xref: /openbmc/linux/net/ipv4/tcp.c (revision 0da85d1e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	__skb_queue_head_init(&tp->out_of_order_queue);
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 
391 	/* So many TCP implementations out there (incorrectly) count the
392 	 * initial SYN frame in their delayed-ACK and congestion control
393 	 * algorithms that we must have the following bandaid to talk
394 	 * efficiently to them.  -DaveM
395 	 */
396 	tp->snd_cwnd = TCP_INIT_CWND;
397 
398 	/* See draft-stevens-tcpca-spec-01 for discussion of the
399 	 * initialization of these values.
400 	 */
401 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
402 	tp->snd_cwnd_clamp = ~0;
403 	tp->mss_cache = TCP_MSS_DEFAULT;
404 
405 	tp->reordering = sysctl_tcp_reordering;
406 	tcp_enable_early_retrans(tp);
407 	tcp_assign_congestion_control(sk);
408 
409 	tp->tsoffset = 0;
410 
411 	sk->sk_state = TCP_CLOSE;
412 
413 	sk->sk_write_space = sk_stream_write_space;
414 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
415 
416 	icsk->icsk_sync_mss = tcp_sync_mss;
417 
418 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
419 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
420 
421 	local_bh_disable();
422 	sock_update_memcg(sk);
423 	sk_sockets_allocated_inc(sk);
424 	local_bh_enable();
425 }
426 EXPORT_SYMBOL(tcp_init_sock);
427 
428 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
429 {
430 	if (sk->sk_tsflags) {
431 		struct skb_shared_info *shinfo = skb_shinfo(skb);
432 
433 		sock_tx_timestamp(sk, &shinfo->tx_flags);
434 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
435 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
436 	}
437 }
438 
439 /*
440  *	Wait for a TCP event.
441  *
442  *	Note that we don't need to lock the socket, as the upper poll layers
443  *	take care of normal races (between the test and the event) and we don't
444  *	go look at any of the socket buffers directly.
445  */
446 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
447 {
448 	unsigned int mask;
449 	struct sock *sk = sock->sk;
450 	const struct tcp_sock *tp = tcp_sk(sk);
451 
452 	sock_rps_record_flow(sk);
453 
454 	sock_poll_wait(file, sk_sleep(sk), wait);
455 	if (sk->sk_state == TCP_LISTEN)
456 		return inet_csk_listen_poll(sk);
457 
458 	/* Socket is not locked. We are protected from async events
459 	 * by poll logic and correct handling of state changes
460 	 * made by other threads is impossible in any case.
461 	 */
462 
463 	mask = 0;
464 
465 	/*
466 	 * POLLHUP is certainly not done right. But poll() doesn't
467 	 * have a notion of HUP in just one direction, and for a
468 	 * socket the read side is more interesting.
469 	 *
470 	 * Some poll() documentation says that POLLHUP is incompatible
471 	 * with the POLLOUT/POLLWR flags, so somebody should check this
472 	 * all. But careful, it tends to be safer to return too many
473 	 * bits than too few, and you can easily break real applications
474 	 * if you don't tell them that something has hung up!
475 	 *
476 	 * Check-me.
477 	 *
478 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
479 	 * our fs/select.c). It means that after we received EOF,
480 	 * poll always returns immediately, making impossible poll() on write()
481 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
482 	 * if and only if shutdown has been made in both directions.
483 	 * Actually, it is interesting to look how Solaris and DUX
484 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
485 	 * then we could set it on SND_SHUTDOWN. BTW examples given
486 	 * in Stevens' books assume exactly this behaviour, it explains
487 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
488 	 *
489 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
490 	 * blocking on fresh not-connected or disconnected socket. --ANK
491 	 */
492 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
493 		mask |= POLLHUP;
494 	if (sk->sk_shutdown & RCV_SHUTDOWN)
495 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
496 
497 	/* Connected or passive Fast Open socket? */
498 	if (sk->sk_state != TCP_SYN_SENT &&
499 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk)) {
500 		int target = sock_rcvlowat(sk, 0, INT_MAX);
501 
502 		if (tp->urg_seq == tp->copied_seq &&
503 		    !sock_flag(sk, SOCK_URGINLINE) &&
504 		    tp->urg_data)
505 			target++;
506 
507 		/* Potential race condition. If read of tp below will
508 		 * escape above sk->sk_state, we can be illegally awaken
509 		 * in SYN_* states. */
510 		if (tp->rcv_nxt - tp->copied_seq >= target)
511 			mask |= POLLIN | POLLRDNORM;
512 
513 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
514 			if (sk_stream_is_writeable(sk)) {
515 				mask |= POLLOUT | POLLWRNORM;
516 			} else {  /* send SIGIO later */
517 				set_bit(SOCK_ASYNC_NOSPACE,
518 					&sk->sk_socket->flags);
519 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
520 
521 				/* Race breaker. If space is freed after
522 				 * wspace test but before the flags are set,
523 				 * IO signal will be lost. Memory barrier
524 				 * pairs with the input side.
525 				 */
526 				smp_mb__after_atomic();
527 				if (sk_stream_is_writeable(sk))
528 					mask |= POLLOUT | POLLWRNORM;
529 			}
530 		} else
531 			mask |= POLLOUT | POLLWRNORM;
532 
533 		if (tp->urg_data & TCP_URG_VALID)
534 			mask |= POLLPRI;
535 	}
536 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
537 	smp_rmb();
538 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
539 		mask |= POLLERR;
540 
541 	return mask;
542 }
543 EXPORT_SYMBOL(tcp_poll);
544 
545 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	int answ;
549 	bool slow;
550 
551 	switch (cmd) {
552 	case SIOCINQ:
553 		if (sk->sk_state == TCP_LISTEN)
554 			return -EINVAL;
555 
556 		slow = lock_sock_fast(sk);
557 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
558 			answ = 0;
559 		else if (sock_flag(sk, SOCK_URGINLINE) ||
560 			 !tp->urg_data ||
561 			 before(tp->urg_seq, tp->copied_seq) ||
562 			 !before(tp->urg_seq, tp->rcv_nxt)) {
563 
564 			answ = tp->rcv_nxt - tp->copied_seq;
565 
566 			/* Subtract 1, if FIN was received */
567 			if (answ && sock_flag(sk, SOCK_DONE))
568 				answ--;
569 		} else
570 			answ = tp->urg_seq - tp->copied_seq;
571 		unlock_sock_fast(sk, slow);
572 		break;
573 	case SIOCATMARK:
574 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
575 		break;
576 	case SIOCOUTQ:
577 		if (sk->sk_state == TCP_LISTEN)
578 			return -EINVAL;
579 
580 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
581 			answ = 0;
582 		else
583 			answ = tp->write_seq - tp->snd_una;
584 		break;
585 	case SIOCOUTQNSD:
586 		if (sk->sk_state == TCP_LISTEN)
587 			return -EINVAL;
588 
589 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
590 			answ = 0;
591 		else
592 			answ = tp->write_seq - tp->snd_nxt;
593 		break;
594 	default:
595 		return -ENOIOCTLCMD;
596 	}
597 
598 	return put_user(answ, (int __user *)arg);
599 }
600 EXPORT_SYMBOL(tcp_ioctl);
601 
602 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
603 {
604 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
605 	tp->pushed_seq = tp->write_seq;
606 }
607 
608 static inline bool forced_push(const struct tcp_sock *tp)
609 {
610 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
611 }
612 
613 static void skb_entail(struct sock *sk, struct sk_buff *skb)
614 {
615 	struct tcp_sock *tp = tcp_sk(sk);
616 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
617 
618 	skb->csum    = 0;
619 	tcb->seq     = tcb->end_seq = tp->write_seq;
620 	tcb->tcp_flags = TCPHDR_ACK;
621 	tcb->sacked  = 0;
622 	__skb_header_release(skb);
623 	tcp_add_write_queue_tail(sk, skb);
624 	sk->sk_wmem_queued += skb->truesize;
625 	sk_mem_charge(sk, skb->truesize);
626 	if (tp->nonagle & TCP_NAGLE_PUSH)
627 		tp->nonagle &= ~TCP_NAGLE_PUSH;
628 }
629 
630 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
631 {
632 	if (flags & MSG_OOB)
633 		tp->snd_up = tp->write_seq;
634 }
635 
636 /* If a not yet filled skb is pushed, do not send it if
637  * we have data packets in Qdisc or NIC queues :
638  * Because TX completion will happen shortly, it gives a chance
639  * to coalesce future sendmsg() payload into this skb, without
640  * need for a timer, and with no latency trade off.
641  * As packets containing data payload have a bigger truesize
642  * than pure acks (dataless) packets, the last checks prevent
643  * autocorking if we only have an ACK in Qdisc/NIC queues,
644  * or if TX completion was delayed after we processed ACK packet.
645  */
646 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
647 				int size_goal)
648 {
649 	return skb->len < size_goal &&
650 	       sysctl_tcp_autocorking &&
651 	       skb != tcp_write_queue_head(sk) &&
652 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
653 }
654 
655 static void tcp_push(struct sock *sk, int flags, int mss_now,
656 		     int nonagle, int size_goal)
657 {
658 	struct tcp_sock *tp = tcp_sk(sk);
659 	struct sk_buff *skb;
660 
661 	if (!tcp_send_head(sk))
662 		return;
663 
664 	skb = tcp_write_queue_tail(sk);
665 	if (!(flags & MSG_MORE) || forced_push(tp))
666 		tcp_mark_push(tp, skb);
667 
668 	tcp_mark_urg(tp, flags);
669 
670 	if (tcp_should_autocork(sk, skb, size_goal)) {
671 
672 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
673 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
674 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
675 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
676 		}
677 		/* It is possible TX completion already happened
678 		 * before we set TSQ_THROTTLED.
679 		 */
680 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
681 			return;
682 	}
683 
684 	if (flags & MSG_MORE)
685 		nonagle = TCP_NAGLE_CORK;
686 
687 	__tcp_push_pending_frames(sk, mss_now, nonagle);
688 }
689 
690 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
691 				unsigned int offset, size_t len)
692 {
693 	struct tcp_splice_state *tss = rd_desc->arg.data;
694 	int ret;
695 
696 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
697 			      tss->flags);
698 	if (ret > 0)
699 		rd_desc->count -= ret;
700 	return ret;
701 }
702 
703 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
704 {
705 	/* Store TCP splice context information in read_descriptor_t. */
706 	read_descriptor_t rd_desc = {
707 		.arg.data = tss,
708 		.count	  = tss->len,
709 	};
710 
711 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
712 }
713 
714 /**
715  *  tcp_splice_read - splice data from TCP socket to a pipe
716  * @sock:	socket to splice from
717  * @ppos:	position (not valid)
718  * @pipe:	pipe to splice to
719  * @len:	number of bytes to splice
720  * @flags:	splice modifier flags
721  *
722  * Description:
723  *    Will read pages from given socket and fill them into a pipe.
724  *
725  **/
726 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
727 			struct pipe_inode_info *pipe, size_t len,
728 			unsigned int flags)
729 {
730 	struct sock *sk = sock->sk;
731 	struct tcp_splice_state tss = {
732 		.pipe = pipe,
733 		.len = len,
734 		.flags = flags,
735 	};
736 	long timeo;
737 	ssize_t spliced;
738 	int ret;
739 
740 	sock_rps_record_flow(sk);
741 	/*
742 	 * We can't seek on a socket input
743 	 */
744 	if (unlikely(*ppos))
745 		return -ESPIPE;
746 
747 	ret = spliced = 0;
748 
749 	lock_sock(sk);
750 
751 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
752 	while (tss.len) {
753 		ret = __tcp_splice_read(sk, &tss);
754 		if (ret < 0)
755 			break;
756 		else if (!ret) {
757 			if (spliced)
758 				break;
759 			if (sock_flag(sk, SOCK_DONE))
760 				break;
761 			if (sk->sk_err) {
762 				ret = sock_error(sk);
763 				break;
764 			}
765 			if (sk->sk_shutdown & RCV_SHUTDOWN)
766 				break;
767 			if (sk->sk_state == TCP_CLOSE) {
768 				/*
769 				 * This occurs when user tries to read
770 				 * from never connected socket.
771 				 */
772 				if (!sock_flag(sk, SOCK_DONE))
773 					ret = -ENOTCONN;
774 				break;
775 			}
776 			if (!timeo) {
777 				ret = -EAGAIN;
778 				break;
779 			}
780 			sk_wait_data(sk, &timeo);
781 			if (signal_pending(current)) {
782 				ret = sock_intr_errno(timeo);
783 				break;
784 			}
785 			continue;
786 		}
787 		tss.len -= ret;
788 		spliced += ret;
789 
790 		if (!timeo)
791 			break;
792 		release_sock(sk);
793 		lock_sock(sk);
794 
795 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
796 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
797 		    signal_pending(current))
798 			break;
799 	}
800 
801 	release_sock(sk);
802 
803 	if (spliced)
804 		return spliced;
805 
806 	return ret;
807 }
808 EXPORT_SYMBOL(tcp_splice_read);
809 
810 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
811 {
812 	struct sk_buff *skb;
813 
814 	/* The TCP header must be at least 32-bit aligned.  */
815 	size = ALIGN(size, 4);
816 
817 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
818 	if (skb) {
819 		if (sk_wmem_schedule(sk, skb->truesize)) {
820 			skb_reserve(skb, sk->sk_prot->max_header);
821 			/*
822 			 * Make sure that we have exactly size bytes
823 			 * available to the caller, no more, no less.
824 			 */
825 			skb->reserved_tailroom = skb->end - skb->tail - size;
826 			return skb;
827 		}
828 		__kfree_skb(skb);
829 	} else {
830 		sk->sk_prot->enter_memory_pressure(sk);
831 		sk_stream_moderate_sndbuf(sk);
832 	}
833 	return NULL;
834 }
835 
836 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
837 				       int large_allowed)
838 {
839 	struct tcp_sock *tp = tcp_sk(sk);
840 	u32 new_size_goal, size_goal;
841 
842 	if (!large_allowed || !sk_can_gso(sk))
843 		return mss_now;
844 
845 	/* Note : tcp_tso_autosize() will eventually split this later */
846 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
847 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
848 
849 	/* We try hard to avoid divides here */
850 	size_goal = tp->gso_segs * mss_now;
851 	if (unlikely(new_size_goal < size_goal ||
852 		     new_size_goal >= size_goal + mss_now)) {
853 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
854 				     sk->sk_gso_max_segs);
855 		size_goal = tp->gso_segs * mss_now;
856 	}
857 
858 	return max(size_goal, mss_now);
859 }
860 
861 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
862 {
863 	int mss_now;
864 
865 	mss_now = tcp_current_mss(sk);
866 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
867 
868 	return mss_now;
869 }
870 
871 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
872 				size_t size, int flags)
873 {
874 	struct tcp_sock *tp = tcp_sk(sk);
875 	int mss_now, size_goal;
876 	int err;
877 	ssize_t copied;
878 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
879 
880 	/* Wait for a connection to finish. One exception is TCP Fast Open
881 	 * (passive side) where data is allowed to be sent before a connection
882 	 * is fully established.
883 	 */
884 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
885 	    !tcp_passive_fastopen(sk)) {
886 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
887 			goto out_err;
888 	}
889 
890 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
891 
892 	mss_now = tcp_send_mss(sk, &size_goal, flags);
893 	copied = 0;
894 
895 	err = -EPIPE;
896 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
897 		goto out_err;
898 
899 	while (size > 0) {
900 		struct sk_buff *skb = tcp_write_queue_tail(sk);
901 		int copy, i;
902 		bool can_coalesce;
903 
904 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
905 new_segment:
906 			if (!sk_stream_memory_free(sk))
907 				goto wait_for_sndbuf;
908 
909 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
910 			if (!skb)
911 				goto wait_for_memory;
912 
913 			skb_entail(sk, skb);
914 			copy = size_goal;
915 		}
916 
917 		if (copy > size)
918 			copy = size;
919 
920 		i = skb_shinfo(skb)->nr_frags;
921 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
922 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
923 			tcp_mark_push(tp, skb);
924 			goto new_segment;
925 		}
926 		if (!sk_wmem_schedule(sk, copy))
927 			goto wait_for_memory;
928 
929 		if (can_coalesce) {
930 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
931 		} else {
932 			get_page(page);
933 			skb_fill_page_desc(skb, i, page, offset, copy);
934 		}
935 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
936 
937 		skb->len += copy;
938 		skb->data_len += copy;
939 		skb->truesize += copy;
940 		sk->sk_wmem_queued += copy;
941 		sk_mem_charge(sk, copy);
942 		skb->ip_summed = CHECKSUM_PARTIAL;
943 		tp->write_seq += copy;
944 		TCP_SKB_CB(skb)->end_seq += copy;
945 		tcp_skb_pcount_set(skb, 0);
946 
947 		if (!copied)
948 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
949 
950 		copied += copy;
951 		offset += copy;
952 		if (!(size -= copy)) {
953 			tcp_tx_timestamp(sk, skb);
954 			goto out;
955 		}
956 
957 		if (skb->len < size_goal || (flags & MSG_OOB))
958 			continue;
959 
960 		if (forced_push(tp)) {
961 			tcp_mark_push(tp, skb);
962 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
963 		} else if (skb == tcp_send_head(sk))
964 			tcp_push_one(sk, mss_now);
965 		continue;
966 
967 wait_for_sndbuf:
968 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
969 wait_for_memory:
970 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
971 			 TCP_NAGLE_PUSH, size_goal);
972 
973 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
974 			goto do_error;
975 
976 		mss_now = tcp_send_mss(sk, &size_goal, flags);
977 	}
978 
979 out:
980 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
981 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
982 	return copied;
983 
984 do_error:
985 	if (copied)
986 		goto out;
987 out_err:
988 	return sk_stream_error(sk, flags, err);
989 }
990 
991 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
992 		 size_t size, int flags)
993 {
994 	ssize_t res;
995 
996 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
997 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
998 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
999 					flags);
1000 
1001 	lock_sock(sk);
1002 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1003 	release_sock(sk);
1004 	return res;
1005 }
1006 EXPORT_SYMBOL(tcp_sendpage);
1007 
1008 static inline int select_size(const struct sock *sk, bool sg)
1009 {
1010 	const struct tcp_sock *tp = tcp_sk(sk);
1011 	int tmp = tp->mss_cache;
1012 
1013 	if (sg) {
1014 		if (sk_can_gso(sk)) {
1015 			/* Small frames wont use a full page:
1016 			 * Payload will immediately follow tcp header.
1017 			 */
1018 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1019 		} else {
1020 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1021 
1022 			if (tmp >= pgbreak &&
1023 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1024 				tmp = pgbreak;
1025 		}
1026 	}
1027 
1028 	return tmp;
1029 }
1030 
1031 void tcp_free_fastopen_req(struct tcp_sock *tp)
1032 {
1033 	if (tp->fastopen_req) {
1034 		kfree(tp->fastopen_req);
1035 		tp->fastopen_req = NULL;
1036 	}
1037 }
1038 
1039 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1040 				int *copied, size_t size)
1041 {
1042 	struct tcp_sock *tp = tcp_sk(sk);
1043 	int err, flags;
1044 
1045 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1046 		return -EOPNOTSUPP;
1047 	if (tp->fastopen_req)
1048 		return -EALREADY; /* Another Fast Open is in progress */
1049 
1050 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1051 				   sk->sk_allocation);
1052 	if (unlikely(!tp->fastopen_req))
1053 		return -ENOBUFS;
1054 	tp->fastopen_req->data = msg;
1055 	tp->fastopen_req->size = size;
1056 
1057 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1058 	err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1059 				    msg->msg_namelen, flags);
1060 	*copied = tp->fastopen_req->copied;
1061 	tcp_free_fastopen_req(tp);
1062 	return err;
1063 }
1064 
1065 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1066 {
1067 	struct tcp_sock *tp = tcp_sk(sk);
1068 	struct sk_buff *skb;
1069 	int flags, err, copied = 0;
1070 	int mss_now = 0, size_goal, copied_syn = 0;
1071 	bool sg;
1072 	long timeo;
1073 
1074 	lock_sock(sk);
1075 
1076 	flags = msg->msg_flags;
1077 	if (flags & MSG_FASTOPEN) {
1078 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1079 		if (err == -EINPROGRESS && copied_syn > 0)
1080 			goto out;
1081 		else if (err)
1082 			goto out_err;
1083 	}
1084 
1085 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086 
1087 	/* Wait for a connection to finish. One exception is TCP Fast Open
1088 	 * (passive side) where data is allowed to be sent before a connection
1089 	 * is fully established.
1090 	 */
1091 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1092 	    !tcp_passive_fastopen(sk)) {
1093 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1094 			goto do_error;
1095 	}
1096 
1097 	if (unlikely(tp->repair)) {
1098 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1099 			copied = tcp_send_rcvq(sk, msg, size);
1100 			goto out_nopush;
1101 		}
1102 
1103 		err = -EINVAL;
1104 		if (tp->repair_queue == TCP_NO_QUEUE)
1105 			goto out_err;
1106 
1107 		/* 'common' sending to sendq */
1108 	}
1109 
1110 	/* This should be in poll */
1111 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1112 
1113 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1114 
1115 	/* Ok commence sending. */
1116 	copied = 0;
1117 
1118 	err = -EPIPE;
1119 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1120 		goto out_err;
1121 
1122 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1123 
1124 	while (msg_data_left(msg)) {
1125 		int copy = 0;
1126 		int max = size_goal;
1127 
1128 		skb = tcp_write_queue_tail(sk);
1129 		if (tcp_send_head(sk)) {
1130 			if (skb->ip_summed == CHECKSUM_NONE)
1131 				max = mss_now;
1132 			copy = max - skb->len;
1133 		}
1134 
1135 		if (copy <= 0) {
1136 new_segment:
1137 			/* Allocate new segment. If the interface is SG,
1138 			 * allocate skb fitting to single page.
1139 			 */
1140 			if (!sk_stream_memory_free(sk))
1141 				goto wait_for_sndbuf;
1142 
1143 			skb = sk_stream_alloc_skb(sk,
1144 						  select_size(sk, sg),
1145 						  sk->sk_allocation);
1146 			if (!skb)
1147 				goto wait_for_memory;
1148 
1149 			/*
1150 			 * Check whether we can use HW checksum.
1151 			 */
1152 			if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1153 				skb->ip_summed = CHECKSUM_PARTIAL;
1154 
1155 			skb_entail(sk, skb);
1156 			copy = size_goal;
1157 			max = size_goal;
1158 
1159 			/* All packets are restored as if they have
1160 			 * already been sent. skb_mstamp isn't set to
1161 			 * avoid wrong rtt estimation.
1162 			 */
1163 			if (tp->repair)
1164 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1165 		}
1166 
1167 		/* Try to append data to the end of skb. */
1168 		if (copy > msg_data_left(msg))
1169 			copy = msg_data_left(msg);
1170 
1171 		/* Where to copy to? */
1172 		if (skb_availroom(skb) > 0) {
1173 			/* We have some space in skb head. Superb! */
1174 			copy = min_t(int, copy, skb_availroom(skb));
1175 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1176 			if (err)
1177 				goto do_fault;
1178 		} else {
1179 			bool merge = true;
1180 			int i = skb_shinfo(skb)->nr_frags;
1181 			struct page_frag *pfrag = sk_page_frag(sk);
1182 
1183 			if (!sk_page_frag_refill(sk, pfrag))
1184 				goto wait_for_memory;
1185 
1186 			if (!skb_can_coalesce(skb, i, pfrag->page,
1187 					      pfrag->offset)) {
1188 				if (i == MAX_SKB_FRAGS || !sg) {
1189 					tcp_mark_push(tp, skb);
1190 					goto new_segment;
1191 				}
1192 				merge = false;
1193 			}
1194 
1195 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1196 
1197 			if (!sk_wmem_schedule(sk, copy))
1198 				goto wait_for_memory;
1199 
1200 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1201 						       pfrag->page,
1202 						       pfrag->offset,
1203 						       copy);
1204 			if (err)
1205 				goto do_error;
1206 
1207 			/* Update the skb. */
1208 			if (merge) {
1209 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1210 			} else {
1211 				skb_fill_page_desc(skb, i, pfrag->page,
1212 						   pfrag->offset, copy);
1213 				get_page(pfrag->page);
1214 			}
1215 			pfrag->offset += copy;
1216 		}
1217 
1218 		if (!copied)
1219 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1220 
1221 		tp->write_seq += copy;
1222 		TCP_SKB_CB(skb)->end_seq += copy;
1223 		tcp_skb_pcount_set(skb, 0);
1224 
1225 		copied += copy;
1226 		if (!msg_data_left(msg)) {
1227 			tcp_tx_timestamp(sk, skb);
1228 			goto out;
1229 		}
1230 
1231 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1232 			continue;
1233 
1234 		if (forced_push(tp)) {
1235 			tcp_mark_push(tp, skb);
1236 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1237 		} else if (skb == tcp_send_head(sk))
1238 			tcp_push_one(sk, mss_now);
1239 		continue;
1240 
1241 wait_for_sndbuf:
1242 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1243 wait_for_memory:
1244 		if (copied)
1245 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1246 				 TCP_NAGLE_PUSH, size_goal);
1247 
1248 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1249 			goto do_error;
1250 
1251 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1252 	}
1253 
1254 out:
1255 	if (copied)
1256 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1257 out_nopush:
1258 	release_sock(sk);
1259 	return copied + copied_syn;
1260 
1261 do_fault:
1262 	if (!skb->len) {
1263 		tcp_unlink_write_queue(skb, sk);
1264 		/* It is the one place in all of TCP, except connection
1265 		 * reset, where we can be unlinking the send_head.
1266 		 */
1267 		tcp_check_send_head(sk, skb);
1268 		sk_wmem_free_skb(sk, skb);
1269 	}
1270 
1271 do_error:
1272 	if (copied + copied_syn)
1273 		goto out;
1274 out_err:
1275 	err = sk_stream_error(sk, flags, err);
1276 	release_sock(sk);
1277 	return err;
1278 }
1279 EXPORT_SYMBOL(tcp_sendmsg);
1280 
1281 /*
1282  *	Handle reading urgent data. BSD has very simple semantics for
1283  *	this, no blocking and very strange errors 8)
1284  */
1285 
1286 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 
1290 	/* No URG data to read. */
1291 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1292 	    tp->urg_data == TCP_URG_READ)
1293 		return -EINVAL;	/* Yes this is right ! */
1294 
1295 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1296 		return -ENOTCONN;
1297 
1298 	if (tp->urg_data & TCP_URG_VALID) {
1299 		int err = 0;
1300 		char c = tp->urg_data;
1301 
1302 		if (!(flags & MSG_PEEK))
1303 			tp->urg_data = TCP_URG_READ;
1304 
1305 		/* Read urgent data. */
1306 		msg->msg_flags |= MSG_OOB;
1307 
1308 		if (len > 0) {
1309 			if (!(flags & MSG_TRUNC))
1310 				err = memcpy_to_msg(msg, &c, 1);
1311 			len = 1;
1312 		} else
1313 			msg->msg_flags |= MSG_TRUNC;
1314 
1315 		return err ? -EFAULT : len;
1316 	}
1317 
1318 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1319 		return 0;
1320 
1321 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1322 	 * the available implementations agree in this case:
1323 	 * this call should never block, independent of the
1324 	 * blocking state of the socket.
1325 	 * Mike <pall@rz.uni-karlsruhe.de>
1326 	 */
1327 	return -EAGAIN;
1328 }
1329 
1330 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1331 {
1332 	struct sk_buff *skb;
1333 	int copied = 0, err = 0;
1334 
1335 	/* XXX -- need to support SO_PEEK_OFF */
1336 
1337 	skb_queue_walk(&sk->sk_write_queue, skb) {
1338 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1339 		if (err)
1340 			break;
1341 
1342 		copied += skb->len;
1343 	}
1344 
1345 	return err ?: copied;
1346 }
1347 
1348 /* Clean up the receive buffer for full frames taken by the user,
1349  * then send an ACK if necessary.  COPIED is the number of bytes
1350  * tcp_recvmsg has given to the user so far, it speeds up the
1351  * calculation of whether or not we must ACK for the sake of
1352  * a window update.
1353  */
1354 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1355 {
1356 	struct tcp_sock *tp = tcp_sk(sk);
1357 	bool time_to_ack = false;
1358 
1359 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1360 
1361 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1362 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1363 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1364 
1365 	if (inet_csk_ack_scheduled(sk)) {
1366 		const struct inet_connection_sock *icsk = inet_csk(sk);
1367 		   /* Delayed ACKs frequently hit locked sockets during bulk
1368 		    * receive. */
1369 		if (icsk->icsk_ack.blocked ||
1370 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1371 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1372 		    /*
1373 		     * If this read emptied read buffer, we send ACK, if
1374 		     * connection is not bidirectional, user drained
1375 		     * receive buffer and there was a small segment
1376 		     * in queue.
1377 		     */
1378 		    (copied > 0 &&
1379 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1380 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1381 		       !icsk->icsk_ack.pingpong)) &&
1382 		      !atomic_read(&sk->sk_rmem_alloc)))
1383 			time_to_ack = true;
1384 	}
1385 
1386 	/* We send an ACK if we can now advertise a non-zero window
1387 	 * which has been raised "significantly".
1388 	 *
1389 	 * Even if window raised up to infinity, do not send window open ACK
1390 	 * in states, where we will not receive more. It is useless.
1391 	 */
1392 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1393 		__u32 rcv_window_now = tcp_receive_window(tp);
1394 
1395 		/* Optimize, __tcp_select_window() is not cheap. */
1396 		if (2*rcv_window_now <= tp->window_clamp) {
1397 			__u32 new_window = __tcp_select_window(sk);
1398 
1399 			/* Send ACK now, if this read freed lots of space
1400 			 * in our buffer. Certainly, new_window is new window.
1401 			 * We can advertise it now, if it is not less than current one.
1402 			 * "Lots" means "at least twice" here.
1403 			 */
1404 			if (new_window && new_window >= 2 * rcv_window_now)
1405 				time_to_ack = true;
1406 		}
1407 	}
1408 	if (time_to_ack)
1409 		tcp_send_ack(sk);
1410 }
1411 
1412 static void tcp_prequeue_process(struct sock *sk)
1413 {
1414 	struct sk_buff *skb;
1415 	struct tcp_sock *tp = tcp_sk(sk);
1416 
1417 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1418 
1419 	/* RX process wants to run with disabled BHs, though it is not
1420 	 * necessary */
1421 	local_bh_disable();
1422 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1423 		sk_backlog_rcv(sk, skb);
1424 	local_bh_enable();
1425 
1426 	/* Clear memory counter. */
1427 	tp->ucopy.memory = 0;
1428 }
1429 
1430 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1431 {
1432 	struct sk_buff *skb;
1433 	u32 offset;
1434 
1435 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1436 		offset = seq - TCP_SKB_CB(skb)->seq;
1437 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1438 			offset--;
1439 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1440 			*off = offset;
1441 			return skb;
1442 		}
1443 		/* This looks weird, but this can happen if TCP collapsing
1444 		 * splitted a fat GRO packet, while we released socket lock
1445 		 * in skb_splice_bits()
1446 		 */
1447 		sk_eat_skb(sk, skb);
1448 	}
1449 	return NULL;
1450 }
1451 
1452 /*
1453  * This routine provides an alternative to tcp_recvmsg() for routines
1454  * that would like to handle copying from skbuffs directly in 'sendfile'
1455  * fashion.
1456  * Note:
1457  *	- It is assumed that the socket was locked by the caller.
1458  *	- The routine does not block.
1459  *	- At present, there is no support for reading OOB data
1460  *	  or for 'peeking' the socket using this routine
1461  *	  (although both would be easy to implement).
1462  */
1463 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1464 		  sk_read_actor_t recv_actor)
1465 {
1466 	struct sk_buff *skb;
1467 	struct tcp_sock *tp = tcp_sk(sk);
1468 	u32 seq = tp->copied_seq;
1469 	u32 offset;
1470 	int copied = 0;
1471 
1472 	if (sk->sk_state == TCP_LISTEN)
1473 		return -ENOTCONN;
1474 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1475 		if (offset < skb->len) {
1476 			int used;
1477 			size_t len;
1478 
1479 			len = skb->len - offset;
1480 			/* Stop reading if we hit a patch of urgent data */
1481 			if (tp->urg_data) {
1482 				u32 urg_offset = tp->urg_seq - seq;
1483 				if (urg_offset < len)
1484 					len = urg_offset;
1485 				if (!len)
1486 					break;
1487 			}
1488 			used = recv_actor(desc, skb, offset, len);
1489 			if (used <= 0) {
1490 				if (!copied)
1491 					copied = used;
1492 				break;
1493 			} else if (used <= len) {
1494 				seq += used;
1495 				copied += used;
1496 				offset += used;
1497 			}
1498 			/* If recv_actor drops the lock (e.g. TCP splice
1499 			 * receive) the skb pointer might be invalid when
1500 			 * getting here: tcp_collapse might have deleted it
1501 			 * while aggregating skbs from the socket queue.
1502 			 */
1503 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1504 			if (!skb)
1505 				break;
1506 			/* TCP coalescing might have appended data to the skb.
1507 			 * Try to splice more frags
1508 			 */
1509 			if (offset + 1 != skb->len)
1510 				continue;
1511 		}
1512 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1513 			sk_eat_skb(sk, skb);
1514 			++seq;
1515 			break;
1516 		}
1517 		sk_eat_skb(sk, skb);
1518 		if (!desc->count)
1519 			break;
1520 		tp->copied_seq = seq;
1521 	}
1522 	tp->copied_seq = seq;
1523 
1524 	tcp_rcv_space_adjust(sk);
1525 
1526 	/* Clean up data we have read: This will do ACK frames. */
1527 	if (copied > 0) {
1528 		tcp_recv_skb(sk, seq, &offset);
1529 		tcp_cleanup_rbuf(sk, copied);
1530 	}
1531 	return copied;
1532 }
1533 EXPORT_SYMBOL(tcp_read_sock);
1534 
1535 /*
1536  *	This routine copies from a sock struct into the user buffer.
1537  *
1538  *	Technical note: in 2.3 we work on _locked_ socket, so that
1539  *	tricks with *seq access order and skb->users are not required.
1540  *	Probably, code can be easily improved even more.
1541  */
1542 
1543 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1544 		int flags, int *addr_len)
1545 {
1546 	struct tcp_sock *tp = tcp_sk(sk);
1547 	int copied = 0;
1548 	u32 peek_seq;
1549 	u32 *seq;
1550 	unsigned long used;
1551 	int err;
1552 	int target;		/* Read at least this many bytes */
1553 	long timeo;
1554 	struct task_struct *user_recv = NULL;
1555 	struct sk_buff *skb;
1556 	u32 urg_hole = 0;
1557 
1558 	if (unlikely(flags & MSG_ERRQUEUE))
1559 		return inet_recv_error(sk, msg, len, addr_len);
1560 
1561 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1562 	    (sk->sk_state == TCP_ESTABLISHED))
1563 		sk_busy_loop(sk, nonblock);
1564 
1565 	lock_sock(sk);
1566 
1567 	err = -ENOTCONN;
1568 	if (sk->sk_state == TCP_LISTEN)
1569 		goto out;
1570 
1571 	timeo = sock_rcvtimeo(sk, nonblock);
1572 
1573 	/* Urgent data needs to be handled specially. */
1574 	if (flags & MSG_OOB)
1575 		goto recv_urg;
1576 
1577 	if (unlikely(tp->repair)) {
1578 		err = -EPERM;
1579 		if (!(flags & MSG_PEEK))
1580 			goto out;
1581 
1582 		if (tp->repair_queue == TCP_SEND_QUEUE)
1583 			goto recv_sndq;
1584 
1585 		err = -EINVAL;
1586 		if (tp->repair_queue == TCP_NO_QUEUE)
1587 			goto out;
1588 
1589 		/* 'common' recv queue MSG_PEEK-ing */
1590 	}
1591 
1592 	seq = &tp->copied_seq;
1593 	if (flags & MSG_PEEK) {
1594 		peek_seq = tp->copied_seq;
1595 		seq = &peek_seq;
1596 	}
1597 
1598 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1599 
1600 	do {
1601 		u32 offset;
1602 
1603 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1604 		if (tp->urg_data && tp->urg_seq == *seq) {
1605 			if (copied)
1606 				break;
1607 			if (signal_pending(current)) {
1608 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1609 				break;
1610 			}
1611 		}
1612 
1613 		/* Next get a buffer. */
1614 
1615 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1616 			/* Now that we have two receive queues this
1617 			 * shouldn't happen.
1618 			 */
1619 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1620 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1621 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1622 				 flags))
1623 				break;
1624 
1625 			offset = *seq - TCP_SKB_CB(skb)->seq;
1626 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1627 				offset--;
1628 			if (offset < skb->len)
1629 				goto found_ok_skb;
1630 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1631 				goto found_fin_ok;
1632 			WARN(!(flags & MSG_PEEK),
1633 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1634 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1635 		}
1636 
1637 		/* Well, if we have backlog, try to process it now yet. */
1638 
1639 		if (copied >= target && !sk->sk_backlog.tail)
1640 			break;
1641 
1642 		if (copied) {
1643 			if (sk->sk_err ||
1644 			    sk->sk_state == TCP_CLOSE ||
1645 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1646 			    !timeo ||
1647 			    signal_pending(current))
1648 				break;
1649 		} else {
1650 			if (sock_flag(sk, SOCK_DONE))
1651 				break;
1652 
1653 			if (sk->sk_err) {
1654 				copied = sock_error(sk);
1655 				break;
1656 			}
1657 
1658 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1659 				break;
1660 
1661 			if (sk->sk_state == TCP_CLOSE) {
1662 				if (!sock_flag(sk, SOCK_DONE)) {
1663 					/* This occurs when user tries to read
1664 					 * from never connected socket.
1665 					 */
1666 					copied = -ENOTCONN;
1667 					break;
1668 				}
1669 				break;
1670 			}
1671 
1672 			if (!timeo) {
1673 				copied = -EAGAIN;
1674 				break;
1675 			}
1676 
1677 			if (signal_pending(current)) {
1678 				copied = sock_intr_errno(timeo);
1679 				break;
1680 			}
1681 		}
1682 
1683 		tcp_cleanup_rbuf(sk, copied);
1684 
1685 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1686 			/* Install new reader */
1687 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1688 				user_recv = current;
1689 				tp->ucopy.task = user_recv;
1690 				tp->ucopy.msg = msg;
1691 			}
1692 
1693 			tp->ucopy.len = len;
1694 
1695 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1696 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1697 
1698 			/* Ugly... If prequeue is not empty, we have to
1699 			 * process it before releasing socket, otherwise
1700 			 * order will be broken at second iteration.
1701 			 * More elegant solution is required!!!
1702 			 *
1703 			 * Look: we have the following (pseudo)queues:
1704 			 *
1705 			 * 1. packets in flight
1706 			 * 2. backlog
1707 			 * 3. prequeue
1708 			 * 4. receive_queue
1709 			 *
1710 			 * Each queue can be processed only if the next ones
1711 			 * are empty. At this point we have empty receive_queue.
1712 			 * But prequeue _can_ be not empty after 2nd iteration,
1713 			 * when we jumped to start of loop because backlog
1714 			 * processing added something to receive_queue.
1715 			 * We cannot release_sock(), because backlog contains
1716 			 * packets arrived _after_ prequeued ones.
1717 			 *
1718 			 * Shortly, algorithm is clear --- to process all
1719 			 * the queues in order. We could make it more directly,
1720 			 * requeueing packets from backlog to prequeue, if
1721 			 * is not empty. It is more elegant, but eats cycles,
1722 			 * unfortunately.
1723 			 */
1724 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1725 				goto do_prequeue;
1726 
1727 			/* __ Set realtime policy in scheduler __ */
1728 		}
1729 
1730 		if (copied >= target) {
1731 			/* Do not sleep, just process backlog. */
1732 			release_sock(sk);
1733 			lock_sock(sk);
1734 		} else
1735 			sk_wait_data(sk, &timeo);
1736 
1737 		if (user_recv) {
1738 			int chunk;
1739 
1740 			/* __ Restore normal policy in scheduler __ */
1741 
1742 			if ((chunk = len - tp->ucopy.len) != 0) {
1743 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1744 				len -= chunk;
1745 				copied += chunk;
1746 			}
1747 
1748 			if (tp->rcv_nxt == tp->copied_seq &&
1749 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1750 do_prequeue:
1751 				tcp_prequeue_process(sk);
1752 
1753 				if ((chunk = len - tp->ucopy.len) != 0) {
1754 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1755 					len -= chunk;
1756 					copied += chunk;
1757 				}
1758 			}
1759 		}
1760 		if ((flags & MSG_PEEK) &&
1761 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1762 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1763 					    current->comm,
1764 					    task_pid_nr(current));
1765 			peek_seq = tp->copied_seq;
1766 		}
1767 		continue;
1768 
1769 	found_ok_skb:
1770 		/* Ok so how much can we use? */
1771 		used = skb->len - offset;
1772 		if (len < used)
1773 			used = len;
1774 
1775 		/* Do we have urgent data here? */
1776 		if (tp->urg_data) {
1777 			u32 urg_offset = tp->urg_seq - *seq;
1778 			if (urg_offset < used) {
1779 				if (!urg_offset) {
1780 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1781 						++*seq;
1782 						urg_hole++;
1783 						offset++;
1784 						used--;
1785 						if (!used)
1786 							goto skip_copy;
1787 					}
1788 				} else
1789 					used = urg_offset;
1790 			}
1791 		}
1792 
1793 		if (!(flags & MSG_TRUNC)) {
1794 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1795 			if (err) {
1796 				/* Exception. Bailout! */
1797 				if (!copied)
1798 					copied = -EFAULT;
1799 				break;
1800 			}
1801 		}
1802 
1803 		*seq += used;
1804 		copied += used;
1805 		len -= used;
1806 
1807 		tcp_rcv_space_adjust(sk);
1808 
1809 skip_copy:
1810 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1811 			tp->urg_data = 0;
1812 			tcp_fast_path_check(sk);
1813 		}
1814 		if (used + offset < skb->len)
1815 			continue;
1816 
1817 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1818 			goto found_fin_ok;
1819 		if (!(flags & MSG_PEEK))
1820 			sk_eat_skb(sk, skb);
1821 		continue;
1822 
1823 	found_fin_ok:
1824 		/* Process the FIN. */
1825 		++*seq;
1826 		if (!(flags & MSG_PEEK))
1827 			sk_eat_skb(sk, skb);
1828 		break;
1829 	} while (len > 0);
1830 
1831 	if (user_recv) {
1832 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1833 			int chunk;
1834 
1835 			tp->ucopy.len = copied > 0 ? len : 0;
1836 
1837 			tcp_prequeue_process(sk);
1838 
1839 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1840 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1841 				len -= chunk;
1842 				copied += chunk;
1843 			}
1844 		}
1845 
1846 		tp->ucopy.task = NULL;
1847 		tp->ucopy.len = 0;
1848 	}
1849 
1850 	/* According to UNIX98, msg_name/msg_namelen are ignored
1851 	 * on connected socket. I was just happy when found this 8) --ANK
1852 	 */
1853 
1854 	/* Clean up data we have read: This will do ACK frames. */
1855 	tcp_cleanup_rbuf(sk, copied);
1856 
1857 	release_sock(sk);
1858 	return copied;
1859 
1860 out:
1861 	release_sock(sk);
1862 	return err;
1863 
1864 recv_urg:
1865 	err = tcp_recv_urg(sk, msg, len, flags);
1866 	goto out;
1867 
1868 recv_sndq:
1869 	err = tcp_peek_sndq(sk, msg, len);
1870 	goto out;
1871 }
1872 EXPORT_SYMBOL(tcp_recvmsg);
1873 
1874 void tcp_set_state(struct sock *sk, int state)
1875 {
1876 	int oldstate = sk->sk_state;
1877 
1878 	switch (state) {
1879 	case TCP_ESTABLISHED:
1880 		if (oldstate != TCP_ESTABLISHED)
1881 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1882 		break;
1883 
1884 	case TCP_CLOSE:
1885 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1886 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1887 
1888 		sk->sk_prot->unhash(sk);
1889 		if (inet_csk(sk)->icsk_bind_hash &&
1890 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1891 			inet_put_port(sk);
1892 		/* fall through */
1893 	default:
1894 		if (oldstate == TCP_ESTABLISHED)
1895 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1896 	}
1897 
1898 	/* Change state AFTER socket is unhashed to avoid closed
1899 	 * socket sitting in hash tables.
1900 	 */
1901 	sk->sk_state = state;
1902 
1903 #ifdef STATE_TRACE
1904 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1905 #endif
1906 }
1907 EXPORT_SYMBOL_GPL(tcp_set_state);
1908 
1909 /*
1910  *	State processing on a close. This implements the state shift for
1911  *	sending our FIN frame. Note that we only send a FIN for some
1912  *	states. A shutdown() may have already sent the FIN, or we may be
1913  *	closed.
1914  */
1915 
1916 static const unsigned char new_state[16] = {
1917   /* current state:        new state:      action:	*/
1918   [0 /* (Invalid) */]	= TCP_CLOSE,
1919   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1920   [TCP_SYN_SENT]	= TCP_CLOSE,
1921   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1922   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
1923   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
1924   [TCP_TIME_WAIT]	= TCP_CLOSE,
1925   [TCP_CLOSE]		= TCP_CLOSE,
1926   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
1927   [TCP_LAST_ACK]	= TCP_LAST_ACK,
1928   [TCP_LISTEN]		= TCP_CLOSE,
1929   [TCP_CLOSING]		= TCP_CLOSING,
1930   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
1931 };
1932 
1933 static int tcp_close_state(struct sock *sk)
1934 {
1935 	int next = (int)new_state[sk->sk_state];
1936 	int ns = next & TCP_STATE_MASK;
1937 
1938 	tcp_set_state(sk, ns);
1939 
1940 	return next & TCP_ACTION_FIN;
1941 }
1942 
1943 /*
1944  *	Shutdown the sending side of a connection. Much like close except
1945  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1946  */
1947 
1948 void tcp_shutdown(struct sock *sk, int how)
1949 {
1950 	/*	We need to grab some memory, and put together a FIN,
1951 	 *	and then put it into the queue to be sent.
1952 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1953 	 */
1954 	if (!(how & SEND_SHUTDOWN))
1955 		return;
1956 
1957 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1958 	if ((1 << sk->sk_state) &
1959 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1960 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1961 		/* Clear out any half completed packets.  FIN if needed. */
1962 		if (tcp_close_state(sk))
1963 			tcp_send_fin(sk);
1964 	}
1965 }
1966 EXPORT_SYMBOL(tcp_shutdown);
1967 
1968 bool tcp_check_oom(struct sock *sk, int shift)
1969 {
1970 	bool too_many_orphans, out_of_socket_memory;
1971 
1972 	too_many_orphans = tcp_too_many_orphans(sk, shift);
1973 	out_of_socket_memory = tcp_out_of_memory(sk);
1974 
1975 	if (too_many_orphans)
1976 		net_info_ratelimited("too many orphaned sockets\n");
1977 	if (out_of_socket_memory)
1978 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
1979 	return too_many_orphans || out_of_socket_memory;
1980 }
1981 
1982 void tcp_close(struct sock *sk, long timeout)
1983 {
1984 	struct sk_buff *skb;
1985 	int data_was_unread = 0;
1986 	int state;
1987 
1988 	lock_sock(sk);
1989 	sk->sk_shutdown = SHUTDOWN_MASK;
1990 
1991 	if (sk->sk_state == TCP_LISTEN) {
1992 		tcp_set_state(sk, TCP_CLOSE);
1993 
1994 		/* Special case. */
1995 		inet_csk_listen_stop(sk);
1996 
1997 		goto adjudge_to_death;
1998 	}
1999 
2000 	/*  We need to flush the recv. buffs.  We do this only on the
2001 	 *  descriptor close, not protocol-sourced closes, because the
2002 	 *  reader process may not have drained the data yet!
2003 	 */
2004 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2005 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2006 
2007 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2008 			len--;
2009 		data_was_unread += len;
2010 		__kfree_skb(skb);
2011 	}
2012 
2013 	sk_mem_reclaim(sk);
2014 
2015 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2016 	if (sk->sk_state == TCP_CLOSE)
2017 		goto adjudge_to_death;
2018 
2019 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2020 	 * data was lost. To witness the awful effects of the old behavior of
2021 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2022 	 * GET in an FTP client, suspend the process, wait for the client to
2023 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2024 	 * Note: timeout is always zero in such a case.
2025 	 */
2026 	if (unlikely(tcp_sk(sk)->repair)) {
2027 		sk->sk_prot->disconnect(sk, 0);
2028 	} else if (data_was_unread) {
2029 		/* Unread data was tossed, zap the connection. */
2030 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2031 		tcp_set_state(sk, TCP_CLOSE);
2032 		tcp_send_active_reset(sk, sk->sk_allocation);
2033 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2034 		/* Check zero linger _after_ checking for unread data. */
2035 		sk->sk_prot->disconnect(sk, 0);
2036 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2037 	} else if (tcp_close_state(sk)) {
2038 		/* We FIN if the application ate all the data before
2039 		 * zapping the connection.
2040 		 */
2041 
2042 		/* RED-PEN. Formally speaking, we have broken TCP state
2043 		 * machine. State transitions:
2044 		 *
2045 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2046 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2047 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2048 		 *
2049 		 * are legal only when FIN has been sent (i.e. in window),
2050 		 * rather than queued out of window. Purists blame.
2051 		 *
2052 		 * F.e. "RFC state" is ESTABLISHED,
2053 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2054 		 *
2055 		 * The visible declinations are that sometimes
2056 		 * we enter time-wait state, when it is not required really
2057 		 * (harmless), do not send active resets, when they are
2058 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2059 		 * they look as CLOSING or LAST_ACK for Linux)
2060 		 * Probably, I missed some more holelets.
2061 		 * 						--ANK
2062 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2063 		 * in a single packet! (May consider it later but will
2064 		 * probably need API support or TCP_CORK SYN-ACK until
2065 		 * data is written and socket is closed.)
2066 		 */
2067 		tcp_send_fin(sk);
2068 	}
2069 
2070 	sk_stream_wait_close(sk, timeout);
2071 
2072 adjudge_to_death:
2073 	state = sk->sk_state;
2074 	sock_hold(sk);
2075 	sock_orphan(sk);
2076 
2077 	/* It is the last release_sock in its life. It will remove backlog. */
2078 	release_sock(sk);
2079 
2080 
2081 	/* Now socket is owned by kernel and we acquire BH lock
2082 	   to finish close. No need to check for user refs.
2083 	 */
2084 	local_bh_disable();
2085 	bh_lock_sock(sk);
2086 	WARN_ON(sock_owned_by_user(sk));
2087 
2088 	percpu_counter_inc(sk->sk_prot->orphan_count);
2089 
2090 	/* Have we already been destroyed by a softirq or backlog? */
2091 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2092 		goto out;
2093 
2094 	/*	This is a (useful) BSD violating of the RFC. There is a
2095 	 *	problem with TCP as specified in that the other end could
2096 	 *	keep a socket open forever with no application left this end.
2097 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2098 	 *	our end. If they send after that then tough - BUT: long enough
2099 	 *	that we won't make the old 4*rto = almost no time - whoops
2100 	 *	reset mistake.
2101 	 *
2102 	 *	Nope, it was not mistake. It is really desired behaviour
2103 	 *	f.e. on http servers, when such sockets are useless, but
2104 	 *	consume significant resources. Let's do it with special
2105 	 *	linger2	option.					--ANK
2106 	 */
2107 
2108 	if (sk->sk_state == TCP_FIN_WAIT2) {
2109 		struct tcp_sock *tp = tcp_sk(sk);
2110 		if (tp->linger2 < 0) {
2111 			tcp_set_state(sk, TCP_CLOSE);
2112 			tcp_send_active_reset(sk, GFP_ATOMIC);
2113 			NET_INC_STATS_BH(sock_net(sk),
2114 					LINUX_MIB_TCPABORTONLINGER);
2115 		} else {
2116 			const int tmo = tcp_fin_time(sk);
2117 
2118 			if (tmo > TCP_TIMEWAIT_LEN) {
2119 				inet_csk_reset_keepalive_timer(sk,
2120 						tmo - TCP_TIMEWAIT_LEN);
2121 			} else {
2122 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2123 				goto out;
2124 			}
2125 		}
2126 	}
2127 	if (sk->sk_state != TCP_CLOSE) {
2128 		sk_mem_reclaim(sk);
2129 		if (tcp_check_oom(sk, 0)) {
2130 			tcp_set_state(sk, TCP_CLOSE);
2131 			tcp_send_active_reset(sk, GFP_ATOMIC);
2132 			NET_INC_STATS_BH(sock_net(sk),
2133 					LINUX_MIB_TCPABORTONMEMORY);
2134 		}
2135 	}
2136 
2137 	if (sk->sk_state == TCP_CLOSE) {
2138 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2139 		/* We could get here with a non-NULL req if the socket is
2140 		 * aborted (e.g., closed with unread data) before 3WHS
2141 		 * finishes.
2142 		 */
2143 		if (req)
2144 			reqsk_fastopen_remove(sk, req, false);
2145 		inet_csk_destroy_sock(sk);
2146 	}
2147 	/* Otherwise, socket is reprieved until protocol close. */
2148 
2149 out:
2150 	bh_unlock_sock(sk);
2151 	local_bh_enable();
2152 	sock_put(sk);
2153 }
2154 EXPORT_SYMBOL(tcp_close);
2155 
2156 /* These states need RST on ABORT according to RFC793 */
2157 
2158 static inline bool tcp_need_reset(int state)
2159 {
2160 	return (1 << state) &
2161 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2162 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2163 }
2164 
2165 int tcp_disconnect(struct sock *sk, int flags)
2166 {
2167 	struct inet_sock *inet = inet_sk(sk);
2168 	struct inet_connection_sock *icsk = inet_csk(sk);
2169 	struct tcp_sock *tp = tcp_sk(sk);
2170 	int err = 0;
2171 	int old_state = sk->sk_state;
2172 
2173 	if (old_state != TCP_CLOSE)
2174 		tcp_set_state(sk, TCP_CLOSE);
2175 
2176 	/* ABORT function of RFC793 */
2177 	if (old_state == TCP_LISTEN) {
2178 		inet_csk_listen_stop(sk);
2179 	} else if (unlikely(tp->repair)) {
2180 		sk->sk_err = ECONNABORTED;
2181 	} else if (tcp_need_reset(old_state) ||
2182 		   (tp->snd_nxt != tp->write_seq &&
2183 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2184 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2185 		 * states
2186 		 */
2187 		tcp_send_active_reset(sk, gfp_any());
2188 		sk->sk_err = ECONNRESET;
2189 	} else if (old_state == TCP_SYN_SENT)
2190 		sk->sk_err = ECONNRESET;
2191 
2192 	tcp_clear_xmit_timers(sk);
2193 	__skb_queue_purge(&sk->sk_receive_queue);
2194 	tcp_write_queue_purge(sk);
2195 	__skb_queue_purge(&tp->out_of_order_queue);
2196 
2197 	inet->inet_dport = 0;
2198 
2199 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2200 		inet_reset_saddr(sk);
2201 
2202 	sk->sk_shutdown = 0;
2203 	sock_reset_flag(sk, SOCK_DONE);
2204 	tp->srtt_us = 0;
2205 	if ((tp->write_seq += tp->max_window + 2) == 0)
2206 		tp->write_seq = 1;
2207 	icsk->icsk_backoff = 0;
2208 	tp->snd_cwnd = 2;
2209 	icsk->icsk_probes_out = 0;
2210 	tp->packets_out = 0;
2211 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2212 	tp->snd_cwnd_cnt = 0;
2213 	tp->window_clamp = 0;
2214 	tcp_set_ca_state(sk, TCP_CA_Open);
2215 	tcp_clear_retrans(tp);
2216 	inet_csk_delack_init(sk);
2217 	tcp_init_send_head(sk);
2218 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2219 	__sk_dst_reset(sk);
2220 
2221 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2222 
2223 	sk->sk_error_report(sk);
2224 	return err;
2225 }
2226 EXPORT_SYMBOL(tcp_disconnect);
2227 
2228 void tcp_sock_destruct(struct sock *sk)
2229 {
2230 	inet_sock_destruct(sk);
2231 
2232 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2233 }
2234 
2235 static inline bool tcp_can_repair_sock(const struct sock *sk)
2236 {
2237 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2238 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2239 }
2240 
2241 static int tcp_repair_options_est(struct tcp_sock *tp,
2242 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2243 {
2244 	struct tcp_repair_opt opt;
2245 
2246 	while (len >= sizeof(opt)) {
2247 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2248 			return -EFAULT;
2249 
2250 		optbuf++;
2251 		len -= sizeof(opt);
2252 
2253 		switch (opt.opt_code) {
2254 		case TCPOPT_MSS:
2255 			tp->rx_opt.mss_clamp = opt.opt_val;
2256 			break;
2257 		case TCPOPT_WINDOW:
2258 			{
2259 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2260 				u16 rcv_wscale = opt.opt_val >> 16;
2261 
2262 				if (snd_wscale > 14 || rcv_wscale > 14)
2263 					return -EFBIG;
2264 
2265 				tp->rx_opt.snd_wscale = snd_wscale;
2266 				tp->rx_opt.rcv_wscale = rcv_wscale;
2267 				tp->rx_opt.wscale_ok = 1;
2268 			}
2269 			break;
2270 		case TCPOPT_SACK_PERM:
2271 			if (opt.opt_val != 0)
2272 				return -EINVAL;
2273 
2274 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2275 			if (sysctl_tcp_fack)
2276 				tcp_enable_fack(tp);
2277 			break;
2278 		case TCPOPT_TIMESTAMP:
2279 			if (opt.opt_val != 0)
2280 				return -EINVAL;
2281 
2282 			tp->rx_opt.tstamp_ok = 1;
2283 			break;
2284 		}
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 /*
2291  *	Socket option code for TCP.
2292  */
2293 static int do_tcp_setsockopt(struct sock *sk, int level,
2294 		int optname, char __user *optval, unsigned int optlen)
2295 {
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 	struct inet_connection_sock *icsk = inet_csk(sk);
2298 	int val;
2299 	int err = 0;
2300 
2301 	/* These are data/string values, all the others are ints */
2302 	switch (optname) {
2303 	case TCP_CONGESTION: {
2304 		char name[TCP_CA_NAME_MAX];
2305 
2306 		if (optlen < 1)
2307 			return -EINVAL;
2308 
2309 		val = strncpy_from_user(name, optval,
2310 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2311 		if (val < 0)
2312 			return -EFAULT;
2313 		name[val] = 0;
2314 
2315 		lock_sock(sk);
2316 		err = tcp_set_congestion_control(sk, name);
2317 		release_sock(sk);
2318 		return err;
2319 	}
2320 	default:
2321 		/* fallthru */
2322 		break;
2323 	}
2324 
2325 	if (optlen < sizeof(int))
2326 		return -EINVAL;
2327 
2328 	if (get_user(val, (int __user *)optval))
2329 		return -EFAULT;
2330 
2331 	lock_sock(sk);
2332 
2333 	switch (optname) {
2334 	case TCP_MAXSEG:
2335 		/* Values greater than interface MTU won't take effect. However
2336 		 * at the point when this call is done we typically don't yet
2337 		 * know which interface is going to be used */
2338 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2339 			err = -EINVAL;
2340 			break;
2341 		}
2342 		tp->rx_opt.user_mss = val;
2343 		break;
2344 
2345 	case TCP_NODELAY:
2346 		if (val) {
2347 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2348 			 * this option on corked socket is remembered, but
2349 			 * it is not activated until cork is cleared.
2350 			 *
2351 			 * However, when TCP_NODELAY is set we make
2352 			 * an explicit push, which overrides even TCP_CORK
2353 			 * for currently queued segments.
2354 			 */
2355 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2356 			tcp_push_pending_frames(sk);
2357 		} else {
2358 			tp->nonagle &= ~TCP_NAGLE_OFF;
2359 		}
2360 		break;
2361 
2362 	case TCP_THIN_LINEAR_TIMEOUTS:
2363 		if (val < 0 || val > 1)
2364 			err = -EINVAL;
2365 		else
2366 			tp->thin_lto = val;
2367 		break;
2368 
2369 	case TCP_THIN_DUPACK:
2370 		if (val < 0 || val > 1)
2371 			err = -EINVAL;
2372 		else {
2373 			tp->thin_dupack = val;
2374 			if (tp->thin_dupack)
2375 				tcp_disable_early_retrans(tp);
2376 		}
2377 		break;
2378 
2379 	case TCP_REPAIR:
2380 		if (!tcp_can_repair_sock(sk))
2381 			err = -EPERM;
2382 		else if (val == 1) {
2383 			tp->repair = 1;
2384 			sk->sk_reuse = SK_FORCE_REUSE;
2385 			tp->repair_queue = TCP_NO_QUEUE;
2386 		} else if (val == 0) {
2387 			tp->repair = 0;
2388 			sk->sk_reuse = SK_NO_REUSE;
2389 			tcp_send_window_probe(sk);
2390 		} else
2391 			err = -EINVAL;
2392 
2393 		break;
2394 
2395 	case TCP_REPAIR_QUEUE:
2396 		if (!tp->repair)
2397 			err = -EPERM;
2398 		else if (val < TCP_QUEUES_NR)
2399 			tp->repair_queue = val;
2400 		else
2401 			err = -EINVAL;
2402 		break;
2403 
2404 	case TCP_QUEUE_SEQ:
2405 		if (sk->sk_state != TCP_CLOSE)
2406 			err = -EPERM;
2407 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2408 			tp->write_seq = val;
2409 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2410 			tp->rcv_nxt = val;
2411 		else
2412 			err = -EINVAL;
2413 		break;
2414 
2415 	case TCP_REPAIR_OPTIONS:
2416 		if (!tp->repair)
2417 			err = -EINVAL;
2418 		else if (sk->sk_state == TCP_ESTABLISHED)
2419 			err = tcp_repair_options_est(tp,
2420 					(struct tcp_repair_opt __user *)optval,
2421 					optlen);
2422 		else
2423 			err = -EPERM;
2424 		break;
2425 
2426 	case TCP_CORK:
2427 		/* When set indicates to always queue non-full frames.
2428 		 * Later the user clears this option and we transmit
2429 		 * any pending partial frames in the queue.  This is
2430 		 * meant to be used alongside sendfile() to get properly
2431 		 * filled frames when the user (for example) must write
2432 		 * out headers with a write() call first and then use
2433 		 * sendfile to send out the data parts.
2434 		 *
2435 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2436 		 * stronger than TCP_NODELAY.
2437 		 */
2438 		if (val) {
2439 			tp->nonagle |= TCP_NAGLE_CORK;
2440 		} else {
2441 			tp->nonagle &= ~TCP_NAGLE_CORK;
2442 			if (tp->nonagle&TCP_NAGLE_OFF)
2443 				tp->nonagle |= TCP_NAGLE_PUSH;
2444 			tcp_push_pending_frames(sk);
2445 		}
2446 		break;
2447 
2448 	case TCP_KEEPIDLE:
2449 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2450 			err = -EINVAL;
2451 		else {
2452 			tp->keepalive_time = val * HZ;
2453 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2454 			    !((1 << sk->sk_state) &
2455 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2456 				u32 elapsed = keepalive_time_elapsed(tp);
2457 				if (tp->keepalive_time > elapsed)
2458 					elapsed = tp->keepalive_time - elapsed;
2459 				else
2460 					elapsed = 0;
2461 				inet_csk_reset_keepalive_timer(sk, elapsed);
2462 			}
2463 		}
2464 		break;
2465 	case TCP_KEEPINTVL:
2466 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2467 			err = -EINVAL;
2468 		else
2469 			tp->keepalive_intvl = val * HZ;
2470 		break;
2471 	case TCP_KEEPCNT:
2472 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2473 			err = -EINVAL;
2474 		else
2475 			tp->keepalive_probes = val;
2476 		break;
2477 	case TCP_SYNCNT:
2478 		if (val < 1 || val > MAX_TCP_SYNCNT)
2479 			err = -EINVAL;
2480 		else
2481 			icsk->icsk_syn_retries = val;
2482 		break;
2483 
2484 	case TCP_LINGER2:
2485 		if (val < 0)
2486 			tp->linger2 = -1;
2487 		else if (val > sysctl_tcp_fin_timeout / HZ)
2488 			tp->linger2 = 0;
2489 		else
2490 			tp->linger2 = val * HZ;
2491 		break;
2492 
2493 	case TCP_DEFER_ACCEPT:
2494 		/* Translate value in seconds to number of retransmits */
2495 		icsk->icsk_accept_queue.rskq_defer_accept =
2496 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2497 					TCP_RTO_MAX / HZ);
2498 		break;
2499 
2500 	case TCP_WINDOW_CLAMP:
2501 		if (!val) {
2502 			if (sk->sk_state != TCP_CLOSE) {
2503 				err = -EINVAL;
2504 				break;
2505 			}
2506 			tp->window_clamp = 0;
2507 		} else
2508 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2509 						SOCK_MIN_RCVBUF / 2 : val;
2510 		break;
2511 
2512 	case TCP_QUICKACK:
2513 		if (!val) {
2514 			icsk->icsk_ack.pingpong = 1;
2515 		} else {
2516 			icsk->icsk_ack.pingpong = 0;
2517 			if ((1 << sk->sk_state) &
2518 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2519 			    inet_csk_ack_scheduled(sk)) {
2520 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2521 				tcp_cleanup_rbuf(sk, 1);
2522 				if (!(val & 1))
2523 					icsk->icsk_ack.pingpong = 1;
2524 			}
2525 		}
2526 		break;
2527 
2528 #ifdef CONFIG_TCP_MD5SIG
2529 	case TCP_MD5SIG:
2530 		/* Read the IP->Key mappings from userspace */
2531 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2532 		break;
2533 #endif
2534 	case TCP_USER_TIMEOUT:
2535 		/* Cap the max time in ms TCP will retry or probe the window
2536 		 * before giving up and aborting (ETIMEDOUT) a connection.
2537 		 */
2538 		if (val < 0)
2539 			err = -EINVAL;
2540 		else
2541 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2542 		break;
2543 
2544 	case TCP_FASTOPEN:
2545 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2546 		    TCPF_LISTEN)))
2547 			err = fastopen_init_queue(sk, val);
2548 		else
2549 			err = -EINVAL;
2550 		break;
2551 	case TCP_TIMESTAMP:
2552 		if (!tp->repair)
2553 			err = -EPERM;
2554 		else
2555 			tp->tsoffset = val - tcp_time_stamp;
2556 		break;
2557 	case TCP_NOTSENT_LOWAT:
2558 		tp->notsent_lowat = val;
2559 		sk->sk_write_space(sk);
2560 		break;
2561 	default:
2562 		err = -ENOPROTOOPT;
2563 		break;
2564 	}
2565 
2566 	release_sock(sk);
2567 	return err;
2568 }
2569 
2570 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2571 		   unsigned int optlen)
2572 {
2573 	const struct inet_connection_sock *icsk = inet_csk(sk);
2574 
2575 	if (level != SOL_TCP)
2576 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2577 						     optval, optlen);
2578 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2579 }
2580 EXPORT_SYMBOL(tcp_setsockopt);
2581 
2582 #ifdef CONFIG_COMPAT
2583 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2584 			  char __user *optval, unsigned int optlen)
2585 {
2586 	if (level != SOL_TCP)
2587 		return inet_csk_compat_setsockopt(sk, level, optname,
2588 						  optval, optlen);
2589 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2590 }
2591 EXPORT_SYMBOL(compat_tcp_setsockopt);
2592 #endif
2593 
2594 /* Return information about state of tcp endpoint in API format. */
2595 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2596 {
2597 	const struct tcp_sock *tp = tcp_sk(sk);
2598 	const struct inet_connection_sock *icsk = inet_csk(sk);
2599 	u32 now = tcp_time_stamp;
2600 	u32 rate;
2601 
2602 	memset(info, 0, sizeof(*info));
2603 
2604 	info->tcpi_state = sk->sk_state;
2605 	info->tcpi_ca_state = icsk->icsk_ca_state;
2606 	info->tcpi_retransmits = icsk->icsk_retransmits;
2607 	info->tcpi_probes = icsk->icsk_probes_out;
2608 	info->tcpi_backoff = icsk->icsk_backoff;
2609 
2610 	if (tp->rx_opt.tstamp_ok)
2611 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2612 	if (tcp_is_sack(tp))
2613 		info->tcpi_options |= TCPI_OPT_SACK;
2614 	if (tp->rx_opt.wscale_ok) {
2615 		info->tcpi_options |= TCPI_OPT_WSCALE;
2616 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2617 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2618 	}
2619 
2620 	if (tp->ecn_flags & TCP_ECN_OK)
2621 		info->tcpi_options |= TCPI_OPT_ECN;
2622 	if (tp->ecn_flags & TCP_ECN_SEEN)
2623 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2624 	if (tp->syn_data_acked)
2625 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2626 
2627 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2628 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2629 	info->tcpi_snd_mss = tp->mss_cache;
2630 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2631 
2632 	if (sk->sk_state == TCP_LISTEN) {
2633 		info->tcpi_unacked = sk->sk_ack_backlog;
2634 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2635 	} else {
2636 		info->tcpi_unacked = tp->packets_out;
2637 		info->tcpi_sacked = tp->sacked_out;
2638 	}
2639 	info->tcpi_lost = tp->lost_out;
2640 	info->tcpi_retrans = tp->retrans_out;
2641 	info->tcpi_fackets = tp->fackets_out;
2642 
2643 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2644 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2645 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2646 
2647 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2648 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2649 	info->tcpi_rtt = tp->srtt_us >> 3;
2650 	info->tcpi_rttvar = tp->mdev_us >> 2;
2651 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2652 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2653 	info->tcpi_advmss = tp->advmss;
2654 	info->tcpi_reordering = tp->reordering;
2655 
2656 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2657 	info->tcpi_rcv_space = tp->rcvq_space.space;
2658 
2659 	info->tcpi_total_retrans = tp->total_retrans;
2660 
2661 	rate = READ_ONCE(sk->sk_pacing_rate);
2662 	info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2663 
2664 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2665 	info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2666 }
2667 EXPORT_SYMBOL_GPL(tcp_get_info);
2668 
2669 static int do_tcp_getsockopt(struct sock *sk, int level,
2670 		int optname, char __user *optval, int __user *optlen)
2671 {
2672 	struct inet_connection_sock *icsk = inet_csk(sk);
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 	int val, len;
2675 
2676 	if (get_user(len, optlen))
2677 		return -EFAULT;
2678 
2679 	len = min_t(unsigned int, len, sizeof(int));
2680 
2681 	if (len < 0)
2682 		return -EINVAL;
2683 
2684 	switch (optname) {
2685 	case TCP_MAXSEG:
2686 		val = tp->mss_cache;
2687 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2688 			val = tp->rx_opt.user_mss;
2689 		if (tp->repair)
2690 			val = tp->rx_opt.mss_clamp;
2691 		break;
2692 	case TCP_NODELAY:
2693 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2694 		break;
2695 	case TCP_CORK:
2696 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2697 		break;
2698 	case TCP_KEEPIDLE:
2699 		val = keepalive_time_when(tp) / HZ;
2700 		break;
2701 	case TCP_KEEPINTVL:
2702 		val = keepalive_intvl_when(tp) / HZ;
2703 		break;
2704 	case TCP_KEEPCNT:
2705 		val = keepalive_probes(tp);
2706 		break;
2707 	case TCP_SYNCNT:
2708 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2709 		break;
2710 	case TCP_LINGER2:
2711 		val = tp->linger2;
2712 		if (val >= 0)
2713 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2714 		break;
2715 	case TCP_DEFER_ACCEPT:
2716 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2717 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2718 		break;
2719 	case TCP_WINDOW_CLAMP:
2720 		val = tp->window_clamp;
2721 		break;
2722 	case TCP_INFO: {
2723 		struct tcp_info info;
2724 
2725 		if (get_user(len, optlen))
2726 			return -EFAULT;
2727 
2728 		tcp_get_info(sk, &info);
2729 
2730 		len = min_t(unsigned int, len, sizeof(info));
2731 		if (put_user(len, optlen))
2732 			return -EFAULT;
2733 		if (copy_to_user(optval, &info, len))
2734 			return -EFAULT;
2735 		return 0;
2736 	}
2737 	case TCP_QUICKACK:
2738 		val = !icsk->icsk_ack.pingpong;
2739 		break;
2740 
2741 	case TCP_CONGESTION:
2742 		if (get_user(len, optlen))
2743 			return -EFAULT;
2744 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2745 		if (put_user(len, optlen))
2746 			return -EFAULT;
2747 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2748 			return -EFAULT;
2749 		return 0;
2750 
2751 	case TCP_THIN_LINEAR_TIMEOUTS:
2752 		val = tp->thin_lto;
2753 		break;
2754 	case TCP_THIN_DUPACK:
2755 		val = tp->thin_dupack;
2756 		break;
2757 
2758 	case TCP_REPAIR:
2759 		val = tp->repair;
2760 		break;
2761 
2762 	case TCP_REPAIR_QUEUE:
2763 		if (tp->repair)
2764 			val = tp->repair_queue;
2765 		else
2766 			return -EINVAL;
2767 		break;
2768 
2769 	case TCP_QUEUE_SEQ:
2770 		if (tp->repair_queue == TCP_SEND_QUEUE)
2771 			val = tp->write_seq;
2772 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2773 			val = tp->rcv_nxt;
2774 		else
2775 			return -EINVAL;
2776 		break;
2777 
2778 	case TCP_USER_TIMEOUT:
2779 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2780 		break;
2781 
2782 	case TCP_FASTOPEN:
2783 		if (icsk->icsk_accept_queue.fastopenq)
2784 			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2785 		else
2786 			val = 0;
2787 		break;
2788 
2789 	case TCP_TIMESTAMP:
2790 		val = tcp_time_stamp + tp->tsoffset;
2791 		break;
2792 	case TCP_NOTSENT_LOWAT:
2793 		val = tp->notsent_lowat;
2794 		break;
2795 	default:
2796 		return -ENOPROTOOPT;
2797 	}
2798 
2799 	if (put_user(len, optlen))
2800 		return -EFAULT;
2801 	if (copy_to_user(optval, &val, len))
2802 		return -EFAULT;
2803 	return 0;
2804 }
2805 
2806 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2807 		   int __user *optlen)
2808 {
2809 	struct inet_connection_sock *icsk = inet_csk(sk);
2810 
2811 	if (level != SOL_TCP)
2812 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2813 						     optval, optlen);
2814 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2815 }
2816 EXPORT_SYMBOL(tcp_getsockopt);
2817 
2818 #ifdef CONFIG_COMPAT
2819 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2820 			  char __user *optval, int __user *optlen)
2821 {
2822 	if (level != SOL_TCP)
2823 		return inet_csk_compat_getsockopt(sk, level, optname,
2824 						  optval, optlen);
2825 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2826 }
2827 EXPORT_SYMBOL(compat_tcp_getsockopt);
2828 #endif
2829 
2830 #ifdef CONFIG_TCP_MD5SIG
2831 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2832 static DEFINE_MUTEX(tcp_md5sig_mutex);
2833 static bool tcp_md5sig_pool_populated = false;
2834 
2835 static void __tcp_alloc_md5sig_pool(void)
2836 {
2837 	int cpu;
2838 
2839 	for_each_possible_cpu(cpu) {
2840 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2841 			struct crypto_hash *hash;
2842 
2843 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2844 			if (IS_ERR_OR_NULL(hash))
2845 				return;
2846 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2847 		}
2848 	}
2849 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2850 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2851 	 */
2852 	smp_wmb();
2853 	tcp_md5sig_pool_populated = true;
2854 }
2855 
2856 bool tcp_alloc_md5sig_pool(void)
2857 {
2858 	if (unlikely(!tcp_md5sig_pool_populated)) {
2859 		mutex_lock(&tcp_md5sig_mutex);
2860 
2861 		if (!tcp_md5sig_pool_populated)
2862 			__tcp_alloc_md5sig_pool();
2863 
2864 		mutex_unlock(&tcp_md5sig_mutex);
2865 	}
2866 	return tcp_md5sig_pool_populated;
2867 }
2868 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2869 
2870 
2871 /**
2872  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2873  *
2874  *	We use percpu structure, so if we succeed, we exit with preemption
2875  *	and BH disabled, to make sure another thread or softirq handling
2876  *	wont try to get same context.
2877  */
2878 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2879 {
2880 	local_bh_disable();
2881 
2882 	if (tcp_md5sig_pool_populated) {
2883 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2884 		smp_rmb();
2885 		return this_cpu_ptr(&tcp_md5sig_pool);
2886 	}
2887 	local_bh_enable();
2888 	return NULL;
2889 }
2890 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2891 
2892 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2893 			const struct tcphdr *th)
2894 {
2895 	struct scatterlist sg;
2896 	struct tcphdr hdr;
2897 	int err;
2898 
2899 	/* We are not allowed to change tcphdr, make a local copy */
2900 	memcpy(&hdr, th, sizeof(hdr));
2901 	hdr.check = 0;
2902 
2903 	/* options aren't included in the hash */
2904 	sg_init_one(&sg, &hdr, sizeof(hdr));
2905 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2906 	return err;
2907 }
2908 EXPORT_SYMBOL(tcp_md5_hash_header);
2909 
2910 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2911 			  const struct sk_buff *skb, unsigned int header_len)
2912 {
2913 	struct scatterlist sg;
2914 	const struct tcphdr *tp = tcp_hdr(skb);
2915 	struct hash_desc *desc = &hp->md5_desc;
2916 	unsigned int i;
2917 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2918 					   skb_headlen(skb) - header_len : 0;
2919 	const struct skb_shared_info *shi = skb_shinfo(skb);
2920 	struct sk_buff *frag_iter;
2921 
2922 	sg_init_table(&sg, 1);
2923 
2924 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2925 	if (crypto_hash_update(desc, &sg, head_data_len))
2926 		return 1;
2927 
2928 	for (i = 0; i < shi->nr_frags; ++i) {
2929 		const struct skb_frag_struct *f = &shi->frags[i];
2930 		unsigned int offset = f->page_offset;
2931 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
2932 
2933 		sg_set_page(&sg, page, skb_frag_size(f),
2934 			    offset_in_page(offset));
2935 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
2936 			return 1;
2937 	}
2938 
2939 	skb_walk_frags(skb, frag_iter)
2940 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
2941 			return 1;
2942 
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2946 
2947 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
2948 {
2949 	struct scatterlist sg;
2950 
2951 	sg_init_one(&sg, key->key, key->keylen);
2952 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2953 }
2954 EXPORT_SYMBOL(tcp_md5_hash_key);
2955 
2956 #endif
2957 
2958 void tcp_done(struct sock *sk)
2959 {
2960 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2961 
2962 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2963 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2964 
2965 	tcp_set_state(sk, TCP_CLOSE);
2966 	tcp_clear_xmit_timers(sk);
2967 	if (req)
2968 		reqsk_fastopen_remove(sk, req, false);
2969 
2970 	sk->sk_shutdown = SHUTDOWN_MASK;
2971 
2972 	if (!sock_flag(sk, SOCK_DEAD))
2973 		sk->sk_state_change(sk);
2974 	else
2975 		inet_csk_destroy_sock(sk);
2976 }
2977 EXPORT_SYMBOL_GPL(tcp_done);
2978 
2979 extern struct tcp_congestion_ops tcp_reno;
2980 
2981 static __initdata unsigned long thash_entries;
2982 static int __init set_thash_entries(char *str)
2983 {
2984 	ssize_t ret;
2985 
2986 	if (!str)
2987 		return 0;
2988 
2989 	ret = kstrtoul(str, 0, &thash_entries);
2990 	if (ret)
2991 		return 0;
2992 
2993 	return 1;
2994 }
2995 __setup("thash_entries=", set_thash_entries);
2996 
2997 static void __init tcp_init_mem(void)
2998 {
2999 	unsigned long limit = nr_free_buffer_pages() / 8;
3000 	limit = max(limit, 128UL);
3001 	sysctl_tcp_mem[0] = limit / 4 * 3;
3002 	sysctl_tcp_mem[1] = limit;
3003 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3004 }
3005 
3006 void __init tcp_init(void)
3007 {
3008 	unsigned long limit;
3009 	int max_rshare, max_wshare, cnt;
3010 	unsigned int i;
3011 
3012 	sock_skb_cb_check_size(sizeof(struct tcp_skb_cb));
3013 
3014 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3015 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3016 	tcp_hashinfo.bind_bucket_cachep =
3017 		kmem_cache_create("tcp_bind_bucket",
3018 				  sizeof(struct inet_bind_bucket), 0,
3019 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3020 
3021 	/* Size and allocate the main established and bind bucket
3022 	 * hash tables.
3023 	 *
3024 	 * The methodology is similar to that of the buffer cache.
3025 	 */
3026 	tcp_hashinfo.ehash =
3027 		alloc_large_system_hash("TCP established",
3028 					sizeof(struct inet_ehash_bucket),
3029 					thash_entries,
3030 					17, /* one slot per 128 KB of memory */
3031 					0,
3032 					NULL,
3033 					&tcp_hashinfo.ehash_mask,
3034 					0,
3035 					thash_entries ? 0 : 512 * 1024);
3036 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3037 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3038 
3039 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3040 		panic("TCP: failed to alloc ehash_locks");
3041 	tcp_hashinfo.bhash =
3042 		alloc_large_system_hash("TCP bind",
3043 					sizeof(struct inet_bind_hashbucket),
3044 					tcp_hashinfo.ehash_mask + 1,
3045 					17, /* one slot per 128 KB of memory */
3046 					0,
3047 					&tcp_hashinfo.bhash_size,
3048 					NULL,
3049 					0,
3050 					64 * 1024);
3051 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3052 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3053 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3054 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3055 	}
3056 
3057 
3058 	cnt = tcp_hashinfo.ehash_mask + 1;
3059 
3060 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3061 	sysctl_tcp_max_orphans = cnt / 2;
3062 	sysctl_max_syn_backlog = max(128, cnt / 256);
3063 
3064 	tcp_init_mem();
3065 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3066 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3067 	max_wshare = min(4UL*1024*1024, limit);
3068 	max_rshare = min(6UL*1024*1024, limit);
3069 
3070 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3071 	sysctl_tcp_wmem[1] = 16*1024;
3072 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3073 
3074 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3075 	sysctl_tcp_rmem[1] = 87380;
3076 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3077 
3078 	pr_info("Hash tables configured (established %u bind %u)\n",
3079 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3080 
3081 	tcp_metrics_init();
3082 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3083 	tcp_tasklet_init();
3084 }
3085