1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #include <linux/kernel.h> 249 #include <linux/module.h> 250 #include <linux/types.h> 251 #include <linux/fcntl.h> 252 #include <linux/poll.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/bootmem.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/crypto.h> 267 #include <linux/time.h> 268 #include <linux/slab.h> 269 270 #include <net/icmp.h> 271 #include <net/tcp.h> 272 #include <net/xfrm.h> 273 #include <net/ip.h> 274 #include <net/netdma.h> 275 #include <net/sock.h> 276 277 #include <asm/uaccess.h> 278 #include <asm/ioctls.h> 279 280 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 281 282 struct percpu_counter tcp_orphan_count; 283 EXPORT_SYMBOL_GPL(tcp_orphan_count); 284 285 long sysctl_tcp_mem[3] __read_mostly; 286 int sysctl_tcp_wmem[3] __read_mostly; 287 int sysctl_tcp_rmem[3] __read_mostly; 288 289 EXPORT_SYMBOL(sysctl_tcp_mem); 290 EXPORT_SYMBOL(sysctl_tcp_rmem); 291 EXPORT_SYMBOL(sysctl_tcp_wmem); 292 293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 294 EXPORT_SYMBOL(tcp_memory_allocated); 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 int tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL(tcp_memory_pressure); 319 320 void tcp_enter_memory_pressure(struct sock *sk) 321 { 322 if (!tcp_memory_pressure) { 323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 324 tcp_memory_pressure = 1; 325 } 326 } 327 EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329 /* Convert seconds to retransmits based on initial and max timeout */ 330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 331 { 332 u8 res = 0; 333 334 if (seconds > 0) { 335 int period = timeout; 336 337 res = 1; 338 while (seconds > period && res < 255) { 339 res++; 340 timeout <<= 1; 341 if (timeout > rto_max) 342 timeout = rto_max; 343 period += timeout; 344 } 345 } 346 return res; 347 } 348 349 /* Convert retransmits to seconds based on initial and max timeout */ 350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 351 { 352 int period = 0; 353 354 if (retrans > 0) { 355 period = timeout; 356 while (--retrans) { 357 timeout <<= 1; 358 if (timeout > rto_max) 359 timeout = rto_max; 360 period += timeout; 361 } 362 } 363 return period; 364 } 365 366 /* 367 * Wait for a TCP event. 368 * 369 * Note that we don't need to lock the socket, as the upper poll layers 370 * take care of normal races (between the test and the event) and we don't 371 * go look at any of the socket buffers directly. 372 */ 373 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 374 { 375 unsigned int mask; 376 struct sock *sk = sock->sk; 377 const struct tcp_sock *tp = tcp_sk(sk); 378 379 sock_poll_wait(file, sk_sleep(sk), wait); 380 if (sk->sk_state == TCP_LISTEN) 381 return inet_csk_listen_poll(sk); 382 383 /* Socket is not locked. We are protected from async events 384 * by poll logic and correct handling of state changes 385 * made by other threads is impossible in any case. 386 */ 387 388 mask = 0; 389 390 /* 391 * POLLHUP is certainly not done right. But poll() doesn't 392 * have a notion of HUP in just one direction, and for a 393 * socket the read side is more interesting. 394 * 395 * Some poll() documentation says that POLLHUP is incompatible 396 * with the POLLOUT/POLLWR flags, so somebody should check this 397 * all. But careful, it tends to be safer to return too many 398 * bits than too few, and you can easily break real applications 399 * if you don't tell them that something has hung up! 400 * 401 * Check-me. 402 * 403 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 404 * our fs/select.c). It means that after we received EOF, 405 * poll always returns immediately, making impossible poll() on write() 406 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 407 * if and only if shutdown has been made in both directions. 408 * Actually, it is interesting to look how Solaris and DUX 409 * solve this dilemma. I would prefer, if POLLHUP were maskable, 410 * then we could set it on SND_SHUTDOWN. BTW examples given 411 * in Stevens' books assume exactly this behaviour, it explains 412 * why POLLHUP is incompatible with POLLOUT. --ANK 413 * 414 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 415 * blocking on fresh not-connected or disconnected socket. --ANK 416 */ 417 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 418 mask |= POLLHUP; 419 if (sk->sk_shutdown & RCV_SHUTDOWN) 420 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 421 422 /* Connected? */ 423 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 424 int target = sock_rcvlowat(sk, 0, INT_MAX); 425 426 if (tp->urg_seq == tp->copied_seq && 427 !sock_flag(sk, SOCK_URGINLINE) && 428 tp->urg_data) 429 target++; 430 431 /* Potential race condition. If read of tp below will 432 * escape above sk->sk_state, we can be illegally awaken 433 * in SYN_* states. */ 434 if (tp->rcv_nxt - tp->copied_seq >= target) 435 mask |= POLLIN | POLLRDNORM; 436 437 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 438 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 439 mask |= POLLOUT | POLLWRNORM; 440 } else { /* send SIGIO later */ 441 set_bit(SOCK_ASYNC_NOSPACE, 442 &sk->sk_socket->flags); 443 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 444 445 /* Race breaker. If space is freed after 446 * wspace test but before the flags are set, 447 * IO signal will be lost. 448 */ 449 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 450 mask |= POLLOUT | POLLWRNORM; 451 } 452 } else 453 mask |= POLLOUT | POLLWRNORM; 454 455 if (tp->urg_data & TCP_URG_VALID) 456 mask |= POLLPRI; 457 } 458 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 459 smp_rmb(); 460 if (sk->sk_err) 461 mask |= POLLERR; 462 463 return mask; 464 } 465 EXPORT_SYMBOL(tcp_poll); 466 467 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 468 { 469 struct tcp_sock *tp = tcp_sk(sk); 470 int answ; 471 472 switch (cmd) { 473 case SIOCINQ: 474 if (sk->sk_state == TCP_LISTEN) 475 return -EINVAL; 476 477 lock_sock(sk); 478 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 479 answ = 0; 480 else if (sock_flag(sk, SOCK_URGINLINE) || 481 !tp->urg_data || 482 before(tp->urg_seq, tp->copied_seq) || 483 !before(tp->urg_seq, tp->rcv_nxt)) { 484 struct sk_buff *skb; 485 486 answ = tp->rcv_nxt - tp->copied_seq; 487 488 /* Subtract 1, if FIN is in queue. */ 489 skb = skb_peek_tail(&sk->sk_receive_queue); 490 if (answ && skb) 491 answ -= tcp_hdr(skb)->fin; 492 } else 493 answ = tp->urg_seq - tp->copied_seq; 494 release_sock(sk); 495 break; 496 case SIOCATMARK: 497 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 498 break; 499 case SIOCOUTQ: 500 if (sk->sk_state == TCP_LISTEN) 501 return -EINVAL; 502 503 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 504 answ = 0; 505 else 506 answ = tp->write_seq - tp->snd_una; 507 break; 508 case SIOCOUTQNSD: 509 if (sk->sk_state == TCP_LISTEN) 510 return -EINVAL; 511 512 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 513 answ = 0; 514 else 515 answ = tp->write_seq - tp->snd_nxt; 516 break; 517 default: 518 return -ENOIOCTLCMD; 519 } 520 521 return put_user(answ, (int __user *)arg); 522 } 523 EXPORT_SYMBOL(tcp_ioctl); 524 525 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 526 { 527 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 528 tp->pushed_seq = tp->write_seq; 529 } 530 531 static inline int forced_push(const struct tcp_sock *tp) 532 { 533 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 534 } 535 536 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 540 541 skb->csum = 0; 542 tcb->seq = tcb->end_seq = tp->write_seq; 543 tcb->tcp_flags = TCPHDR_ACK; 544 tcb->sacked = 0; 545 skb_header_release(skb); 546 tcp_add_write_queue_tail(sk, skb); 547 sk->sk_wmem_queued += skb->truesize; 548 sk_mem_charge(sk, skb->truesize); 549 if (tp->nonagle & TCP_NAGLE_PUSH) 550 tp->nonagle &= ~TCP_NAGLE_PUSH; 551 } 552 553 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 554 { 555 if (flags & MSG_OOB) 556 tp->snd_up = tp->write_seq; 557 } 558 559 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 560 int nonagle) 561 { 562 if (tcp_send_head(sk)) { 563 struct tcp_sock *tp = tcp_sk(sk); 564 565 if (!(flags & MSG_MORE) || forced_push(tp)) 566 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 567 568 tcp_mark_urg(tp, flags); 569 __tcp_push_pending_frames(sk, mss_now, 570 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 571 } 572 } 573 574 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 575 unsigned int offset, size_t len) 576 { 577 struct tcp_splice_state *tss = rd_desc->arg.data; 578 int ret; 579 580 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 581 tss->flags); 582 if (ret > 0) 583 rd_desc->count -= ret; 584 return ret; 585 } 586 587 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 588 { 589 /* Store TCP splice context information in read_descriptor_t. */ 590 read_descriptor_t rd_desc = { 591 .arg.data = tss, 592 .count = tss->len, 593 }; 594 595 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 596 } 597 598 /** 599 * tcp_splice_read - splice data from TCP socket to a pipe 600 * @sock: socket to splice from 601 * @ppos: position (not valid) 602 * @pipe: pipe to splice to 603 * @len: number of bytes to splice 604 * @flags: splice modifier flags 605 * 606 * Description: 607 * Will read pages from given socket and fill them into a pipe. 608 * 609 **/ 610 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 611 struct pipe_inode_info *pipe, size_t len, 612 unsigned int flags) 613 { 614 struct sock *sk = sock->sk; 615 struct tcp_splice_state tss = { 616 .pipe = pipe, 617 .len = len, 618 .flags = flags, 619 }; 620 long timeo; 621 ssize_t spliced; 622 int ret; 623 624 sock_rps_record_flow(sk); 625 /* 626 * We can't seek on a socket input 627 */ 628 if (unlikely(*ppos)) 629 return -ESPIPE; 630 631 ret = spliced = 0; 632 633 lock_sock(sk); 634 635 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 636 while (tss.len) { 637 ret = __tcp_splice_read(sk, &tss); 638 if (ret < 0) 639 break; 640 else if (!ret) { 641 if (spliced) 642 break; 643 if (sock_flag(sk, SOCK_DONE)) 644 break; 645 if (sk->sk_err) { 646 ret = sock_error(sk); 647 break; 648 } 649 if (sk->sk_shutdown & RCV_SHUTDOWN) 650 break; 651 if (sk->sk_state == TCP_CLOSE) { 652 /* 653 * This occurs when user tries to read 654 * from never connected socket. 655 */ 656 if (!sock_flag(sk, SOCK_DONE)) 657 ret = -ENOTCONN; 658 break; 659 } 660 if (!timeo) { 661 ret = -EAGAIN; 662 break; 663 } 664 sk_wait_data(sk, &timeo); 665 if (signal_pending(current)) { 666 ret = sock_intr_errno(timeo); 667 break; 668 } 669 continue; 670 } 671 tss.len -= ret; 672 spliced += ret; 673 674 if (!timeo) 675 break; 676 release_sock(sk); 677 lock_sock(sk); 678 679 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 680 (sk->sk_shutdown & RCV_SHUTDOWN) || 681 signal_pending(current)) 682 break; 683 } 684 685 release_sock(sk); 686 687 if (spliced) 688 return spliced; 689 690 return ret; 691 } 692 EXPORT_SYMBOL(tcp_splice_read); 693 694 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 695 { 696 struct sk_buff *skb; 697 698 /* The TCP header must be at least 32-bit aligned. */ 699 size = ALIGN(size, 4); 700 701 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 702 if (skb) { 703 if (sk_wmem_schedule(sk, skb->truesize)) { 704 /* 705 * Make sure that we have exactly size bytes 706 * available to the caller, no more, no less. 707 */ 708 skb_reserve(skb, skb_tailroom(skb) - size); 709 return skb; 710 } 711 __kfree_skb(skb); 712 } else { 713 sk->sk_prot->enter_memory_pressure(sk); 714 sk_stream_moderate_sndbuf(sk); 715 } 716 return NULL; 717 } 718 719 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 720 int large_allowed) 721 { 722 struct tcp_sock *tp = tcp_sk(sk); 723 u32 xmit_size_goal, old_size_goal; 724 725 xmit_size_goal = mss_now; 726 727 if (large_allowed && sk_can_gso(sk)) { 728 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 729 inet_csk(sk)->icsk_af_ops->net_header_len - 730 inet_csk(sk)->icsk_ext_hdr_len - 731 tp->tcp_header_len); 732 733 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 734 735 /* We try hard to avoid divides here */ 736 old_size_goal = tp->xmit_size_goal_segs * mss_now; 737 738 if (likely(old_size_goal <= xmit_size_goal && 739 old_size_goal + mss_now > xmit_size_goal)) { 740 xmit_size_goal = old_size_goal; 741 } else { 742 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 743 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 744 } 745 } 746 747 return max(xmit_size_goal, mss_now); 748 } 749 750 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 751 { 752 int mss_now; 753 754 mss_now = tcp_current_mss(sk); 755 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 756 757 return mss_now; 758 } 759 760 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 761 size_t psize, int flags) 762 { 763 struct tcp_sock *tp = tcp_sk(sk); 764 int mss_now, size_goal; 765 int err; 766 ssize_t copied; 767 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 768 769 /* Wait for a connection to finish. */ 770 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 771 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 772 goto out_err; 773 774 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 775 776 mss_now = tcp_send_mss(sk, &size_goal, flags); 777 copied = 0; 778 779 err = -EPIPE; 780 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 781 goto out_err; 782 783 while (psize > 0) { 784 struct sk_buff *skb = tcp_write_queue_tail(sk); 785 struct page *page = pages[poffset / PAGE_SIZE]; 786 int copy, i, can_coalesce; 787 int offset = poffset % PAGE_SIZE; 788 int size = min_t(size_t, psize, PAGE_SIZE - offset); 789 790 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 791 new_segment: 792 if (!sk_stream_memory_free(sk)) 793 goto wait_for_sndbuf; 794 795 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 796 if (!skb) 797 goto wait_for_memory; 798 799 skb_entail(sk, skb); 800 copy = size_goal; 801 } 802 803 if (copy > size) 804 copy = size; 805 806 i = skb_shinfo(skb)->nr_frags; 807 can_coalesce = skb_can_coalesce(skb, i, page, offset); 808 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 809 tcp_mark_push(tp, skb); 810 goto new_segment; 811 } 812 if (!sk_wmem_schedule(sk, copy)) 813 goto wait_for_memory; 814 815 if (can_coalesce) { 816 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 817 } else { 818 get_page(page); 819 skb_fill_page_desc(skb, i, page, offset, copy); 820 } 821 822 skb->len += copy; 823 skb->data_len += copy; 824 skb->truesize += copy; 825 sk->sk_wmem_queued += copy; 826 sk_mem_charge(sk, copy); 827 skb->ip_summed = CHECKSUM_PARTIAL; 828 tp->write_seq += copy; 829 TCP_SKB_CB(skb)->end_seq += copy; 830 skb_shinfo(skb)->gso_segs = 0; 831 832 if (!copied) 833 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 834 835 copied += copy; 836 poffset += copy; 837 if (!(psize -= copy)) 838 goto out; 839 840 if (skb->len < size_goal || (flags & MSG_OOB)) 841 continue; 842 843 if (forced_push(tp)) { 844 tcp_mark_push(tp, skb); 845 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 846 } else if (skb == tcp_send_head(sk)) 847 tcp_push_one(sk, mss_now); 848 continue; 849 850 wait_for_sndbuf: 851 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 852 wait_for_memory: 853 if (copied) 854 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 855 856 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 857 goto do_error; 858 859 mss_now = tcp_send_mss(sk, &size_goal, flags); 860 } 861 862 out: 863 if (copied) 864 tcp_push(sk, flags, mss_now, tp->nonagle); 865 return copied; 866 867 do_error: 868 if (copied) 869 goto out; 870 out_err: 871 return sk_stream_error(sk, flags, err); 872 } 873 874 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 875 size_t size, int flags) 876 { 877 ssize_t res; 878 879 if (!(sk->sk_route_caps & NETIF_F_SG) || 880 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 881 return sock_no_sendpage(sk->sk_socket, page, offset, size, 882 flags); 883 884 lock_sock(sk); 885 res = do_tcp_sendpages(sk, &page, offset, size, flags); 886 release_sock(sk); 887 return res; 888 } 889 EXPORT_SYMBOL(tcp_sendpage); 890 891 #define TCP_PAGE(sk) (sk->sk_sndmsg_page) 892 #define TCP_OFF(sk) (sk->sk_sndmsg_off) 893 894 static inline int select_size(const struct sock *sk, int sg) 895 { 896 const struct tcp_sock *tp = tcp_sk(sk); 897 int tmp = tp->mss_cache; 898 899 if (sg) { 900 if (sk_can_gso(sk)) 901 tmp = 0; 902 else { 903 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 904 905 if (tmp >= pgbreak && 906 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 907 tmp = pgbreak; 908 } 909 } 910 911 return tmp; 912 } 913 914 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 915 size_t size) 916 { 917 struct iovec *iov; 918 struct tcp_sock *tp = tcp_sk(sk); 919 struct sk_buff *skb; 920 int iovlen, flags; 921 int mss_now, size_goal; 922 int sg, err, copied; 923 long timeo; 924 925 lock_sock(sk); 926 927 flags = msg->msg_flags; 928 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 929 930 /* Wait for a connection to finish. */ 931 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 932 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 933 goto out_err; 934 935 /* This should be in poll */ 936 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 937 938 mss_now = tcp_send_mss(sk, &size_goal, flags); 939 940 /* Ok commence sending. */ 941 iovlen = msg->msg_iovlen; 942 iov = msg->msg_iov; 943 copied = 0; 944 945 err = -EPIPE; 946 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 947 goto out_err; 948 949 sg = sk->sk_route_caps & NETIF_F_SG; 950 951 while (--iovlen >= 0) { 952 size_t seglen = iov->iov_len; 953 unsigned char __user *from = iov->iov_base; 954 955 iov++; 956 957 while (seglen > 0) { 958 int copy = 0; 959 int max = size_goal; 960 961 skb = tcp_write_queue_tail(sk); 962 if (tcp_send_head(sk)) { 963 if (skb->ip_summed == CHECKSUM_NONE) 964 max = mss_now; 965 copy = max - skb->len; 966 } 967 968 if (copy <= 0) { 969 new_segment: 970 /* Allocate new segment. If the interface is SG, 971 * allocate skb fitting to single page. 972 */ 973 if (!sk_stream_memory_free(sk)) 974 goto wait_for_sndbuf; 975 976 skb = sk_stream_alloc_skb(sk, 977 select_size(sk, sg), 978 sk->sk_allocation); 979 if (!skb) 980 goto wait_for_memory; 981 982 /* 983 * Check whether we can use HW checksum. 984 */ 985 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 986 skb->ip_summed = CHECKSUM_PARTIAL; 987 988 skb_entail(sk, skb); 989 copy = size_goal; 990 max = size_goal; 991 } 992 993 /* Try to append data to the end of skb. */ 994 if (copy > seglen) 995 copy = seglen; 996 997 /* Where to copy to? */ 998 if (skb_tailroom(skb) > 0) { 999 /* We have some space in skb head. Superb! */ 1000 if (copy > skb_tailroom(skb)) 1001 copy = skb_tailroom(skb); 1002 err = skb_add_data_nocache(sk, skb, from, copy); 1003 if (err) 1004 goto do_fault; 1005 } else { 1006 int merge = 0; 1007 int i = skb_shinfo(skb)->nr_frags; 1008 struct page *page = TCP_PAGE(sk); 1009 int off = TCP_OFF(sk); 1010 1011 if (skb_can_coalesce(skb, i, page, off) && 1012 off != PAGE_SIZE) { 1013 /* We can extend the last page 1014 * fragment. */ 1015 merge = 1; 1016 } else if (i == MAX_SKB_FRAGS || !sg) { 1017 /* Need to add new fragment and cannot 1018 * do this because interface is non-SG, 1019 * or because all the page slots are 1020 * busy. */ 1021 tcp_mark_push(tp, skb); 1022 goto new_segment; 1023 } else if (page) { 1024 if (off == PAGE_SIZE) { 1025 put_page(page); 1026 TCP_PAGE(sk) = page = NULL; 1027 off = 0; 1028 } 1029 } else 1030 off = 0; 1031 1032 if (copy > PAGE_SIZE - off) 1033 copy = PAGE_SIZE - off; 1034 1035 if (!sk_wmem_schedule(sk, copy)) 1036 goto wait_for_memory; 1037 1038 if (!page) { 1039 /* Allocate new cache page. */ 1040 if (!(page = sk_stream_alloc_page(sk))) 1041 goto wait_for_memory; 1042 } 1043 1044 /* Time to copy data. We are close to 1045 * the end! */ 1046 err = skb_copy_to_page_nocache(sk, from, skb, 1047 page, off, copy); 1048 if (err) { 1049 /* If this page was new, give it to the 1050 * socket so it does not get leaked. 1051 */ 1052 if (!TCP_PAGE(sk)) { 1053 TCP_PAGE(sk) = page; 1054 TCP_OFF(sk) = 0; 1055 } 1056 goto do_error; 1057 } 1058 1059 /* Update the skb. */ 1060 if (merge) { 1061 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1062 } else { 1063 skb_fill_page_desc(skb, i, page, off, copy); 1064 if (TCP_PAGE(sk)) { 1065 get_page(page); 1066 } else if (off + copy < PAGE_SIZE) { 1067 get_page(page); 1068 TCP_PAGE(sk) = page; 1069 } 1070 } 1071 1072 TCP_OFF(sk) = off + copy; 1073 } 1074 1075 if (!copied) 1076 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1077 1078 tp->write_seq += copy; 1079 TCP_SKB_CB(skb)->end_seq += copy; 1080 skb_shinfo(skb)->gso_segs = 0; 1081 1082 from += copy; 1083 copied += copy; 1084 if ((seglen -= copy) == 0 && iovlen == 0) 1085 goto out; 1086 1087 if (skb->len < max || (flags & MSG_OOB)) 1088 continue; 1089 1090 if (forced_push(tp)) { 1091 tcp_mark_push(tp, skb); 1092 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1093 } else if (skb == tcp_send_head(sk)) 1094 tcp_push_one(sk, mss_now); 1095 continue; 1096 1097 wait_for_sndbuf: 1098 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1099 wait_for_memory: 1100 if (copied) 1101 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1102 1103 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1104 goto do_error; 1105 1106 mss_now = tcp_send_mss(sk, &size_goal, flags); 1107 } 1108 } 1109 1110 out: 1111 if (copied) 1112 tcp_push(sk, flags, mss_now, tp->nonagle); 1113 release_sock(sk); 1114 return copied; 1115 1116 do_fault: 1117 if (!skb->len) { 1118 tcp_unlink_write_queue(skb, sk); 1119 /* It is the one place in all of TCP, except connection 1120 * reset, where we can be unlinking the send_head. 1121 */ 1122 tcp_check_send_head(sk, skb); 1123 sk_wmem_free_skb(sk, skb); 1124 } 1125 1126 do_error: 1127 if (copied) 1128 goto out; 1129 out_err: 1130 err = sk_stream_error(sk, flags, err); 1131 release_sock(sk); 1132 return err; 1133 } 1134 EXPORT_SYMBOL(tcp_sendmsg); 1135 1136 /* 1137 * Handle reading urgent data. BSD has very simple semantics for 1138 * this, no blocking and very strange errors 8) 1139 */ 1140 1141 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1142 { 1143 struct tcp_sock *tp = tcp_sk(sk); 1144 1145 /* No URG data to read. */ 1146 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1147 tp->urg_data == TCP_URG_READ) 1148 return -EINVAL; /* Yes this is right ! */ 1149 1150 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1151 return -ENOTCONN; 1152 1153 if (tp->urg_data & TCP_URG_VALID) { 1154 int err = 0; 1155 char c = tp->urg_data; 1156 1157 if (!(flags & MSG_PEEK)) 1158 tp->urg_data = TCP_URG_READ; 1159 1160 /* Read urgent data. */ 1161 msg->msg_flags |= MSG_OOB; 1162 1163 if (len > 0) { 1164 if (!(flags & MSG_TRUNC)) 1165 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1166 len = 1; 1167 } else 1168 msg->msg_flags |= MSG_TRUNC; 1169 1170 return err ? -EFAULT : len; 1171 } 1172 1173 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1174 return 0; 1175 1176 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1177 * the available implementations agree in this case: 1178 * this call should never block, independent of the 1179 * blocking state of the socket. 1180 * Mike <pall@rz.uni-karlsruhe.de> 1181 */ 1182 return -EAGAIN; 1183 } 1184 1185 /* Clean up the receive buffer for full frames taken by the user, 1186 * then send an ACK if necessary. COPIED is the number of bytes 1187 * tcp_recvmsg has given to the user so far, it speeds up the 1188 * calculation of whether or not we must ACK for the sake of 1189 * a window update. 1190 */ 1191 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1192 { 1193 struct tcp_sock *tp = tcp_sk(sk); 1194 int time_to_ack = 0; 1195 1196 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1197 1198 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1199 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1200 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1201 1202 if (inet_csk_ack_scheduled(sk)) { 1203 const struct inet_connection_sock *icsk = inet_csk(sk); 1204 /* Delayed ACKs frequently hit locked sockets during bulk 1205 * receive. */ 1206 if (icsk->icsk_ack.blocked || 1207 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1208 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1209 /* 1210 * If this read emptied read buffer, we send ACK, if 1211 * connection is not bidirectional, user drained 1212 * receive buffer and there was a small segment 1213 * in queue. 1214 */ 1215 (copied > 0 && 1216 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1217 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1218 !icsk->icsk_ack.pingpong)) && 1219 !atomic_read(&sk->sk_rmem_alloc))) 1220 time_to_ack = 1; 1221 } 1222 1223 /* We send an ACK if we can now advertise a non-zero window 1224 * which has been raised "significantly". 1225 * 1226 * Even if window raised up to infinity, do not send window open ACK 1227 * in states, where we will not receive more. It is useless. 1228 */ 1229 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1230 __u32 rcv_window_now = tcp_receive_window(tp); 1231 1232 /* Optimize, __tcp_select_window() is not cheap. */ 1233 if (2*rcv_window_now <= tp->window_clamp) { 1234 __u32 new_window = __tcp_select_window(sk); 1235 1236 /* Send ACK now, if this read freed lots of space 1237 * in our buffer. Certainly, new_window is new window. 1238 * We can advertise it now, if it is not less than current one. 1239 * "Lots" means "at least twice" here. 1240 */ 1241 if (new_window && new_window >= 2 * rcv_window_now) 1242 time_to_ack = 1; 1243 } 1244 } 1245 if (time_to_ack) 1246 tcp_send_ack(sk); 1247 } 1248 1249 static void tcp_prequeue_process(struct sock *sk) 1250 { 1251 struct sk_buff *skb; 1252 struct tcp_sock *tp = tcp_sk(sk); 1253 1254 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1255 1256 /* RX process wants to run with disabled BHs, though it is not 1257 * necessary */ 1258 local_bh_disable(); 1259 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1260 sk_backlog_rcv(sk, skb); 1261 local_bh_enable(); 1262 1263 /* Clear memory counter. */ 1264 tp->ucopy.memory = 0; 1265 } 1266 1267 #ifdef CONFIG_NET_DMA 1268 static void tcp_service_net_dma(struct sock *sk, bool wait) 1269 { 1270 dma_cookie_t done, used; 1271 dma_cookie_t last_issued; 1272 struct tcp_sock *tp = tcp_sk(sk); 1273 1274 if (!tp->ucopy.dma_chan) 1275 return; 1276 1277 last_issued = tp->ucopy.dma_cookie; 1278 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1279 1280 do { 1281 if (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1282 last_issued, &done, 1283 &used) == DMA_SUCCESS) { 1284 /* Safe to free early-copied skbs now */ 1285 __skb_queue_purge(&sk->sk_async_wait_queue); 1286 break; 1287 } else { 1288 struct sk_buff *skb; 1289 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1290 (dma_async_is_complete(skb->dma_cookie, done, 1291 used) == DMA_SUCCESS)) { 1292 __skb_dequeue(&sk->sk_async_wait_queue); 1293 kfree_skb(skb); 1294 } 1295 } 1296 } while (wait); 1297 } 1298 #endif 1299 1300 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1301 { 1302 struct sk_buff *skb; 1303 u32 offset; 1304 1305 skb_queue_walk(&sk->sk_receive_queue, skb) { 1306 offset = seq - TCP_SKB_CB(skb)->seq; 1307 if (tcp_hdr(skb)->syn) 1308 offset--; 1309 if (offset < skb->len || tcp_hdr(skb)->fin) { 1310 *off = offset; 1311 return skb; 1312 } 1313 } 1314 return NULL; 1315 } 1316 1317 /* 1318 * This routine provides an alternative to tcp_recvmsg() for routines 1319 * that would like to handle copying from skbuffs directly in 'sendfile' 1320 * fashion. 1321 * Note: 1322 * - It is assumed that the socket was locked by the caller. 1323 * - The routine does not block. 1324 * - At present, there is no support for reading OOB data 1325 * or for 'peeking' the socket using this routine 1326 * (although both would be easy to implement). 1327 */ 1328 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1329 sk_read_actor_t recv_actor) 1330 { 1331 struct sk_buff *skb; 1332 struct tcp_sock *tp = tcp_sk(sk); 1333 u32 seq = tp->copied_seq; 1334 u32 offset; 1335 int copied = 0; 1336 1337 if (sk->sk_state == TCP_LISTEN) 1338 return -ENOTCONN; 1339 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1340 if (offset < skb->len) { 1341 int used; 1342 size_t len; 1343 1344 len = skb->len - offset; 1345 /* Stop reading if we hit a patch of urgent data */ 1346 if (tp->urg_data) { 1347 u32 urg_offset = tp->urg_seq - seq; 1348 if (urg_offset < len) 1349 len = urg_offset; 1350 if (!len) 1351 break; 1352 } 1353 used = recv_actor(desc, skb, offset, len); 1354 if (used < 0) { 1355 if (!copied) 1356 copied = used; 1357 break; 1358 } else if (used <= len) { 1359 seq += used; 1360 copied += used; 1361 offset += used; 1362 } 1363 /* 1364 * If recv_actor drops the lock (e.g. TCP splice 1365 * receive) the skb pointer might be invalid when 1366 * getting here: tcp_collapse might have deleted it 1367 * while aggregating skbs from the socket queue. 1368 */ 1369 skb = tcp_recv_skb(sk, seq-1, &offset); 1370 if (!skb || (offset+1 != skb->len)) 1371 break; 1372 } 1373 if (tcp_hdr(skb)->fin) { 1374 sk_eat_skb(sk, skb, 0); 1375 ++seq; 1376 break; 1377 } 1378 sk_eat_skb(sk, skb, 0); 1379 if (!desc->count) 1380 break; 1381 tp->copied_seq = seq; 1382 } 1383 tp->copied_seq = seq; 1384 1385 tcp_rcv_space_adjust(sk); 1386 1387 /* Clean up data we have read: This will do ACK frames. */ 1388 if (copied > 0) 1389 tcp_cleanup_rbuf(sk, copied); 1390 return copied; 1391 } 1392 EXPORT_SYMBOL(tcp_read_sock); 1393 1394 /* 1395 * This routine copies from a sock struct into the user buffer. 1396 * 1397 * Technical note: in 2.3 we work on _locked_ socket, so that 1398 * tricks with *seq access order and skb->users are not required. 1399 * Probably, code can be easily improved even more. 1400 */ 1401 1402 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1403 size_t len, int nonblock, int flags, int *addr_len) 1404 { 1405 struct tcp_sock *tp = tcp_sk(sk); 1406 int copied = 0; 1407 u32 peek_seq; 1408 u32 *seq; 1409 unsigned long used; 1410 int err; 1411 int target; /* Read at least this many bytes */ 1412 long timeo; 1413 struct task_struct *user_recv = NULL; 1414 int copied_early = 0; 1415 struct sk_buff *skb; 1416 u32 urg_hole = 0; 1417 1418 lock_sock(sk); 1419 1420 err = -ENOTCONN; 1421 if (sk->sk_state == TCP_LISTEN) 1422 goto out; 1423 1424 timeo = sock_rcvtimeo(sk, nonblock); 1425 1426 /* Urgent data needs to be handled specially. */ 1427 if (flags & MSG_OOB) 1428 goto recv_urg; 1429 1430 seq = &tp->copied_seq; 1431 if (flags & MSG_PEEK) { 1432 peek_seq = tp->copied_seq; 1433 seq = &peek_seq; 1434 } 1435 1436 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1437 1438 #ifdef CONFIG_NET_DMA 1439 tp->ucopy.dma_chan = NULL; 1440 preempt_disable(); 1441 skb = skb_peek_tail(&sk->sk_receive_queue); 1442 { 1443 int available = 0; 1444 1445 if (skb) 1446 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1447 if ((available < target) && 1448 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1449 !sysctl_tcp_low_latency && 1450 dma_find_channel(DMA_MEMCPY)) { 1451 preempt_enable_no_resched(); 1452 tp->ucopy.pinned_list = 1453 dma_pin_iovec_pages(msg->msg_iov, len); 1454 } else { 1455 preempt_enable_no_resched(); 1456 } 1457 } 1458 #endif 1459 1460 do { 1461 u32 offset; 1462 1463 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1464 if (tp->urg_data && tp->urg_seq == *seq) { 1465 if (copied) 1466 break; 1467 if (signal_pending(current)) { 1468 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1469 break; 1470 } 1471 } 1472 1473 /* Next get a buffer. */ 1474 1475 skb_queue_walk(&sk->sk_receive_queue, skb) { 1476 /* Now that we have two receive queues this 1477 * shouldn't happen. 1478 */ 1479 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1480 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1481 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1482 flags)) 1483 break; 1484 1485 offset = *seq - TCP_SKB_CB(skb)->seq; 1486 if (tcp_hdr(skb)->syn) 1487 offset--; 1488 if (offset < skb->len) 1489 goto found_ok_skb; 1490 if (tcp_hdr(skb)->fin) 1491 goto found_fin_ok; 1492 WARN(!(flags & MSG_PEEK), 1493 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1494 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1495 } 1496 1497 /* Well, if we have backlog, try to process it now yet. */ 1498 1499 if (copied >= target && !sk->sk_backlog.tail) 1500 break; 1501 1502 if (copied) { 1503 if (sk->sk_err || 1504 sk->sk_state == TCP_CLOSE || 1505 (sk->sk_shutdown & RCV_SHUTDOWN) || 1506 !timeo || 1507 signal_pending(current)) 1508 break; 1509 } else { 1510 if (sock_flag(sk, SOCK_DONE)) 1511 break; 1512 1513 if (sk->sk_err) { 1514 copied = sock_error(sk); 1515 break; 1516 } 1517 1518 if (sk->sk_shutdown & RCV_SHUTDOWN) 1519 break; 1520 1521 if (sk->sk_state == TCP_CLOSE) { 1522 if (!sock_flag(sk, SOCK_DONE)) { 1523 /* This occurs when user tries to read 1524 * from never connected socket. 1525 */ 1526 copied = -ENOTCONN; 1527 break; 1528 } 1529 break; 1530 } 1531 1532 if (!timeo) { 1533 copied = -EAGAIN; 1534 break; 1535 } 1536 1537 if (signal_pending(current)) { 1538 copied = sock_intr_errno(timeo); 1539 break; 1540 } 1541 } 1542 1543 tcp_cleanup_rbuf(sk, copied); 1544 1545 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1546 /* Install new reader */ 1547 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1548 user_recv = current; 1549 tp->ucopy.task = user_recv; 1550 tp->ucopy.iov = msg->msg_iov; 1551 } 1552 1553 tp->ucopy.len = len; 1554 1555 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1556 !(flags & (MSG_PEEK | MSG_TRUNC))); 1557 1558 /* Ugly... If prequeue is not empty, we have to 1559 * process it before releasing socket, otherwise 1560 * order will be broken at second iteration. 1561 * More elegant solution is required!!! 1562 * 1563 * Look: we have the following (pseudo)queues: 1564 * 1565 * 1. packets in flight 1566 * 2. backlog 1567 * 3. prequeue 1568 * 4. receive_queue 1569 * 1570 * Each queue can be processed only if the next ones 1571 * are empty. At this point we have empty receive_queue. 1572 * But prequeue _can_ be not empty after 2nd iteration, 1573 * when we jumped to start of loop because backlog 1574 * processing added something to receive_queue. 1575 * We cannot release_sock(), because backlog contains 1576 * packets arrived _after_ prequeued ones. 1577 * 1578 * Shortly, algorithm is clear --- to process all 1579 * the queues in order. We could make it more directly, 1580 * requeueing packets from backlog to prequeue, if 1581 * is not empty. It is more elegant, but eats cycles, 1582 * unfortunately. 1583 */ 1584 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1585 goto do_prequeue; 1586 1587 /* __ Set realtime policy in scheduler __ */ 1588 } 1589 1590 #ifdef CONFIG_NET_DMA 1591 if (tp->ucopy.dma_chan) 1592 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1593 #endif 1594 if (copied >= target) { 1595 /* Do not sleep, just process backlog. */ 1596 release_sock(sk); 1597 lock_sock(sk); 1598 } else 1599 sk_wait_data(sk, &timeo); 1600 1601 #ifdef CONFIG_NET_DMA 1602 tcp_service_net_dma(sk, false); /* Don't block */ 1603 tp->ucopy.wakeup = 0; 1604 #endif 1605 1606 if (user_recv) { 1607 int chunk; 1608 1609 /* __ Restore normal policy in scheduler __ */ 1610 1611 if ((chunk = len - tp->ucopy.len) != 0) { 1612 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1613 len -= chunk; 1614 copied += chunk; 1615 } 1616 1617 if (tp->rcv_nxt == tp->copied_seq && 1618 !skb_queue_empty(&tp->ucopy.prequeue)) { 1619 do_prequeue: 1620 tcp_prequeue_process(sk); 1621 1622 if ((chunk = len - tp->ucopy.len) != 0) { 1623 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1624 len -= chunk; 1625 copied += chunk; 1626 } 1627 } 1628 } 1629 if ((flags & MSG_PEEK) && 1630 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1631 if (net_ratelimit()) 1632 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n", 1633 current->comm, task_pid_nr(current)); 1634 peek_seq = tp->copied_seq; 1635 } 1636 continue; 1637 1638 found_ok_skb: 1639 /* Ok so how much can we use? */ 1640 used = skb->len - offset; 1641 if (len < used) 1642 used = len; 1643 1644 /* Do we have urgent data here? */ 1645 if (tp->urg_data) { 1646 u32 urg_offset = tp->urg_seq - *seq; 1647 if (urg_offset < used) { 1648 if (!urg_offset) { 1649 if (!sock_flag(sk, SOCK_URGINLINE)) { 1650 ++*seq; 1651 urg_hole++; 1652 offset++; 1653 used--; 1654 if (!used) 1655 goto skip_copy; 1656 } 1657 } else 1658 used = urg_offset; 1659 } 1660 } 1661 1662 if (!(flags & MSG_TRUNC)) { 1663 #ifdef CONFIG_NET_DMA 1664 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1665 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 1666 1667 if (tp->ucopy.dma_chan) { 1668 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1669 tp->ucopy.dma_chan, skb, offset, 1670 msg->msg_iov, used, 1671 tp->ucopy.pinned_list); 1672 1673 if (tp->ucopy.dma_cookie < 0) { 1674 1675 printk(KERN_ALERT "dma_cookie < 0\n"); 1676 1677 /* Exception. Bailout! */ 1678 if (!copied) 1679 copied = -EFAULT; 1680 break; 1681 } 1682 1683 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1684 1685 if ((offset + used) == skb->len) 1686 copied_early = 1; 1687 1688 } else 1689 #endif 1690 { 1691 err = skb_copy_datagram_iovec(skb, offset, 1692 msg->msg_iov, used); 1693 if (err) { 1694 /* Exception. Bailout! */ 1695 if (!copied) 1696 copied = -EFAULT; 1697 break; 1698 } 1699 } 1700 } 1701 1702 *seq += used; 1703 copied += used; 1704 len -= used; 1705 1706 tcp_rcv_space_adjust(sk); 1707 1708 skip_copy: 1709 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1710 tp->urg_data = 0; 1711 tcp_fast_path_check(sk); 1712 } 1713 if (used + offset < skb->len) 1714 continue; 1715 1716 if (tcp_hdr(skb)->fin) 1717 goto found_fin_ok; 1718 if (!(flags & MSG_PEEK)) { 1719 sk_eat_skb(sk, skb, copied_early); 1720 copied_early = 0; 1721 } 1722 continue; 1723 1724 found_fin_ok: 1725 /* Process the FIN. */ 1726 ++*seq; 1727 if (!(flags & MSG_PEEK)) { 1728 sk_eat_skb(sk, skb, copied_early); 1729 copied_early = 0; 1730 } 1731 break; 1732 } while (len > 0); 1733 1734 if (user_recv) { 1735 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1736 int chunk; 1737 1738 tp->ucopy.len = copied > 0 ? len : 0; 1739 1740 tcp_prequeue_process(sk); 1741 1742 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1743 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1744 len -= chunk; 1745 copied += chunk; 1746 } 1747 } 1748 1749 tp->ucopy.task = NULL; 1750 tp->ucopy.len = 0; 1751 } 1752 1753 #ifdef CONFIG_NET_DMA 1754 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1755 tp->ucopy.dma_chan = NULL; 1756 1757 if (tp->ucopy.pinned_list) { 1758 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1759 tp->ucopy.pinned_list = NULL; 1760 } 1761 #endif 1762 1763 /* According to UNIX98, msg_name/msg_namelen are ignored 1764 * on connected socket. I was just happy when found this 8) --ANK 1765 */ 1766 1767 /* Clean up data we have read: This will do ACK frames. */ 1768 tcp_cleanup_rbuf(sk, copied); 1769 1770 release_sock(sk); 1771 return copied; 1772 1773 out: 1774 release_sock(sk); 1775 return err; 1776 1777 recv_urg: 1778 err = tcp_recv_urg(sk, msg, len, flags); 1779 goto out; 1780 } 1781 EXPORT_SYMBOL(tcp_recvmsg); 1782 1783 void tcp_set_state(struct sock *sk, int state) 1784 { 1785 int oldstate = sk->sk_state; 1786 1787 switch (state) { 1788 case TCP_ESTABLISHED: 1789 if (oldstate != TCP_ESTABLISHED) 1790 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1791 break; 1792 1793 case TCP_CLOSE: 1794 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1795 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1796 1797 sk->sk_prot->unhash(sk); 1798 if (inet_csk(sk)->icsk_bind_hash && 1799 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1800 inet_put_port(sk); 1801 /* fall through */ 1802 default: 1803 if (oldstate == TCP_ESTABLISHED) 1804 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1805 } 1806 1807 /* Change state AFTER socket is unhashed to avoid closed 1808 * socket sitting in hash tables. 1809 */ 1810 sk->sk_state = state; 1811 1812 #ifdef STATE_TRACE 1813 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1814 #endif 1815 } 1816 EXPORT_SYMBOL_GPL(tcp_set_state); 1817 1818 /* 1819 * State processing on a close. This implements the state shift for 1820 * sending our FIN frame. Note that we only send a FIN for some 1821 * states. A shutdown() may have already sent the FIN, or we may be 1822 * closed. 1823 */ 1824 1825 static const unsigned char new_state[16] = { 1826 /* current state: new state: action: */ 1827 /* (Invalid) */ TCP_CLOSE, 1828 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1829 /* TCP_SYN_SENT */ TCP_CLOSE, 1830 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1831 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1832 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1833 /* TCP_TIME_WAIT */ TCP_CLOSE, 1834 /* TCP_CLOSE */ TCP_CLOSE, 1835 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1836 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1837 /* TCP_LISTEN */ TCP_CLOSE, 1838 /* TCP_CLOSING */ TCP_CLOSING, 1839 }; 1840 1841 static int tcp_close_state(struct sock *sk) 1842 { 1843 int next = (int)new_state[sk->sk_state]; 1844 int ns = next & TCP_STATE_MASK; 1845 1846 tcp_set_state(sk, ns); 1847 1848 return next & TCP_ACTION_FIN; 1849 } 1850 1851 /* 1852 * Shutdown the sending side of a connection. Much like close except 1853 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1854 */ 1855 1856 void tcp_shutdown(struct sock *sk, int how) 1857 { 1858 /* We need to grab some memory, and put together a FIN, 1859 * and then put it into the queue to be sent. 1860 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1861 */ 1862 if (!(how & SEND_SHUTDOWN)) 1863 return; 1864 1865 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1866 if ((1 << sk->sk_state) & 1867 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1868 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1869 /* Clear out any half completed packets. FIN if needed. */ 1870 if (tcp_close_state(sk)) 1871 tcp_send_fin(sk); 1872 } 1873 } 1874 EXPORT_SYMBOL(tcp_shutdown); 1875 1876 void tcp_close(struct sock *sk, long timeout) 1877 { 1878 struct sk_buff *skb; 1879 int data_was_unread = 0; 1880 int state; 1881 1882 lock_sock(sk); 1883 sk->sk_shutdown = SHUTDOWN_MASK; 1884 1885 if (sk->sk_state == TCP_LISTEN) { 1886 tcp_set_state(sk, TCP_CLOSE); 1887 1888 /* Special case. */ 1889 inet_csk_listen_stop(sk); 1890 1891 goto adjudge_to_death; 1892 } 1893 1894 /* We need to flush the recv. buffs. We do this only on the 1895 * descriptor close, not protocol-sourced closes, because the 1896 * reader process may not have drained the data yet! 1897 */ 1898 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 1899 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 1900 tcp_hdr(skb)->fin; 1901 data_was_unread += len; 1902 __kfree_skb(skb); 1903 } 1904 1905 sk_mem_reclaim(sk); 1906 1907 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 1908 if (sk->sk_state == TCP_CLOSE) 1909 goto adjudge_to_death; 1910 1911 /* As outlined in RFC 2525, section 2.17, we send a RST here because 1912 * data was lost. To witness the awful effects of the old behavior of 1913 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 1914 * GET in an FTP client, suspend the process, wait for the client to 1915 * advertise a zero window, then kill -9 the FTP client, wheee... 1916 * Note: timeout is always zero in such a case. 1917 */ 1918 if (data_was_unread) { 1919 /* Unread data was tossed, zap the connection. */ 1920 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 1921 tcp_set_state(sk, TCP_CLOSE); 1922 tcp_send_active_reset(sk, sk->sk_allocation); 1923 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1924 /* Check zero linger _after_ checking for unread data. */ 1925 sk->sk_prot->disconnect(sk, 0); 1926 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 1927 } else if (tcp_close_state(sk)) { 1928 /* We FIN if the application ate all the data before 1929 * zapping the connection. 1930 */ 1931 1932 /* RED-PEN. Formally speaking, we have broken TCP state 1933 * machine. State transitions: 1934 * 1935 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 1936 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 1937 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 1938 * 1939 * are legal only when FIN has been sent (i.e. in window), 1940 * rather than queued out of window. Purists blame. 1941 * 1942 * F.e. "RFC state" is ESTABLISHED, 1943 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 1944 * 1945 * The visible declinations are that sometimes 1946 * we enter time-wait state, when it is not required really 1947 * (harmless), do not send active resets, when they are 1948 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 1949 * they look as CLOSING or LAST_ACK for Linux) 1950 * Probably, I missed some more holelets. 1951 * --ANK 1952 */ 1953 tcp_send_fin(sk); 1954 } 1955 1956 sk_stream_wait_close(sk, timeout); 1957 1958 adjudge_to_death: 1959 state = sk->sk_state; 1960 sock_hold(sk); 1961 sock_orphan(sk); 1962 1963 /* It is the last release_sock in its life. It will remove backlog. */ 1964 release_sock(sk); 1965 1966 1967 /* Now socket is owned by kernel and we acquire BH lock 1968 to finish close. No need to check for user refs. 1969 */ 1970 local_bh_disable(); 1971 bh_lock_sock(sk); 1972 WARN_ON(sock_owned_by_user(sk)); 1973 1974 percpu_counter_inc(sk->sk_prot->orphan_count); 1975 1976 /* Have we already been destroyed by a softirq or backlog? */ 1977 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 1978 goto out; 1979 1980 /* This is a (useful) BSD violating of the RFC. There is a 1981 * problem with TCP as specified in that the other end could 1982 * keep a socket open forever with no application left this end. 1983 * We use a 3 minute timeout (about the same as BSD) then kill 1984 * our end. If they send after that then tough - BUT: long enough 1985 * that we won't make the old 4*rto = almost no time - whoops 1986 * reset mistake. 1987 * 1988 * Nope, it was not mistake. It is really desired behaviour 1989 * f.e. on http servers, when such sockets are useless, but 1990 * consume significant resources. Let's do it with special 1991 * linger2 option. --ANK 1992 */ 1993 1994 if (sk->sk_state == TCP_FIN_WAIT2) { 1995 struct tcp_sock *tp = tcp_sk(sk); 1996 if (tp->linger2 < 0) { 1997 tcp_set_state(sk, TCP_CLOSE); 1998 tcp_send_active_reset(sk, GFP_ATOMIC); 1999 NET_INC_STATS_BH(sock_net(sk), 2000 LINUX_MIB_TCPABORTONLINGER); 2001 } else { 2002 const int tmo = tcp_fin_time(sk); 2003 2004 if (tmo > TCP_TIMEWAIT_LEN) { 2005 inet_csk_reset_keepalive_timer(sk, 2006 tmo - TCP_TIMEWAIT_LEN); 2007 } else { 2008 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2009 goto out; 2010 } 2011 } 2012 } 2013 if (sk->sk_state != TCP_CLOSE) { 2014 sk_mem_reclaim(sk); 2015 if (tcp_too_many_orphans(sk, 0)) { 2016 if (net_ratelimit()) 2017 printk(KERN_INFO "TCP: too many of orphaned " 2018 "sockets\n"); 2019 tcp_set_state(sk, TCP_CLOSE); 2020 tcp_send_active_reset(sk, GFP_ATOMIC); 2021 NET_INC_STATS_BH(sock_net(sk), 2022 LINUX_MIB_TCPABORTONMEMORY); 2023 } 2024 } 2025 2026 if (sk->sk_state == TCP_CLOSE) 2027 inet_csk_destroy_sock(sk); 2028 /* Otherwise, socket is reprieved until protocol close. */ 2029 2030 out: 2031 bh_unlock_sock(sk); 2032 local_bh_enable(); 2033 sock_put(sk); 2034 } 2035 EXPORT_SYMBOL(tcp_close); 2036 2037 /* These states need RST on ABORT according to RFC793 */ 2038 2039 static inline int tcp_need_reset(int state) 2040 { 2041 return (1 << state) & 2042 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2043 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2044 } 2045 2046 int tcp_disconnect(struct sock *sk, int flags) 2047 { 2048 struct inet_sock *inet = inet_sk(sk); 2049 struct inet_connection_sock *icsk = inet_csk(sk); 2050 struct tcp_sock *tp = tcp_sk(sk); 2051 int err = 0; 2052 int old_state = sk->sk_state; 2053 2054 if (old_state != TCP_CLOSE) 2055 tcp_set_state(sk, TCP_CLOSE); 2056 2057 /* ABORT function of RFC793 */ 2058 if (old_state == TCP_LISTEN) { 2059 inet_csk_listen_stop(sk); 2060 } else if (tcp_need_reset(old_state) || 2061 (tp->snd_nxt != tp->write_seq && 2062 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2063 /* The last check adjusts for discrepancy of Linux wrt. RFC 2064 * states 2065 */ 2066 tcp_send_active_reset(sk, gfp_any()); 2067 sk->sk_err = ECONNRESET; 2068 } else if (old_state == TCP_SYN_SENT) 2069 sk->sk_err = ECONNRESET; 2070 2071 tcp_clear_xmit_timers(sk); 2072 __skb_queue_purge(&sk->sk_receive_queue); 2073 tcp_write_queue_purge(sk); 2074 __skb_queue_purge(&tp->out_of_order_queue); 2075 #ifdef CONFIG_NET_DMA 2076 __skb_queue_purge(&sk->sk_async_wait_queue); 2077 #endif 2078 2079 inet->inet_dport = 0; 2080 2081 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2082 inet_reset_saddr(sk); 2083 2084 sk->sk_shutdown = 0; 2085 sock_reset_flag(sk, SOCK_DONE); 2086 tp->srtt = 0; 2087 if ((tp->write_seq += tp->max_window + 2) == 0) 2088 tp->write_seq = 1; 2089 icsk->icsk_backoff = 0; 2090 tp->snd_cwnd = 2; 2091 icsk->icsk_probes_out = 0; 2092 tp->packets_out = 0; 2093 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2094 tp->snd_cwnd_cnt = 0; 2095 tp->bytes_acked = 0; 2096 tp->window_clamp = 0; 2097 tcp_set_ca_state(sk, TCP_CA_Open); 2098 tcp_clear_retrans(tp); 2099 inet_csk_delack_init(sk); 2100 tcp_init_send_head(sk); 2101 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2102 __sk_dst_reset(sk); 2103 2104 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2105 2106 sk->sk_error_report(sk); 2107 return err; 2108 } 2109 EXPORT_SYMBOL(tcp_disconnect); 2110 2111 /* 2112 * Socket option code for TCP. 2113 */ 2114 static int do_tcp_setsockopt(struct sock *sk, int level, 2115 int optname, char __user *optval, unsigned int optlen) 2116 { 2117 struct tcp_sock *tp = tcp_sk(sk); 2118 struct inet_connection_sock *icsk = inet_csk(sk); 2119 int val; 2120 int err = 0; 2121 2122 /* These are data/string values, all the others are ints */ 2123 switch (optname) { 2124 case TCP_CONGESTION: { 2125 char name[TCP_CA_NAME_MAX]; 2126 2127 if (optlen < 1) 2128 return -EINVAL; 2129 2130 val = strncpy_from_user(name, optval, 2131 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2132 if (val < 0) 2133 return -EFAULT; 2134 name[val] = 0; 2135 2136 lock_sock(sk); 2137 err = tcp_set_congestion_control(sk, name); 2138 release_sock(sk); 2139 return err; 2140 } 2141 case TCP_COOKIE_TRANSACTIONS: { 2142 struct tcp_cookie_transactions ctd; 2143 struct tcp_cookie_values *cvp = NULL; 2144 2145 if (sizeof(ctd) > optlen) 2146 return -EINVAL; 2147 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2148 return -EFAULT; 2149 2150 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2151 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2152 return -EINVAL; 2153 2154 if (ctd.tcpct_cookie_desired == 0) { 2155 /* default to global value */ 2156 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2157 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2158 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2159 return -EINVAL; 2160 } 2161 2162 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2163 /* Supercedes all other values */ 2164 lock_sock(sk); 2165 if (tp->cookie_values != NULL) { 2166 kref_put(&tp->cookie_values->kref, 2167 tcp_cookie_values_release); 2168 tp->cookie_values = NULL; 2169 } 2170 tp->rx_opt.cookie_in_always = 0; /* false */ 2171 tp->rx_opt.cookie_out_never = 1; /* true */ 2172 release_sock(sk); 2173 return err; 2174 } 2175 2176 /* Allocate ancillary memory before locking. 2177 */ 2178 if (ctd.tcpct_used > 0 || 2179 (tp->cookie_values == NULL && 2180 (sysctl_tcp_cookie_size > 0 || 2181 ctd.tcpct_cookie_desired > 0 || 2182 ctd.tcpct_s_data_desired > 0))) { 2183 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2184 GFP_KERNEL); 2185 if (cvp == NULL) 2186 return -ENOMEM; 2187 2188 kref_init(&cvp->kref); 2189 } 2190 lock_sock(sk); 2191 tp->rx_opt.cookie_in_always = 2192 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2193 tp->rx_opt.cookie_out_never = 0; /* false */ 2194 2195 if (tp->cookie_values != NULL) { 2196 if (cvp != NULL) { 2197 /* Changed values are recorded by a changed 2198 * pointer, ensuring the cookie will differ, 2199 * without separately hashing each value later. 2200 */ 2201 kref_put(&tp->cookie_values->kref, 2202 tcp_cookie_values_release); 2203 } else { 2204 cvp = tp->cookie_values; 2205 } 2206 } 2207 2208 if (cvp != NULL) { 2209 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2210 2211 if (ctd.tcpct_used > 0) { 2212 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2213 ctd.tcpct_used); 2214 cvp->s_data_desired = ctd.tcpct_used; 2215 cvp->s_data_constant = 1; /* true */ 2216 } else { 2217 /* No constant payload data. */ 2218 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2219 cvp->s_data_constant = 0; /* false */ 2220 } 2221 2222 tp->cookie_values = cvp; 2223 } 2224 release_sock(sk); 2225 return err; 2226 } 2227 default: 2228 /* fallthru */ 2229 break; 2230 } 2231 2232 if (optlen < sizeof(int)) 2233 return -EINVAL; 2234 2235 if (get_user(val, (int __user *)optval)) 2236 return -EFAULT; 2237 2238 lock_sock(sk); 2239 2240 switch (optname) { 2241 case TCP_MAXSEG: 2242 /* Values greater than interface MTU won't take effect. However 2243 * at the point when this call is done we typically don't yet 2244 * know which interface is going to be used */ 2245 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2246 err = -EINVAL; 2247 break; 2248 } 2249 tp->rx_opt.user_mss = val; 2250 break; 2251 2252 case TCP_NODELAY: 2253 if (val) { 2254 /* TCP_NODELAY is weaker than TCP_CORK, so that 2255 * this option on corked socket is remembered, but 2256 * it is not activated until cork is cleared. 2257 * 2258 * However, when TCP_NODELAY is set we make 2259 * an explicit push, which overrides even TCP_CORK 2260 * for currently queued segments. 2261 */ 2262 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2263 tcp_push_pending_frames(sk); 2264 } else { 2265 tp->nonagle &= ~TCP_NAGLE_OFF; 2266 } 2267 break; 2268 2269 case TCP_THIN_LINEAR_TIMEOUTS: 2270 if (val < 0 || val > 1) 2271 err = -EINVAL; 2272 else 2273 tp->thin_lto = val; 2274 break; 2275 2276 case TCP_THIN_DUPACK: 2277 if (val < 0 || val > 1) 2278 err = -EINVAL; 2279 else 2280 tp->thin_dupack = val; 2281 break; 2282 2283 case TCP_CORK: 2284 /* When set indicates to always queue non-full frames. 2285 * Later the user clears this option and we transmit 2286 * any pending partial frames in the queue. This is 2287 * meant to be used alongside sendfile() to get properly 2288 * filled frames when the user (for example) must write 2289 * out headers with a write() call first and then use 2290 * sendfile to send out the data parts. 2291 * 2292 * TCP_CORK can be set together with TCP_NODELAY and it is 2293 * stronger than TCP_NODELAY. 2294 */ 2295 if (val) { 2296 tp->nonagle |= TCP_NAGLE_CORK; 2297 } else { 2298 tp->nonagle &= ~TCP_NAGLE_CORK; 2299 if (tp->nonagle&TCP_NAGLE_OFF) 2300 tp->nonagle |= TCP_NAGLE_PUSH; 2301 tcp_push_pending_frames(sk); 2302 } 2303 break; 2304 2305 case TCP_KEEPIDLE: 2306 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2307 err = -EINVAL; 2308 else { 2309 tp->keepalive_time = val * HZ; 2310 if (sock_flag(sk, SOCK_KEEPOPEN) && 2311 !((1 << sk->sk_state) & 2312 (TCPF_CLOSE | TCPF_LISTEN))) { 2313 u32 elapsed = keepalive_time_elapsed(tp); 2314 if (tp->keepalive_time > elapsed) 2315 elapsed = tp->keepalive_time - elapsed; 2316 else 2317 elapsed = 0; 2318 inet_csk_reset_keepalive_timer(sk, elapsed); 2319 } 2320 } 2321 break; 2322 case TCP_KEEPINTVL: 2323 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2324 err = -EINVAL; 2325 else 2326 tp->keepalive_intvl = val * HZ; 2327 break; 2328 case TCP_KEEPCNT: 2329 if (val < 1 || val > MAX_TCP_KEEPCNT) 2330 err = -EINVAL; 2331 else 2332 tp->keepalive_probes = val; 2333 break; 2334 case TCP_SYNCNT: 2335 if (val < 1 || val > MAX_TCP_SYNCNT) 2336 err = -EINVAL; 2337 else 2338 icsk->icsk_syn_retries = val; 2339 break; 2340 2341 case TCP_LINGER2: 2342 if (val < 0) 2343 tp->linger2 = -1; 2344 else if (val > sysctl_tcp_fin_timeout / HZ) 2345 tp->linger2 = 0; 2346 else 2347 tp->linger2 = val * HZ; 2348 break; 2349 2350 case TCP_DEFER_ACCEPT: 2351 /* Translate value in seconds to number of retransmits */ 2352 icsk->icsk_accept_queue.rskq_defer_accept = 2353 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2354 TCP_RTO_MAX / HZ); 2355 break; 2356 2357 case TCP_WINDOW_CLAMP: 2358 if (!val) { 2359 if (sk->sk_state != TCP_CLOSE) { 2360 err = -EINVAL; 2361 break; 2362 } 2363 tp->window_clamp = 0; 2364 } else 2365 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2366 SOCK_MIN_RCVBUF / 2 : val; 2367 break; 2368 2369 case TCP_QUICKACK: 2370 if (!val) { 2371 icsk->icsk_ack.pingpong = 1; 2372 } else { 2373 icsk->icsk_ack.pingpong = 0; 2374 if ((1 << sk->sk_state) & 2375 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2376 inet_csk_ack_scheduled(sk)) { 2377 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2378 tcp_cleanup_rbuf(sk, 1); 2379 if (!(val & 1)) 2380 icsk->icsk_ack.pingpong = 1; 2381 } 2382 } 2383 break; 2384 2385 #ifdef CONFIG_TCP_MD5SIG 2386 case TCP_MD5SIG: 2387 /* Read the IP->Key mappings from userspace */ 2388 err = tp->af_specific->md5_parse(sk, optval, optlen); 2389 break; 2390 #endif 2391 case TCP_USER_TIMEOUT: 2392 /* Cap the max timeout in ms TCP will retry/retrans 2393 * before giving up and aborting (ETIMEDOUT) a connection. 2394 */ 2395 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2396 break; 2397 default: 2398 err = -ENOPROTOOPT; 2399 break; 2400 } 2401 2402 release_sock(sk); 2403 return err; 2404 } 2405 2406 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2407 unsigned int optlen) 2408 { 2409 const struct inet_connection_sock *icsk = inet_csk(sk); 2410 2411 if (level != SOL_TCP) 2412 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2413 optval, optlen); 2414 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2415 } 2416 EXPORT_SYMBOL(tcp_setsockopt); 2417 2418 #ifdef CONFIG_COMPAT 2419 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2420 char __user *optval, unsigned int optlen) 2421 { 2422 if (level != SOL_TCP) 2423 return inet_csk_compat_setsockopt(sk, level, optname, 2424 optval, optlen); 2425 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2426 } 2427 EXPORT_SYMBOL(compat_tcp_setsockopt); 2428 #endif 2429 2430 /* Return information about state of tcp endpoint in API format. */ 2431 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2432 { 2433 const struct tcp_sock *tp = tcp_sk(sk); 2434 const struct inet_connection_sock *icsk = inet_csk(sk); 2435 u32 now = tcp_time_stamp; 2436 2437 memset(info, 0, sizeof(*info)); 2438 2439 info->tcpi_state = sk->sk_state; 2440 info->tcpi_ca_state = icsk->icsk_ca_state; 2441 info->tcpi_retransmits = icsk->icsk_retransmits; 2442 info->tcpi_probes = icsk->icsk_probes_out; 2443 info->tcpi_backoff = icsk->icsk_backoff; 2444 2445 if (tp->rx_opt.tstamp_ok) 2446 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2447 if (tcp_is_sack(tp)) 2448 info->tcpi_options |= TCPI_OPT_SACK; 2449 if (tp->rx_opt.wscale_ok) { 2450 info->tcpi_options |= TCPI_OPT_WSCALE; 2451 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2452 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2453 } 2454 2455 if (tp->ecn_flags & TCP_ECN_OK) 2456 info->tcpi_options |= TCPI_OPT_ECN; 2457 if (tp->ecn_flags & TCP_ECN_SEEN) 2458 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2459 2460 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2461 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2462 info->tcpi_snd_mss = tp->mss_cache; 2463 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2464 2465 if (sk->sk_state == TCP_LISTEN) { 2466 info->tcpi_unacked = sk->sk_ack_backlog; 2467 info->tcpi_sacked = sk->sk_max_ack_backlog; 2468 } else { 2469 info->tcpi_unacked = tp->packets_out; 2470 info->tcpi_sacked = tp->sacked_out; 2471 } 2472 info->tcpi_lost = tp->lost_out; 2473 info->tcpi_retrans = tp->retrans_out; 2474 info->tcpi_fackets = tp->fackets_out; 2475 2476 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2477 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2478 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2479 2480 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2481 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2482 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2483 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2484 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2485 info->tcpi_snd_cwnd = tp->snd_cwnd; 2486 info->tcpi_advmss = tp->advmss; 2487 info->tcpi_reordering = tp->reordering; 2488 2489 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2490 info->tcpi_rcv_space = tp->rcvq_space.space; 2491 2492 info->tcpi_total_retrans = tp->total_retrans; 2493 } 2494 EXPORT_SYMBOL_GPL(tcp_get_info); 2495 2496 static int do_tcp_getsockopt(struct sock *sk, int level, 2497 int optname, char __user *optval, int __user *optlen) 2498 { 2499 struct inet_connection_sock *icsk = inet_csk(sk); 2500 struct tcp_sock *tp = tcp_sk(sk); 2501 int val, len; 2502 2503 if (get_user(len, optlen)) 2504 return -EFAULT; 2505 2506 len = min_t(unsigned int, len, sizeof(int)); 2507 2508 if (len < 0) 2509 return -EINVAL; 2510 2511 switch (optname) { 2512 case TCP_MAXSEG: 2513 val = tp->mss_cache; 2514 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2515 val = tp->rx_opt.user_mss; 2516 break; 2517 case TCP_NODELAY: 2518 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2519 break; 2520 case TCP_CORK: 2521 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2522 break; 2523 case TCP_KEEPIDLE: 2524 val = keepalive_time_when(tp) / HZ; 2525 break; 2526 case TCP_KEEPINTVL: 2527 val = keepalive_intvl_when(tp) / HZ; 2528 break; 2529 case TCP_KEEPCNT: 2530 val = keepalive_probes(tp); 2531 break; 2532 case TCP_SYNCNT: 2533 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2534 break; 2535 case TCP_LINGER2: 2536 val = tp->linger2; 2537 if (val >= 0) 2538 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2539 break; 2540 case TCP_DEFER_ACCEPT: 2541 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2542 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2543 break; 2544 case TCP_WINDOW_CLAMP: 2545 val = tp->window_clamp; 2546 break; 2547 case TCP_INFO: { 2548 struct tcp_info info; 2549 2550 if (get_user(len, optlen)) 2551 return -EFAULT; 2552 2553 tcp_get_info(sk, &info); 2554 2555 len = min_t(unsigned int, len, sizeof(info)); 2556 if (put_user(len, optlen)) 2557 return -EFAULT; 2558 if (copy_to_user(optval, &info, len)) 2559 return -EFAULT; 2560 return 0; 2561 } 2562 case TCP_QUICKACK: 2563 val = !icsk->icsk_ack.pingpong; 2564 break; 2565 2566 case TCP_CONGESTION: 2567 if (get_user(len, optlen)) 2568 return -EFAULT; 2569 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2570 if (put_user(len, optlen)) 2571 return -EFAULT; 2572 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2573 return -EFAULT; 2574 return 0; 2575 2576 case TCP_COOKIE_TRANSACTIONS: { 2577 struct tcp_cookie_transactions ctd; 2578 struct tcp_cookie_values *cvp = tp->cookie_values; 2579 2580 if (get_user(len, optlen)) 2581 return -EFAULT; 2582 if (len < sizeof(ctd)) 2583 return -EINVAL; 2584 2585 memset(&ctd, 0, sizeof(ctd)); 2586 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2587 TCP_COOKIE_IN_ALWAYS : 0) 2588 | (tp->rx_opt.cookie_out_never ? 2589 TCP_COOKIE_OUT_NEVER : 0); 2590 2591 if (cvp != NULL) { 2592 ctd.tcpct_flags |= (cvp->s_data_in ? 2593 TCP_S_DATA_IN : 0) 2594 | (cvp->s_data_out ? 2595 TCP_S_DATA_OUT : 0); 2596 2597 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2598 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2599 2600 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2601 cvp->cookie_pair_size); 2602 ctd.tcpct_used = cvp->cookie_pair_size; 2603 } 2604 2605 if (put_user(sizeof(ctd), optlen)) 2606 return -EFAULT; 2607 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2608 return -EFAULT; 2609 return 0; 2610 } 2611 case TCP_THIN_LINEAR_TIMEOUTS: 2612 val = tp->thin_lto; 2613 break; 2614 case TCP_THIN_DUPACK: 2615 val = tp->thin_dupack; 2616 break; 2617 2618 case TCP_USER_TIMEOUT: 2619 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2620 break; 2621 default: 2622 return -ENOPROTOOPT; 2623 } 2624 2625 if (put_user(len, optlen)) 2626 return -EFAULT; 2627 if (copy_to_user(optval, &val, len)) 2628 return -EFAULT; 2629 return 0; 2630 } 2631 2632 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2633 int __user *optlen) 2634 { 2635 struct inet_connection_sock *icsk = inet_csk(sk); 2636 2637 if (level != SOL_TCP) 2638 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2639 optval, optlen); 2640 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2641 } 2642 EXPORT_SYMBOL(tcp_getsockopt); 2643 2644 #ifdef CONFIG_COMPAT 2645 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2646 char __user *optval, int __user *optlen) 2647 { 2648 if (level != SOL_TCP) 2649 return inet_csk_compat_getsockopt(sk, level, optname, 2650 optval, optlen); 2651 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2652 } 2653 EXPORT_SYMBOL(compat_tcp_getsockopt); 2654 #endif 2655 2656 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, u32 features) 2657 { 2658 struct sk_buff *segs = ERR_PTR(-EINVAL); 2659 struct tcphdr *th; 2660 unsigned thlen; 2661 unsigned int seq; 2662 __be32 delta; 2663 unsigned int oldlen; 2664 unsigned int mss; 2665 2666 if (!pskb_may_pull(skb, sizeof(*th))) 2667 goto out; 2668 2669 th = tcp_hdr(skb); 2670 thlen = th->doff * 4; 2671 if (thlen < sizeof(*th)) 2672 goto out; 2673 2674 if (!pskb_may_pull(skb, thlen)) 2675 goto out; 2676 2677 oldlen = (u16)~skb->len; 2678 __skb_pull(skb, thlen); 2679 2680 mss = skb_shinfo(skb)->gso_size; 2681 if (unlikely(skb->len <= mss)) 2682 goto out; 2683 2684 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2685 /* Packet is from an untrusted source, reset gso_segs. */ 2686 int type = skb_shinfo(skb)->gso_type; 2687 2688 if (unlikely(type & 2689 ~(SKB_GSO_TCPV4 | 2690 SKB_GSO_DODGY | 2691 SKB_GSO_TCP_ECN | 2692 SKB_GSO_TCPV6 | 2693 0) || 2694 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2695 goto out; 2696 2697 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2698 2699 segs = NULL; 2700 goto out; 2701 } 2702 2703 segs = skb_segment(skb, features); 2704 if (IS_ERR(segs)) 2705 goto out; 2706 2707 delta = htonl(oldlen + (thlen + mss)); 2708 2709 skb = segs; 2710 th = tcp_hdr(skb); 2711 seq = ntohl(th->seq); 2712 2713 do { 2714 th->fin = th->psh = 0; 2715 2716 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2717 (__force u32)delta)); 2718 if (skb->ip_summed != CHECKSUM_PARTIAL) 2719 th->check = 2720 csum_fold(csum_partial(skb_transport_header(skb), 2721 thlen, skb->csum)); 2722 2723 seq += mss; 2724 skb = skb->next; 2725 th = tcp_hdr(skb); 2726 2727 th->seq = htonl(seq); 2728 th->cwr = 0; 2729 } while (skb->next); 2730 2731 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2732 skb->data_len); 2733 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2734 (__force u32)delta)); 2735 if (skb->ip_summed != CHECKSUM_PARTIAL) 2736 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2737 thlen, skb->csum)); 2738 2739 out: 2740 return segs; 2741 } 2742 EXPORT_SYMBOL(tcp_tso_segment); 2743 2744 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2745 { 2746 struct sk_buff **pp = NULL; 2747 struct sk_buff *p; 2748 struct tcphdr *th; 2749 struct tcphdr *th2; 2750 unsigned int len; 2751 unsigned int thlen; 2752 __be32 flags; 2753 unsigned int mss = 1; 2754 unsigned int hlen; 2755 unsigned int off; 2756 int flush = 1; 2757 int i; 2758 2759 off = skb_gro_offset(skb); 2760 hlen = off + sizeof(*th); 2761 th = skb_gro_header_fast(skb, off); 2762 if (skb_gro_header_hard(skb, hlen)) { 2763 th = skb_gro_header_slow(skb, hlen, off); 2764 if (unlikely(!th)) 2765 goto out; 2766 } 2767 2768 thlen = th->doff * 4; 2769 if (thlen < sizeof(*th)) 2770 goto out; 2771 2772 hlen = off + thlen; 2773 if (skb_gro_header_hard(skb, hlen)) { 2774 th = skb_gro_header_slow(skb, hlen, off); 2775 if (unlikely(!th)) 2776 goto out; 2777 } 2778 2779 skb_gro_pull(skb, thlen); 2780 2781 len = skb_gro_len(skb); 2782 flags = tcp_flag_word(th); 2783 2784 for (; (p = *head); head = &p->next) { 2785 if (!NAPI_GRO_CB(p)->same_flow) 2786 continue; 2787 2788 th2 = tcp_hdr(p); 2789 2790 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 2791 NAPI_GRO_CB(p)->same_flow = 0; 2792 continue; 2793 } 2794 2795 goto found; 2796 } 2797 2798 goto out_check_final; 2799 2800 found: 2801 flush = NAPI_GRO_CB(p)->flush; 2802 flush |= (__force int)(flags & TCP_FLAG_CWR); 2803 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 2804 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 2805 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 2806 for (i = sizeof(*th); i < thlen; i += 4) 2807 flush |= *(u32 *)((u8 *)th + i) ^ 2808 *(u32 *)((u8 *)th2 + i); 2809 2810 mss = skb_shinfo(p)->gso_size; 2811 2812 flush |= (len - 1) >= mss; 2813 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 2814 2815 if (flush || skb_gro_receive(head, skb)) { 2816 mss = 1; 2817 goto out_check_final; 2818 } 2819 2820 p = *head; 2821 th2 = tcp_hdr(p); 2822 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 2823 2824 out_check_final: 2825 flush = len < mss; 2826 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 2827 TCP_FLAG_RST | TCP_FLAG_SYN | 2828 TCP_FLAG_FIN)); 2829 2830 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 2831 pp = head; 2832 2833 out: 2834 NAPI_GRO_CB(skb)->flush |= flush; 2835 2836 return pp; 2837 } 2838 EXPORT_SYMBOL(tcp_gro_receive); 2839 2840 int tcp_gro_complete(struct sk_buff *skb) 2841 { 2842 struct tcphdr *th = tcp_hdr(skb); 2843 2844 skb->csum_start = skb_transport_header(skb) - skb->head; 2845 skb->csum_offset = offsetof(struct tcphdr, check); 2846 skb->ip_summed = CHECKSUM_PARTIAL; 2847 2848 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 2849 2850 if (th->cwr) 2851 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 2852 2853 return 0; 2854 } 2855 EXPORT_SYMBOL(tcp_gro_complete); 2856 2857 #ifdef CONFIG_TCP_MD5SIG 2858 static unsigned long tcp_md5sig_users; 2859 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 2860 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 2861 2862 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 2863 { 2864 int cpu; 2865 2866 for_each_possible_cpu(cpu) { 2867 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 2868 2869 if (p->md5_desc.tfm) 2870 crypto_free_hash(p->md5_desc.tfm); 2871 } 2872 free_percpu(pool); 2873 } 2874 2875 void tcp_free_md5sig_pool(void) 2876 { 2877 struct tcp_md5sig_pool __percpu *pool = NULL; 2878 2879 spin_lock_bh(&tcp_md5sig_pool_lock); 2880 if (--tcp_md5sig_users == 0) { 2881 pool = tcp_md5sig_pool; 2882 tcp_md5sig_pool = NULL; 2883 } 2884 spin_unlock_bh(&tcp_md5sig_pool_lock); 2885 if (pool) 2886 __tcp_free_md5sig_pool(pool); 2887 } 2888 EXPORT_SYMBOL(tcp_free_md5sig_pool); 2889 2890 static struct tcp_md5sig_pool __percpu * 2891 __tcp_alloc_md5sig_pool(struct sock *sk) 2892 { 2893 int cpu; 2894 struct tcp_md5sig_pool __percpu *pool; 2895 2896 pool = alloc_percpu(struct tcp_md5sig_pool); 2897 if (!pool) 2898 return NULL; 2899 2900 for_each_possible_cpu(cpu) { 2901 struct crypto_hash *hash; 2902 2903 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 2904 if (!hash || IS_ERR(hash)) 2905 goto out_free; 2906 2907 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 2908 } 2909 return pool; 2910 out_free: 2911 __tcp_free_md5sig_pool(pool); 2912 return NULL; 2913 } 2914 2915 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 2916 { 2917 struct tcp_md5sig_pool __percpu *pool; 2918 int alloc = 0; 2919 2920 retry: 2921 spin_lock_bh(&tcp_md5sig_pool_lock); 2922 pool = tcp_md5sig_pool; 2923 if (tcp_md5sig_users++ == 0) { 2924 alloc = 1; 2925 spin_unlock_bh(&tcp_md5sig_pool_lock); 2926 } else if (!pool) { 2927 tcp_md5sig_users--; 2928 spin_unlock_bh(&tcp_md5sig_pool_lock); 2929 cpu_relax(); 2930 goto retry; 2931 } else 2932 spin_unlock_bh(&tcp_md5sig_pool_lock); 2933 2934 if (alloc) { 2935 /* we cannot hold spinlock here because this may sleep. */ 2936 struct tcp_md5sig_pool __percpu *p; 2937 2938 p = __tcp_alloc_md5sig_pool(sk); 2939 spin_lock_bh(&tcp_md5sig_pool_lock); 2940 if (!p) { 2941 tcp_md5sig_users--; 2942 spin_unlock_bh(&tcp_md5sig_pool_lock); 2943 return NULL; 2944 } 2945 pool = tcp_md5sig_pool; 2946 if (pool) { 2947 /* oops, it has already been assigned. */ 2948 spin_unlock_bh(&tcp_md5sig_pool_lock); 2949 __tcp_free_md5sig_pool(p); 2950 } else { 2951 tcp_md5sig_pool = pool = p; 2952 spin_unlock_bh(&tcp_md5sig_pool_lock); 2953 } 2954 } 2955 return pool; 2956 } 2957 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2958 2959 2960 /** 2961 * tcp_get_md5sig_pool - get md5sig_pool for this user 2962 * 2963 * We use percpu structure, so if we succeed, we exit with preemption 2964 * and BH disabled, to make sure another thread or softirq handling 2965 * wont try to get same context. 2966 */ 2967 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 2968 { 2969 struct tcp_md5sig_pool __percpu *p; 2970 2971 local_bh_disable(); 2972 2973 spin_lock(&tcp_md5sig_pool_lock); 2974 p = tcp_md5sig_pool; 2975 if (p) 2976 tcp_md5sig_users++; 2977 spin_unlock(&tcp_md5sig_pool_lock); 2978 2979 if (p) 2980 return this_cpu_ptr(p); 2981 2982 local_bh_enable(); 2983 return NULL; 2984 } 2985 EXPORT_SYMBOL(tcp_get_md5sig_pool); 2986 2987 void tcp_put_md5sig_pool(void) 2988 { 2989 local_bh_enable(); 2990 tcp_free_md5sig_pool(); 2991 } 2992 EXPORT_SYMBOL(tcp_put_md5sig_pool); 2993 2994 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 2995 const struct tcphdr *th) 2996 { 2997 struct scatterlist sg; 2998 struct tcphdr hdr; 2999 int err; 3000 3001 /* We are not allowed to change tcphdr, make a local copy */ 3002 memcpy(&hdr, th, sizeof(hdr)); 3003 hdr.check = 0; 3004 3005 /* options aren't included in the hash */ 3006 sg_init_one(&sg, &hdr, sizeof(hdr)); 3007 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3008 return err; 3009 } 3010 EXPORT_SYMBOL(tcp_md5_hash_header); 3011 3012 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3013 const struct sk_buff *skb, unsigned int header_len) 3014 { 3015 struct scatterlist sg; 3016 const struct tcphdr *tp = tcp_hdr(skb); 3017 struct hash_desc *desc = &hp->md5_desc; 3018 unsigned i; 3019 const unsigned head_data_len = skb_headlen(skb) > header_len ? 3020 skb_headlen(skb) - header_len : 0; 3021 const struct skb_shared_info *shi = skb_shinfo(skb); 3022 struct sk_buff *frag_iter; 3023 3024 sg_init_table(&sg, 1); 3025 3026 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3027 if (crypto_hash_update(desc, &sg, head_data_len)) 3028 return 1; 3029 3030 for (i = 0; i < shi->nr_frags; ++i) { 3031 const struct skb_frag_struct *f = &shi->frags[i]; 3032 struct page *page = skb_frag_page(f); 3033 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); 3034 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3035 return 1; 3036 } 3037 3038 skb_walk_frags(skb, frag_iter) 3039 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3040 return 1; 3041 3042 return 0; 3043 } 3044 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3045 3046 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3047 { 3048 struct scatterlist sg; 3049 3050 sg_init_one(&sg, key->key, key->keylen); 3051 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3052 } 3053 EXPORT_SYMBOL(tcp_md5_hash_key); 3054 3055 #endif 3056 3057 /** 3058 * Each Responder maintains up to two secret values concurrently for 3059 * efficient secret rollover. Each secret value has 4 states: 3060 * 3061 * Generating. (tcp_secret_generating != tcp_secret_primary) 3062 * Generates new Responder-Cookies, but not yet used for primary 3063 * verification. This is a short-term state, typically lasting only 3064 * one round trip time (RTT). 3065 * 3066 * Primary. (tcp_secret_generating == tcp_secret_primary) 3067 * Used both for generation and primary verification. 3068 * 3069 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3070 * Used for verification, until the first failure that can be 3071 * verified by the newer Generating secret. At that time, this 3072 * cookie's state is changed to Secondary, and the Generating 3073 * cookie's state is changed to Primary. This is a short-term state, 3074 * typically lasting only one round trip time (RTT). 3075 * 3076 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3077 * Used for secondary verification, after primary verification 3078 * failures. This state lasts no more than twice the Maximum Segment 3079 * Lifetime (2MSL). Then, the secret is discarded. 3080 */ 3081 struct tcp_cookie_secret { 3082 /* The secret is divided into two parts. The digest part is the 3083 * equivalent of previously hashing a secret and saving the state, 3084 * and serves as an initialization vector (IV). The message part 3085 * serves as the trailing secret. 3086 */ 3087 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3088 unsigned long expires; 3089 }; 3090 3091 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3092 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3093 #define TCP_SECRET_LIFE (HZ * 600) 3094 3095 static struct tcp_cookie_secret tcp_secret_one; 3096 static struct tcp_cookie_secret tcp_secret_two; 3097 3098 /* Essentially a circular list, without dynamic allocation. */ 3099 static struct tcp_cookie_secret *tcp_secret_generating; 3100 static struct tcp_cookie_secret *tcp_secret_primary; 3101 static struct tcp_cookie_secret *tcp_secret_retiring; 3102 static struct tcp_cookie_secret *tcp_secret_secondary; 3103 3104 static DEFINE_SPINLOCK(tcp_secret_locker); 3105 3106 /* Select a pseudo-random word in the cookie workspace. 3107 */ 3108 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3109 { 3110 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3111 } 3112 3113 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3114 * Called in softirq context. 3115 * Returns: 0 for success. 3116 */ 3117 int tcp_cookie_generator(u32 *bakery) 3118 { 3119 unsigned long jiffy = jiffies; 3120 3121 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3122 spin_lock_bh(&tcp_secret_locker); 3123 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3124 /* refreshed by another */ 3125 memcpy(bakery, 3126 &tcp_secret_generating->secrets[0], 3127 COOKIE_WORKSPACE_WORDS); 3128 } else { 3129 /* still needs refreshing */ 3130 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3131 3132 /* The first time, paranoia assumes that the 3133 * randomization function isn't as strong. But, 3134 * this secret initialization is delayed until 3135 * the last possible moment (packet arrival). 3136 * Although that time is observable, it is 3137 * unpredictably variable. Mash in the most 3138 * volatile clock bits available, and expire the 3139 * secret extra quickly. 3140 */ 3141 if (unlikely(tcp_secret_primary->expires == 3142 tcp_secret_secondary->expires)) { 3143 struct timespec tv; 3144 3145 getnstimeofday(&tv); 3146 bakery[COOKIE_DIGEST_WORDS+0] ^= 3147 (u32)tv.tv_nsec; 3148 3149 tcp_secret_secondary->expires = jiffy 3150 + TCP_SECRET_1MSL 3151 + (0x0f & tcp_cookie_work(bakery, 0)); 3152 } else { 3153 tcp_secret_secondary->expires = jiffy 3154 + TCP_SECRET_LIFE 3155 + (0xff & tcp_cookie_work(bakery, 1)); 3156 tcp_secret_primary->expires = jiffy 3157 + TCP_SECRET_2MSL 3158 + (0x1f & tcp_cookie_work(bakery, 2)); 3159 } 3160 memcpy(&tcp_secret_secondary->secrets[0], 3161 bakery, COOKIE_WORKSPACE_WORDS); 3162 3163 rcu_assign_pointer(tcp_secret_generating, 3164 tcp_secret_secondary); 3165 rcu_assign_pointer(tcp_secret_retiring, 3166 tcp_secret_primary); 3167 /* 3168 * Neither call_rcu() nor synchronize_rcu() needed. 3169 * Retiring data is not freed. It is replaced after 3170 * further (locked) pointer updates, and a quiet time 3171 * (minimum 1MSL, maximum LIFE - 2MSL). 3172 */ 3173 } 3174 spin_unlock_bh(&tcp_secret_locker); 3175 } else { 3176 rcu_read_lock_bh(); 3177 memcpy(bakery, 3178 &rcu_dereference(tcp_secret_generating)->secrets[0], 3179 COOKIE_WORKSPACE_WORDS); 3180 rcu_read_unlock_bh(); 3181 } 3182 return 0; 3183 } 3184 EXPORT_SYMBOL(tcp_cookie_generator); 3185 3186 void tcp_done(struct sock *sk) 3187 { 3188 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3189 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3190 3191 tcp_set_state(sk, TCP_CLOSE); 3192 tcp_clear_xmit_timers(sk); 3193 3194 sk->sk_shutdown = SHUTDOWN_MASK; 3195 3196 if (!sock_flag(sk, SOCK_DEAD)) 3197 sk->sk_state_change(sk); 3198 else 3199 inet_csk_destroy_sock(sk); 3200 } 3201 EXPORT_SYMBOL_GPL(tcp_done); 3202 3203 extern struct tcp_congestion_ops tcp_reno; 3204 3205 static __initdata unsigned long thash_entries; 3206 static int __init set_thash_entries(char *str) 3207 { 3208 if (!str) 3209 return 0; 3210 thash_entries = simple_strtoul(str, &str, 0); 3211 return 1; 3212 } 3213 __setup("thash_entries=", set_thash_entries); 3214 3215 void __init tcp_init(void) 3216 { 3217 struct sk_buff *skb = NULL; 3218 unsigned long limit; 3219 int i, max_share, cnt; 3220 unsigned long jiffy = jiffies; 3221 3222 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3223 3224 percpu_counter_init(&tcp_sockets_allocated, 0); 3225 percpu_counter_init(&tcp_orphan_count, 0); 3226 tcp_hashinfo.bind_bucket_cachep = 3227 kmem_cache_create("tcp_bind_bucket", 3228 sizeof(struct inet_bind_bucket), 0, 3229 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3230 3231 /* Size and allocate the main established and bind bucket 3232 * hash tables. 3233 * 3234 * The methodology is similar to that of the buffer cache. 3235 */ 3236 tcp_hashinfo.ehash = 3237 alloc_large_system_hash("TCP established", 3238 sizeof(struct inet_ehash_bucket), 3239 thash_entries, 3240 (totalram_pages >= 128 * 1024) ? 3241 13 : 15, 3242 0, 3243 NULL, 3244 &tcp_hashinfo.ehash_mask, 3245 thash_entries ? 0 : 512 * 1024); 3246 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3247 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3248 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3249 } 3250 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3251 panic("TCP: failed to alloc ehash_locks"); 3252 tcp_hashinfo.bhash = 3253 alloc_large_system_hash("TCP bind", 3254 sizeof(struct inet_bind_hashbucket), 3255 tcp_hashinfo.ehash_mask + 1, 3256 (totalram_pages >= 128 * 1024) ? 3257 13 : 15, 3258 0, 3259 &tcp_hashinfo.bhash_size, 3260 NULL, 3261 64 * 1024); 3262 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size; 3263 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3264 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3265 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3266 } 3267 3268 3269 cnt = tcp_hashinfo.ehash_mask + 1; 3270 3271 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3272 sysctl_tcp_max_orphans = cnt / 2; 3273 sysctl_max_syn_backlog = max(128, cnt / 256); 3274 3275 limit = nr_free_buffer_pages() / 8; 3276 limit = max(limit, 128UL); 3277 sysctl_tcp_mem[0] = limit / 4 * 3; 3278 sysctl_tcp_mem[1] = limit; 3279 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; 3280 3281 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3282 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7); 3283 max_share = min(4UL*1024*1024, limit); 3284 3285 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3286 sysctl_tcp_wmem[1] = 16*1024; 3287 sysctl_tcp_wmem[2] = max(64*1024, max_share); 3288 3289 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3290 sysctl_tcp_rmem[1] = 87380; 3291 sysctl_tcp_rmem[2] = max(87380, max_share); 3292 3293 printk(KERN_INFO "TCP: Hash tables configured " 3294 "(established %u bind %u)\n", 3295 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3296 3297 tcp_register_congestion_control(&tcp_reno); 3298 3299 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3300 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3301 tcp_secret_one.expires = jiffy; /* past due */ 3302 tcp_secret_two.expires = jiffy; /* past due */ 3303 tcp_secret_generating = &tcp_secret_one; 3304 tcp_secret_primary = &tcp_secret_one; 3305 tcp_secret_retiring = &tcp_secret_two; 3306 tcp_secret_secondary = &tcp_secret_two; 3307 } 3308