1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 298 #if IS_ENABLED(CONFIG_SMC) 299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 300 EXPORT_SYMBOL(tcp_have_smc); 301 #endif 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 unsigned long tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 unsigned long val; 330 331 if (READ_ONCE(tcp_memory_pressure)) 332 return; 333 val = jiffies; 334 335 if (!val) 336 val--; 337 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 339 } 340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 341 342 void tcp_leave_memory_pressure(struct sock *sk) 343 { 344 unsigned long val; 345 346 if (!READ_ONCE(tcp_memory_pressure)) 347 return; 348 val = xchg(&tcp_memory_pressure, 0); 349 if (val) 350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 351 jiffies_to_msecs(jiffies - val)); 352 } 353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 354 355 /* Convert seconds to retransmits based on initial and max timeout */ 356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 357 { 358 u8 res = 0; 359 360 if (seconds > 0) { 361 int period = timeout; 362 363 res = 1; 364 while (seconds > period && res < 255) { 365 res++; 366 timeout <<= 1; 367 if (timeout > rto_max) 368 timeout = rto_max; 369 period += timeout; 370 } 371 } 372 return res; 373 } 374 375 /* Convert retransmits to seconds based on initial and max timeout */ 376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 377 { 378 int period = 0; 379 380 if (retrans > 0) { 381 period = timeout; 382 while (--retrans) { 383 timeout <<= 1; 384 if (timeout > rto_max) 385 timeout = rto_max; 386 period += timeout; 387 } 388 } 389 return period; 390 } 391 392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 393 { 394 u32 rate = READ_ONCE(tp->rate_delivered); 395 u32 intv = READ_ONCE(tp->rate_interval_us); 396 u64 rate64 = 0; 397 398 if (rate && intv) { 399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 400 do_div(rate64, intv); 401 } 402 return rate64; 403 } 404 405 /* Address-family independent initialization for a tcp_sock. 406 * 407 * NOTE: A lot of things set to zero explicitly by call to 408 * sk_alloc() so need not be done here. 409 */ 410 void tcp_init_sock(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 struct tcp_sock *tp = tcp_sk(sk); 414 415 tp->out_of_order_queue = RB_ROOT; 416 sk->tcp_rtx_queue = RB_ROOT; 417 tcp_init_xmit_timers(sk); 418 INIT_LIST_HEAD(&tp->tsq_node); 419 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 420 421 icsk->icsk_rto = TCP_TIMEOUT_INIT; 422 icsk->icsk_rto_min = TCP_RTO_MIN; 423 icsk->icsk_delack_max = TCP_DELACK_MAX; 424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 426 427 /* So many TCP implementations out there (incorrectly) count the 428 * initial SYN frame in their delayed-ACK and congestion control 429 * algorithms that we must have the following bandaid to talk 430 * efficiently to them. -DaveM 431 */ 432 tp->snd_cwnd = TCP_INIT_CWND; 433 434 /* There's a bubble in the pipe until at least the first ACK. */ 435 tp->app_limited = ~0U; 436 437 /* See draft-stevens-tcpca-spec-01 for discussion of the 438 * initialization of these values. 439 */ 440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 441 tp->snd_cwnd_clamp = ~0; 442 tp->mss_cache = TCP_MSS_DEFAULT; 443 444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 445 tcp_assign_congestion_control(sk); 446 447 tp->tsoffset = 0; 448 tp->rack.reo_wnd_steps = 1; 449 450 sk->sk_write_space = sk_stream_write_space; 451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 452 453 icsk->icsk_sync_mss = tcp_sync_mss; 454 455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 457 458 sk_sockets_allocated_inc(sk); 459 sk->sk_route_forced_caps = NETIF_F_GSO; 460 } 461 EXPORT_SYMBOL(tcp_init_sock); 462 463 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 464 { 465 struct sk_buff *skb = tcp_write_queue_tail(sk); 466 467 if (tsflags && skb) { 468 struct skb_shared_info *shinfo = skb_shinfo(skb); 469 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 470 471 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 472 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 473 tcb->txstamp_ack = 1; 474 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 475 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 476 } 477 } 478 479 static bool tcp_stream_is_readable(struct sock *sk, int target) 480 { 481 if (tcp_epollin_ready(sk, target)) 482 return true; 483 return sk_is_readable(sk); 484 } 485 486 /* 487 * Wait for a TCP event. 488 * 489 * Note that we don't need to lock the socket, as the upper poll layers 490 * take care of normal races (between the test and the event) and we don't 491 * go look at any of the socket buffers directly. 492 */ 493 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 494 { 495 __poll_t mask; 496 struct sock *sk = sock->sk; 497 const struct tcp_sock *tp = tcp_sk(sk); 498 int state; 499 500 sock_poll_wait(file, sock, wait); 501 502 state = inet_sk_state_load(sk); 503 if (state == TCP_LISTEN) 504 return inet_csk_listen_poll(sk); 505 506 /* Socket is not locked. We are protected from async events 507 * by poll logic and correct handling of state changes 508 * made by other threads is impossible in any case. 509 */ 510 511 mask = 0; 512 513 /* 514 * EPOLLHUP is certainly not done right. But poll() doesn't 515 * have a notion of HUP in just one direction, and for a 516 * socket the read side is more interesting. 517 * 518 * Some poll() documentation says that EPOLLHUP is incompatible 519 * with the EPOLLOUT/POLLWR flags, so somebody should check this 520 * all. But careful, it tends to be safer to return too many 521 * bits than too few, and you can easily break real applications 522 * if you don't tell them that something has hung up! 523 * 524 * Check-me. 525 * 526 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 527 * our fs/select.c). It means that after we received EOF, 528 * poll always returns immediately, making impossible poll() on write() 529 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 530 * if and only if shutdown has been made in both directions. 531 * Actually, it is interesting to look how Solaris and DUX 532 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 533 * then we could set it on SND_SHUTDOWN. BTW examples given 534 * in Stevens' books assume exactly this behaviour, it explains 535 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 536 * 537 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 538 * blocking on fresh not-connected or disconnected socket. --ANK 539 */ 540 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 541 mask |= EPOLLHUP; 542 if (sk->sk_shutdown & RCV_SHUTDOWN) 543 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 544 545 /* Connected or passive Fast Open socket? */ 546 if (state != TCP_SYN_SENT && 547 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 548 int target = sock_rcvlowat(sk, 0, INT_MAX); 549 550 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 551 !sock_flag(sk, SOCK_URGINLINE) && 552 tp->urg_data) 553 target++; 554 555 if (tcp_stream_is_readable(sk, target)) 556 mask |= EPOLLIN | EPOLLRDNORM; 557 558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 559 if (__sk_stream_is_writeable(sk, 1)) { 560 mask |= EPOLLOUT | EPOLLWRNORM; 561 } else { /* send SIGIO later */ 562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 564 565 /* Race breaker. If space is freed after 566 * wspace test but before the flags are set, 567 * IO signal will be lost. Memory barrier 568 * pairs with the input side. 569 */ 570 smp_mb__after_atomic(); 571 if (__sk_stream_is_writeable(sk, 1)) 572 mask |= EPOLLOUT | EPOLLWRNORM; 573 } 574 } else 575 mask |= EPOLLOUT | EPOLLWRNORM; 576 577 if (tp->urg_data & TCP_URG_VALID) 578 mask |= EPOLLPRI; 579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 580 /* Active TCP fastopen socket with defer_connect 581 * Return EPOLLOUT so application can call write() 582 * in order for kernel to generate SYN+data 583 */ 584 mask |= EPOLLOUT | EPOLLWRNORM; 585 } 586 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 587 smp_rmb(); 588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 589 mask |= EPOLLERR; 590 591 return mask; 592 } 593 EXPORT_SYMBOL(tcp_poll); 594 595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 int answ; 599 bool slow; 600 601 switch (cmd) { 602 case SIOCINQ: 603 if (sk->sk_state == TCP_LISTEN) 604 return -EINVAL; 605 606 slow = lock_sock_fast(sk); 607 answ = tcp_inq(sk); 608 unlock_sock_fast(sk, slow); 609 break; 610 case SIOCATMARK: 611 answ = tp->urg_data && 612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 613 break; 614 case SIOCOUTQ: 615 if (sk->sk_state == TCP_LISTEN) 616 return -EINVAL; 617 618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 619 answ = 0; 620 else 621 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 622 break; 623 case SIOCOUTQNSD: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - 631 READ_ONCE(tp->snd_nxt); 632 break; 633 default: 634 return -ENOIOCTLCMD; 635 } 636 637 return put_user(answ, (int __user *)arg); 638 } 639 EXPORT_SYMBOL(tcp_ioctl); 640 641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 642 { 643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 644 tp->pushed_seq = tp->write_seq; 645 } 646 647 static inline bool forced_push(const struct tcp_sock *tp) 648 { 649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 650 } 651 652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 656 657 tcb->seq = tcb->end_seq = tp->write_seq; 658 tcb->tcp_flags = TCPHDR_ACK; 659 __skb_header_release(skb); 660 tcp_add_write_queue_tail(sk, skb); 661 sk_wmem_queued_add(sk, skb->truesize); 662 sk_mem_charge(sk, skb->truesize); 663 if (tp->nonagle & TCP_NAGLE_PUSH) 664 tp->nonagle &= ~TCP_NAGLE_PUSH; 665 666 tcp_slow_start_after_idle_check(sk); 667 } 668 669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 670 { 671 if (flags & MSG_OOB) 672 tp->snd_up = tp->write_seq; 673 } 674 675 /* If a not yet filled skb is pushed, do not send it if 676 * we have data packets in Qdisc or NIC queues : 677 * Because TX completion will happen shortly, it gives a chance 678 * to coalesce future sendmsg() payload into this skb, without 679 * need for a timer, and with no latency trade off. 680 * As packets containing data payload have a bigger truesize 681 * than pure acks (dataless) packets, the last checks prevent 682 * autocorking if we only have an ACK in Qdisc/NIC queues, 683 * or if TX completion was delayed after we processed ACK packet. 684 */ 685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 686 int size_goal) 687 { 688 return skb->len < size_goal && 689 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 690 !tcp_rtx_queue_empty(sk) && 691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 692 } 693 694 void tcp_push(struct sock *sk, int flags, int mss_now, 695 int nonagle, int size_goal) 696 { 697 struct tcp_sock *tp = tcp_sk(sk); 698 struct sk_buff *skb; 699 700 skb = tcp_write_queue_tail(sk); 701 if (!skb) 702 return; 703 if (!(flags & MSG_MORE) || forced_push(tp)) 704 tcp_mark_push(tp, skb); 705 706 tcp_mark_urg(tp, flags); 707 708 if (tcp_should_autocork(sk, skb, size_goal)) { 709 710 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 714 } 715 /* It is possible TX completion already happened 716 * before we set TSQ_THROTTLED. 717 */ 718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 719 return; 720 } 721 722 if (flags & MSG_MORE) 723 nonagle = TCP_NAGLE_CORK; 724 725 __tcp_push_pending_frames(sk, mss_now, nonagle); 726 } 727 728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 729 unsigned int offset, size_t len) 730 { 731 struct tcp_splice_state *tss = rd_desc->arg.data; 732 int ret; 733 734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 735 min(rd_desc->count, len), tss->flags); 736 if (ret > 0) 737 rd_desc->count -= ret; 738 return ret; 739 } 740 741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 742 { 743 /* Store TCP splice context information in read_descriptor_t. */ 744 read_descriptor_t rd_desc = { 745 .arg.data = tss, 746 .count = tss->len, 747 }; 748 749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 750 } 751 752 /** 753 * tcp_splice_read - splice data from TCP socket to a pipe 754 * @sock: socket to splice from 755 * @ppos: position (not valid) 756 * @pipe: pipe to splice to 757 * @len: number of bytes to splice 758 * @flags: splice modifier flags 759 * 760 * Description: 761 * Will read pages from given socket and fill them into a pipe. 762 * 763 **/ 764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 765 struct pipe_inode_info *pipe, size_t len, 766 unsigned int flags) 767 { 768 struct sock *sk = sock->sk; 769 struct tcp_splice_state tss = { 770 .pipe = pipe, 771 .len = len, 772 .flags = flags, 773 }; 774 long timeo; 775 ssize_t spliced; 776 int ret; 777 778 sock_rps_record_flow(sk); 779 /* 780 * We can't seek on a socket input 781 */ 782 if (unlikely(*ppos)) 783 return -ESPIPE; 784 785 ret = spliced = 0; 786 787 lock_sock(sk); 788 789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 790 while (tss.len) { 791 ret = __tcp_splice_read(sk, &tss); 792 if (ret < 0) 793 break; 794 else if (!ret) { 795 if (spliced) 796 break; 797 if (sock_flag(sk, SOCK_DONE)) 798 break; 799 if (sk->sk_err) { 800 ret = sock_error(sk); 801 break; 802 } 803 if (sk->sk_shutdown & RCV_SHUTDOWN) 804 break; 805 if (sk->sk_state == TCP_CLOSE) { 806 /* 807 * This occurs when user tries to read 808 * from never connected socket. 809 */ 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 846 if (spliced) 847 return spliced; 848 849 return ret; 850 } 851 EXPORT_SYMBOL(tcp_splice_read); 852 853 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 854 bool force_schedule) 855 { 856 struct sk_buff *skb; 857 858 if (unlikely(tcp_under_memory_pressure(sk))) 859 sk_mem_reclaim_partial(sk); 860 861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp); 862 if (likely(skb)) { 863 bool mem_scheduled; 864 865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 866 if (force_schedule) { 867 mem_scheduled = true; 868 sk_forced_mem_schedule(sk, skb->truesize); 869 } else { 870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 871 } 872 if (likely(mem_scheduled)) { 873 skb_reserve(skb, MAX_TCP_HEADER); 874 skb->ip_summed = CHECKSUM_PARTIAL; 875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 876 return skb; 877 } 878 __kfree_skb(skb); 879 } else { 880 sk->sk_prot->enter_memory_pressure(sk); 881 sk_stream_moderate_sndbuf(sk); 882 } 883 return NULL; 884 } 885 886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 887 int large_allowed) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 u32 new_size_goal, size_goal; 891 892 if (!large_allowed) 893 return mss_now; 894 895 /* Note : tcp_tso_autosize() will eventually split this later */ 896 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 897 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 898 899 /* We try hard to avoid divides here */ 900 size_goal = tp->gso_segs * mss_now; 901 if (unlikely(new_size_goal < size_goal || 902 new_size_goal >= size_goal + mss_now)) { 903 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 904 sk->sk_gso_max_segs); 905 size_goal = tp->gso_segs * mss_now; 906 } 907 908 return max(size_goal, mss_now); 909 } 910 911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 912 { 913 int mss_now; 914 915 mss_now = tcp_current_mss(sk); 916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 917 918 return mss_now; 919 } 920 921 /* In some cases, both sendpage() and sendmsg() could have added 922 * an skb to the write queue, but failed adding payload on it. 923 * We need to remove it to consume less memory, but more 924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 925 * users. 926 */ 927 void tcp_remove_empty_skb(struct sock *sk) 928 { 929 struct sk_buff *skb = tcp_write_queue_tail(sk); 930 931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 932 tcp_unlink_write_queue(skb, sk); 933 if (tcp_write_queue_empty(sk)) 934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 935 tcp_wmem_free_skb(sk, skb); 936 } 937 } 938 939 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 940 struct page *page, int offset, size_t *size) 941 { 942 struct sk_buff *skb = tcp_write_queue_tail(sk); 943 struct tcp_sock *tp = tcp_sk(sk); 944 bool can_coalesce; 945 int copy, i; 946 947 if (!skb || (copy = size_goal - skb->len) <= 0 || 948 !tcp_skb_can_collapse_to(skb)) { 949 new_segment: 950 if (!sk_stream_memory_free(sk)) 951 return NULL; 952 953 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 954 tcp_rtx_and_write_queues_empty(sk)); 955 if (!skb) 956 return NULL; 957 958 #ifdef CONFIG_TLS_DEVICE 959 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 960 #endif 961 tcp_skb_entail(sk, skb); 962 copy = size_goal; 963 } 964 965 if (copy > *size) 966 copy = *size; 967 968 i = skb_shinfo(skb)->nr_frags; 969 can_coalesce = skb_can_coalesce(skb, i, page, offset); 970 if (!can_coalesce && i >= sysctl_max_skb_frags) { 971 tcp_mark_push(tp, skb); 972 goto new_segment; 973 } 974 if (!sk_wmem_schedule(sk, copy)) 975 return NULL; 976 977 if (can_coalesce) { 978 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 979 } else { 980 get_page(page); 981 skb_fill_page_desc(skb, i, page, offset, copy); 982 } 983 984 if (!(flags & MSG_NO_SHARED_FRAGS)) 985 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 986 987 skb->len += copy; 988 skb->data_len += copy; 989 skb->truesize += copy; 990 sk_wmem_queued_add(sk, copy); 991 sk_mem_charge(sk, copy); 992 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 993 TCP_SKB_CB(skb)->end_seq += copy; 994 tcp_skb_pcount_set(skb, 0); 995 996 *size = copy; 997 return skb; 998 } 999 1000 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 1001 size_t size, int flags) 1002 { 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 int mss_now, size_goal; 1005 int err; 1006 ssize_t copied; 1007 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1008 1009 if (IS_ENABLED(CONFIG_DEBUG_VM) && 1010 WARN_ONCE(!sendpage_ok(page), 1011 "page must not be a Slab one and have page_count > 0")) 1012 return -EINVAL; 1013 1014 /* Wait for a connection to finish. One exception is TCP Fast Open 1015 * (passive side) where data is allowed to be sent before a connection 1016 * is fully established. 1017 */ 1018 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1019 !tcp_passive_fastopen(sk)) { 1020 err = sk_stream_wait_connect(sk, &timeo); 1021 if (err != 0) 1022 goto out_err; 1023 } 1024 1025 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1026 1027 mss_now = tcp_send_mss(sk, &size_goal, flags); 1028 copied = 0; 1029 1030 err = -EPIPE; 1031 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1032 goto out_err; 1033 1034 while (size > 0) { 1035 struct sk_buff *skb; 1036 size_t copy = size; 1037 1038 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©); 1039 if (!skb) 1040 goto wait_for_space; 1041 1042 if (!copied) 1043 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1044 1045 copied += copy; 1046 offset += copy; 1047 size -= copy; 1048 if (!size) 1049 goto out; 1050 1051 if (skb->len < size_goal || (flags & MSG_OOB)) 1052 continue; 1053 1054 if (forced_push(tp)) { 1055 tcp_mark_push(tp, skb); 1056 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1057 } else if (skb == tcp_send_head(sk)) 1058 tcp_push_one(sk, mss_now); 1059 continue; 1060 1061 wait_for_space: 1062 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1063 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1064 TCP_NAGLE_PUSH, size_goal); 1065 1066 err = sk_stream_wait_memory(sk, &timeo); 1067 if (err != 0) 1068 goto do_error; 1069 1070 mss_now = tcp_send_mss(sk, &size_goal, flags); 1071 } 1072 1073 out: 1074 if (copied) { 1075 tcp_tx_timestamp(sk, sk->sk_tsflags); 1076 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1077 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1078 } 1079 return copied; 1080 1081 do_error: 1082 tcp_remove_empty_skb(sk); 1083 if (copied) 1084 goto out; 1085 out_err: 1086 /* make sure we wake any epoll edge trigger waiter */ 1087 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1088 sk->sk_write_space(sk); 1089 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1090 } 1091 return sk_stream_error(sk, flags, err); 1092 } 1093 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1094 1095 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1096 size_t size, int flags) 1097 { 1098 if (!(sk->sk_route_caps & NETIF_F_SG)) 1099 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1100 1101 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1102 1103 return do_tcp_sendpages(sk, page, offset, size, flags); 1104 } 1105 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1106 1107 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1108 size_t size, int flags) 1109 { 1110 int ret; 1111 1112 lock_sock(sk); 1113 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1114 release_sock(sk); 1115 1116 return ret; 1117 } 1118 EXPORT_SYMBOL(tcp_sendpage); 1119 1120 void tcp_free_fastopen_req(struct tcp_sock *tp) 1121 { 1122 if (tp->fastopen_req) { 1123 kfree(tp->fastopen_req); 1124 tp->fastopen_req = NULL; 1125 } 1126 } 1127 1128 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1129 int *copied, size_t size, 1130 struct ubuf_info *uarg) 1131 { 1132 struct tcp_sock *tp = tcp_sk(sk); 1133 struct inet_sock *inet = inet_sk(sk); 1134 struct sockaddr *uaddr = msg->msg_name; 1135 int err, flags; 1136 1137 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1138 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1139 uaddr->sa_family == AF_UNSPEC)) 1140 return -EOPNOTSUPP; 1141 if (tp->fastopen_req) 1142 return -EALREADY; /* Another Fast Open is in progress */ 1143 1144 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1145 sk->sk_allocation); 1146 if (unlikely(!tp->fastopen_req)) 1147 return -ENOBUFS; 1148 tp->fastopen_req->data = msg; 1149 tp->fastopen_req->size = size; 1150 tp->fastopen_req->uarg = uarg; 1151 1152 if (inet->defer_connect) { 1153 err = tcp_connect(sk); 1154 /* Same failure procedure as in tcp_v4/6_connect */ 1155 if (err) { 1156 tcp_set_state(sk, TCP_CLOSE); 1157 inet->inet_dport = 0; 1158 sk->sk_route_caps = 0; 1159 } 1160 } 1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1162 err = __inet_stream_connect(sk->sk_socket, uaddr, 1163 msg->msg_namelen, flags, 1); 1164 /* fastopen_req could already be freed in __inet_stream_connect 1165 * if the connection times out or gets rst 1166 */ 1167 if (tp->fastopen_req) { 1168 *copied = tp->fastopen_req->copied; 1169 tcp_free_fastopen_req(tp); 1170 inet->defer_connect = 0; 1171 } 1172 return err; 1173 } 1174 1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1176 { 1177 struct tcp_sock *tp = tcp_sk(sk); 1178 struct ubuf_info *uarg = NULL; 1179 struct sk_buff *skb; 1180 struct sockcm_cookie sockc; 1181 int flags, err, copied = 0; 1182 int mss_now = 0, size_goal, copied_syn = 0; 1183 int process_backlog = 0; 1184 bool zc = false; 1185 long timeo; 1186 1187 flags = msg->msg_flags; 1188 1189 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1190 skb = tcp_write_queue_tail(sk); 1191 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1192 if (!uarg) { 1193 err = -ENOBUFS; 1194 goto out_err; 1195 } 1196 1197 zc = sk->sk_route_caps & NETIF_F_SG; 1198 if (!zc) 1199 uarg->zerocopy = 0; 1200 } 1201 1202 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1203 !tp->repair) { 1204 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1205 if (err == -EINPROGRESS && copied_syn > 0) 1206 goto out; 1207 else if (err) 1208 goto out_err; 1209 } 1210 1211 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1212 1213 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1214 1215 /* Wait for a connection to finish. One exception is TCP Fast Open 1216 * (passive side) where data is allowed to be sent before a connection 1217 * is fully established. 1218 */ 1219 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1220 !tcp_passive_fastopen(sk)) { 1221 err = sk_stream_wait_connect(sk, &timeo); 1222 if (err != 0) 1223 goto do_error; 1224 } 1225 1226 if (unlikely(tp->repair)) { 1227 if (tp->repair_queue == TCP_RECV_QUEUE) { 1228 copied = tcp_send_rcvq(sk, msg, size); 1229 goto out_nopush; 1230 } 1231 1232 err = -EINVAL; 1233 if (tp->repair_queue == TCP_NO_QUEUE) 1234 goto out_err; 1235 1236 /* 'common' sending to sendq */ 1237 } 1238 1239 sockcm_init(&sockc, sk); 1240 if (msg->msg_controllen) { 1241 err = sock_cmsg_send(sk, msg, &sockc); 1242 if (unlikely(err)) { 1243 err = -EINVAL; 1244 goto out_err; 1245 } 1246 } 1247 1248 /* This should be in poll */ 1249 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1250 1251 /* Ok commence sending. */ 1252 copied = 0; 1253 1254 restart: 1255 mss_now = tcp_send_mss(sk, &size_goal, flags); 1256 1257 err = -EPIPE; 1258 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1259 goto do_error; 1260 1261 while (msg_data_left(msg)) { 1262 int copy = 0; 1263 1264 skb = tcp_write_queue_tail(sk); 1265 if (skb) 1266 copy = size_goal - skb->len; 1267 1268 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1269 bool first_skb; 1270 1271 new_segment: 1272 if (!sk_stream_memory_free(sk)) 1273 goto wait_for_space; 1274 1275 if (unlikely(process_backlog >= 16)) { 1276 process_backlog = 0; 1277 if (sk_flush_backlog(sk)) 1278 goto restart; 1279 } 1280 first_skb = tcp_rtx_and_write_queues_empty(sk); 1281 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, 1282 first_skb); 1283 if (!skb) 1284 goto wait_for_space; 1285 1286 process_backlog++; 1287 1288 tcp_skb_entail(sk, skb); 1289 copy = size_goal; 1290 1291 /* All packets are restored as if they have 1292 * already been sent. skb_mstamp_ns isn't set to 1293 * avoid wrong rtt estimation. 1294 */ 1295 if (tp->repair) 1296 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1297 } 1298 1299 /* Try to append data to the end of skb. */ 1300 if (copy > msg_data_left(msg)) 1301 copy = msg_data_left(msg); 1302 1303 if (!zc) { 1304 bool merge = true; 1305 int i = skb_shinfo(skb)->nr_frags; 1306 struct page_frag *pfrag = sk_page_frag(sk); 1307 1308 if (!sk_page_frag_refill(sk, pfrag)) 1309 goto wait_for_space; 1310 1311 if (!skb_can_coalesce(skb, i, pfrag->page, 1312 pfrag->offset)) { 1313 if (i >= sysctl_max_skb_frags) { 1314 tcp_mark_push(tp, skb); 1315 goto new_segment; 1316 } 1317 merge = false; 1318 } 1319 1320 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1321 1322 /* skb changing from pure zc to mixed, must charge zc */ 1323 if (unlikely(skb_zcopy_pure(skb))) { 1324 if (!sk_wmem_schedule(sk, skb->data_len)) 1325 goto wait_for_space; 1326 1327 sk_mem_charge(sk, skb->data_len); 1328 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 1329 } 1330 1331 if (!sk_wmem_schedule(sk, copy)) 1332 goto wait_for_space; 1333 1334 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1335 pfrag->page, 1336 pfrag->offset, 1337 copy); 1338 if (err) 1339 goto do_error; 1340 1341 /* Update the skb. */ 1342 if (merge) { 1343 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1344 } else { 1345 skb_fill_page_desc(skb, i, pfrag->page, 1346 pfrag->offset, copy); 1347 page_ref_inc(pfrag->page); 1348 } 1349 pfrag->offset += copy; 1350 } else { 1351 /* First append to a fragless skb builds initial 1352 * pure zerocopy skb 1353 */ 1354 if (!skb->len) 1355 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1356 1357 if (!skb_zcopy_pure(skb)) { 1358 if (!sk_wmem_schedule(sk, copy)) 1359 goto wait_for_space; 1360 } 1361 1362 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1363 if (err == -EMSGSIZE || err == -EEXIST) { 1364 tcp_mark_push(tp, skb); 1365 goto new_segment; 1366 } 1367 if (err < 0) 1368 goto do_error; 1369 copy = err; 1370 } 1371 1372 if (!copied) 1373 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1374 1375 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 copied += copy; 1380 if (!msg_data_left(msg)) { 1381 if (unlikely(flags & MSG_EOR)) 1382 TCP_SKB_CB(skb)->eor = 1; 1383 goto out; 1384 } 1385 1386 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1387 continue; 1388 1389 if (forced_push(tp)) { 1390 tcp_mark_push(tp, skb); 1391 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1392 } else if (skb == tcp_send_head(sk)) 1393 tcp_push_one(sk, mss_now); 1394 continue; 1395 1396 wait_for_space: 1397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1398 if (copied) 1399 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1400 TCP_NAGLE_PUSH, size_goal); 1401 1402 err = sk_stream_wait_memory(sk, &timeo); 1403 if (err != 0) 1404 goto do_error; 1405 1406 mss_now = tcp_send_mss(sk, &size_goal, flags); 1407 } 1408 1409 out: 1410 if (copied) { 1411 tcp_tx_timestamp(sk, sockc.tsflags); 1412 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1413 } 1414 out_nopush: 1415 net_zcopy_put(uarg); 1416 return copied + copied_syn; 1417 1418 do_error: 1419 tcp_remove_empty_skb(sk); 1420 1421 if (copied + copied_syn) 1422 goto out; 1423 out_err: 1424 net_zcopy_put_abort(uarg, true); 1425 err = sk_stream_error(sk, flags, err); 1426 /* make sure we wake any epoll edge trigger waiter */ 1427 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1428 sk->sk_write_space(sk); 1429 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1430 } 1431 return err; 1432 } 1433 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1434 1435 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1436 { 1437 int ret; 1438 1439 lock_sock(sk); 1440 ret = tcp_sendmsg_locked(sk, msg, size); 1441 release_sock(sk); 1442 1443 return ret; 1444 } 1445 EXPORT_SYMBOL(tcp_sendmsg); 1446 1447 /* 1448 * Handle reading urgent data. BSD has very simple semantics for 1449 * this, no blocking and very strange errors 8) 1450 */ 1451 1452 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1453 { 1454 struct tcp_sock *tp = tcp_sk(sk); 1455 1456 /* No URG data to read. */ 1457 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1458 tp->urg_data == TCP_URG_READ) 1459 return -EINVAL; /* Yes this is right ! */ 1460 1461 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1462 return -ENOTCONN; 1463 1464 if (tp->urg_data & TCP_URG_VALID) { 1465 int err = 0; 1466 char c = tp->urg_data; 1467 1468 if (!(flags & MSG_PEEK)) 1469 tp->urg_data = TCP_URG_READ; 1470 1471 /* Read urgent data. */ 1472 msg->msg_flags |= MSG_OOB; 1473 1474 if (len > 0) { 1475 if (!(flags & MSG_TRUNC)) 1476 err = memcpy_to_msg(msg, &c, 1); 1477 len = 1; 1478 } else 1479 msg->msg_flags |= MSG_TRUNC; 1480 1481 return err ? -EFAULT : len; 1482 } 1483 1484 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1485 return 0; 1486 1487 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1488 * the available implementations agree in this case: 1489 * this call should never block, independent of the 1490 * blocking state of the socket. 1491 * Mike <pall@rz.uni-karlsruhe.de> 1492 */ 1493 return -EAGAIN; 1494 } 1495 1496 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1497 { 1498 struct sk_buff *skb; 1499 int copied = 0, err = 0; 1500 1501 /* XXX -- need to support SO_PEEK_OFF */ 1502 1503 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1504 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1505 if (err) 1506 return err; 1507 copied += skb->len; 1508 } 1509 1510 skb_queue_walk(&sk->sk_write_queue, skb) { 1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1512 if (err) 1513 break; 1514 1515 copied += skb->len; 1516 } 1517 1518 return err ?: copied; 1519 } 1520 1521 /* Clean up the receive buffer for full frames taken by the user, 1522 * then send an ACK if necessary. COPIED is the number of bytes 1523 * tcp_recvmsg has given to the user so far, it speeds up the 1524 * calculation of whether or not we must ACK for the sake of 1525 * a window update. 1526 */ 1527 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1528 { 1529 struct tcp_sock *tp = tcp_sk(sk); 1530 bool time_to_ack = false; 1531 1532 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1533 1534 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1535 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1536 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1537 1538 if (inet_csk_ack_scheduled(sk)) { 1539 const struct inet_connection_sock *icsk = inet_csk(sk); 1540 1541 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1542 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1543 /* 1544 * If this read emptied read buffer, we send ACK, if 1545 * connection is not bidirectional, user drained 1546 * receive buffer and there was a small segment 1547 * in queue. 1548 */ 1549 (copied > 0 && 1550 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1552 !inet_csk_in_pingpong_mode(sk))) && 1553 !atomic_read(&sk->sk_rmem_alloc))) 1554 time_to_ack = true; 1555 } 1556 1557 /* We send an ACK if we can now advertise a non-zero window 1558 * which has been raised "significantly". 1559 * 1560 * Even if window raised up to infinity, do not send window open ACK 1561 * in states, where we will not receive more. It is useless. 1562 */ 1563 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1564 __u32 rcv_window_now = tcp_receive_window(tp); 1565 1566 /* Optimize, __tcp_select_window() is not cheap. */ 1567 if (2*rcv_window_now <= tp->window_clamp) { 1568 __u32 new_window = __tcp_select_window(sk); 1569 1570 /* Send ACK now, if this read freed lots of space 1571 * in our buffer. Certainly, new_window is new window. 1572 * We can advertise it now, if it is not less than current one. 1573 * "Lots" means "at least twice" here. 1574 */ 1575 if (new_window && new_window >= 2 * rcv_window_now) 1576 time_to_ack = true; 1577 } 1578 } 1579 if (time_to_ack) 1580 tcp_send_ack(sk); 1581 } 1582 1583 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1584 { 1585 struct sk_buff *skb; 1586 u32 offset; 1587 1588 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1589 offset = seq - TCP_SKB_CB(skb)->seq; 1590 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1591 pr_err_once("%s: found a SYN, please report !\n", __func__); 1592 offset--; 1593 } 1594 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1595 *off = offset; 1596 return skb; 1597 } 1598 /* This looks weird, but this can happen if TCP collapsing 1599 * splitted a fat GRO packet, while we released socket lock 1600 * in skb_splice_bits() 1601 */ 1602 sk_eat_skb(sk, skb); 1603 } 1604 return NULL; 1605 } 1606 1607 /* 1608 * This routine provides an alternative to tcp_recvmsg() for routines 1609 * that would like to handle copying from skbuffs directly in 'sendfile' 1610 * fashion. 1611 * Note: 1612 * - It is assumed that the socket was locked by the caller. 1613 * - The routine does not block. 1614 * - At present, there is no support for reading OOB data 1615 * or for 'peeking' the socket using this routine 1616 * (although both would be easy to implement). 1617 */ 1618 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1619 sk_read_actor_t recv_actor) 1620 { 1621 struct sk_buff *skb; 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 u32 seq = tp->copied_seq; 1624 u32 offset; 1625 int copied = 0; 1626 1627 if (sk->sk_state == TCP_LISTEN) 1628 return -ENOTCONN; 1629 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1630 if (offset < skb->len) { 1631 int used; 1632 size_t len; 1633 1634 len = skb->len - offset; 1635 /* Stop reading if we hit a patch of urgent data */ 1636 if (tp->urg_data) { 1637 u32 urg_offset = tp->urg_seq - seq; 1638 if (urg_offset < len) 1639 len = urg_offset; 1640 if (!len) 1641 break; 1642 } 1643 used = recv_actor(desc, skb, offset, len); 1644 if (used <= 0) { 1645 if (!copied) 1646 copied = used; 1647 break; 1648 } else if (used <= len) { 1649 seq += used; 1650 copied += used; 1651 offset += used; 1652 } 1653 /* If recv_actor drops the lock (e.g. TCP splice 1654 * receive) the skb pointer might be invalid when 1655 * getting here: tcp_collapse might have deleted it 1656 * while aggregating skbs from the socket queue. 1657 */ 1658 skb = tcp_recv_skb(sk, seq - 1, &offset); 1659 if (!skb) 1660 break; 1661 /* TCP coalescing might have appended data to the skb. 1662 * Try to splice more frags 1663 */ 1664 if (offset + 1 != skb->len) 1665 continue; 1666 } 1667 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1668 sk_eat_skb(sk, skb); 1669 ++seq; 1670 break; 1671 } 1672 sk_eat_skb(sk, skb); 1673 if (!desc->count) 1674 break; 1675 WRITE_ONCE(tp->copied_seq, seq); 1676 } 1677 WRITE_ONCE(tp->copied_seq, seq); 1678 1679 tcp_rcv_space_adjust(sk); 1680 1681 /* Clean up data we have read: This will do ACK frames. */ 1682 if (copied > 0) { 1683 tcp_recv_skb(sk, seq, &offset); 1684 tcp_cleanup_rbuf(sk, copied); 1685 } 1686 return copied; 1687 } 1688 EXPORT_SYMBOL(tcp_read_sock); 1689 1690 int tcp_peek_len(struct socket *sock) 1691 { 1692 return tcp_inq(sock->sk); 1693 } 1694 EXPORT_SYMBOL(tcp_peek_len); 1695 1696 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1697 int tcp_set_rcvlowat(struct sock *sk, int val) 1698 { 1699 int cap; 1700 1701 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1702 cap = sk->sk_rcvbuf >> 1; 1703 else 1704 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1705 val = min(val, cap); 1706 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1707 1708 /* Check if we need to signal EPOLLIN right now */ 1709 tcp_data_ready(sk); 1710 1711 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1712 return 0; 1713 1714 val <<= 1; 1715 if (val > sk->sk_rcvbuf) { 1716 WRITE_ONCE(sk->sk_rcvbuf, val); 1717 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1718 } 1719 return 0; 1720 } 1721 EXPORT_SYMBOL(tcp_set_rcvlowat); 1722 1723 void tcp_update_recv_tstamps(struct sk_buff *skb, 1724 struct scm_timestamping_internal *tss) 1725 { 1726 if (skb->tstamp) 1727 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1728 else 1729 tss->ts[0] = (struct timespec64) {0}; 1730 1731 if (skb_hwtstamps(skb)->hwtstamp) 1732 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1733 else 1734 tss->ts[2] = (struct timespec64) {0}; 1735 } 1736 1737 #ifdef CONFIG_MMU 1738 static const struct vm_operations_struct tcp_vm_ops = { 1739 }; 1740 1741 int tcp_mmap(struct file *file, struct socket *sock, 1742 struct vm_area_struct *vma) 1743 { 1744 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1745 return -EPERM; 1746 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1747 1748 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1749 vma->vm_flags |= VM_MIXEDMAP; 1750 1751 vma->vm_ops = &tcp_vm_ops; 1752 return 0; 1753 } 1754 EXPORT_SYMBOL(tcp_mmap); 1755 1756 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1757 u32 *offset_frag) 1758 { 1759 skb_frag_t *frag; 1760 1761 offset_skb -= skb_headlen(skb); 1762 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1763 return NULL; 1764 1765 frag = skb_shinfo(skb)->frags; 1766 while (offset_skb) { 1767 if (skb_frag_size(frag) > offset_skb) { 1768 *offset_frag = offset_skb; 1769 return frag; 1770 } 1771 offset_skb -= skb_frag_size(frag); 1772 ++frag; 1773 } 1774 *offset_frag = 0; 1775 return frag; 1776 } 1777 1778 static bool can_map_frag(const skb_frag_t *frag) 1779 { 1780 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1781 } 1782 1783 static int find_next_mappable_frag(const skb_frag_t *frag, 1784 int remaining_in_skb) 1785 { 1786 int offset = 0; 1787 1788 if (likely(can_map_frag(frag))) 1789 return 0; 1790 1791 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1792 offset += skb_frag_size(frag); 1793 ++frag; 1794 } 1795 return offset; 1796 } 1797 1798 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1799 struct tcp_zerocopy_receive *zc, 1800 struct sk_buff *skb, u32 offset) 1801 { 1802 u32 frag_offset, partial_frag_remainder = 0; 1803 int mappable_offset; 1804 skb_frag_t *frag; 1805 1806 /* worst case: skip to next skb. try to improve on this case below */ 1807 zc->recv_skip_hint = skb->len - offset; 1808 1809 /* Find the frag containing this offset (and how far into that frag) */ 1810 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1811 if (!frag) 1812 return; 1813 1814 if (frag_offset) { 1815 struct skb_shared_info *info = skb_shinfo(skb); 1816 1817 /* We read part of the last frag, must recvmsg() rest of skb. */ 1818 if (frag == &info->frags[info->nr_frags - 1]) 1819 return; 1820 1821 /* Else, we must at least read the remainder in this frag. */ 1822 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1823 zc->recv_skip_hint -= partial_frag_remainder; 1824 ++frag; 1825 } 1826 1827 /* partial_frag_remainder: If part way through a frag, must read rest. 1828 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1829 * in partial_frag_remainder. 1830 */ 1831 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1832 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1833 } 1834 1835 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1836 int nonblock, int flags, 1837 struct scm_timestamping_internal *tss, 1838 int *cmsg_flags); 1839 static int receive_fallback_to_copy(struct sock *sk, 1840 struct tcp_zerocopy_receive *zc, int inq, 1841 struct scm_timestamping_internal *tss) 1842 { 1843 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1844 struct msghdr msg = {}; 1845 struct iovec iov; 1846 int err; 1847 1848 zc->length = 0; 1849 zc->recv_skip_hint = 0; 1850 1851 if (copy_address != zc->copybuf_address) 1852 return -EINVAL; 1853 1854 err = import_single_range(READ, (void __user *)copy_address, 1855 inq, &iov, &msg.msg_iter); 1856 if (err) 1857 return err; 1858 1859 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0, 1860 tss, &zc->msg_flags); 1861 if (err < 0) 1862 return err; 1863 1864 zc->copybuf_len = err; 1865 if (likely(zc->copybuf_len)) { 1866 struct sk_buff *skb; 1867 u32 offset; 1868 1869 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1870 if (skb) 1871 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1872 } 1873 return 0; 1874 } 1875 1876 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1877 struct sk_buff *skb, u32 copylen, 1878 u32 *offset, u32 *seq) 1879 { 1880 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1881 struct msghdr msg = {}; 1882 struct iovec iov; 1883 int err; 1884 1885 if (copy_address != zc->copybuf_address) 1886 return -EINVAL; 1887 1888 err = import_single_range(READ, (void __user *)copy_address, 1889 copylen, &iov, &msg.msg_iter); 1890 if (err) 1891 return err; 1892 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1893 if (err) 1894 return err; 1895 zc->recv_skip_hint -= copylen; 1896 *offset += copylen; 1897 *seq += copylen; 1898 return (__s32)copylen; 1899 } 1900 1901 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1902 struct sock *sk, 1903 struct sk_buff *skb, 1904 u32 *seq, 1905 s32 copybuf_len, 1906 struct scm_timestamping_internal *tss) 1907 { 1908 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1909 1910 if (!copylen) 1911 return 0; 1912 /* skb is null if inq < PAGE_SIZE. */ 1913 if (skb) { 1914 offset = *seq - TCP_SKB_CB(skb)->seq; 1915 } else { 1916 skb = tcp_recv_skb(sk, *seq, &offset); 1917 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1918 tcp_update_recv_tstamps(skb, tss); 1919 zc->msg_flags |= TCP_CMSG_TS; 1920 } 1921 } 1922 1923 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1924 seq); 1925 return zc->copybuf_len < 0 ? 0 : copylen; 1926 } 1927 1928 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1929 struct page **pending_pages, 1930 unsigned long pages_remaining, 1931 unsigned long *address, 1932 u32 *length, 1933 u32 *seq, 1934 struct tcp_zerocopy_receive *zc, 1935 u32 total_bytes_to_map, 1936 int err) 1937 { 1938 /* At least one page did not map. Try zapping if we skipped earlier. */ 1939 if (err == -EBUSY && 1940 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1941 u32 maybe_zap_len; 1942 1943 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1944 *length + /* Mapped or pending */ 1945 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1946 zap_page_range(vma, *address, maybe_zap_len); 1947 err = 0; 1948 } 1949 1950 if (!err) { 1951 unsigned long leftover_pages = pages_remaining; 1952 int bytes_mapped; 1953 1954 /* We called zap_page_range, try to reinsert. */ 1955 err = vm_insert_pages(vma, *address, 1956 pending_pages, 1957 &pages_remaining); 1958 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1959 *seq += bytes_mapped; 1960 *address += bytes_mapped; 1961 } 1962 if (err) { 1963 /* Either we were unable to zap, OR we zapped, retried an 1964 * insert, and still had an issue. Either ways, pages_remaining 1965 * is the number of pages we were unable to map, and we unroll 1966 * some state we speculatively touched before. 1967 */ 1968 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1969 1970 *length -= bytes_not_mapped; 1971 zc->recv_skip_hint += bytes_not_mapped; 1972 } 1973 return err; 1974 } 1975 1976 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1977 struct page **pages, 1978 unsigned int pages_to_map, 1979 unsigned long *address, 1980 u32 *length, 1981 u32 *seq, 1982 struct tcp_zerocopy_receive *zc, 1983 u32 total_bytes_to_map) 1984 { 1985 unsigned long pages_remaining = pages_to_map; 1986 unsigned int pages_mapped; 1987 unsigned int bytes_mapped; 1988 int err; 1989 1990 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1991 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 1992 bytes_mapped = PAGE_SIZE * pages_mapped; 1993 /* Even if vm_insert_pages fails, it may have partially succeeded in 1994 * mapping (some but not all of the pages). 1995 */ 1996 *seq += bytes_mapped; 1997 *address += bytes_mapped; 1998 1999 if (likely(!err)) 2000 return 0; 2001 2002 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2003 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2004 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2005 err); 2006 } 2007 2008 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2009 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2010 struct tcp_zerocopy_receive *zc, 2011 struct scm_timestamping_internal *tss) 2012 { 2013 unsigned long msg_control_addr; 2014 struct msghdr cmsg_dummy; 2015 2016 msg_control_addr = (unsigned long)zc->msg_control; 2017 cmsg_dummy.msg_control = (void *)msg_control_addr; 2018 cmsg_dummy.msg_controllen = 2019 (__kernel_size_t)zc->msg_controllen; 2020 cmsg_dummy.msg_flags = in_compat_syscall() 2021 ? MSG_CMSG_COMPAT : 0; 2022 cmsg_dummy.msg_control_is_user = true; 2023 zc->msg_flags = 0; 2024 if (zc->msg_control == msg_control_addr && 2025 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2026 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2027 zc->msg_control = (__u64) 2028 ((uintptr_t)cmsg_dummy.msg_control); 2029 zc->msg_controllen = 2030 (__u64)cmsg_dummy.msg_controllen; 2031 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2032 } 2033 } 2034 2035 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2036 static int tcp_zerocopy_receive(struct sock *sk, 2037 struct tcp_zerocopy_receive *zc, 2038 struct scm_timestamping_internal *tss) 2039 { 2040 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2041 unsigned long address = (unsigned long)zc->address; 2042 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2043 s32 copybuf_len = zc->copybuf_len; 2044 struct tcp_sock *tp = tcp_sk(sk); 2045 const skb_frag_t *frags = NULL; 2046 unsigned int pages_to_map = 0; 2047 struct vm_area_struct *vma; 2048 struct sk_buff *skb = NULL; 2049 u32 seq = tp->copied_seq; 2050 u32 total_bytes_to_map; 2051 int inq = tcp_inq(sk); 2052 int ret; 2053 2054 zc->copybuf_len = 0; 2055 zc->msg_flags = 0; 2056 2057 if (address & (PAGE_SIZE - 1) || address != zc->address) 2058 return -EINVAL; 2059 2060 if (sk->sk_state == TCP_LISTEN) 2061 return -ENOTCONN; 2062 2063 sock_rps_record_flow(sk); 2064 2065 if (inq && inq <= copybuf_len) 2066 return receive_fallback_to_copy(sk, zc, inq, tss); 2067 2068 if (inq < PAGE_SIZE) { 2069 zc->length = 0; 2070 zc->recv_skip_hint = inq; 2071 if (!inq && sock_flag(sk, SOCK_DONE)) 2072 return -EIO; 2073 return 0; 2074 } 2075 2076 mmap_read_lock(current->mm); 2077 2078 vma = vma_lookup(current->mm, address); 2079 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2080 mmap_read_unlock(current->mm); 2081 return -EINVAL; 2082 } 2083 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2084 avail_len = min_t(u32, vma_len, inq); 2085 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2086 if (total_bytes_to_map) { 2087 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2088 zap_page_range(vma, address, total_bytes_to_map); 2089 zc->length = total_bytes_to_map; 2090 zc->recv_skip_hint = 0; 2091 } else { 2092 zc->length = avail_len; 2093 zc->recv_skip_hint = avail_len; 2094 } 2095 ret = 0; 2096 while (length + PAGE_SIZE <= zc->length) { 2097 int mappable_offset; 2098 struct page *page; 2099 2100 if (zc->recv_skip_hint < PAGE_SIZE) { 2101 u32 offset_frag; 2102 2103 if (skb) { 2104 if (zc->recv_skip_hint > 0) 2105 break; 2106 skb = skb->next; 2107 offset = seq - TCP_SKB_CB(skb)->seq; 2108 } else { 2109 skb = tcp_recv_skb(sk, seq, &offset); 2110 } 2111 2112 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2113 tcp_update_recv_tstamps(skb, tss); 2114 zc->msg_flags |= TCP_CMSG_TS; 2115 } 2116 zc->recv_skip_hint = skb->len - offset; 2117 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2118 if (!frags || offset_frag) 2119 break; 2120 } 2121 2122 mappable_offset = find_next_mappable_frag(frags, 2123 zc->recv_skip_hint); 2124 if (mappable_offset) { 2125 zc->recv_skip_hint = mappable_offset; 2126 break; 2127 } 2128 page = skb_frag_page(frags); 2129 prefetchw(page); 2130 pages[pages_to_map++] = page; 2131 length += PAGE_SIZE; 2132 zc->recv_skip_hint -= PAGE_SIZE; 2133 frags++; 2134 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2135 zc->recv_skip_hint < PAGE_SIZE) { 2136 /* Either full batch, or we're about to go to next skb 2137 * (and we cannot unroll failed ops across skbs). 2138 */ 2139 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2140 pages_to_map, 2141 &address, &length, 2142 &seq, zc, 2143 total_bytes_to_map); 2144 if (ret) 2145 goto out; 2146 pages_to_map = 0; 2147 } 2148 } 2149 if (pages_to_map) { 2150 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2151 &address, &length, &seq, 2152 zc, total_bytes_to_map); 2153 } 2154 out: 2155 mmap_read_unlock(current->mm); 2156 /* Try to copy straggler data. */ 2157 if (!ret) 2158 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2159 2160 if (length + copylen) { 2161 WRITE_ONCE(tp->copied_seq, seq); 2162 tcp_rcv_space_adjust(sk); 2163 2164 /* Clean up data we have read: This will do ACK frames. */ 2165 tcp_recv_skb(sk, seq, &offset); 2166 tcp_cleanup_rbuf(sk, length + copylen); 2167 ret = 0; 2168 if (length == zc->length) 2169 zc->recv_skip_hint = 0; 2170 } else { 2171 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2172 ret = -EIO; 2173 } 2174 zc->length = length; 2175 return ret; 2176 } 2177 #endif 2178 2179 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2180 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2181 struct scm_timestamping_internal *tss) 2182 { 2183 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2184 bool has_timestamping = false; 2185 2186 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2187 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2188 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2189 if (new_tstamp) { 2190 struct __kernel_timespec kts = { 2191 .tv_sec = tss->ts[0].tv_sec, 2192 .tv_nsec = tss->ts[0].tv_nsec, 2193 }; 2194 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2195 sizeof(kts), &kts); 2196 } else { 2197 struct __kernel_old_timespec ts_old = { 2198 .tv_sec = tss->ts[0].tv_sec, 2199 .tv_nsec = tss->ts[0].tv_nsec, 2200 }; 2201 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2202 sizeof(ts_old), &ts_old); 2203 } 2204 } else { 2205 if (new_tstamp) { 2206 struct __kernel_sock_timeval stv = { 2207 .tv_sec = tss->ts[0].tv_sec, 2208 .tv_usec = tss->ts[0].tv_nsec / 1000, 2209 }; 2210 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2211 sizeof(stv), &stv); 2212 } else { 2213 struct __kernel_old_timeval tv = { 2214 .tv_sec = tss->ts[0].tv_sec, 2215 .tv_usec = tss->ts[0].tv_nsec / 1000, 2216 }; 2217 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2218 sizeof(tv), &tv); 2219 } 2220 } 2221 } 2222 2223 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 2224 has_timestamping = true; 2225 else 2226 tss->ts[0] = (struct timespec64) {0}; 2227 } 2228 2229 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2230 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 2231 has_timestamping = true; 2232 else 2233 tss->ts[2] = (struct timespec64) {0}; 2234 } 2235 2236 if (has_timestamping) { 2237 tss->ts[1] = (struct timespec64) {0}; 2238 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2239 put_cmsg_scm_timestamping64(msg, tss); 2240 else 2241 put_cmsg_scm_timestamping(msg, tss); 2242 } 2243 } 2244 2245 static int tcp_inq_hint(struct sock *sk) 2246 { 2247 const struct tcp_sock *tp = tcp_sk(sk); 2248 u32 copied_seq = READ_ONCE(tp->copied_seq); 2249 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2250 int inq; 2251 2252 inq = rcv_nxt - copied_seq; 2253 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2254 lock_sock(sk); 2255 inq = tp->rcv_nxt - tp->copied_seq; 2256 release_sock(sk); 2257 } 2258 /* After receiving a FIN, tell the user-space to continue reading 2259 * by returning a non-zero inq. 2260 */ 2261 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2262 inq = 1; 2263 return inq; 2264 } 2265 2266 /* 2267 * This routine copies from a sock struct into the user buffer. 2268 * 2269 * Technical note: in 2.3 we work on _locked_ socket, so that 2270 * tricks with *seq access order and skb->users are not required. 2271 * Probably, code can be easily improved even more. 2272 */ 2273 2274 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2275 int nonblock, int flags, 2276 struct scm_timestamping_internal *tss, 2277 int *cmsg_flags) 2278 { 2279 struct tcp_sock *tp = tcp_sk(sk); 2280 int copied = 0; 2281 u32 peek_seq; 2282 u32 *seq; 2283 unsigned long used; 2284 int err; 2285 int target; /* Read at least this many bytes */ 2286 long timeo; 2287 struct sk_buff *skb, *last; 2288 u32 urg_hole = 0; 2289 2290 err = -ENOTCONN; 2291 if (sk->sk_state == TCP_LISTEN) 2292 goto out; 2293 2294 if (tp->recvmsg_inq) 2295 *cmsg_flags = TCP_CMSG_INQ; 2296 timeo = sock_rcvtimeo(sk, nonblock); 2297 2298 /* Urgent data needs to be handled specially. */ 2299 if (flags & MSG_OOB) 2300 goto recv_urg; 2301 2302 if (unlikely(tp->repair)) { 2303 err = -EPERM; 2304 if (!(flags & MSG_PEEK)) 2305 goto out; 2306 2307 if (tp->repair_queue == TCP_SEND_QUEUE) 2308 goto recv_sndq; 2309 2310 err = -EINVAL; 2311 if (tp->repair_queue == TCP_NO_QUEUE) 2312 goto out; 2313 2314 /* 'common' recv queue MSG_PEEK-ing */ 2315 } 2316 2317 seq = &tp->copied_seq; 2318 if (flags & MSG_PEEK) { 2319 peek_seq = tp->copied_seq; 2320 seq = &peek_seq; 2321 } 2322 2323 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2324 2325 do { 2326 u32 offset; 2327 2328 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2329 if (tp->urg_data && tp->urg_seq == *seq) { 2330 if (copied) 2331 break; 2332 if (signal_pending(current)) { 2333 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2334 break; 2335 } 2336 } 2337 2338 /* Next get a buffer. */ 2339 2340 last = skb_peek_tail(&sk->sk_receive_queue); 2341 skb_queue_walk(&sk->sk_receive_queue, skb) { 2342 last = skb; 2343 /* Now that we have two receive queues this 2344 * shouldn't happen. 2345 */ 2346 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2347 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2348 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2349 flags)) 2350 break; 2351 2352 offset = *seq - TCP_SKB_CB(skb)->seq; 2353 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2354 pr_err_once("%s: found a SYN, please report !\n", __func__); 2355 offset--; 2356 } 2357 if (offset < skb->len) 2358 goto found_ok_skb; 2359 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2360 goto found_fin_ok; 2361 WARN(!(flags & MSG_PEEK), 2362 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2363 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2364 } 2365 2366 /* Well, if we have backlog, try to process it now yet. */ 2367 2368 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2369 break; 2370 2371 if (copied) { 2372 if (sk->sk_err || 2373 sk->sk_state == TCP_CLOSE || 2374 (sk->sk_shutdown & RCV_SHUTDOWN) || 2375 !timeo || 2376 signal_pending(current)) 2377 break; 2378 } else { 2379 if (sock_flag(sk, SOCK_DONE)) 2380 break; 2381 2382 if (sk->sk_err) { 2383 copied = sock_error(sk); 2384 break; 2385 } 2386 2387 if (sk->sk_shutdown & RCV_SHUTDOWN) 2388 break; 2389 2390 if (sk->sk_state == TCP_CLOSE) { 2391 /* This occurs when user tries to read 2392 * from never connected socket. 2393 */ 2394 copied = -ENOTCONN; 2395 break; 2396 } 2397 2398 if (!timeo) { 2399 copied = -EAGAIN; 2400 break; 2401 } 2402 2403 if (signal_pending(current)) { 2404 copied = sock_intr_errno(timeo); 2405 break; 2406 } 2407 } 2408 2409 tcp_cleanup_rbuf(sk, copied); 2410 2411 if (copied >= target) { 2412 /* Do not sleep, just process backlog. */ 2413 release_sock(sk); 2414 lock_sock(sk); 2415 } else { 2416 sk_wait_data(sk, &timeo, last); 2417 } 2418 2419 if ((flags & MSG_PEEK) && 2420 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2421 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2422 current->comm, 2423 task_pid_nr(current)); 2424 peek_seq = tp->copied_seq; 2425 } 2426 continue; 2427 2428 found_ok_skb: 2429 /* Ok so how much can we use? */ 2430 used = skb->len - offset; 2431 if (len < used) 2432 used = len; 2433 2434 /* Do we have urgent data here? */ 2435 if (tp->urg_data) { 2436 u32 urg_offset = tp->urg_seq - *seq; 2437 if (urg_offset < used) { 2438 if (!urg_offset) { 2439 if (!sock_flag(sk, SOCK_URGINLINE)) { 2440 WRITE_ONCE(*seq, *seq + 1); 2441 urg_hole++; 2442 offset++; 2443 used--; 2444 if (!used) 2445 goto skip_copy; 2446 } 2447 } else 2448 used = urg_offset; 2449 } 2450 } 2451 2452 if (!(flags & MSG_TRUNC)) { 2453 err = skb_copy_datagram_msg(skb, offset, msg, used); 2454 if (err) { 2455 /* Exception. Bailout! */ 2456 if (!copied) 2457 copied = -EFAULT; 2458 break; 2459 } 2460 } 2461 2462 WRITE_ONCE(*seq, *seq + used); 2463 copied += used; 2464 len -= used; 2465 2466 tcp_rcv_space_adjust(sk); 2467 2468 skip_copy: 2469 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2470 tp->urg_data = 0; 2471 tcp_fast_path_check(sk); 2472 } 2473 2474 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2475 tcp_update_recv_tstamps(skb, tss); 2476 *cmsg_flags |= TCP_CMSG_TS; 2477 } 2478 2479 if (used + offset < skb->len) 2480 continue; 2481 2482 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2483 goto found_fin_ok; 2484 if (!(flags & MSG_PEEK)) 2485 sk_eat_skb(sk, skb); 2486 continue; 2487 2488 found_fin_ok: 2489 /* Process the FIN. */ 2490 WRITE_ONCE(*seq, *seq + 1); 2491 if (!(flags & MSG_PEEK)) 2492 sk_eat_skb(sk, skb); 2493 break; 2494 } while (len > 0); 2495 2496 /* According to UNIX98, msg_name/msg_namelen are ignored 2497 * on connected socket. I was just happy when found this 8) --ANK 2498 */ 2499 2500 /* Clean up data we have read: This will do ACK frames. */ 2501 tcp_cleanup_rbuf(sk, copied); 2502 return copied; 2503 2504 out: 2505 return err; 2506 2507 recv_urg: 2508 err = tcp_recv_urg(sk, msg, len, flags); 2509 goto out; 2510 2511 recv_sndq: 2512 err = tcp_peek_sndq(sk, msg, len); 2513 goto out; 2514 } 2515 2516 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2517 int flags, int *addr_len) 2518 { 2519 int cmsg_flags = 0, ret, inq; 2520 struct scm_timestamping_internal tss; 2521 2522 if (unlikely(flags & MSG_ERRQUEUE)) 2523 return inet_recv_error(sk, msg, len, addr_len); 2524 2525 if (sk_can_busy_loop(sk) && 2526 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2527 sk->sk_state == TCP_ESTABLISHED) 2528 sk_busy_loop(sk, nonblock); 2529 2530 lock_sock(sk); 2531 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss, 2532 &cmsg_flags); 2533 release_sock(sk); 2534 2535 if (cmsg_flags && ret >= 0) { 2536 if (cmsg_flags & TCP_CMSG_TS) 2537 tcp_recv_timestamp(msg, sk, &tss); 2538 if (cmsg_flags & TCP_CMSG_INQ) { 2539 inq = tcp_inq_hint(sk); 2540 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2541 } 2542 } 2543 return ret; 2544 } 2545 EXPORT_SYMBOL(tcp_recvmsg); 2546 2547 void tcp_set_state(struct sock *sk, int state) 2548 { 2549 int oldstate = sk->sk_state; 2550 2551 /* We defined a new enum for TCP states that are exported in BPF 2552 * so as not force the internal TCP states to be frozen. The 2553 * following checks will detect if an internal state value ever 2554 * differs from the BPF value. If this ever happens, then we will 2555 * need to remap the internal value to the BPF value before calling 2556 * tcp_call_bpf_2arg. 2557 */ 2558 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2559 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2560 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2561 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2562 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2563 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2564 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2565 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2566 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2567 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2568 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2569 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2570 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2571 2572 /* bpf uapi header bpf.h defines an anonymous enum with values 2573 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2574 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2575 * But clang built vmlinux does not have this enum in DWARF 2576 * since clang removes the above code before generating IR/debuginfo. 2577 * Let us explicitly emit the type debuginfo to ensure the 2578 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2579 * regardless of which compiler is used. 2580 */ 2581 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2582 2583 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2584 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2585 2586 switch (state) { 2587 case TCP_ESTABLISHED: 2588 if (oldstate != TCP_ESTABLISHED) 2589 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2590 break; 2591 2592 case TCP_CLOSE: 2593 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2594 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2595 2596 sk->sk_prot->unhash(sk); 2597 if (inet_csk(sk)->icsk_bind_hash && 2598 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2599 inet_put_port(sk); 2600 fallthrough; 2601 default: 2602 if (oldstate == TCP_ESTABLISHED) 2603 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2604 } 2605 2606 /* Change state AFTER socket is unhashed to avoid closed 2607 * socket sitting in hash tables. 2608 */ 2609 inet_sk_state_store(sk, state); 2610 } 2611 EXPORT_SYMBOL_GPL(tcp_set_state); 2612 2613 /* 2614 * State processing on a close. This implements the state shift for 2615 * sending our FIN frame. Note that we only send a FIN for some 2616 * states. A shutdown() may have already sent the FIN, or we may be 2617 * closed. 2618 */ 2619 2620 static const unsigned char new_state[16] = { 2621 /* current state: new state: action: */ 2622 [0 /* (Invalid) */] = TCP_CLOSE, 2623 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2624 [TCP_SYN_SENT] = TCP_CLOSE, 2625 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2626 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2627 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2628 [TCP_TIME_WAIT] = TCP_CLOSE, 2629 [TCP_CLOSE] = TCP_CLOSE, 2630 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2631 [TCP_LAST_ACK] = TCP_LAST_ACK, 2632 [TCP_LISTEN] = TCP_CLOSE, 2633 [TCP_CLOSING] = TCP_CLOSING, 2634 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2635 }; 2636 2637 static int tcp_close_state(struct sock *sk) 2638 { 2639 int next = (int)new_state[sk->sk_state]; 2640 int ns = next & TCP_STATE_MASK; 2641 2642 tcp_set_state(sk, ns); 2643 2644 return next & TCP_ACTION_FIN; 2645 } 2646 2647 /* 2648 * Shutdown the sending side of a connection. Much like close except 2649 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2650 */ 2651 2652 void tcp_shutdown(struct sock *sk, int how) 2653 { 2654 /* We need to grab some memory, and put together a FIN, 2655 * and then put it into the queue to be sent. 2656 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2657 */ 2658 if (!(how & SEND_SHUTDOWN)) 2659 return; 2660 2661 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2662 if ((1 << sk->sk_state) & 2663 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2664 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2665 /* Clear out any half completed packets. FIN if needed. */ 2666 if (tcp_close_state(sk)) 2667 tcp_send_fin(sk); 2668 } 2669 } 2670 EXPORT_SYMBOL(tcp_shutdown); 2671 2672 int tcp_orphan_count_sum(void) 2673 { 2674 int i, total = 0; 2675 2676 for_each_possible_cpu(i) 2677 total += per_cpu(tcp_orphan_count, i); 2678 2679 return max(total, 0); 2680 } 2681 2682 static int tcp_orphan_cache; 2683 static struct timer_list tcp_orphan_timer; 2684 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2685 2686 static void tcp_orphan_update(struct timer_list *unused) 2687 { 2688 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2689 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2690 } 2691 2692 static bool tcp_too_many_orphans(int shift) 2693 { 2694 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans; 2695 } 2696 2697 bool tcp_check_oom(struct sock *sk, int shift) 2698 { 2699 bool too_many_orphans, out_of_socket_memory; 2700 2701 too_many_orphans = tcp_too_many_orphans(shift); 2702 out_of_socket_memory = tcp_out_of_memory(sk); 2703 2704 if (too_many_orphans) 2705 net_info_ratelimited("too many orphaned sockets\n"); 2706 if (out_of_socket_memory) 2707 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2708 return too_many_orphans || out_of_socket_memory; 2709 } 2710 2711 void __tcp_close(struct sock *sk, long timeout) 2712 { 2713 struct sk_buff *skb; 2714 int data_was_unread = 0; 2715 int state; 2716 2717 sk->sk_shutdown = SHUTDOWN_MASK; 2718 2719 if (sk->sk_state == TCP_LISTEN) { 2720 tcp_set_state(sk, TCP_CLOSE); 2721 2722 /* Special case. */ 2723 inet_csk_listen_stop(sk); 2724 2725 goto adjudge_to_death; 2726 } 2727 2728 /* We need to flush the recv. buffs. We do this only on the 2729 * descriptor close, not protocol-sourced closes, because the 2730 * reader process may not have drained the data yet! 2731 */ 2732 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2733 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2734 2735 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2736 len--; 2737 data_was_unread += len; 2738 __kfree_skb(skb); 2739 } 2740 2741 sk_mem_reclaim(sk); 2742 2743 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2744 if (sk->sk_state == TCP_CLOSE) 2745 goto adjudge_to_death; 2746 2747 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2748 * data was lost. To witness the awful effects of the old behavior of 2749 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2750 * GET in an FTP client, suspend the process, wait for the client to 2751 * advertise a zero window, then kill -9 the FTP client, wheee... 2752 * Note: timeout is always zero in such a case. 2753 */ 2754 if (unlikely(tcp_sk(sk)->repair)) { 2755 sk->sk_prot->disconnect(sk, 0); 2756 } else if (data_was_unread) { 2757 /* Unread data was tossed, zap the connection. */ 2758 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2759 tcp_set_state(sk, TCP_CLOSE); 2760 tcp_send_active_reset(sk, sk->sk_allocation); 2761 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2762 /* Check zero linger _after_ checking for unread data. */ 2763 sk->sk_prot->disconnect(sk, 0); 2764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2765 } else if (tcp_close_state(sk)) { 2766 /* We FIN if the application ate all the data before 2767 * zapping the connection. 2768 */ 2769 2770 /* RED-PEN. Formally speaking, we have broken TCP state 2771 * machine. State transitions: 2772 * 2773 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2774 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2775 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2776 * 2777 * are legal only when FIN has been sent (i.e. in window), 2778 * rather than queued out of window. Purists blame. 2779 * 2780 * F.e. "RFC state" is ESTABLISHED, 2781 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2782 * 2783 * The visible declinations are that sometimes 2784 * we enter time-wait state, when it is not required really 2785 * (harmless), do not send active resets, when they are 2786 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2787 * they look as CLOSING or LAST_ACK for Linux) 2788 * Probably, I missed some more holelets. 2789 * --ANK 2790 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2791 * in a single packet! (May consider it later but will 2792 * probably need API support or TCP_CORK SYN-ACK until 2793 * data is written and socket is closed.) 2794 */ 2795 tcp_send_fin(sk); 2796 } 2797 2798 sk_stream_wait_close(sk, timeout); 2799 2800 adjudge_to_death: 2801 state = sk->sk_state; 2802 sock_hold(sk); 2803 sock_orphan(sk); 2804 2805 local_bh_disable(); 2806 bh_lock_sock(sk); 2807 /* remove backlog if any, without releasing ownership. */ 2808 __release_sock(sk); 2809 2810 this_cpu_inc(tcp_orphan_count); 2811 2812 /* Have we already been destroyed by a softirq or backlog? */ 2813 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2814 goto out; 2815 2816 /* This is a (useful) BSD violating of the RFC. There is a 2817 * problem with TCP as specified in that the other end could 2818 * keep a socket open forever with no application left this end. 2819 * We use a 1 minute timeout (about the same as BSD) then kill 2820 * our end. If they send after that then tough - BUT: long enough 2821 * that we won't make the old 4*rto = almost no time - whoops 2822 * reset mistake. 2823 * 2824 * Nope, it was not mistake. It is really desired behaviour 2825 * f.e. on http servers, when such sockets are useless, but 2826 * consume significant resources. Let's do it with special 2827 * linger2 option. --ANK 2828 */ 2829 2830 if (sk->sk_state == TCP_FIN_WAIT2) { 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 if (tp->linger2 < 0) { 2833 tcp_set_state(sk, TCP_CLOSE); 2834 tcp_send_active_reset(sk, GFP_ATOMIC); 2835 __NET_INC_STATS(sock_net(sk), 2836 LINUX_MIB_TCPABORTONLINGER); 2837 } else { 2838 const int tmo = tcp_fin_time(sk); 2839 2840 if (tmo > TCP_TIMEWAIT_LEN) { 2841 inet_csk_reset_keepalive_timer(sk, 2842 tmo - TCP_TIMEWAIT_LEN); 2843 } else { 2844 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2845 goto out; 2846 } 2847 } 2848 } 2849 if (sk->sk_state != TCP_CLOSE) { 2850 sk_mem_reclaim(sk); 2851 if (tcp_check_oom(sk, 0)) { 2852 tcp_set_state(sk, TCP_CLOSE); 2853 tcp_send_active_reset(sk, GFP_ATOMIC); 2854 __NET_INC_STATS(sock_net(sk), 2855 LINUX_MIB_TCPABORTONMEMORY); 2856 } else if (!check_net(sock_net(sk))) { 2857 /* Not possible to send reset; just close */ 2858 tcp_set_state(sk, TCP_CLOSE); 2859 } 2860 } 2861 2862 if (sk->sk_state == TCP_CLOSE) { 2863 struct request_sock *req; 2864 2865 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2866 lockdep_sock_is_held(sk)); 2867 /* We could get here with a non-NULL req if the socket is 2868 * aborted (e.g., closed with unread data) before 3WHS 2869 * finishes. 2870 */ 2871 if (req) 2872 reqsk_fastopen_remove(sk, req, false); 2873 inet_csk_destroy_sock(sk); 2874 } 2875 /* Otherwise, socket is reprieved until protocol close. */ 2876 2877 out: 2878 bh_unlock_sock(sk); 2879 local_bh_enable(); 2880 } 2881 2882 void tcp_close(struct sock *sk, long timeout) 2883 { 2884 lock_sock(sk); 2885 __tcp_close(sk, timeout); 2886 release_sock(sk); 2887 sock_put(sk); 2888 } 2889 EXPORT_SYMBOL(tcp_close); 2890 2891 /* These states need RST on ABORT according to RFC793 */ 2892 2893 static inline bool tcp_need_reset(int state) 2894 { 2895 return (1 << state) & 2896 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2897 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2898 } 2899 2900 static void tcp_rtx_queue_purge(struct sock *sk) 2901 { 2902 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2903 2904 tcp_sk(sk)->highest_sack = NULL; 2905 while (p) { 2906 struct sk_buff *skb = rb_to_skb(p); 2907 2908 p = rb_next(p); 2909 /* Since we are deleting whole queue, no need to 2910 * list_del(&skb->tcp_tsorted_anchor) 2911 */ 2912 tcp_rtx_queue_unlink(skb, sk); 2913 tcp_wmem_free_skb(sk, skb); 2914 } 2915 } 2916 2917 void tcp_write_queue_purge(struct sock *sk) 2918 { 2919 struct sk_buff *skb; 2920 2921 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2922 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2923 tcp_skb_tsorted_anchor_cleanup(skb); 2924 tcp_wmem_free_skb(sk, skb); 2925 } 2926 tcp_rtx_queue_purge(sk); 2927 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2928 sk_mem_reclaim(sk); 2929 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2930 tcp_sk(sk)->packets_out = 0; 2931 inet_csk(sk)->icsk_backoff = 0; 2932 } 2933 2934 int tcp_disconnect(struct sock *sk, int flags) 2935 { 2936 struct inet_sock *inet = inet_sk(sk); 2937 struct inet_connection_sock *icsk = inet_csk(sk); 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 int old_state = sk->sk_state; 2940 u32 seq; 2941 2942 if (old_state != TCP_CLOSE) 2943 tcp_set_state(sk, TCP_CLOSE); 2944 2945 /* ABORT function of RFC793 */ 2946 if (old_state == TCP_LISTEN) { 2947 inet_csk_listen_stop(sk); 2948 } else if (unlikely(tp->repair)) { 2949 sk->sk_err = ECONNABORTED; 2950 } else if (tcp_need_reset(old_state) || 2951 (tp->snd_nxt != tp->write_seq && 2952 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2953 /* The last check adjusts for discrepancy of Linux wrt. RFC 2954 * states 2955 */ 2956 tcp_send_active_reset(sk, gfp_any()); 2957 sk->sk_err = ECONNRESET; 2958 } else if (old_state == TCP_SYN_SENT) 2959 sk->sk_err = ECONNRESET; 2960 2961 tcp_clear_xmit_timers(sk); 2962 __skb_queue_purge(&sk->sk_receive_queue); 2963 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2964 tp->urg_data = 0; 2965 tcp_write_queue_purge(sk); 2966 tcp_fastopen_active_disable_ofo_check(sk); 2967 skb_rbtree_purge(&tp->out_of_order_queue); 2968 2969 inet->inet_dport = 0; 2970 2971 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2972 inet_reset_saddr(sk); 2973 2974 sk->sk_shutdown = 0; 2975 sock_reset_flag(sk, SOCK_DONE); 2976 tp->srtt_us = 0; 2977 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2978 tp->rcv_rtt_last_tsecr = 0; 2979 2980 seq = tp->write_seq + tp->max_window + 2; 2981 if (!seq) 2982 seq = 1; 2983 WRITE_ONCE(tp->write_seq, seq); 2984 2985 icsk->icsk_backoff = 0; 2986 icsk->icsk_probes_out = 0; 2987 icsk->icsk_probes_tstamp = 0; 2988 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2989 icsk->icsk_rto_min = TCP_RTO_MIN; 2990 icsk->icsk_delack_max = TCP_DELACK_MAX; 2991 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2992 tp->snd_cwnd = TCP_INIT_CWND; 2993 tp->snd_cwnd_cnt = 0; 2994 tp->window_clamp = 0; 2995 tp->delivered = 0; 2996 tp->delivered_ce = 0; 2997 if (icsk->icsk_ca_ops->release) 2998 icsk->icsk_ca_ops->release(sk); 2999 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3000 icsk->icsk_ca_initialized = 0; 3001 tcp_set_ca_state(sk, TCP_CA_Open); 3002 tp->is_sack_reneg = 0; 3003 tcp_clear_retrans(tp); 3004 tp->total_retrans = 0; 3005 inet_csk_delack_init(sk); 3006 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3007 * issue in __tcp_select_window() 3008 */ 3009 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3010 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3011 __sk_dst_reset(sk); 3012 dst_release(sk->sk_rx_dst); 3013 sk->sk_rx_dst = NULL; 3014 tcp_saved_syn_free(tp); 3015 tp->compressed_ack = 0; 3016 tp->segs_in = 0; 3017 tp->segs_out = 0; 3018 tp->bytes_sent = 0; 3019 tp->bytes_acked = 0; 3020 tp->bytes_received = 0; 3021 tp->bytes_retrans = 0; 3022 tp->data_segs_in = 0; 3023 tp->data_segs_out = 0; 3024 tp->duplicate_sack[0].start_seq = 0; 3025 tp->duplicate_sack[0].end_seq = 0; 3026 tp->dsack_dups = 0; 3027 tp->reord_seen = 0; 3028 tp->retrans_out = 0; 3029 tp->sacked_out = 0; 3030 tp->tlp_high_seq = 0; 3031 tp->last_oow_ack_time = 0; 3032 /* There's a bubble in the pipe until at least the first ACK. */ 3033 tp->app_limited = ~0U; 3034 tp->rack.mstamp = 0; 3035 tp->rack.advanced = 0; 3036 tp->rack.reo_wnd_steps = 1; 3037 tp->rack.last_delivered = 0; 3038 tp->rack.reo_wnd_persist = 0; 3039 tp->rack.dsack_seen = 0; 3040 tp->syn_data_acked = 0; 3041 tp->rx_opt.saw_tstamp = 0; 3042 tp->rx_opt.dsack = 0; 3043 tp->rx_opt.num_sacks = 0; 3044 tp->rcv_ooopack = 0; 3045 3046 3047 /* Clean up fastopen related fields */ 3048 tcp_free_fastopen_req(tp); 3049 inet->defer_connect = 0; 3050 tp->fastopen_client_fail = 0; 3051 3052 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3053 3054 if (sk->sk_frag.page) { 3055 put_page(sk->sk_frag.page); 3056 sk->sk_frag.page = NULL; 3057 sk->sk_frag.offset = 0; 3058 } 3059 3060 sk_error_report(sk); 3061 return 0; 3062 } 3063 EXPORT_SYMBOL(tcp_disconnect); 3064 3065 static inline bool tcp_can_repair_sock(const struct sock *sk) 3066 { 3067 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3068 (sk->sk_state != TCP_LISTEN); 3069 } 3070 3071 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3072 { 3073 struct tcp_repair_window opt; 3074 3075 if (!tp->repair) 3076 return -EPERM; 3077 3078 if (len != sizeof(opt)) 3079 return -EINVAL; 3080 3081 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3082 return -EFAULT; 3083 3084 if (opt.max_window < opt.snd_wnd) 3085 return -EINVAL; 3086 3087 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3088 return -EINVAL; 3089 3090 if (after(opt.rcv_wup, tp->rcv_nxt)) 3091 return -EINVAL; 3092 3093 tp->snd_wl1 = opt.snd_wl1; 3094 tp->snd_wnd = opt.snd_wnd; 3095 tp->max_window = opt.max_window; 3096 3097 tp->rcv_wnd = opt.rcv_wnd; 3098 tp->rcv_wup = opt.rcv_wup; 3099 3100 return 0; 3101 } 3102 3103 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3104 unsigned int len) 3105 { 3106 struct tcp_sock *tp = tcp_sk(sk); 3107 struct tcp_repair_opt opt; 3108 size_t offset = 0; 3109 3110 while (len >= sizeof(opt)) { 3111 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3112 return -EFAULT; 3113 3114 offset += sizeof(opt); 3115 len -= sizeof(opt); 3116 3117 switch (opt.opt_code) { 3118 case TCPOPT_MSS: 3119 tp->rx_opt.mss_clamp = opt.opt_val; 3120 tcp_mtup_init(sk); 3121 break; 3122 case TCPOPT_WINDOW: 3123 { 3124 u16 snd_wscale = opt.opt_val & 0xFFFF; 3125 u16 rcv_wscale = opt.opt_val >> 16; 3126 3127 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3128 return -EFBIG; 3129 3130 tp->rx_opt.snd_wscale = snd_wscale; 3131 tp->rx_opt.rcv_wscale = rcv_wscale; 3132 tp->rx_opt.wscale_ok = 1; 3133 } 3134 break; 3135 case TCPOPT_SACK_PERM: 3136 if (opt.opt_val != 0) 3137 return -EINVAL; 3138 3139 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3140 break; 3141 case TCPOPT_TIMESTAMP: 3142 if (opt.opt_val != 0) 3143 return -EINVAL; 3144 3145 tp->rx_opt.tstamp_ok = 1; 3146 break; 3147 } 3148 } 3149 3150 return 0; 3151 } 3152 3153 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3154 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3155 3156 static void tcp_enable_tx_delay(void) 3157 { 3158 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3159 static int __tcp_tx_delay_enabled = 0; 3160 3161 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3162 static_branch_enable(&tcp_tx_delay_enabled); 3163 pr_info("TCP_TX_DELAY enabled\n"); 3164 } 3165 } 3166 } 3167 3168 /* When set indicates to always queue non-full frames. Later the user clears 3169 * this option and we transmit any pending partial frames in the queue. This is 3170 * meant to be used alongside sendfile() to get properly filled frames when the 3171 * user (for example) must write out headers with a write() call first and then 3172 * use sendfile to send out the data parts. 3173 * 3174 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3175 * TCP_NODELAY. 3176 */ 3177 static void __tcp_sock_set_cork(struct sock *sk, bool on) 3178 { 3179 struct tcp_sock *tp = tcp_sk(sk); 3180 3181 if (on) { 3182 tp->nonagle |= TCP_NAGLE_CORK; 3183 } else { 3184 tp->nonagle &= ~TCP_NAGLE_CORK; 3185 if (tp->nonagle & TCP_NAGLE_OFF) 3186 tp->nonagle |= TCP_NAGLE_PUSH; 3187 tcp_push_pending_frames(sk); 3188 } 3189 } 3190 3191 void tcp_sock_set_cork(struct sock *sk, bool on) 3192 { 3193 lock_sock(sk); 3194 __tcp_sock_set_cork(sk, on); 3195 release_sock(sk); 3196 } 3197 EXPORT_SYMBOL(tcp_sock_set_cork); 3198 3199 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3200 * remembered, but it is not activated until cork is cleared. 3201 * 3202 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3203 * even TCP_CORK for currently queued segments. 3204 */ 3205 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3206 { 3207 if (on) { 3208 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3209 tcp_push_pending_frames(sk); 3210 } else { 3211 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3212 } 3213 } 3214 3215 void tcp_sock_set_nodelay(struct sock *sk) 3216 { 3217 lock_sock(sk); 3218 __tcp_sock_set_nodelay(sk, true); 3219 release_sock(sk); 3220 } 3221 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3222 3223 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3224 { 3225 if (!val) { 3226 inet_csk_enter_pingpong_mode(sk); 3227 return; 3228 } 3229 3230 inet_csk_exit_pingpong_mode(sk); 3231 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3232 inet_csk_ack_scheduled(sk)) { 3233 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3234 tcp_cleanup_rbuf(sk, 1); 3235 if (!(val & 1)) 3236 inet_csk_enter_pingpong_mode(sk); 3237 } 3238 } 3239 3240 void tcp_sock_set_quickack(struct sock *sk, int val) 3241 { 3242 lock_sock(sk); 3243 __tcp_sock_set_quickack(sk, val); 3244 release_sock(sk); 3245 } 3246 EXPORT_SYMBOL(tcp_sock_set_quickack); 3247 3248 int tcp_sock_set_syncnt(struct sock *sk, int val) 3249 { 3250 if (val < 1 || val > MAX_TCP_SYNCNT) 3251 return -EINVAL; 3252 3253 lock_sock(sk); 3254 inet_csk(sk)->icsk_syn_retries = val; 3255 release_sock(sk); 3256 return 0; 3257 } 3258 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3259 3260 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 3261 { 3262 lock_sock(sk); 3263 inet_csk(sk)->icsk_user_timeout = val; 3264 release_sock(sk); 3265 } 3266 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3267 3268 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3269 { 3270 struct tcp_sock *tp = tcp_sk(sk); 3271 3272 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3273 return -EINVAL; 3274 3275 tp->keepalive_time = val * HZ; 3276 if (sock_flag(sk, SOCK_KEEPOPEN) && 3277 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3278 u32 elapsed = keepalive_time_elapsed(tp); 3279 3280 if (tp->keepalive_time > elapsed) 3281 elapsed = tp->keepalive_time - elapsed; 3282 else 3283 elapsed = 0; 3284 inet_csk_reset_keepalive_timer(sk, elapsed); 3285 } 3286 3287 return 0; 3288 } 3289 3290 int tcp_sock_set_keepidle(struct sock *sk, int val) 3291 { 3292 int err; 3293 3294 lock_sock(sk); 3295 err = tcp_sock_set_keepidle_locked(sk, val); 3296 release_sock(sk); 3297 return err; 3298 } 3299 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3300 3301 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3302 { 3303 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3304 return -EINVAL; 3305 3306 lock_sock(sk); 3307 tcp_sk(sk)->keepalive_intvl = val * HZ; 3308 release_sock(sk); 3309 return 0; 3310 } 3311 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3312 3313 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3314 { 3315 if (val < 1 || val > MAX_TCP_KEEPCNT) 3316 return -EINVAL; 3317 3318 lock_sock(sk); 3319 tcp_sk(sk)->keepalive_probes = val; 3320 release_sock(sk); 3321 return 0; 3322 } 3323 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3324 3325 int tcp_set_window_clamp(struct sock *sk, int val) 3326 { 3327 struct tcp_sock *tp = tcp_sk(sk); 3328 3329 if (!val) { 3330 if (sk->sk_state != TCP_CLOSE) 3331 return -EINVAL; 3332 tp->window_clamp = 0; 3333 } else { 3334 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3335 SOCK_MIN_RCVBUF / 2 : val; 3336 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3337 } 3338 return 0; 3339 } 3340 3341 /* 3342 * Socket option code for TCP. 3343 */ 3344 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3345 sockptr_t optval, unsigned int optlen) 3346 { 3347 struct tcp_sock *tp = tcp_sk(sk); 3348 struct inet_connection_sock *icsk = inet_csk(sk); 3349 struct net *net = sock_net(sk); 3350 int val; 3351 int err = 0; 3352 3353 /* These are data/string values, all the others are ints */ 3354 switch (optname) { 3355 case TCP_CONGESTION: { 3356 char name[TCP_CA_NAME_MAX]; 3357 3358 if (optlen < 1) 3359 return -EINVAL; 3360 3361 val = strncpy_from_sockptr(name, optval, 3362 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3363 if (val < 0) 3364 return -EFAULT; 3365 name[val] = 0; 3366 3367 lock_sock(sk); 3368 err = tcp_set_congestion_control(sk, name, true, 3369 ns_capable(sock_net(sk)->user_ns, 3370 CAP_NET_ADMIN)); 3371 release_sock(sk); 3372 return err; 3373 } 3374 case TCP_ULP: { 3375 char name[TCP_ULP_NAME_MAX]; 3376 3377 if (optlen < 1) 3378 return -EINVAL; 3379 3380 val = strncpy_from_sockptr(name, optval, 3381 min_t(long, TCP_ULP_NAME_MAX - 1, 3382 optlen)); 3383 if (val < 0) 3384 return -EFAULT; 3385 name[val] = 0; 3386 3387 lock_sock(sk); 3388 err = tcp_set_ulp(sk, name); 3389 release_sock(sk); 3390 return err; 3391 } 3392 case TCP_FASTOPEN_KEY: { 3393 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3394 __u8 *backup_key = NULL; 3395 3396 /* Allow a backup key as well to facilitate key rotation 3397 * First key is the active one. 3398 */ 3399 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3400 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3401 return -EINVAL; 3402 3403 if (copy_from_sockptr(key, optval, optlen)) 3404 return -EFAULT; 3405 3406 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3407 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3408 3409 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3410 } 3411 default: 3412 /* fallthru */ 3413 break; 3414 } 3415 3416 if (optlen < sizeof(int)) 3417 return -EINVAL; 3418 3419 if (copy_from_sockptr(&val, optval, sizeof(val))) 3420 return -EFAULT; 3421 3422 lock_sock(sk); 3423 3424 switch (optname) { 3425 case TCP_MAXSEG: 3426 /* Values greater than interface MTU won't take effect. However 3427 * at the point when this call is done we typically don't yet 3428 * know which interface is going to be used 3429 */ 3430 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3431 err = -EINVAL; 3432 break; 3433 } 3434 tp->rx_opt.user_mss = val; 3435 break; 3436 3437 case TCP_NODELAY: 3438 __tcp_sock_set_nodelay(sk, val); 3439 break; 3440 3441 case TCP_THIN_LINEAR_TIMEOUTS: 3442 if (val < 0 || val > 1) 3443 err = -EINVAL; 3444 else 3445 tp->thin_lto = val; 3446 break; 3447 3448 case TCP_THIN_DUPACK: 3449 if (val < 0 || val > 1) 3450 err = -EINVAL; 3451 break; 3452 3453 case TCP_REPAIR: 3454 if (!tcp_can_repair_sock(sk)) 3455 err = -EPERM; 3456 else if (val == TCP_REPAIR_ON) { 3457 tp->repair = 1; 3458 sk->sk_reuse = SK_FORCE_REUSE; 3459 tp->repair_queue = TCP_NO_QUEUE; 3460 } else if (val == TCP_REPAIR_OFF) { 3461 tp->repair = 0; 3462 sk->sk_reuse = SK_NO_REUSE; 3463 tcp_send_window_probe(sk); 3464 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3465 tp->repair = 0; 3466 sk->sk_reuse = SK_NO_REUSE; 3467 } else 3468 err = -EINVAL; 3469 3470 break; 3471 3472 case TCP_REPAIR_QUEUE: 3473 if (!tp->repair) 3474 err = -EPERM; 3475 else if ((unsigned int)val < TCP_QUEUES_NR) 3476 tp->repair_queue = val; 3477 else 3478 err = -EINVAL; 3479 break; 3480 3481 case TCP_QUEUE_SEQ: 3482 if (sk->sk_state != TCP_CLOSE) { 3483 err = -EPERM; 3484 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3485 if (!tcp_rtx_queue_empty(sk)) 3486 err = -EPERM; 3487 else 3488 WRITE_ONCE(tp->write_seq, val); 3489 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3490 if (tp->rcv_nxt != tp->copied_seq) { 3491 err = -EPERM; 3492 } else { 3493 WRITE_ONCE(tp->rcv_nxt, val); 3494 WRITE_ONCE(tp->copied_seq, val); 3495 } 3496 } else { 3497 err = -EINVAL; 3498 } 3499 break; 3500 3501 case TCP_REPAIR_OPTIONS: 3502 if (!tp->repair) 3503 err = -EINVAL; 3504 else if (sk->sk_state == TCP_ESTABLISHED) 3505 err = tcp_repair_options_est(sk, optval, optlen); 3506 else 3507 err = -EPERM; 3508 break; 3509 3510 case TCP_CORK: 3511 __tcp_sock_set_cork(sk, val); 3512 break; 3513 3514 case TCP_KEEPIDLE: 3515 err = tcp_sock_set_keepidle_locked(sk, val); 3516 break; 3517 case TCP_KEEPINTVL: 3518 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3519 err = -EINVAL; 3520 else 3521 tp->keepalive_intvl = val * HZ; 3522 break; 3523 case TCP_KEEPCNT: 3524 if (val < 1 || val > MAX_TCP_KEEPCNT) 3525 err = -EINVAL; 3526 else 3527 tp->keepalive_probes = val; 3528 break; 3529 case TCP_SYNCNT: 3530 if (val < 1 || val > MAX_TCP_SYNCNT) 3531 err = -EINVAL; 3532 else 3533 icsk->icsk_syn_retries = val; 3534 break; 3535 3536 case TCP_SAVE_SYN: 3537 /* 0: disable, 1: enable, 2: start from ether_header */ 3538 if (val < 0 || val > 2) 3539 err = -EINVAL; 3540 else 3541 tp->save_syn = val; 3542 break; 3543 3544 case TCP_LINGER2: 3545 if (val < 0) 3546 tp->linger2 = -1; 3547 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3548 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3549 else 3550 tp->linger2 = val * HZ; 3551 break; 3552 3553 case TCP_DEFER_ACCEPT: 3554 /* Translate value in seconds to number of retransmits */ 3555 icsk->icsk_accept_queue.rskq_defer_accept = 3556 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3557 TCP_RTO_MAX / HZ); 3558 break; 3559 3560 case TCP_WINDOW_CLAMP: 3561 err = tcp_set_window_clamp(sk, val); 3562 break; 3563 3564 case TCP_QUICKACK: 3565 __tcp_sock_set_quickack(sk, val); 3566 break; 3567 3568 #ifdef CONFIG_TCP_MD5SIG 3569 case TCP_MD5SIG: 3570 case TCP_MD5SIG_EXT: 3571 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3572 break; 3573 #endif 3574 case TCP_USER_TIMEOUT: 3575 /* Cap the max time in ms TCP will retry or probe the window 3576 * before giving up and aborting (ETIMEDOUT) a connection. 3577 */ 3578 if (val < 0) 3579 err = -EINVAL; 3580 else 3581 icsk->icsk_user_timeout = val; 3582 break; 3583 3584 case TCP_FASTOPEN: 3585 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3586 TCPF_LISTEN))) { 3587 tcp_fastopen_init_key_once(net); 3588 3589 fastopen_queue_tune(sk, val); 3590 } else { 3591 err = -EINVAL; 3592 } 3593 break; 3594 case TCP_FASTOPEN_CONNECT: 3595 if (val > 1 || val < 0) { 3596 err = -EINVAL; 3597 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3598 if (sk->sk_state == TCP_CLOSE) 3599 tp->fastopen_connect = val; 3600 else 3601 err = -EINVAL; 3602 } else { 3603 err = -EOPNOTSUPP; 3604 } 3605 break; 3606 case TCP_FASTOPEN_NO_COOKIE: 3607 if (val > 1 || val < 0) 3608 err = -EINVAL; 3609 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3610 err = -EINVAL; 3611 else 3612 tp->fastopen_no_cookie = val; 3613 break; 3614 case TCP_TIMESTAMP: 3615 if (!tp->repair) 3616 err = -EPERM; 3617 else 3618 tp->tsoffset = val - tcp_time_stamp_raw(); 3619 break; 3620 case TCP_REPAIR_WINDOW: 3621 err = tcp_repair_set_window(tp, optval, optlen); 3622 break; 3623 case TCP_NOTSENT_LOWAT: 3624 tp->notsent_lowat = val; 3625 sk->sk_write_space(sk); 3626 break; 3627 case TCP_INQ: 3628 if (val > 1 || val < 0) 3629 err = -EINVAL; 3630 else 3631 tp->recvmsg_inq = val; 3632 break; 3633 case TCP_TX_DELAY: 3634 if (val) 3635 tcp_enable_tx_delay(); 3636 tp->tcp_tx_delay = val; 3637 break; 3638 default: 3639 err = -ENOPROTOOPT; 3640 break; 3641 } 3642 3643 release_sock(sk); 3644 return err; 3645 } 3646 3647 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3648 unsigned int optlen) 3649 { 3650 const struct inet_connection_sock *icsk = inet_csk(sk); 3651 3652 if (level != SOL_TCP) 3653 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3654 optval, optlen); 3655 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3656 } 3657 EXPORT_SYMBOL(tcp_setsockopt); 3658 3659 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3660 struct tcp_info *info) 3661 { 3662 u64 stats[__TCP_CHRONO_MAX], total = 0; 3663 enum tcp_chrono i; 3664 3665 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3666 stats[i] = tp->chrono_stat[i - 1]; 3667 if (i == tp->chrono_type) 3668 stats[i] += tcp_jiffies32 - tp->chrono_start; 3669 stats[i] *= USEC_PER_SEC / HZ; 3670 total += stats[i]; 3671 } 3672 3673 info->tcpi_busy_time = total; 3674 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3675 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3676 } 3677 3678 /* Return information about state of tcp endpoint in API format. */ 3679 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3680 { 3681 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3682 const struct inet_connection_sock *icsk = inet_csk(sk); 3683 unsigned long rate; 3684 u32 now; 3685 u64 rate64; 3686 bool slow; 3687 3688 memset(info, 0, sizeof(*info)); 3689 if (sk->sk_type != SOCK_STREAM) 3690 return; 3691 3692 info->tcpi_state = inet_sk_state_load(sk); 3693 3694 /* Report meaningful fields for all TCP states, including listeners */ 3695 rate = READ_ONCE(sk->sk_pacing_rate); 3696 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3697 info->tcpi_pacing_rate = rate64; 3698 3699 rate = READ_ONCE(sk->sk_max_pacing_rate); 3700 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3701 info->tcpi_max_pacing_rate = rate64; 3702 3703 info->tcpi_reordering = tp->reordering; 3704 info->tcpi_snd_cwnd = tp->snd_cwnd; 3705 3706 if (info->tcpi_state == TCP_LISTEN) { 3707 /* listeners aliased fields : 3708 * tcpi_unacked -> Number of children ready for accept() 3709 * tcpi_sacked -> max backlog 3710 */ 3711 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3712 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3713 return; 3714 } 3715 3716 slow = lock_sock_fast(sk); 3717 3718 info->tcpi_ca_state = icsk->icsk_ca_state; 3719 info->tcpi_retransmits = icsk->icsk_retransmits; 3720 info->tcpi_probes = icsk->icsk_probes_out; 3721 info->tcpi_backoff = icsk->icsk_backoff; 3722 3723 if (tp->rx_opt.tstamp_ok) 3724 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3725 if (tcp_is_sack(tp)) 3726 info->tcpi_options |= TCPI_OPT_SACK; 3727 if (tp->rx_opt.wscale_ok) { 3728 info->tcpi_options |= TCPI_OPT_WSCALE; 3729 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3730 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3731 } 3732 3733 if (tp->ecn_flags & TCP_ECN_OK) 3734 info->tcpi_options |= TCPI_OPT_ECN; 3735 if (tp->ecn_flags & TCP_ECN_SEEN) 3736 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3737 if (tp->syn_data_acked) 3738 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3739 3740 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3741 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3742 info->tcpi_snd_mss = tp->mss_cache; 3743 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3744 3745 info->tcpi_unacked = tp->packets_out; 3746 info->tcpi_sacked = tp->sacked_out; 3747 3748 info->tcpi_lost = tp->lost_out; 3749 info->tcpi_retrans = tp->retrans_out; 3750 3751 now = tcp_jiffies32; 3752 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3753 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3754 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3755 3756 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3757 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3758 info->tcpi_rtt = tp->srtt_us >> 3; 3759 info->tcpi_rttvar = tp->mdev_us >> 2; 3760 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3761 info->tcpi_advmss = tp->advmss; 3762 3763 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3764 info->tcpi_rcv_space = tp->rcvq_space.space; 3765 3766 info->tcpi_total_retrans = tp->total_retrans; 3767 3768 info->tcpi_bytes_acked = tp->bytes_acked; 3769 info->tcpi_bytes_received = tp->bytes_received; 3770 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3771 tcp_get_info_chrono_stats(tp, info); 3772 3773 info->tcpi_segs_out = tp->segs_out; 3774 info->tcpi_segs_in = tp->segs_in; 3775 3776 info->tcpi_min_rtt = tcp_min_rtt(tp); 3777 info->tcpi_data_segs_in = tp->data_segs_in; 3778 info->tcpi_data_segs_out = tp->data_segs_out; 3779 3780 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3781 rate64 = tcp_compute_delivery_rate(tp); 3782 if (rate64) 3783 info->tcpi_delivery_rate = rate64; 3784 info->tcpi_delivered = tp->delivered; 3785 info->tcpi_delivered_ce = tp->delivered_ce; 3786 info->tcpi_bytes_sent = tp->bytes_sent; 3787 info->tcpi_bytes_retrans = tp->bytes_retrans; 3788 info->tcpi_dsack_dups = tp->dsack_dups; 3789 info->tcpi_reord_seen = tp->reord_seen; 3790 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3791 info->tcpi_snd_wnd = tp->snd_wnd; 3792 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3793 unlock_sock_fast(sk, slow); 3794 } 3795 EXPORT_SYMBOL_GPL(tcp_get_info); 3796 3797 static size_t tcp_opt_stats_get_size(void) 3798 { 3799 return 3800 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3801 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3802 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3803 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3807 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3808 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3810 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3811 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3812 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3813 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3814 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3815 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3816 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3817 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3818 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3819 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3820 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3821 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3822 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3823 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3824 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3825 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3826 0; 3827 } 3828 3829 /* Returns TTL or hop limit of an incoming packet from skb. */ 3830 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3831 { 3832 if (skb->protocol == htons(ETH_P_IP)) 3833 return ip_hdr(skb)->ttl; 3834 else if (skb->protocol == htons(ETH_P_IPV6)) 3835 return ipv6_hdr(skb)->hop_limit; 3836 else 3837 return 0; 3838 } 3839 3840 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3841 const struct sk_buff *orig_skb, 3842 const struct sk_buff *ack_skb) 3843 { 3844 const struct tcp_sock *tp = tcp_sk(sk); 3845 struct sk_buff *stats; 3846 struct tcp_info info; 3847 unsigned long rate; 3848 u64 rate64; 3849 3850 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3851 if (!stats) 3852 return NULL; 3853 3854 tcp_get_info_chrono_stats(tp, &info); 3855 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3856 info.tcpi_busy_time, TCP_NLA_PAD); 3857 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3858 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3859 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3860 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3861 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3862 tp->data_segs_out, TCP_NLA_PAD); 3863 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3864 tp->total_retrans, TCP_NLA_PAD); 3865 3866 rate = READ_ONCE(sk->sk_pacing_rate); 3867 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3868 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3869 3870 rate64 = tcp_compute_delivery_rate(tp); 3871 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3872 3873 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3874 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3875 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3876 3877 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3878 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3879 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3880 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3881 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3882 3883 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3884 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3885 3886 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3887 TCP_NLA_PAD); 3888 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3889 TCP_NLA_PAD); 3890 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3891 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3892 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3893 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3894 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3895 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3896 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3897 TCP_NLA_PAD); 3898 if (ack_skb) 3899 nla_put_u8(stats, TCP_NLA_TTL, 3900 tcp_skb_ttl_or_hop_limit(ack_skb)); 3901 3902 return stats; 3903 } 3904 3905 static int do_tcp_getsockopt(struct sock *sk, int level, 3906 int optname, char __user *optval, int __user *optlen) 3907 { 3908 struct inet_connection_sock *icsk = inet_csk(sk); 3909 struct tcp_sock *tp = tcp_sk(sk); 3910 struct net *net = sock_net(sk); 3911 int val, len; 3912 3913 if (get_user(len, optlen)) 3914 return -EFAULT; 3915 3916 len = min_t(unsigned int, len, sizeof(int)); 3917 3918 if (len < 0) 3919 return -EINVAL; 3920 3921 switch (optname) { 3922 case TCP_MAXSEG: 3923 val = tp->mss_cache; 3924 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3925 val = tp->rx_opt.user_mss; 3926 if (tp->repair) 3927 val = tp->rx_opt.mss_clamp; 3928 break; 3929 case TCP_NODELAY: 3930 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3931 break; 3932 case TCP_CORK: 3933 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3934 break; 3935 case TCP_KEEPIDLE: 3936 val = keepalive_time_when(tp) / HZ; 3937 break; 3938 case TCP_KEEPINTVL: 3939 val = keepalive_intvl_when(tp) / HZ; 3940 break; 3941 case TCP_KEEPCNT: 3942 val = keepalive_probes(tp); 3943 break; 3944 case TCP_SYNCNT: 3945 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3946 break; 3947 case TCP_LINGER2: 3948 val = tp->linger2; 3949 if (val >= 0) 3950 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3951 break; 3952 case TCP_DEFER_ACCEPT: 3953 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3954 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3955 break; 3956 case TCP_WINDOW_CLAMP: 3957 val = tp->window_clamp; 3958 break; 3959 case TCP_INFO: { 3960 struct tcp_info info; 3961 3962 if (get_user(len, optlen)) 3963 return -EFAULT; 3964 3965 tcp_get_info(sk, &info); 3966 3967 len = min_t(unsigned int, len, sizeof(info)); 3968 if (put_user(len, optlen)) 3969 return -EFAULT; 3970 if (copy_to_user(optval, &info, len)) 3971 return -EFAULT; 3972 return 0; 3973 } 3974 case TCP_CC_INFO: { 3975 const struct tcp_congestion_ops *ca_ops; 3976 union tcp_cc_info info; 3977 size_t sz = 0; 3978 int attr; 3979 3980 if (get_user(len, optlen)) 3981 return -EFAULT; 3982 3983 ca_ops = icsk->icsk_ca_ops; 3984 if (ca_ops && ca_ops->get_info) 3985 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3986 3987 len = min_t(unsigned int, len, sz); 3988 if (put_user(len, optlen)) 3989 return -EFAULT; 3990 if (copy_to_user(optval, &info, len)) 3991 return -EFAULT; 3992 return 0; 3993 } 3994 case TCP_QUICKACK: 3995 val = !inet_csk_in_pingpong_mode(sk); 3996 break; 3997 3998 case TCP_CONGESTION: 3999 if (get_user(len, optlen)) 4000 return -EFAULT; 4001 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4002 if (put_user(len, optlen)) 4003 return -EFAULT; 4004 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 4005 return -EFAULT; 4006 return 0; 4007 4008 case TCP_ULP: 4009 if (get_user(len, optlen)) 4010 return -EFAULT; 4011 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4012 if (!icsk->icsk_ulp_ops) { 4013 if (put_user(0, optlen)) 4014 return -EFAULT; 4015 return 0; 4016 } 4017 if (put_user(len, optlen)) 4018 return -EFAULT; 4019 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 4020 return -EFAULT; 4021 return 0; 4022 4023 case TCP_FASTOPEN_KEY: { 4024 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4025 unsigned int key_len; 4026 4027 if (get_user(len, optlen)) 4028 return -EFAULT; 4029 4030 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4031 TCP_FASTOPEN_KEY_LENGTH; 4032 len = min_t(unsigned int, len, key_len); 4033 if (put_user(len, optlen)) 4034 return -EFAULT; 4035 if (copy_to_user(optval, key, len)) 4036 return -EFAULT; 4037 return 0; 4038 } 4039 case TCP_THIN_LINEAR_TIMEOUTS: 4040 val = tp->thin_lto; 4041 break; 4042 4043 case TCP_THIN_DUPACK: 4044 val = 0; 4045 break; 4046 4047 case TCP_REPAIR: 4048 val = tp->repair; 4049 break; 4050 4051 case TCP_REPAIR_QUEUE: 4052 if (tp->repair) 4053 val = tp->repair_queue; 4054 else 4055 return -EINVAL; 4056 break; 4057 4058 case TCP_REPAIR_WINDOW: { 4059 struct tcp_repair_window opt; 4060 4061 if (get_user(len, optlen)) 4062 return -EFAULT; 4063 4064 if (len != sizeof(opt)) 4065 return -EINVAL; 4066 4067 if (!tp->repair) 4068 return -EPERM; 4069 4070 opt.snd_wl1 = tp->snd_wl1; 4071 opt.snd_wnd = tp->snd_wnd; 4072 opt.max_window = tp->max_window; 4073 opt.rcv_wnd = tp->rcv_wnd; 4074 opt.rcv_wup = tp->rcv_wup; 4075 4076 if (copy_to_user(optval, &opt, len)) 4077 return -EFAULT; 4078 return 0; 4079 } 4080 case TCP_QUEUE_SEQ: 4081 if (tp->repair_queue == TCP_SEND_QUEUE) 4082 val = tp->write_seq; 4083 else if (tp->repair_queue == TCP_RECV_QUEUE) 4084 val = tp->rcv_nxt; 4085 else 4086 return -EINVAL; 4087 break; 4088 4089 case TCP_USER_TIMEOUT: 4090 val = icsk->icsk_user_timeout; 4091 break; 4092 4093 case TCP_FASTOPEN: 4094 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 4095 break; 4096 4097 case TCP_FASTOPEN_CONNECT: 4098 val = tp->fastopen_connect; 4099 break; 4100 4101 case TCP_FASTOPEN_NO_COOKIE: 4102 val = tp->fastopen_no_cookie; 4103 break; 4104 4105 case TCP_TX_DELAY: 4106 val = tp->tcp_tx_delay; 4107 break; 4108 4109 case TCP_TIMESTAMP: 4110 val = tcp_time_stamp_raw() + tp->tsoffset; 4111 break; 4112 case TCP_NOTSENT_LOWAT: 4113 val = tp->notsent_lowat; 4114 break; 4115 case TCP_INQ: 4116 val = tp->recvmsg_inq; 4117 break; 4118 case TCP_SAVE_SYN: 4119 val = tp->save_syn; 4120 break; 4121 case TCP_SAVED_SYN: { 4122 if (get_user(len, optlen)) 4123 return -EFAULT; 4124 4125 lock_sock(sk); 4126 if (tp->saved_syn) { 4127 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4128 if (put_user(tcp_saved_syn_len(tp->saved_syn), 4129 optlen)) { 4130 release_sock(sk); 4131 return -EFAULT; 4132 } 4133 release_sock(sk); 4134 return -EINVAL; 4135 } 4136 len = tcp_saved_syn_len(tp->saved_syn); 4137 if (put_user(len, optlen)) { 4138 release_sock(sk); 4139 return -EFAULT; 4140 } 4141 if (copy_to_user(optval, tp->saved_syn->data, len)) { 4142 release_sock(sk); 4143 return -EFAULT; 4144 } 4145 tcp_saved_syn_free(tp); 4146 release_sock(sk); 4147 } else { 4148 release_sock(sk); 4149 len = 0; 4150 if (put_user(len, optlen)) 4151 return -EFAULT; 4152 } 4153 return 0; 4154 } 4155 #ifdef CONFIG_MMU 4156 case TCP_ZEROCOPY_RECEIVE: { 4157 struct scm_timestamping_internal tss; 4158 struct tcp_zerocopy_receive zc = {}; 4159 int err; 4160 4161 if (get_user(len, optlen)) 4162 return -EFAULT; 4163 if (len < 0 || 4164 len < offsetofend(struct tcp_zerocopy_receive, length)) 4165 return -EINVAL; 4166 if (unlikely(len > sizeof(zc))) { 4167 err = check_zeroed_user(optval + sizeof(zc), 4168 len - sizeof(zc)); 4169 if (err < 1) 4170 return err == 0 ? -EINVAL : err; 4171 len = sizeof(zc); 4172 if (put_user(len, optlen)) 4173 return -EFAULT; 4174 } 4175 if (copy_from_user(&zc, optval, len)) 4176 return -EFAULT; 4177 if (zc.reserved) 4178 return -EINVAL; 4179 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4180 return -EINVAL; 4181 lock_sock(sk); 4182 err = tcp_zerocopy_receive(sk, &zc, &tss); 4183 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4184 &zc, &len, err); 4185 release_sock(sk); 4186 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4187 goto zerocopy_rcv_cmsg; 4188 switch (len) { 4189 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4190 goto zerocopy_rcv_cmsg; 4191 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4192 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4193 case offsetofend(struct tcp_zerocopy_receive, flags): 4194 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4195 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4196 case offsetofend(struct tcp_zerocopy_receive, err): 4197 goto zerocopy_rcv_sk_err; 4198 case offsetofend(struct tcp_zerocopy_receive, inq): 4199 goto zerocopy_rcv_inq; 4200 case offsetofend(struct tcp_zerocopy_receive, length): 4201 default: 4202 goto zerocopy_rcv_out; 4203 } 4204 zerocopy_rcv_cmsg: 4205 if (zc.msg_flags & TCP_CMSG_TS) 4206 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4207 else 4208 zc.msg_flags = 0; 4209 zerocopy_rcv_sk_err: 4210 if (!err) 4211 zc.err = sock_error(sk); 4212 zerocopy_rcv_inq: 4213 zc.inq = tcp_inq_hint(sk); 4214 zerocopy_rcv_out: 4215 if (!err && copy_to_user(optval, &zc, len)) 4216 err = -EFAULT; 4217 return err; 4218 } 4219 #endif 4220 default: 4221 return -ENOPROTOOPT; 4222 } 4223 4224 if (put_user(len, optlen)) 4225 return -EFAULT; 4226 if (copy_to_user(optval, &val, len)) 4227 return -EFAULT; 4228 return 0; 4229 } 4230 4231 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4232 { 4233 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4234 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4235 */ 4236 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4237 return true; 4238 4239 return false; 4240 } 4241 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4242 4243 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4244 int __user *optlen) 4245 { 4246 struct inet_connection_sock *icsk = inet_csk(sk); 4247 4248 if (level != SOL_TCP) 4249 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 4250 optval, optlen); 4251 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 4252 } 4253 EXPORT_SYMBOL(tcp_getsockopt); 4254 4255 #ifdef CONFIG_TCP_MD5SIG 4256 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4257 static DEFINE_MUTEX(tcp_md5sig_mutex); 4258 static bool tcp_md5sig_pool_populated = false; 4259 4260 static void __tcp_alloc_md5sig_pool(void) 4261 { 4262 struct crypto_ahash *hash; 4263 int cpu; 4264 4265 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4266 if (IS_ERR(hash)) 4267 return; 4268 4269 for_each_possible_cpu(cpu) { 4270 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4271 struct ahash_request *req; 4272 4273 if (!scratch) { 4274 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4275 sizeof(struct tcphdr), 4276 GFP_KERNEL, 4277 cpu_to_node(cpu)); 4278 if (!scratch) 4279 return; 4280 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4281 } 4282 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4283 continue; 4284 4285 req = ahash_request_alloc(hash, GFP_KERNEL); 4286 if (!req) 4287 return; 4288 4289 ahash_request_set_callback(req, 0, NULL, NULL); 4290 4291 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4292 } 4293 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4294 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4295 */ 4296 smp_wmb(); 4297 tcp_md5sig_pool_populated = true; 4298 } 4299 4300 bool tcp_alloc_md5sig_pool(void) 4301 { 4302 if (unlikely(!tcp_md5sig_pool_populated)) { 4303 mutex_lock(&tcp_md5sig_mutex); 4304 4305 if (!tcp_md5sig_pool_populated) { 4306 __tcp_alloc_md5sig_pool(); 4307 if (tcp_md5sig_pool_populated) 4308 static_branch_inc(&tcp_md5_needed); 4309 } 4310 4311 mutex_unlock(&tcp_md5sig_mutex); 4312 } 4313 return tcp_md5sig_pool_populated; 4314 } 4315 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4316 4317 4318 /** 4319 * tcp_get_md5sig_pool - get md5sig_pool for this user 4320 * 4321 * We use percpu structure, so if we succeed, we exit with preemption 4322 * and BH disabled, to make sure another thread or softirq handling 4323 * wont try to get same context. 4324 */ 4325 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4326 { 4327 local_bh_disable(); 4328 4329 if (tcp_md5sig_pool_populated) { 4330 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4331 smp_rmb(); 4332 return this_cpu_ptr(&tcp_md5sig_pool); 4333 } 4334 local_bh_enable(); 4335 return NULL; 4336 } 4337 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4338 4339 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4340 const struct sk_buff *skb, unsigned int header_len) 4341 { 4342 struct scatterlist sg; 4343 const struct tcphdr *tp = tcp_hdr(skb); 4344 struct ahash_request *req = hp->md5_req; 4345 unsigned int i; 4346 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4347 skb_headlen(skb) - header_len : 0; 4348 const struct skb_shared_info *shi = skb_shinfo(skb); 4349 struct sk_buff *frag_iter; 4350 4351 sg_init_table(&sg, 1); 4352 4353 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4354 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4355 if (crypto_ahash_update(req)) 4356 return 1; 4357 4358 for (i = 0; i < shi->nr_frags; ++i) { 4359 const skb_frag_t *f = &shi->frags[i]; 4360 unsigned int offset = skb_frag_off(f); 4361 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4362 4363 sg_set_page(&sg, page, skb_frag_size(f), 4364 offset_in_page(offset)); 4365 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4366 if (crypto_ahash_update(req)) 4367 return 1; 4368 } 4369 4370 skb_walk_frags(skb, frag_iter) 4371 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4372 return 1; 4373 4374 return 0; 4375 } 4376 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4377 4378 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4379 { 4380 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4381 struct scatterlist sg; 4382 4383 sg_init_one(&sg, key->key, keylen); 4384 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4385 4386 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4387 return data_race(crypto_ahash_update(hp->md5_req)); 4388 } 4389 EXPORT_SYMBOL(tcp_md5_hash_key); 4390 4391 #endif 4392 4393 void tcp_done(struct sock *sk) 4394 { 4395 struct request_sock *req; 4396 4397 /* We might be called with a new socket, after 4398 * inet_csk_prepare_forced_close() has been called 4399 * so we can not use lockdep_sock_is_held(sk) 4400 */ 4401 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4402 4403 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4404 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4405 4406 tcp_set_state(sk, TCP_CLOSE); 4407 tcp_clear_xmit_timers(sk); 4408 if (req) 4409 reqsk_fastopen_remove(sk, req, false); 4410 4411 sk->sk_shutdown = SHUTDOWN_MASK; 4412 4413 if (!sock_flag(sk, SOCK_DEAD)) 4414 sk->sk_state_change(sk); 4415 else 4416 inet_csk_destroy_sock(sk); 4417 } 4418 EXPORT_SYMBOL_GPL(tcp_done); 4419 4420 int tcp_abort(struct sock *sk, int err) 4421 { 4422 if (!sk_fullsock(sk)) { 4423 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4424 struct request_sock *req = inet_reqsk(sk); 4425 4426 local_bh_disable(); 4427 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4428 local_bh_enable(); 4429 return 0; 4430 } 4431 return -EOPNOTSUPP; 4432 } 4433 4434 /* Don't race with userspace socket closes such as tcp_close. */ 4435 lock_sock(sk); 4436 4437 if (sk->sk_state == TCP_LISTEN) { 4438 tcp_set_state(sk, TCP_CLOSE); 4439 inet_csk_listen_stop(sk); 4440 } 4441 4442 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4443 local_bh_disable(); 4444 bh_lock_sock(sk); 4445 4446 if (!sock_flag(sk, SOCK_DEAD)) { 4447 sk->sk_err = err; 4448 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4449 smp_wmb(); 4450 sk_error_report(sk); 4451 if (tcp_need_reset(sk->sk_state)) 4452 tcp_send_active_reset(sk, GFP_ATOMIC); 4453 tcp_done(sk); 4454 } 4455 4456 bh_unlock_sock(sk); 4457 local_bh_enable(); 4458 tcp_write_queue_purge(sk); 4459 release_sock(sk); 4460 return 0; 4461 } 4462 EXPORT_SYMBOL_GPL(tcp_abort); 4463 4464 extern struct tcp_congestion_ops tcp_reno; 4465 4466 static __initdata unsigned long thash_entries; 4467 static int __init set_thash_entries(char *str) 4468 { 4469 ssize_t ret; 4470 4471 if (!str) 4472 return 0; 4473 4474 ret = kstrtoul(str, 0, &thash_entries); 4475 if (ret) 4476 return 0; 4477 4478 return 1; 4479 } 4480 __setup("thash_entries=", set_thash_entries); 4481 4482 static void __init tcp_init_mem(void) 4483 { 4484 unsigned long limit = nr_free_buffer_pages() / 16; 4485 4486 limit = max(limit, 128UL); 4487 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4488 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4489 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4490 } 4491 4492 void __init tcp_init(void) 4493 { 4494 int max_rshare, max_wshare, cnt; 4495 unsigned long limit; 4496 unsigned int i; 4497 4498 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4499 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4500 sizeof_field(struct sk_buff, cb)); 4501 4502 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4503 4504 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4505 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4506 4507 inet_hashinfo_init(&tcp_hashinfo); 4508 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4509 thash_entries, 21, /* one slot per 2 MB*/ 4510 0, 64 * 1024); 4511 tcp_hashinfo.bind_bucket_cachep = 4512 kmem_cache_create("tcp_bind_bucket", 4513 sizeof(struct inet_bind_bucket), 0, 4514 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4515 SLAB_ACCOUNT, 4516 NULL); 4517 4518 /* Size and allocate the main established and bind bucket 4519 * hash tables. 4520 * 4521 * The methodology is similar to that of the buffer cache. 4522 */ 4523 tcp_hashinfo.ehash = 4524 alloc_large_system_hash("TCP established", 4525 sizeof(struct inet_ehash_bucket), 4526 thash_entries, 4527 17, /* one slot per 128 KB of memory */ 4528 0, 4529 NULL, 4530 &tcp_hashinfo.ehash_mask, 4531 0, 4532 thash_entries ? 0 : 512 * 1024); 4533 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4534 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4535 4536 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4537 panic("TCP: failed to alloc ehash_locks"); 4538 tcp_hashinfo.bhash = 4539 alloc_large_system_hash("TCP bind", 4540 sizeof(struct inet_bind_hashbucket), 4541 tcp_hashinfo.ehash_mask + 1, 4542 17, /* one slot per 128 KB of memory */ 4543 0, 4544 &tcp_hashinfo.bhash_size, 4545 NULL, 4546 0, 4547 64 * 1024); 4548 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4549 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4550 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4551 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4552 } 4553 4554 4555 cnt = tcp_hashinfo.ehash_mask + 1; 4556 sysctl_tcp_max_orphans = cnt / 2; 4557 4558 tcp_init_mem(); 4559 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4560 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4561 max_wshare = min(4UL*1024*1024, limit); 4562 max_rshare = min(6UL*1024*1024, limit); 4563 4564 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4565 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4566 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4567 4568 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4569 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4570 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4571 4572 pr_info("Hash tables configured (established %u bind %u)\n", 4573 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4574 4575 tcp_v4_init(); 4576 tcp_metrics_init(); 4577 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4578 tcp_tasklet_init(); 4579 mptcp_init(); 4580 } 4581