xref: /openbmc/linux/net/ipv4/tcp.c (revision 0edbfea5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	__skb_queue_head_init(&tp->out_of_order_queue);
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 	tp->rtt_min[0].rtt = ~0U;
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* See draft-stevens-tcpca-spec-01 for discussion of the
400 	 * initialization of these values.
401 	 */
402 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 	tp->snd_cwnd_clamp = ~0;
404 	tp->mss_cache = TCP_MSS_DEFAULT;
405 	u64_stats_init(&tp->syncp);
406 
407 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
408 	tcp_enable_early_retrans(tp);
409 	tcp_assign_congestion_control(sk);
410 
411 	tp->tsoffset = 0;
412 
413 	sk->sk_state = TCP_CLOSE;
414 
415 	sk->sk_write_space = sk_stream_write_space;
416 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
417 
418 	icsk->icsk_sync_mss = tcp_sync_mss;
419 
420 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
421 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
422 
423 	local_bh_disable();
424 	if (mem_cgroup_sockets_enabled)
425 		sock_update_memcg(sk);
426 	sk_sockets_allocated_inc(sk);
427 	local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430 
431 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
432 {
433 	if (tsflags) {
434 		struct skb_shared_info *shinfo = skb_shinfo(skb);
435 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
436 
437 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
438 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
439 			tcb->txstamp_ack = 1;
440 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
441 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
442 	}
443 }
444 
445 /*
446  *	Wait for a TCP event.
447  *
448  *	Note that we don't need to lock the socket, as the upper poll layers
449  *	take care of normal races (between the test and the event) and we don't
450  *	go look at any of the socket buffers directly.
451  */
452 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
453 {
454 	unsigned int mask;
455 	struct sock *sk = sock->sk;
456 	const struct tcp_sock *tp = tcp_sk(sk);
457 	int state;
458 
459 	sock_rps_record_flow(sk);
460 
461 	sock_poll_wait(file, sk_sleep(sk), wait);
462 
463 	state = sk_state_load(sk);
464 	if (state == TCP_LISTEN)
465 		return inet_csk_listen_poll(sk);
466 
467 	/* Socket is not locked. We are protected from async events
468 	 * by poll logic and correct handling of state changes
469 	 * made by other threads is impossible in any case.
470 	 */
471 
472 	mask = 0;
473 
474 	/*
475 	 * POLLHUP is certainly not done right. But poll() doesn't
476 	 * have a notion of HUP in just one direction, and for a
477 	 * socket the read side is more interesting.
478 	 *
479 	 * Some poll() documentation says that POLLHUP is incompatible
480 	 * with the POLLOUT/POLLWR flags, so somebody should check this
481 	 * all. But careful, it tends to be safer to return too many
482 	 * bits than too few, and you can easily break real applications
483 	 * if you don't tell them that something has hung up!
484 	 *
485 	 * Check-me.
486 	 *
487 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
488 	 * our fs/select.c). It means that after we received EOF,
489 	 * poll always returns immediately, making impossible poll() on write()
490 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
491 	 * if and only if shutdown has been made in both directions.
492 	 * Actually, it is interesting to look how Solaris and DUX
493 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
494 	 * then we could set it on SND_SHUTDOWN. BTW examples given
495 	 * in Stevens' books assume exactly this behaviour, it explains
496 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
497 	 *
498 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
499 	 * blocking on fresh not-connected or disconnected socket. --ANK
500 	 */
501 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
502 		mask |= POLLHUP;
503 	if (sk->sk_shutdown & RCV_SHUTDOWN)
504 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
505 
506 	/* Connected or passive Fast Open socket? */
507 	if (state != TCP_SYN_SENT &&
508 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
509 		int target = sock_rcvlowat(sk, 0, INT_MAX);
510 
511 		if (tp->urg_seq == tp->copied_seq &&
512 		    !sock_flag(sk, SOCK_URGINLINE) &&
513 		    tp->urg_data)
514 			target++;
515 
516 		if (tp->rcv_nxt - tp->copied_seq >= target)
517 			mask |= POLLIN | POLLRDNORM;
518 
519 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
520 			if (sk_stream_is_writeable(sk)) {
521 				mask |= POLLOUT | POLLWRNORM;
522 			} else {  /* send SIGIO later */
523 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
524 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
525 
526 				/* Race breaker. If space is freed after
527 				 * wspace test but before the flags are set,
528 				 * IO signal will be lost. Memory barrier
529 				 * pairs with the input side.
530 				 */
531 				smp_mb__after_atomic();
532 				if (sk_stream_is_writeable(sk))
533 					mask |= POLLOUT | POLLWRNORM;
534 			}
535 		} else
536 			mask |= POLLOUT | POLLWRNORM;
537 
538 		if (tp->urg_data & TCP_URG_VALID)
539 			mask |= POLLPRI;
540 	}
541 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
542 	smp_rmb();
543 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
544 		mask |= POLLERR;
545 
546 	return mask;
547 }
548 EXPORT_SYMBOL(tcp_poll);
549 
550 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
551 {
552 	struct tcp_sock *tp = tcp_sk(sk);
553 	int answ;
554 	bool slow;
555 
556 	switch (cmd) {
557 	case SIOCINQ:
558 		if (sk->sk_state == TCP_LISTEN)
559 			return -EINVAL;
560 
561 		slow = lock_sock_fast(sk);
562 		answ = tcp_inq(sk);
563 		unlock_sock_fast(sk, slow);
564 		break;
565 	case SIOCATMARK:
566 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
567 		break;
568 	case SIOCOUTQ:
569 		if (sk->sk_state == TCP_LISTEN)
570 			return -EINVAL;
571 
572 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
573 			answ = 0;
574 		else
575 			answ = tp->write_seq - tp->snd_una;
576 		break;
577 	case SIOCOUTQNSD:
578 		if (sk->sk_state == TCP_LISTEN)
579 			return -EINVAL;
580 
581 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
582 			answ = 0;
583 		else
584 			answ = tp->write_seq - tp->snd_nxt;
585 		break;
586 	default:
587 		return -ENOIOCTLCMD;
588 	}
589 
590 	return put_user(answ, (int __user *)arg);
591 }
592 EXPORT_SYMBOL(tcp_ioctl);
593 
594 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
595 {
596 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
597 	tp->pushed_seq = tp->write_seq;
598 }
599 
600 static inline bool forced_push(const struct tcp_sock *tp)
601 {
602 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 }
604 
605 static void skb_entail(struct sock *sk, struct sk_buff *skb)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
609 
610 	skb->csum    = 0;
611 	tcb->seq     = tcb->end_seq = tp->write_seq;
612 	tcb->tcp_flags = TCPHDR_ACK;
613 	tcb->sacked  = 0;
614 	__skb_header_release(skb);
615 	tcp_add_write_queue_tail(sk, skb);
616 	sk->sk_wmem_queued += skb->truesize;
617 	sk_mem_charge(sk, skb->truesize);
618 	if (tp->nonagle & TCP_NAGLE_PUSH)
619 		tp->nonagle &= ~TCP_NAGLE_PUSH;
620 
621 	tcp_slow_start_after_idle_check(sk);
622 }
623 
624 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
625 {
626 	if (flags & MSG_OOB)
627 		tp->snd_up = tp->write_seq;
628 }
629 
630 /* If a not yet filled skb is pushed, do not send it if
631  * we have data packets in Qdisc or NIC queues :
632  * Because TX completion will happen shortly, it gives a chance
633  * to coalesce future sendmsg() payload into this skb, without
634  * need for a timer, and with no latency trade off.
635  * As packets containing data payload have a bigger truesize
636  * than pure acks (dataless) packets, the last checks prevent
637  * autocorking if we only have an ACK in Qdisc/NIC queues,
638  * or if TX completion was delayed after we processed ACK packet.
639  */
640 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
641 				int size_goal)
642 {
643 	return skb->len < size_goal &&
644 	       sysctl_tcp_autocorking &&
645 	       skb != tcp_write_queue_head(sk) &&
646 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
647 }
648 
649 static void tcp_push(struct sock *sk, int flags, int mss_now,
650 		     int nonagle, int size_goal)
651 {
652 	struct tcp_sock *tp = tcp_sk(sk);
653 	struct sk_buff *skb;
654 
655 	if (!tcp_send_head(sk))
656 		return;
657 
658 	skb = tcp_write_queue_tail(sk);
659 	if (!(flags & MSG_MORE) || forced_push(tp))
660 		tcp_mark_push(tp, skb);
661 
662 	tcp_mark_urg(tp, flags);
663 
664 	if (tcp_should_autocork(sk, skb, size_goal)) {
665 
666 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
667 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
668 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
669 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
670 		}
671 		/* It is possible TX completion already happened
672 		 * before we set TSQ_THROTTLED.
673 		 */
674 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
675 			return;
676 	}
677 
678 	if (flags & MSG_MORE)
679 		nonagle = TCP_NAGLE_CORK;
680 
681 	__tcp_push_pending_frames(sk, mss_now, nonagle);
682 }
683 
684 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
685 				unsigned int offset, size_t len)
686 {
687 	struct tcp_splice_state *tss = rd_desc->arg.data;
688 	int ret;
689 
690 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
691 			      min(rd_desc->count, len), tss->flags,
692 			      skb_socket_splice);
693 	if (ret > 0)
694 		rd_desc->count -= ret;
695 	return ret;
696 }
697 
698 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
699 {
700 	/* Store TCP splice context information in read_descriptor_t. */
701 	read_descriptor_t rd_desc = {
702 		.arg.data = tss,
703 		.count	  = tss->len,
704 	};
705 
706 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
707 }
708 
709 /**
710  *  tcp_splice_read - splice data from TCP socket to a pipe
711  * @sock:	socket to splice from
712  * @ppos:	position (not valid)
713  * @pipe:	pipe to splice to
714  * @len:	number of bytes to splice
715  * @flags:	splice modifier flags
716  *
717  * Description:
718  *    Will read pages from given socket and fill them into a pipe.
719  *
720  **/
721 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
722 			struct pipe_inode_info *pipe, size_t len,
723 			unsigned int flags)
724 {
725 	struct sock *sk = sock->sk;
726 	struct tcp_splice_state tss = {
727 		.pipe = pipe,
728 		.len = len,
729 		.flags = flags,
730 	};
731 	long timeo;
732 	ssize_t spliced;
733 	int ret;
734 
735 	sock_rps_record_flow(sk);
736 	/*
737 	 * We can't seek on a socket input
738 	 */
739 	if (unlikely(*ppos))
740 		return -ESPIPE;
741 
742 	ret = spliced = 0;
743 
744 	lock_sock(sk);
745 
746 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
747 	while (tss.len) {
748 		ret = __tcp_splice_read(sk, &tss);
749 		if (ret < 0)
750 			break;
751 		else if (!ret) {
752 			if (spliced)
753 				break;
754 			if (sock_flag(sk, SOCK_DONE))
755 				break;
756 			if (sk->sk_err) {
757 				ret = sock_error(sk);
758 				break;
759 			}
760 			if (sk->sk_shutdown & RCV_SHUTDOWN)
761 				break;
762 			if (sk->sk_state == TCP_CLOSE) {
763 				/*
764 				 * This occurs when user tries to read
765 				 * from never connected socket.
766 				 */
767 				if (!sock_flag(sk, SOCK_DONE))
768 					ret = -ENOTCONN;
769 				break;
770 			}
771 			if (!timeo) {
772 				ret = -EAGAIN;
773 				break;
774 			}
775 			sk_wait_data(sk, &timeo, NULL);
776 			if (signal_pending(current)) {
777 				ret = sock_intr_errno(timeo);
778 				break;
779 			}
780 			continue;
781 		}
782 		tss.len -= ret;
783 		spliced += ret;
784 
785 		if (!timeo)
786 			break;
787 		release_sock(sk);
788 		lock_sock(sk);
789 
790 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
791 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
792 		    signal_pending(current))
793 			break;
794 	}
795 
796 	release_sock(sk);
797 
798 	if (spliced)
799 		return spliced;
800 
801 	return ret;
802 }
803 EXPORT_SYMBOL(tcp_splice_read);
804 
805 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
806 				    bool force_schedule)
807 {
808 	struct sk_buff *skb;
809 
810 	/* The TCP header must be at least 32-bit aligned.  */
811 	size = ALIGN(size, 4);
812 
813 	if (unlikely(tcp_under_memory_pressure(sk)))
814 		sk_mem_reclaim_partial(sk);
815 
816 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
817 	if (likely(skb)) {
818 		bool mem_scheduled;
819 
820 		if (force_schedule) {
821 			mem_scheduled = true;
822 			sk_forced_mem_schedule(sk, skb->truesize);
823 		} else {
824 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
825 		}
826 		if (likely(mem_scheduled)) {
827 			skb_reserve(skb, sk->sk_prot->max_header);
828 			/*
829 			 * Make sure that we have exactly size bytes
830 			 * available to the caller, no more, no less.
831 			 */
832 			skb->reserved_tailroom = skb->end - skb->tail - size;
833 			return skb;
834 		}
835 		__kfree_skb(skb);
836 	} else {
837 		sk->sk_prot->enter_memory_pressure(sk);
838 		sk_stream_moderate_sndbuf(sk);
839 	}
840 	return NULL;
841 }
842 
843 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
844 				       int large_allowed)
845 {
846 	struct tcp_sock *tp = tcp_sk(sk);
847 	u32 new_size_goal, size_goal;
848 
849 	if (!large_allowed || !sk_can_gso(sk))
850 		return mss_now;
851 
852 	/* Note : tcp_tso_autosize() will eventually split this later */
853 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
854 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
855 
856 	/* We try hard to avoid divides here */
857 	size_goal = tp->gso_segs * mss_now;
858 	if (unlikely(new_size_goal < size_goal ||
859 		     new_size_goal >= size_goal + mss_now)) {
860 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
861 				     sk->sk_gso_max_segs);
862 		size_goal = tp->gso_segs * mss_now;
863 	}
864 
865 	return max(size_goal, mss_now);
866 }
867 
868 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
869 {
870 	int mss_now;
871 
872 	mss_now = tcp_current_mss(sk);
873 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
874 
875 	return mss_now;
876 }
877 
878 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
879 				size_t size, int flags)
880 {
881 	struct tcp_sock *tp = tcp_sk(sk);
882 	int mss_now, size_goal;
883 	int err;
884 	ssize_t copied;
885 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
886 
887 	/* Wait for a connection to finish. One exception is TCP Fast Open
888 	 * (passive side) where data is allowed to be sent before a connection
889 	 * is fully established.
890 	 */
891 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
892 	    !tcp_passive_fastopen(sk)) {
893 		err = sk_stream_wait_connect(sk, &timeo);
894 		if (err != 0)
895 			goto out_err;
896 	}
897 
898 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
899 
900 	mss_now = tcp_send_mss(sk, &size_goal, flags);
901 	copied = 0;
902 
903 	err = -EPIPE;
904 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
905 		goto out_err;
906 
907 	while (size > 0) {
908 		struct sk_buff *skb = tcp_write_queue_tail(sk);
909 		int copy, i;
910 		bool can_coalesce;
911 
912 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
913 		    !tcp_skb_can_collapse_to(skb)) {
914 new_segment:
915 			if (!sk_stream_memory_free(sk))
916 				goto wait_for_sndbuf;
917 
918 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
919 						  skb_queue_empty(&sk->sk_write_queue));
920 			if (!skb)
921 				goto wait_for_memory;
922 
923 			skb_entail(sk, skb);
924 			copy = size_goal;
925 		}
926 
927 		if (copy > size)
928 			copy = size;
929 
930 		i = skb_shinfo(skb)->nr_frags;
931 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
932 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
933 			tcp_mark_push(tp, skb);
934 			goto new_segment;
935 		}
936 		if (!sk_wmem_schedule(sk, copy))
937 			goto wait_for_memory;
938 
939 		if (can_coalesce) {
940 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
941 		} else {
942 			get_page(page);
943 			skb_fill_page_desc(skb, i, page, offset, copy);
944 		}
945 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
946 
947 		skb->len += copy;
948 		skb->data_len += copy;
949 		skb->truesize += copy;
950 		sk->sk_wmem_queued += copy;
951 		sk_mem_charge(sk, copy);
952 		skb->ip_summed = CHECKSUM_PARTIAL;
953 		tp->write_seq += copy;
954 		TCP_SKB_CB(skb)->end_seq += copy;
955 		tcp_skb_pcount_set(skb, 0);
956 
957 		if (!copied)
958 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
959 
960 		copied += copy;
961 		offset += copy;
962 		size -= copy;
963 		if (!size) {
964 			tcp_tx_timestamp(sk, sk->sk_tsflags, skb);
965 			goto out;
966 		}
967 
968 		if (skb->len < size_goal || (flags & MSG_OOB))
969 			continue;
970 
971 		if (forced_push(tp)) {
972 			tcp_mark_push(tp, skb);
973 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
974 		} else if (skb == tcp_send_head(sk))
975 			tcp_push_one(sk, mss_now);
976 		continue;
977 
978 wait_for_sndbuf:
979 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
980 wait_for_memory:
981 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
982 			 TCP_NAGLE_PUSH, size_goal);
983 
984 		err = sk_stream_wait_memory(sk, &timeo);
985 		if (err != 0)
986 			goto do_error;
987 
988 		mss_now = tcp_send_mss(sk, &size_goal, flags);
989 	}
990 
991 out:
992 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
993 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
994 	return copied;
995 
996 do_error:
997 	if (copied)
998 		goto out;
999 out_err:
1000 	/* make sure we wake any epoll edge trigger waiter */
1001 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1002 		sk->sk_write_space(sk);
1003 	return sk_stream_error(sk, flags, err);
1004 }
1005 
1006 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1007 		 size_t size, int flags)
1008 {
1009 	ssize_t res;
1010 
1011 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1012 	    !sk_check_csum_caps(sk))
1013 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1014 					flags);
1015 
1016 	lock_sock(sk);
1017 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1018 	release_sock(sk);
1019 	return res;
1020 }
1021 EXPORT_SYMBOL(tcp_sendpage);
1022 
1023 static inline int select_size(const struct sock *sk, bool sg)
1024 {
1025 	const struct tcp_sock *tp = tcp_sk(sk);
1026 	int tmp = tp->mss_cache;
1027 
1028 	if (sg) {
1029 		if (sk_can_gso(sk)) {
1030 			/* Small frames wont use a full page:
1031 			 * Payload will immediately follow tcp header.
1032 			 */
1033 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1034 		} else {
1035 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1036 
1037 			if (tmp >= pgbreak &&
1038 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1039 				tmp = pgbreak;
1040 		}
1041 	}
1042 
1043 	return tmp;
1044 }
1045 
1046 void tcp_free_fastopen_req(struct tcp_sock *tp)
1047 {
1048 	if (tp->fastopen_req) {
1049 		kfree(tp->fastopen_req);
1050 		tp->fastopen_req = NULL;
1051 	}
1052 }
1053 
1054 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1055 				int *copied, size_t size)
1056 {
1057 	struct tcp_sock *tp = tcp_sk(sk);
1058 	int err, flags;
1059 
1060 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1061 		return -EOPNOTSUPP;
1062 	if (tp->fastopen_req)
1063 		return -EALREADY; /* Another Fast Open is in progress */
1064 
1065 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1066 				   sk->sk_allocation);
1067 	if (unlikely(!tp->fastopen_req))
1068 		return -ENOBUFS;
1069 	tp->fastopen_req->data = msg;
1070 	tp->fastopen_req->size = size;
1071 
1072 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1073 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1074 				    msg->msg_namelen, flags);
1075 	*copied = tp->fastopen_req->copied;
1076 	tcp_free_fastopen_req(tp);
1077 	return err;
1078 }
1079 
1080 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1081 {
1082 	struct tcp_sock *tp = tcp_sk(sk);
1083 	struct sk_buff *skb;
1084 	struct sockcm_cookie sockc;
1085 	int flags, err, copied = 0;
1086 	int mss_now = 0, size_goal, copied_syn = 0;
1087 	bool process_backlog = false;
1088 	bool sg;
1089 	long timeo;
1090 
1091 	lock_sock(sk);
1092 
1093 	flags = msg->msg_flags;
1094 	if (flags & MSG_FASTOPEN) {
1095 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1096 		if (err == -EINPROGRESS && copied_syn > 0)
1097 			goto out;
1098 		else if (err)
1099 			goto out_err;
1100 	}
1101 
1102 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1103 
1104 	/* Wait for a connection to finish. One exception is TCP Fast Open
1105 	 * (passive side) where data is allowed to be sent before a connection
1106 	 * is fully established.
1107 	 */
1108 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1109 	    !tcp_passive_fastopen(sk)) {
1110 		err = sk_stream_wait_connect(sk, &timeo);
1111 		if (err != 0)
1112 			goto do_error;
1113 	}
1114 
1115 	if (unlikely(tp->repair)) {
1116 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1117 			copied = tcp_send_rcvq(sk, msg, size);
1118 			goto out_nopush;
1119 		}
1120 
1121 		err = -EINVAL;
1122 		if (tp->repair_queue == TCP_NO_QUEUE)
1123 			goto out_err;
1124 
1125 		/* 'common' sending to sendq */
1126 	}
1127 
1128 	sockc.tsflags = sk->sk_tsflags;
1129 	if (msg->msg_controllen) {
1130 		err = sock_cmsg_send(sk, msg, &sockc);
1131 		if (unlikely(err)) {
1132 			err = -EINVAL;
1133 			goto out_err;
1134 		}
1135 	}
1136 
1137 	/* This should be in poll */
1138 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1139 
1140 	/* Ok commence sending. */
1141 	copied = 0;
1142 
1143 restart:
1144 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1145 
1146 	err = -EPIPE;
1147 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1148 		goto out_err;
1149 
1150 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1151 
1152 	while (msg_data_left(msg)) {
1153 		int copy = 0;
1154 		int max = size_goal;
1155 
1156 		skb = tcp_write_queue_tail(sk);
1157 		if (tcp_send_head(sk)) {
1158 			if (skb->ip_summed == CHECKSUM_NONE)
1159 				max = mss_now;
1160 			copy = max - skb->len;
1161 		}
1162 
1163 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1164 new_segment:
1165 			/* Allocate new segment. If the interface is SG,
1166 			 * allocate skb fitting to single page.
1167 			 */
1168 			if (!sk_stream_memory_free(sk))
1169 				goto wait_for_sndbuf;
1170 
1171 			if (process_backlog && sk_flush_backlog(sk)) {
1172 				process_backlog = false;
1173 				goto restart;
1174 			}
1175 			skb = sk_stream_alloc_skb(sk,
1176 						  select_size(sk, sg),
1177 						  sk->sk_allocation,
1178 						  skb_queue_empty(&sk->sk_write_queue));
1179 			if (!skb)
1180 				goto wait_for_memory;
1181 
1182 			process_backlog = true;
1183 			/*
1184 			 * Check whether we can use HW checksum.
1185 			 */
1186 			if (sk_check_csum_caps(sk))
1187 				skb->ip_summed = CHECKSUM_PARTIAL;
1188 
1189 			skb_entail(sk, skb);
1190 			copy = size_goal;
1191 			max = size_goal;
1192 
1193 			/* All packets are restored as if they have
1194 			 * already been sent. skb_mstamp isn't set to
1195 			 * avoid wrong rtt estimation.
1196 			 */
1197 			if (tp->repair)
1198 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1199 		}
1200 
1201 		/* Try to append data to the end of skb. */
1202 		if (copy > msg_data_left(msg))
1203 			copy = msg_data_left(msg);
1204 
1205 		/* Where to copy to? */
1206 		if (skb_availroom(skb) > 0) {
1207 			/* We have some space in skb head. Superb! */
1208 			copy = min_t(int, copy, skb_availroom(skb));
1209 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1210 			if (err)
1211 				goto do_fault;
1212 		} else {
1213 			bool merge = true;
1214 			int i = skb_shinfo(skb)->nr_frags;
1215 			struct page_frag *pfrag = sk_page_frag(sk);
1216 
1217 			if (!sk_page_frag_refill(sk, pfrag))
1218 				goto wait_for_memory;
1219 
1220 			if (!skb_can_coalesce(skb, i, pfrag->page,
1221 					      pfrag->offset)) {
1222 				if (i == sysctl_max_skb_frags || !sg) {
1223 					tcp_mark_push(tp, skb);
1224 					goto new_segment;
1225 				}
1226 				merge = false;
1227 			}
1228 
1229 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1230 
1231 			if (!sk_wmem_schedule(sk, copy))
1232 				goto wait_for_memory;
1233 
1234 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1235 						       pfrag->page,
1236 						       pfrag->offset,
1237 						       copy);
1238 			if (err)
1239 				goto do_error;
1240 
1241 			/* Update the skb. */
1242 			if (merge) {
1243 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1244 			} else {
1245 				skb_fill_page_desc(skb, i, pfrag->page,
1246 						   pfrag->offset, copy);
1247 				get_page(pfrag->page);
1248 			}
1249 			pfrag->offset += copy;
1250 		}
1251 
1252 		if (!copied)
1253 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1254 
1255 		tp->write_seq += copy;
1256 		TCP_SKB_CB(skb)->end_seq += copy;
1257 		tcp_skb_pcount_set(skb, 0);
1258 
1259 		copied += copy;
1260 		if (!msg_data_left(msg)) {
1261 			tcp_tx_timestamp(sk, sockc.tsflags, skb);
1262 			if (unlikely(flags & MSG_EOR))
1263 				TCP_SKB_CB(skb)->eor = 1;
1264 			goto out;
1265 		}
1266 
1267 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1268 			continue;
1269 
1270 		if (forced_push(tp)) {
1271 			tcp_mark_push(tp, skb);
1272 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1273 		} else if (skb == tcp_send_head(sk))
1274 			tcp_push_one(sk, mss_now);
1275 		continue;
1276 
1277 wait_for_sndbuf:
1278 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1279 wait_for_memory:
1280 		if (copied)
1281 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1282 				 TCP_NAGLE_PUSH, size_goal);
1283 
1284 		err = sk_stream_wait_memory(sk, &timeo);
1285 		if (err != 0)
1286 			goto do_error;
1287 
1288 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1289 	}
1290 
1291 out:
1292 	if (copied)
1293 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1294 out_nopush:
1295 	release_sock(sk);
1296 	return copied + copied_syn;
1297 
1298 do_fault:
1299 	if (!skb->len) {
1300 		tcp_unlink_write_queue(skb, sk);
1301 		/* It is the one place in all of TCP, except connection
1302 		 * reset, where we can be unlinking the send_head.
1303 		 */
1304 		tcp_check_send_head(sk, skb);
1305 		sk_wmem_free_skb(sk, skb);
1306 	}
1307 
1308 do_error:
1309 	if (copied + copied_syn)
1310 		goto out;
1311 out_err:
1312 	err = sk_stream_error(sk, flags, err);
1313 	/* make sure we wake any epoll edge trigger waiter */
1314 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1315 		sk->sk_write_space(sk);
1316 	release_sock(sk);
1317 	return err;
1318 }
1319 EXPORT_SYMBOL(tcp_sendmsg);
1320 
1321 /*
1322  *	Handle reading urgent data. BSD has very simple semantics for
1323  *	this, no blocking and very strange errors 8)
1324  */
1325 
1326 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1327 {
1328 	struct tcp_sock *tp = tcp_sk(sk);
1329 
1330 	/* No URG data to read. */
1331 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1332 	    tp->urg_data == TCP_URG_READ)
1333 		return -EINVAL;	/* Yes this is right ! */
1334 
1335 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1336 		return -ENOTCONN;
1337 
1338 	if (tp->urg_data & TCP_URG_VALID) {
1339 		int err = 0;
1340 		char c = tp->urg_data;
1341 
1342 		if (!(flags & MSG_PEEK))
1343 			tp->urg_data = TCP_URG_READ;
1344 
1345 		/* Read urgent data. */
1346 		msg->msg_flags |= MSG_OOB;
1347 
1348 		if (len > 0) {
1349 			if (!(flags & MSG_TRUNC))
1350 				err = memcpy_to_msg(msg, &c, 1);
1351 			len = 1;
1352 		} else
1353 			msg->msg_flags |= MSG_TRUNC;
1354 
1355 		return err ? -EFAULT : len;
1356 	}
1357 
1358 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1359 		return 0;
1360 
1361 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1362 	 * the available implementations agree in this case:
1363 	 * this call should never block, independent of the
1364 	 * blocking state of the socket.
1365 	 * Mike <pall@rz.uni-karlsruhe.de>
1366 	 */
1367 	return -EAGAIN;
1368 }
1369 
1370 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1371 {
1372 	struct sk_buff *skb;
1373 	int copied = 0, err = 0;
1374 
1375 	/* XXX -- need to support SO_PEEK_OFF */
1376 
1377 	skb_queue_walk(&sk->sk_write_queue, skb) {
1378 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1379 		if (err)
1380 			break;
1381 
1382 		copied += skb->len;
1383 	}
1384 
1385 	return err ?: copied;
1386 }
1387 
1388 /* Clean up the receive buffer for full frames taken by the user,
1389  * then send an ACK if necessary.  COPIED is the number of bytes
1390  * tcp_recvmsg has given to the user so far, it speeds up the
1391  * calculation of whether or not we must ACK for the sake of
1392  * a window update.
1393  */
1394 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 	bool time_to_ack = false;
1398 
1399 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1400 
1401 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1402 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1403 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1404 
1405 	if (inet_csk_ack_scheduled(sk)) {
1406 		const struct inet_connection_sock *icsk = inet_csk(sk);
1407 		   /* Delayed ACKs frequently hit locked sockets during bulk
1408 		    * receive. */
1409 		if (icsk->icsk_ack.blocked ||
1410 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1411 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1412 		    /*
1413 		     * If this read emptied read buffer, we send ACK, if
1414 		     * connection is not bidirectional, user drained
1415 		     * receive buffer and there was a small segment
1416 		     * in queue.
1417 		     */
1418 		    (copied > 0 &&
1419 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1420 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1421 		       !icsk->icsk_ack.pingpong)) &&
1422 		      !atomic_read(&sk->sk_rmem_alloc)))
1423 			time_to_ack = true;
1424 	}
1425 
1426 	/* We send an ACK if we can now advertise a non-zero window
1427 	 * which has been raised "significantly".
1428 	 *
1429 	 * Even if window raised up to infinity, do not send window open ACK
1430 	 * in states, where we will not receive more. It is useless.
1431 	 */
1432 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1433 		__u32 rcv_window_now = tcp_receive_window(tp);
1434 
1435 		/* Optimize, __tcp_select_window() is not cheap. */
1436 		if (2*rcv_window_now <= tp->window_clamp) {
1437 			__u32 new_window = __tcp_select_window(sk);
1438 
1439 			/* Send ACK now, if this read freed lots of space
1440 			 * in our buffer. Certainly, new_window is new window.
1441 			 * We can advertise it now, if it is not less than current one.
1442 			 * "Lots" means "at least twice" here.
1443 			 */
1444 			if (new_window && new_window >= 2 * rcv_window_now)
1445 				time_to_ack = true;
1446 		}
1447 	}
1448 	if (time_to_ack)
1449 		tcp_send_ack(sk);
1450 }
1451 
1452 static void tcp_prequeue_process(struct sock *sk)
1453 {
1454 	struct sk_buff *skb;
1455 	struct tcp_sock *tp = tcp_sk(sk);
1456 
1457 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1458 
1459 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1460 		sk_backlog_rcv(sk, skb);
1461 
1462 	/* Clear memory counter. */
1463 	tp->ucopy.memory = 0;
1464 }
1465 
1466 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1467 {
1468 	struct sk_buff *skb;
1469 	u32 offset;
1470 
1471 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1472 		offset = seq - TCP_SKB_CB(skb)->seq;
1473 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1474 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1475 			offset--;
1476 		}
1477 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1478 			*off = offset;
1479 			return skb;
1480 		}
1481 		/* This looks weird, but this can happen if TCP collapsing
1482 		 * splitted a fat GRO packet, while we released socket lock
1483 		 * in skb_splice_bits()
1484 		 */
1485 		sk_eat_skb(sk, skb);
1486 	}
1487 	return NULL;
1488 }
1489 
1490 /*
1491  * This routine provides an alternative to tcp_recvmsg() for routines
1492  * that would like to handle copying from skbuffs directly in 'sendfile'
1493  * fashion.
1494  * Note:
1495  *	- It is assumed that the socket was locked by the caller.
1496  *	- The routine does not block.
1497  *	- At present, there is no support for reading OOB data
1498  *	  or for 'peeking' the socket using this routine
1499  *	  (although both would be easy to implement).
1500  */
1501 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1502 		  sk_read_actor_t recv_actor)
1503 {
1504 	struct sk_buff *skb;
1505 	struct tcp_sock *tp = tcp_sk(sk);
1506 	u32 seq = tp->copied_seq;
1507 	u32 offset;
1508 	int copied = 0;
1509 
1510 	if (sk->sk_state == TCP_LISTEN)
1511 		return -ENOTCONN;
1512 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1513 		if (offset < skb->len) {
1514 			int used;
1515 			size_t len;
1516 
1517 			len = skb->len - offset;
1518 			/* Stop reading if we hit a patch of urgent data */
1519 			if (tp->urg_data) {
1520 				u32 urg_offset = tp->urg_seq - seq;
1521 				if (urg_offset < len)
1522 					len = urg_offset;
1523 				if (!len)
1524 					break;
1525 			}
1526 			used = recv_actor(desc, skb, offset, len);
1527 			if (used <= 0) {
1528 				if (!copied)
1529 					copied = used;
1530 				break;
1531 			} else if (used <= len) {
1532 				seq += used;
1533 				copied += used;
1534 				offset += used;
1535 			}
1536 			/* If recv_actor drops the lock (e.g. TCP splice
1537 			 * receive) the skb pointer might be invalid when
1538 			 * getting here: tcp_collapse might have deleted it
1539 			 * while aggregating skbs from the socket queue.
1540 			 */
1541 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1542 			if (!skb)
1543 				break;
1544 			/* TCP coalescing might have appended data to the skb.
1545 			 * Try to splice more frags
1546 			 */
1547 			if (offset + 1 != skb->len)
1548 				continue;
1549 		}
1550 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1551 			sk_eat_skb(sk, skb);
1552 			++seq;
1553 			break;
1554 		}
1555 		sk_eat_skb(sk, skb);
1556 		if (!desc->count)
1557 			break;
1558 		tp->copied_seq = seq;
1559 	}
1560 	tp->copied_seq = seq;
1561 
1562 	tcp_rcv_space_adjust(sk);
1563 
1564 	/* Clean up data we have read: This will do ACK frames. */
1565 	if (copied > 0) {
1566 		tcp_recv_skb(sk, seq, &offset);
1567 		tcp_cleanup_rbuf(sk, copied);
1568 	}
1569 	return copied;
1570 }
1571 EXPORT_SYMBOL(tcp_read_sock);
1572 
1573 /*
1574  *	This routine copies from a sock struct into the user buffer.
1575  *
1576  *	Technical note: in 2.3 we work on _locked_ socket, so that
1577  *	tricks with *seq access order and skb->users are not required.
1578  *	Probably, code can be easily improved even more.
1579  */
1580 
1581 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1582 		int flags, int *addr_len)
1583 {
1584 	struct tcp_sock *tp = tcp_sk(sk);
1585 	int copied = 0;
1586 	u32 peek_seq;
1587 	u32 *seq;
1588 	unsigned long used;
1589 	int err;
1590 	int target;		/* Read at least this many bytes */
1591 	long timeo;
1592 	struct task_struct *user_recv = NULL;
1593 	struct sk_buff *skb, *last;
1594 	u32 urg_hole = 0;
1595 
1596 	if (unlikely(flags & MSG_ERRQUEUE))
1597 		return inet_recv_error(sk, msg, len, addr_len);
1598 
1599 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1600 	    (sk->sk_state == TCP_ESTABLISHED))
1601 		sk_busy_loop(sk, nonblock);
1602 
1603 	lock_sock(sk);
1604 
1605 	err = -ENOTCONN;
1606 	if (sk->sk_state == TCP_LISTEN)
1607 		goto out;
1608 
1609 	timeo = sock_rcvtimeo(sk, nonblock);
1610 
1611 	/* Urgent data needs to be handled specially. */
1612 	if (flags & MSG_OOB)
1613 		goto recv_urg;
1614 
1615 	if (unlikely(tp->repair)) {
1616 		err = -EPERM;
1617 		if (!(flags & MSG_PEEK))
1618 			goto out;
1619 
1620 		if (tp->repair_queue == TCP_SEND_QUEUE)
1621 			goto recv_sndq;
1622 
1623 		err = -EINVAL;
1624 		if (tp->repair_queue == TCP_NO_QUEUE)
1625 			goto out;
1626 
1627 		/* 'common' recv queue MSG_PEEK-ing */
1628 	}
1629 
1630 	seq = &tp->copied_seq;
1631 	if (flags & MSG_PEEK) {
1632 		peek_seq = tp->copied_seq;
1633 		seq = &peek_seq;
1634 	}
1635 
1636 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1637 
1638 	do {
1639 		u32 offset;
1640 
1641 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1642 		if (tp->urg_data && tp->urg_seq == *seq) {
1643 			if (copied)
1644 				break;
1645 			if (signal_pending(current)) {
1646 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1647 				break;
1648 			}
1649 		}
1650 
1651 		/* Next get a buffer. */
1652 
1653 		last = skb_peek_tail(&sk->sk_receive_queue);
1654 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1655 			last = skb;
1656 			/* Now that we have two receive queues this
1657 			 * shouldn't happen.
1658 			 */
1659 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1660 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1661 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1662 				 flags))
1663 				break;
1664 
1665 			offset = *seq - TCP_SKB_CB(skb)->seq;
1666 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1667 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1668 				offset--;
1669 			}
1670 			if (offset < skb->len)
1671 				goto found_ok_skb;
1672 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1673 				goto found_fin_ok;
1674 			WARN(!(flags & MSG_PEEK),
1675 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1676 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1677 		}
1678 
1679 		/* Well, if we have backlog, try to process it now yet. */
1680 
1681 		if (copied >= target && !sk->sk_backlog.tail)
1682 			break;
1683 
1684 		if (copied) {
1685 			if (sk->sk_err ||
1686 			    sk->sk_state == TCP_CLOSE ||
1687 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1688 			    !timeo ||
1689 			    signal_pending(current))
1690 				break;
1691 		} else {
1692 			if (sock_flag(sk, SOCK_DONE))
1693 				break;
1694 
1695 			if (sk->sk_err) {
1696 				copied = sock_error(sk);
1697 				break;
1698 			}
1699 
1700 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1701 				break;
1702 
1703 			if (sk->sk_state == TCP_CLOSE) {
1704 				if (!sock_flag(sk, SOCK_DONE)) {
1705 					/* This occurs when user tries to read
1706 					 * from never connected socket.
1707 					 */
1708 					copied = -ENOTCONN;
1709 					break;
1710 				}
1711 				break;
1712 			}
1713 
1714 			if (!timeo) {
1715 				copied = -EAGAIN;
1716 				break;
1717 			}
1718 
1719 			if (signal_pending(current)) {
1720 				copied = sock_intr_errno(timeo);
1721 				break;
1722 			}
1723 		}
1724 
1725 		tcp_cleanup_rbuf(sk, copied);
1726 
1727 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1728 			/* Install new reader */
1729 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1730 				user_recv = current;
1731 				tp->ucopy.task = user_recv;
1732 				tp->ucopy.msg = msg;
1733 			}
1734 
1735 			tp->ucopy.len = len;
1736 
1737 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1738 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1739 
1740 			/* Ugly... If prequeue is not empty, we have to
1741 			 * process it before releasing socket, otherwise
1742 			 * order will be broken at second iteration.
1743 			 * More elegant solution is required!!!
1744 			 *
1745 			 * Look: we have the following (pseudo)queues:
1746 			 *
1747 			 * 1. packets in flight
1748 			 * 2. backlog
1749 			 * 3. prequeue
1750 			 * 4. receive_queue
1751 			 *
1752 			 * Each queue can be processed only if the next ones
1753 			 * are empty. At this point we have empty receive_queue.
1754 			 * But prequeue _can_ be not empty after 2nd iteration,
1755 			 * when we jumped to start of loop because backlog
1756 			 * processing added something to receive_queue.
1757 			 * We cannot release_sock(), because backlog contains
1758 			 * packets arrived _after_ prequeued ones.
1759 			 *
1760 			 * Shortly, algorithm is clear --- to process all
1761 			 * the queues in order. We could make it more directly,
1762 			 * requeueing packets from backlog to prequeue, if
1763 			 * is not empty. It is more elegant, but eats cycles,
1764 			 * unfortunately.
1765 			 */
1766 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1767 				goto do_prequeue;
1768 
1769 			/* __ Set realtime policy in scheduler __ */
1770 		}
1771 
1772 		if (copied >= target) {
1773 			/* Do not sleep, just process backlog. */
1774 			release_sock(sk);
1775 			lock_sock(sk);
1776 		} else {
1777 			sk_wait_data(sk, &timeo, last);
1778 		}
1779 
1780 		if (user_recv) {
1781 			int chunk;
1782 
1783 			/* __ Restore normal policy in scheduler __ */
1784 
1785 			chunk = len - tp->ucopy.len;
1786 			if (chunk != 0) {
1787 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1788 				len -= chunk;
1789 				copied += chunk;
1790 			}
1791 
1792 			if (tp->rcv_nxt == tp->copied_seq &&
1793 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1794 do_prequeue:
1795 				tcp_prequeue_process(sk);
1796 
1797 				chunk = len - tp->ucopy.len;
1798 				if (chunk != 0) {
1799 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1800 					len -= chunk;
1801 					copied += chunk;
1802 				}
1803 			}
1804 		}
1805 		if ((flags & MSG_PEEK) &&
1806 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1807 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1808 					    current->comm,
1809 					    task_pid_nr(current));
1810 			peek_seq = tp->copied_seq;
1811 		}
1812 		continue;
1813 
1814 	found_ok_skb:
1815 		/* Ok so how much can we use? */
1816 		used = skb->len - offset;
1817 		if (len < used)
1818 			used = len;
1819 
1820 		/* Do we have urgent data here? */
1821 		if (tp->urg_data) {
1822 			u32 urg_offset = tp->urg_seq - *seq;
1823 			if (urg_offset < used) {
1824 				if (!urg_offset) {
1825 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1826 						++*seq;
1827 						urg_hole++;
1828 						offset++;
1829 						used--;
1830 						if (!used)
1831 							goto skip_copy;
1832 					}
1833 				} else
1834 					used = urg_offset;
1835 			}
1836 		}
1837 
1838 		if (!(flags & MSG_TRUNC)) {
1839 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1840 			if (err) {
1841 				/* Exception. Bailout! */
1842 				if (!copied)
1843 					copied = -EFAULT;
1844 				break;
1845 			}
1846 		}
1847 
1848 		*seq += used;
1849 		copied += used;
1850 		len -= used;
1851 
1852 		tcp_rcv_space_adjust(sk);
1853 
1854 skip_copy:
1855 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1856 			tp->urg_data = 0;
1857 			tcp_fast_path_check(sk);
1858 		}
1859 		if (used + offset < skb->len)
1860 			continue;
1861 
1862 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1863 			goto found_fin_ok;
1864 		if (!(flags & MSG_PEEK))
1865 			sk_eat_skb(sk, skb);
1866 		continue;
1867 
1868 	found_fin_ok:
1869 		/* Process the FIN. */
1870 		++*seq;
1871 		if (!(flags & MSG_PEEK))
1872 			sk_eat_skb(sk, skb);
1873 		break;
1874 	} while (len > 0);
1875 
1876 	if (user_recv) {
1877 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1878 			int chunk;
1879 
1880 			tp->ucopy.len = copied > 0 ? len : 0;
1881 
1882 			tcp_prequeue_process(sk);
1883 
1884 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1885 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1886 				len -= chunk;
1887 				copied += chunk;
1888 			}
1889 		}
1890 
1891 		tp->ucopy.task = NULL;
1892 		tp->ucopy.len = 0;
1893 	}
1894 
1895 	/* According to UNIX98, msg_name/msg_namelen are ignored
1896 	 * on connected socket. I was just happy when found this 8) --ANK
1897 	 */
1898 
1899 	/* Clean up data we have read: This will do ACK frames. */
1900 	tcp_cleanup_rbuf(sk, copied);
1901 
1902 	release_sock(sk);
1903 	return copied;
1904 
1905 out:
1906 	release_sock(sk);
1907 	return err;
1908 
1909 recv_urg:
1910 	err = tcp_recv_urg(sk, msg, len, flags);
1911 	goto out;
1912 
1913 recv_sndq:
1914 	err = tcp_peek_sndq(sk, msg, len);
1915 	goto out;
1916 }
1917 EXPORT_SYMBOL(tcp_recvmsg);
1918 
1919 void tcp_set_state(struct sock *sk, int state)
1920 {
1921 	int oldstate = sk->sk_state;
1922 
1923 	switch (state) {
1924 	case TCP_ESTABLISHED:
1925 		if (oldstate != TCP_ESTABLISHED)
1926 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1927 		break;
1928 
1929 	case TCP_CLOSE:
1930 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1931 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1932 
1933 		sk->sk_prot->unhash(sk);
1934 		if (inet_csk(sk)->icsk_bind_hash &&
1935 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1936 			inet_put_port(sk);
1937 		/* fall through */
1938 	default:
1939 		if (oldstate == TCP_ESTABLISHED)
1940 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1941 	}
1942 
1943 	/* Change state AFTER socket is unhashed to avoid closed
1944 	 * socket sitting in hash tables.
1945 	 */
1946 	sk_state_store(sk, state);
1947 
1948 #ifdef STATE_TRACE
1949 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1950 #endif
1951 }
1952 EXPORT_SYMBOL_GPL(tcp_set_state);
1953 
1954 /*
1955  *	State processing on a close. This implements the state shift for
1956  *	sending our FIN frame. Note that we only send a FIN for some
1957  *	states. A shutdown() may have already sent the FIN, or we may be
1958  *	closed.
1959  */
1960 
1961 static const unsigned char new_state[16] = {
1962   /* current state:        new state:      action:	*/
1963   [0 /* (Invalid) */]	= TCP_CLOSE,
1964   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1965   [TCP_SYN_SENT]	= TCP_CLOSE,
1966   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1967   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1968   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1969   [TCP_TIME_WAIT]	= TCP_CLOSE,
1970   [TCP_CLOSE]		= TCP_CLOSE,
1971   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1972   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1973   [TCP_LISTEN]		= TCP_CLOSE,
1974   [TCP_CLOSING]		= TCP_CLOSING,
1975   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1976 };
1977 
1978 static int tcp_close_state(struct sock *sk)
1979 {
1980 	int next = (int)new_state[sk->sk_state];
1981 	int ns = next & TCP_STATE_MASK;
1982 
1983 	tcp_set_state(sk, ns);
1984 
1985 	return next & TCP_ACTION_FIN;
1986 }
1987 
1988 /*
1989  *	Shutdown the sending side of a connection. Much like close except
1990  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1991  */
1992 
1993 void tcp_shutdown(struct sock *sk, int how)
1994 {
1995 	/*	We need to grab some memory, and put together a FIN,
1996 	 *	and then put it into the queue to be sent.
1997 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1998 	 */
1999 	if (!(how & SEND_SHUTDOWN))
2000 		return;
2001 
2002 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2003 	if ((1 << sk->sk_state) &
2004 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2005 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2006 		/* Clear out any half completed packets.  FIN if needed. */
2007 		if (tcp_close_state(sk))
2008 			tcp_send_fin(sk);
2009 	}
2010 }
2011 EXPORT_SYMBOL(tcp_shutdown);
2012 
2013 bool tcp_check_oom(struct sock *sk, int shift)
2014 {
2015 	bool too_many_orphans, out_of_socket_memory;
2016 
2017 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2018 	out_of_socket_memory = tcp_out_of_memory(sk);
2019 
2020 	if (too_many_orphans)
2021 		net_info_ratelimited("too many orphaned sockets\n");
2022 	if (out_of_socket_memory)
2023 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2024 	return too_many_orphans || out_of_socket_memory;
2025 }
2026 
2027 void tcp_close(struct sock *sk, long timeout)
2028 {
2029 	struct sk_buff *skb;
2030 	int data_was_unread = 0;
2031 	int state;
2032 
2033 	lock_sock(sk);
2034 	sk->sk_shutdown = SHUTDOWN_MASK;
2035 
2036 	if (sk->sk_state == TCP_LISTEN) {
2037 		tcp_set_state(sk, TCP_CLOSE);
2038 
2039 		/* Special case. */
2040 		inet_csk_listen_stop(sk);
2041 
2042 		goto adjudge_to_death;
2043 	}
2044 
2045 	/*  We need to flush the recv. buffs.  We do this only on the
2046 	 *  descriptor close, not protocol-sourced closes, because the
2047 	 *  reader process may not have drained the data yet!
2048 	 */
2049 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2050 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2051 
2052 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2053 			len--;
2054 		data_was_unread += len;
2055 		__kfree_skb(skb);
2056 	}
2057 
2058 	sk_mem_reclaim(sk);
2059 
2060 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2061 	if (sk->sk_state == TCP_CLOSE)
2062 		goto adjudge_to_death;
2063 
2064 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2065 	 * data was lost. To witness the awful effects of the old behavior of
2066 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2067 	 * GET in an FTP client, suspend the process, wait for the client to
2068 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2069 	 * Note: timeout is always zero in such a case.
2070 	 */
2071 	if (unlikely(tcp_sk(sk)->repair)) {
2072 		sk->sk_prot->disconnect(sk, 0);
2073 	} else if (data_was_unread) {
2074 		/* Unread data was tossed, zap the connection. */
2075 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2076 		tcp_set_state(sk, TCP_CLOSE);
2077 		tcp_send_active_reset(sk, sk->sk_allocation);
2078 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2079 		/* Check zero linger _after_ checking for unread data. */
2080 		sk->sk_prot->disconnect(sk, 0);
2081 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2082 	} else if (tcp_close_state(sk)) {
2083 		/* We FIN if the application ate all the data before
2084 		 * zapping the connection.
2085 		 */
2086 
2087 		/* RED-PEN. Formally speaking, we have broken TCP state
2088 		 * machine. State transitions:
2089 		 *
2090 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2091 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2092 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2093 		 *
2094 		 * are legal only when FIN has been sent (i.e. in window),
2095 		 * rather than queued out of window. Purists blame.
2096 		 *
2097 		 * F.e. "RFC state" is ESTABLISHED,
2098 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2099 		 *
2100 		 * The visible declinations are that sometimes
2101 		 * we enter time-wait state, when it is not required really
2102 		 * (harmless), do not send active resets, when they are
2103 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2104 		 * they look as CLOSING or LAST_ACK for Linux)
2105 		 * Probably, I missed some more holelets.
2106 		 * 						--ANK
2107 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2108 		 * in a single packet! (May consider it later but will
2109 		 * probably need API support or TCP_CORK SYN-ACK until
2110 		 * data is written and socket is closed.)
2111 		 */
2112 		tcp_send_fin(sk);
2113 	}
2114 
2115 	sk_stream_wait_close(sk, timeout);
2116 
2117 adjudge_to_death:
2118 	state = sk->sk_state;
2119 	sock_hold(sk);
2120 	sock_orphan(sk);
2121 
2122 	/* It is the last release_sock in its life. It will remove backlog. */
2123 	release_sock(sk);
2124 
2125 
2126 	/* Now socket is owned by kernel and we acquire BH lock
2127 	   to finish close. No need to check for user refs.
2128 	 */
2129 	local_bh_disable();
2130 	bh_lock_sock(sk);
2131 	WARN_ON(sock_owned_by_user(sk));
2132 
2133 	percpu_counter_inc(sk->sk_prot->orphan_count);
2134 
2135 	/* Have we already been destroyed by a softirq or backlog? */
2136 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2137 		goto out;
2138 
2139 	/*	This is a (useful) BSD violating of the RFC. There is a
2140 	 *	problem with TCP as specified in that the other end could
2141 	 *	keep a socket open forever with no application left this end.
2142 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2143 	 *	our end. If they send after that then tough - BUT: long enough
2144 	 *	that we won't make the old 4*rto = almost no time - whoops
2145 	 *	reset mistake.
2146 	 *
2147 	 *	Nope, it was not mistake. It is really desired behaviour
2148 	 *	f.e. on http servers, when such sockets are useless, but
2149 	 *	consume significant resources. Let's do it with special
2150 	 *	linger2	option.					--ANK
2151 	 */
2152 
2153 	if (sk->sk_state == TCP_FIN_WAIT2) {
2154 		struct tcp_sock *tp = tcp_sk(sk);
2155 		if (tp->linger2 < 0) {
2156 			tcp_set_state(sk, TCP_CLOSE);
2157 			tcp_send_active_reset(sk, GFP_ATOMIC);
2158 			__NET_INC_STATS(sock_net(sk),
2159 					LINUX_MIB_TCPABORTONLINGER);
2160 		} else {
2161 			const int tmo = tcp_fin_time(sk);
2162 
2163 			if (tmo > TCP_TIMEWAIT_LEN) {
2164 				inet_csk_reset_keepalive_timer(sk,
2165 						tmo - TCP_TIMEWAIT_LEN);
2166 			} else {
2167 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2168 				goto out;
2169 			}
2170 		}
2171 	}
2172 	if (sk->sk_state != TCP_CLOSE) {
2173 		sk_mem_reclaim(sk);
2174 		if (tcp_check_oom(sk, 0)) {
2175 			tcp_set_state(sk, TCP_CLOSE);
2176 			tcp_send_active_reset(sk, GFP_ATOMIC);
2177 			__NET_INC_STATS(sock_net(sk),
2178 					LINUX_MIB_TCPABORTONMEMORY);
2179 		}
2180 	}
2181 
2182 	if (sk->sk_state == TCP_CLOSE) {
2183 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2184 		/* We could get here with a non-NULL req if the socket is
2185 		 * aborted (e.g., closed with unread data) before 3WHS
2186 		 * finishes.
2187 		 */
2188 		if (req)
2189 			reqsk_fastopen_remove(sk, req, false);
2190 		inet_csk_destroy_sock(sk);
2191 	}
2192 	/* Otherwise, socket is reprieved until protocol close. */
2193 
2194 out:
2195 	bh_unlock_sock(sk);
2196 	local_bh_enable();
2197 	sock_put(sk);
2198 }
2199 EXPORT_SYMBOL(tcp_close);
2200 
2201 /* These states need RST on ABORT according to RFC793 */
2202 
2203 static inline bool tcp_need_reset(int state)
2204 {
2205 	return (1 << state) &
2206 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2207 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2208 }
2209 
2210 int tcp_disconnect(struct sock *sk, int flags)
2211 {
2212 	struct inet_sock *inet = inet_sk(sk);
2213 	struct inet_connection_sock *icsk = inet_csk(sk);
2214 	struct tcp_sock *tp = tcp_sk(sk);
2215 	int err = 0;
2216 	int old_state = sk->sk_state;
2217 
2218 	if (old_state != TCP_CLOSE)
2219 		tcp_set_state(sk, TCP_CLOSE);
2220 
2221 	/* ABORT function of RFC793 */
2222 	if (old_state == TCP_LISTEN) {
2223 		inet_csk_listen_stop(sk);
2224 	} else if (unlikely(tp->repair)) {
2225 		sk->sk_err = ECONNABORTED;
2226 	} else if (tcp_need_reset(old_state) ||
2227 		   (tp->snd_nxt != tp->write_seq &&
2228 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2229 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2230 		 * states
2231 		 */
2232 		tcp_send_active_reset(sk, gfp_any());
2233 		sk->sk_err = ECONNRESET;
2234 	} else if (old_state == TCP_SYN_SENT)
2235 		sk->sk_err = ECONNRESET;
2236 
2237 	tcp_clear_xmit_timers(sk);
2238 	__skb_queue_purge(&sk->sk_receive_queue);
2239 	tcp_write_queue_purge(sk);
2240 	__skb_queue_purge(&tp->out_of_order_queue);
2241 
2242 	inet->inet_dport = 0;
2243 
2244 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2245 		inet_reset_saddr(sk);
2246 
2247 	sk->sk_shutdown = 0;
2248 	sock_reset_flag(sk, SOCK_DONE);
2249 	tp->srtt_us = 0;
2250 	tp->write_seq += tp->max_window + 2;
2251 	if (tp->write_seq == 0)
2252 		tp->write_seq = 1;
2253 	icsk->icsk_backoff = 0;
2254 	tp->snd_cwnd = 2;
2255 	icsk->icsk_probes_out = 0;
2256 	tp->packets_out = 0;
2257 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2258 	tp->snd_cwnd_cnt = 0;
2259 	tp->window_clamp = 0;
2260 	tcp_set_ca_state(sk, TCP_CA_Open);
2261 	tcp_clear_retrans(tp);
2262 	inet_csk_delack_init(sk);
2263 	tcp_init_send_head(sk);
2264 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2265 	__sk_dst_reset(sk);
2266 
2267 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2268 
2269 	sk->sk_error_report(sk);
2270 	return err;
2271 }
2272 EXPORT_SYMBOL(tcp_disconnect);
2273 
2274 static inline bool tcp_can_repair_sock(const struct sock *sk)
2275 {
2276 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2277 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2278 }
2279 
2280 static int tcp_repair_options_est(struct tcp_sock *tp,
2281 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2282 {
2283 	struct tcp_repair_opt opt;
2284 
2285 	while (len >= sizeof(opt)) {
2286 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2287 			return -EFAULT;
2288 
2289 		optbuf++;
2290 		len -= sizeof(opt);
2291 
2292 		switch (opt.opt_code) {
2293 		case TCPOPT_MSS:
2294 			tp->rx_opt.mss_clamp = opt.opt_val;
2295 			break;
2296 		case TCPOPT_WINDOW:
2297 			{
2298 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2299 				u16 rcv_wscale = opt.opt_val >> 16;
2300 
2301 				if (snd_wscale > 14 || rcv_wscale > 14)
2302 					return -EFBIG;
2303 
2304 				tp->rx_opt.snd_wscale = snd_wscale;
2305 				tp->rx_opt.rcv_wscale = rcv_wscale;
2306 				tp->rx_opt.wscale_ok = 1;
2307 			}
2308 			break;
2309 		case TCPOPT_SACK_PERM:
2310 			if (opt.opt_val != 0)
2311 				return -EINVAL;
2312 
2313 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2314 			if (sysctl_tcp_fack)
2315 				tcp_enable_fack(tp);
2316 			break;
2317 		case TCPOPT_TIMESTAMP:
2318 			if (opt.opt_val != 0)
2319 				return -EINVAL;
2320 
2321 			tp->rx_opt.tstamp_ok = 1;
2322 			break;
2323 		}
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 /*
2330  *	Socket option code for TCP.
2331  */
2332 static int do_tcp_setsockopt(struct sock *sk, int level,
2333 		int optname, char __user *optval, unsigned int optlen)
2334 {
2335 	struct tcp_sock *tp = tcp_sk(sk);
2336 	struct inet_connection_sock *icsk = inet_csk(sk);
2337 	struct net *net = sock_net(sk);
2338 	int val;
2339 	int err = 0;
2340 
2341 	/* These are data/string values, all the others are ints */
2342 	switch (optname) {
2343 	case TCP_CONGESTION: {
2344 		char name[TCP_CA_NAME_MAX];
2345 
2346 		if (optlen < 1)
2347 			return -EINVAL;
2348 
2349 		val = strncpy_from_user(name, optval,
2350 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2351 		if (val < 0)
2352 			return -EFAULT;
2353 		name[val] = 0;
2354 
2355 		lock_sock(sk);
2356 		err = tcp_set_congestion_control(sk, name);
2357 		release_sock(sk);
2358 		return err;
2359 	}
2360 	default:
2361 		/* fallthru */
2362 		break;
2363 	}
2364 
2365 	if (optlen < sizeof(int))
2366 		return -EINVAL;
2367 
2368 	if (get_user(val, (int __user *)optval))
2369 		return -EFAULT;
2370 
2371 	lock_sock(sk);
2372 
2373 	switch (optname) {
2374 	case TCP_MAXSEG:
2375 		/* Values greater than interface MTU won't take effect. However
2376 		 * at the point when this call is done we typically don't yet
2377 		 * know which interface is going to be used */
2378 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2379 			err = -EINVAL;
2380 			break;
2381 		}
2382 		tp->rx_opt.user_mss = val;
2383 		break;
2384 
2385 	case TCP_NODELAY:
2386 		if (val) {
2387 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2388 			 * this option on corked socket is remembered, but
2389 			 * it is not activated until cork is cleared.
2390 			 *
2391 			 * However, when TCP_NODELAY is set we make
2392 			 * an explicit push, which overrides even TCP_CORK
2393 			 * for currently queued segments.
2394 			 */
2395 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2396 			tcp_push_pending_frames(sk);
2397 		} else {
2398 			tp->nonagle &= ~TCP_NAGLE_OFF;
2399 		}
2400 		break;
2401 
2402 	case TCP_THIN_LINEAR_TIMEOUTS:
2403 		if (val < 0 || val > 1)
2404 			err = -EINVAL;
2405 		else
2406 			tp->thin_lto = val;
2407 		break;
2408 
2409 	case TCP_THIN_DUPACK:
2410 		if (val < 0 || val > 1)
2411 			err = -EINVAL;
2412 		else {
2413 			tp->thin_dupack = val;
2414 			if (tp->thin_dupack)
2415 				tcp_disable_early_retrans(tp);
2416 		}
2417 		break;
2418 
2419 	case TCP_REPAIR:
2420 		if (!tcp_can_repair_sock(sk))
2421 			err = -EPERM;
2422 		else if (val == 1) {
2423 			tp->repair = 1;
2424 			sk->sk_reuse = SK_FORCE_REUSE;
2425 			tp->repair_queue = TCP_NO_QUEUE;
2426 		} else if (val == 0) {
2427 			tp->repair = 0;
2428 			sk->sk_reuse = SK_NO_REUSE;
2429 			tcp_send_window_probe(sk);
2430 		} else
2431 			err = -EINVAL;
2432 
2433 		break;
2434 
2435 	case TCP_REPAIR_QUEUE:
2436 		if (!tp->repair)
2437 			err = -EPERM;
2438 		else if (val < TCP_QUEUES_NR)
2439 			tp->repair_queue = val;
2440 		else
2441 			err = -EINVAL;
2442 		break;
2443 
2444 	case TCP_QUEUE_SEQ:
2445 		if (sk->sk_state != TCP_CLOSE)
2446 			err = -EPERM;
2447 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2448 			tp->write_seq = val;
2449 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2450 			tp->rcv_nxt = val;
2451 		else
2452 			err = -EINVAL;
2453 		break;
2454 
2455 	case TCP_REPAIR_OPTIONS:
2456 		if (!tp->repair)
2457 			err = -EINVAL;
2458 		else if (sk->sk_state == TCP_ESTABLISHED)
2459 			err = tcp_repair_options_est(tp,
2460 					(struct tcp_repair_opt __user *)optval,
2461 					optlen);
2462 		else
2463 			err = -EPERM;
2464 		break;
2465 
2466 	case TCP_CORK:
2467 		/* When set indicates to always queue non-full frames.
2468 		 * Later the user clears this option and we transmit
2469 		 * any pending partial frames in the queue.  This is
2470 		 * meant to be used alongside sendfile() to get properly
2471 		 * filled frames when the user (for example) must write
2472 		 * out headers with a write() call first and then use
2473 		 * sendfile to send out the data parts.
2474 		 *
2475 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2476 		 * stronger than TCP_NODELAY.
2477 		 */
2478 		if (val) {
2479 			tp->nonagle |= TCP_NAGLE_CORK;
2480 		} else {
2481 			tp->nonagle &= ~TCP_NAGLE_CORK;
2482 			if (tp->nonagle&TCP_NAGLE_OFF)
2483 				tp->nonagle |= TCP_NAGLE_PUSH;
2484 			tcp_push_pending_frames(sk);
2485 		}
2486 		break;
2487 
2488 	case TCP_KEEPIDLE:
2489 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2490 			err = -EINVAL;
2491 		else {
2492 			tp->keepalive_time = val * HZ;
2493 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2494 			    !((1 << sk->sk_state) &
2495 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2496 				u32 elapsed = keepalive_time_elapsed(tp);
2497 				if (tp->keepalive_time > elapsed)
2498 					elapsed = tp->keepalive_time - elapsed;
2499 				else
2500 					elapsed = 0;
2501 				inet_csk_reset_keepalive_timer(sk, elapsed);
2502 			}
2503 		}
2504 		break;
2505 	case TCP_KEEPINTVL:
2506 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2507 			err = -EINVAL;
2508 		else
2509 			tp->keepalive_intvl = val * HZ;
2510 		break;
2511 	case TCP_KEEPCNT:
2512 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2513 			err = -EINVAL;
2514 		else
2515 			tp->keepalive_probes = val;
2516 		break;
2517 	case TCP_SYNCNT:
2518 		if (val < 1 || val > MAX_TCP_SYNCNT)
2519 			err = -EINVAL;
2520 		else
2521 			icsk->icsk_syn_retries = val;
2522 		break;
2523 
2524 	case TCP_SAVE_SYN:
2525 		if (val < 0 || val > 1)
2526 			err = -EINVAL;
2527 		else
2528 			tp->save_syn = val;
2529 		break;
2530 
2531 	case TCP_LINGER2:
2532 		if (val < 0)
2533 			tp->linger2 = -1;
2534 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2535 			tp->linger2 = 0;
2536 		else
2537 			tp->linger2 = val * HZ;
2538 		break;
2539 
2540 	case TCP_DEFER_ACCEPT:
2541 		/* Translate value in seconds to number of retransmits */
2542 		icsk->icsk_accept_queue.rskq_defer_accept =
2543 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2544 					TCP_RTO_MAX / HZ);
2545 		break;
2546 
2547 	case TCP_WINDOW_CLAMP:
2548 		if (!val) {
2549 			if (sk->sk_state != TCP_CLOSE) {
2550 				err = -EINVAL;
2551 				break;
2552 			}
2553 			tp->window_clamp = 0;
2554 		} else
2555 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2556 						SOCK_MIN_RCVBUF / 2 : val;
2557 		break;
2558 
2559 	case TCP_QUICKACK:
2560 		if (!val) {
2561 			icsk->icsk_ack.pingpong = 1;
2562 		} else {
2563 			icsk->icsk_ack.pingpong = 0;
2564 			if ((1 << sk->sk_state) &
2565 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2566 			    inet_csk_ack_scheduled(sk)) {
2567 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2568 				tcp_cleanup_rbuf(sk, 1);
2569 				if (!(val & 1))
2570 					icsk->icsk_ack.pingpong = 1;
2571 			}
2572 		}
2573 		break;
2574 
2575 #ifdef CONFIG_TCP_MD5SIG
2576 	case TCP_MD5SIG:
2577 		/* Read the IP->Key mappings from userspace */
2578 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2579 		break;
2580 #endif
2581 	case TCP_USER_TIMEOUT:
2582 		/* Cap the max time in ms TCP will retry or probe the window
2583 		 * before giving up and aborting (ETIMEDOUT) a connection.
2584 		 */
2585 		if (val < 0)
2586 			err = -EINVAL;
2587 		else
2588 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2589 		break;
2590 
2591 	case TCP_FASTOPEN:
2592 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2593 		    TCPF_LISTEN))) {
2594 			tcp_fastopen_init_key_once(true);
2595 
2596 			fastopen_queue_tune(sk, val);
2597 		} else {
2598 			err = -EINVAL;
2599 		}
2600 		break;
2601 	case TCP_TIMESTAMP:
2602 		if (!tp->repair)
2603 			err = -EPERM;
2604 		else
2605 			tp->tsoffset = val - tcp_time_stamp;
2606 		break;
2607 	case TCP_NOTSENT_LOWAT:
2608 		tp->notsent_lowat = val;
2609 		sk->sk_write_space(sk);
2610 		break;
2611 	default:
2612 		err = -ENOPROTOOPT;
2613 		break;
2614 	}
2615 
2616 	release_sock(sk);
2617 	return err;
2618 }
2619 
2620 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2621 		   unsigned int optlen)
2622 {
2623 	const struct inet_connection_sock *icsk = inet_csk(sk);
2624 
2625 	if (level != SOL_TCP)
2626 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2627 						     optval, optlen);
2628 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2629 }
2630 EXPORT_SYMBOL(tcp_setsockopt);
2631 
2632 #ifdef CONFIG_COMPAT
2633 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2634 			  char __user *optval, unsigned int optlen)
2635 {
2636 	if (level != SOL_TCP)
2637 		return inet_csk_compat_setsockopt(sk, level, optname,
2638 						  optval, optlen);
2639 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2640 }
2641 EXPORT_SYMBOL(compat_tcp_setsockopt);
2642 #endif
2643 
2644 /* Return information about state of tcp endpoint in API format. */
2645 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2646 {
2647 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2648 	const struct inet_connection_sock *icsk = inet_csk(sk);
2649 	u32 now = tcp_time_stamp;
2650 	unsigned int start;
2651 	int notsent_bytes;
2652 	u64 rate64;
2653 	u32 rate;
2654 
2655 	memset(info, 0, sizeof(*info));
2656 	if (sk->sk_type != SOCK_STREAM)
2657 		return;
2658 
2659 	info->tcpi_state = sk_state_load(sk);
2660 
2661 	info->tcpi_ca_state = icsk->icsk_ca_state;
2662 	info->tcpi_retransmits = icsk->icsk_retransmits;
2663 	info->tcpi_probes = icsk->icsk_probes_out;
2664 	info->tcpi_backoff = icsk->icsk_backoff;
2665 
2666 	if (tp->rx_opt.tstamp_ok)
2667 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2668 	if (tcp_is_sack(tp))
2669 		info->tcpi_options |= TCPI_OPT_SACK;
2670 	if (tp->rx_opt.wscale_ok) {
2671 		info->tcpi_options |= TCPI_OPT_WSCALE;
2672 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2673 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2674 	}
2675 
2676 	if (tp->ecn_flags & TCP_ECN_OK)
2677 		info->tcpi_options |= TCPI_OPT_ECN;
2678 	if (tp->ecn_flags & TCP_ECN_SEEN)
2679 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2680 	if (tp->syn_data_acked)
2681 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2682 
2683 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2684 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2685 	info->tcpi_snd_mss = tp->mss_cache;
2686 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2687 
2688 	if (info->tcpi_state == TCP_LISTEN) {
2689 		info->tcpi_unacked = sk->sk_ack_backlog;
2690 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2691 	} else {
2692 		info->tcpi_unacked = tp->packets_out;
2693 		info->tcpi_sacked = tp->sacked_out;
2694 	}
2695 	info->tcpi_lost = tp->lost_out;
2696 	info->tcpi_retrans = tp->retrans_out;
2697 	info->tcpi_fackets = tp->fackets_out;
2698 
2699 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2700 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2701 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2702 
2703 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2704 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2705 	info->tcpi_rtt = tp->srtt_us >> 3;
2706 	info->tcpi_rttvar = tp->mdev_us >> 2;
2707 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2708 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2709 	info->tcpi_advmss = tp->advmss;
2710 	info->tcpi_reordering = tp->reordering;
2711 
2712 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2713 	info->tcpi_rcv_space = tp->rcvq_space.space;
2714 
2715 	info->tcpi_total_retrans = tp->total_retrans;
2716 
2717 	rate = READ_ONCE(sk->sk_pacing_rate);
2718 	rate64 = rate != ~0U ? rate : ~0ULL;
2719 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2720 
2721 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2722 	rate64 = rate != ~0U ? rate : ~0ULL;
2723 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2724 
2725 	do {
2726 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2727 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2728 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2729 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2730 	info->tcpi_segs_out = tp->segs_out;
2731 	info->tcpi_segs_in = tp->segs_in;
2732 
2733 	notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2734 	info->tcpi_notsent_bytes = max(0, notsent_bytes);
2735 
2736 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2737 	info->tcpi_data_segs_in = tp->data_segs_in;
2738 	info->tcpi_data_segs_out = tp->data_segs_out;
2739 }
2740 EXPORT_SYMBOL_GPL(tcp_get_info);
2741 
2742 static int do_tcp_getsockopt(struct sock *sk, int level,
2743 		int optname, char __user *optval, int __user *optlen)
2744 {
2745 	struct inet_connection_sock *icsk = inet_csk(sk);
2746 	struct tcp_sock *tp = tcp_sk(sk);
2747 	struct net *net = sock_net(sk);
2748 	int val, len;
2749 
2750 	if (get_user(len, optlen))
2751 		return -EFAULT;
2752 
2753 	len = min_t(unsigned int, len, sizeof(int));
2754 
2755 	if (len < 0)
2756 		return -EINVAL;
2757 
2758 	switch (optname) {
2759 	case TCP_MAXSEG:
2760 		val = tp->mss_cache;
2761 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2762 			val = tp->rx_opt.user_mss;
2763 		if (tp->repair)
2764 			val = tp->rx_opt.mss_clamp;
2765 		break;
2766 	case TCP_NODELAY:
2767 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2768 		break;
2769 	case TCP_CORK:
2770 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2771 		break;
2772 	case TCP_KEEPIDLE:
2773 		val = keepalive_time_when(tp) / HZ;
2774 		break;
2775 	case TCP_KEEPINTVL:
2776 		val = keepalive_intvl_when(tp) / HZ;
2777 		break;
2778 	case TCP_KEEPCNT:
2779 		val = keepalive_probes(tp);
2780 		break;
2781 	case TCP_SYNCNT:
2782 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2783 		break;
2784 	case TCP_LINGER2:
2785 		val = tp->linger2;
2786 		if (val >= 0)
2787 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2788 		break;
2789 	case TCP_DEFER_ACCEPT:
2790 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2791 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2792 		break;
2793 	case TCP_WINDOW_CLAMP:
2794 		val = tp->window_clamp;
2795 		break;
2796 	case TCP_INFO: {
2797 		struct tcp_info info;
2798 
2799 		if (get_user(len, optlen))
2800 			return -EFAULT;
2801 
2802 		tcp_get_info(sk, &info);
2803 
2804 		len = min_t(unsigned int, len, sizeof(info));
2805 		if (put_user(len, optlen))
2806 			return -EFAULT;
2807 		if (copy_to_user(optval, &info, len))
2808 			return -EFAULT;
2809 		return 0;
2810 	}
2811 	case TCP_CC_INFO: {
2812 		const struct tcp_congestion_ops *ca_ops;
2813 		union tcp_cc_info info;
2814 		size_t sz = 0;
2815 		int attr;
2816 
2817 		if (get_user(len, optlen))
2818 			return -EFAULT;
2819 
2820 		ca_ops = icsk->icsk_ca_ops;
2821 		if (ca_ops && ca_ops->get_info)
2822 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2823 
2824 		len = min_t(unsigned int, len, sz);
2825 		if (put_user(len, optlen))
2826 			return -EFAULT;
2827 		if (copy_to_user(optval, &info, len))
2828 			return -EFAULT;
2829 		return 0;
2830 	}
2831 	case TCP_QUICKACK:
2832 		val = !icsk->icsk_ack.pingpong;
2833 		break;
2834 
2835 	case TCP_CONGESTION:
2836 		if (get_user(len, optlen))
2837 			return -EFAULT;
2838 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2839 		if (put_user(len, optlen))
2840 			return -EFAULT;
2841 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2842 			return -EFAULT;
2843 		return 0;
2844 
2845 	case TCP_THIN_LINEAR_TIMEOUTS:
2846 		val = tp->thin_lto;
2847 		break;
2848 	case TCP_THIN_DUPACK:
2849 		val = tp->thin_dupack;
2850 		break;
2851 
2852 	case TCP_REPAIR:
2853 		val = tp->repair;
2854 		break;
2855 
2856 	case TCP_REPAIR_QUEUE:
2857 		if (tp->repair)
2858 			val = tp->repair_queue;
2859 		else
2860 			return -EINVAL;
2861 		break;
2862 
2863 	case TCP_QUEUE_SEQ:
2864 		if (tp->repair_queue == TCP_SEND_QUEUE)
2865 			val = tp->write_seq;
2866 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2867 			val = tp->rcv_nxt;
2868 		else
2869 			return -EINVAL;
2870 		break;
2871 
2872 	case TCP_USER_TIMEOUT:
2873 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2874 		break;
2875 
2876 	case TCP_FASTOPEN:
2877 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
2878 		break;
2879 
2880 	case TCP_TIMESTAMP:
2881 		val = tcp_time_stamp + tp->tsoffset;
2882 		break;
2883 	case TCP_NOTSENT_LOWAT:
2884 		val = tp->notsent_lowat;
2885 		break;
2886 	case TCP_SAVE_SYN:
2887 		val = tp->save_syn;
2888 		break;
2889 	case TCP_SAVED_SYN: {
2890 		if (get_user(len, optlen))
2891 			return -EFAULT;
2892 
2893 		lock_sock(sk);
2894 		if (tp->saved_syn) {
2895 			if (len < tp->saved_syn[0]) {
2896 				if (put_user(tp->saved_syn[0], optlen)) {
2897 					release_sock(sk);
2898 					return -EFAULT;
2899 				}
2900 				release_sock(sk);
2901 				return -EINVAL;
2902 			}
2903 			len = tp->saved_syn[0];
2904 			if (put_user(len, optlen)) {
2905 				release_sock(sk);
2906 				return -EFAULT;
2907 			}
2908 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
2909 				release_sock(sk);
2910 				return -EFAULT;
2911 			}
2912 			tcp_saved_syn_free(tp);
2913 			release_sock(sk);
2914 		} else {
2915 			release_sock(sk);
2916 			len = 0;
2917 			if (put_user(len, optlen))
2918 				return -EFAULT;
2919 		}
2920 		return 0;
2921 	}
2922 	default:
2923 		return -ENOPROTOOPT;
2924 	}
2925 
2926 	if (put_user(len, optlen))
2927 		return -EFAULT;
2928 	if (copy_to_user(optval, &val, len))
2929 		return -EFAULT;
2930 	return 0;
2931 }
2932 
2933 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2934 		   int __user *optlen)
2935 {
2936 	struct inet_connection_sock *icsk = inet_csk(sk);
2937 
2938 	if (level != SOL_TCP)
2939 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2940 						     optval, optlen);
2941 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2942 }
2943 EXPORT_SYMBOL(tcp_getsockopt);
2944 
2945 #ifdef CONFIG_COMPAT
2946 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2947 			  char __user *optval, int __user *optlen)
2948 {
2949 	if (level != SOL_TCP)
2950 		return inet_csk_compat_getsockopt(sk, level, optname,
2951 						  optval, optlen);
2952 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2953 }
2954 EXPORT_SYMBOL(compat_tcp_getsockopt);
2955 #endif
2956 
2957 #ifdef CONFIG_TCP_MD5SIG
2958 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2959 static DEFINE_MUTEX(tcp_md5sig_mutex);
2960 static bool tcp_md5sig_pool_populated = false;
2961 
2962 static void __tcp_alloc_md5sig_pool(void)
2963 {
2964 	struct crypto_ahash *hash;
2965 	int cpu;
2966 
2967 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
2968 	if (IS_ERR(hash))
2969 		return;
2970 
2971 	for_each_possible_cpu(cpu) {
2972 		struct ahash_request *req;
2973 
2974 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
2975 			continue;
2976 
2977 		req = ahash_request_alloc(hash, GFP_KERNEL);
2978 		if (!req)
2979 			return;
2980 
2981 		ahash_request_set_callback(req, 0, NULL, NULL);
2982 
2983 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
2984 	}
2985 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2986 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2987 	 */
2988 	smp_wmb();
2989 	tcp_md5sig_pool_populated = true;
2990 }
2991 
2992 bool tcp_alloc_md5sig_pool(void)
2993 {
2994 	if (unlikely(!tcp_md5sig_pool_populated)) {
2995 		mutex_lock(&tcp_md5sig_mutex);
2996 
2997 		if (!tcp_md5sig_pool_populated)
2998 			__tcp_alloc_md5sig_pool();
2999 
3000 		mutex_unlock(&tcp_md5sig_mutex);
3001 	}
3002 	return tcp_md5sig_pool_populated;
3003 }
3004 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3005 
3006 
3007 /**
3008  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3009  *
3010  *	We use percpu structure, so if we succeed, we exit with preemption
3011  *	and BH disabled, to make sure another thread or softirq handling
3012  *	wont try to get same context.
3013  */
3014 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3015 {
3016 	local_bh_disable();
3017 
3018 	if (tcp_md5sig_pool_populated) {
3019 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3020 		smp_rmb();
3021 		return this_cpu_ptr(&tcp_md5sig_pool);
3022 	}
3023 	local_bh_enable();
3024 	return NULL;
3025 }
3026 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3027 
3028 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3029 			const struct tcphdr *th)
3030 {
3031 	struct scatterlist sg;
3032 	struct tcphdr hdr;
3033 
3034 	/* We are not allowed to change tcphdr, make a local copy */
3035 	memcpy(&hdr, th, sizeof(hdr));
3036 	hdr.check = 0;
3037 
3038 	/* options aren't included in the hash */
3039 	sg_init_one(&sg, &hdr, sizeof(hdr));
3040 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr));
3041 	return crypto_ahash_update(hp->md5_req);
3042 }
3043 EXPORT_SYMBOL(tcp_md5_hash_header);
3044 
3045 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3046 			  const struct sk_buff *skb, unsigned int header_len)
3047 {
3048 	struct scatterlist sg;
3049 	const struct tcphdr *tp = tcp_hdr(skb);
3050 	struct ahash_request *req = hp->md5_req;
3051 	unsigned int i;
3052 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3053 					   skb_headlen(skb) - header_len : 0;
3054 	const struct skb_shared_info *shi = skb_shinfo(skb);
3055 	struct sk_buff *frag_iter;
3056 
3057 	sg_init_table(&sg, 1);
3058 
3059 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3060 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3061 	if (crypto_ahash_update(req))
3062 		return 1;
3063 
3064 	for (i = 0; i < shi->nr_frags; ++i) {
3065 		const struct skb_frag_struct *f = &shi->frags[i];
3066 		unsigned int offset = f->page_offset;
3067 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3068 
3069 		sg_set_page(&sg, page, skb_frag_size(f),
3070 			    offset_in_page(offset));
3071 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3072 		if (crypto_ahash_update(req))
3073 			return 1;
3074 	}
3075 
3076 	skb_walk_frags(skb, frag_iter)
3077 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3078 			return 1;
3079 
3080 	return 0;
3081 }
3082 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3083 
3084 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3085 {
3086 	struct scatterlist sg;
3087 
3088 	sg_init_one(&sg, key->key, key->keylen);
3089 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3090 	return crypto_ahash_update(hp->md5_req);
3091 }
3092 EXPORT_SYMBOL(tcp_md5_hash_key);
3093 
3094 #endif
3095 
3096 void tcp_done(struct sock *sk)
3097 {
3098 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3099 
3100 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3101 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3102 
3103 	tcp_set_state(sk, TCP_CLOSE);
3104 	tcp_clear_xmit_timers(sk);
3105 	if (req)
3106 		reqsk_fastopen_remove(sk, req, false);
3107 
3108 	sk->sk_shutdown = SHUTDOWN_MASK;
3109 
3110 	if (!sock_flag(sk, SOCK_DEAD))
3111 		sk->sk_state_change(sk);
3112 	else
3113 		inet_csk_destroy_sock(sk);
3114 }
3115 EXPORT_SYMBOL_GPL(tcp_done);
3116 
3117 int tcp_abort(struct sock *sk, int err)
3118 {
3119 	if (!sk_fullsock(sk)) {
3120 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3121 			struct request_sock *req = inet_reqsk(sk);
3122 
3123 			local_bh_disable();
3124 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3125 							  req);
3126 			local_bh_enable();
3127 			return 0;
3128 		}
3129 		sock_gen_put(sk);
3130 		return -EOPNOTSUPP;
3131 	}
3132 
3133 	/* Don't race with userspace socket closes such as tcp_close. */
3134 	lock_sock(sk);
3135 
3136 	if (sk->sk_state == TCP_LISTEN) {
3137 		tcp_set_state(sk, TCP_CLOSE);
3138 		inet_csk_listen_stop(sk);
3139 	}
3140 
3141 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3142 	local_bh_disable();
3143 	bh_lock_sock(sk);
3144 
3145 	if (!sock_flag(sk, SOCK_DEAD)) {
3146 		sk->sk_err = err;
3147 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3148 		smp_wmb();
3149 		sk->sk_error_report(sk);
3150 		if (tcp_need_reset(sk->sk_state))
3151 			tcp_send_active_reset(sk, GFP_ATOMIC);
3152 		tcp_done(sk);
3153 	}
3154 
3155 	bh_unlock_sock(sk);
3156 	local_bh_enable();
3157 	release_sock(sk);
3158 	sock_put(sk);
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL_GPL(tcp_abort);
3162 
3163 extern struct tcp_congestion_ops tcp_reno;
3164 
3165 static __initdata unsigned long thash_entries;
3166 static int __init set_thash_entries(char *str)
3167 {
3168 	ssize_t ret;
3169 
3170 	if (!str)
3171 		return 0;
3172 
3173 	ret = kstrtoul(str, 0, &thash_entries);
3174 	if (ret)
3175 		return 0;
3176 
3177 	return 1;
3178 }
3179 __setup("thash_entries=", set_thash_entries);
3180 
3181 static void __init tcp_init_mem(void)
3182 {
3183 	unsigned long limit = nr_free_buffer_pages() / 16;
3184 
3185 	limit = max(limit, 128UL);
3186 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3187 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3188 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3189 }
3190 
3191 void __init tcp_init(void)
3192 {
3193 	unsigned long limit;
3194 	int max_rshare, max_wshare, cnt;
3195 	unsigned int i;
3196 
3197 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3198 
3199 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3200 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3201 	tcp_hashinfo.bind_bucket_cachep =
3202 		kmem_cache_create("tcp_bind_bucket",
3203 				  sizeof(struct inet_bind_bucket), 0,
3204 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3205 
3206 	/* Size and allocate the main established and bind bucket
3207 	 * hash tables.
3208 	 *
3209 	 * The methodology is similar to that of the buffer cache.
3210 	 */
3211 	tcp_hashinfo.ehash =
3212 		alloc_large_system_hash("TCP established",
3213 					sizeof(struct inet_ehash_bucket),
3214 					thash_entries,
3215 					17, /* one slot per 128 KB of memory */
3216 					0,
3217 					NULL,
3218 					&tcp_hashinfo.ehash_mask,
3219 					0,
3220 					thash_entries ? 0 : 512 * 1024);
3221 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3222 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3223 
3224 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3225 		panic("TCP: failed to alloc ehash_locks");
3226 	tcp_hashinfo.bhash =
3227 		alloc_large_system_hash("TCP bind",
3228 					sizeof(struct inet_bind_hashbucket),
3229 					tcp_hashinfo.ehash_mask + 1,
3230 					17, /* one slot per 128 KB of memory */
3231 					0,
3232 					&tcp_hashinfo.bhash_size,
3233 					NULL,
3234 					0,
3235 					64 * 1024);
3236 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3237 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3238 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3239 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3240 	}
3241 
3242 
3243 	cnt = tcp_hashinfo.ehash_mask + 1;
3244 
3245 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3246 	sysctl_tcp_max_orphans = cnt / 2;
3247 	sysctl_max_syn_backlog = max(128, cnt / 256);
3248 
3249 	tcp_init_mem();
3250 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3251 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3252 	max_wshare = min(4UL*1024*1024, limit);
3253 	max_rshare = min(6UL*1024*1024, limit);
3254 
3255 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3256 	sysctl_tcp_wmem[1] = 16*1024;
3257 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3258 
3259 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3260 	sysctl_tcp_rmem[1] = 87380;
3261 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3262 
3263 	pr_info("Hash tables configured (established %u bind %u)\n",
3264 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3265 
3266 	tcp_metrics_init();
3267 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3268 	tcp_tasklet_init();
3269 }
3270