1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/inet_diag.h> 256 #include <linux/init.h> 257 #include <linux/fs.h> 258 #include <linux/skbuff.h> 259 #include <linux/scatterlist.h> 260 #include <linux/splice.h> 261 #include <linux/net.h> 262 #include <linux/socket.h> 263 #include <linux/random.h> 264 #include <linux/bootmem.h> 265 #include <linux/highmem.h> 266 #include <linux/swap.h> 267 #include <linux/cache.h> 268 #include <linux/err.h> 269 #include <linux/crypto.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <net/busy_poll.h> 283 284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 285 286 int sysctl_tcp_min_tso_segs __read_mostly = 2; 287 288 int sysctl_tcp_autocorking __read_mostly = 1; 289 290 struct percpu_counter tcp_orphan_count; 291 EXPORT_SYMBOL_GPL(tcp_orphan_count); 292 293 long sysctl_tcp_mem[3] __read_mostly; 294 int sysctl_tcp_wmem[3] __read_mostly; 295 int sysctl_tcp_rmem[3] __read_mostly; 296 297 EXPORT_SYMBOL(sysctl_tcp_mem); 298 EXPORT_SYMBOL(sysctl_tcp_rmem); 299 EXPORT_SYMBOL(sysctl_tcp_wmem); 300 301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 302 EXPORT_SYMBOL(tcp_memory_allocated); 303 304 /* 305 * Current number of TCP sockets. 306 */ 307 struct percpu_counter tcp_sockets_allocated; 308 EXPORT_SYMBOL(tcp_sockets_allocated); 309 310 /* 311 * TCP splice context 312 */ 313 struct tcp_splice_state { 314 struct pipe_inode_info *pipe; 315 size_t len; 316 unsigned int flags; 317 }; 318 319 /* 320 * Pressure flag: try to collapse. 321 * Technical note: it is used by multiple contexts non atomically. 322 * All the __sk_mem_schedule() is of this nature: accounting 323 * is strict, actions are advisory and have some latency. 324 */ 325 int tcp_memory_pressure __read_mostly; 326 EXPORT_SYMBOL(tcp_memory_pressure); 327 328 void tcp_enter_memory_pressure(struct sock *sk) 329 { 330 if (!tcp_memory_pressure) { 331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 332 tcp_memory_pressure = 1; 333 } 334 } 335 EXPORT_SYMBOL(tcp_enter_memory_pressure); 336 337 /* Convert seconds to retransmits based on initial and max timeout */ 338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 339 { 340 u8 res = 0; 341 342 if (seconds > 0) { 343 int period = timeout; 344 345 res = 1; 346 while (seconds > period && res < 255) { 347 res++; 348 timeout <<= 1; 349 if (timeout > rto_max) 350 timeout = rto_max; 351 period += timeout; 352 } 353 } 354 return res; 355 } 356 357 /* Convert retransmits to seconds based on initial and max timeout */ 358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 359 { 360 int period = 0; 361 362 if (retrans > 0) { 363 period = timeout; 364 while (--retrans) { 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return period; 372 } 373 374 /* Address-family independent initialization for a tcp_sock. 375 * 376 * NOTE: A lot of things set to zero explicitly by call to 377 * sk_alloc() so need not be done here. 378 */ 379 void tcp_init_sock(struct sock *sk) 380 { 381 struct inet_connection_sock *icsk = inet_csk(sk); 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 __skb_queue_head_init(&tp->out_of_order_queue); 385 tcp_init_xmit_timers(sk); 386 tcp_prequeue_init(tp); 387 INIT_LIST_HEAD(&tp->tsq_node); 388 389 icsk->icsk_rto = TCP_TIMEOUT_INIT; 390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 391 tp->rtt_min[0].rtt = ~0U; 392 393 /* So many TCP implementations out there (incorrectly) count the 394 * initial SYN frame in their delayed-ACK and congestion control 395 * algorithms that we must have the following bandaid to talk 396 * efficiently to them. -DaveM 397 */ 398 tp->snd_cwnd = TCP_INIT_CWND; 399 400 /* See draft-stevens-tcpca-spec-01 for discussion of the 401 * initialization of these values. 402 */ 403 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 404 tp->snd_cwnd_clamp = ~0; 405 tp->mss_cache = TCP_MSS_DEFAULT; 406 u64_stats_init(&tp->syncp); 407 408 tp->reordering = sysctl_tcp_reordering; 409 tcp_enable_early_retrans(tp); 410 tcp_assign_congestion_control(sk); 411 412 tp->tsoffset = 0; 413 414 sk->sk_state = TCP_CLOSE; 415 416 sk->sk_write_space = sk_stream_write_space; 417 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 418 419 icsk->icsk_sync_mss = tcp_sync_mss; 420 421 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 422 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 423 424 local_bh_disable(); 425 sock_update_memcg(sk); 426 sk_sockets_allocated_inc(sk); 427 local_bh_enable(); 428 } 429 EXPORT_SYMBOL(tcp_init_sock); 430 431 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb) 432 { 433 if (sk->sk_tsflags) { 434 struct skb_shared_info *shinfo = skb_shinfo(skb); 435 436 sock_tx_timestamp(sk, &shinfo->tx_flags); 437 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 438 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 439 } 440 } 441 442 /* 443 * Wait for a TCP event. 444 * 445 * Note that we don't need to lock the socket, as the upper poll layers 446 * take care of normal races (between the test and the event) and we don't 447 * go look at any of the socket buffers directly. 448 */ 449 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 450 { 451 unsigned int mask; 452 struct sock *sk = sock->sk; 453 const struct tcp_sock *tp = tcp_sk(sk); 454 int state; 455 456 sock_rps_record_flow(sk); 457 458 sock_poll_wait(file, sk_sleep(sk), wait); 459 460 state = sk_state_load(sk); 461 if (state == TCP_LISTEN) 462 return inet_csk_listen_poll(sk); 463 464 /* Socket is not locked. We are protected from async events 465 * by poll logic and correct handling of state changes 466 * made by other threads is impossible in any case. 467 */ 468 469 mask = 0; 470 471 /* 472 * POLLHUP is certainly not done right. But poll() doesn't 473 * have a notion of HUP in just one direction, and for a 474 * socket the read side is more interesting. 475 * 476 * Some poll() documentation says that POLLHUP is incompatible 477 * with the POLLOUT/POLLWR flags, so somebody should check this 478 * all. But careful, it tends to be safer to return too many 479 * bits than too few, and you can easily break real applications 480 * if you don't tell them that something has hung up! 481 * 482 * Check-me. 483 * 484 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 485 * our fs/select.c). It means that after we received EOF, 486 * poll always returns immediately, making impossible poll() on write() 487 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 488 * if and only if shutdown has been made in both directions. 489 * Actually, it is interesting to look how Solaris and DUX 490 * solve this dilemma. I would prefer, if POLLHUP were maskable, 491 * then we could set it on SND_SHUTDOWN. BTW examples given 492 * in Stevens' books assume exactly this behaviour, it explains 493 * why POLLHUP is incompatible with POLLOUT. --ANK 494 * 495 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 496 * blocking on fresh not-connected or disconnected socket. --ANK 497 */ 498 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 499 mask |= POLLHUP; 500 if (sk->sk_shutdown & RCV_SHUTDOWN) 501 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 502 503 /* Connected or passive Fast Open socket? */ 504 if (state != TCP_SYN_SENT && 505 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 506 int target = sock_rcvlowat(sk, 0, INT_MAX); 507 508 if (tp->urg_seq == tp->copied_seq && 509 !sock_flag(sk, SOCK_URGINLINE) && 510 tp->urg_data) 511 target++; 512 513 if (tp->rcv_nxt - tp->copied_seq >= target) 514 mask |= POLLIN | POLLRDNORM; 515 516 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 517 if (sk_stream_is_writeable(sk)) { 518 mask |= POLLOUT | POLLWRNORM; 519 } else { /* send SIGIO later */ 520 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 521 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 522 523 /* Race breaker. If space is freed after 524 * wspace test but before the flags are set, 525 * IO signal will be lost. Memory barrier 526 * pairs with the input side. 527 */ 528 smp_mb__after_atomic(); 529 if (sk_stream_is_writeable(sk)) 530 mask |= POLLOUT | POLLWRNORM; 531 } 532 } else 533 mask |= POLLOUT | POLLWRNORM; 534 535 if (tp->urg_data & TCP_URG_VALID) 536 mask |= POLLPRI; 537 } 538 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 539 smp_rmb(); 540 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 541 mask |= POLLERR; 542 543 return mask; 544 } 545 EXPORT_SYMBOL(tcp_poll); 546 547 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 548 { 549 struct tcp_sock *tp = tcp_sk(sk); 550 int answ; 551 bool slow; 552 553 switch (cmd) { 554 case SIOCINQ: 555 if (sk->sk_state == TCP_LISTEN) 556 return -EINVAL; 557 558 slow = lock_sock_fast(sk); 559 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 560 answ = 0; 561 else if (sock_flag(sk, SOCK_URGINLINE) || 562 !tp->urg_data || 563 before(tp->urg_seq, tp->copied_seq) || 564 !before(tp->urg_seq, tp->rcv_nxt)) { 565 566 answ = tp->rcv_nxt - tp->copied_seq; 567 568 /* Subtract 1, if FIN was received */ 569 if (answ && sock_flag(sk, SOCK_DONE)) 570 answ--; 571 } else 572 answ = tp->urg_seq - tp->copied_seq; 573 unlock_sock_fast(sk, slow); 574 break; 575 case SIOCATMARK: 576 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 577 break; 578 case SIOCOUTQ: 579 if (sk->sk_state == TCP_LISTEN) 580 return -EINVAL; 581 582 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 583 answ = 0; 584 else 585 answ = tp->write_seq - tp->snd_una; 586 break; 587 case SIOCOUTQNSD: 588 if (sk->sk_state == TCP_LISTEN) 589 return -EINVAL; 590 591 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 592 answ = 0; 593 else 594 answ = tp->write_seq - tp->snd_nxt; 595 break; 596 default: 597 return -ENOIOCTLCMD; 598 } 599 600 return put_user(answ, (int __user *)arg); 601 } 602 EXPORT_SYMBOL(tcp_ioctl); 603 604 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 605 { 606 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 607 tp->pushed_seq = tp->write_seq; 608 } 609 610 static inline bool forced_push(const struct tcp_sock *tp) 611 { 612 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 613 } 614 615 static void skb_entail(struct sock *sk, struct sk_buff *skb) 616 { 617 struct tcp_sock *tp = tcp_sk(sk); 618 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 619 620 skb->csum = 0; 621 tcb->seq = tcb->end_seq = tp->write_seq; 622 tcb->tcp_flags = TCPHDR_ACK; 623 tcb->sacked = 0; 624 __skb_header_release(skb); 625 tcp_add_write_queue_tail(sk, skb); 626 sk->sk_wmem_queued += skb->truesize; 627 sk_mem_charge(sk, skb->truesize); 628 if (tp->nonagle & TCP_NAGLE_PUSH) 629 tp->nonagle &= ~TCP_NAGLE_PUSH; 630 631 tcp_slow_start_after_idle_check(sk); 632 } 633 634 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 635 { 636 if (flags & MSG_OOB) 637 tp->snd_up = tp->write_seq; 638 } 639 640 /* If a not yet filled skb is pushed, do not send it if 641 * we have data packets in Qdisc or NIC queues : 642 * Because TX completion will happen shortly, it gives a chance 643 * to coalesce future sendmsg() payload into this skb, without 644 * need for a timer, and with no latency trade off. 645 * As packets containing data payload have a bigger truesize 646 * than pure acks (dataless) packets, the last checks prevent 647 * autocorking if we only have an ACK in Qdisc/NIC queues, 648 * or if TX completion was delayed after we processed ACK packet. 649 */ 650 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 651 int size_goal) 652 { 653 return skb->len < size_goal && 654 sysctl_tcp_autocorking && 655 skb != tcp_write_queue_head(sk) && 656 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 657 } 658 659 static void tcp_push(struct sock *sk, int flags, int mss_now, 660 int nonagle, int size_goal) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct sk_buff *skb; 664 665 if (!tcp_send_head(sk)) 666 return; 667 668 skb = tcp_write_queue_tail(sk); 669 if (!(flags & MSG_MORE) || forced_push(tp)) 670 tcp_mark_push(tp, skb); 671 672 tcp_mark_urg(tp, flags); 673 674 if (tcp_should_autocork(sk, skb, size_goal)) { 675 676 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 677 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 678 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 679 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 680 } 681 /* It is possible TX completion already happened 682 * before we set TSQ_THROTTLED. 683 */ 684 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 685 return; 686 } 687 688 if (flags & MSG_MORE) 689 nonagle = TCP_NAGLE_CORK; 690 691 __tcp_push_pending_frames(sk, mss_now, nonagle); 692 } 693 694 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 695 unsigned int offset, size_t len) 696 { 697 struct tcp_splice_state *tss = rd_desc->arg.data; 698 int ret; 699 700 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 701 min(rd_desc->count, len), tss->flags, 702 skb_socket_splice); 703 if (ret > 0) 704 rd_desc->count -= ret; 705 return ret; 706 } 707 708 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 709 { 710 /* Store TCP splice context information in read_descriptor_t. */ 711 read_descriptor_t rd_desc = { 712 .arg.data = tss, 713 .count = tss->len, 714 }; 715 716 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 717 } 718 719 /** 720 * tcp_splice_read - splice data from TCP socket to a pipe 721 * @sock: socket to splice from 722 * @ppos: position (not valid) 723 * @pipe: pipe to splice to 724 * @len: number of bytes to splice 725 * @flags: splice modifier flags 726 * 727 * Description: 728 * Will read pages from given socket and fill them into a pipe. 729 * 730 **/ 731 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 732 struct pipe_inode_info *pipe, size_t len, 733 unsigned int flags) 734 { 735 struct sock *sk = sock->sk; 736 struct tcp_splice_state tss = { 737 .pipe = pipe, 738 .len = len, 739 .flags = flags, 740 }; 741 long timeo; 742 ssize_t spliced; 743 int ret; 744 745 sock_rps_record_flow(sk); 746 /* 747 * We can't seek on a socket input 748 */ 749 if (unlikely(*ppos)) 750 return -ESPIPE; 751 752 ret = spliced = 0; 753 754 lock_sock(sk); 755 756 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 757 while (tss.len) { 758 ret = __tcp_splice_read(sk, &tss); 759 if (ret < 0) 760 break; 761 else if (!ret) { 762 if (spliced) 763 break; 764 if (sock_flag(sk, SOCK_DONE)) 765 break; 766 if (sk->sk_err) { 767 ret = sock_error(sk); 768 break; 769 } 770 if (sk->sk_shutdown & RCV_SHUTDOWN) 771 break; 772 if (sk->sk_state == TCP_CLOSE) { 773 /* 774 * This occurs when user tries to read 775 * from never connected socket. 776 */ 777 if (!sock_flag(sk, SOCK_DONE)) 778 ret = -ENOTCONN; 779 break; 780 } 781 if (!timeo) { 782 ret = -EAGAIN; 783 break; 784 } 785 sk_wait_data(sk, &timeo, NULL); 786 if (signal_pending(current)) { 787 ret = sock_intr_errno(timeo); 788 break; 789 } 790 continue; 791 } 792 tss.len -= ret; 793 spliced += ret; 794 795 if (!timeo) 796 break; 797 release_sock(sk); 798 lock_sock(sk); 799 800 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 801 (sk->sk_shutdown & RCV_SHUTDOWN) || 802 signal_pending(current)) 803 break; 804 } 805 806 release_sock(sk); 807 808 if (spliced) 809 return spliced; 810 811 return ret; 812 } 813 EXPORT_SYMBOL(tcp_splice_read); 814 815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 816 bool force_schedule) 817 { 818 struct sk_buff *skb; 819 820 /* The TCP header must be at least 32-bit aligned. */ 821 size = ALIGN(size, 4); 822 823 if (unlikely(tcp_under_memory_pressure(sk))) 824 sk_mem_reclaim_partial(sk); 825 826 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 827 if (likely(skb)) { 828 bool mem_scheduled; 829 830 if (force_schedule) { 831 mem_scheduled = true; 832 sk_forced_mem_schedule(sk, skb->truesize); 833 } else { 834 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 835 } 836 if (likely(mem_scheduled)) { 837 skb_reserve(skb, sk->sk_prot->max_header); 838 /* 839 * Make sure that we have exactly size bytes 840 * available to the caller, no more, no less. 841 */ 842 skb->reserved_tailroom = skb->end - skb->tail - size; 843 return skb; 844 } 845 __kfree_skb(skb); 846 } else { 847 sk->sk_prot->enter_memory_pressure(sk); 848 sk_stream_moderate_sndbuf(sk); 849 } 850 return NULL; 851 } 852 853 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 854 int large_allowed) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 u32 new_size_goal, size_goal; 858 859 if (!large_allowed || !sk_can_gso(sk)) 860 return mss_now; 861 862 /* Note : tcp_tso_autosize() will eventually split this later */ 863 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 864 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 865 866 /* We try hard to avoid divides here */ 867 size_goal = tp->gso_segs * mss_now; 868 if (unlikely(new_size_goal < size_goal || 869 new_size_goal >= size_goal + mss_now)) { 870 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 871 sk->sk_gso_max_segs); 872 size_goal = tp->gso_segs * mss_now; 873 } 874 875 return max(size_goal, mss_now); 876 } 877 878 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 879 { 880 int mss_now; 881 882 mss_now = tcp_current_mss(sk); 883 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 884 885 return mss_now; 886 } 887 888 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 889 size_t size, int flags) 890 { 891 struct tcp_sock *tp = tcp_sk(sk); 892 int mss_now, size_goal; 893 int err; 894 ssize_t copied; 895 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 896 897 /* Wait for a connection to finish. One exception is TCP Fast Open 898 * (passive side) where data is allowed to be sent before a connection 899 * is fully established. 900 */ 901 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 902 !tcp_passive_fastopen(sk)) { 903 err = sk_stream_wait_connect(sk, &timeo); 904 if (err != 0) 905 goto out_err; 906 } 907 908 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 909 910 mss_now = tcp_send_mss(sk, &size_goal, flags); 911 copied = 0; 912 913 err = -EPIPE; 914 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 915 goto out_err; 916 917 while (size > 0) { 918 struct sk_buff *skb = tcp_write_queue_tail(sk); 919 int copy, i; 920 bool can_coalesce; 921 922 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 923 new_segment: 924 if (!sk_stream_memory_free(sk)) 925 goto wait_for_sndbuf; 926 927 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 928 skb_queue_empty(&sk->sk_write_queue)); 929 if (!skb) 930 goto wait_for_memory; 931 932 skb_entail(sk, skb); 933 copy = size_goal; 934 } 935 936 if (copy > size) 937 copy = size; 938 939 i = skb_shinfo(skb)->nr_frags; 940 can_coalesce = skb_can_coalesce(skb, i, page, offset); 941 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 942 tcp_mark_push(tp, skb); 943 goto new_segment; 944 } 945 if (!sk_wmem_schedule(sk, copy)) 946 goto wait_for_memory; 947 948 if (can_coalesce) { 949 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 950 } else { 951 get_page(page); 952 skb_fill_page_desc(skb, i, page, offset, copy); 953 } 954 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 955 956 skb->len += copy; 957 skb->data_len += copy; 958 skb->truesize += copy; 959 sk->sk_wmem_queued += copy; 960 sk_mem_charge(sk, copy); 961 skb->ip_summed = CHECKSUM_PARTIAL; 962 tp->write_seq += copy; 963 TCP_SKB_CB(skb)->end_seq += copy; 964 tcp_skb_pcount_set(skb, 0); 965 966 if (!copied) 967 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 968 969 copied += copy; 970 offset += copy; 971 size -= copy; 972 if (!size) { 973 tcp_tx_timestamp(sk, skb); 974 goto out; 975 } 976 977 if (skb->len < size_goal || (flags & MSG_OOB)) 978 continue; 979 980 if (forced_push(tp)) { 981 tcp_mark_push(tp, skb); 982 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 983 } else if (skb == tcp_send_head(sk)) 984 tcp_push_one(sk, mss_now); 985 continue; 986 987 wait_for_sndbuf: 988 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 989 wait_for_memory: 990 tcp_push(sk, flags & ~MSG_MORE, mss_now, 991 TCP_NAGLE_PUSH, size_goal); 992 993 err = sk_stream_wait_memory(sk, &timeo); 994 if (err != 0) 995 goto do_error; 996 997 mss_now = tcp_send_mss(sk, &size_goal, flags); 998 } 999 1000 out: 1001 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 1002 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1003 return copied; 1004 1005 do_error: 1006 if (copied) 1007 goto out; 1008 out_err: 1009 /* make sure we wake any epoll edge trigger waiter */ 1010 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1011 sk->sk_write_space(sk); 1012 return sk_stream_error(sk, flags, err); 1013 } 1014 1015 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1016 size_t size, int flags) 1017 { 1018 ssize_t res; 1019 1020 if (!(sk->sk_route_caps & NETIF_F_SG) || 1021 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 1022 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1023 flags); 1024 1025 lock_sock(sk); 1026 res = do_tcp_sendpages(sk, page, offset, size, flags); 1027 release_sock(sk); 1028 return res; 1029 } 1030 EXPORT_SYMBOL(tcp_sendpage); 1031 1032 static inline int select_size(const struct sock *sk, bool sg) 1033 { 1034 const struct tcp_sock *tp = tcp_sk(sk); 1035 int tmp = tp->mss_cache; 1036 1037 if (sg) { 1038 if (sk_can_gso(sk)) { 1039 /* Small frames wont use a full page: 1040 * Payload will immediately follow tcp header. 1041 */ 1042 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1043 } else { 1044 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1045 1046 if (tmp >= pgbreak && 1047 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1048 tmp = pgbreak; 1049 } 1050 } 1051 1052 return tmp; 1053 } 1054 1055 void tcp_free_fastopen_req(struct tcp_sock *tp) 1056 { 1057 if (tp->fastopen_req) { 1058 kfree(tp->fastopen_req); 1059 tp->fastopen_req = NULL; 1060 } 1061 } 1062 1063 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1064 int *copied, size_t size) 1065 { 1066 struct tcp_sock *tp = tcp_sk(sk); 1067 int err, flags; 1068 1069 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1070 return -EOPNOTSUPP; 1071 if (tp->fastopen_req) 1072 return -EALREADY; /* Another Fast Open is in progress */ 1073 1074 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1075 sk->sk_allocation); 1076 if (unlikely(!tp->fastopen_req)) 1077 return -ENOBUFS; 1078 tp->fastopen_req->data = msg; 1079 tp->fastopen_req->size = size; 1080 1081 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1082 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1083 msg->msg_namelen, flags); 1084 *copied = tp->fastopen_req->copied; 1085 tcp_free_fastopen_req(tp); 1086 return err; 1087 } 1088 1089 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1090 { 1091 struct tcp_sock *tp = tcp_sk(sk); 1092 struct sk_buff *skb; 1093 int flags, err, copied = 0; 1094 int mss_now = 0, size_goal, copied_syn = 0; 1095 bool sg; 1096 long timeo; 1097 1098 lock_sock(sk); 1099 1100 flags = msg->msg_flags; 1101 if (flags & MSG_FASTOPEN) { 1102 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1103 if (err == -EINPROGRESS && copied_syn > 0) 1104 goto out; 1105 else if (err) 1106 goto out_err; 1107 } 1108 1109 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1110 1111 /* Wait for a connection to finish. One exception is TCP Fast Open 1112 * (passive side) where data is allowed to be sent before a connection 1113 * is fully established. 1114 */ 1115 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1116 !tcp_passive_fastopen(sk)) { 1117 err = sk_stream_wait_connect(sk, &timeo); 1118 if (err != 0) 1119 goto do_error; 1120 } 1121 1122 if (unlikely(tp->repair)) { 1123 if (tp->repair_queue == TCP_RECV_QUEUE) { 1124 copied = tcp_send_rcvq(sk, msg, size); 1125 goto out_nopush; 1126 } 1127 1128 err = -EINVAL; 1129 if (tp->repair_queue == TCP_NO_QUEUE) 1130 goto out_err; 1131 1132 /* 'common' sending to sendq */ 1133 } 1134 1135 /* This should be in poll */ 1136 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1137 1138 mss_now = tcp_send_mss(sk, &size_goal, flags); 1139 1140 /* Ok commence sending. */ 1141 copied = 0; 1142 1143 err = -EPIPE; 1144 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1145 goto out_err; 1146 1147 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1148 1149 while (msg_data_left(msg)) { 1150 int copy = 0; 1151 int max = size_goal; 1152 1153 skb = tcp_write_queue_tail(sk); 1154 if (tcp_send_head(sk)) { 1155 if (skb->ip_summed == CHECKSUM_NONE) 1156 max = mss_now; 1157 copy = max - skb->len; 1158 } 1159 1160 if (copy <= 0) { 1161 new_segment: 1162 /* Allocate new segment. If the interface is SG, 1163 * allocate skb fitting to single page. 1164 */ 1165 if (!sk_stream_memory_free(sk)) 1166 goto wait_for_sndbuf; 1167 1168 skb = sk_stream_alloc_skb(sk, 1169 select_size(sk, sg), 1170 sk->sk_allocation, 1171 skb_queue_empty(&sk->sk_write_queue)); 1172 if (!skb) 1173 goto wait_for_memory; 1174 1175 /* 1176 * Check whether we can use HW checksum. 1177 */ 1178 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1179 skb->ip_summed = CHECKSUM_PARTIAL; 1180 1181 skb_entail(sk, skb); 1182 copy = size_goal; 1183 max = size_goal; 1184 1185 /* All packets are restored as if they have 1186 * already been sent. skb_mstamp isn't set to 1187 * avoid wrong rtt estimation. 1188 */ 1189 if (tp->repair) 1190 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1191 } 1192 1193 /* Try to append data to the end of skb. */ 1194 if (copy > msg_data_left(msg)) 1195 copy = msg_data_left(msg); 1196 1197 /* Where to copy to? */ 1198 if (skb_availroom(skb) > 0) { 1199 /* We have some space in skb head. Superb! */ 1200 copy = min_t(int, copy, skb_availroom(skb)); 1201 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1202 if (err) 1203 goto do_fault; 1204 } else { 1205 bool merge = true; 1206 int i = skb_shinfo(skb)->nr_frags; 1207 struct page_frag *pfrag = sk_page_frag(sk); 1208 1209 if (!sk_page_frag_refill(sk, pfrag)) 1210 goto wait_for_memory; 1211 1212 if (!skb_can_coalesce(skb, i, pfrag->page, 1213 pfrag->offset)) { 1214 if (i == MAX_SKB_FRAGS || !sg) { 1215 tcp_mark_push(tp, skb); 1216 goto new_segment; 1217 } 1218 merge = false; 1219 } 1220 1221 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1222 1223 if (!sk_wmem_schedule(sk, copy)) 1224 goto wait_for_memory; 1225 1226 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1227 pfrag->page, 1228 pfrag->offset, 1229 copy); 1230 if (err) 1231 goto do_error; 1232 1233 /* Update the skb. */ 1234 if (merge) { 1235 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1236 } else { 1237 skb_fill_page_desc(skb, i, pfrag->page, 1238 pfrag->offset, copy); 1239 get_page(pfrag->page); 1240 } 1241 pfrag->offset += copy; 1242 } 1243 1244 if (!copied) 1245 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1246 1247 tp->write_seq += copy; 1248 TCP_SKB_CB(skb)->end_seq += copy; 1249 tcp_skb_pcount_set(skb, 0); 1250 1251 copied += copy; 1252 if (!msg_data_left(msg)) { 1253 tcp_tx_timestamp(sk, skb); 1254 goto out; 1255 } 1256 1257 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1258 continue; 1259 1260 if (forced_push(tp)) { 1261 tcp_mark_push(tp, skb); 1262 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1263 } else if (skb == tcp_send_head(sk)) 1264 tcp_push_one(sk, mss_now); 1265 continue; 1266 1267 wait_for_sndbuf: 1268 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1269 wait_for_memory: 1270 if (copied) 1271 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1272 TCP_NAGLE_PUSH, size_goal); 1273 1274 err = sk_stream_wait_memory(sk, &timeo); 1275 if (err != 0) 1276 goto do_error; 1277 1278 mss_now = tcp_send_mss(sk, &size_goal, flags); 1279 } 1280 1281 out: 1282 if (copied) 1283 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1284 out_nopush: 1285 release_sock(sk); 1286 return copied + copied_syn; 1287 1288 do_fault: 1289 if (!skb->len) { 1290 tcp_unlink_write_queue(skb, sk); 1291 /* It is the one place in all of TCP, except connection 1292 * reset, where we can be unlinking the send_head. 1293 */ 1294 tcp_check_send_head(sk, skb); 1295 sk_wmem_free_skb(sk, skb); 1296 } 1297 1298 do_error: 1299 if (copied + copied_syn) 1300 goto out; 1301 out_err: 1302 err = sk_stream_error(sk, flags, err); 1303 /* make sure we wake any epoll edge trigger waiter */ 1304 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1305 sk->sk_write_space(sk); 1306 release_sock(sk); 1307 return err; 1308 } 1309 EXPORT_SYMBOL(tcp_sendmsg); 1310 1311 /* 1312 * Handle reading urgent data. BSD has very simple semantics for 1313 * this, no blocking and very strange errors 8) 1314 */ 1315 1316 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1317 { 1318 struct tcp_sock *tp = tcp_sk(sk); 1319 1320 /* No URG data to read. */ 1321 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1322 tp->urg_data == TCP_URG_READ) 1323 return -EINVAL; /* Yes this is right ! */ 1324 1325 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1326 return -ENOTCONN; 1327 1328 if (tp->urg_data & TCP_URG_VALID) { 1329 int err = 0; 1330 char c = tp->urg_data; 1331 1332 if (!(flags & MSG_PEEK)) 1333 tp->urg_data = TCP_URG_READ; 1334 1335 /* Read urgent data. */ 1336 msg->msg_flags |= MSG_OOB; 1337 1338 if (len > 0) { 1339 if (!(flags & MSG_TRUNC)) 1340 err = memcpy_to_msg(msg, &c, 1); 1341 len = 1; 1342 } else 1343 msg->msg_flags |= MSG_TRUNC; 1344 1345 return err ? -EFAULT : len; 1346 } 1347 1348 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1349 return 0; 1350 1351 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1352 * the available implementations agree in this case: 1353 * this call should never block, independent of the 1354 * blocking state of the socket. 1355 * Mike <pall@rz.uni-karlsruhe.de> 1356 */ 1357 return -EAGAIN; 1358 } 1359 1360 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1361 { 1362 struct sk_buff *skb; 1363 int copied = 0, err = 0; 1364 1365 /* XXX -- need to support SO_PEEK_OFF */ 1366 1367 skb_queue_walk(&sk->sk_write_queue, skb) { 1368 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1369 if (err) 1370 break; 1371 1372 copied += skb->len; 1373 } 1374 1375 return err ?: copied; 1376 } 1377 1378 /* Clean up the receive buffer for full frames taken by the user, 1379 * then send an ACK if necessary. COPIED is the number of bytes 1380 * tcp_recvmsg has given to the user so far, it speeds up the 1381 * calculation of whether or not we must ACK for the sake of 1382 * a window update. 1383 */ 1384 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1385 { 1386 struct tcp_sock *tp = tcp_sk(sk); 1387 bool time_to_ack = false; 1388 1389 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1390 1391 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1392 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1393 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1394 1395 if (inet_csk_ack_scheduled(sk)) { 1396 const struct inet_connection_sock *icsk = inet_csk(sk); 1397 /* Delayed ACKs frequently hit locked sockets during bulk 1398 * receive. */ 1399 if (icsk->icsk_ack.blocked || 1400 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1401 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1402 /* 1403 * If this read emptied read buffer, we send ACK, if 1404 * connection is not bidirectional, user drained 1405 * receive buffer and there was a small segment 1406 * in queue. 1407 */ 1408 (copied > 0 && 1409 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1410 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1411 !icsk->icsk_ack.pingpong)) && 1412 !atomic_read(&sk->sk_rmem_alloc))) 1413 time_to_ack = true; 1414 } 1415 1416 /* We send an ACK if we can now advertise a non-zero window 1417 * which has been raised "significantly". 1418 * 1419 * Even if window raised up to infinity, do not send window open ACK 1420 * in states, where we will not receive more. It is useless. 1421 */ 1422 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1423 __u32 rcv_window_now = tcp_receive_window(tp); 1424 1425 /* Optimize, __tcp_select_window() is not cheap. */ 1426 if (2*rcv_window_now <= tp->window_clamp) { 1427 __u32 new_window = __tcp_select_window(sk); 1428 1429 /* Send ACK now, if this read freed lots of space 1430 * in our buffer. Certainly, new_window is new window. 1431 * We can advertise it now, if it is not less than current one. 1432 * "Lots" means "at least twice" here. 1433 */ 1434 if (new_window && new_window >= 2 * rcv_window_now) 1435 time_to_ack = true; 1436 } 1437 } 1438 if (time_to_ack) 1439 tcp_send_ack(sk); 1440 } 1441 1442 static void tcp_prequeue_process(struct sock *sk) 1443 { 1444 struct sk_buff *skb; 1445 struct tcp_sock *tp = tcp_sk(sk); 1446 1447 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1448 1449 /* RX process wants to run with disabled BHs, though it is not 1450 * necessary */ 1451 local_bh_disable(); 1452 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1453 sk_backlog_rcv(sk, skb); 1454 local_bh_enable(); 1455 1456 /* Clear memory counter. */ 1457 tp->ucopy.memory = 0; 1458 } 1459 1460 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1461 { 1462 struct sk_buff *skb; 1463 u32 offset; 1464 1465 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1466 offset = seq - TCP_SKB_CB(skb)->seq; 1467 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1468 offset--; 1469 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1470 *off = offset; 1471 return skb; 1472 } 1473 /* This looks weird, but this can happen if TCP collapsing 1474 * splitted a fat GRO packet, while we released socket lock 1475 * in skb_splice_bits() 1476 */ 1477 sk_eat_skb(sk, skb); 1478 } 1479 return NULL; 1480 } 1481 1482 /* 1483 * This routine provides an alternative to tcp_recvmsg() for routines 1484 * that would like to handle copying from skbuffs directly in 'sendfile' 1485 * fashion. 1486 * Note: 1487 * - It is assumed that the socket was locked by the caller. 1488 * - The routine does not block. 1489 * - At present, there is no support for reading OOB data 1490 * or for 'peeking' the socket using this routine 1491 * (although both would be easy to implement). 1492 */ 1493 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1494 sk_read_actor_t recv_actor) 1495 { 1496 struct sk_buff *skb; 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 u32 seq = tp->copied_seq; 1499 u32 offset; 1500 int copied = 0; 1501 1502 if (sk->sk_state == TCP_LISTEN) 1503 return -ENOTCONN; 1504 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1505 if (offset < skb->len) { 1506 int used; 1507 size_t len; 1508 1509 len = skb->len - offset; 1510 /* Stop reading if we hit a patch of urgent data */ 1511 if (tp->urg_data) { 1512 u32 urg_offset = tp->urg_seq - seq; 1513 if (urg_offset < len) 1514 len = urg_offset; 1515 if (!len) 1516 break; 1517 } 1518 used = recv_actor(desc, skb, offset, len); 1519 if (used <= 0) { 1520 if (!copied) 1521 copied = used; 1522 break; 1523 } else if (used <= len) { 1524 seq += used; 1525 copied += used; 1526 offset += used; 1527 } 1528 /* If recv_actor drops the lock (e.g. TCP splice 1529 * receive) the skb pointer might be invalid when 1530 * getting here: tcp_collapse might have deleted it 1531 * while aggregating skbs from the socket queue. 1532 */ 1533 skb = tcp_recv_skb(sk, seq - 1, &offset); 1534 if (!skb) 1535 break; 1536 /* TCP coalescing might have appended data to the skb. 1537 * Try to splice more frags 1538 */ 1539 if (offset + 1 != skb->len) 1540 continue; 1541 } 1542 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1543 sk_eat_skb(sk, skb); 1544 ++seq; 1545 break; 1546 } 1547 sk_eat_skb(sk, skb); 1548 if (!desc->count) 1549 break; 1550 tp->copied_seq = seq; 1551 } 1552 tp->copied_seq = seq; 1553 1554 tcp_rcv_space_adjust(sk); 1555 1556 /* Clean up data we have read: This will do ACK frames. */ 1557 if (copied > 0) { 1558 tcp_recv_skb(sk, seq, &offset); 1559 tcp_cleanup_rbuf(sk, copied); 1560 } 1561 return copied; 1562 } 1563 EXPORT_SYMBOL(tcp_read_sock); 1564 1565 /* 1566 * This routine copies from a sock struct into the user buffer. 1567 * 1568 * Technical note: in 2.3 we work on _locked_ socket, so that 1569 * tricks with *seq access order and skb->users are not required. 1570 * Probably, code can be easily improved even more. 1571 */ 1572 1573 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1574 int flags, int *addr_len) 1575 { 1576 struct tcp_sock *tp = tcp_sk(sk); 1577 int copied = 0; 1578 u32 peek_seq; 1579 u32 *seq; 1580 unsigned long used; 1581 int err; 1582 int target; /* Read at least this many bytes */ 1583 long timeo; 1584 struct task_struct *user_recv = NULL; 1585 struct sk_buff *skb, *last; 1586 u32 urg_hole = 0; 1587 1588 if (unlikely(flags & MSG_ERRQUEUE)) 1589 return inet_recv_error(sk, msg, len, addr_len); 1590 1591 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1592 (sk->sk_state == TCP_ESTABLISHED)) 1593 sk_busy_loop(sk, nonblock); 1594 1595 lock_sock(sk); 1596 1597 err = -ENOTCONN; 1598 if (sk->sk_state == TCP_LISTEN) 1599 goto out; 1600 1601 timeo = sock_rcvtimeo(sk, nonblock); 1602 1603 /* Urgent data needs to be handled specially. */ 1604 if (flags & MSG_OOB) 1605 goto recv_urg; 1606 1607 if (unlikely(tp->repair)) { 1608 err = -EPERM; 1609 if (!(flags & MSG_PEEK)) 1610 goto out; 1611 1612 if (tp->repair_queue == TCP_SEND_QUEUE) 1613 goto recv_sndq; 1614 1615 err = -EINVAL; 1616 if (tp->repair_queue == TCP_NO_QUEUE) 1617 goto out; 1618 1619 /* 'common' recv queue MSG_PEEK-ing */ 1620 } 1621 1622 seq = &tp->copied_seq; 1623 if (flags & MSG_PEEK) { 1624 peek_seq = tp->copied_seq; 1625 seq = &peek_seq; 1626 } 1627 1628 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1629 1630 do { 1631 u32 offset; 1632 1633 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1634 if (tp->urg_data && tp->urg_seq == *seq) { 1635 if (copied) 1636 break; 1637 if (signal_pending(current)) { 1638 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1639 break; 1640 } 1641 } 1642 1643 /* Next get a buffer. */ 1644 1645 last = skb_peek_tail(&sk->sk_receive_queue); 1646 skb_queue_walk(&sk->sk_receive_queue, skb) { 1647 last = skb; 1648 /* Now that we have two receive queues this 1649 * shouldn't happen. 1650 */ 1651 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1652 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1653 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1654 flags)) 1655 break; 1656 1657 offset = *seq - TCP_SKB_CB(skb)->seq; 1658 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 1659 offset--; 1660 if (offset < skb->len) 1661 goto found_ok_skb; 1662 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1663 goto found_fin_ok; 1664 WARN(!(flags & MSG_PEEK), 1665 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1666 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1667 } 1668 1669 /* Well, if we have backlog, try to process it now yet. */ 1670 1671 if (copied >= target && !sk->sk_backlog.tail) 1672 break; 1673 1674 if (copied) { 1675 if (sk->sk_err || 1676 sk->sk_state == TCP_CLOSE || 1677 (sk->sk_shutdown & RCV_SHUTDOWN) || 1678 !timeo || 1679 signal_pending(current)) 1680 break; 1681 } else { 1682 if (sock_flag(sk, SOCK_DONE)) 1683 break; 1684 1685 if (sk->sk_err) { 1686 copied = sock_error(sk); 1687 break; 1688 } 1689 1690 if (sk->sk_shutdown & RCV_SHUTDOWN) 1691 break; 1692 1693 if (sk->sk_state == TCP_CLOSE) { 1694 if (!sock_flag(sk, SOCK_DONE)) { 1695 /* This occurs when user tries to read 1696 * from never connected socket. 1697 */ 1698 copied = -ENOTCONN; 1699 break; 1700 } 1701 break; 1702 } 1703 1704 if (!timeo) { 1705 copied = -EAGAIN; 1706 break; 1707 } 1708 1709 if (signal_pending(current)) { 1710 copied = sock_intr_errno(timeo); 1711 break; 1712 } 1713 } 1714 1715 tcp_cleanup_rbuf(sk, copied); 1716 1717 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1718 /* Install new reader */ 1719 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1720 user_recv = current; 1721 tp->ucopy.task = user_recv; 1722 tp->ucopy.msg = msg; 1723 } 1724 1725 tp->ucopy.len = len; 1726 1727 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1728 !(flags & (MSG_PEEK | MSG_TRUNC))); 1729 1730 /* Ugly... If prequeue is not empty, we have to 1731 * process it before releasing socket, otherwise 1732 * order will be broken at second iteration. 1733 * More elegant solution is required!!! 1734 * 1735 * Look: we have the following (pseudo)queues: 1736 * 1737 * 1. packets in flight 1738 * 2. backlog 1739 * 3. prequeue 1740 * 4. receive_queue 1741 * 1742 * Each queue can be processed only if the next ones 1743 * are empty. At this point we have empty receive_queue. 1744 * But prequeue _can_ be not empty after 2nd iteration, 1745 * when we jumped to start of loop because backlog 1746 * processing added something to receive_queue. 1747 * We cannot release_sock(), because backlog contains 1748 * packets arrived _after_ prequeued ones. 1749 * 1750 * Shortly, algorithm is clear --- to process all 1751 * the queues in order. We could make it more directly, 1752 * requeueing packets from backlog to prequeue, if 1753 * is not empty. It is more elegant, but eats cycles, 1754 * unfortunately. 1755 */ 1756 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1757 goto do_prequeue; 1758 1759 /* __ Set realtime policy in scheduler __ */ 1760 } 1761 1762 if (copied >= target) { 1763 /* Do not sleep, just process backlog. */ 1764 release_sock(sk); 1765 lock_sock(sk); 1766 } else { 1767 sk_wait_data(sk, &timeo, last); 1768 } 1769 1770 if (user_recv) { 1771 int chunk; 1772 1773 /* __ Restore normal policy in scheduler __ */ 1774 1775 chunk = len - tp->ucopy.len; 1776 if (chunk != 0) { 1777 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1778 len -= chunk; 1779 copied += chunk; 1780 } 1781 1782 if (tp->rcv_nxt == tp->copied_seq && 1783 !skb_queue_empty(&tp->ucopy.prequeue)) { 1784 do_prequeue: 1785 tcp_prequeue_process(sk); 1786 1787 chunk = len - tp->ucopy.len; 1788 if (chunk != 0) { 1789 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1790 len -= chunk; 1791 copied += chunk; 1792 } 1793 } 1794 } 1795 if ((flags & MSG_PEEK) && 1796 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1797 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1798 current->comm, 1799 task_pid_nr(current)); 1800 peek_seq = tp->copied_seq; 1801 } 1802 continue; 1803 1804 found_ok_skb: 1805 /* Ok so how much can we use? */ 1806 used = skb->len - offset; 1807 if (len < used) 1808 used = len; 1809 1810 /* Do we have urgent data here? */ 1811 if (tp->urg_data) { 1812 u32 urg_offset = tp->urg_seq - *seq; 1813 if (urg_offset < used) { 1814 if (!urg_offset) { 1815 if (!sock_flag(sk, SOCK_URGINLINE)) { 1816 ++*seq; 1817 urg_hole++; 1818 offset++; 1819 used--; 1820 if (!used) 1821 goto skip_copy; 1822 } 1823 } else 1824 used = urg_offset; 1825 } 1826 } 1827 1828 if (!(flags & MSG_TRUNC)) { 1829 err = skb_copy_datagram_msg(skb, offset, msg, used); 1830 if (err) { 1831 /* Exception. Bailout! */ 1832 if (!copied) 1833 copied = -EFAULT; 1834 break; 1835 } 1836 } 1837 1838 *seq += used; 1839 copied += used; 1840 len -= used; 1841 1842 tcp_rcv_space_adjust(sk); 1843 1844 skip_copy: 1845 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1846 tp->urg_data = 0; 1847 tcp_fast_path_check(sk); 1848 } 1849 if (used + offset < skb->len) 1850 continue; 1851 1852 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1853 goto found_fin_ok; 1854 if (!(flags & MSG_PEEK)) 1855 sk_eat_skb(sk, skb); 1856 continue; 1857 1858 found_fin_ok: 1859 /* Process the FIN. */ 1860 ++*seq; 1861 if (!(flags & MSG_PEEK)) 1862 sk_eat_skb(sk, skb); 1863 break; 1864 } while (len > 0); 1865 1866 if (user_recv) { 1867 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1868 int chunk; 1869 1870 tp->ucopy.len = copied > 0 ? len : 0; 1871 1872 tcp_prequeue_process(sk); 1873 1874 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1875 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1876 len -= chunk; 1877 copied += chunk; 1878 } 1879 } 1880 1881 tp->ucopy.task = NULL; 1882 tp->ucopy.len = 0; 1883 } 1884 1885 /* According to UNIX98, msg_name/msg_namelen are ignored 1886 * on connected socket. I was just happy when found this 8) --ANK 1887 */ 1888 1889 /* Clean up data we have read: This will do ACK frames. */ 1890 tcp_cleanup_rbuf(sk, copied); 1891 1892 release_sock(sk); 1893 return copied; 1894 1895 out: 1896 release_sock(sk); 1897 return err; 1898 1899 recv_urg: 1900 err = tcp_recv_urg(sk, msg, len, flags); 1901 goto out; 1902 1903 recv_sndq: 1904 err = tcp_peek_sndq(sk, msg, len); 1905 goto out; 1906 } 1907 EXPORT_SYMBOL(tcp_recvmsg); 1908 1909 void tcp_set_state(struct sock *sk, int state) 1910 { 1911 int oldstate = sk->sk_state; 1912 1913 switch (state) { 1914 case TCP_ESTABLISHED: 1915 if (oldstate != TCP_ESTABLISHED) 1916 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1917 break; 1918 1919 case TCP_CLOSE: 1920 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1921 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1922 1923 sk->sk_prot->unhash(sk); 1924 if (inet_csk(sk)->icsk_bind_hash && 1925 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1926 inet_put_port(sk); 1927 /* fall through */ 1928 default: 1929 if (oldstate == TCP_ESTABLISHED) 1930 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1931 } 1932 1933 /* Change state AFTER socket is unhashed to avoid closed 1934 * socket sitting in hash tables. 1935 */ 1936 sk_state_store(sk, state); 1937 1938 #ifdef STATE_TRACE 1939 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1940 #endif 1941 } 1942 EXPORT_SYMBOL_GPL(tcp_set_state); 1943 1944 /* 1945 * State processing on a close. This implements the state shift for 1946 * sending our FIN frame. Note that we only send a FIN for some 1947 * states. A shutdown() may have already sent the FIN, or we may be 1948 * closed. 1949 */ 1950 1951 static const unsigned char new_state[16] = { 1952 /* current state: new state: action: */ 1953 [0 /* (Invalid) */] = TCP_CLOSE, 1954 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1955 [TCP_SYN_SENT] = TCP_CLOSE, 1956 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1957 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1958 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1959 [TCP_TIME_WAIT] = TCP_CLOSE, 1960 [TCP_CLOSE] = TCP_CLOSE, 1961 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1962 [TCP_LAST_ACK] = TCP_LAST_ACK, 1963 [TCP_LISTEN] = TCP_CLOSE, 1964 [TCP_CLOSING] = TCP_CLOSING, 1965 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1966 }; 1967 1968 static int tcp_close_state(struct sock *sk) 1969 { 1970 int next = (int)new_state[sk->sk_state]; 1971 int ns = next & TCP_STATE_MASK; 1972 1973 tcp_set_state(sk, ns); 1974 1975 return next & TCP_ACTION_FIN; 1976 } 1977 1978 /* 1979 * Shutdown the sending side of a connection. Much like close except 1980 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1981 */ 1982 1983 void tcp_shutdown(struct sock *sk, int how) 1984 { 1985 /* We need to grab some memory, and put together a FIN, 1986 * and then put it into the queue to be sent. 1987 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1988 */ 1989 if (!(how & SEND_SHUTDOWN)) 1990 return; 1991 1992 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1993 if ((1 << sk->sk_state) & 1994 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1995 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1996 /* Clear out any half completed packets. FIN if needed. */ 1997 if (tcp_close_state(sk)) 1998 tcp_send_fin(sk); 1999 } 2000 } 2001 EXPORT_SYMBOL(tcp_shutdown); 2002 2003 bool tcp_check_oom(struct sock *sk, int shift) 2004 { 2005 bool too_many_orphans, out_of_socket_memory; 2006 2007 too_many_orphans = tcp_too_many_orphans(sk, shift); 2008 out_of_socket_memory = tcp_out_of_memory(sk); 2009 2010 if (too_many_orphans) 2011 net_info_ratelimited("too many orphaned sockets\n"); 2012 if (out_of_socket_memory) 2013 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2014 return too_many_orphans || out_of_socket_memory; 2015 } 2016 2017 void tcp_close(struct sock *sk, long timeout) 2018 { 2019 struct sk_buff *skb; 2020 int data_was_unread = 0; 2021 int state; 2022 2023 lock_sock(sk); 2024 sk->sk_shutdown = SHUTDOWN_MASK; 2025 2026 if (sk->sk_state == TCP_LISTEN) { 2027 tcp_set_state(sk, TCP_CLOSE); 2028 2029 /* Special case. */ 2030 inet_csk_listen_stop(sk); 2031 2032 goto adjudge_to_death; 2033 } 2034 2035 /* We need to flush the recv. buffs. We do this only on the 2036 * descriptor close, not protocol-sourced closes, because the 2037 * reader process may not have drained the data yet! 2038 */ 2039 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2040 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2041 2042 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2043 len--; 2044 data_was_unread += len; 2045 __kfree_skb(skb); 2046 } 2047 2048 sk_mem_reclaim(sk); 2049 2050 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2051 if (sk->sk_state == TCP_CLOSE) 2052 goto adjudge_to_death; 2053 2054 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2055 * data was lost. To witness the awful effects of the old behavior of 2056 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2057 * GET in an FTP client, suspend the process, wait for the client to 2058 * advertise a zero window, then kill -9 the FTP client, wheee... 2059 * Note: timeout is always zero in such a case. 2060 */ 2061 if (unlikely(tcp_sk(sk)->repair)) { 2062 sk->sk_prot->disconnect(sk, 0); 2063 } else if (data_was_unread) { 2064 /* Unread data was tossed, zap the connection. */ 2065 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2066 tcp_set_state(sk, TCP_CLOSE); 2067 tcp_send_active_reset(sk, sk->sk_allocation); 2068 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2069 /* Check zero linger _after_ checking for unread data. */ 2070 sk->sk_prot->disconnect(sk, 0); 2071 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2072 } else if (tcp_close_state(sk)) { 2073 /* We FIN if the application ate all the data before 2074 * zapping the connection. 2075 */ 2076 2077 /* RED-PEN. Formally speaking, we have broken TCP state 2078 * machine. State transitions: 2079 * 2080 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2081 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2082 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2083 * 2084 * are legal only when FIN has been sent (i.e. in window), 2085 * rather than queued out of window. Purists blame. 2086 * 2087 * F.e. "RFC state" is ESTABLISHED, 2088 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2089 * 2090 * The visible declinations are that sometimes 2091 * we enter time-wait state, when it is not required really 2092 * (harmless), do not send active resets, when they are 2093 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2094 * they look as CLOSING or LAST_ACK for Linux) 2095 * Probably, I missed some more holelets. 2096 * --ANK 2097 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2098 * in a single packet! (May consider it later but will 2099 * probably need API support or TCP_CORK SYN-ACK until 2100 * data is written and socket is closed.) 2101 */ 2102 tcp_send_fin(sk); 2103 } 2104 2105 sk_stream_wait_close(sk, timeout); 2106 2107 adjudge_to_death: 2108 state = sk->sk_state; 2109 sock_hold(sk); 2110 sock_orphan(sk); 2111 2112 /* It is the last release_sock in its life. It will remove backlog. */ 2113 release_sock(sk); 2114 2115 2116 /* Now socket is owned by kernel and we acquire BH lock 2117 to finish close. No need to check for user refs. 2118 */ 2119 local_bh_disable(); 2120 bh_lock_sock(sk); 2121 WARN_ON(sock_owned_by_user(sk)); 2122 2123 percpu_counter_inc(sk->sk_prot->orphan_count); 2124 2125 /* Have we already been destroyed by a softirq or backlog? */ 2126 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2127 goto out; 2128 2129 /* This is a (useful) BSD violating of the RFC. There is a 2130 * problem with TCP as specified in that the other end could 2131 * keep a socket open forever with no application left this end. 2132 * We use a 1 minute timeout (about the same as BSD) then kill 2133 * our end. If they send after that then tough - BUT: long enough 2134 * that we won't make the old 4*rto = almost no time - whoops 2135 * reset mistake. 2136 * 2137 * Nope, it was not mistake. It is really desired behaviour 2138 * f.e. on http servers, when such sockets are useless, but 2139 * consume significant resources. Let's do it with special 2140 * linger2 option. --ANK 2141 */ 2142 2143 if (sk->sk_state == TCP_FIN_WAIT2) { 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 if (tp->linger2 < 0) { 2146 tcp_set_state(sk, TCP_CLOSE); 2147 tcp_send_active_reset(sk, GFP_ATOMIC); 2148 NET_INC_STATS_BH(sock_net(sk), 2149 LINUX_MIB_TCPABORTONLINGER); 2150 } else { 2151 const int tmo = tcp_fin_time(sk); 2152 2153 if (tmo > TCP_TIMEWAIT_LEN) { 2154 inet_csk_reset_keepalive_timer(sk, 2155 tmo - TCP_TIMEWAIT_LEN); 2156 } else { 2157 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2158 goto out; 2159 } 2160 } 2161 } 2162 if (sk->sk_state != TCP_CLOSE) { 2163 sk_mem_reclaim(sk); 2164 if (tcp_check_oom(sk, 0)) { 2165 tcp_set_state(sk, TCP_CLOSE); 2166 tcp_send_active_reset(sk, GFP_ATOMIC); 2167 NET_INC_STATS_BH(sock_net(sk), 2168 LINUX_MIB_TCPABORTONMEMORY); 2169 } 2170 } 2171 2172 if (sk->sk_state == TCP_CLOSE) { 2173 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2174 /* We could get here with a non-NULL req if the socket is 2175 * aborted (e.g., closed with unread data) before 3WHS 2176 * finishes. 2177 */ 2178 if (req) 2179 reqsk_fastopen_remove(sk, req, false); 2180 inet_csk_destroy_sock(sk); 2181 } 2182 /* Otherwise, socket is reprieved until protocol close. */ 2183 2184 out: 2185 bh_unlock_sock(sk); 2186 local_bh_enable(); 2187 sock_put(sk); 2188 } 2189 EXPORT_SYMBOL(tcp_close); 2190 2191 /* These states need RST on ABORT according to RFC793 */ 2192 2193 static inline bool tcp_need_reset(int state) 2194 { 2195 return (1 << state) & 2196 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2197 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2198 } 2199 2200 int tcp_disconnect(struct sock *sk, int flags) 2201 { 2202 struct inet_sock *inet = inet_sk(sk); 2203 struct inet_connection_sock *icsk = inet_csk(sk); 2204 struct tcp_sock *tp = tcp_sk(sk); 2205 int err = 0; 2206 int old_state = sk->sk_state; 2207 2208 if (old_state != TCP_CLOSE) 2209 tcp_set_state(sk, TCP_CLOSE); 2210 2211 /* ABORT function of RFC793 */ 2212 if (old_state == TCP_LISTEN) { 2213 inet_csk_listen_stop(sk); 2214 } else if (unlikely(tp->repair)) { 2215 sk->sk_err = ECONNABORTED; 2216 } else if (tcp_need_reset(old_state) || 2217 (tp->snd_nxt != tp->write_seq && 2218 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2219 /* The last check adjusts for discrepancy of Linux wrt. RFC 2220 * states 2221 */ 2222 tcp_send_active_reset(sk, gfp_any()); 2223 sk->sk_err = ECONNRESET; 2224 } else if (old_state == TCP_SYN_SENT) 2225 sk->sk_err = ECONNRESET; 2226 2227 tcp_clear_xmit_timers(sk); 2228 __skb_queue_purge(&sk->sk_receive_queue); 2229 tcp_write_queue_purge(sk); 2230 __skb_queue_purge(&tp->out_of_order_queue); 2231 2232 inet->inet_dport = 0; 2233 2234 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2235 inet_reset_saddr(sk); 2236 2237 sk->sk_shutdown = 0; 2238 sock_reset_flag(sk, SOCK_DONE); 2239 tp->srtt_us = 0; 2240 tp->write_seq += tp->max_window + 2; 2241 if (tp->write_seq == 0) 2242 tp->write_seq = 1; 2243 icsk->icsk_backoff = 0; 2244 tp->snd_cwnd = 2; 2245 icsk->icsk_probes_out = 0; 2246 tp->packets_out = 0; 2247 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2248 tp->snd_cwnd_cnt = 0; 2249 tp->window_clamp = 0; 2250 tcp_set_ca_state(sk, TCP_CA_Open); 2251 tcp_clear_retrans(tp); 2252 inet_csk_delack_init(sk); 2253 tcp_init_send_head(sk); 2254 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2255 __sk_dst_reset(sk); 2256 2257 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2258 2259 sk->sk_error_report(sk); 2260 return err; 2261 } 2262 EXPORT_SYMBOL(tcp_disconnect); 2263 2264 static inline bool tcp_can_repair_sock(const struct sock *sk) 2265 { 2266 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2267 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2268 } 2269 2270 static int tcp_repair_options_est(struct tcp_sock *tp, 2271 struct tcp_repair_opt __user *optbuf, unsigned int len) 2272 { 2273 struct tcp_repair_opt opt; 2274 2275 while (len >= sizeof(opt)) { 2276 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2277 return -EFAULT; 2278 2279 optbuf++; 2280 len -= sizeof(opt); 2281 2282 switch (opt.opt_code) { 2283 case TCPOPT_MSS: 2284 tp->rx_opt.mss_clamp = opt.opt_val; 2285 break; 2286 case TCPOPT_WINDOW: 2287 { 2288 u16 snd_wscale = opt.opt_val & 0xFFFF; 2289 u16 rcv_wscale = opt.opt_val >> 16; 2290 2291 if (snd_wscale > 14 || rcv_wscale > 14) 2292 return -EFBIG; 2293 2294 tp->rx_opt.snd_wscale = snd_wscale; 2295 tp->rx_opt.rcv_wscale = rcv_wscale; 2296 tp->rx_opt.wscale_ok = 1; 2297 } 2298 break; 2299 case TCPOPT_SACK_PERM: 2300 if (opt.opt_val != 0) 2301 return -EINVAL; 2302 2303 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2304 if (sysctl_tcp_fack) 2305 tcp_enable_fack(tp); 2306 break; 2307 case TCPOPT_TIMESTAMP: 2308 if (opt.opt_val != 0) 2309 return -EINVAL; 2310 2311 tp->rx_opt.tstamp_ok = 1; 2312 break; 2313 } 2314 } 2315 2316 return 0; 2317 } 2318 2319 /* 2320 * Socket option code for TCP. 2321 */ 2322 static int do_tcp_setsockopt(struct sock *sk, int level, 2323 int optname, char __user *optval, unsigned int optlen) 2324 { 2325 struct tcp_sock *tp = tcp_sk(sk); 2326 struct inet_connection_sock *icsk = inet_csk(sk); 2327 int val; 2328 int err = 0; 2329 2330 /* These are data/string values, all the others are ints */ 2331 switch (optname) { 2332 case TCP_CONGESTION: { 2333 char name[TCP_CA_NAME_MAX]; 2334 2335 if (optlen < 1) 2336 return -EINVAL; 2337 2338 val = strncpy_from_user(name, optval, 2339 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2340 if (val < 0) 2341 return -EFAULT; 2342 name[val] = 0; 2343 2344 lock_sock(sk); 2345 err = tcp_set_congestion_control(sk, name); 2346 release_sock(sk); 2347 return err; 2348 } 2349 default: 2350 /* fallthru */ 2351 break; 2352 } 2353 2354 if (optlen < sizeof(int)) 2355 return -EINVAL; 2356 2357 if (get_user(val, (int __user *)optval)) 2358 return -EFAULT; 2359 2360 lock_sock(sk); 2361 2362 switch (optname) { 2363 case TCP_MAXSEG: 2364 /* Values greater than interface MTU won't take effect. However 2365 * at the point when this call is done we typically don't yet 2366 * know which interface is going to be used */ 2367 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2368 err = -EINVAL; 2369 break; 2370 } 2371 tp->rx_opt.user_mss = val; 2372 break; 2373 2374 case TCP_NODELAY: 2375 if (val) { 2376 /* TCP_NODELAY is weaker than TCP_CORK, so that 2377 * this option on corked socket is remembered, but 2378 * it is not activated until cork is cleared. 2379 * 2380 * However, when TCP_NODELAY is set we make 2381 * an explicit push, which overrides even TCP_CORK 2382 * for currently queued segments. 2383 */ 2384 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2385 tcp_push_pending_frames(sk); 2386 } else { 2387 tp->nonagle &= ~TCP_NAGLE_OFF; 2388 } 2389 break; 2390 2391 case TCP_THIN_LINEAR_TIMEOUTS: 2392 if (val < 0 || val > 1) 2393 err = -EINVAL; 2394 else 2395 tp->thin_lto = val; 2396 break; 2397 2398 case TCP_THIN_DUPACK: 2399 if (val < 0 || val > 1) 2400 err = -EINVAL; 2401 else { 2402 tp->thin_dupack = val; 2403 if (tp->thin_dupack) 2404 tcp_disable_early_retrans(tp); 2405 } 2406 break; 2407 2408 case TCP_REPAIR: 2409 if (!tcp_can_repair_sock(sk)) 2410 err = -EPERM; 2411 else if (val == 1) { 2412 tp->repair = 1; 2413 sk->sk_reuse = SK_FORCE_REUSE; 2414 tp->repair_queue = TCP_NO_QUEUE; 2415 } else if (val == 0) { 2416 tp->repair = 0; 2417 sk->sk_reuse = SK_NO_REUSE; 2418 tcp_send_window_probe(sk); 2419 } else 2420 err = -EINVAL; 2421 2422 break; 2423 2424 case TCP_REPAIR_QUEUE: 2425 if (!tp->repair) 2426 err = -EPERM; 2427 else if (val < TCP_QUEUES_NR) 2428 tp->repair_queue = val; 2429 else 2430 err = -EINVAL; 2431 break; 2432 2433 case TCP_QUEUE_SEQ: 2434 if (sk->sk_state != TCP_CLOSE) 2435 err = -EPERM; 2436 else if (tp->repair_queue == TCP_SEND_QUEUE) 2437 tp->write_seq = val; 2438 else if (tp->repair_queue == TCP_RECV_QUEUE) 2439 tp->rcv_nxt = val; 2440 else 2441 err = -EINVAL; 2442 break; 2443 2444 case TCP_REPAIR_OPTIONS: 2445 if (!tp->repair) 2446 err = -EINVAL; 2447 else if (sk->sk_state == TCP_ESTABLISHED) 2448 err = tcp_repair_options_est(tp, 2449 (struct tcp_repair_opt __user *)optval, 2450 optlen); 2451 else 2452 err = -EPERM; 2453 break; 2454 2455 case TCP_CORK: 2456 /* When set indicates to always queue non-full frames. 2457 * Later the user clears this option and we transmit 2458 * any pending partial frames in the queue. This is 2459 * meant to be used alongside sendfile() to get properly 2460 * filled frames when the user (for example) must write 2461 * out headers with a write() call first and then use 2462 * sendfile to send out the data parts. 2463 * 2464 * TCP_CORK can be set together with TCP_NODELAY and it is 2465 * stronger than TCP_NODELAY. 2466 */ 2467 if (val) { 2468 tp->nonagle |= TCP_NAGLE_CORK; 2469 } else { 2470 tp->nonagle &= ~TCP_NAGLE_CORK; 2471 if (tp->nonagle&TCP_NAGLE_OFF) 2472 tp->nonagle |= TCP_NAGLE_PUSH; 2473 tcp_push_pending_frames(sk); 2474 } 2475 break; 2476 2477 case TCP_KEEPIDLE: 2478 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2479 err = -EINVAL; 2480 else { 2481 tp->keepalive_time = val * HZ; 2482 if (sock_flag(sk, SOCK_KEEPOPEN) && 2483 !((1 << sk->sk_state) & 2484 (TCPF_CLOSE | TCPF_LISTEN))) { 2485 u32 elapsed = keepalive_time_elapsed(tp); 2486 if (tp->keepalive_time > elapsed) 2487 elapsed = tp->keepalive_time - elapsed; 2488 else 2489 elapsed = 0; 2490 inet_csk_reset_keepalive_timer(sk, elapsed); 2491 } 2492 } 2493 break; 2494 case TCP_KEEPINTVL: 2495 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2496 err = -EINVAL; 2497 else 2498 tp->keepalive_intvl = val * HZ; 2499 break; 2500 case TCP_KEEPCNT: 2501 if (val < 1 || val > MAX_TCP_KEEPCNT) 2502 err = -EINVAL; 2503 else 2504 tp->keepalive_probes = val; 2505 break; 2506 case TCP_SYNCNT: 2507 if (val < 1 || val > MAX_TCP_SYNCNT) 2508 err = -EINVAL; 2509 else 2510 icsk->icsk_syn_retries = val; 2511 break; 2512 2513 case TCP_SAVE_SYN: 2514 if (val < 0 || val > 1) 2515 err = -EINVAL; 2516 else 2517 tp->save_syn = val; 2518 break; 2519 2520 case TCP_LINGER2: 2521 if (val < 0) 2522 tp->linger2 = -1; 2523 else if (val > sysctl_tcp_fin_timeout / HZ) 2524 tp->linger2 = 0; 2525 else 2526 tp->linger2 = val * HZ; 2527 break; 2528 2529 case TCP_DEFER_ACCEPT: 2530 /* Translate value in seconds to number of retransmits */ 2531 icsk->icsk_accept_queue.rskq_defer_accept = 2532 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2533 TCP_RTO_MAX / HZ); 2534 break; 2535 2536 case TCP_WINDOW_CLAMP: 2537 if (!val) { 2538 if (sk->sk_state != TCP_CLOSE) { 2539 err = -EINVAL; 2540 break; 2541 } 2542 tp->window_clamp = 0; 2543 } else 2544 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2545 SOCK_MIN_RCVBUF / 2 : val; 2546 break; 2547 2548 case TCP_QUICKACK: 2549 if (!val) { 2550 icsk->icsk_ack.pingpong = 1; 2551 } else { 2552 icsk->icsk_ack.pingpong = 0; 2553 if ((1 << sk->sk_state) & 2554 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2555 inet_csk_ack_scheduled(sk)) { 2556 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2557 tcp_cleanup_rbuf(sk, 1); 2558 if (!(val & 1)) 2559 icsk->icsk_ack.pingpong = 1; 2560 } 2561 } 2562 break; 2563 2564 #ifdef CONFIG_TCP_MD5SIG 2565 case TCP_MD5SIG: 2566 /* Read the IP->Key mappings from userspace */ 2567 err = tp->af_specific->md5_parse(sk, optval, optlen); 2568 break; 2569 #endif 2570 case TCP_USER_TIMEOUT: 2571 /* Cap the max time in ms TCP will retry or probe the window 2572 * before giving up and aborting (ETIMEDOUT) a connection. 2573 */ 2574 if (val < 0) 2575 err = -EINVAL; 2576 else 2577 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2578 break; 2579 2580 case TCP_FASTOPEN: 2581 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2582 TCPF_LISTEN))) { 2583 tcp_fastopen_init_key_once(true); 2584 2585 fastopen_queue_tune(sk, val); 2586 } else { 2587 err = -EINVAL; 2588 } 2589 break; 2590 case TCP_TIMESTAMP: 2591 if (!tp->repair) 2592 err = -EPERM; 2593 else 2594 tp->tsoffset = val - tcp_time_stamp; 2595 break; 2596 case TCP_NOTSENT_LOWAT: 2597 tp->notsent_lowat = val; 2598 sk->sk_write_space(sk); 2599 break; 2600 default: 2601 err = -ENOPROTOOPT; 2602 break; 2603 } 2604 2605 release_sock(sk); 2606 return err; 2607 } 2608 2609 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2610 unsigned int optlen) 2611 { 2612 const struct inet_connection_sock *icsk = inet_csk(sk); 2613 2614 if (level != SOL_TCP) 2615 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2616 optval, optlen); 2617 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2618 } 2619 EXPORT_SYMBOL(tcp_setsockopt); 2620 2621 #ifdef CONFIG_COMPAT 2622 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2623 char __user *optval, unsigned int optlen) 2624 { 2625 if (level != SOL_TCP) 2626 return inet_csk_compat_setsockopt(sk, level, optname, 2627 optval, optlen); 2628 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2629 } 2630 EXPORT_SYMBOL(compat_tcp_setsockopt); 2631 #endif 2632 2633 /* Return information about state of tcp endpoint in API format. */ 2634 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2635 { 2636 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2637 const struct inet_connection_sock *icsk = inet_csk(sk); 2638 u32 now = tcp_time_stamp; 2639 unsigned int start; 2640 u32 rate; 2641 2642 memset(info, 0, sizeof(*info)); 2643 if (sk->sk_type != SOCK_STREAM) 2644 return; 2645 2646 info->tcpi_state = sk_state_load(sk); 2647 2648 info->tcpi_ca_state = icsk->icsk_ca_state; 2649 info->tcpi_retransmits = icsk->icsk_retransmits; 2650 info->tcpi_probes = icsk->icsk_probes_out; 2651 info->tcpi_backoff = icsk->icsk_backoff; 2652 2653 if (tp->rx_opt.tstamp_ok) 2654 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2655 if (tcp_is_sack(tp)) 2656 info->tcpi_options |= TCPI_OPT_SACK; 2657 if (tp->rx_opt.wscale_ok) { 2658 info->tcpi_options |= TCPI_OPT_WSCALE; 2659 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2660 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2661 } 2662 2663 if (tp->ecn_flags & TCP_ECN_OK) 2664 info->tcpi_options |= TCPI_OPT_ECN; 2665 if (tp->ecn_flags & TCP_ECN_SEEN) 2666 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2667 if (tp->syn_data_acked) 2668 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2669 2670 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2671 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2672 info->tcpi_snd_mss = tp->mss_cache; 2673 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2674 2675 if (info->tcpi_state == TCP_LISTEN) { 2676 info->tcpi_unacked = sk->sk_ack_backlog; 2677 info->tcpi_sacked = sk->sk_max_ack_backlog; 2678 } else { 2679 info->tcpi_unacked = tp->packets_out; 2680 info->tcpi_sacked = tp->sacked_out; 2681 } 2682 info->tcpi_lost = tp->lost_out; 2683 info->tcpi_retrans = tp->retrans_out; 2684 info->tcpi_fackets = tp->fackets_out; 2685 2686 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2687 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2688 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2689 2690 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2691 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2692 info->tcpi_rtt = tp->srtt_us >> 3; 2693 info->tcpi_rttvar = tp->mdev_us >> 2; 2694 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2695 info->tcpi_snd_cwnd = tp->snd_cwnd; 2696 info->tcpi_advmss = tp->advmss; 2697 info->tcpi_reordering = tp->reordering; 2698 2699 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2700 info->tcpi_rcv_space = tp->rcvq_space.space; 2701 2702 info->tcpi_total_retrans = tp->total_retrans; 2703 2704 rate = READ_ONCE(sk->sk_pacing_rate); 2705 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL; 2706 2707 rate = READ_ONCE(sk->sk_max_pacing_rate); 2708 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL; 2709 2710 do { 2711 start = u64_stats_fetch_begin_irq(&tp->syncp); 2712 info->tcpi_bytes_acked = tp->bytes_acked; 2713 info->tcpi_bytes_received = tp->bytes_received; 2714 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2715 info->tcpi_segs_out = tp->segs_out; 2716 info->tcpi_segs_in = tp->segs_in; 2717 } 2718 EXPORT_SYMBOL_GPL(tcp_get_info); 2719 2720 static int do_tcp_getsockopt(struct sock *sk, int level, 2721 int optname, char __user *optval, int __user *optlen) 2722 { 2723 struct inet_connection_sock *icsk = inet_csk(sk); 2724 struct tcp_sock *tp = tcp_sk(sk); 2725 int val, len; 2726 2727 if (get_user(len, optlen)) 2728 return -EFAULT; 2729 2730 len = min_t(unsigned int, len, sizeof(int)); 2731 2732 if (len < 0) 2733 return -EINVAL; 2734 2735 switch (optname) { 2736 case TCP_MAXSEG: 2737 val = tp->mss_cache; 2738 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2739 val = tp->rx_opt.user_mss; 2740 if (tp->repair) 2741 val = tp->rx_opt.mss_clamp; 2742 break; 2743 case TCP_NODELAY: 2744 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2745 break; 2746 case TCP_CORK: 2747 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2748 break; 2749 case TCP_KEEPIDLE: 2750 val = keepalive_time_when(tp) / HZ; 2751 break; 2752 case TCP_KEEPINTVL: 2753 val = keepalive_intvl_when(tp) / HZ; 2754 break; 2755 case TCP_KEEPCNT: 2756 val = keepalive_probes(tp); 2757 break; 2758 case TCP_SYNCNT: 2759 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2760 break; 2761 case TCP_LINGER2: 2762 val = tp->linger2; 2763 if (val >= 0) 2764 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2765 break; 2766 case TCP_DEFER_ACCEPT: 2767 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2768 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2769 break; 2770 case TCP_WINDOW_CLAMP: 2771 val = tp->window_clamp; 2772 break; 2773 case TCP_INFO: { 2774 struct tcp_info info; 2775 2776 if (get_user(len, optlen)) 2777 return -EFAULT; 2778 2779 tcp_get_info(sk, &info); 2780 2781 len = min_t(unsigned int, len, sizeof(info)); 2782 if (put_user(len, optlen)) 2783 return -EFAULT; 2784 if (copy_to_user(optval, &info, len)) 2785 return -EFAULT; 2786 return 0; 2787 } 2788 case TCP_CC_INFO: { 2789 const struct tcp_congestion_ops *ca_ops; 2790 union tcp_cc_info info; 2791 size_t sz = 0; 2792 int attr; 2793 2794 if (get_user(len, optlen)) 2795 return -EFAULT; 2796 2797 ca_ops = icsk->icsk_ca_ops; 2798 if (ca_ops && ca_ops->get_info) 2799 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2800 2801 len = min_t(unsigned int, len, sz); 2802 if (put_user(len, optlen)) 2803 return -EFAULT; 2804 if (copy_to_user(optval, &info, len)) 2805 return -EFAULT; 2806 return 0; 2807 } 2808 case TCP_QUICKACK: 2809 val = !icsk->icsk_ack.pingpong; 2810 break; 2811 2812 case TCP_CONGESTION: 2813 if (get_user(len, optlen)) 2814 return -EFAULT; 2815 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2816 if (put_user(len, optlen)) 2817 return -EFAULT; 2818 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2819 return -EFAULT; 2820 return 0; 2821 2822 case TCP_THIN_LINEAR_TIMEOUTS: 2823 val = tp->thin_lto; 2824 break; 2825 case TCP_THIN_DUPACK: 2826 val = tp->thin_dupack; 2827 break; 2828 2829 case TCP_REPAIR: 2830 val = tp->repair; 2831 break; 2832 2833 case TCP_REPAIR_QUEUE: 2834 if (tp->repair) 2835 val = tp->repair_queue; 2836 else 2837 return -EINVAL; 2838 break; 2839 2840 case TCP_QUEUE_SEQ: 2841 if (tp->repair_queue == TCP_SEND_QUEUE) 2842 val = tp->write_seq; 2843 else if (tp->repair_queue == TCP_RECV_QUEUE) 2844 val = tp->rcv_nxt; 2845 else 2846 return -EINVAL; 2847 break; 2848 2849 case TCP_USER_TIMEOUT: 2850 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2851 break; 2852 2853 case TCP_FASTOPEN: 2854 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2855 break; 2856 2857 case TCP_TIMESTAMP: 2858 val = tcp_time_stamp + tp->tsoffset; 2859 break; 2860 case TCP_NOTSENT_LOWAT: 2861 val = tp->notsent_lowat; 2862 break; 2863 case TCP_SAVE_SYN: 2864 val = tp->save_syn; 2865 break; 2866 case TCP_SAVED_SYN: { 2867 if (get_user(len, optlen)) 2868 return -EFAULT; 2869 2870 lock_sock(sk); 2871 if (tp->saved_syn) { 2872 if (len < tp->saved_syn[0]) { 2873 if (put_user(tp->saved_syn[0], optlen)) { 2874 release_sock(sk); 2875 return -EFAULT; 2876 } 2877 release_sock(sk); 2878 return -EINVAL; 2879 } 2880 len = tp->saved_syn[0]; 2881 if (put_user(len, optlen)) { 2882 release_sock(sk); 2883 return -EFAULT; 2884 } 2885 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 2886 release_sock(sk); 2887 return -EFAULT; 2888 } 2889 tcp_saved_syn_free(tp); 2890 release_sock(sk); 2891 } else { 2892 release_sock(sk); 2893 len = 0; 2894 if (put_user(len, optlen)) 2895 return -EFAULT; 2896 } 2897 return 0; 2898 } 2899 default: 2900 return -ENOPROTOOPT; 2901 } 2902 2903 if (put_user(len, optlen)) 2904 return -EFAULT; 2905 if (copy_to_user(optval, &val, len)) 2906 return -EFAULT; 2907 return 0; 2908 } 2909 2910 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2911 int __user *optlen) 2912 { 2913 struct inet_connection_sock *icsk = inet_csk(sk); 2914 2915 if (level != SOL_TCP) 2916 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2917 optval, optlen); 2918 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2919 } 2920 EXPORT_SYMBOL(tcp_getsockopt); 2921 2922 #ifdef CONFIG_COMPAT 2923 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2924 char __user *optval, int __user *optlen) 2925 { 2926 if (level != SOL_TCP) 2927 return inet_csk_compat_getsockopt(sk, level, optname, 2928 optval, optlen); 2929 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2930 } 2931 EXPORT_SYMBOL(compat_tcp_getsockopt); 2932 #endif 2933 2934 #ifdef CONFIG_TCP_MD5SIG 2935 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2936 static DEFINE_MUTEX(tcp_md5sig_mutex); 2937 static bool tcp_md5sig_pool_populated = false; 2938 2939 static void __tcp_alloc_md5sig_pool(void) 2940 { 2941 int cpu; 2942 2943 for_each_possible_cpu(cpu) { 2944 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) { 2945 struct crypto_hash *hash; 2946 2947 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2948 if (IS_ERR_OR_NULL(hash)) 2949 return; 2950 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash; 2951 } 2952 } 2953 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2954 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2955 */ 2956 smp_wmb(); 2957 tcp_md5sig_pool_populated = true; 2958 } 2959 2960 bool tcp_alloc_md5sig_pool(void) 2961 { 2962 if (unlikely(!tcp_md5sig_pool_populated)) { 2963 mutex_lock(&tcp_md5sig_mutex); 2964 2965 if (!tcp_md5sig_pool_populated) 2966 __tcp_alloc_md5sig_pool(); 2967 2968 mutex_unlock(&tcp_md5sig_mutex); 2969 } 2970 return tcp_md5sig_pool_populated; 2971 } 2972 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2973 2974 2975 /** 2976 * tcp_get_md5sig_pool - get md5sig_pool for this user 2977 * 2978 * We use percpu structure, so if we succeed, we exit with preemption 2979 * and BH disabled, to make sure another thread or softirq handling 2980 * wont try to get same context. 2981 */ 2982 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2983 { 2984 local_bh_disable(); 2985 2986 if (tcp_md5sig_pool_populated) { 2987 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 2988 smp_rmb(); 2989 return this_cpu_ptr(&tcp_md5sig_pool); 2990 } 2991 local_bh_enable(); 2992 return NULL; 2993 } 2994 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2995 2996 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2997 const struct tcphdr *th) 2998 { 2999 struct scatterlist sg; 3000 struct tcphdr hdr; 3001 int err; 3002 3003 /* We are not allowed to change tcphdr, make a local copy */ 3004 memcpy(&hdr, th, sizeof(hdr)); 3005 hdr.check = 0; 3006 3007 /* options aren't included in the hash */ 3008 sg_init_one(&sg, &hdr, sizeof(hdr)); 3009 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3010 return err; 3011 } 3012 EXPORT_SYMBOL(tcp_md5_hash_header); 3013 3014 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3015 const struct sk_buff *skb, unsigned int header_len) 3016 { 3017 struct scatterlist sg; 3018 const struct tcphdr *tp = tcp_hdr(skb); 3019 struct hash_desc *desc = &hp->md5_desc; 3020 unsigned int i; 3021 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3022 skb_headlen(skb) - header_len : 0; 3023 const struct skb_shared_info *shi = skb_shinfo(skb); 3024 struct sk_buff *frag_iter; 3025 3026 sg_init_table(&sg, 1); 3027 3028 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3029 if (crypto_hash_update(desc, &sg, head_data_len)) 3030 return 1; 3031 3032 for (i = 0; i < shi->nr_frags; ++i) { 3033 const struct skb_frag_struct *f = &shi->frags[i]; 3034 unsigned int offset = f->page_offset; 3035 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3036 3037 sg_set_page(&sg, page, skb_frag_size(f), 3038 offset_in_page(offset)); 3039 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3040 return 1; 3041 } 3042 3043 skb_walk_frags(skb, frag_iter) 3044 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3045 return 1; 3046 3047 return 0; 3048 } 3049 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3050 3051 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3052 { 3053 struct scatterlist sg; 3054 3055 sg_init_one(&sg, key->key, key->keylen); 3056 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3057 } 3058 EXPORT_SYMBOL(tcp_md5_hash_key); 3059 3060 #endif 3061 3062 void tcp_done(struct sock *sk) 3063 { 3064 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3065 3066 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3067 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3068 3069 tcp_set_state(sk, TCP_CLOSE); 3070 tcp_clear_xmit_timers(sk); 3071 if (req) 3072 reqsk_fastopen_remove(sk, req, false); 3073 3074 sk->sk_shutdown = SHUTDOWN_MASK; 3075 3076 if (!sock_flag(sk, SOCK_DEAD)) 3077 sk->sk_state_change(sk); 3078 else 3079 inet_csk_destroy_sock(sk); 3080 } 3081 EXPORT_SYMBOL_GPL(tcp_done); 3082 3083 extern struct tcp_congestion_ops tcp_reno; 3084 3085 static __initdata unsigned long thash_entries; 3086 static int __init set_thash_entries(char *str) 3087 { 3088 ssize_t ret; 3089 3090 if (!str) 3091 return 0; 3092 3093 ret = kstrtoul(str, 0, &thash_entries); 3094 if (ret) 3095 return 0; 3096 3097 return 1; 3098 } 3099 __setup("thash_entries=", set_thash_entries); 3100 3101 static void __init tcp_init_mem(void) 3102 { 3103 unsigned long limit = nr_free_buffer_pages() / 16; 3104 3105 limit = max(limit, 128UL); 3106 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3107 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3108 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3109 } 3110 3111 void __init tcp_init(void) 3112 { 3113 unsigned long limit; 3114 int max_rshare, max_wshare, cnt; 3115 unsigned int i; 3116 3117 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb)); 3118 3119 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3120 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3121 tcp_hashinfo.bind_bucket_cachep = 3122 kmem_cache_create("tcp_bind_bucket", 3123 sizeof(struct inet_bind_bucket), 0, 3124 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3125 3126 /* Size and allocate the main established and bind bucket 3127 * hash tables. 3128 * 3129 * The methodology is similar to that of the buffer cache. 3130 */ 3131 tcp_hashinfo.ehash = 3132 alloc_large_system_hash("TCP established", 3133 sizeof(struct inet_ehash_bucket), 3134 thash_entries, 3135 17, /* one slot per 128 KB of memory */ 3136 0, 3137 NULL, 3138 &tcp_hashinfo.ehash_mask, 3139 0, 3140 thash_entries ? 0 : 512 * 1024); 3141 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3142 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3143 3144 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3145 panic("TCP: failed to alloc ehash_locks"); 3146 tcp_hashinfo.bhash = 3147 alloc_large_system_hash("TCP bind", 3148 sizeof(struct inet_bind_hashbucket), 3149 tcp_hashinfo.ehash_mask + 1, 3150 17, /* one slot per 128 KB of memory */ 3151 0, 3152 &tcp_hashinfo.bhash_size, 3153 NULL, 3154 0, 3155 64 * 1024); 3156 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3157 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3158 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3159 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3160 } 3161 3162 3163 cnt = tcp_hashinfo.ehash_mask + 1; 3164 3165 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3166 sysctl_tcp_max_orphans = cnt / 2; 3167 sysctl_max_syn_backlog = max(128, cnt / 256); 3168 3169 tcp_init_mem(); 3170 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3171 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3172 max_wshare = min(4UL*1024*1024, limit); 3173 max_rshare = min(6UL*1024*1024, limit); 3174 3175 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3176 sysctl_tcp_wmem[1] = 16*1024; 3177 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3178 3179 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3180 sysctl_tcp_rmem[1] = 87380; 3181 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3182 3183 pr_info("Hash tables configured (established %u bind %u)\n", 3184 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3185 3186 tcp_metrics_init(); 3187 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3188 tcp_tasklet_init(); 3189 } 3190