOL_TCP) 2932 return inet_csk_compat_getsockopt(sk, level, optname, 2933 optval, optlen); 2934 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2935 } 2936 EXPORT_SYMBOL(compat_tcp_getsockopt); 2937 #endif 2938 2939 #ifdef CONFIG_TCP_MD5SIG 2940 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2941 static DEFINE_MUTEX(tcp_md5sig_mutex); 2942 static bool tcp_md5sig_pool_populated = false; 2943 2944 static void __tcp_alloc_md5sig_pool(void) 2945 { 2946 int cpu; 2947 2948 for_each_possible_cpu(cpu) { 2949 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) { 2950 struct crypto_hash *hash; 2951 2952 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2953 if (IS_ERR(hash)) 2954 return; 2955 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash; 2956 } 2957 } 2958 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2959 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2960 */ 2961 smp_wmb(); 2962 tcp_md5sig_pool_populated = true; 2963 } 2964 2965 bool tcp_alloc_md5sig_pool(void) 2966 { 2967 if (unlikely(!tcp_md5sig_pool_populated)) { 2968 mutex_lock(&tcp_md5sig_mutex); 2969 2970 if (!tcp_md5sig_pool_populated) 2971 __tcp_alloc_md5sig_pool(); 2972 2973 mutex_unlock(&tcp_md5sig_mutex); 2974 } 2975 return tcp_md5sig_pool_populated; 2976 } 2977 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2978 2979 2980 /** 2981 * tcp_get_md5sig_pool - get md5sig_pool for this user 2982 * 2983 * We use percpu structure, so if we succeed, we exit with preemption 2984 * and BH disabled, to make sure another thread or softirq handling 2985 * wont try to get same context. 2986 */ 2987 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2988 { 2989 local_bh_disable(); 2990 2991 if (tcp_md5sig_pool_populated) { 2992 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 2993 smp_rmb(); 2994 return this_cpu_ptr(&tcp_md5sig_pool); 2995 } 2996 local_bh_enable(); 2997 return NULL; 2998 } 2999 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3000 3001 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3002 const struct tcphdr *th) 3003 { 3004 struct scatterlist sg; 3005 struct tcphdr hdr; 3006 int err; 3007 3008 /* We are not allowed to change tcphdr, make a local copy */ 3009 memcpy(&hdr, th, sizeof(hdr)); 3010 hdr.check = 0; 3011 3012 /* options aren't included in the hash */ 3013 sg_init_one(&sg, &hdr, sizeof(hdr)); 3014 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3015 return err; 3016 } 3017 EXPORT_SYMBOL(tcp_md5_hash_header); 3018 3019 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3020 const struct sk_buff *skb, unsigned int header_len) 3021 { 3022 struct scatterlist sg; 3023 const struct tcphdr *tp = tcp_hdr(skb); 3024 struct hash_desc *desc = &hp->md5_desc; 3025 unsigned int i; 3026 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3027 skb_headlen(skb) - header_len : 0; 3028 const struct skb_shared_info *shi = skb_shinfo(skb); 3029 struct sk_buff *frag_iter; 3030 3031 sg_init_table(&sg, 1); 3032 3033 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3034 if (crypto_hash_update(desc, &sg, head_data_len)) 3035 return 1; 3036 3037 for (i = 0; i < shi->nr_frags; ++i) { 3038 const struct skb_frag_struct *f = &shi->frags[i]; 3039 unsigned int offset = f->page_offset; 3040 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3041 3042 sg_set_page(&sg, page, skb_frag_size(f), 3043 offset_in_page(offset)); 3044 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3045 return 1; 3046 } 3047 3048 skb_walk_frags(skb, frag_iter) 3049 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3050 return 1; 3051 3052 return 0; 3053 } 3054 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3055 3056 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3057 { 3058 struct scatterlist sg; 3059 3060 sg_init_one(&sg, key->key, key->keylen); 3061 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3062 } 3063 EXPORT_SYMBOL(tcp_md5_hash_key); 3064 3065 #endif 3066 3067 void tcp_done(struct sock *sk) 3068 { 3069 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3070 3071 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3072 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3073 3074 tcp_set_state(sk, TCP_CLOSE); 3075 tcp_clear_xmit_timers(sk); 3076 if (req) 3077 reqsk_fastopen_remove(sk, req, false); 3078 3079 sk->sk_shutdown = SHUTDOWN_MASK; 3080 3081 if (!sock_flag(sk, SOCK_DEAD)) 3082 sk->sk_state_change(sk); 3083 else 3084 inet_csk_destroy_sock(sk); 3085 } 3086 EXPORT_SYMBOL_GPL(tcp_done); 3087 3088 int tcp_abort(struct sock *sk, int err) 3089 { 3090 if (!sk_fullsock(sk)) { 3091 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3092 struct request_sock *req = inet_reqsk(sk); 3093 3094 local_bh_disable(); 3095 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3096 req); 3097 local_bh_enable(); 3098 return 0; 3099 } 3100 sock_gen_put(sk); 3101 return -EOPNOTSUPP; 3102 } 3103 3104 /* Don't race with userspace socket closes such as tcp_close. */ 3105 lock_sock(sk); 3106 3107 if (sk->sk_state == TCP_LISTEN) { 3108 tcp_set_state(sk, TCP_CLOSE); 3109 inet_csk_listen_stop(sk); 3110 } 3111 3112 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3113 local_bh_disable(); 3114 bh_lock_sock(sk); 3115 3116 if (!sock_flag(sk, SOCK_DEAD)) { 3117 sk->sk_err = err; 3118 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3119 smp_wmb(); 3120 sk->sk_error_report(sk); 3121 if (tcp_need_reset(sk->sk_state)) 3122 tcp_send_active_reset(sk, GFP_ATOMIC); 3123 tcp_done(sk); 3124 } 3125 3126 bh_unlock_sock(sk); 3127 local_bh_enable(); 3128 release_sock(sk); 3129 sock_put(sk); 3130 return 0; 3131 } 3132 EXPORT_SYMBOL_GPL(tcp_abort); 3133 3134 extern struct tcp_congestion_ops tcp_reno; 3135 3136 static __initdata unsigned long thash_entries; 3137 static int __init set_thash_entries(char *str) 3138 { 3139 ssize_t ret; 3140 3141 if (!str) 3142 return 0; 3143 3144 ret = kstrtoul(str, 0, &thash_entries); 3145 if (ret) 3146 return 0; 3147 3148 return 1; 3149 } 3150 __setup("thash_entries=", set_thash_entries); 3151 3152 static void __init tcp_init_mem(void) 3153 { 3154 unsigned long limit = nr_free_buffer_pages() / 16; 3155 3156 limit = max(limit, 128UL); 3157 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3158 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3159 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3160 } 3161 3162 void __init tcp_init(void) 3163 { 3164 unsigned long limit; 3165 int max_rshare, max_wshare, cnt; 3166 unsigned int i; 3167 3168 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb)); 3169 3170 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3171 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3172 tcp_hashinfo.bind_bucket_cachep = 3173 kmem_cache_create("tcp_bind_bucket", 3174 sizeof(struct inet_bind_bucket), 0, 3175 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3176 3177 /* Size and allocate the main established and bind bucket 3178 * hash tables. 3179 * 3180 * The methodology is similar to that of the buffer cache. 3181 */ 3182 tcp_hashinfo.ehash = 3183 alloc_large_system_hash("TCP established", 3184 sizeof(struct inet_ehash_bucket), 3185 thash_entries, 3186 17, /* one slot per 128 KB of memory */ 3187 0, 3188 NULL, 3189 &tcp_hashinfo.ehash_mask, 3190 0, 3191 thash_entries ? 0 : 512 * 1024); 3192 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3193 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3194 3195 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3196 panic("TCP: failed to alloc ehash_locks"); 3197 tcp_hashinfo.bhash = 3198 alloc_large_system_hash("TCP bind", 3199 sizeof(struct inet_bind_hashbucket), 3200 tcp_hashinfo.ehash_mask + 1, 3201 17, /* one slot per 128 KB of memory */ 3202 0, 3203 &tcp_hashinfo.bhash_size, 3204 NULL, 3205 0, 3206 64 * 1024); 3207 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3208 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3209 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3210 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3211 } 3212 3213 3214 cnt = tcp_hashinfo.ehash_mask + 1; 3215 3216 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3217 sysctl_tcp_max_orphans = cnt / 2; 3218 sysctl_max_syn_backlog = max(128, cnt / 256); 3219 3220 tcp_init_mem(); 3221 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3222 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3223 max_wshare = min(4UL*1024*1024, limit); 3224 max_rshare = min(6UL*1024*1024, limit); 3225 3226 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3227 sysctl_tcp_wmem[1] = 16*1024; 3228 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3229 3230 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3231 sysctl_tcp_rmem[1] = 87380; 3232 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3233 3234 pr_info("Hash tables configured (established %u bind %u)\n", 3235 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3236 3237 tcp_metrics_init(); 3238 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3239 tcp_tasklet_init(); 3240 } 3241