1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 } 726 /* It is possible TX completion already happened 727 * before we set TSQ_THROTTLED. 728 */ 729 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 730 return; 731 } 732 733 if (flags & MSG_MORE) 734 nonagle = TCP_NAGLE_CORK; 735 736 __tcp_push_pending_frames(sk, mss_now, nonagle); 737 } 738 739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 740 unsigned int offset, size_t len) 741 { 742 struct tcp_splice_state *tss = rd_desc->arg.data; 743 int ret; 744 745 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 746 min(rd_desc->count, len), tss->flags); 747 if (ret > 0) 748 rd_desc->count -= ret; 749 return ret; 750 } 751 752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 753 { 754 /* Store TCP splice context information in read_descriptor_t. */ 755 read_descriptor_t rd_desc = { 756 .arg.data = tss, 757 .count = tss->len, 758 }; 759 760 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 761 } 762 763 /** 764 * tcp_splice_read - splice data from TCP socket to a pipe 765 * @sock: socket to splice from 766 * @ppos: position (not valid) 767 * @pipe: pipe to splice to 768 * @len: number of bytes to splice 769 * @flags: splice modifier flags 770 * 771 * Description: 772 * Will read pages from given socket and fill them into a pipe. 773 * 774 **/ 775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 776 struct pipe_inode_info *pipe, size_t len, 777 unsigned int flags) 778 { 779 struct sock *sk = sock->sk; 780 struct tcp_splice_state tss = { 781 .pipe = pipe, 782 .len = len, 783 .flags = flags, 784 }; 785 long timeo; 786 ssize_t spliced; 787 int ret; 788 789 sock_rps_record_flow(sk); 790 /* 791 * We can't seek on a socket input 792 */ 793 if (unlikely(*ppos)) 794 return -ESPIPE; 795 796 ret = spliced = 0; 797 798 lock_sock(sk); 799 800 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 801 while (tss.len) { 802 ret = __tcp_splice_read(sk, &tss); 803 if (ret < 0) 804 break; 805 else if (!ret) { 806 if (spliced) 807 break; 808 if (sock_flag(sk, SOCK_DONE)) 809 break; 810 if (sk->sk_err) { 811 ret = sock_error(sk); 812 break; 813 } 814 if (sk->sk_shutdown & RCV_SHUTDOWN) 815 break; 816 if (sk->sk_state == TCP_CLOSE) { 817 /* 818 * This occurs when user tries to read 819 * from never connected socket. 820 */ 821 ret = -ENOTCONN; 822 break; 823 } 824 if (!timeo) { 825 ret = -EAGAIN; 826 break; 827 } 828 /* if __tcp_splice_read() got nothing while we have 829 * an skb in receive queue, we do not want to loop. 830 * This might happen with URG data. 831 */ 832 if (!skb_queue_empty(&sk->sk_receive_queue)) 833 break; 834 sk_wait_data(sk, &timeo, NULL); 835 if (signal_pending(current)) { 836 ret = sock_intr_errno(timeo); 837 break; 838 } 839 continue; 840 } 841 tss.len -= ret; 842 spliced += ret; 843 844 if (!tss.len || !timeo) 845 break; 846 release_sock(sk); 847 lock_sock(sk); 848 849 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 850 (sk->sk_shutdown & RCV_SHUTDOWN) || 851 signal_pending(current)) 852 break; 853 } 854 855 release_sock(sk); 856 857 if (spliced) 858 return spliced; 859 860 return ret; 861 } 862 EXPORT_SYMBOL(tcp_splice_read); 863 864 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 865 bool force_schedule) 866 { 867 struct sk_buff *skb; 868 869 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 870 if (likely(skb)) { 871 bool mem_scheduled; 872 873 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 874 if (force_schedule) { 875 mem_scheduled = true; 876 sk_forced_mem_schedule(sk, skb->truesize); 877 } else { 878 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 879 } 880 if (likely(mem_scheduled)) { 881 skb_reserve(skb, MAX_TCP_HEADER); 882 skb->ip_summed = CHECKSUM_PARTIAL; 883 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 884 return skb; 885 } 886 __kfree_skb(skb); 887 } else { 888 sk->sk_prot->enter_memory_pressure(sk); 889 sk_stream_moderate_sndbuf(sk); 890 } 891 return NULL; 892 } 893 894 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 895 int large_allowed) 896 { 897 struct tcp_sock *tp = tcp_sk(sk); 898 u32 new_size_goal, size_goal; 899 900 if (!large_allowed) 901 return mss_now; 902 903 /* Note : tcp_tso_autosize() will eventually split this later */ 904 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 905 906 /* We try hard to avoid divides here */ 907 size_goal = tp->gso_segs * mss_now; 908 if (unlikely(new_size_goal < size_goal || 909 new_size_goal >= size_goal + mss_now)) { 910 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 911 sk->sk_gso_max_segs); 912 size_goal = tp->gso_segs * mss_now; 913 } 914 915 return max(size_goal, mss_now); 916 } 917 918 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 919 { 920 int mss_now; 921 922 mss_now = tcp_current_mss(sk); 923 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 924 925 return mss_now; 926 } 927 928 /* In some cases, both sendmsg() could have added an skb to the write queue, 929 * but failed adding payload on it. We need to remove it to consume less 930 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 931 * epoll() users. 932 */ 933 void tcp_remove_empty_skb(struct sock *sk) 934 { 935 struct sk_buff *skb = tcp_write_queue_tail(sk); 936 937 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 938 tcp_unlink_write_queue(skb, sk); 939 if (tcp_write_queue_empty(sk)) 940 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 941 tcp_wmem_free_skb(sk, skb); 942 } 943 } 944 945 /* skb changing from pure zc to mixed, must charge zc */ 946 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 947 { 948 if (unlikely(skb_zcopy_pure(skb))) { 949 u32 extra = skb->truesize - 950 SKB_TRUESIZE(skb_end_offset(skb)); 951 952 if (!sk_wmem_schedule(sk, extra)) 953 return -ENOMEM; 954 955 sk_mem_charge(sk, extra); 956 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 957 } 958 return 0; 959 } 960 961 962 int tcp_wmem_schedule(struct sock *sk, int copy) 963 { 964 int left; 965 966 if (likely(sk_wmem_schedule(sk, copy))) 967 return copy; 968 969 /* We could be in trouble if we have nothing queued. 970 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 971 * to guarantee some progress. 972 */ 973 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 974 if (left > 0) 975 sk_forced_mem_schedule(sk, min(left, copy)); 976 return min(copy, sk->sk_forward_alloc); 977 } 978 979 void tcp_free_fastopen_req(struct tcp_sock *tp) 980 { 981 if (tp->fastopen_req) { 982 kfree(tp->fastopen_req); 983 tp->fastopen_req = NULL; 984 } 985 } 986 987 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 988 size_t size, struct ubuf_info *uarg) 989 { 990 struct tcp_sock *tp = tcp_sk(sk); 991 struct inet_sock *inet = inet_sk(sk); 992 struct sockaddr *uaddr = msg->msg_name; 993 int err, flags; 994 995 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 996 TFO_CLIENT_ENABLE) || 997 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 998 uaddr->sa_family == AF_UNSPEC)) 999 return -EOPNOTSUPP; 1000 if (tp->fastopen_req) 1001 return -EALREADY; /* Another Fast Open is in progress */ 1002 1003 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1004 sk->sk_allocation); 1005 if (unlikely(!tp->fastopen_req)) 1006 return -ENOBUFS; 1007 tp->fastopen_req->data = msg; 1008 tp->fastopen_req->size = size; 1009 tp->fastopen_req->uarg = uarg; 1010 1011 if (inet_test_bit(DEFER_CONNECT, sk)) { 1012 err = tcp_connect(sk); 1013 /* Same failure procedure as in tcp_v4/6_connect */ 1014 if (err) { 1015 tcp_set_state(sk, TCP_CLOSE); 1016 inet->inet_dport = 0; 1017 sk->sk_route_caps = 0; 1018 } 1019 } 1020 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1021 err = __inet_stream_connect(sk->sk_socket, uaddr, 1022 msg->msg_namelen, flags, 1); 1023 /* fastopen_req could already be freed in __inet_stream_connect 1024 * if the connection times out or gets rst 1025 */ 1026 if (tp->fastopen_req) { 1027 *copied = tp->fastopen_req->copied; 1028 tcp_free_fastopen_req(tp); 1029 inet_clear_bit(DEFER_CONNECT, sk); 1030 } 1031 return err; 1032 } 1033 1034 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1035 { 1036 struct tcp_sock *tp = tcp_sk(sk); 1037 struct ubuf_info *uarg = NULL; 1038 struct sk_buff *skb; 1039 struct sockcm_cookie sockc; 1040 int flags, err, copied = 0; 1041 int mss_now = 0, size_goal, copied_syn = 0; 1042 int process_backlog = 0; 1043 int zc = 0; 1044 long timeo; 1045 1046 flags = msg->msg_flags; 1047 1048 if ((flags & MSG_ZEROCOPY) && size) { 1049 if (msg->msg_ubuf) { 1050 uarg = msg->msg_ubuf; 1051 if (sk->sk_route_caps & NETIF_F_SG) 1052 zc = MSG_ZEROCOPY; 1053 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1054 skb = tcp_write_queue_tail(sk); 1055 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1056 if (!uarg) { 1057 err = -ENOBUFS; 1058 goto out_err; 1059 } 1060 if (sk->sk_route_caps & NETIF_F_SG) 1061 zc = MSG_ZEROCOPY; 1062 else 1063 uarg_to_msgzc(uarg)->zerocopy = 0; 1064 } 1065 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1066 if (sk->sk_route_caps & NETIF_F_SG) 1067 zc = MSG_SPLICE_PAGES; 1068 } 1069 1070 if (unlikely(flags & MSG_FASTOPEN || 1071 inet_test_bit(DEFER_CONNECT, sk)) && 1072 !tp->repair) { 1073 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1074 if (err == -EINPROGRESS && copied_syn > 0) 1075 goto out; 1076 else if (err) 1077 goto out_err; 1078 } 1079 1080 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1081 1082 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1083 1084 /* Wait for a connection to finish. One exception is TCP Fast Open 1085 * (passive side) where data is allowed to be sent before a connection 1086 * is fully established. 1087 */ 1088 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1089 !tcp_passive_fastopen(sk)) { 1090 err = sk_stream_wait_connect(sk, &timeo); 1091 if (err != 0) 1092 goto do_error; 1093 } 1094 1095 if (unlikely(tp->repair)) { 1096 if (tp->repair_queue == TCP_RECV_QUEUE) { 1097 copied = tcp_send_rcvq(sk, msg, size); 1098 goto out_nopush; 1099 } 1100 1101 err = -EINVAL; 1102 if (tp->repair_queue == TCP_NO_QUEUE) 1103 goto out_err; 1104 1105 /* 'common' sending to sendq */ 1106 } 1107 1108 sockcm_init(&sockc, sk); 1109 if (msg->msg_controllen) { 1110 err = sock_cmsg_send(sk, msg, &sockc); 1111 if (unlikely(err)) { 1112 err = -EINVAL; 1113 goto out_err; 1114 } 1115 } 1116 1117 /* This should be in poll */ 1118 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1119 1120 /* Ok commence sending. */ 1121 copied = 0; 1122 1123 restart: 1124 mss_now = tcp_send_mss(sk, &size_goal, flags); 1125 1126 err = -EPIPE; 1127 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1128 goto do_error; 1129 1130 while (msg_data_left(msg)) { 1131 ssize_t copy = 0; 1132 1133 skb = tcp_write_queue_tail(sk); 1134 if (skb) 1135 copy = size_goal - skb->len; 1136 1137 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1138 bool first_skb; 1139 1140 new_segment: 1141 if (!sk_stream_memory_free(sk)) 1142 goto wait_for_space; 1143 1144 if (unlikely(process_backlog >= 16)) { 1145 process_backlog = 0; 1146 if (sk_flush_backlog(sk)) 1147 goto restart; 1148 } 1149 first_skb = tcp_rtx_and_write_queues_empty(sk); 1150 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1151 first_skb); 1152 if (!skb) 1153 goto wait_for_space; 1154 1155 process_backlog++; 1156 1157 tcp_skb_entail(sk, skb); 1158 copy = size_goal; 1159 1160 /* All packets are restored as if they have 1161 * already been sent. skb_mstamp_ns isn't set to 1162 * avoid wrong rtt estimation. 1163 */ 1164 if (tp->repair) 1165 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1166 } 1167 1168 /* Try to append data to the end of skb. */ 1169 if (copy > msg_data_left(msg)) 1170 copy = msg_data_left(msg); 1171 1172 if (zc == 0) { 1173 bool merge = true; 1174 int i = skb_shinfo(skb)->nr_frags; 1175 struct page_frag *pfrag = sk_page_frag(sk); 1176 1177 if (!sk_page_frag_refill(sk, pfrag)) 1178 goto wait_for_space; 1179 1180 if (!skb_can_coalesce(skb, i, pfrag->page, 1181 pfrag->offset)) { 1182 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1183 tcp_mark_push(tp, skb); 1184 goto new_segment; 1185 } 1186 merge = false; 1187 } 1188 1189 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1190 1191 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1192 if (tcp_downgrade_zcopy_pure(sk, skb)) 1193 goto wait_for_space; 1194 skb_zcopy_downgrade_managed(skb); 1195 } 1196 1197 copy = tcp_wmem_schedule(sk, copy); 1198 if (!copy) 1199 goto wait_for_space; 1200 1201 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1202 pfrag->page, 1203 pfrag->offset, 1204 copy); 1205 if (err) 1206 goto do_error; 1207 1208 /* Update the skb. */ 1209 if (merge) { 1210 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1211 } else { 1212 skb_fill_page_desc(skb, i, pfrag->page, 1213 pfrag->offset, copy); 1214 page_ref_inc(pfrag->page); 1215 } 1216 pfrag->offset += copy; 1217 } else if (zc == MSG_ZEROCOPY) { 1218 /* First append to a fragless skb builds initial 1219 * pure zerocopy skb 1220 */ 1221 if (!skb->len) 1222 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1223 1224 if (!skb_zcopy_pure(skb)) { 1225 copy = tcp_wmem_schedule(sk, copy); 1226 if (!copy) 1227 goto wait_for_space; 1228 } 1229 1230 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1231 if (err == -EMSGSIZE || err == -EEXIST) { 1232 tcp_mark_push(tp, skb); 1233 goto new_segment; 1234 } 1235 if (err < 0) 1236 goto do_error; 1237 copy = err; 1238 } else if (zc == MSG_SPLICE_PAGES) { 1239 /* Splice in data if we can; copy if we can't. */ 1240 if (tcp_downgrade_zcopy_pure(sk, skb)) 1241 goto wait_for_space; 1242 copy = tcp_wmem_schedule(sk, copy); 1243 if (!copy) 1244 goto wait_for_space; 1245 1246 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1247 sk->sk_allocation); 1248 if (err < 0) { 1249 if (err == -EMSGSIZE) { 1250 tcp_mark_push(tp, skb); 1251 goto new_segment; 1252 } 1253 goto do_error; 1254 } 1255 copy = err; 1256 1257 if (!(flags & MSG_NO_SHARED_FRAGS)) 1258 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1259 1260 sk_wmem_queued_add(sk, copy); 1261 sk_mem_charge(sk, copy); 1262 } 1263 1264 if (!copied) 1265 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1266 1267 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1268 TCP_SKB_CB(skb)->end_seq += copy; 1269 tcp_skb_pcount_set(skb, 0); 1270 1271 copied += copy; 1272 if (!msg_data_left(msg)) { 1273 if (unlikely(flags & MSG_EOR)) 1274 TCP_SKB_CB(skb)->eor = 1; 1275 goto out; 1276 } 1277 1278 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1279 continue; 1280 1281 if (forced_push(tp)) { 1282 tcp_mark_push(tp, skb); 1283 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1284 } else if (skb == tcp_send_head(sk)) 1285 tcp_push_one(sk, mss_now); 1286 continue; 1287 1288 wait_for_space: 1289 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1290 if (copied) 1291 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1292 TCP_NAGLE_PUSH, size_goal); 1293 1294 err = sk_stream_wait_memory(sk, &timeo); 1295 if (err != 0) 1296 goto do_error; 1297 1298 mss_now = tcp_send_mss(sk, &size_goal, flags); 1299 } 1300 1301 out: 1302 if (copied) { 1303 tcp_tx_timestamp(sk, sockc.tsflags); 1304 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1305 } 1306 out_nopush: 1307 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1308 if (uarg && !msg->msg_ubuf) 1309 net_zcopy_put(uarg); 1310 return copied + copied_syn; 1311 1312 do_error: 1313 tcp_remove_empty_skb(sk); 1314 1315 if (copied + copied_syn) 1316 goto out; 1317 out_err: 1318 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1319 if (uarg && !msg->msg_ubuf) 1320 net_zcopy_put_abort(uarg, true); 1321 err = sk_stream_error(sk, flags, err); 1322 /* make sure we wake any epoll edge trigger waiter */ 1323 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1324 sk->sk_write_space(sk); 1325 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1326 } 1327 return err; 1328 } 1329 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1330 1331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1332 { 1333 int ret; 1334 1335 lock_sock(sk); 1336 ret = tcp_sendmsg_locked(sk, msg, size); 1337 release_sock(sk); 1338 1339 return ret; 1340 } 1341 EXPORT_SYMBOL(tcp_sendmsg); 1342 1343 void tcp_splice_eof(struct socket *sock) 1344 { 1345 struct sock *sk = sock->sk; 1346 struct tcp_sock *tp = tcp_sk(sk); 1347 int mss_now, size_goal; 1348 1349 if (!tcp_write_queue_tail(sk)) 1350 return; 1351 1352 lock_sock(sk); 1353 mss_now = tcp_send_mss(sk, &size_goal, 0); 1354 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1355 release_sock(sk); 1356 } 1357 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1358 1359 /* 1360 * Handle reading urgent data. BSD has very simple semantics for 1361 * this, no blocking and very strange errors 8) 1362 */ 1363 1364 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1365 { 1366 struct tcp_sock *tp = tcp_sk(sk); 1367 1368 /* No URG data to read. */ 1369 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1370 tp->urg_data == TCP_URG_READ) 1371 return -EINVAL; /* Yes this is right ! */ 1372 1373 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1374 return -ENOTCONN; 1375 1376 if (tp->urg_data & TCP_URG_VALID) { 1377 int err = 0; 1378 char c = tp->urg_data; 1379 1380 if (!(flags & MSG_PEEK)) 1381 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1382 1383 /* Read urgent data. */ 1384 msg->msg_flags |= MSG_OOB; 1385 1386 if (len > 0) { 1387 if (!(flags & MSG_TRUNC)) 1388 err = memcpy_to_msg(msg, &c, 1); 1389 len = 1; 1390 } else 1391 msg->msg_flags |= MSG_TRUNC; 1392 1393 return err ? -EFAULT : len; 1394 } 1395 1396 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1397 return 0; 1398 1399 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1400 * the available implementations agree in this case: 1401 * this call should never block, independent of the 1402 * blocking state of the socket. 1403 * Mike <pall@rz.uni-karlsruhe.de> 1404 */ 1405 return -EAGAIN; 1406 } 1407 1408 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1409 { 1410 struct sk_buff *skb; 1411 int copied = 0, err = 0; 1412 1413 /* XXX -- need to support SO_PEEK_OFF */ 1414 1415 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1416 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1417 if (err) 1418 return err; 1419 copied += skb->len; 1420 } 1421 1422 skb_queue_walk(&sk->sk_write_queue, skb) { 1423 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1424 if (err) 1425 break; 1426 1427 copied += skb->len; 1428 } 1429 1430 return err ?: copied; 1431 } 1432 1433 /* Clean up the receive buffer for full frames taken by the user, 1434 * then send an ACK if necessary. COPIED is the number of bytes 1435 * tcp_recvmsg has given to the user so far, it speeds up the 1436 * calculation of whether or not we must ACK for the sake of 1437 * a window update. 1438 */ 1439 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1440 { 1441 struct tcp_sock *tp = tcp_sk(sk); 1442 bool time_to_ack = false; 1443 1444 if (inet_csk_ack_scheduled(sk)) { 1445 const struct inet_connection_sock *icsk = inet_csk(sk); 1446 1447 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1448 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1449 /* 1450 * If this read emptied read buffer, we send ACK, if 1451 * connection is not bidirectional, user drained 1452 * receive buffer and there was a small segment 1453 * in queue. 1454 */ 1455 (copied > 0 && 1456 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1457 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1458 !inet_csk_in_pingpong_mode(sk))) && 1459 !atomic_read(&sk->sk_rmem_alloc))) 1460 time_to_ack = true; 1461 } 1462 1463 /* We send an ACK if we can now advertise a non-zero window 1464 * which has been raised "significantly". 1465 * 1466 * Even if window raised up to infinity, do not send window open ACK 1467 * in states, where we will not receive more. It is useless. 1468 */ 1469 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1470 __u32 rcv_window_now = tcp_receive_window(tp); 1471 1472 /* Optimize, __tcp_select_window() is not cheap. */ 1473 if (2*rcv_window_now <= tp->window_clamp) { 1474 __u32 new_window = __tcp_select_window(sk); 1475 1476 /* Send ACK now, if this read freed lots of space 1477 * in our buffer. Certainly, new_window is new window. 1478 * We can advertise it now, if it is not less than current one. 1479 * "Lots" means "at least twice" here. 1480 */ 1481 if (new_window && new_window >= 2 * rcv_window_now) 1482 time_to_ack = true; 1483 } 1484 } 1485 if (time_to_ack) 1486 tcp_send_ack(sk); 1487 } 1488 1489 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1490 { 1491 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1492 struct tcp_sock *tp = tcp_sk(sk); 1493 1494 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1495 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1496 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1497 __tcp_cleanup_rbuf(sk, copied); 1498 } 1499 1500 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1501 { 1502 __skb_unlink(skb, &sk->sk_receive_queue); 1503 if (likely(skb->destructor == sock_rfree)) { 1504 sock_rfree(skb); 1505 skb->destructor = NULL; 1506 skb->sk = NULL; 1507 return skb_attempt_defer_free(skb); 1508 } 1509 __kfree_skb(skb); 1510 } 1511 1512 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1513 { 1514 struct sk_buff *skb; 1515 u32 offset; 1516 1517 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1518 offset = seq - TCP_SKB_CB(skb)->seq; 1519 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1520 pr_err_once("%s: found a SYN, please report !\n", __func__); 1521 offset--; 1522 } 1523 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1524 *off = offset; 1525 return skb; 1526 } 1527 /* This looks weird, but this can happen if TCP collapsing 1528 * splitted a fat GRO packet, while we released socket lock 1529 * in skb_splice_bits() 1530 */ 1531 tcp_eat_recv_skb(sk, skb); 1532 } 1533 return NULL; 1534 } 1535 EXPORT_SYMBOL(tcp_recv_skb); 1536 1537 /* 1538 * This routine provides an alternative to tcp_recvmsg() for routines 1539 * that would like to handle copying from skbuffs directly in 'sendfile' 1540 * fashion. 1541 * Note: 1542 * - It is assumed that the socket was locked by the caller. 1543 * - The routine does not block. 1544 * - At present, there is no support for reading OOB data 1545 * or for 'peeking' the socket using this routine 1546 * (although both would be easy to implement). 1547 */ 1548 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1549 sk_read_actor_t recv_actor) 1550 { 1551 struct sk_buff *skb; 1552 struct tcp_sock *tp = tcp_sk(sk); 1553 u32 seq = tp->copied_seq; 1554 u32 offset; 1555 int copied = 0; 1556 1557 if (sk->sk_state == TCP_LISTEN) 1558 return -ENOTCONN; 1559 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1560 if (offset < skb->len) { 1561 int used; 1562 size_t len; 1563 1564 len = skb->len - offset; 1565 /* Stop reading if we hit a patch of urgent data */ 1566 if (unlikely(tp->urg_data)) { 1567 u32 urg_offset = tp->urg_seq - seq; 1568 if (urg_offset < len) 1569 len = urg_offset; 1570 if (!len) 1571 break; 1572 } 1573 used = recv_actor(desc, skb, offset, len); 1574 if (used <= 0) { 1575 if (!copied) 1576 copied = used; 1577 break; 1578 } 1579 if (WARN_ON_ONCE(used > len)) 1580 used = len; 1581 seq += used; 1582 copied += used; 1583 offset += used; 1584 1585 /* If recv_actor drops the lock (e.g. TCP splice 1586 * receive) the skb pointer might be invalid when 1587 * getting here: tcp_collapse might have deleted it 1588 * while aggregating skbs from the socket queue. 1589 */ 1590 skb = tcp_recv_skb(sk, seq - 1, &offset); 1591 if (!skb) 1592 break; 1593 /* TCP coalescing might have appended data to the skb. 1594 * Try to splice more frags 1595 */ 1596 if (offset + 1 != skb->len) 1597 continue; 1598 } 1599 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1600 tcp_eat_recv_skb(sk, skb); 1601 ++seq; 1602 break; 1603 } 1604 tcp_eat_recv_skb(sk, skb); 1605 if (!desc->count) 1606 break; 1607 WRITE_ONCE(tp->copied_seq, seq); 1608 } 1609 WRITE_ONCE(tp->copied_seq, seq); 1610 1611 tcp_rcv_space_adjust(sk); 1612 1613 /* Clean up data we have read: This will do ACK frames. */ 1614 if (copied > 0) { 1615 tcp_recv_skb(sk, seq, &offset); 1616 tcp_cleanup_rbuf(sk, copied); 1617 } 1618 return copied; 1619 } 1620 EXPORT_SYMBOL(tcp_read_sock); 1621 1622 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1623 { 1624 struct sk_buff *skb; 1625 int copied = 0; 1626 1627 if (sk->sk_state == TCP_LISTEN) 1628 return -ENOTCONN; 1629 1630 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1631 u8 tcp_flags; 1632 int used; 1633 1634 __skb_unlink(skb, &sk->sk_receive_queue); 1635 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1636 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1637 used = recv_actor(sk, skb); 1638 if (used < 0) { 1639 if (!copied) 1640 copied = used; 1641 break; 1642 } 1643 copied += used; 1644 1645 if (tcp_flags & TCPHDR_FIN) 1646 break; 1647 } 1648 return copied; 1649 } 1650 EXPORT_SYMBOL(tcp_read_skb); 1651 1652 void tcp_read_done(struct sock *sk, size_t len) 1653 { 1654 struct tcp_sock *tp = tcp_sk(sk); 1655 u32 seq = tp->copied_seq; 1656 struct sk_buff *skb; 1657 size_t left; 1658 u32 offset; 1659 1660 if (sk->sk_state == TCP_LISTEN) 1661 return; 1662 1663 left = len; 1664 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1665 int used; 1666 1667 used = min_t(size_t, skb->len - offset, left); 1668 seq += used; 1669 left -= used; 1670 1671 if (skb->len > offset + used) 1672 break; 1673 1674 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1675 tcp_eat_recv_skb(sk, skb); 1676 ++seq; 1677 break; 1678 } 1679 tcp_eat_recv_skb(sk, skb); 1680 } 1681 WRITE_ONCE(tp->copied_seq, seq); 1682 1683 tcp_rcv_space_adjust(sk); 1684 1685 /* Clean up data we have read: This will do ACK frames. */ 1686 if (left != len) 1687 tcp_cleanup_rbuf(sk, len - left); 1688 } 1689 EXPORT_SYMBOL(tcp_read_done); 1690 1691 int tcp_peek_len(struct socket *sock) 1692 { 1693 return tcp_inq(sock->sk); 1694 } 1695 EXPORT_SYMBOL(tcp_peek_len); 1696 1697 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1698 int tcp_set_rcvlowat(struct sock *sk, int val) 1699 { 1700 int space, cap; 1701 1702 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1703 cap = sk->sk_rcvbuf >> 1; 1704 else 1705 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1706 val = min(val, cap); 1707 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1708 1709 /* Check if we need to signal EPOLLIN right now */ 1710 tcp_data_ready(sk); 1711 1712 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1713 return 0; 1714 1715 space = tcp_space_from_win(sk, val); 1716 if (space > sk->sk_rcvbuf) { 1717 WRITE_ONCE(sk->sk_rcvbuf, space); 1718 tcp_sk(sk)->window_clamp = val; 1719 } 1720 return 0; 1721 } 1722 EXPORT_SYMBOL(tcp_set_rcvlowat); 1723 1724 void tcp_update_recv_tstamps(struct sk_buff *skb, 1725 struct scm_timestamping_internal *tss) 1726 { 1727 if (skb->tstamp) 1728 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1729 else 1730 tss->ts[0] = (struct timespec64) {0}; 1731 1732 if (skb_hwtstamps(skb)->hwtstamp) 1733 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1734 else 1735 tss->ts[2] = (struct timespec64) {0}; 1736 } 1737 1738 #ifdef CONFIG_MMU 1739 static const struct vm_operations_struct tcp_vm_ops = { 1740 }; 1741 1742 int tcp_mmap(struct file *file, struct socket *sock, 1743 struct vm_area_struct *vma) 1744 { 1745 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1746 return -EPERM; 1747 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1748 1749 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1750 vm_flags_set(vma, VM_MIXEDMAP); 1751 1752 vma->vm_ops = &tcp_vm_ops; 1753 return 0; 1754 } 1755 EXPORT_SYMBOL(tcp_mmap); 1756 1757 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1758 u32 *offset_frag) 1759 { 1760 skb_frag_t *frag; 1761 1762 if (unlikely(offset_skb >= skb->len)) 1763 return NULL; 1764 1765 offset_skb -= skb_headlen(skb); 1766 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1767 return NULL; 1768 1769 frag = skb_shinfo(skb)->frags; 1770 while (offset_skb) { 1771 if (skb_frag_size(frag) > offset_skb) { 1772 *offset_frag = offset_skb; 1773 return frag; 1774 } 1775 offset_skb -= skb_frag_size(frag); 1776 ++frag; 1777 } 1778 *offset_frag = 0; 1779 return frag; 1780 } 1781 1782 static bool can_map_frag(const skb_frag_t *frag) 1783 { 1784 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1785 } 1786 1787 static int find_next_mappable_frag(const skb_frag_t *frag, 1788 int remaining_in_skb) 1789 { 1790 int offset = 0; 1791 1792 if (likely(can_map_frag(frag))) 1793 return 0; 1794 1795 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1796 offset += skb_frag_size(frag); 1797 ++frag; 1798 } 1799 return offset; 1800 } 1801 1802 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1803 struct tcp_zerocopy_receive *zc, 1804 struct sk_buff *skb, u32 offset) 1805 { 1806 u32 frag_offset, partial_frag_remainder = 0; 1807 int mappable_offset; 1808 skb_frag_t *frag; 1809 1810 /* worst case: skip to next skb. try to improve on this case below */ 1811 zc->recv_skip_hint = skb->len - offset; 1812 1813 /* Find the frag containing this offset (and how far into that frag) */ 1814 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1815 if (!frag) 1816 return; 1817 1818 if (frag_offset) { 1819 struct skb_shared_info *info = skb_shinfo(skb); 1820 1821 /* We read part of the last frag, must recvmsg() rest of skb. */ 1822 if (frag == &info->frags[info->nr_frags - 1]) 1823 return; 1824 1825 /* Else, we must at least read the remainder in this frag. */ 1826 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1827 zc->recv_skip_hint -= partial_frag_remainder; 1828 ++frag; 1829 } 1830 1831 /* partial_frag_remainder: If part way through a frag, must read rest. 1832 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1833 * in partial_frag_remainder. 1834 */ 1835 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1836 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1837 } 1838 1839 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1840 int flags, struct scm_timestamping_internal *tss, 1841 int *cmsg_flags); 1842 static int receive_fallback_to_copy(struct sock *sk, 1843 struct tcp_zerocopy_receive *zc, int inq, 1844 struct scm_timestamping_internal *tss) 1845 { 1846 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1847 struct msghdr msg = {}; 1848 struct iovec iov; 1849 int err; 1850 1851 zc->length = 0; 1852 zc->recv_skip_hint = 0; 1853 1854 if (copy_address != zc->copybuf_address) 1855 return -EINVAL; 1856 1857 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1858 inq, &iov, &msg.msg_iter); 1859 if (err) 1860 return err; 1861 1862 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1863 tss, &zc->msg_flags); 1864 if (err < 0) 1865 return err; 1866 1867 zc->copybuf_len = err; 1868 if (likely(zc->copybuf_len)) { 1869 struct sk_buff *skb; 1870 u32 offset; 1871 1872 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1873 if (skb) 1874 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1875 } 1876 return 0; 1877 } 1878 1879 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1880 struct sk_buff *skb, u32 copylen, 1881 u32 *offset, u32 *seq) 1882 { 1883 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1884 struct msghdr msg = {}; 1885 struct iovec iov; 1886 int err; 1887 1888 if (copy_address != zc->copybuf_address) 1889 return -EINVAL; 1890 1891 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1892 copylen, &iov, &msg.msg_iter); 1893 if (err) 1894 return err; 1895 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1896 if (err) 1897 return err; 1898 zc->recv_skip_hint -= copylen; 1899 *offset += copylen; 1900 *seq += copylen; 1901 return (__s32)copylen; 1902 } 1903 1904 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1905 struct sock *sk, 1906 struct sk_buff *skb, 1907 u32 *seq, 1908 s32 copybuf_len, 1909 struct scm_timestamping_internal *tss) 1910 { 1911 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1912 1913 if (!copylen) 1914 return 0; 1915 /* skb is null if inq < PAGE_SIZE. */ 1916 if (skb) { 1917 offset = *seq - TCP_SKB_CB(skb)->seq; 1918 } else { 1919 skb = tcp_recv_skb(sk, *seq, &offset); 1920 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1921 tcp_update_recv_tstamps(skb, tss); 1922 zc->msg_flags |= TCP_CMSG_TS; 1923 } 1924 } 1925 1926 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1927 seq); 1928 return zc->copybuf_len < 0 ? 0 : copylen; 1929 } 1930 1931 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1932 struct page **pending_pages, 1933 unsigned long pages_remaining, 1934 unsigned long *address, 1935 u32 *length, 1936 u32 *seq, 1937 struct tcp_zerocopy_receive *zc, 1938 u32 total_bytes_to_map, 1939 int err) 1940 { 1941 /* At least one page did not map. Try zapping if we skipped earlier. */ 1942 if (err == -EBUSY && 1943 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1944 u32 maybe_zap_len; 1945 1946 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1947 *length + /* Mapped or pending */ 1948 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1949 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1950 err = 0; 1951 } 1952 1953 if (!err) { 1954 unsigned long leftover_pages = pages_remaining; 1955 int bytes_mapped; 1956 1957 /* We called zap_page_range_single, try to reinsert. */ 1958 err = vm_insert_pages(vma, *address, 1959 pending_pages, 1960 &pages_remaining); 1961 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1962 *seq += bytes_mapped; 1963 *address += bytes_mapped; 1964 } 1965 if (err) { 1966 /* Either we were unable to zap, OR we zapped, retried an 1967 * insert, and still had an issue. Either ways, pages_remaining 1968 * is the number of pages we were unable to map, and we unroll 1969 * some state we speculatively touched before. 1970 */ 1971 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1972 1973 *length -= bytes_not_mapped; 1974 zc->recv_skip_hint += bytes_not_mapped; 1975 } 1976 return err; 1977 } 1978 1979 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1980 struct page **pages, 1981 unsigned int pages_to_map, 1982 unsigned long *address, 1983 u32 *length, 1984 u32 *seq, 1985 struct tcp_zerocopy_receive *zc, 1986 u32 total_bytes_to_map) 1987 { 1988 unsigned long pages_remaining = pages_to_map; 1989 unsigned int pages_mapped; 1990 unsigned int bytes_mapped; 1991 int err; 1992 1993 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1994 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1995 bytes_mapped = PAGE_SIZE * pages_mapped; 1996 /* Even if vm_insert_pages fails, it may have partially succeeded in 1997 * mapping (some but not all of the pages). 1998 */ 1999 *seq += bytes_mapped; 2000 *address += bytes_mapped; 2001 2002 if (likely(!err)) 2003 return 0; 2004 2005 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2006 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2007 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2008 err); 2009 } 2010 2011 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2012 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2013 struct tcp_zerocopy_receive *zc, 2014 struct scm_timestamping_internal *tss) 2015 { 2016 unsigned long msg_control_addr; 2017 struct msghdr cmsg_dummy; 2018 2019 msg_control_addr = (unsigned long)zc->msg_control; 2020 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2021 cmsg_dummy.msg_controllen = 2022 (__kernel_size_t)zc->msg_controllen; 2023 cmsg_dummy.msg_flags = in_compat_syscall() 2024 ? MSG_CMSG_COMPAT : 0; 2025 cmsg_dummy.msg_control_is_user = true; 2026 zc->msg_flags = 0; 2027 if (zc->msg_control == msg_control_addr && 2028 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2029 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2030 zc->msg_control = (__u64) 2031 ((uintptr_t)cmsg_dummy.msg_control_user); 2032 zc->msg_controllen = 2033 (__u64)cmsg_dummy.msg_controllen; 2034 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2035 } 2036 } 2037 2038 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2039 unsigned long address, 2040 bool *mmap_locked) 2041 { 2042 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2043 2044 if (vma) { 2045 if (vma->vm_ops != &tcp_vm_ops) { 2046 vma_end_read(vma); 2047 return NULL; 2048 } 2049 *mmap_locked = false; 2050 return vma; 2051 } 2052 2053 mmap_read_lock(mm); 2054 vma = vma_lookup(mm, address); 2055 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2056 mmap_read_unlock(mm); 2057 return NULL; 2058 } 2059 *mmap_locked = true; 2060 return vma; 2061 } 2062 2063 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2064 static int tcp_zerocopy_receive(struct sock *sk, 2065 struct tcp_zerocopy_receive *zc, 2066 struct scm_timestamping_internal *tss) 2067 { 2068 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2069 unsigned long address = (unsigned long)zc->address; 2070 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2071 s32 copybuf_len = zc->copybuf_len; 2072 struct tcp_sock *tp = tcp_sk(sk); 2073 const skb_frag_t *frags = NULL; 2074 unsigned int pages_to_map = 0; 2075 struct vm_area_struct *vma; 2076 struct sk_buff *skb = NULL; 2077 u32 seq = tp->copied_seq; 2078 u32 total_bytes_to_map; 2079 int inq = tcp_inq(sk); 2080 bool mmap_locked; 2081 int ret; 2082 2083 zc->copybuf_len = 0; 2084 zc->msg_flags = 0; 2085 2086 if (address & (PAGE_SIZE - 1) || address != zc->address) 2087 return -EINVAL; 2088 2089 if (sk->sk_state == TCP_LISTEN) 2090 return -ENOTCONN; 2091 2092 sock_rps_record_flow(sk); 2093 2094 if (inq && inq <= copybuf_len) 2095 return receive_fallback_to_copy(sk, zc, inq, tss); 2096 2097 if (inq < PAGE_SIZE) { 2098 zc->length = 0; 2099 zc->recv_skip_hint = inq; 2100 if (!inq && sock_flag(sk, SOCK_DONE)) 2101 return -EIO; 2102 return 0; 2103 } 2104 2105 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2106 if (!vma) 2107 return -EINVAL; 2108 2109 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2110 avail_len = min_t(u32, vma_len, inq); 2111 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2112 if (total_bytes_to_map) { 2113 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2114 zap_page_range_single(vma, address, total_bytes_to_map, 2115 NULL); 2116 zc->length = total_bytes_to_map; 2117 zc->recv_skip_hint = 0; 2118 } else { 2119 zc->length = avail_len; 2120 zc->recv_skip_hint = avail_len; 2121 } 2122 ret = 0; 2123 while (length + PAGE_SIZE <= zc->length) { 2124 int mappable_offset; 2125 struct page *page; 2126 2127 if (zc->recv_skip_hint < PAGE_SIZE) { 2128 u32 offset_frag; 2129 2130 if (skb) { 2131 if (zc->recv_skip_hint > 0) 2132 break; 2133 skb = skb->next; 2134 offset = seq - TCP_SKB_CB(skb)->seq; 2135 } else { 2136 skb = tcp_recv_skb(sk, seq, &offset); 2137 } 2138 2139 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2140 tcp_update_recv_tstamps(skb, tss); 2141 zc->msg_flags |= TCP_CMSG_TS; 2142 } 2143 zc->recv_skip_hint = skb->len - offset; 2144 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2145 if (!frags || offset_frag) 2146 break; 2147 } 2148 2149 mappable_offset = find_next_mappable_frag(frags, 2150 zc->recv_skip_hint); 2151 if (mappable_offset) { 2152 zc->recv_skip_hint = mappable_offset; 2153 break; 2154 } 2155 page = skb_frag_page(frags); 2156 prefetchw(page); 2157 pages[pages_to_map++] = page; 2158 length += PAGE_SIZE; 2159 zc->recv_skip_hint -= PAGE_SIZE; 2160 frags++; 2161 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2162 zc->recv_skip_hint < PAGE_SIZE) { 2163 /* Either full batch, or we're about to go to next skb 2164 * (and we cannot unroll failed ops across skbs). 2165 */ 2166 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2167 pages_to_map, 2168 &address, &length, 2169 &seq, zc, 2170 total_bytes_to_map); 2171 if (ret) 2172 goto out; 2173 pages_to_map = 0; 2174 } 2175 } 2176 if (pages_to_map) { 2177 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2178 &address, &length, &seq, 2179 zc, total_bytes_to_map); 2180 } 2181 out: 2182 if (mmap_locked) 2183 mmap_read_unlock(current->mm); 2184 else 2185 vma_end_read(vma); 2186 /* Try to copy straggler data. */ 2187 if (!ret) 2188 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2189 2190 if (length + copylen) { 2191 WRITE_ONCE(tp->copied_seq, seq); 2192 tcp_rcv_space_adjust(sk); 2193 2194 /* Clean up data we have read: This will do ACK frames. */ 2195 tcp_recv_skb(sk, seq, &offset); 2196 tcp_cleanup_rbuf(sk, length + copylen); 2197 ret = 0; 2198 if (length == zc->length) 2199 zc->recv_skip_hint = 0; 2200 } else { 2201 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2202 ret = -EIO; 2203 } 2204 zc->length = length; 2205 return ret; 2206 } 2207 #endif 2208 2209 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2210 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2211 struct scm_timestamping_internal *tss) 2212 { 2213 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2214 bool has_timestamping = false; 2215 2216 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2217 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2218 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2219 if (new_tstamp) { 2220 struct __kernel_timespec kts = { 2221 .tv_sec = tss->ts[0].tv_sec, 2222 .tv_nsec = tss->ts[0].tv_nsec, 2223 }; 2224 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2225 sizeof(kts), &kts); 2226 } else { 2227 struct __kernel_old_timespec ts_old = { 2228 .tv_sec = tss->ts[0].tv_sec, 2229 .tv_nsec = tss->ts[0].tv_nsec, 2230 }; 2231 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2232 sizeof(ts_old), &ts_old); 2233 } 2234 } else { 2235 if (new_tstamp) { 2236 struct __kernel_sock_timeval stv = { 2237 .tv_sec = tss->ts[0].tv_sec, 2238 .tv_usec = tss->ts[0].tv_nsec / 1000, 2239 }; 2240 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2241 sizeof(stv), &stv); 2242 } else { 2243 struct __kernel_old_timeval tv = { 2244 .tv_sec = tss->ts[0].tv_sec, 2245 .tv_usec = tss->ts[0].tv_nsec / 1000, 2246 }; 2247 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2248 sizeof(tv), &tv); 2249 } 2250 } 2251 } 2252 2253 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2254 has_timestamping = true; 2255 else 2256 tss->ts[0] = (struct timespec64) {0}; 2257 } 2258 2259 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2260 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2261 has_timestamping = true; 2262 else 2263 tss->ts[2] = (struct timespec64) {0}; 2264 } 2265 2266 if (has_timestamping) { 2267 tss->ts[1] = (struct timespec64) {0}; 2268 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2269 put_cmsg_scm_timestamping64(msg, tss); 2270 else 2271 put_cmsg_scm_timestamping(msg, tss); 2272 } 2273 } 2274 2275 static int tcp_inq_hint(struct sock *sk) 2276 { 2277 const struct tcp_sock *tp = tcp_sk(sk); 2278 u32 copied_seq = READ_ONCE(tp->copied_seq); 2279 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2280 int inq; 2281 2282 inq = rcv_nxt - copied_seq; 2283 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2284 lock_sock(sk); 2285 inq = tp->rcv_nxt - tp->copied_seq; 2286 release_sock(sk); 2287 } 2288 /* After receiving a FIN, tell the user-space to continue reading 2289 * by returning a non-zero inq. 2290 */ 2291 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2292 inq = 1; 2293 return inq; 2294 } 2295 2296 /* 2297 * This routine copies from a sock struct into the user buffer. 2298 * 2299 * Technical note: in 2.3 we work on _locked_ socket, so that 2300 * tricks with *seq access order and skb->users are not required. 2301 * Probably, code can be easily improved even more. 2302 */ 2303 2304 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2305 int flags, struct scm_timestamping_internal *tss, 2306 int *cmsg_flags) 2307 { 2308 struct tcp_sock *tp = tcp_sk(sk); 2309 int copied = 0; 2310 u32 peek_seq; 2311 u32 *seq; 2312 unsigned long used; 2313 int err; 2314 int target; /* Read at least this many bytes */ 2315 long timeo; 2316 struct sk_buff *skb, *last; 2317 u32 urg_hole = 0; 2318 2319 err = -ENOTCONN; 2320 if (sk->sk_state == TCP_LISTEN) 2321 goto out; 2322 2323 if (tp->recvmsg_inq) { 2324 *cmsg_flags = TCP_CMSG_INQ; 2325 msg->msg_get_inq = 1; 2326 } 2327 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2328 2329 /* Urgent data needs to be handled specially. */ 2330 if (flags & MSG_OOB) 2331 goto recv_urg; 2332 2333 if (unlikely(tp->repair)) { 2334 err = -EPERM; 2335 if (!(flags & MSG_PEEK)) 2336 goto out; 2337 2338 if (tp->repair_queue == TCP_SEND_QUEUE) 2339 goto recv_sndq; 2340 2341 err = -EINVAL; 2342 if (tp->repair_queue == TCP_NO_QUEUE) 2343 goto out; 2344 2345 /* 'common' recv queue MSG_PEEK-ing */ 2346 } 2347 2348 seq = &tp->copied_seq; 2349 if (flags & MSG_PEEK) { 2350 peek_seq = tp->copied_seq; 2351 seq = &peek_seq; 2352 } 2353 2354 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2355 2356 do { 2357 u32 offset; 2358 2359 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2360 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2361 if (copied) 2362 break; 2363 if (signal_pending(current)) { 2364 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2365 break; 2366 } 2367 } 2368 2369 /* Next get a buffer. */ 2370 2371 last = skb_peek_tail(&sk->sk_receive_queue); 2372 skb_queue_walk(&sk->sk_receive_queue, skb) { 2373 last = skb; 2374 /* Now that we have two receive queues this 2375 * shouldn't happen. 2376 */ 2377 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2378 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2379 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2380 flags)) 2381 break; 2382 2383 offset = *seq - TCP_SKB_CB(skb)->seq; 2384 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2385 pr_err_once("%s: found a SYN, please report !\n", __func__); 2386 offset--; 2387 } 2388 if (offset < skb->len) 2389 goto found_ok_skb; 2390 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2391 goto found_fin_ok; 2392 WARN(!(flags & MSG_PEEK), 2393 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2394 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2395 } 2396 2397 /* Well, if we have backlog, try to process it now yet. */ 2398 2399 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2400 break; 2401 2402 if (copied) { 2403 if (!timeo || 2404 sk->sk_err || 2405 sk->sk_state == TCP_CLOSE || 2406 (sk->sk_shutdown & RCV_SHUTDOWN) || 2407 signal_pending(current)) 2408 break; 2409 } else { 2410 if (sock_flag(sk, SOCK_DONE)) 2411 break; 2412 2413 if (sk->sk_err) { 2414 copied = sock_error(sk); 2415 break; 2416 } 2417 2418 if (sk->sk_shutdown & RCV_SHUTDOWN) 2419 break; 2420 2421 if (sk->sk_state == TCP_CLOSE) { 2422 /* This occurs when user tries to read 2423 * from never connected socket. 2424 */ 2425 copied = -ENOTCONN; 2426 break; 2427 } 2428 2429 if (!timeo) { 2430 copied = -EAGAIN; 2431 break; 2432 } 2433 2434 if (signal_pending(current)) { 2435 copied = sock_intr_errno(timeo); 2436 break; 2437 } 2438 } 2439 2440 if (copied >= target) { 2441 /* Do not sleep, just process backlog. */ 2442 __sk_flush_backlog(sk); 2443 } else { 2444 tcp_cleanup_rbuf(sk, copied); 2445 sk_wait_data(sk, &timeo, last); 2446 } 2447 2448 if ((flags & MSG_PEEK) && 2449 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2450 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2451 current->comm, 2452 task_pid_nr(current)); 2453 peek_seq = tp->copied_seq; 2454 } 2455 continue; 2456 2457 found_ok_skb: 2458 /* Ok so how much can we use? */ 2459 used = skb->len - offset; 2460 if (len < used) 2461 used = len; 2462 2463 /* Do we have urgent data here? */ 2464 if (unlikely(tp->urg_data)) { 2465 u32 urg_offset = tp->urg_seq - *seq; 2466 if (urg_offset < used) { 2467 if (!urg_offset) { 2468 if (!sock_flag(sk, SOCK_URGINLINE)) { 2469 WRITE_ONCE(*seq, *seq + 1); 2470 urg_hole++; 2471 offset++; 2472 used--; 2473 if (!used) 2474 goto skip_copy; 2475 } 2476 } else 2477 used = urg_offset; 2478 } 2479 } 2480 2481 if (!(flags & MSG_TRUNC)) { 2482 err = skb_copy_datagram_msg(skb, offset, msg, used); 2483 if (err) { 2484 /* Exception. Bailout! */ 2485 if (!copied) 2486 copied = -EFAULT; 2487 break; 2488 } 2489 } 2490 2491 WRITE_ONCE(*seq, *seq + used); 2492 copied += used; 2493 len -= used; 2494 2495 tcp_rcv_space_adjust(sk); 2496 2497 skip_copy: 2498 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2499 WRITE_ONCE(tp->urg_data, 0); 2500 tcp_fast_path_check(sk); 2501 } 2502 2503 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2504 tcp_update_recv_tstamps(skb, tss); 2505 *cmsg_flags |= TCP_CMSG_TS; 2506 } 2507 2508 if (used + offset < skb->len) 2509 continue; 2510 2511 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2512 goto found_fin_ok; 2513 if (!(flags & MSG_PEEK)) 2514 tcp_eat_recv_skb(sk, skb); 2515 continue; 2516 2517 found_fin_ok: 2518 /* Process the FIN. */ 2519 WRITE_ONCE(*seq, *seq + 1); 2520 if (!(flags & MSG_PEEK)) 2521 tcp_eat_recv_skb(sk, skb); 2522 break; 2523 } while (len > 0); 2524 2525 /* According to UNIX98, msg_name/msg_namelen are ignored 2526 * on connected socket. I was just happy when found this 8) --ANK 2527 */ 2528 2529 /* Clean up data we have read: This will do ACK frames. */ 2530 tcp_cleanup_rbuf(sk, copied); 2531 return copied; 2532 2533 out: 2534 return err; 2535 2536 recv_urg: 2537 err = tcp_recv_urg(sk, msg, len, flags); 2538 goto out; 2539 2540 recv_sndq: 2541 err = tcp_peek_sndq(sk, msg, len); 2542 goto out; 2543 } 2544 2545 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2546 int *addr_len) 2547 { 2548 int cmsg_flags = 0, ret; 2549 struct scm_timestamping_internal tss; 2550 2551 if (unlikely(flags & MSG_ERRQUEUE)) 2552 return inet_recv_error(sk, msg, len, addr_len); 2553 2554 if (sk_can_busy_loop(sk) && 2555 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2556 sk->sk_state == TCP_ESTABLISHED) 2557 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2558 2559 lock_sock(sk); 2560 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2561 release_sock(sk); 2562 2563 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2564 if (cmsg_flags & TCP_CMSG_TS) 2565 tcp_recv_timestamp(msg, sk, &tss); 2566 if (msg->msg_get_inq) { 2567 msg->msg_inq = tcp_inq_hint(sk); 2568 if (cmsg_flags & TCP_CMSG_INQ) 2569 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2570 sizeof(msg->msg_inq), &msg->msg_inq); 2571 } 2572 } 2573 return ret; 2574 } 2575 EXPORT_SYMBOL(tcp_recvmsg); 2576 2577 void tcp_set_state(struct sock *sk, int state) 2578 { 2579 int oldstate = sk->sk_state; 2580 2581 /* We defined a new enum for TCP states that are exported in BPF 2582 * so as not force the internal TCP states to be frozen. The 2583 * following checks will detect if an internal state value ever 2584 * differs from the BPF value. If this ever happens, then we will 2585 * need to remap the internal value to the BPF value before calling 2586 * tcp_call_bpf_2arg. 2587 */ 2588 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2589 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2590 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2591 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2592 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2593 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2594 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2595 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2596 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2597 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2598 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2599 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2600 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2601 2602 /* bpf uapi header bpf.h defines an anonymous enum with values 2603 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2604 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2605 * But clang built vmlinux does not have this enum in DWARF 2606 * since clang removes the above code before generating IR/debuginfo. 2607 * Let us explicitly emit the type debuginfo to ensure the 2608 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2609 * regardless of which compiler is used. 2610 */ 2611 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2612 2613 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2614 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2615 2616 switch (state) { 2617 case TCP_ESTABLISHED: 2618 if (oldstate != TCP_ESTABLISHED) 2619 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2620 break; 2621 2622 case TCP_CLOSE: 2623 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2624 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2625 2626 sk->sk_prot->unhash(sk); 2627 if (inet_csk(sk)->icsk_bind_hash && 2628 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2629 inet_put_port(sk); 2630 fallthrough; 2631 default: 2632 if (oldstate == TCP_ESTABLISHED) 2633 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2634 } 2635 2636 /* Change state AFTER socket is unhashed to avoid closed 2637 * socket sitting in hash tables. 2638 */ 2639 inet_sk_state_store(sk, state); 2640 } 2641 EXPORT_SYMBOL_GPL(tcp_set_state); 2642 2643 /* 2644 * State processing on a close. This implements the state shift for 2645 * sending our FIN frame. Note that we only send a FIN for some 2646 * states. A shutdown() may have already sent the FIN, or we may be 2647 * closed. 2648 */ 2649 2650 static const unsigned char new_state[16] = { 2651 /* current state: new state: action: */ 2652 [0 /* (Invalid) */] = TCP_CLOSE, 2653 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2654 [TCP_SYN_SENT] = TCP_CLOSE, 2655 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2656 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2657 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2658 [TCP_TIME_WAIT] = TCP_CLOSE, 2659 [TCP_CLOSE] = TCP_CLOSE, 2660 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2661 [TCP_LAST_ACK] = TCP_LAST_ACK, 2662 [TCP_LISTEN] = TCP_CLOSE, 2663 [TCP_CLOSING] = TCP_CLOSING, 2664 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2665 }; 2666 2667 static int tcp_close_state(struct sock *sk) 2668 { 2669 int next = (int)new_state[sk->sk_state]; 2670 int ns = next & TCP_STATE_MASK; 2671 2672 tcp_set_state(sk, ns); 2673 2674 return next & TCP_ACTION_FIN; 2675 } 2676 2677 /* 2678 * Shutdown the sending side of a connection. Much like close except 2679 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2680 */ 2681 2682 void tcp_shutdown(struct sock *sk, int how) 2683 { 2684 /* We need to grab some memory, and put together a FIN, 2685 * and then put it into the queue to be sent. 2686 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2687 */ 2688 if (!(how & SEND_SHUTDOWN)) 2689 return; 2690 2691 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2692 if ((1 << sk->sk_state) & 2693 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2694 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2695 /* Clear out any half completed packets. FIN if needed. */ 2696 if (tcp_close_state(sk)) 2697 tcp_send_fin(sk); 2698 } 2699 } 2700 EXPORT_SYMBOL(tcp_shutdown); 2701 2702 int tcp_orphan_count_sum(void) 2703 { 2704 int i, total = 0; 2705 2706 for_each_possible_cpu(i) 2707 total += per_cpu(tcp_orphan_count, i); 2708 2709 return max(total, 0); 2710 } 2711 2712 static int tcp_orphan_cache; 2713 static struct timer_list tcp_orphan_timer; 2714 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2715 2716 static void tcp_orphan_update(struct timer_list *unused) 2717 { 2718 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2719 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2720 } 2721 2722 static bool tcp_too_many_orphans(int shift) 2723 { 2724 return READ_ONCE(tcp_orphan_cache) << shift > 2725 READ_ONCE(sysctl_tcp_max_orphans); 2726 } 2727 2728 bool tcp_check_oom(struct sock *sk, int shift) 2729 { 2730 bool too_many_orphans, out_of_socket_memory; 2731 2732 too_many_orphans = tcp_too_many_orphans(shift); 2733 out_of_socket_memory = tcp_out_of_memory(sk); 2734 2735 if (too_many_orphans) 2736 net_info_ratelimited("too many orphaned sockets\n"); 2737 if (out_of_socket_memory) 2738 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2739 return too_many_orphans || out_of_socket_memory; 2740 } 2741 2742 void __tcp_close(struct sock *sk, long timeout) 2743 { 2744 struct sk_buff *skb; 2745 int data_was_unread = 0; 2746 int state; 2747 2748 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2749 2750 if (sk->sk_state == TCP_LISTEN) { 2751 tcp_set_state(sk, TCP_CLOSE); 2752 2753 /* Special case. */ 2754 inet_csk_listen_stop(sk); 2755 2756 goto adjudge_to_death; 2757 } 2758 2759 /* We need to flush the recv. buffs. We do this only on the 2760 * descriptor close, not protocol-sourced closes, because the 2761 * reader process may not have drained the data yet! 2762 */ 2763 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2764 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2765 2766 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2767 len--; 2768 data_was_unread += len; 2769 __kfree_skb(skb); 2770 } 2771 2772 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2773 if (sk->sk_state == TCP_CLOSE) 2774 goto adjudge_to_death; 2775 2776 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2777 * data was lost. To witness the awful effects of the old behavior of 2778 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2779 * GET in an FTP client, suspend the process, wait for the client to 2780 * advertise a zero window, then kill -9 the FTP client, wheee... 2781 * Note: timeout is always zero in such a case. 2782 */ 2783 if (unlikely(tcp_sk(sk)->repair)) { 2784 sk->sk_prot->disconnect(sk, 0); 2785 } else if (data_was_unread) { 2786 /* Unread data was tossed, zap the connection. */ 2787 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2788 tcp_set_state(sk, TCP_CLOSE); 2789 tcp_send_active_reset(sk, sk->sk_allocation); 2790 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2791 /* Check zero linger _after_ checking for unread data. */ 2792 sk->sk_prot->disconnect(sk, 0); 2793 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2794 } else if (tcp_close_state(sk)) { 2795 /* We FIN if the application ate all the data before 2796 * zapping the connection. 2797 */ 2798 2799 /* RED-PEN. Formally speaking, we have broken TCP state 2800 * machine. State transitions: 2801 * 2802 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2803 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2804 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2805 * 2806 * are legal only when FIN has been sent (i.e. in window), 2807 * rather than queued out of window. Purists blame. 2808 * 2809 * F.e. "RFC state" is ESTABLISHED, 2810 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2811 * 2812 * The visible declinations are that sometimes 2813 * we enter time-wait state, when it is not required really 2814 * (harmless), do not send active resets, when they are 2815 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2816 * they look as CLOSING or LAST_ACK for Linux) 2817 * Probably, I missed some more holelets. 2818 * --ANK 2819 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2820 * in a single packet! (May consider it later but will 2821 * probably need API support or TCP_CORK SYN-ACK until 2822 * data is written and socket is closed.) 2823 */ 2824 tcp_send_fin(sk); 2825 } 2826 2827 sk_stream_wait_close(sk, timeout); 2828 2829 adjudge_to_death: 2830 state = sk->sk_state; 2831 sock_hold(sk); 2832 sock_orphan(sk); 2833 2834 local_bh_disable(); 2835 bh_lock_sock(sk); 2836 /* remove backlog if any, without releasing ownership. */ 2837 __release_sock(sk); 2838 2839 this_cpu_inc(tcp_orphan_count); 2840 2841 /* Have we already been destroyed by a softirq or backlog? */ 2842 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2843 goto out; 2844 2845 /* This is a (useful) BSD violating of the RFC. There is a 2846 * problem with TCP as specified in that the other end could 2847 * keep a socket open forever with no application left this end. 2848 * We use a 1 minute timeout (about the same as BSD) then kill 2849 * our end. If they send after that then tough - BUT: long enough 2850 * that we won't make the old 4*rto = almost no time - whoops 2851 * reset mistake. 2852 * 2853 * Nope, it was not mistake. It is really desired behaviour 2854 * f.e. on http servers, when such sockets are useless, but 2855 * consume significant resources. Let's do it with special 2856 * linger2 option. --ANK 2857 */ 2858 2859 if (sk->sk_state == TCP_FIN_WAIT2) { 2860 struct tcp_sock *tp = tcp_sk(sk); 2861 if (READ_ONCE(tp->linger2) < 0) { 2862 tcp_set_state(sk, TCP_CLOSE); 2863 tcp_send_active_reset(sk, GFP_ATOMIC); 2864 __NET_INC_STATS(sock_net(sk), 2865 LINUX_MIB_TCPABORTONLINGER); 2866 } else { 2867 const int tmo = tcp_fin_time(sk); 2868 2869 if (tmo > TCP_TIMEWAIT_LEN) { 2870 inet_csk_reset_keepalive_timer(sk, 2871 tmo - TCP_TIMEWAIT_LEN); 2872 } else { 2873 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2874 goto out; 2875 } 2876 } 2877 } 2878 if (sk->sk_state != TCP_CLOSE) { 2879 if (tcp_check_oom(sk, 0)) { 2880 tcp_set_state(sk, TCP_CLOSE); 2881 tcp_send_active_reset(sk, GFP_ATOMIC); 2882 __NET_INC_STATS(sock_net(sk), 2883 LINUX_MIB_TCPABORTONMEMORY); 2884 } else if (!check_net(sock_net(sk))) { 2885 /* Not possible to send reset; just close */ 2886 tcp_set_state(sk, TCP_CLOSE); 2887 } 2888 } 2889 2890 if (sk->sk_state == TCP_CLOSE) { 2891 struct request_sock *req; 2892 2893 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2894 lockdep_sock_is_held(sk)); 2895 /* We could get here with a non-NULL req if the socket is 2896 * aborted (e.g., closed with unread data) before 3WHS 2897 * finishes. 2898 */ 2899 if (req) 2900 reqsk_fastopen_remove(sk, req, false); 2901 inet_csk_destroy_sock(sk); 2902 } 2903 /* Otherwise, socket is reprieved until protocol close. */ 2904 2905 out: 2906 bh_unlock_sock(sk); 2907 local_bh_enable(); 2908 } 2909 2910 void tcp_close(struct sock *sk, long timeout) 2911 { 2912 lock_sock(sk); 2913 __tcp_close(sk, timeout); 2914 release_sock(sk); 2915 sock_put(sk); 2916 } 2917 EXPORT_SYMBOL(tcp_close); 2918 2919 /* These states need RST on ABORT according to RFC793 */ 2920 2921 static inline bool tcp_need_reset(int state) 2922 { 2923 return (1 << state) & 2924 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2925 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2926 } 2927 2928 static void tcp_rtx_queue_purge(struct sock *sk) 2929 { 2930 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2931 2932 tcp_sk(sk)->highest_sack = NULL; 2933 while (p) { 2934 struct sk_buff *skb = rb_to_skb(p); 2935 2936 p = rb_next(p); 2937 /* Since we are deleting whole queue, no need to 2938 * list_del(&skb->tcp_tsorted_anchor) 2939 */ 2940 tcp_rtx_queue_unlink(skb, sk); 2941 tcp_wmem_free_skb(sk, skb); 2942 } 2943 } 2944 2945 void tcp_write_queue_purge(struct sock *sk) 2946 { 2947 struct sk_buff *skb; 2948 2949 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2950 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2951 tcp_skb_tsorted_anchor_cleanup(skb); 2952 tcp_wmem_free_skb(sk, skb); 2953 } 2954 tcp_rtx_queue_purge(sk); 2955 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2956 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2957 tcp_sk(sk)->packets_out = 0; 2958 inet_csk(sk)->icsk_backoff = 0; 2959 } 2960 2961 int tcp_disconnect(struct sock *sk, int flags) 2962 { 2963 struct inet_sock *inet = inet_sk(sk); 2964 struct inet_connection_sock *icsk = inet_csk(sk); 2965 struct tcp_sock *tp = tcp_sk(sk); 2966 int old_state = sk->sk_state; 2967 u32 seq; 2968 2969 /* Deny disconnect if other threads are blocked in sk_wait_event() 2970 * or inet_wait_for_connect(). 2971 */ 2972 if (sk->sk_wait_pending) 2973 return -EBUSY; 2974 2975 if (old_state != TCP_CLOSE) 2976 tcp_set_state(sk, TCP_CLOSE); 2977 2978 /* ABORT function of RFC793 */ 2979 if (old_state == TCP_LISTEN) { 2980 inet_csk_listen_stop(sk); 2981 } else if (unlikely(tp->repair)) { 2982 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2983 } else if (tcp_need_reset(old_state) || 2984 (tp->snd_nxt != tp->write_seq && 2985 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2986 /* The last check adjusts for discrepancy of Linux wrt. RFC 2987 * states 2988 */ 2989 tcp_send_active_reset(sk, gfp_any()); 2990 WRITE_ONCE(sk->sk_err, ECONNRESET); 2991 } else if (old_state == TCP_SYN_SENT) 2992 WRITE_ONCE(sk->sk_err, ECONNRESET); 2993 2994 tcp_clear_xmit_timers(sk); 2995 __skb_queue_purge(&sk->sk_receive_queue); 2996 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2997 WRITE_ONCE(tp->urg_data, 0); 2998 tcp_write_queue_purge(sk); 2999 tcp_fastopen_active_disable_ofo_check(sk); 3000 skb_rbtree_purge(&tp->out_of_order_queue); 3001 3002 inet->inet_dport = 0; 3003 3004 inet_bhash2_reset_saddr(sk); 3005 3006 WRITE_ONCE(sk->sk_shutdown, 0); 3007 sock_reset_flag(sk, SOCK_DONE); 3008 tp->srtt_us = 0; 3009 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3010 tp->rcv_rtt_last_tsecr = 0; 3011 3012 seq = tp->write_seq + tp->max_window + 2; 3013 if (!seq) 3014 seq = 1; 3015 WRITE_ONCE(tp->write_seq, seq); 3016 3017 icsk->icsk_backoff = 0; 3018 icsk->icsk_probes_out = 0; 3019 icsk->icsk_probes_tstamp = 0; 3020 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3021 icsk->icsk_rto_min = TCP_RTO_MIN; 3022 icsk->icsk_delack_max = TCP_DELACK_MAX; 3023 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3024 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3025 tp->snd_cwnd_cnt = 0; 3026 tp->is_cwnd_limited = 0; 3027 tp->max_packets_out = 0; 3028 tp->window_clamp = 0; 3029 tp->delivered = 0; 3030 tp->delivered_ce = 0; 3031 if (icsk->icsk_ca_ops->release) 3032 icsk->icsk_ca_ops->release(sk); 3033 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3034 icsk->icsk_ca_initialized = 0; 3035 tcp_set_ca_state(sk, TCP_CA_Open); 3036 tp->is_sack_reneg = 0; 3037 tcp_clear_retrans(tp); 3038 tp->total_retrans = 0; 3039 inet_csk_delack_init(sk); 3040 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3041 * issue in __tcp_select_window() 3042 */ 3043 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3044 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3045 __sk_dst_reset(sk); 3046 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3047 tcp_saved_syn_free(tp); 3048 tp->compressed_ack = 0; 3049 tp->segs_in = 0; 3050 tp->segs_out = 0; 3051 tp->bytes_sent = 0; 3052 tp->bytes_acked = 0; 3053 tp->bytes_received = 0; 3054 tp->bytes_retrans = 0; 3055 tp->data_segs_in = 0; 3056 tp->data_segs_out = 0; 3057 tp->duplicate_sack[0].start_seq = 0; 3058 tp->duplicate_sack[0].end_seq = 0; 3059 tp->dsack_dups = 0; 3060 tp->reord_seen = 0; 3061 tp->retrans_out = 0; 3062 tp->sacked_out = 0; 3063 tp->tlp_high_seq = 0; 3064 tp->last_oow_ack_time = 0; 3065 tp->plb_rehash = 0; 3066 /* There's a bubble in the pipe until at least the first ACK. */ 3067 tp->app_limited = ~0U; 3068 tp->rate_app_limited = 1; 3069 tp->rack.mstamp = 0; 3070 tp->rack.advanced = 0; 3071 tp->rack.reo_wnd_steps = 1; 3072 tp->rack.last_delivered = 0; 3073 tp->rack.reo_wnd_persist = 0; 3074 tp->rack.dsack_seen = 0; 3075 tp->syn_data_acked = 0; 3076 tp->rx_opt.saw_tstamp = 0; 3077 tp->rx_opt.dsack = 0; 3078 tp->rx_opt.num_sacks = 0; 3079 tp->rcv_ooopack = 0; 3080 3081 3082 /* Clean up fastopen related fields */ 3083 tcp_free_fastopen_req(tp); 3084 inet_clear_bit(DEFER_CONNECT, sk); 3085 tp->fastopen_client_fail = 0; 3086 3087 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3088 3089 if (sk->sk_frag.page) { 3090 put_page(sk->sk_frag.page); 3091 sk->sk_frag.page = NULL; 3092 sk->sk_frag.offset = 0; 3093 } 3094 sk_error_report(sk); 3095 return 0; 3096 } 3097 EXPORT_SYMBOL(tcp_disconnect); 3098 3099 static inline bool tcp_can_repair_sock(const struct sock *sk) 3100 { 3101 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3102 (sk->sk_state != TCP_LISTEN); 3103 } 3104 3105 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3106 { 3107 struct tcp_repair_window opt; 3108 3109 if (!tp->repair) 3110 return -EPERM; 3111 3112 if (len != sizeof(opt)) 3113 return -EINVAL; 3114 3115 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3116 return -EFAULT; 3117 3118 if (opt.max_window < opt.snd_wnd) 3119 return -EINVAL; 3120 3121 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3122 return -EINVAL; 3123 3124 if (after(opt.rcv_wup, tp->rcv_nxt)) 3125 return -EINVAL; 3126 3127 tp->snd_wl1 = opt.snd_wl1; 3128 tp->snd_wnd = opt.snd_wnd; 3129 tp->max_window = opt.max_window; 3130 3131 tp->rcv_wnd = opt.rcv_wnd; 3132 tp->rcv_wup = opt.rcv_wup; 3133 3134 return 0; 3135 } 3136 3137 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3138 unsigned int len) 3139 { 3140 struct tcp_sock *tp = tcp_sk(sk); 3141 struct tcp_repair_opt opt; 3142 size_t offset = 0; 3143 3144 while (len >= sizeof(opt)) { 3145 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3146 return -EFAULT; 3147 3148 offset += sizeof(opt); 3149 len -= sizeof(opt); 3150 3151 switch (opt.opt_code) { 3152 case TCPOPT_MSS: 3153 tp->rx_opt.mss_clamp = opt.opt_val; 3154 tcp_mtup_init(sk); 3155 break; 3156 case TCPOPT_WINDOW: 3157 { 3158 u16 snd_wscale = opt.opt_val & 0xFFFF; 3159 u16 rcv_wscale = opt.opt_val >> 16; 3160 3161 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3162 return -EFBIG; 3163 3164 tp->rx_opt.snd_wscale = snd_wscale; 3165 tp->rx_opt.rcv_wscale = rcv_wscale; 3166 tp->rx_opt.wscale_ok = 1; 3167 } 3168 break; 3169 case TCPOPT_SACK_PERM: 3170 if (opt.opt_val != 0) 3171 return -EINVAL; 3172 3173 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3174 break; 3175 case TCPOPT_TIMESTAMP: 3176 if (opt.opt_val != 0) 3177 return -EINVAL; 3178 3179 tp->rx_opt.tstamp_ok = 1; 3180 break; 3181 } 3182 } 3183 3184 return 0; 3185 } 3186 3187 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3188 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3189 3190 static void tcp_enable_tx_delay(void) 3191 { 3192 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3193 static int __tcp_tx_delay_enabled = 0; 3194 3195 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3196 static_branch_enable(&tcp_tx_delay_enabled); 3197 pr_info("TCP_TX_DELAY enabled\n"); 3198 } 3199 } 3200 } 3201 3202 /* When set indicates to always queue non-full frames. Later the user clears 3203 * this option and we transmit any pending partial frames in the queue. This is 3204 * meant to be used alongside sendfile() to get properly filled frames when the 3205 * user (for example) must write out headers with a write() call first and then 3206 * use sendfile to send out the data parts. 3207 * 3208 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3209 * TCP_NODELAY. 3210 */ 3211 void __tcp_sock_set_cork(struct sock *sk, bool on) 3212 { 3213 struct tcp_sock *tp = tcp_sk(sk); 3214 3215 if (on) { 3216 tp->nonagle |= TCP_NAGLE_CORK; 3217 } else { 3218 tp->nonagle &= ~TCP_NAGLE_CORK; 3219 if (tp->nonagle & TCP_NAGLE_OFF) 3220 tp->nonagle |= TCP_NAGLE_PUSH; 3221 tcp_push_pending_frames(sk); 3222 } 3223 } 3224 3225 void tcp_sock_set_cork(struct sock *sk, bool on) 3226 { 3227 lock_sock(sk); 3228 __tcp_sock_set_cork(sk, on); 3229 release_sock(sk); 3230 } 3231 EXPORT_SYMBOL(tcp_sock_set_cork); 3232 3233 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3234 * remembered, but it is not activated until cork is cleared. 3235 * 3236 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3237 * even TCP_CORK for currently queued segments. 3238 */ 3239 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3240 { 3241 if (on) { 3242 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3243 tcp_push_pending_frames(sk); 3244 } else { 3245 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3246 } 3247 } 3248 3249 void tcp_sock_set_nodelay(struct sock *sk) 3250 { 3251 lock_sock(sk); 3252 __tcp_sock_set_nodelay(sk, true); 3253 release_sock(sk); 3254 } 3255 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3256 3257 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3258 { 3259 if (!val) { 3260 inet_csk_enter_pingpong_mode(sk); 3261 return; 3262 } 3263 3264 inet_csk_exit_pingpong_mode(sk); 3265 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3266 inet_csk_ack_scheduled(sk)) { 3267 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3268 tcp_cleanup_rbuf(sk, 1); 3269 if (!(val & 1)) 3270 inet_csk_enter_pingpong_mode(sk); 3271 } 3272 } 3273 3274 void tcp_sock_set_quickack(struct sock *sk, int val) 3275 { 3276 lock_sock(sk); 3277 __tcp_sock_set_quickack(sk, val); 3278 release_sock(sk); 3279 } 3280 EXPORT_SYMBOL(tcp_sock_set_quickack); 3281 3282 int tcp_sock_set_syncnt(struct sock *sk, int val) 3283 { 3284 if (val < 1 || val > MAX_TCP_SYNCNT) 3285 return -EINVAL; 3286 3287 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3288 return 0; 3289 } 3290 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3291 3292 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3293 { 3294 /* Cap the max time in ms TCP will retry or probe the window 3295 * before giving up and aborting (ETIMEDOUT) a connection. 3296 */ 3297 if (val < 0) 3298 return -EINVAL; 3299 3300 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3301 return 0; 3302 } 3303 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3304 3305 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3306 { 3307 struct tcp_sock *tp = tcp_sk(sk); 3308 3309 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3310 return -EINVAL; 3311 3312 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3313 WRITE_ONCE(tp->keepalive_time, val * HZ); 3314 if (sock_flag(sk, SOCK_KEEPOPEN) && 3315 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3316 u32 elapsed = keepalive_time_elapsed(tp); 3317 3318 if (tp->keepalive_time > elapsed) 3319 elapsed = tp->keepalive_time - elapsed; 3320 else 3321 elapsed = 0; 3322 inet_csk_reset_keepalive_timer(sk, elapsed); 3323 } 3324 3325 return 0; 3326 } 3327 3328 int tcp_sock_set_keepidle(struct sock *sk, int val) 3329 { 3330 int err; 3331 3332 lock_sock(sk); 3333 err = tcp_sock_set_keepidle_locked(sk, val); 3334 release_sock(sk); 3335 return err; 3336 } 3337 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3338 3339 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3340 { 3341 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3342 return -EINVAL; 3343 3344 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3345 return 0; 3346 } 3347 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3348 3349 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3350 { 3351 if (val < 1 || val > MAX_TCP_KEEPCNT) 3352 return -EINVAL; 3353 3354 /* Paired with READ_ONCE() in keepalive_probes() */ 3355 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3356 return 0; 3357 } 3358 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3359 3360 int tcp_set_window_clamp(struct sock *sk, int val) 3361 { 3362 struct tcp_sock *tp = tcp_sk(sk); 3363 3364 if (!val) { 3365 if (sk->sk_state != TCP_CLOSE) 3366 return -EINVAL; 3367 tp->window_clamp = 0; 3368 } else { 3369 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3370 SOCK_MIN_RCVBUF / 2 : val; 3371 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3372 } 3373 return 0; 3374 } 3375 3376 /* 3377 * Socket option code for TCP. 3378 */ 3379 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3380 sockptr_t optval, unsigned int optlen) 3381 { 3382 struct tcp_sock *tp = tcp_sk(sk); 3383 struct inet_connection_sock *icsk = inet_csk(sk); 3384 struct net *net = sock_net(sk); 3385 int val; 3386 int err = 0; 3387 3388 /* These are data/string values, all the others are ints */ 3389 switch (optname) { 3390 case TCP_CONGESTION: { 3391 char name[TCP_CA_NAME_MAX]; 3392 3393 if (optlen < 1) 3394 return -EINVAL; 3395 3396 val = strncpy_from_sockptr(name, optval, 3397 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3398 if (val < 0) 3399 return -EFAULT; 3400 name[val] = 0; 3401 3402 sockopt_lock_sock(sk); 3403 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3404 sockopt_ns_capable(sock_net(sk)->user_ns, 3405 CAP_NET_ADMIN)); 3406 sockopt_release_sock(sk); 3407 return err; 3408 } 3409 case TCP_ULP: { 3410 char name[TCP_ULP_NAME_MAX]; 3411 3412 if (optlen < 1) 3413 return -EINVAL; 3414 3415 val = strncpy_from_sockptr(name, optval, 3416 min_t(long, TCP_ULP_NAME_MAX - 1, 3417 optlen)); 3418 if (val < 0) 3419 return -EFAULT; 3420 name[val] = 0; 3421 3422 sockopt_lock_sock(sk); 3423 err = tcp_set_ulp(sk, name); 3424 sockopt_release_sock(sk); 3425 return err; 3426 } 3427 case TCP_FASTOPEN_KEY: { 3428 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3429 __u8 *backup_key = NULL; 3430 3431 /* Allow a backup key as well to facilitate key rotation 3432 * First key is the active one. 3433 */ 3434 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3435 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3436 return -EINVAL; 3437 3438 if (copy_from_sockptr(key, optval, optlen)) 3439 return -EFAULT; 3440 3441 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3442 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3443 3444 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3445 } 3446 default: 3447 /* fallthru */ 3448 break; 3449 } 3450 3451 if (optlen < sizeof(int)) 3452 return -EINVAL; 3453 3454 if (copy_from_sockptr(&val, optval, sizeof(val))) 3455 return -EFAULT; 3456 3457 /* Handle options that can be set without locking the socket. */ 3458 switch (optname) { 3459 case TCP_SYNCNT: 3460 return tcp_sock_set_syncnt(sk, val); 3461 case TCP_USER_TIMEOUT: 3462 return tcp_sock_set_user_timeout(sk, val); 3463 case TCP_KEEPINTVL: 3464 return tcp_sock_set_keepintvl(sk, val); 3465 case TCP_KEEPCNT: 3466 return tcp_sock_set_keepcnt(sk, val); 3467 case TCP_LINGER2: 3468 if (val < 0) 3469 WRITE_ONCE(tp->linger2, -1); 3470 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3471 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3472 else 3473 WRITE_ONCE(tp->linger2, val * HZ); 3474 return 0; 3475 case TCP_DEFER_ACCEPT: 3476 /* Translate value in seconds to number of retransmits */ 3477 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3478 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3479 TCP_RTO_MAX / HZ)); 3480 return 0; 3481 } 3482 3483 sockopt_lock_sock(sk); 3484 3485 switch (optname) { 3486 case TCP_MAXSEG: 3487 /* Values greater than interface MTU won't take effect. However 3488 * at the point when this call is done we typically don't yet 3489 * know which interface is going to be used 3490 */ 3491 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3492 err = -EINVAL; 3493 break; 3494 } 3495 tp->rx_opt.user_mss = val; 3496 break; 3497 3498 case TCP_NODELAY: 3499 __tcp_sock_set_nodelay(sk, val); 3500 break; 3501 3502 case TCP_THIN_LINEAR_TIMEOUTS: 3503 if (val < 0 || val > 1) 3504 err = -EINVAL; 3505 else 3506 tp->thin_lto = val; 3507 break; 3508 3509 case TCP_THIN_DUPACK: 3510 if (val < 0 || val > 1) 3511 err = -EINVAL; 3512 break; 3513 3514 case TCP_REPAIR: 3515 if (!tcp_can_repair_sock(sk)) 3516 err = -EPERM; 3517 else if (val == TCP_REPAIR_ON) { 3518 tp->repair = 1; 3519 sk->sk_reuse = SK_FORCE_REUSE; 3520 tp->repair_queue = TCP_NO_QUEUE; 3521 } else if (val == TCP_REPAIR_OFF) { 3522 tp->repair = 0; 3523 sk->sk_reuse = SK_NO_REUSE; 3524 tcp_send_window_probe(sk); 3525 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3526 tp->repair = 0; 3527 sk->sk_reuse = SK_NO_REUSE; 3528 } else 3529 err = -EINVAL; 3530 3531 break; 3532 3533 case TCP_REPAIR_QUEUE: 3534 if (!tp->repair) 3535 err = -EPERM; 3536 else if ((unsigned int)val < TCP_QUEUES_NR) 3537 tp->repair_queue = val; 3538 else 3539 err = -EINVAL; 3540 break; 3541 3542 case TCP_QUEUE_SEQ: 3543 if (sk->sk_state != TCP_CLOSE) { 3544 err = -EPERM; 3545 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3546 if (!tcp_rtx_queue_empty(sk)) 3547 err = -EPERM; 3548 else 3549 WRITE_ONCE(tp->write_seq, val); 3550 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3551 if (tp->rcv_nxt != tp->copied_seq) { 3552 err = -EPERM; 3553 } else { 3554 WRITE_ONCE(tp->rcv_nxt, val); 3555 WRITE_ONCE(tp->copied_seq, val); 3556 } 3557 } else { 3558 err = -EINVAL; 3559 } 3560 break; 3561 3562 case TCP_REPAIR_OPTIONS: 3563 if (!tp->repair) 3564 err = -EINVAL; 3565 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3566 err = tcp_repair_options_est(sk, optval, optlen); 3567 else 3568 err = -EPERM; 3569 break; 3570 3571 case TCP_CORK: 3572 __tcp_sock_set_cork(sk, val); 3573 break; 3574 3575 case TCP_KEEPIDLE: 3576 err = tcp_sock_set_keepidle_locked(sk, val); 3577 break; 3578 case TCP_SAVE_SYN: 3579 /* 0: disable, 1: enable, 2: start from ether_header */ 3580 if (val < 0 || val > 2) 3581 err = -EINVAL; 3582 else 3583 tp->save_syn = val; 3584 break; 3585 3586 case TCP_WINDOW_CLAMP: 3587 err = tcp_set_window_clamp(sk, val); 3588 break; 3589 3590 case TCP_QUICKACK: 3591 __tcp_sock_set_quickack(sk, val); 3592 break; 3593 3594 #ifdef CONFIG_TCP_MD5SIG 3595 case TCP_MD5SIG: 3596 case TCP_MD5SIG_EXT: 3597 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3598 break; 3599 #endif 3600 case TCP_FASTOPEN: 3601 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3602 TCPF_LISTEN))) { 3603 tcp_fastopen_init_key_once(net); 3604 3605 fastopen_queue_tune(sk, val); 3606 } else { 3607 err = -EINVAL; 3608 } 3609 break; 3610 case TCP_FASTOPEN_CONNECT: 3611 if (val > 1 || val < 0) { 3612 err = -EINVAL; 3613 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3614 TFO_CLIENT_ENABLE) { 3615 if (sk->sk_state == TCP_CLOSE) 3616 tp->fastopen_connect = val; 3617 else 3618 err = -EINVAL; 3619 } else { 3620 err = -EOPNOTSUPP; 3621 } 3622 break; 3623 case TCP_FASTOPEN_NO_COOKIE: 3624 if (val > 1 || val < 0) 3625 err = -EINVAL; 3626 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3627 err = -EINVAL; 3628 else 3629 tp->fastopen_no_cookie = val; 3630 break; 3631 case TCP_TIMESTAMP: 3632 if (!tp->repair) 3633 err = -EPERM; 3634 else 3635 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3636 break; 3637 case TCP_REPAIR_WINDOW: 3638 err = tcp_repair_set_window(tp, optval, optlen); 3639 break; 3640 case TCP_NOTSENT_LOWAT: 3641 WRITE_ONCE(tp->notsent_lowat, val); 3642 sk->sk_write_space(sk); 3643 break; 3644 case TCP_INQ: 3645 if (val > 1 || val < 0) 3646 err = -EINVAL; 3647 else 3648 tp->recvmsg_inq = val; 3649 break; 3650 case TCP_TX_DELAY: 3651 if (val) 3652 tcp_enable_tx_delay(); 3653 WRITE_ONCE(tp->tcp_tx_delay, val); 3654 break; 3655 default: 3656 err = -ENOPROTOOPT; 3657 break; 3658 } 3659 3660 sockopt_release_sock(sk); 3661 return err; 3662 } 3663 3664 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3665 unsigned int optlen) 3666 { 3667 const struct inet_connection_sock *icsk = inet_csk(sk); 3668 3669 if (level != SOL_TCP) 3670 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3671 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3672 optval, optlen); 3673 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3674 } 3675 EXPORT_SYMBOL(tcp_setsockopt); 3676 3677 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3678 struct tcp_info *info) 3679 { 3680 u64 stats[__TCP_CHRONO_MAX], total = 0; 3681 enum tcp_chrono i; 3682 3683 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3684 stats[i] = tp->chrono_stat[i - 1]; 3685 if (i == tp->chrono_type) 3686 stats[i] += tcp_jiffies32 - tp->chrono_start; 3687 stats[i] *= USEC_PER_SEC / HZ; 3688 total += stats[i]; 3689 } 3690 3691 info->tcpi_busy_time = total; 3692 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3693 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3694 } 3695 3696 /* Return information about state of tcp endpoint in API format. */ 3697 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3698 { 3699 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3700 const struct inet_connection_sock *icsk = inet_csk(sk); 3701 unsigned long rate; 3702 u32 now; 3703 u64 rate64; 3704 bool slow; 3705 3706 memset(info, 0, sizeof(*info)); 3707 if (sk->sk_type != SOCK_STREAM) 3708 return; 3709 3710 info->tcpi_state = inet_sk_state_load(sk); 3711 3712 /* Report meaningful fields for all TCP states, including listeners */ 3713 rate = READ_ONCE(sk->sk_pacing_rate); 3714 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3715 info->tcpi_pacing_rate = rate64; 3716 3717 rate = READ_ONCE(sk->sk_max_pacing_rate); 3718 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3719 info->tcpi_max_pacing_rate = rate64; 3720 3721 info->tcpi_reordering = tp->reordering; 3722 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3723 3724 if (info->tcpi_state == TCP_LISTEN) { 3725 /* listeners aliased fields : 3726 * tcpi_unacked -> Number of children ready for accept() 3727 * tcpi_sacked -> max backlog 3728 */ 3729 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3730 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3731 return; 3732 } 3733 3734 slow = lock_sock_fast(sk); 3735 3736 info->tcpi_ca_state = icsk->icsk_ca_state; 3737 info->tcpi_retransmits = icsk->icsk_retransmits; 3738 info->tcpi_probes = icsk->icsk_probes_out; 3739 info->tcpi_backoff = icsk->icsk_backoff; 3740 3741 if (tp->rx_opt.tstamp_ok) 3742 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3743 if (tcp_is_sack(tp)) 3744 info->tcpi_options |= TCPI_OPT_SACK; 3745 if (tp->rx_opt.wscale_ok) { 3746 info->tcpi_options |= TCPI_OPT_WSCALE; 3747 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3748 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3749 } 3750 3751 if (tp->ecn_flags & TCP_ECN_OK) 3752 info->tcpi_options |= TCPI_OPT_ECN; 3753 if (tp->ecn_flags & TCP_ECN_SEEN) 3754 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3755 if (tp->syn_data_acked) 3756 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3757 3758 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3759 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3760 info->tcpi_snd_mss = tp->mss_cache; 3761 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3762 3763 info->tcpi_unacked = tp->packets_out; 3764 info->tcpi_sacked = tp->sacked_out; 3765 3766 info->tcpi_lost = tp->lost_out; 3767 info->tcpi_retrans = tp->retrans_out; 3768 3769 now = tcp_jiffies32; 3770 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3771 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3772 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3773 3774 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3775 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3776 info->tcpi_rtt = tp->srtt_us >> 3; 3777 info->tcpi_rttvar = tp->mdev_us >> 2; 3778 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3779 info->tcpi_advmss = tp->advmss; 3780 3781 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3782 info->tcpi_rcv_space = tp->rcvq_space.space; 3783 3784 info->tcpi_total_retrans = tp->total_retrans; 3785 3786 info->tcpi_bytes_acked = tp->bytes_acked; 3787 info->tcpi_bytes_received = tp->bytes_received; 3788 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3789 tcp_get_info_chrono_stats(tp, info); 3790 3791 info->tcpi_segs_out = tp->segs_out; 3792 3793 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3794 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3795 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3796 3797 info->tcpi_min_rtt = tcp_min_rtt(tp); 3798 info->tcpi_data_segs_out = tp->data_segs_out; 3799 3800 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3801 rate64 = tcp_compute_delivery_rate(tp); 3802 if (rate64) 3803 info->tcpi_delivery_rate = rate64; 3804 info->tcpi_delivered = tp->delivered; 3805 info->tcpi_delivered_ce = tp->delivered_ce; 3806 info->tcpi_bytes_sent = tp->bytes_sent; 3807 info->tcpi_bytes_retrans = tp->bytes_retrans; 3808 info->tcpi_dsack_dups = tp->dsack_dups; 3809 info->tcpi_reord_seen = tp->reord_seen; 3810 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3811 info->tcpi_snd_wnd = tp->snd_wnd; 3812 info->tcpi_rcv_wnd = tp->rcv_wnd; 3813 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3814 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3815 unlock_sock_fast(sk, slow); 3816 } 3817 EXPORT_SYMBOL_GPL(tcp_get_info); 3818 3819 static size_t tcp_opt_stats_get_size(void) 3820 { 3821 return 3822 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3823 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3824 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3825 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3826 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3827 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3828 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3829 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3830 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3831 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3832 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3833 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3834 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3835 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3836 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3837 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3838 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3839 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3840 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3841 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3842 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3843 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3844 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3845 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3847 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3848 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3849 0; 3850 } 3851 3852 /* Returns TTL or hop limit of an incoming packet from skb. */ 3853 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3854 { 3855 if (skb->protocol == htons(ETH_P_IP)) 3856 return ip_hdr(skb)->ttl; 3857 else if (skb->protocol == htons(ETH_P_IPV6)) 3858 return ipv6_hdr(skb)->hop_limit; 3859 else 3860 return 0; 3861 } 3862 3863 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3864 const struct sk_buff *orig_skb, 3865 const struct sk_buff *ack_skb) 3866 { 3867 const struct tcp_sock *tp = tcp_sk(sk); 3868 struct sk_buff *stats; 3869 struct tcp_info info; 3870 unsigned long rate; 3871 u64 rate64; 3872 3873 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3874 if (!stats) 3875 return NULL; 3876 3877 tcp_get_info_chrono_stats(tp, &info); 3878 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3879 info.tcpi_busy_time, TCP_NLA_PAD); 3880 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3881 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3882 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3883 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3884 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3885 tp->data_segs_out, TCP_NLA_PAD); 3886 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3887 tp->total_retrans, TCP_NLA_PAD); 3888 3889 rate = READ_ONCE(sk->sk_pacing_rate); 3890 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3891 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3892 3893 rate64 = tcp_compute_delivery_rate(tp); 3894 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3895 3896 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3897 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3898 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3899 3900 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3901 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3902 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3903 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3904 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3905 3906 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3907 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3908 3909 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3910 TCP_NLA_PAD); 3911 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3912 TCP_NLA_PAD); 3913 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3914 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3915 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3916 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3917 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3918 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3919 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3920 TCP_NLA_PAD); 3921 if (ack_skb) 3922 nla_put_u8(stats, TCP_NLA_TTL, 3923 tcp_skb_ttl_or_hop_limit(ack_skb)); 3924 3925 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3926 return stats; 3927 } 3928 3929 int do_tcp_getsockopt(struct sock *sk, int level, 3930 int optname, sockptr_t optval, sockptr_t optlen) 3931 { 3932 struct inet_connection_sock *icsk = inet_csk(sk); 3933 struct tcp_sock *tp = tcp_sk(sk); 3934 struct net *net = sock_net(sk); 3935 int val, len; 3936 3937 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3938 return -EFAULT; 3939 3940 len = min_t(unsigned int, len, sizeof(int)); 3941 3942 if (len < 0) 3943 return -EINVAL; 3944 3945 switch (optname) { 3946 case TCP_MAXSEG: 3947 val = tp->mss_cache; 3948 if (tp->rx_opt.user_mss && 3949 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3950 val = tp->rx_opt.user_mss; 3951 if (tp->repair) 3952 val = tp->rx_opt.mss_clamp; 3953 break; 3954 case TCP_NODELAY: 3955 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3956 break; 3957 case TCP_CORK: 3958 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3959 break; 3960 case TCP_KEEPIDLE: 3961 val = keepalive_time_when(tp) / HZ; 3962 break; 3963 case TCP_KEEPINTVL: 3964 val = keepalive_intvl_when(tp) / HZ; 3965 break; 3966 case TCP_KEEPCNT: 3967 val = keepalive_probes(tp); 3968 break; 3969 case TCP_SYNCNT: 3970 val = READ_ONCE(icsk->icsk_syn_retries) ? : 3971 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3972 break; 3973 case TCP_LINGER2: 3974 val = READ_ONCE(tp->linger2); 3975 if (val >= 0) 3976 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 3977 break; 3978 case TCP_DEFER_ACCEPT: 3979 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 3980 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 3981 TCP_RTO_MAX / HZ); 3982 break; 3983 case TCP_WINDOW_CLAMP: 3984 val = tp->window_clamp; 3985 break; 3986 case TCP_INFO: { 3987 struct tcp_info info; 3988 3989 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3990 return -EFAULT; 3991 3992 tcp_get_info(sk, &info); 3993 3994 len = min_t(unsigned int, len, sizeof(info)); 3995 if (copy_to_sockptr(optlen, &len, sizeof(int))) 3996 return -EFAULT; 3997 if (copy_to_sockptr(optval, &info, len)) 3998 return -EFAULT; 3999 return 0; 4000 } 4001 case TCP_CC_INFO: { 4002 const struct tcp_congestion_ops *ca_ops; 4003 union tcp_cc_info info; 4004 size_t sz = 0; 4005 int attr; 4006 4007 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4008 return -EFAULT; 4009 4010 ca_ops = icsk->icsk_ca_ops; 4011 if (ca_ops && ca_ops->get_info) 4012 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4013 4014 len = min_t(unsigned int, len, sz); 4015 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4016 return -EFAULT; 4017 if (copy_to_sockptr(optval, &info, len)) 4018 return -EFAULT; 4019 return 0; 4020 } 4021 case TCP_QUICKACK: 4022 val = !inet_csk_in_pingpong_mode(sk); 4023 break; 4024 4025 case TCP_CONGESTION: 4026 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4027 return -EFAULT; 4028 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4029 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4030 return -EFAULT; 4031 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4032 return -EFAULT; 4033 return 0; 4034 4035 case TCP_ULP: 4036 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4037 return -EFAULT; 4038 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4039 if (!icsk->icsk_ulp_ops) { 4040 len = 0; 4041 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4042 return -EFAULT; 4043 return 0; 4044 } 4045 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4046 return -EFAULT; 4047 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4048 return -EFAULT; 4049 return 0; 4050 4051 case TCP_FASTOPEN_KEY: { 4052 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4053 unsigned int key_len; 4054 4055 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4056 return -EFAULT; 4057 4058 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4059 TCP_FASTOPEN_KEY_LENGTH; 4060 len = min_t(unsigned int, len, key_len); 4061 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4062 return -EFAULT; 4063 if (copy_to_sockptr(optval, key, len)) 4064 return -EFAULT; 4065 return 0; 4066 } 4067 case TCP_THIN_LINEAR_TIMEOUTS: 4068 val = tp->thin_lto; 4069 break; 4070 4071 case TCP_THIN_DUPACK: 4072 val = 0; 4073 break; 4074 4075 case TCP_REPAIR: 4076 val = tp->repair; 4077 break; 4078 4079 case TCP_REPAIR_QUEUE: 4080 if (tp->repair) 4081 val = tp->repair_queue; 4082 else 4083 return -EINVAL; 4084 break; 4085 4086 case TCP_REPAIR_WINDOW: { 4087 struct tcp_repair_window opt; 4088 4089 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4090 return -EFAULT; 4091 4092 if (len != sizeof(opt)) 4093 return -EINVAL; 4094 4095 if (!tp->repair) 4096 return -EPERM; 4097 4098 opt.snd_wl1 = tp->snd_wl1; 4099 opt.snd_wnd = tp->snd_wnd; 4100 opt.max_window = tp->max_window; 4101 opt.rcv_wnd = tp->rcv_wnd; 4102 opt.rcv_wup = tp->rcv_wup; 4103 4104 if (copy_to_sockptr(optval, &opt, len)) 4105 return -EFAULT; 4106 return 0; 4107 } 4108 case TCP_QUEUE_SEQ: 4109 if (tp->repair_queue == TCP_SEND_QUEUE) 4110 val = tp->write_seq; 4111 else if (tp->repair_queue == TCP_RECV_QUEUE) 4112 val = tp->rcv_nxt; 4113 else 4114 return -EINVAL; 4115 break; 4116 4117 case TCP_USER_TIMEOUT: 4118 val = READ_ONCE(icsk->icsk_user_timeout); 4119 break; 4120 4121 case TCP_FASTOPEN: 4122 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4123 break; 4124 4125 case TCP_FASTOPEN_CONNECT: 4126 val = tp->fastopen_connect; 4127 break; 4128 4129 case TCP_FASTOPEN_NO_COOKIE: 4130 val = tp->fastopen_no_cookie; 4131 break; 4132 4133 case TCP_TX_DELAY: 4134 val = READ_ONCE(tp->tcp_tx_delay); 4135 break; 4136 4137 case TCP_TIMESTAMP: 4138 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4139 break; 4140 case TCP_NOTSENT_LOWAT: 4141 val = READ_ONCE(tp->notsent_lowat); 4142 break; 4143 case TCP_INQ: 4144 val = tp->recvmsg_inq; 4145 break; 4146 case TCP_SAVE_SYN: 4147 val = tp->save_syn; 4148 break; 4149 case TCP_SAVED_SYN: { 4150 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4151 return -EFAULT; 4152 4153 sockopt_lock_sock(sk); 4154 if (tp->saved_syn) { 4155 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4156 len = tcp_saved_syn_len(tp->saved_syn); 4157 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4158 sockopt_release_sock(sk); 4159 return -EFAULT; 4160 } 4161 sockopt_release_sock(sk); 4162 return -EINVAL; 4163 } 4164 len = tcp_saved_syn_len(tp->saved_syn); 4165 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4166 sockopt_release_sock(sk); 4167 return -EFAULT; 4168 } 4169 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4170 sockopt_release_sock(sk); 4171 return -EFAULT; 4172 } 4173 tcp_saved_syn_free(tp); 4174 sockopt_release_sock(sk); 4175 } else { 4176 sockopt_release_sock(sk); 4177 len = 0; 4178 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4179 return -EFAULT; 4180 } 4181 return 0; 4182 } 4183 #ifdef CONFIG_MMU 4184 case TCP_ZEROCOPY_RECEIVE: { 4185 struct scm_timestamping_internal tss; 4186 struct tcp_zerocopy_receive zc = {}; 4187 int err; 4188 4189 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4190 return -EFAULT; 4191 if (len < 0 || 4192 len < offsetofend(struct tcp_zerocopy_receive, length)) 4193 return -EINVAL; 4194 if (unlikely(len > sizeof(zc))) { 4195 err = check_zeroed_sockptr(optval, sizeof(zc), 4196 len - sizeof(zc)); 4197 if (err < 1) 4198 return err == 0 ? -EINVAL : err; 4199 len = sizeof(zc); 4200 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4201 return -EFAULT; 4202 } 4203 if (copy_from_sockptr(&zc, optval, len)) 4204 return -EFAULT; 4205 if (zc.reserved) 4206 return -EINVAL; 4207 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4208 return -EINVAL; 4209 sockopt_lock_sock(sk); 4210 err = tcp_zerocopy_receive(sk, &zc, &tss); 4211 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4212 &zc, &len, err); 4213 sockopt_release_sock(sk); 4214 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4215 goto zerocopy_rcv_cmsg; 4216 switch (len) { 4217 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4218 goto zerocopy_rcv_cmsg; 4219 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4220 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4221 case offsetofend(struct tcp_zerocopy_receive, flags): 4222 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4223 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4224 case offsetofend(struct tcp_zerocopy_receive, err): 4225 goto zerocopy_rcv_sk_err; 4226 case offsetofend(struct tcp_zerocopy_receive, inq): 4227 goto zerocopy_rcv_inq; 4228 case offsetofend(struct tcp_zerocopy_receive, length): 4229 default: 4230 goto zerocopy_rcv_out; 4231 } 4232 zerocopy_rcv_cmsg: 4233 if (zc.msg_flags & TCP_CMSG_TS) 4234 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4235 else 4236 zc.msg_flags = 0; 4237 zerocopy_rcv_sk_err: 4238 if (!err) 4239 zc.err = sock_error(sk); 4240 zerocopy_rcv_inq: 4241 zc.inq = tcp_inq_hint(sk); 4242 zerocopy_rcv_out: 4243 if (!err && copy_to_sockptr(optval, &zc, len)) 4244 err = -EFAULT; 4245 return err; 4246 } 4247 #endif 4248 default: 4249 return -ENOPROTOOPT; 4250 } 4251 4252 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4253 return -EFAULT; 4254 if (copy_to_sockptr(optval, &val, len)) 4255 return -EFAULT; 4256 return 0; 4257 } 4258 4259 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4260 { 4261 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4262 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4263 */ 4264 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4265 return true; 4266 4267 return false; 4268 } 4269 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4270 4271 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4272 int __user *optlen) 4273 { 4274 struct inet_connection_sock *icsk = inet_csk(sk); 4275 4276 if (level != SOL_TCP) 4277 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4278 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4279 optval, optlen); 4280 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4281 USER_SOCKPTR(optlen)); 4282 } 4283 EXPORT_SYMBOL(tcp_getsockopt); 4284 4285 #ifdef CONFIG_TCP_MD5SIG 4286 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4287 static DEFINE_MUTEX(tcp_md5sig_mutex); 4288 static bool tcp_md5sig_pool_populated = false; 4289 4290 static void __tcp_alloc_md5sig_pool(void) 4291 { 4292 struct crypto_ahash *hash; 4293 int cpu; 4294 4295 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4296 if (IS_ERR(hash)) 4297 return; 4298 4299 for_each_possible_cpu(cpu) { 4300 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4301 struct ahash_request *req; 4302 4303 if (!scratch) { 4304 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4305 sizeof(struct tcphdr), 4306 GFP_KERNEL, 4307 cpu_to_node(cpu)); 4308 if (!scratch) 4309 return; 4310 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4311 } 4312 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4313 continue; 4314 4315 req = ahash_request_alloc(hash, GFP_KERNEL); 4316 if (!req) 4317 return; 4318 4319 ahash_request_set_callback(req, 0, NULL, NULL); 4320 4321 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4322 } 4323 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4324 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4325 */ 4326 smp_wmb(); 4327 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4328 * and tcp_get_md5sig_pool(). 4329 */ 4330 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4331 } 4332 4333 bool tcp_alloc_md5sig_pool(void) 4334 { 4335 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4336 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4337 mutex_lock(&tcp_md5sig_mutex); 4338 4339 if (!tcp_md5sig_pool_populated) 4340 __tcp_alloc_md5sig_pool(); 4341 4342 mutex_unlock(&tcp_md5sig_mutex); 4343 } 4344 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4345 return READ_ONCE(tcp_md5sig_pool_populated); 4346 } 4347 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4348 4349 4350 /** 4351 * tcp_get_md5sig_pool - get md5sig_pool for this user 4352 * 4353 * We use percpu structure, so if we succeed, we exit with preemption 4354 * and BH disabled, to make sure another thread or softirq handling 4355 * wont try to get same context. 4356 */ 4357 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4358 { 4359 local_bh_disable(); 4360 4361 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4362 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4363 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4364 smp_rmb(); 4365 return this_cpu_ptr(&tcp_md5sig_pool); 4366 } 4367 local_bh_enable(); 4368 return NULL; 4369 } 4370 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4371 4372 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4373 const struct sk_buff *skb, unsigned int header_len) 4374 { 4375 struct scatterlist sg; 4376 const struct tcphdr *tp = tcp_hdr(skb); 4377 struct ahash_request *req = hp->md5_req; 4378 unsigned int i; 4379 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4380 skb_headlen(skb) - header_len : 0; 4381 const struct skb_shared_info *shi = skb_shinfo(skb); 4382 struct sk_buff *frag_iter; 4383 4384 sg_init_table(&sg, 1); 4385 4386 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4387 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4388 if (crypto_ahash_update(req)) 4389 return 1; 4390 4391 for (i = 0; i < shi->nr_frags; ++i) { 4392 const skb_frag_t *f = &shi->frags[i]; 4393 unsigned int offset = skb_frag_off(f); 4394 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4395 4396 sg_set_page(&sg, page, skb_frag_size(f), 4397 offset_in_page(offset)); 4398 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4399 if (crypto_ahash_update(req)) 4400 return 1; 4401 } 4402 4403 skb_walk_frags(skb, frag_iter) 4404 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4405 return 1; 4406 4407 return 0; 4408 } 4409 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4410 4411 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4412 { 4413 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4414 struct scatterlist sg; 4415 4416 sg_init_one(&sg, key->key, keylen); 4417 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4418 4419 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4420 return data_race(crypto_ahash_update(hp->md5_req)); 4421 } 4422 EXPORT_SYMBOL(tcp_md5_hash_key); 4423 4424 /* Called with rcu_read_lock() */ 4425 enum skb_drop_reason 4426 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4427 const void *saddr, const void *daddr, 4428 int family, int dif, int sdif) 4429 { 4430 /* 4431 * This gets called for each TCP segment that arrives 4432 * so we want to be efficient. 4433 * We have 3 drop cases: 4434 * o No MD5 hash and one expected. 4435 * o MD5 hash and we're not expecting one. 4436 * o MD5 hash and its wrong. 4437 */ 4438 const __u8 *hash_location = NULL; 4439 struct tcp_md5sig_key *hash_expected; 4440 const struct tcphdr *th = tcp_hdr(skb); 4441 const struct tcp_sock *tp = tcp_sk(sk); 4442 int genhash, l3index; 4443 u8 newhash[16]; 4444 4445 /* sdif set, means packet ingressed via a device 4446 * in an L3 domain and dif is set to the l3mdev 4447 */ 4448 l3index = sdif ? dif : 0; 4449 4450 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4451 hash_location = tcp_parse_md5sig_option(th); 4452 4453 /* We've parsed the options - do we have a hash? */ 4454 if (!hash_expected && !hash_location) 4455 return SKB_NOT_DROPPED_YET; 4456 4457 if (hash_expected && !hash_location) { 4458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4459 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4460 } 4461 4462 if (!hash_expected && hash_location) { 4463 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4464 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4465 } 4466 4467 /* Check the signature. 4468 * To support dual stack listeners, we need to handle 4469 * IPv4-mapped case. 4470 */ 4471 if (family == AF_INET) 4472 genhash = tcp_v4_md5_hash_skb(newhash, 4473 hash_expected, 4474 NULL, skb); 4475 else 4476 genhash = tp->af_specific->calc_md5_hash(newhash, 4477 hash_expected, 4478 NULL, skb); 4479 4480 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4481 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4482 if (family == AF_INET) { 4483 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4484 saddr, ntohs(th->source), 4485 daddr, ntohs(th->dest), 4486 genhash ? " tcp_v4_calc_md5_hash failed" 4487 : "", l3index); 4488 } else { 4489 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4490 genhash ? "failed" : "mismatch", 4491 saddr, ntohs(th->source), 4492 daddr, ntohs(th->dest), l3index); 4493 } 4494 return SKB_DROP_REASON_TCP_MD5FAILURE; 4495 } 4496 return SKB_NOT_DROPPED_YET; 4497 } 4498 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4499 4500 #endif 4501 4502 void tcp_done(struct sock *sk) 4503 { 4504 struct request_sock *req; 4505 4506 /* We might be called with a new socket, after 4507 * inet_csk_prepare_forced_close() has been called 4508 * so we can not use lockdep_sock_is_held(sk) 4509 */ 4510 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4511 4512 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4513 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4514 4515 tcp_set_state(sk, TCP_CLOSE); 4516 tcp_clear_xmit_timers(sk); 4517 if (req) 4518 reqsk_fastopen_remove(sk, req, false); 4519 4520 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4521 4522 if (!sock_flag(sk, SOCK_DEAD)) 4523 sk->sk_state_change(sk); 4524 else 4525 inet_csk_destroy_sock(sk); 4526 } 4527 EXPORT_SYMBOL_GPL(tcp_done); 4528 4529 int tcp_abort(struct sock *sk, int err) 4530 { 4531 int state = inet_sk_state_load(sk); 4532 4533 if (state == TCP_NEW_SYN_RECV) { 4534 struct request_sock *req = inet_reqsk(sk); 4535 4536 local_bh_disable(); 4537 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4538 local_bh_enable(); 4539 return 0; 4540 } 4541 if (state == TCP_TIME_WAIT) { 4542 struct inet_timewait_sock *tw = inet_twsk(sk); 4543 4544 refcount_inc(&tw->tw_refcnt); 4545 local_bh_disable(); 4546 inet_twsk_deschedule_put(tw); 4547 local_bh_enable(); 4548 return 0; 4549 } 4550 4551 /* BPF context ensures sock locking. */ 4552 if (!has_current_bpf_ctx()) 4553 /* Don't race with userspace socket closes such as tcp_close. */ 4554 lock_sock(sk); 4555 4556 if (sk->sk_state == TCP_LISTEN) { 4557 tcp_set_state(sk, TCP_CLOSE); 4558 inet_csk_listen_stop(sk); 4559 } 4560 4561 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4562 local_bh_disable(); 4563 bh_lock_sock(sk); 4564 4565 if (!sock_flag(sk, SOCK_DEAD)) { 4566 WRITE_ONCE(sk->sk_err, err); 4567 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4568 smp_wmb(); 4569 sk_error_report(sk); 4570 if (tcp_need_reset(sk->sk_state)) 4571 tcp_send_active_reset(sk, GFP_ATOMIC); 4572 tcp_done(sk); 4573 } 4574 4575 bh_unlock_sock(sk); 4576 local_bh_enable(); 4577 tcp_write_queue_purge(sk); 4578 if (!has_current_bpf_ctx()) 4579 release_sock(sk); 4580 return 0; 4581 } 4582 EXPORT_SYMBOL_GPL(tcp_abort); 4583 4584 extern struct tcp_congestion_ops tcp_reno; 4585 4586 static __initdata unsigned long thash_entries; 4587 static int __init set_thash_entries(char *str) 4588 { 4589 ssize_t ret; 4590 4591 if (!str) 4592 return 0; 4593 4594 ret = kstrtoul(str, 0, &thash_entries); 4595 if (ret) 4596 return 0; 4597 4598 return 1; 4599 } 4600 __setup("thash_entries=", set_thash_entries); 4601 4602 static void __init tcp_init_mem(void) 4603 { 4604 unsigned long limit = nr_free_buffer_pages() / 16; 4605 4606 limit = max(limit, 128UL); 4607 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4608 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4609 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4610 } 4611 4612 void __init tcp_init(void) 4613 { 4614 int max_rshare, max_wshare, cnt; 4615 unsigned long limit; 4616 unsigned int i; 4617 4618 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4619 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4620 sizeof_field(struct sk_buff, cb)); 4621 4622 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4623 4624 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4625 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4626 4627 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4628 thash_entries, 21, /* one slot per 2 MB*/ 4629 0, 64 * 1024); 4630 tcp_hashinfo.bind_bucket_cachep = 4631 kmem_cache_create("tcp_bind_bucket", 4632 sizeof(struct inet_bind_bucket), 0, 4633 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4634 SLAB_ACCOUNT, 4635 NULL); 4636 tcp_hashinfo.bind2_bucket_cachep = 4637 kmem_cache_create("tcp_bind2_bucket", 4638 sizeof(struct inet_bind2_bucket), 0, 4639 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4640 SLAB_ACCOUNT, 4641 NULL); 4642 4643 /* Size and allocate the main established and bind bucket 4644 * hash tables. 4645 * 4646 * The methodology is similar to that of the buffer cache. 4647 */ 4648 tcp_hashinfo.ehash = 4649 alloc_large_system_hash("TCP established", 4650 sizeof(struct inet_ehash_bucket), 4651 thash_entries, 4652 17, /* one slot per 128 KB of memory */ 4653 0, 4654 NULL, 4655 &tcp_hashinfo.ehash_mask, 4656 0, 4657 thash_entries ? 0 : 512 * 1024); 4658 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4659 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4660 4661 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4662 panic("TCP: failed to alloc ehash_locks"); 4663 tcp_hashinfo.bhash = 4664 alloc_large_system_hash("TCP bind", 4665 2 * sizeof(struct inet_bind_hashbucket), 4666 tcp_hashinfo.ehash_mask + 1, 4667 17, /* one slot per 128 KB of memory */ 4668 0, 4669 &tcp_hashinfo.bhash_size, 4670 NULL, 4671 0, 4672 64 * 1024); 4673 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4674 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4675 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4676 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4677 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4678 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4679 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4680 } 4681 4682 tcp_hashinfo.pernet = false; 4683 4684 cnt = tcp_hashinfo.ehash_mask + 1; 4685 sysctl_tcp_max_orphans = cnt / 2; 4686 4687 tcp_init_mem(); 4688 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4689 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4690 max_wshare = min(4UL*1024*1024, limit); 4691 max_rshare = min(6UL*1024*1024, limit); 4692 4693 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4694 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4695 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4696 4697 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4698 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4699 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4700 4701 pr_info("Hash tables configured (established %u bind %u)\n", 4702 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4703 4704 tcp_v4_init(); 4705 tcp_metrics_init(); 4706 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4707 tcp_tasklet_init(); 4708 mptcp_init(); 4709 } 4710