1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 struct percpu_counter tcp_orphan_count; 284 EXPORT_SYMBOL_GPL(tcp_orphan_count); 285 286 long sysctl_tcp_mem[3] __read_mostly; 287 EXPORT_SYMBOL(sysctl_tcp_mem); 288 289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 290 EXPORT_SYMBOL(tcp_memory_allocated); 291 292 #if IS_ENABLED(CONFIG_SMC) 293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 294 EXPORT_SYMBOL(tcp_have_smc); 295 #endif 296 297 /* 298 * Current number of TCP sockets. 299 */ 300 struct percpu_counter tcp_sockets_allocated; 301 EXPORT_SYMBOL(tcp_sockets_allocated); 302 303 /* 304 * TCP splice context 305 */ 306 struct tcp_splice_state { 307 struct pipe_inode_info *pipe; 308 size_t len; 309 unsigned int flags; 310 }; 311 312 /* 313 * Pressure flag: try to collapse. 314 * Technical note: it is used by multiple contexts non atomically. 315 * All the __sk_mem_schedule() is of this nature: accounting 316 * is strict, actions are advisory and have some latency. 317 */ 318 unsigned long tcp_memory_pressure __read_mostly; 319 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 320 321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 322 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 323 324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 unsigned long val; 329 330 if (READ_ONCE(tcp_memory_pressure)) 331 return; 332 val = jiffies; 333 334 if (!val) 335 val--; 336 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 338 } 339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 340 341 void tcp_leave_memory_pressure(struct sock *sk) 342 { 343 unsigned long val; 344 345 if (!READ_ONCE(tcp_memory_pressure)) 346 return; 347 val = xchg(&tcp_memory_pressure, 0); 348 if (val) 349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 350 jiffies_to_msecs(jiffies - val)); 351 } 352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 353 354 /* Convert seconds to retransmits based on initial and max timeout */ 355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 356 { 357 u8 res = 0; 358 359 if (seconds > 0) { 360 int period = timeout; 361 362 res = 1; 363 while (seconds > period && res < 255) { 364 res++; 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return res; 372 } 373 374 /* Convert retransmits to seconds based on initial and max timeout */ 375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 376 { 377 int period = 0; 378 379 if (retrans > 0) { 380 period = timeout; 381 while (--retrans) { 382 timeout <<= 1; 383 if (timeout > rto_max) 384 timeout = rto_max; 385 period += timeout; 386 } 387 } 388 return period; 389 } 390 391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 392 { 393 u32 rate = READ_ONCE(tp->rate_delivered); 394 u32 intv = READ_ONCE(tp->rate_interval_us); 395 u64 rate64 = 0; 396 397 if (rate && intv) { 398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 399 do_div(rate64, intv); 400 } 401 return rate64; 402 } 403 404 /* Address-family independent initialization for a tcp_sock. 405 * 406 * NOTE: A lot of things set to zero explicitly by call to 407 * sk_alloc() so need not be done here. 408 */ 409 void tcp_init_sock(struct sock *sk) 410 { 411 struct inet_connection_sock *icsk = inet_csk(sk); 412 struct tcp_sock *tp = tcp_sk(sk); 413 414 tp->out_of_order_queue = RB_ROOT; 415 sk->tcp_rtx_queue = RB_ROOT; 416 tcp_init_xmit_timers(sk); 417 INIT_LIST_HEAD(&tp->tsq_node); 418 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 419 420 icsk->icsk_rto = TCP_TIMEOUT_INIT; 421 icsk->icsk_rto_min = TCP_RTO_MIN; 422 icsk->icsk_delack_max = TCP_DELACK_MAX; 423 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 424 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 425 426 /* So many TCP implementations out there (incorrectly) count the 427 * initial SYN frame in their delayed-ACK and congestion control 428 * algorithms that we must have the following bandaid to talk 429 * efficiently to them. -DaveM 430 */ 431 tp->snd_cwnd = TCP_INIT_CWND; 432 433 /* There's a bubble in the pipe until at least the first ACK. */ 434 tp->app_limited = ~0U; 435 436 /* See draft-stevens-tcpca-spec-01 for discussion of the 437 * initialization of these values. 438 */ 439 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 440 tp->snd_cwnd_clamp = ~0; 441 tp->mss_cache = TCP_MSS_DEFAULT; 442 443 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 444 tcp_assign_congestion_control(sk); 445 446 tp->tsoffset = 0; 447 tp->rack.reo_wnd_steps = 1; 448 449 sk->sk_write_space = sk_stream_write_space; 450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 451 452 icsk->icsk_sync_mss = tcp_sync_mss; 453 454 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 455 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 456 457 sk_sockets_allocated_inc(sk); 458 sk->sk_route_forced_caps = NETIF_F_GSO; 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 479 int target, struct sock *sk) 480 { 481 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 482 483 if (avail > 0) { 484 if (avail >= target) 485 return true; 486 if (tcp_rmem_pressure(sk)) 487 return true; 488 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss) 489 return true; 490 } 491 if (sk->sk_prot->stream_memory_read) 492 return sk->sk_prot->stream_memory_read(sk); 493 return false; 494 } 495 496 /* 497 * Wait for a TCP event. 498 * 499 * Note that we don't need to lock the socket, as the upper poll layers 500 * take care of normal races (between the test and the event) and we don't 501 * go look at any of the socket buffers directly. 502 */ 503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 504 { 505 __poll_t mask; 506 struct sock *sk = sock->sk; 507 const struct tcp_sock *tp = tcp_sk(sk); 508 int state; 509 510 sock_poll_wait(file, sock, wait); 511 512 state = inet_sk_state_load(sk); 513 if (state == TCP_LISTEN) 514 return inet_csk_listen_poll(sk); 515 516 /* Socket is not locked. We are protected from async events 517 * by poll logic and correct handling of state changes 518 * made by other threads is impossible in any case. 519 */ 520 521 mask = 0; 522 523 /* 524 * EPOLLHUP is certainly not done right. But poll() doesn't 525 * have a notion of HUP in just one direction, and for a 526 * socket the read side is more interesting. 527 * 528 * Some poll() documentation says that EPOLLHUP is incompatible 529 * with the EPOLLOUT/POLLWR flags, so somebody should check this 530 * all. But careful, it tends to be safer to return too many 531 * bits than too few, and you can easily break real applications 532 * if you don't tell them that something has hung up! 533 * 534 * Check-me. 535 * 536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 537 * our fs/select.c). It means that after we received EOF, 538 * poll always returns immediately, making impossible poll() on write() 539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 540 * if and only if shutdown has been made in both directions. 541 * Actually, it is interesting to look how Solaris and DUX 542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 543 * then we could set it on SND_SHUTDOWN. BTW examples given 544 * in Stevens' books assume exactly this behaviour, it explains 545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 546 * 547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 548 * blocking on fresh not-connected or disconnected socket. --ANK 549 */ 550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 551 mask |= EPOLLHUP; 552 if (sk->sk_shutdown & RCV_SHUTDOWN) 553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 554 555 /* Connected or passive Fast Open socket? */ 556 if (state != TCP_SYN_SENT && 557 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 558 int target = sock_rcvlowat(sk, 0, INT_MAX); 559 560 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 561 !sock_flag(sk, SOCK_URGINLINE) && 562 tp->urg_data) 563 target++; 564 565 if (tcp_stream_is_readable(tp, target, sk)) 566 mask |= EPOLLIN | EPOLLRDNORM; 567 568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 569 if (__sk_stream_is_writeable(sk, 1)) { 570 mask |= EPOLLOUT | EPOLLWRNORM; 571 } else { /* send SIGIO later */ 572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 574 575 /* Race breaker. If space is freed after 576 * wspace test but before the flags are set, 577 * IO signal will be lost. Memory barrier 578 * pairs with the input side. 579 */ 580 smp_mb__after_atomic(); 581 if (__sk_stream_is_writeable(sk, 1)) 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 } 584 } else 585 mask |= EPOLLOUT | EPOLLWRNORM; 586 587 if (tp->urg_data & TCP_URG_VALID) 588 mask |= EPOLLPRI; 589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 590 /* Active TCP fastopen socket with defer_connect 591 * Return EPOLLOUT so application can call write() 592 * in order for kernel to generate SYN+data 593 */ 594 mask |= EPOLLOUT | EPOLLWRNORM; 595 } 596 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 597 smp_rmb(); 598 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 599 mask |= EPOLLERR; 600 601 return mask; 602 } 603 EXPORT_SYMBOL(tcp_poll); 604 605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 int answ; 609 bool slow; 610 611 switch (cmd) { 612 case SIOCINQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 slow = lock_sock_fast(sk); 617 answ = tcp_inq(sk); 618 unlock_sock_fast(sk, slow); 619 break; 620 case SIOCATMARK: 621 answ = tp->urg_data && 622 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 623 break; 624 case SIOCOUTQ: 625 if (sk->sk_state == TCP_LISTEN) 626 return -EINVAL; 627 628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 629 answ = 0; 630 else 631 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 632 break; 633 case SIOCOUTQNSD: 634 if (sk->sk_state == TCP_LISTEN) 635 return -EINVAL; 636 637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 638 answ = 0; 639 else 640 answ = READ_ONCE(tp->write_seq) - 641 READ_ONCE(tp->snd_nxt); 642 break; 643 default: 644 return -ENOIOCTLCMD; 645 } 646 647 return put_user(answ, (int __user *)arg); 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 static void skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 skb->csum = 0; 668 tcb->seq = tcb->end_seq = tp->write_seq; 669 tcb->tcp_flags = TCPHDR_ACK; 670 tcb->sacked = 0; 671 __skb_header_release(skb); 672 tcp_add_write_queue_tail(sk, skb); 673 sk_wmem_queued_add(sk, skb->truesize); 674 sk_mem_charge(sk, skb->truesize); 675 if (tp->nonagle & TCP_NAGLE_PUSH) 676 tp->nonagle &= ~TCP_NAGLE_PUSH; 677 678 tcp_slow_start_after_idle_check(sk); 679 } 680 681 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 682 { 683 if (flags & MSG_OOB) 684 tp->snd_up = tp->write_seq; 685 } 686 687 /* If a not yet filled skb is pushed, do not send it if 688 * we have data packets in Qdisc or NIC queues : 689 * Because TX completion will happen shortly, it gives a chance 690 * to coalesce future sendmsg() payload into this skb, without 691 * need for a timer, and with no latency trade off. 692 * As packets containing data payload have a bigger truesize 693 * than pure acks (dataless) packets, the last checks prevent 694 * autocorking if we only have an ACK in Qdisc/NIC queues, 695 * or if TX completion was delayed after we processed ACK packet. 696 */ 697 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 698 int size_goal) 699 { 700 return skb->len < size_goal && 701 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 702 !tcp_rtx_queue_empty(sk) && 703 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 704 } 705 706 void tcp_push(struct sock *sk, int flags, int mss_now, 707 int nonagle, int size_goal) 708 { 709 struct tcp_sock *tp = tcp_sk(sk); 710 struct sk_buff *skb; 711 712 skb = tcp_write_queue_tail(sk); 713 if (!skb) 714 return; 715 if (!(flags & MSG_MORE) || forced_push(tp)) 716 tcp_mark_push(tp, skb); 717 718 tcp_mark_urg(tp, flags); 719 720 if (tcp_should_autocork(sk, skb, size_goal)) { 721 722 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 723 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 725 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 726 } 727 /* It is possible TX completion already happened 728 * before we set TSQ_THROTTLED. 729 */ 730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 731 return; 732 } 733 734 if (flags & MSG_MORE) 735 nonagle = TCP_NAGLE_CORK; 736 737 __tcp_push_pending_frames(sk, mss_now, nonagle); 738 } 739 740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 741 unsigned int offset, size_t len) 742 { 743 struct tcp_splice_state *tss = rd_desc->arg.data; 744 int ret; 745 746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 747 min(rd_desc->count, len), tss->flags); 748 if (ret > 0) 749 rd_desc->count -= ret; 750 return ret; 751 } 752 753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 754 { 755 /* Store TCP splice context information in read_descriptor_t. */ 756 read_descriptor_t rd_desc = { 757 .arg.data = tss, 758 .count = tss->len, 759 }; 760 761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 762 } 763 764 /** 765 * tcp_splice_read - splice data from TCP socket to a pipe 766 * @sock: socket to splice from 767 * @ppos: position (not valid) 768 * @pipe: pipe to splice to 769 * @len: number of bytes to splice 770 * @flags: splice modifier flags 771 * 772 * Description: 773 * Will read pages from given socket and fill them into a pipe. 774 * 775 **/ 776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 777 struct pipe_inode_info *pipe, size_t len, 778 unsigned int flags) 779 { 780 struct sock *sk = sock->sk; 781 struct tcp_splice_state tss = { 782 .pipe = pipe, 783 .len = len, 784 .flags = flags, 785 }; 786 long timeo; 787 ssize_t spliced; 788 int ret; 789 790 sock_rps_record_flow(sk); 791 /* 792 * We can't seek on a socket input 793 */ 794 if (unlikely(*ppos)) 795 return -ESPIPE; 796 797 ret = spliced = 0; 798 799 lock_sock(sk); 800 801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 802 while (tss.len) { 803 ret = __tcp_splice_read(sk, &tss); 804 if (ret < 0) 805 break; 806 else if (!ret) { 807 if (spliced) 808 break; 809 if (sock_flag(sk, SOCK_DONE)) 810 break; 811 if (sk->sk_err) { 812 ret = sock_error(sk); 813 break; 814 } 815 if (sk->sk_shutdown & RCV_SHUTDOWN) 816 break; 817 if (sk->sk_state == TCP_CLOSE) { 818 /* 819 * This occurs when user tries to read 820 * from never connected socket. 821 */ 822 ret = -ENOTCONN; 823 break; 824 } 825 if (!timeo) { 826 ret = -EAGAIN; 827 break; 828 } 829 /* if __tcp_splice_read() got nothing while we have 830 * an skb in receive queue, we do not want to loop. 831 * This might happen with URG data. 832 */ 833 if (!skb_queue_empty(&sk->sk_receive_queue)) 834 break; 835 sk_wait_data(sk, &timeo, NULL); 836 if (signal_pending(current)) { 837 ret = sock_intr_errno(timeo); 838 break; 839 } 840 continue; 841 } 842 tss.len -= ret; 843 spliced += ret; 844 845 if (!timeo) 846 break; 847 release_sock(sk); 848 lock_sock(sk); 849 850 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 851 (sk->sk_shutdown & RCV_SHUTDOWN) || 852 signal_pending(current)) 853 break; 854 } 855 856 release_sock(sk); 857 858 if (spliced) 859 return spliced; 860 861 return ret; 862 } 863 EXPORT_SYMBOL(tcp_splice_read); 864 865 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 866 bool force_schedule) 867 { 868 struct sk_buff *skb; 869 870 if (likely(!size)) { 871 skb = sk->sk_tx_skb_cache; 872 if (skb) { 873 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 874 sk->sk_tx_skb_cache = NULL; 875 pskb_trim(skb, 0); 876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 877 skb_shinfo(skb)->tx_flags = 0; 878 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 879 return skb; 880 } 881 } 882 /* The TCP header must be at least 32-bit aligned. */ 883 size = ALIGN(size, 4); 884 885 if (unlikely(tcp_under_memory_pressure(sk))) 886 sk_mem_reclaim_partial(sk); 887 888 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 889 if (likely(skb)) { 890 bool mem_scheduled; 891 892 if (force_schedule) { 893 mem_scheduled = true; 894 sk_forced_mem_schedule(sk, skb->truesize); 895 } else { 896 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 897 } 898 if (likely(mem_scheduled)) { 899 skb_reserve(skb, sk->sk_prot->max_header); 900 /* 901 * Make sure that we have exactly size bytes 902 * available to the caller, no more, no less. 903 */ 904 skb->reserved_tailroom = skb->end - skb->tail - size; 905 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 906 return skb; 907 } 908 __kfree_skb(skb); 909 } else { 910 sk->sk_prot->enter_memory_pressure(sk); 911 sk_stream_moderate_sndbuf(sk); 912 } 913 return NULL; 914 } 915 916 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 917 int large_allowed) 918 { 919 struct tcp_sock *tp = tcp_sk(sk); 920 u32 new_size_goal, size_goal; 921 922 if (!large_allowed) 923 return mss_now; 924 925 /* Note : tcp_tso_autosize() will eventually split this later */ 926 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 927 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 928 929 /* We try hard to avoid divides here */ 930 size_goal = tp->gso_segs * mss_now; 931 if (unlikely(new_size_goal < size_goal || 932 new_size_goal >= size_goal + mss_now)) { 933 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 934 sk->sk_gso_max_segs); 935 size_goal = tp->gso_segs * mss_now; 936 } 937 938 return max(size_goal, mss_now); 939 } 940 941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 942 { 943 int mss_now; 944 945 mss_now = tcp_current_mss(sk); 946 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 947 948 return mss_now; 949 } 950 951 /* In some cases, both sendpage() and sendmsg() could have added 952 * an skb to the write queue, but failed adding payload on it. 953 * We need to remove it to consume less memory, but more 954 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 955 * users. 956 */ 957 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 958 { 959 if (skb && !skb->len) { 960 tcp_unlink_write_queue(skb, sk); 961 if (tcp_write_queue_empty(sk)) 962 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 963 sk_wmem_free_skb(sk, skb); 964 } 965 } 966 967 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 968 size_t size, int flags) 969 { 970 struct tcp_sock *tp = tcp_sk(sk); 971 int mss_now, size_goal; 972 int err; 973 ssize_t copied; 974 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 975 976 if (IS_ENABLED(CONFIG_DEBUG_VM) && 977 WARN_ONCE(!sendpage_ok(page), 978 "page must not be a Slab one and have page_count > 0")) 979 return -EINVAL; 980 981 /* Wait for a connection to finish. One exception is TCP Fast Open 982 * (passive side) where data is allowed to be sent before a connection 983 * is fully established. 984 */ 985 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 986 !tcp_passive_fastopen(sk)) { 987 err = sk_stream_wait_connect(sk, &timeo); 988 if (err != 0) 989 goto out_err; 990 } 991 992 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 993 994 mss_now = tcp_send_mss(sk, &size_goal, flags); 995 copied = 0; 996 997 err = -EPIPE; 998 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 999 goto out_err; 1000 1001 while (size > 0) { 1002 struct sk_buff *skb = tcp_write_queue_tail(sk); 1003 int copy, i; 1004 bool can_coalesce; 1005 1006 if (!skb || (copy = size_goal - skb->len) <= 0 || 1007 !tcp_skb_can_collapse_to(skb)) { 1008 new_segment: 1009 if (!sk_stream_memory_free(sk)) 1010 goto wait_for_space; 1011 1012 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1013 tcp_rtx_and_write_queues_empty(sk)); 1014 if (!skb) 1015 goto wait_for_space; 1016 1017 #ifdef CONFIG_TLS_DEVICE 1018 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1019 #endif 1020 skb_entail(sk, skb); 1021 copy = size_goal; 1022 } 1023 1024 if (copy > size) 1025 copy = size; 1026 1027 i = skb_shinfo(skb)->nr_frags; 1028 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1029 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1030 tcp_mark_push(tp, skb); 1031 goto new_segment; 1032 } 1033 if (!sk_wmem_schedule(sk, copy)) 1034 goto wait_for_space; 1035 1036 if (can_coalesce) { 1037 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1038 } else { 1039 get_page(page); 1040 skb_fill_page_desc(skb, i, page, offset, copy); 1041 } 1042 1043 if (!(flags & MSG_NO_SHARED_FRAGS)) 1044 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1045 1046 skb->len += copy; 1047 skb->data_len += copy; 1048 skb->truesize += copy; 1049 sk_wmem_queued_add(sk, copy); 1050 sk_mem_charge(sk, copy); 1051 skb->ip_summed = CHECKSUM_PARTIAL; 1052 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1053 TCP_SKB_CB(skb)->end_seq += copy; 1054 tcp_skb_pcount_set(skb, 0); 1055 1056 if (!copied) 1057 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1058 1059 copied += copy; 1060 offset += copy; 1061 size -= copy; 1062 if (!size) 1063 goto out; 1064 1065 if (skb->len < size_goal || (flags & MSG_OOB)) 1066 continue; 1067 1068 if (forced_push(tp)) { 1069 tcp_mark_push(tp, skb); 1070 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1071 } else if (skb == tcp_send_head(sk)) 1072 tcp_push_one(sk, mss_now); 1073 continue; 1074 1075 wait_for_space: 1076 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1077 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1078 TCP_NAGLE_PUSH, size_goal); 1079 1080 err = sk_stream_wait_memory(sk, &timeo); 1081 if (err != 0) 1082 goto do_error; 1083 1084 mss_now = tcp_send_mss(sk, &size_goal, flags); 1085 } 1086 1087 out: 1088 if (copied) { 1089 tcp_tx_timestamp(sk, sk->sk_tsflags); 1090 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1091 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1092 } 1093 return copied; 1094 1095 do_error: 1096 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1097 if (copied) 1098 goto out; 1099 out_err: 1100 /* make sure we wake any epoll edge trigger waiter */ 1101 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1102 sk->sk_write_space(sk); 1103 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1104 } 1105 return sk_stream_error(sk, flags, err); 1106 } 1107 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1108 1109 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1110 size_t size, int flags) 1111 { 1112 if (!(sk->sk_route_caps & NETIF_F_SG)) 1113 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1114 1115 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1116 1117 return do_tcp_sendpages(sk, page, offset, size, flags); 1118 } 1119 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1120 1121 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1122 size_t size, int flags) 1123 { 1124 int ret; 1125 1126 lock_sock(sk); 1127 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1128 release_sock(sk); 1129 1130 return ret; 1131 } 1132 EXPORT_SYMBOL(tcp_sendpage); 1133 1134 void tcp_free_fastopen_req(struct tcp_sock *tp) 1135 { 1136 if (tp->fastopen_req) { 1137 kfree(tp->fastopen_req); 1138 tp->fastopen_req = NULL; 1139 } 1140 } 1141 1142 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1143 int *copied, size_t size, 1144 struct ubuf_info *uarg) 1145 { 1146 struct tcp_sock *tp = tcp_sk(sk); 1147 struct inet_sock *inet = inet_sk(sk); 1148 struct sockaddr *uaddr = msg->msg_name; 1149 int err, flags; 1150 1151 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1152 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1153 uaddr->sa_family == AF_UNSPEC)) 1154 return -EOPNOTSUPP; 1155 if (tp->fastopen_req) 1156 return -EALREADY; /* Another Fast Open is in progress */ 1157 1158 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1159 sk->sk_allocation); 1160 if (unlikely(!tp->fastopen_req)) 1161 return -ENOBUFS; 1162 tp->fastopen_req->data = msg; 1163 tp->fastopen_req->size = size; 1164 tp->fastopen_req->uarg = uarg; 1165 1166 if (inet->defer_connect) { 1167 err = tcp_connect(sk); 1168 /* Same failure procedure as in tcp_v4/6_connect */ 1169 if (err) { 1170 tcp_set_state(sk, TCP_CLOSE); 1171 inet->inet_dport = 0; 1172 sk->sk_route_caps = 0; 1173 } 1174 } 1175 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1176 err = __inet_stream_connect(sk->sk_socket, uaddr, 1177 msg->msg_namelen, flags, 1); 1178 /* fastopen_req could already be freed in __inet_stream_connect 1179 * if the connection times out or gets rst 1180 */ 1181 if (tp->fastopen_req) { 1182 *copied = tp->fastopen_req->copied; 1183 tcp_free_fastopen_req(tp); 1184 inet->defer_connect = 0; 1185 } 1186 return err; 1187 } 1188 1189 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1190 { 1191 struct tcp_sock *tp = tcp_sk(sk); 1192 struct ubuf_info *uarg = NULL; 1193 struct sk_buff *skb; 1194 struct sockcm_cookie sockc; 1195 int flags, err, copied = 0; 1196 int mss_now = 0, size_goal, copied_syn = 0; 1197 int process_backlog = 0; 1198 bool zc = false; 1199 long timeo; 1200 1201 flags = msg->msg_flags; 1202 1203 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1204 skb = tcp_write_queue_tail(sk); 1205 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1206 if (!uarg) { 1207 err = -ENOBUFS; 1208 goto out_err; 1209 } 1210 1211 zc = sk->sk_route_caps & NETIF_F_SG; 1212 if (!zc) 1213 uarg->zerocopy = 0; 1214 } 1215 1216 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1217 !tp->repair) { 1218 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1219 if (err == -EINPROGRESS && copied_syn > 0) 1220 goto out; 1221 else if (err) 1222 goto out_err; 1223 } 1224 1225 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1226 1227 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1228 1229 /* Wait for a connection to finish. One exception is TCP Fast Open 1230 * (passive side) where data is allowed to be sent before a connection 1231 * is fully established. 1232 */ 1233 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1234 !tcp_passive_fastopen(sk)) { 1235 err = sk_stream_wait_connect(sk, &timeo); 1236 if (err != 0) 1237 goto do_error; 1238 } 1239 1240 if (unlikely(tp->repair)) { 1241 if (tp->repair_queue == TCP_RECV_QUEUE) { 1242 copied = tcp_send_rcvq(sk, msg, size); 1243 goto out_nopush; 1244 } 1245 1246 err = -EINVAL; 1247 if (tp->repair_queue == TCP_NO_QUEUE) 1248 goto out_err; 1249 1250 /* 'common' sending to sendq */ 1251 } 1252 1253 sockcm_init(&sockc, sk); 1254 if (msg->msg_controllen) { 1255 err = sock_cmsg_send(sk, msg, &sockc); 1256 if (unlikely(err)) { 1257 err = -EINVAL; 1258 goto out_err; 1259 } 1260 } 1261 1262 /* This should be in poll */ 1263 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1264 1265 /* Ok commence sending. */ 1266 copied = 0; 1267 1268 restart: 1269 mss_now = tcp_send_mss(sk, &size_goal, flags); 1270 1271 err = -EPIPE; 1272 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1273 goto do_error; 1274 1275 while (msg_data_left(msg)) { 1276 int copy = 0; 1277 1278 skb = tcp_write_queue_tail(sk); 1279 if (skb) 1280 copy = size_goal - skb->len; 1281 1282 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1283 bool first_skb; 1284 1285 new_segment: 1286 if (!sk_stream_memory_free(sk)) 1287 goto wait_for_space; 1288 1289 if (unlikely(process_backlog >= 16)) { 1290 process_backlog = 0; 1291 if (sk_flush_backlog(sk)) 1292 goto restart; 1293 } 1294 first_skb = tcp_rtx_and_write_queues_empty(sk); 1295 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1296 first_skb); 1297 if (!skb) 1298 goto wait_for_space; 1299 1300 process_backlog++; 1301 skb->ip_summed = CHECKSUM_PARTIAL; 1302 1303 skb_entail(sk, skb); 1304 copy = size_goal; 1305 1306 /* All packets are restored as if they have 1307 * already been sent. skb_mstamp_ns isn't set to 1308 * avoid wrong rtt estimation. 1309 */ 1310 if (tp->repair) 1311 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1312 } 1313 1314 /* Try to append data to the end of skb. */ 1315 if (copy > msg_data_left(msg)) 1316 copy = msg_data_left(msg); 1317 1318 /* Where to copy to? */ 1319 if (skb_availroom(skb) > 0 && !zc) { 1320 /* We have some space in skb head. Superb! */ 1321 copy = min_t(int, copy, skb_availroom(skb)); 1322 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1323 if (err) 1324 goto do_fault; 1325 } else if (!zc) { 1326 bool merge = true; 1327 int i = skb_shinfo(skb)->nr_frags; 1328 struct page_frag *pfrag = sk_page_frag(sk); 1329 1330 if (!sk_page_frag_refill(sk, pfrag)) 1331 goto wait_for_space; 1332 1333 if (!skb_can_coalesce(skb, i, pfrag->page, 1334 pfrag->offset)) { 1335 if (i >= sysctl_max_skb_frags) { 1336 tcp_mark_push(tp, skb); 1337 goto new_segment; 1338 } 1339 merge = false; 1340 } 1341 1342 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1343 1344 if (!sk_wmem_schedule(sk, copy)) 1345 goto wait_for_space; 1346 1347 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1348 pfrag->page, 1349 pfrag->offset, 1350 copy); 1351 if (err) 1352 goto do_error; 1353 1354 /* Update the skb. */ 1355 if (merge) { 1356 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1357 } else { 1358 skb_fill_page_desc(skb, i, pfrag->page, 1359 pfrag->offset, copy); 1360 page_ref_inc(pfrag->page); 1361 } 1362 pfrag->offset += copy; 1363 } else { 1364 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1365 if (err == -EMSGSIZE || err == -EEXIST) { 1366 tcp_mark_push(tp, skb); 1367 goto new_segment; 1368 } 1369 if (err < 0) 1370 goto do_error; 1371 copy = err; 1372 } 1373 1374 if (!copied) 1375 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1376 1377 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1378 TCP_SKB_CB(skb)->end_seq += copy; 1379 tcp_skb_pcount_set(skb, 0); 1380 1381 copied += copy; 1382 if (!msg_data_left(msg)) { 1383 if (unlikely(flags & MSG_EOR)) 1384 TCP_SKB_CB(skb)->eor = 1; 1385 goto out; 1386 } 1387 1388 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1389 continue; 1390 1391 if (forced_push(tp)) { 1392 tcp_mark_push(tp, skb); 1393 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1394 } else if (skb == tcp_send_head(sk)) 1395 tcp_push_one(sk, mss_now); 1396 continue; 1397 1398 wait_for_space: 1399 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1400 if (copied) 1401 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1402 TCP_NAGLE_PUSH, size_goal); 1403 1404 err = sk_stream_wait_memory(sk, &timeo); 1405 if (err != 0) 1406 goto do_error; 1407 1408 mss_now = tcp_send_mss(sk, &size_goal, flags); 1409 } 1410 1411 out: 1412 if (copied) { 1413 tcp_tx_timestamp(sk, sockc.tsflags); 1414 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1415 } 1416 out_nopush: 1417 sock_zerocopy_put(uarg); 1418 return copied + copied_syn; 1419 1420 do_error: 1421 skb = tcp_write_queue_tail(sk); 1422 do_fault: 1423 tcp_remove_empty_skb(sk, skb); 1424 1425 if (copied + copied_syn) 1426 goto out; 1427 out_err: 1428 sock_zerocopy_put_abort(uarg, true); 1429 err = sk_stream_error(sk, flags, err); 1430 /* make sure we wake any epoll edge trigger waiter */ 1431 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1432 sk->sk_write_space(sk); 1433 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1434 } 1435 return err; 1436 } 1437 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1438 1439 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1440 { 1441 int ret; 1442 1443 lock_sock(sk); 1444 ret = tcp_sendmsg_locked(sk, msg, size); 1445 release_sock(sk); 1446 1447 return ret; 1448 } 1449 EXPORT_SYMBOL(tcp_sendmsg); 1450 1451 /* 1452 * Handle reading urgent data. BSD has very simple semantics for 1453 * this, no blocking and very strange errors 8) 1454 */ 1455 1456 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1457 { 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 1460 /* No URG data to read. */ 1461 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1462 tp->urg_data == TCP_URG_READ) 1463 return -EINVAL; /* Yes this is right ! */ 1464 1465 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1466 return -ENOTCONN; 1467 1468 if (tp->urg_data & TCP_URG_VALID) { 1469 int err = 0; 1470 char c = tp->urg_data; 1471 1472 if (!(flags & MSG_PEEK)) 1473 tp->urg_data = TCP_URG_READ; 1474 1475 /* Read urgent data. */ 1476 msg->msg_flags |= MSG_OOB; 1477 1478 if (len > 0) { 1479 if (!(flags & MSG_TRUNC)) 1480 err = memcpy_to_msg(msg, &c, 1); 1481 len = 1; 1482 } else 1483 msg->msg_flags |= MSG_TRUNC; 1484 1485 return err ? -EFAULT : len; 1486 } 1487 1488 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1489 return 0; 1490 1491 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1492 * the available implementations agree in this case: 1493 * this call should never block, independent of the 1494 * blocking state of the socket. 1495 * Mike <pall@rz.uni-karlsruhe.de> 1496 */ 1497 return -EAGAIN; 1498 } 1499 1500 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1501 { 1502 struct sk_buff *skb; 1503 int copied = 0, err = 0; 1504 1505 /* XXX -- need to support SO_PEEK_OFF */ 1506 1507 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1508 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1509 if (err) 1510 return err; 1511 copied += skb->len; 1512 } 1513 1514 skb_queue_walk(&sk->sk_write_queue, skb) { 1515 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1516 if (err) 1517 break; 1518 1519 copied += skb->len; 1520 } 1521 1522 return err ?: copied; 1523 } 1524 1525 /* Clean up the receive buffer for full frames taken by the user, 1526 * then send an ACK if necessary. COPIED is the number of bytes 1527 * tcp_recvmsg has given to the user so far, it speeds up the 1528 * calculation of whether or not we must ACK for the sake of 1529 * a window update. 1530 */ 1531 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1532 { 1533 struct tcp_sock *tp = tcp_sk(sk); 1534 bool time_to_ack = false; 1535 1536 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1537 1538 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1539 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1540 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1541 1542 if (inet_csk_ack_scheduled(sk)) { 1543 const struct inet_connection_sock *icsk = inet_csk(sk); 1544 1545 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1546 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1547 /* 1548 * If this read emptied read buffer, we send ACK, if 1549 * connection is not bidirectional, user drained 1550 * receive buffer and there was a small segment 1551 * in queue. 1552 */ 1553 (copied > 0 && 1554 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1555 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1556 !inet_csk_in_pingpong_mode(sk))) && 1557 !atomic_read(&sk->sk_rmem_alloc))) 1558 time_to_ack = true; 1559 } 1560 1561 /* We send an ACK if we can now advertise a non-zero window 1562 * which has been raised "significantly". 1563 * 1564 * Even if window raised up to infinity, do not send window open ACK 1565 * in states, where we will not receive more. It is useless. 1566 */ 1567 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1568 __u32 rcv_window_now = tcp_receive_window(tp); 1569 1570 /* Optimize, __tcp_select_window() is not cheap. */ 1571 if (2*rcv_window_now <= tp->window_clamp) { 1572 __u32 new_window = __tcp_select_window(sk); 1573 1574 /* Send ACK now, if this read freed lots of space 1575 * in our buffer. Certainly, new_window is new window. 1576 * We can advertise it now, if it is not less than current one. 1577 * "Lots" means "at least twice" here. 1578 */ 1579 if (new_window && new_window >= 2 * rcv_window_now) 1580 time_to_ack = true; 1581 } 1582 } 1583 if (time_to_ack) 1584 tcp_send_ack(sk); 1585 } 1586 1587 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1588 { 1589 struct sk_buff *skb; 1590 u32 offset; 1591 1592 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1593 offset = seq - TCP_SKB_CB(skb)->seq; 1594 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1595 pr_err_once("%s: found a SYN, please report !\n", __func__); 1596 offset--; 1597 } 1598 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1599 *off = offset; 1600 return skb; 1601 } 1602 /* This looks weird, but this can happen if TCP collapsing 1603 * splitted a fat GRO packet, while we released socket lock 1604 * in skb_splice_bits() 1605 */ 1606 sk_eat_skb(sk, skb); 1607 } 1608 return NULL; 1609 } 1610 1611 /* 1612 * This routine provides an alternative to tcp_recvmsg() for routines 1613 * that would like to handle copying from skbuffs directly in 'sendfile' 1614 * fashion. 1615 * Note: 1616 * - It is assumed that the socket was locked by the caller. 1617 * - The routine does not block. 1618 * - At present, there is no support for reading OOB data 1619 * or for 'peeking' the socket using this routine 1620 * (although both would be easy to implement). 1621 */ 1622 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1623 sk_read_actor_t recv_actor) 1624 { 1625 struct sk_buff *skb; 1626 struct tcp_sock *tp = tcp_sk(sk); 1627 u32 seq = tp->copied_seq; 1628 u32 offset; 1629 int copied = 0; 1630 1631 if (sk->sk_state == TCP_LISTEN) 1632 return -ENOTCONN; 1633 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1634 if (offset < skb->len) { 1635 int used; 1636 size_t len; 1637 1638 len = skb->len - offset; 1639 /* Stop reading if we hit a patch of urgent data */ 1640 if (tp->urg_data) { 1641 u32 urg_offset = tp->urg_seq - seq; 1642 if (urg_offset < len) 1643 len = urg_offset; 1644 if (!len) 1645 break; 1646 } 1647 used = recv_actor(desc, skb, offset, len); 1648 if (used <= 0) { 1649 if (!copied) 1650 copied = used; 1651 break; 1652 } else if (used <= len) { 1653 seq += used; 1654 copied += used; 1655 offset += used; 1656 } 1657 /* If recv_actor drops the lock (e.g. TCP splice 1658 * receive) the skb pointer might be invalid when 1659 * getting here: tcp_collapse might have deleted it 1660 * while aggregating skbs from the socket queue. 1661 */ 1662 skb = tcp_recv_skb(sk, seq - 1, &offset); 1663 if (!skb) 1664 break; 1665 /* TCP coalescing might have appended data to the skb. 1666 * Try to splice more frags 1667 */ 1668 if (offset + 1 != skb->len) 1669 continue; 1670 } 1671 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1672 sk_eat_skb(sk, skb); 1673 ++seq; 1674 break; 1675 } 1676 sk_eat_skb(sk, skb); 1677 if (!desc->count) 1678 break; 1679 WRITE_ONCE(tp->copied_seq, seq); 1680 } 1681 WRITE_ONCE(tp->copied_seq, seq); 1682 1683 tcp_rcv_space_adjust(sk); 1684 1685 /* Clean up data we have read: This will do ACK frames. */ 1686 if (copied > 0) { 1687 tcp_recv_skb(sk, seq, &offset); 1688 tcp_cleanup_rbuf(sk, copied); 1689 } 1690 return copied; 1691 } 1692 EXPORT_SYMBOL(tcp_read_sock); 1693 1694 int tcp_peek_len(struct socket *sock) 1695 { 1696 return tcp_inq(sock->sk); 1697 } 1698 EXPORT_SYMBOL(tcp_peek_len); 1699 1700 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1701 int tcp_set_rcvlowat(struct sock *sk, int val) 1702 { 1703 int cap; 1704 1705 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1706 cap = sk->sk_rcvbuf >> 1; 1707 else 1708 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1709 val = min(val, cap); 1710 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1711 1712 /* Check if we need to signal EPOLLIN right now */ 1713 tcp_data_ready(sk); 1714 1715 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1716 return 0; 1717 1718 val <<= 1; 1719 if (val > sk->sk_rcvbuf) { 1720 WRITE_ONCE(sk->sk_rcvbuf, val); 1721 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1722 } 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(tcp_set_rcvlowat); 1726 1727 #ifdef CONFIG_MMU 1728 static const struct vm_operations_struct tcp_vm_ops = { 1729 }; 1730 1731 int tcp_mmap(struct file *file, struct socket *sock, 1732 struct vm_area_struct *vma) 1733 { 1734 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1735 return -EPERM; 1736 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1737 1738 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1739 vma->vm_flags |= VM_MIXEDMAP; 1740 1741 vma->vm_ops = &tcp_vm_ops; 1742 return 0; 1743 } 1744 EXPORT_SYMBOL(tcp_mmap); 1745 1746 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1747 struct page **pages, 1748 unsigned long pages_to_map, 1749 unsigned long *insert_addr, 1750 u32 *length_with_pending, 1751 u32 *seq, 1752 struct tcp_zerocopy_receive *zc) 1753 { 1754 unsigned long pages_remaining = pages_to_map; 1755 int bytes_mapped; 1756 int ret; 1757 1758 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining); 1759 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining); 1760 /* Even if vm_insert_pages fails, it may have partially succeeded in 1761 * mapping (some but not all of the pages). 1762 */ 1763 *seq += bytes_mapped; 1764 *insert_addr += bytes_mapped; 1765 if (ret) { 1766 /* But if vm_insert_pages did fail, we have to unroll some state 1767 * we speculatively touched before. 1768 */ 1769 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1770 *length_with_pending -= bytes_not_mapped; 1771 zc->recv_skip_hint += bytes_not_mapped; 1772 } 1773 return ret; 1774 } 1775 1776 static int tcp_zerocopy_receive(struct sock *sk, 1777 struct tcp_zerocopy_receive *zc) 1778 { 1779 unsigned long address = (unsigned long)zc->address; 1780 u32 length = 0, seq, offset, zap_len; 1781 #define PAGE_BATCH_SIZE 8 1782 struct page *pages[PAGE_BATCH_SIZE]; 1783 const skb_frag_t *frags = NULL; 1784 struct vm_area_struct *vma; 1785 struct sk_buff *skb = NULL; 1786 unsigned long pg_idx = 0; 1787 unsigned long curr_addr; 1788 struct tcp_sock *tp; 1789 int inq; 1790 int ret; 1791 1792 if (address & (PAGE_SIZE - 1) || address != zc->address) 1793 return -EINVAL; 1794 1795 if (sk->sk_state == TCP_LISTEN) 1796 return -ENOTCONN; 1797 1798 sock_rps_record_flow(sk); 1799 1800 tp = tcp_sk(sk); 1801 1802 mmap_read_lock(current->mm); 1803 1804 vma = find_vma(current->mm, address); 1805 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 1806 mmap_read_unlock(current->mm); 1807 return -EINVAL; 1808 } 1809 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1810 1811 seq = tp->copied_seq; 1812 inq = tcp_inq(sk); 1813 zc->length = min_t(u32, zc->length, inq); 1814 zap_len = zc->length & ~(PAGE_SIZE - 1); 1815 if (zap_len) { 1816 zap_page_range(vma, address, zap_len); 1817 zc->recv_skip_hint = 0; 1818 } else { 1819 zc->recv_skip_hint = zc->length; 1820 } 1821 ret = 0; 1822 curr_addr = address; 1823 while (length + PAGE_SIZE <= zc->length) { 1824 if (zc->recv_skip_hint < PAGE_SIZE) { 1825 /* If we're here, finish the current batch. */ 1826 if (pg_idx) { 1827 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 1828 pg_idx, 1829 &curr_addr, 1830 &length, 1831 &seq, zc); 1832 if (ret) 1833 goto out; 1834 pg_idx = 0; 1835 } 1836 if (skb) { 1837 if (zc->recv_skip_hint > 0) 1838 break; 1839 skb = skb->next; 1840 offset = seq - TCP_SKB_CB(skb)->seq; 1841 } else { 1842 skb = tcp_recv_skb(sk, seq, &offset); 1843 } 1844 zc->recv_skip_hint = skb->len - offset; 1845 offset -= skb_headlen(skb); 1846 if ((int)offset < 0 || skb_has_frag_list(skb)) 1847 break; 1848 frags = skb_shinfo(skb)->frags; 1849 while (offset) { 1850 if (skb_frag_size(frags) > offset) 1851 goto out; 1852 offset -= skb_frag_size(frags); 1853 frags++; 1854 } 1855 } 1856 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { 1857 int remaining = zc->recv_skip_hint; 1858 1859 while (remaining && (skb_frag_size(frags) != PAGE_SIZE || 1860 skb_frag_off(frags))) { 1861 remaining -= skb_frag_size(frags); 1862 frags++; 1863 } 1864 zc->recv_skip_hint -= remaining; 1865 break; 1866 } 1867 pages[pg_idx] = skb_frag_page(frags); 1868 pg_idx++; 1869 length += PAGE_SIZE; 1870 zc->recv_skip_hint -= PAGE_SIZE; 1871 frags++; 1872 if (pg_idx == PAGE_BATCH_SIZE) { 1873 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 1874 &curr_addr, &length, 1875 &seq, zc); 1876 if (ret) 1877 goto out; 1878 pg_idx = 0; 1879 } 1880 } 1881 if (pg_idx) { 1882 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 1883 &curr_addr, &length, &seq, 1884 zc); 1885 } 1886 out: 1887 mmap_read_unlock(current->mm); 1888 if (length) { 1889 WRITE_ONCE(tp->copied_seq, seq); 1890 tcp_rcv_space_adjust(sk); 1891 1892 /* Clean up data we have read: This will do ACK frames. */ 1893 tcp_recv_skb(sk, seq, &offset); 1894 tcp_cleanup_rbuf(sk, length); 1895 ret = 0; 1896 if (length == zc->length) 1897 zc->recv_skip_hint = 0; 1898 } else { 1899 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1900 ret = -EIO; 1901 } 1902 zc->length = length; 1903 return ret; 1904 } 1905 #endif 1906 1907 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1908 struct scm_timestamping_internal *tss) 1909 { 1910 if (skb->tstamp) 1911 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1912 else 1913 tss->ts[0] = (struct timespec64) {0}; 1914 1915 if (skb_hwtstamps(skb)->hwtstamp) 1916 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1917 else 1918 tss->ts[2] = (struct timespec64) {0}; 1919 } 1920 1921 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1922 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1923 struct scm_timestamping_internal *tss) 1924 { 1925 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1926 bool has_timestamping = false; 1927 1928 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1929 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1930 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1931 if (new_tstamp) { 1932 struct __kernel_timespec kts = { 1933 .tv_sec = tss->ts[0].tv_sec, 1934 .tv_nsec = tss->ts[0].tv_nsec, 1935 }; 1936 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1937 sizeof(kts), &kts); 1938 } else { 1939 struct __kernel_old_timespec ts_old = { 1940 .tv_sec = tss->ts[0].tv_sec, 1941 .tv_nsec = tss->ts[0].tv_nsec, 1942 }; 1943 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1944 sizeof(ts_old), &ts_old); 1945 } 1946 } else { 1947 if (new_tstamp) { 1948 struct __kernel_sock_timeval stv = { 1949 .tv_sec = tss->ts[0].tv_sec, 1950 .tv_usec = tss->ts[0].tv_nsec / 1000, 1951 }; 1952 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1953 sizeof(stv), &stv); 1954 } else { 1955 struct __kernel_old_timeval tv = { 1956 .tv_sec = tss->ts[0].tv_sec, 1957 .tv_usec = tss->ts[0].tv_nsec / 1000, 1958 }; 1959 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1960 sizeof(tv), &tv); 1961 } 1962 } 1963 } 1964 1965 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1966 has_timestamping = true; 1967 else 1968 tss->ts[0] = (struct timespec64) {0}; 1969 } 1970 1971 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1972 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1973 has_timestamping = true; 1974 else 1975 tss->ts[2] = (struct timespec64) {0}; 1976 } 1977 1978 if (has_timestamping) { 1979 tss->ts[1] = (struct timespec64) {0}; 1980 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1981 put_cmsg_scm_timestamping64(msg, tss); 1982 else 1983 put_cmsg_scm_timestamping(msg, tss); 1984 } 1985 } 1986 1987 static int tcp_inq_hint(struct sock *sk) 1988 { 1989 const struct tcp_sock *tp = tcp_sk(sk); 1990 u32 copied_seq = READ_ONCE(tp->copied_seq); 1991 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1992 int inq; 1993 1994 inq = rcv_nxt - copied_seq; 1995 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1996 lock_sock(sk); 1997 inq = tp->rcv_nxt - tp->copied_seq; 1998 release_sock(sk); 1999 } 2000 /* After receiving a FIN, tell the user-space to continue reading 2001 * by returning a non-zero inq. 2002 */ 2003 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2004 inq = 1; 2005 return inq; 2006 } 2007 2008 /* 2009 * This routine copies from a sock struct into the user buffer. 2010 * 2011 * Technical note: in 2.3 we work on _locked_ socket, so that 2012 * tricks with *seq access order and skb->users are not required. 2013 * Probably, code can be easily improved even more. 2014 */ 2015 2016 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2017 int flags, int *addr_len) 2018 { 2019 struct tcp_sock *tp = tcp_sk(sk); 2020 int copied = 0; 2021 u32 peek_seq; 2022 u32 *seq; 2023 unsigned long used; 2024 int err, inq; 2025 int target; /* Read at least this many bytes */ 2026 long timeo; 2027 struct sk_buff *skb, *last; 2028 u32 urg_hole = 0; 2029 struct scm_timestamping_internal tss; 2030 int cmsg_flags; 2031 2032 if (unlikely(flags & MSG_ERRQUEUE)) 2033 return inet_recv_error(sk, msg, len, addr_len); 2034 2035 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 2036 (sk->sk_state == TCP_ESTABLISHED)) 2037 sk_busy_loop(sk, nonblock); 2038 2039 lock_sock(sk); 2040 2041 err = -ENOTCONN; 2042 if (sk->sk_state == TCP_LISTEN) 2043 goto out; 2044 2045 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 2046 timeo = sock_rcvtimeo(sk, nonblock); 2047 2048 /* Urgent data needs to be handled specially. */ 2049 if (flags & MSG_OOB) 2050 goto recv_urg; 2051 2052 if (unlikely(tp->repair)) { 2053 err = -EPERM; 2054 if (!(flags & MSG_PEEK)) 2055 goto out; 2056 2057 if (tp->repair_queue == TCP_SEND_QUEUE) 2058 goto recv_sndq; 2059 2060 err = -EINVAL; 2061 if (tp->repair_queue == TCP_NO_QUEUE) 2062 goto out; 2063 2064 /* 'common' recv queue MSG_PEEK-ing */ 2065 } 2066 2067 seq = &tp->copied_seq; 2068 if (flags & MSG_PEEK) { 2069 peek_seq = tp->copied_seq; 2070 seq = &peek_seq; 2071 } 2072 2073 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2074 2075 do { 2076 u32 offset; 2077 2078 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2079 if (tp->urg_data && tp->urg_seq == *seq) { 2080 if (copied) 2081 break; 2082 if (signal_pending(current)) { 2083 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2084 break; 2085 } 2086 } 2087 2088 /* Next get a buffer. */ 2089 2090 last = skb_peek_tail(&sk->sk_receive_queue); 2091 skb_queue_walk(&sk->sk_receive_queue, skb) { 2092 last = skb; 2093 /* Now that we have two receive queues this 2094 * shouldn't happen. 2095 */ 2096 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2097 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2098 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2099 flags)) 2100 break; 2101 2102 offset = *seq - TCP_SKB_CB(skb)->seq; 2103 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2104 pr_err_once("%s: found a SYN, please report !\n", __func__); 2105 offset--; 2106 } 2107 if (offset < skb->len) 2108 goto found_ok_skb; 2109 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2110 goto found_fin_ok; 2111 WARN(!(flags & MSG_PEEK), 2112 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2113 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2114 } 2115 2116 /* Well, if we have backlog, try to process it now yet. */ 2117 2118 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2119 break; 2120 2121 if (copied) { 2122 if (sk->sk_err || 2123 sk->sk_state == TCP_CLOSE || 2124 (sk->sk_shutdown & RCV_SHUTDOWN) || 2125 !timeo || 2126 signal_pending(current)) 2127 break; 2128 } else { 2129 if (sock_flag(sk, SOCK_DONE)) 2130 break; 2131 2132 if (sk->sk_err) { 2133 copied = sock_error(sk); 2134 break; 2135 } 2136 2137 if (sk->sk_shutdown & RCV_SHUTDOWN) 2138 break; 2139 2140 if (sk->sk_state == TCP_CLOSE) { 2141 /* This occurs when user tries to read 2142 * from never connected socket. 2143 */ 2144 copied = -ENOTCONN; 2145 break; 2146 } 2147 2148 if (!timeo) { 2149 copied = -EAGAIN; 2150 break; 2151 } 2152 2153 if (signal_pending(current)) { 2154 copied = sock_intr_errno(timeo); 2155 break; 2156 } 2157 } 2158 2159 tcp_cleanup_rbuf(sk, copied); 2160 2161 if (copied >= target) { 2162 /* Do not sleep, just process backlog. */ 2163 release_sock(sk); 2164 lock_sock(sk); 2165 } else { 2166 sk_wait_data(sk, &timeo, last); 2167 } 2168 2169 if ((flags & MSG_PEEK) && 2170 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2171 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2172 current->comm, 2173 task_pid_nr(current)); 2174 peek_seq = tp->copied_seq; 2175 } 2176 continue; 2177 2178 found_ok_skb: 2179 /* Ok so how much can we use? */ 2180 used = skb->len - offset; 2181 if (len < used) 2182 used = len; 2183 2184 /* Do we have urgent data here? */ 2185 if (tp->urg_data) { 2186 u32 urg_offset = tp->urg_seq - *seq; 2187 if (urg_offset < used) { 2188 if (!urg_offset) { 2189 if (!sock_flag(sk, SOCK_URGINLINE)) { 2190 WRITE_ONCE(*seq, *seq + 1); 2191 urg_hole++; 2192 offset++; 2193 used--; 2194 if (!used) 2195 goto skip_copy; 2196 } 2197 } else 2198 used = urg_offset; 2199 } 2200 } 2201 2202 if (!(flags & MSG_TRUNC)) { 2203 err = skb_copy_datagram_msg(skb, offset, msg, used); 2204 if (err) { 2205 /* Exception. Bailout! */ 2206 if (!copied) 2207 copied = -EFAULT; 2208 break; 2209 } 2210 } 2211 2212 WRITE_ONCE(*seq, *seq + used); 2213 copied += used; 2214 len -= used; 2215 2216 tcp_rcv_space_adjust(sk); 2217 2218 skip_copy: 2219 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2220 tp->urg_data = 0; 2221 tcp_fast_path_check(sk); 2222 } 2223 2224 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2225 tcp_update_recv_tstamps(skb, &tss); 2226 cmsg_flags |= 2; 2227 } 2228 2229 if (used + offset < skb->len) 2230 continue; 2231 2232 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2233 goto found_fin_ok; 2234 if (!(flags & MSG_PEEK)) 2235 sk_eat_skb(sk, skb); 2236 continue; 2237 2238 found_fin_ok: 2239 /* Process the FIN. */ 2240 WRITE_ONCE(*seq, *seq + 1); 2241 if (!(flags & MSG_PEEK)) 2242 sk_eat_skb(sk, skb); 2243 break; 2244 } while (len > 0); 2245 2246 /* According to UNIX98, msg_name/msg_namelen are ignored 2247 * on connected socket. I was just happy when found this 8) --ANK 2248 */ 2249 2250 /* Clean up data we have read: This will do ACK frames. */ 2251 tcp_cleanup_rbuf(sk, copied); 2252 2253 release_sock(sk); 2254 2255 if (cmsg_flags) { 2256 if (cmsg_flags & 2) 2257 tcp_recv_timestamp(msg, sk, &tss); 2258 if (cmsg_flags & 1) { 2259 inq = tcp_inq_hint(sk); 2260 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2261 } 2262 } 2263 2264 return copied; 2265 2266 out: 2267 release_sock(sk); 2268 return err; 2269 2270 recv_urg: 2271 err = tcp_recv_urg(sk, msg, len, flags); 2272 goto out; 2273 2274 recv_sndq: 2275 err = tcp_peek_sndq(sk, msg, len); 2276 goto out; 2277 } 2278 EXPORT_SYMBOL(tcp_recvmsg); 2279 2280 void tcp_set_state(struct sock *sk, int state) 2281 { 2282 int oldstate = sk->sk_state; 2283 2284 /* We defined a new enum for TCP states that are exported in BPF 2285 * so as not force the internal TCP states to be frozen. The 2286 * following checks will detect if an internal state value ever 2287 * differs from the BPF value. If this ever happens, then we will 2288 * need to remap the internal value to the BPF value before calling 2289 * tcp_call_bpf_2arg. 2290 */ 2291 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2292 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2293 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2294 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2295 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2296 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2297 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2298 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2299 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2300 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2301 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2302 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2303 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2304 2305 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2306 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2307 2308 switch (state) { 2309 case TCP_ESTABLISHED: 2310 if (oldstate != TCP_ESTABLISHED) 2311 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2312 break; 2313 2314 case TCP_CLOSE: 2315 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2316 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2317 2318 sk->sk_prot->unhash(sk); 2319 if (inet_csk(sk)->icsk_bind_hash && 2320 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2321 inet_put_port(sk); 2322 fallthrough; 2323 default: 2324 if (oldstate == TCP_ESTABLISHED) 2325 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2326 } 2327 2328 /* Change state AFTER socket is unhashed to avoid closed 2329 * socket sitting in hash tables. 2330 */ 2331 inet_sk_state_store(sk, state); 2332 } 2333 EXPORT_SYMBOL_GPL(tcp_set_state); 2334 2335 /* 2336 * State processing on a close. This implements the state shift for 2337 * sending our FIN frame. Note that we only send a FIN for some 2338 * states. A shutdown() may have already sent the FIN, or we may be 2339 * closed. 2340 */ 2341 2342 static const unsigned char new_state[16] = { 2343 /* current state: new state: action: */ 2344 [0 /* (Invalid) */] = TCP_CLOSE, 2345 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2346 [TCP_SYN_SENT] = TCP_CLOSE, 2347 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2348 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2349 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2350 [TCP_TIME_WAIT] = TCP_CLOSE, 2351 [TCP_CLOSE] = TCP_CLOSE, 2352 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2353 [TCP_LAST_ACK] = TCP_LAST_ACK, 2354 [TCP_LISTEN] = TCP_CLOSE, 2355 [TCP_CLOSING] = TCP_CLOSING, 2356 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2357 }; 2358 2359 static int tcp_close_state(struct sock *sk) 2360 { 2361 int next = (int)new_state[sk->sk_state]; 2362 int ns = next & TCP_STATE_MASK; 2363 2364 tcp_set_state(sk, ns); 2365 2366 return next & TCP_ACTION_FIN; 2367 } 2368 2369 /* 2370 * Shutdown the sending side of a connection. Much like close except 2371 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2372 */ 2373 2374 void tcp_shutdown(struct sock *sk, int how) 2375 { 2376 /* We need to grab some memory, and put together a FIN, 2377 * and then put it into the queue to be sent. 2378 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2379 */ 2380 if (!(how & SEND_SHUTDOWN)) 2381 return; 2382 2383 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2384 if ((1 << sk->sk_state) & 2385 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2386 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2387 /* Clear out any half completed packets. FIN if needed. */ 2388 if (tcp_close_state(sk)) 2389 tcp_send_fin(sk); 2390 } 2391 } 2392 EXPORT_SYMBOL(tcp_shutdown); 2393 2394 bool tcp_check_oom(struct sock *sk, int shift) 2395 { 2396 bool too_many_orphans, out_of_socket_memory; 2397 2398 too_many_orphans = tcp_too_many_orphans(sk, shift); 2399 out_of_socket_memory = tcp_out_of_memory(sk); 2400 2401 if (too_many_orphans) 2402 net_info_ratelimited("too many orphaned sockets\n"); 2403 if (out_of_socket_memory) 2404 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2405 return too_many_orphans || out_of_socket_memory; 2406 } 2407 2408 void tcp_close(struct sock *sk, long timeout) 2409 { 2410 struct sk_buff *skb; 2411 int data_was_unread = 0; 2412 int state; 2413 2414 lock_sock(sk); 2415 sk->sk_shutdown = SHUTDOWN_MASK; 2416 2417 if (sk->sk_state == TCP_LISTEN) { 2418 tcp_set_state(sk, TCP_CLOSE); 2419 2420 /* Special case. */ 2421 inet_csk_listen_stop(sk); 2422 2423 goto adjudge_to_death; 2424 } 2425 2426 /* We need to flush the recv. buffs. We do this only on the 2427 * descriptor close, not protocol-sourced closes, because the 2428 * reader process may not have drained the data yet! 2429 */ 2430 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2431 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2432 2433 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2434 len--; 2435 data_was_unread += len; 2436 __kfree_skb(skb); 2437 } 2438 2439 sk_mem_reclaim(sk); 2440 2441 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2442 if (sk->sk_state == TCP_CLOSE) 2443 goto adjudge_to_death; 2444 2445 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2446 * data was lost. To witness the awful effects of the old behavior of 2447 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2448 * GET in an FTP client, suspend the process, wait for the client to 2449 * advertise a zero window, then kill -9 the FTP client, wheee... 2450 * Note: timeout is always zero in such a case. 2451 */ 2452 if (unlikely(tcp_sk(sk)->repair)) { 2453 sk->sk_prot->disconnect(sk, 0); 2454 } else if (data_was_unread) { 2455 /* Unread data was tossed, zap the connection. */ 2456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2457 tcp_set_state(sk, TCP_CLOSE); 2458 tcp_send_active_reset(sk, sk->sk_allocation); 2459 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2460 /* Check zero linger _after_ checking for unread data. */ 2461 sk->sk_prot->disconnect(sk, 0); 2462 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2463 } else if (tcp_close_state(sk)) { 2464 /* We FIN if the application ate all the data before 2465 * zapping the connection. 2466 */ 2467 2468 /* RED-PEN. Formally speaking, we have broken TCP state 2469 * machine. State transitions: 2470 * 2471 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2472 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2473 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2474 * 2475 * are legal only when FIN has been sent (i.e. in window), 2476 * rather than queued out of window. Purists blame. 2477 * 2478 * F.e. "RFC state" is ESTABLISHED, 2479 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2480 * 2481 * The visible declinations are that sometimes 2482 * we enter time-wait state, when it is not required really 2483 * (harmless), do not send active resets, when they are 2484 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2485 * they look as CLOSING or LAST_ACK for Linux) 2486 * Probably, I missed some more holelets. 2487 * --ANK 2488 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2489 * in a single packet! (May consider it later but will 2490 * probably need API support or TCP_CORK SYN-ACK until 2491 * data is written and socket is closed.) 2492 */ 2493 tcp_send_fin(sk); 2494 } 2495 2496 sk_stream_wait_close(sk, timeout); 2497 2498 adjudge_to_death: 2499 state = sk->sk_state; 2500 sock_hold(sk); 2501 sock_orphan(sk); 2502 2503 local_bh_disable(); 2504 bh_lock_sock(sk); 2505 /* remove backlog if any, without releasing ownership. */ 2506 __release_sock(sk); 2507 2508 percpu_counter_inc(sk->sk_prot->orphan_count); 2509 2510 /* Have we already been destroyed by a softirq or backlog? */ 2511 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2512 goto out; 2513 2514 /* This is a (useful) BSD violating of the RFC. There is a 2515 * problem with TCP as specified in that the other end could 2516 * keep a socket open forever with no application left this end. 2517 * We use a 1 minute timeout (about the same as BSD) then kill 2518 * our end. If they send after that then tough - BUT: long enough 2519 * that we won't make the old 4*rto = almost no time - whoops 2520 * reset mistake. 2521 * 2522 * Nope, it was not mistake. It is really desired behaviour 2523 * f.e. on http servers, when such sockets are useless, but 2524 * consume significant resources. Let's do it with special 2525 * linger2 option. --ANK 2526 */ 2527 2528 if (sk->sk_state == TCP_FIN_WAIT2) { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 if (tp->linger2 < 0) { 2531 tcp_set_state(sk, TCP_CLOSE); 2532 tcp_send_active_reset(sk, GFP_ATOMIC); 2533 __NET_INC_STATS(sock_net(sk), 2534 LINUX_MIB_TCPABORTONLINGER); 2535 } else { 2536 const int tmo = tcp_fin_time(sk); 2537 2538 if (tmo > TCP_TIMEWAIT_LEN) { 2539 inet_csk_reset_keepalive_timer(sk, 2540 tmo - TCP_TIMEWAIT_LEN); 2541 } else { 2542 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2543 goto out; 2544 } 2545 } 2546 } 2547 if (sk->sk_state != TCP_CLOSE) { 2548 sk_mem_reclaim(sk); 2549 if (tcp_check_oom(sk, 0)) { 2550 tcp_set_state(sk, TCP_CLOSE); 2551 tcp_send_active_reset(sk, GFP_ATOMIC); 2552 __NET_INC_STATS(sock_net(sk), 2553 LINUX_MIB_TCPABORTONMEMORY); 2554 } else if (!check_net(sock_net(sk))) { 2555 /* Not possible to send reset; just close */ 2556 tcp_set_state(sk, TCP_CLOSE); 2557 } 2558 } 2559 2560 if (sk->sk_state == TCP_CLOSE) { 2561 struct request_sock *req; 2562 2563 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2564 lockdep_sock_is_held(sk)); 2565 /* We could get here with a non-NULL req if the socket is 2566 * aborted (e.g., closed with unread data) before 3WHS 2567 * finishes. 2568 */ 2569 if (req) 2570 reqsk_fastopen_remove(sk, req, false); 2571 inet_csk_destroy_sock(sk); 2572 } 2573 /* Otherwise, socket is reprieved until protocol close. */ 2574 2575 out: 2576 bh_unlock_sock(sk); 2577 local_bh_enable(); 2578 release_sock(sk); 2579 sock_put(sk); 2580 } 2581 EXPORT_SYMBOL(tcp_close); 2582 2583 /* These states need RST on ABORT according to RFC793 */ 2584 2585 static inline bool tcp_need_reset(int state) 2586 { 2587 return (1 << state) & 2588 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2589 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2590 } 2591 2592 static void tcp_rtx_queue_purge(struct sock *sk) 2593 { 2594 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2595 2596 tcp_sk(sk)->highest_sack = NULL; 2597 while (p) { 2598 struct sk_buff *skb = rb_to_skb(p); 2599 2600 p = rb_next(p); 2601 /* Since we are deleting whole queue, no need to 2602 * list_del(&skb->tcp_tsorted_anchor) 2603 */ 2604 tcp_rtx_queue_unlink(skb, sk); 2605 sk_wmem_free_skb(sk, skb); 2606 } 2607 } 2608 2609 void tcp_write_queue_purge(struct sock *sk) 2610 { 2611 struct sk_buff *skb; 2612 2613 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2614 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2615 tcp_skb_tsorted_anchor_cleanup(skb); 2616 sk_wmem_free_skb(sk, skb); 2617 } 2618 tcp_rtx_queue_purge(sk); 2619 skb = sk->sk_tx_skb_cache; 2620 if (skb) { 2621 __kfree_skb(skb); 2622 sk->sk_tx_skb_cache = NULL; 2623 } 2624 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2625 sk_mem_reclaim(sk); 2626 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2627 tcp_sk(sk)->packets_out = 0; 2628 inet_csk(sk)->icsk_backoff = 0; 2629 } 2630 2631 int tcp_disconnect(struct sock *sk, int flags) 2632 { 2633 struct inet_sock *inet = inet_sk(sk); 2634 struct inet_connection_sock *icsk = inet_csk(sk); 2635 struct tcp_sock *tp = tcp_sk(sk); 2636 int old_state = sk->sk_state; 2637 u32 seq; 2638 2639 if (old_state != TCP_CLOSE) 2640 tcp_set_state(sk, TCP_CLOSE); 2641 2642 /* ABORT function of RFC793 */ 2643 if (old_state == TCP_LISTEN) { 2644 inet_csk_listen_stop(sk); 2645 } else if (unlikely(tp->repair)) { 2646 sk->sk_err = ECONNABORTED; 2647 } else if (tcp_need_reset(old_state) || 2648 (tp->snd_nxt != tp->write_seq && 2649 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2650 /* The last check adjusts for discrepancy of Linux wrt. RFC 2651 * states 2652 */ 2653 tcp_send_active_reset(sk, gfp_any()); 2654 sk->sk_err = ECONNRESET; 2655 } else if (old_state == TCP_SYN_SENT) 2656 sk->sk_err = ECONNRESET; 2657 2658 tcp_clear_xmit_timers(sk); 2659 __skb_queue_purge(&sk->sk_receive_queue); 2660 if (sk->sk_rx_skb_cache) { 2661 __kfree_skb(sk->sk_rx_skb_cache); 2662 sk->sk_rx_skb_cache = NULL; 2663 } 2664 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2665 tp->urg_data = 0; 2666 tcp_write_queue_purge(sk); 2667 tcp_fastopen_active_disable_ofo_check(sk); 2668 skb_rbtree_purge(&tp->out_of_order_queue); 2669 2670 inet->inet_dport = 0; 2671 2672 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2673 inet_reset_saddr(sk); 2674 2675 sk->sk_shutdown = 0; 2676 sock_reset_flag(sk, SOCK_DONE); 2677 tp->srtt_us = 0; 2678 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2679 tp->rcv_rtt_last_tsecr = 0; 2680 2681 seq = tp->write_seq + tp->max_window + 2; 2682 if (!seq) 2683 seq = 1; 2684 WRITE_ONCE(tp->write_seq, seq); 2685 2686 icsk->icsk_backoff = 0; 2687 icsk->icsk_probes_out = 0; 2688 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2689 icsk->icsk_rto_min = TCP_RTO_MIN; 2690 icsk->icsk_delack_max = TCP_DELACK_MAX; 2691 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2692 tp->snd_cwnd = TCP_INIT_CWND; 2693 tp->snd_cwnd_cnt = 0; 2694 tp->window_clamp = 0; 2695 tp->delivered = 0; 2696 tp->delivered_ce = 0; 2697 if (icsk->icsk_ca_ops->release) 2698 icsk->icsk_ca_ops->release(sk); 2699 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2700 icsk->icsk_ca_initialized = 0; 2701 tcp_set_ca_state(sk, TCP_CA_Open); 2702 tp->is_sack_reneg = 0; 2703 tcp_clear_retrans(tp); 2704 tp->total_retrans = 0; 2705 inet_csk_delack_init(sk); 2706 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2707 * issue in __tcp_select_window() 2708 */ 2709 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2710 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2711 __sk_dst_reset(sk); 2712 dst_release(sk->sk_rx_dst); 2713 sk->sk_rx_dst = NULL; 2714 tcp_saved_syn_free(tp); 2715 tp->compressed_ack = 0; 2716 tp->segs_in = 0; 2717 tp->segs_out = 0; 2718 tp->bytes_sent = 0; 2719 tp->bytes_acked = 0; 2720 tp->bytes_received = 0; 2721 tp->bytes_retrans = 0; 2722 tp->data_segs_in = 0; 2723 tp->data_segs_out = 0; 2724 tp->duplicate_sack[0].start_seq = 0; 2725 tp->duplicate_sack[0].end_seq = 0; 2726 tp->dsack_dups = 0; 2727 tp->reord_seen = 0; 2728 tp->retrans_out = 0; 2729 tp->sacked_out = 0; 2730 tp->tlp_high_seq = 0; 2731 tp->last_oow_ack_time = 0; 2732 /* There's a bubble in the pipe until at least the first ACK. */ 2733 tp->app_limited = ~0U; 2734 tp->rack.mstamp = 0; 2735 tp->rack.advanced = 0; 2736 tp->rack.reo_wnd_steps = 1; 2737 tp->rack.last_delivered = 0; 2738 tp->rack.reo_wnd_persist = 0; 2739 tp->rack.dsack_seen = 0; 2740 tp->syn_data_acked = 0; 2741 tp->rx_opt.saw_tstamp = 0; 2742 tp->rx_opt.dsack = 0; 2743 tp->rx_opt.num_sacks = 0; 2744 tp->rcv_ooopack = 0; 2745 2746 2747 /* Clean up fastopen related fields */ 2748 tcp_free_fastopen_req(tp); 2749 inet->defer_connect = 0; 2750 tp->fastopen_client_fail = 0; 2751 2752 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2753 2754 if (sk->sk_frag.page) { 2755 put_page(sk->sk_frag.page); 2756 sk->sk_frag.page = NULL; 2757 sk->sk_frag.offset = 0; 2758 } 2759 2760 sk->sk_error_report(sk); 2761 return 0; 2762 } 2763 EXPORT_SYMBOL(tcp_disconnect); 2764 2765 static inline bool tcp_can_repair_sock(const struct sock *sk) 2766 { 2767 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2768 (sk->sk_state != TCP_LISTEN); 2769 } 2770 2771 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 2772 { 2773 struct tcp_repair_window opt; 2774 2775 if (!tp->repair) 2776 return -EPERM; 2777 2778 if (len != sizeof(opt)) 2779 return -EINVAL; 2780 2781 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 2782 return -EFAULT; 2783 2784 if (opt.max_window < opt.snd_wnd) 2785 return -EINVAL; 2786 2787 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2788 return -EINVAL; 2789 2790 if (after(opt.rcv_wup, tp->rcv_nxt)) 2791 return -EINVAL; 2792 2793 tp->snd_wl1 = opt.snd_wl1; 2794 tp->snd_wnd = opt.snd_wnd; 2795 tp->max_window = opt.max_window; 2796 2797 tp->rcv_wnd = opt.rcv_wnd; 2798 tp->rcv_wup = opt.rcv_wup; 2799 2800 return 0; 2801 } 2802 2803 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 2804 unsigned int len) 2805 { 2806 struct tcp_sock *tp = tcp_sk(sk); 2807 struct tcp_repair_opt opt; 2808 size_t offset = 0; 2809 2810 while (len >= sizeof(opt)) { 2811 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 2812 return -EFAULT; 2813 2814 offset += sizeof(opt); 2815 len -= sizeof(opt); 2816 2817 switch (opt.opt_code) { 2818 case TCPOPT_MSS: 2819 tp->rx_opt.mss_clamp = opt.opt_val; 2820 tcp_mtup_init(sk); 2821 break; 2822 case TCPOPT_WINDOW: 2823 { 2824 u16 snd_wscale = opt.opt_val & 0xFFFF; 2825 u16 rcv_wscale = opt.opt_val >> 16; 2826 2827 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2828 return -EFBIG; 2829 2830 tp->rx_opt.snd_wscale = snd_wscale; 2831 tp->rx_opt.rcv_wscale = rcv_wscale; 2832 tp->rx_opt.wscale_ok = 1; 2833 } 2834 break; 2835 case TCPOPT_SACK_PERM: 2836 if (opt.opt_val != 0) 2837 return -EINVAL; 2838 2839 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2840 break; 2841 case TCPOPT_TIMESTAMP: 2842 if (opt.opt_val != 0) 2843 return -EINVAL; 2844 2845 tp->rx_opt.tstamp_ok = 1; 2846 break; 2847 } 2848 } 2849 2850 return 0; 2851 } 2852 2853 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2854 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2855 2856 static void tcp_enable_tx_delay(void) 2857 { 2858 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2859 static int __tcp_tx_delay_enabled = 0; 2860 2861 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2862 static_branch_enable(&tcp_tx_delay_enabled); 2863 pr_info("TCP_TX_DELAY enabled\n"); 2864 } 2865 } 2866 } 2867 2868 /* When set indicates to always queue non-full frames. Later the user clears 2869 * this option and we transmit any pending partial frames in the queue. This is 2870 * meant to be used alongside sendfile() to get properly filled frames when the 2871 * user (for example) must write out headers with a write() call first and then 2872 * use sendfile to send out the data parts. 2873 * 2874 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 2875 * TCP_NODELAY. 2876 */ 2877 static void __tcp_sock_set_cork(struct sock *sk, bool on) 2878 { 2879 struct tcp_sock *tp = tcp_sk(sk); 2880 2881 if (on) { 2882 tp->nonagle |= TCP_NAGLE_CORK; 2883 } else { 2884 tp->nonagle &= ~TCP_NAGLE_CORK; 2885 if (tp->nonagle & TCP_NAGLE_OFF) 2886 tp->nonagle |= TCP_NAGLE_PUSH; 2887 tcp_push_pending_frames(sk); 2888 } 2889 } 2890 2891 void tcp_sock_set_cork(struct sock *sk, bool on) 2892 { 2893 lock_sock(sk); 2894 __tcp_sock_set_cork(sk, on); 2895 release_sock(sk); 2896 } 2897 EXPORT_SYMBOL(tcp_sock_set_cork); 2898 2899 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 2900 * remembered, but it is not activated until cork is cleared. 2901 * 2902 * However, when TCP_NODELAY is set we make an explicit push, which overrides 2903 * even TCP_CORK for currently queued segments. 2904 */ 2905 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 2906 { 2907 if (on) { 2908 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2909 tcp_push_pending_frames(sk); 2910 } else { 2911 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 2912 } 2913 } 2914 2915 void tcp_sock_set_nodelay(struct sock *sk) 2916 { 2917 lock_sock(sk); 2918 __tcp_sock_set_nodelay(sk, true); 2919 release_sock(sk); 2920 } 2921 EXPORT_SYMBOL(tcp_sock_set_nodelay); 2922 2923 static void __tcp_sock_set_quickack(struct sock *sk, int val) 2924 { 2925 if (!val) { 2926 inet_csk_enter_pingpong_mode(sk); 2927 return; 2928 } 2929 2930 inet_csk_exit_pingpong_mode(sk); 2931 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2932 inet_csk_ack_scheduled(sk)) { 2933 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 2934 tcp_cleanup_rbuf(sk, 1); 2935 if (!(val & 1)) 2936 inet_csk_enter_pingpong_mode(sk); 2937 } 2938 } 2939 2940 void tcp_sock_set_quickack(struct sock *sk, int val) 2941 { 2942 lock_sock(sk); 2943 __tcp_sock_set_quickack(sk, val); 2944 release_sock(sk); 2945 } 2946 EXPORT_SYMBOL(tcp_sock_set_quickack); 2947 2948 int tcp_sock_set_syncnt(struct sock *sk, int val) 2949 { 2950 if (val < 1 || val > MAX_TCP_SYNCNT) 2951 return -EINVAL; 2952 2953 lock_sock(sk); 2954 inet_csk(sk)->icsk_syn_retries = val; 2955 release_sock(sk); 2956 return 0; 2957 } 2958 EXPORT_SYMBOL(tcp_sock_set_syncnt); 2959 2960 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 2961 { 2962 lock_sock(sk); 2963 inet_csk(sk)->icsk_user_timeout = val; 2964 release_sock(sk); 2965 } 2966 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 2967 2968 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 2969 { 2970 struct tcp_sock *tp = tcp_sk(sk); 2971 2972 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2973 return -EINVAL; 2974 2975 tp->keepalive_time = val * HZ; 2976 if (sock_flag(sk, SOCK_KEEPOPEN) && 2977 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 2978 u32 elapsed = keepalive_time_elapsed(tp); 2979 2980 if (tp->keepalive_time > elapsed) 2981 elapsed = tp->keepalive_time - elapsed; 2982 else 2983 elapsed = 0; 2984 inet_csk_reset_keepalive_timer(sk, elapsed); 2985 } 2986 2987 return 0; 2988 } 2989 2990 int tcp_sock_set_keepidle(struct sock *sk, int val) 2991 { 2992 int err; 2993 2994 lock_sock(sk); 2995 err = tcp_sock_set_keepidle_locked(sk, val); 2996 release_sock(sk); 2997 return err; 2998 } 2999 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3000 3001 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3002 { 3003 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3004 return -EINVAL; 3005 3006 lock_sock(sk); 3007 tcp_sk(sk)->keepalive_intvl = val * HZ; 3008 release_sock(sk); 3009 return 0; 3010 } 3011 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3012 3013 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3014 { 3015 if (val < 1 || val > MAX_TCP_KEEPCNT) 3016 return -EINVAL; 3017 3018 lock_sock(sk); 3019 tcp_sk(sk)->keepalive_probes = val; 3020 release_sock(sk); 3021 return 0; 3022 } 3023 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3024 3025 /* 3026 * Socket option code for TCP. 3027 */ 3028 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3029 sockptr_t optval, unsigned int optlen) 3030 { 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 struct inet_connection_sock *icsk = inet_csk(sk); 3033 struct net *net = sock_net(sk); 3034 int val; 3035 int err = 0; 3036 3037 /* These are data/string values, all the others are ints */ 3038 switch (optname) { 3039 case TCP_CONGESTION: { 3040 char name[TCP_CA_NAME_MAX]; 3041 3042 if (optlen < 1) 3043 return -EINVAL; 3044 3045 val = strncpy_from_sockptr(name, optval, 3046 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3047 if (val < 0) 3048 return -EFAULT; 3049 name[val] = 0; 3050 3051 lock_sock(sk); 3052 err = tcp_set_congestion_control(sk, name, true, 3053 ns_capable(sock_net(sk)->user_ns, 3054 CAP_NET_ADMIN)); 3055 release_sock(sk); 3056 return err; 3057 } 3058 case TCP_ULP: { 3059 char name[TCP_ULP_NAME_MAX]; 3060 3061 if (optlen < 1) 3062 return -EINVAL; 3063 3064 val = strncpy_from_sockptr(name, optval, 3065 min_t(long, TCP_ULP_NAME_MAX - 1, 3066 optlen)); 3067 if (val < 0) 3068 return -EFAULT; 3069 name[val] = 0; 3070 3071 lock_sock(sk); 3072 err = tcp_set_ulp(sk, name); 3073 release_sock(sk); 3074 return err; 3075 } 3076 case TCP_FASTOPEN_KEY: { 3077 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3078 __u8 *backup_key = NULL; 3079 3080 /* Allow a backup key as well to facilitate key rotation 3081 * First key is the active one. 3082 */ 3083 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3084 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3085 return -EINVAL; 3086 3087 if (copy_from_sockptr(key, optval, optlen)) 3088 return -EFAULT; 3089 3090 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3091 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3092 3093 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3094 } 3095 default: 3096 /* fallthru */ 3097 break; 3098 } 3099 3100 if (optlen < sizeof(int)) 3101 return -EINVAL; 3102 3103 if (copy_from_sockptr(&val, optval, sizeof(val))) 3104 return -EFAULT; 3105 3106 lock_sock(sk); 3107 3108 switch (optname) { 3109 case TCP_MAXSEG: 3110 /* Values greater than interface MTU won't take effect. However 3111 * at the point when this call is done we typically don't yet 3112 * know which interface is going to be used 3113 */ 3114 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3115 err = -EINVAL; 3116 break; 3117 } 3118 tp->rx_opt.user_mss = val; 3119 break; 3120 3121 case TCP_NODELAY: 3122 __tcp_sock_set_nodelay(sk, val); 3123 break; 3124 3125 case TCP_THIN_LINEAR_TIMEOUTS: 3126 if (val < 0 || val > 1) 3127 err = -EINVAL; 3128 else 3129 tp->thin_lto = val; 3130 break; 3131 3132 case TCP_THIN_DUPACK: 3133 if (val < 0 || val > 1) 3134 err = -EINVAL; 3135 break; 3136 3137 case TCP_REPAIR: 3138 if (!tcp_can_repair_sock(sk)) 3139 err = -EPERM; 3140 else if (val == TCP_REPAIR_ON) { 3141 tp->repair = 1; 3142 sk->sk_reuse = SK_FORCE_REUSE; 3143 tp->repair_queue = TCP_NO_QUEUE; 3144 } else if (val == TCP_REPAIR_OFF) { 3145 tp->repair = 0; 3146 sk->sk_reuse = SK_NO_REUSE; 3147 tcp_send_window_probe(sk); 3148 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3149 tp->repair = 0; 3150 sk->sk_reuse = SK_NO_REUSE; 3151 } else 3152 err = -EINVAL; 3153 3154 break; 3155 3156 case TCP_REPAIR_QUEUE: 3157 if (!tp->repair) 3158 err = -EPERM; 3159 else if ((unsigned int)val < TCP_QUEUES_NR) 3160 tp->repair_queue = val; 3161 else 3162 err = -EINVAL; 3163 break; 3164 3165 case TCP_QUEUE_SEQ: 3166 if (sk->sk_state != TCP_CLOSE) 3167 err = -EPERM; 3168 else if (tp->repair_queue == TCP_SEND_QUEUE) 3169 WRITE_ONCE(tp->write_seq, val); 3170 else if (tp->repair_queue == TCP_RECV_QUEUE) { 3171 WRITE_ONCE(tp->rcv_nxt, val); 3172 WRITE_ONCE(tp->copied_seq, val); 3173 } 3174 else 3175 err = -EINVAL; 3176 break; 3177 3178 case TCP_REPAIR_OPTIONS: 3179 if (!tp->repair) 3180 err = -EINVAL; 3181 else if (sk->sk_state == TCP_ESTABLISHED) 3182 err = tcp_repair_options_est(sk, optval, optlen); 3183 else 3184 err = -EPERM; 3185 break; 3186 3187 case TCP_CORK: 3188 __tcp_sock_set_cork(sk, val); 3189 break; 3190 3191 case TCP_KEEPIDLE: 3192 err = tcp_sock_set_keepidle_locked(sk, val); 3193 break; 3194 case TCP_KEEPINTVL: 3195 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3196 err = -EINVAL; 3197 else 3198 tp->keepalive_intvl = val * HZ; 3199 break; 3200 case TCP_KEEPCNT: 3201 if (val < 1 || val > MAX_TCP_KEEPCNT) 3202 err = -EINVAL; 3203 else 3204 tp->keepalive_probes = val; 3205 break; 3206 case TCP_SYNCNT: 3207 if (val < 1 || val > MAX_TCP_SYNCNT) 3208 err = -EINVAL; 3209 else 3210 icsk->icsk_syn_retries = val; 3211 break; 3212 3213 case TCP_SAVE_SYN: 3214 /* 0: disable, 1: enable, 2: start from ether_header */ 3215 if (val < 0 || val > 2) 3216 err = -EINVAL; 3217 else 3218 tp->save_syn = val; 3219 break; 3220 3221 case TCP_LINGER2: 3222 if (val < 0) 3223 tp->linger2 = -1; 3224 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3225 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3226 else 3227 tp->linger2 = val * HZ; 3228 break; 3229 3230 case TCP_DEFER_ACCEPT: 3231 /* Translate value in seconds to number of retransmits */ 3232 icsk->icsk_accept_queue.rskq_defer_accept = 3233 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3234 TCP_RTO_MAX / HZ); 3235 break; 3236 3237 case TCP_WINDOW_CLAMP: 3238 if (!val) { 3239 if (sk->sk_state != TCP_CLOSE) { 3240 err = -EINVAL; 3241 break; 3242 } 3243 tp->window_clamp = 0; 3244 } else 3245 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3246 SOCK_MIN_RCVBUF / 2 : val; 3247 break; 3248 3249 case TCP_QUICKACK: 3250 __tcp_sock_set_quickack(sk, val); 3251 break; 3252 3253 #ifdef CONFIG_TCP_MD5SIG 3254 case TCP_MD5SIG: 3255 case TCP_MD5SIG_EXT: 3256 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3257 break; 3258 #endif 3259 case TCP_USER_TIMEOUT: 3260 /* Cap the max time in ms TCP will retry or probe the window 3261 * before giving up and aborting (ETIMEDOUT) a connection. 3262 */ 3263 if (val < 0) 3264 err = -EINVAL; 3265 else 3266 icsk->icsk_user_timeout = val; 3267 break; 3268 3269 case TCP_FASTOPEN: 3270 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3271 TCPF_LISTEN))) { 3272 tcp_fastopen_init_key_once(net); 3273 3274 fastopen_queue_tune(sk, val); 3275 } else { 3276 err = -EINVAL; 3277 } 3278 break; 3279 case TCP_FASTOPEN_CONNECT: 3280 if (val > 1 || val < 0) { 3281 err = -EINVAL; 3282 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3283 if (sk->sk_state == TCP_CLOSE) 3284 tp->fastopen_connect = val; 3285 else 3286 err = -EINVAL; 3287 } else { 3288 err = -EOPNOTSUPP; 3289 } 3290 break; 3291 case TCP_FASTOPEN_NO_COOKIE: 3292 if (val > 1 || val < 0) 3293 err = -EINVAL; 3294 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3295 err = -EINVAL; 3296 else 3297 tp->fastopen_no_cookie = val; 3298 break; 3299 case TCP_TIMESTAMP: 3300 if (!tp->repair) 3301 err = -EPERM; 3302 else 3303 tp->tsoffset = val - tcp_time_stamp_raw(); 3304 break; 3305 case TCP_REPAIR_WINDOW: 3306 err = tcp_repair_set_window(tp, optval, optlen); 3307 break; 3308 case TCP_NOTSENT_LOWAT: 3309 tp->notsent_lowat = val; 3310 sk->sk_write_space(sk); 3311 break; 3312 case TCP_INQ: 3313 if (val > 1 || val < 0) 3314 err = -EINVAL; 3315 else 3316 tp->recvmsg_inq = val; 3317 break; 3318 case TCP_TX_DELAY: 3319 if (val) 3320 tcp_enable_tx_delay(); 3321 tp->tcp_tx_delay = val; 3322 break; 3323 default: 3324 err = -ENOPROTOOPT; 3325 break; 3326 } 3327 3328 release_sock(sk); 3329 return err; 3330 } 3331 3332 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3333 unsigned int optlen) 3334 { 3335 const struct inet_connection_sock *icsk = inet_csk(sk); 3336 3337 if (level != SOL_TCP) 3338 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3339 optval, optlen); 3340 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3341 } 3342 EXPORT_SYMBOL(tcp_setsockopt); 3343 3344 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3345 struct tcp_info *info) 3346 { 3347 u64 stats[__TCP_CHRONO_MAX], total = 0; 3348 enum tcp_chrono i; 3349 3350 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3351 stats[i] = tp->chrono_stat[i - 1]; 3352 if (i == tp->chrono_type) 3353 stats[i] += tcp_jiffies32 - tp->chrono_start; 3354 stats[i] *= USEC_PER_SEC / HZ; 3355 total += stats[i]; 3356 } 3357 3358 info->tcpi_busy_time = total; 3359 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3360 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3361 } 3362 3363 /* Return information about state of tcp endpoint in API format. */ 3364 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3365 { 3366 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3367 const struct inet_connection_sock *icsk = inet_csk(sk); 3368 unsigned long rate; 3369 u32 now; 3370 u64 rate64; 3371 bool slow; 3372 3373 memset(info, 0, sizeof(*info)); 3374 if (sk->sk_type != SOCK_STREAM) 3375 return; 3376 3377 info->tcpi_state = inet_sk_state_load(sk); 3378 3379 /* Report meaningful fields for all TCP states, including listeners */ 3380 rate = READ_ONCE(sk->sk_pacing_rate); 3381 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3382 info->tcpi_pacing_rate = rate64; 3383 3384 rate = READ_ONCE(sk->sk_max_pacing_rate); 3385 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3386 info->tcpi_max_pacing_rate = rate64; 3387 3388 info->tcpi_reordering = tp->reordering; 3389 info->tcpi_snd_cwnd = tp->snd_cwnd; 3390 3391 if (info->tcpi_state == TCP_LISTEN) { 3392 /* listeners aliased fields : 3393 * tcpi_unacked -> Number of children ready for accept() 3394 * tcpi_sacked -> max backlog 3395 */ 3396 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3397 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3398 return; 3399 } 3400 3401 slow = lock_sock_fast(sk); 3402 3403 info->tcpi_ca_state = icsk->icsk_ca_state; 3404 info->tcpi_retransmits = icsk->icsk_retransmits; 3405 info->tcpi_probes = icsk->icsk_probes_out; 3406 info->tcpi_backoff = icsk->icsk_backoff; 3407 3408 if (tp->rx_opt.tstamp_ok) 3409 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3410 if (tcp_is_sack(tp)) 3411 info->tcpi_options |= TCPI_OPT_SACK; 3412 if (tp->rx_opt.wscale_ok) { 3413 info->tcpi_options |= TCPI_OPT_WSCALE; 3414 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3415 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3416 } 3417 3418 if (tp->ecn_flags & TCP_ECN_OK) 3419 info->tcpi_options |= TCPI_OPT_ECN; 3420 if (tp->ecn_flags & TCP_ECN_SEEN) 3421 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3422 if (tp->syn_data_acked) 3423 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3424 3425 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3426 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3427 info->tcpi_snd_mss = tp->mss_cache; 3428 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3429 3430 info->tcpi_unacked = tp->packets_out; 3431 info->tcpi_sacked = tp->sacked_out; 3432 3433 info->tcpi_lost = tp->lost_out; 3434 info->tcpi_retrans = tp->retrans_out; 3435 3436 now = tcp_jiffies32; 3437 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3438 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3439 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3440 3441 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3442 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3443 info->tcpi_rtt = tp->srtt_us >> 3; 3444 info->tcpi_rttvar = tp->mdev_us >> 2; 3445 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3446 info->tcpi_advmss = tp->advmss; 3447 3448 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3449 info->tcpi_rcv_space = tp->rcvq_space.space; 3450 3451 info->tcpi_total_retrans = tp->total_retrans; 3452 3453 info->tcpi_bytes_acked = tp->bytes_acked; 3454 info->tcpi_bytes_received = tp->bytes_received; 3455 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3456 tcp_get_info_chrono_stats(tp, info); 3457 3458 info->tcpi_segs_out = tp->segs_out; 3459 info->tcpi_segs_in = tp->segs_in; 3460 3461 info->tcpi_min_rtt = tcp_min_rtt(tp); 3462 info->tcpi_data_segs_in = tp->data_segs_in; 3463 info->tcpi_data_segs_out = tp->data_segs_out; 3464 3465 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3466 rate64 = tcp_compute_delivery_rate(tp); 3467 if (rate64) 3468 info->tcpi_delivery_rate = rate64; 3469 info->tcpi_delivered = tp->delivered; 3470 info->tcpi_delivered_ce = tp->delivered_ce; 3471 info->tcpi_bytes_sent = tp->bytes_sent; 3472 info->tcpi_bytes_retrans = tp->bytes_retrans; 3473 info->tcpi_dsack_dups = tp->dsack_dups; 3474 info->tcpi_reord_seen = tp->reord_seen; 3475 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3476 info->tcpi_snd_wnd = tp->snd_wnd; 3477 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3478 unlock_sock_fast(sk, slow); 3479 } 3480 EXPORT_SYMBOL_GPL(tcp_get_info); 3481 3482 static size_t tcp_opt_stats_get_size(void) 3483 { 3484 return 3485 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3486 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3487 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3488 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3489 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3490 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3491 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3492 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3493 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3494 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3495 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3496 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3497 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3498 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3499 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3500 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3501 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3502 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3503 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3504 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3505 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3506 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3507 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3508 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3509 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3510 0; 3511 } 3512 3513 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3514 const struct sk_buff *orig_skb) 3515 { 3516 const struct tcp_sock *tp = tcp_sk(sk); 3517 struct sk_buff *stats; 3518 struct tcp_info info; 3519 unsigned long rate; 3520 u64 rate64; 3521 3522 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3523 if (!stats) 3524 return NULL; 3525 3526 tcp_get_info_chrono_stats(tp, &info); 3527 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3528 info.tcpi_busy_time, TCP_NLA_PAD); 3529 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3530 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3531 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3532 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3533 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3534 tp->data_segs_out, TCP_NLA_PAD); 3535 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3536 tp->total_retrans, TCP_NLA_PAD); 3537 3538 rate = READ_ONCE(sk->sk_pacing_rate); 3539 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3540 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3541 3542 rate64 = tcp_compute_delivery_rate(tp); 3543 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3544 3545 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3546 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3547 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3548 3549 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3550 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3551 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3552 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3553 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3554 3555 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3556 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3557 3558 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3559 TCP_NLA_PAD); 3560 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3561 TCP_NLA_PAD); 3562 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3563 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3564 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3565 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3566 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3567 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3568 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3569 TCP_NLA_PAD); 3570 3571 return stats; 3572 } 3573 3574 static int do_tcp_getsockopt(struct sock *sk, int level, 3575 int optname, char __user *optval, int __user *optlen) 3576 { 3577 struct inet_connection_sock *icsk = inet_csk(sk); 3578 struct tcp_sock *tp = tcp_sk(sk); 3579 struct net *net = sock_net(sk); 3580 int val, len; 3581 3582 if (get_user(len, optlen)) 3583 return -EFAULT; 3584 3585 len = min_t(unsigned int, len, sizeof(int)); 3586 3587 if (len < 0) 3588 return -EINVAL; 3589 3590 switch (optname) { 3591 case TCP_MAXSEG: 3592 val = tp->mss_cache; 3593 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3594 val = tp->rx_opt.user_mss; 3595 if (tp->repair) 3596 val = tp->rx_opt.mss_clamp; 3597 break; 3598 case TCP_NODELAY: 3599 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3600 break; 3601 case TCP_CORK: 3602 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3603 break; 3604 case TCP_KEEPIDLE: 3605 val = keepalive_time_when(tp) / HZ; 3606 break; 3607 case TCP_KEEPINTVL: 3608 val = keepalive_intvl_when(tp) / HZ; 3609 break; 3610 case TCP_KEEPCNT: 3611 val = keepalive_probes(tp); 3612 break; 3613 case TCP_SYNCNT: 3614 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3615 break; 3616 case TCP_LINGER2: 3617 val = tp->linger2; 3618 if (val >= 0) 3619 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3620 break; 3621 case TCP_DEFER_ACCEPT: 3622 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3623 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3624 break; 3625 case TCP_WINDOW_CLAMP: 3626 val = tp->window_clamp; 3627 break; 3628 case TCP_INFO: { 3629 struct tcp_info info; 3630 3631 if (get_user(len, optlen)) 3632 return -EFAULT; 3633 3634 tcp_get_info(sk, &info); 3635 3636 len = min_t(unsigned int, len, sizeof(info)); 3637 if (put_user(len, optlen)) 3638 return -EFAULT; 3639 if (copy_to_user(optval, &info, len)) 3640 return -EFAULT; 3641 return 0; 3642 } 3643 case TCP_CC_INFO: { 3644 const struct tcp_congestion_ops *ca_ops; 3645 union tcp_cc_info info; 3646 size_t sz = 0; 3647 int attr; 3648 3649 if (get_user(len, optlen)) 3650 return -EFAULT; 3651 3652 ca_ops = icsk->icsk_ca_ops; 3653 if (ca_ops && ca_ops->get_info) 3654 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3655 3656 len = min_t(unsigned int, len, sz); 3657 if (put_user(len, optlen)) 3658 return -EFAULT; 3659 if (copy_to_user(optval, &info, len)) 3660 return -EFAULT; 3661 return 0; 3662 } 3663 case TCP_QUICKACK: 3664 val = !inet_csk_in_pingpong_mode(sk); 3665 break; 3666 3667 case TCP_CONGESTION: 3668 if (get_user(len, optlen)) 3669 return -EFAULT; 3670 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3671 if (put_user(len, optlen)) 3672 return -EFAULT; 3673 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3674 return -EFAULT; 3675 return 0; 3676 3677 case TCP_ULP: 3678 if (get_user(len, optlen)) 3679 return -EFAULT; 3680 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3681 if (!icsk->icsk_ulp_ops) { 3682 if (put_user(0, optlen)) 3683 return -EFAULT; 3684 return 0; 3685 } 3686 if (put_user(len, optlen)) 3687 return -EFAULT; 3688 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3689 return -EFAULT; 3690 return 0; 3691 3692 case TCP_FASTOPEN_KEY: { 3693 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 3694 unsigned int key_len; 3695 3696 if (get_user(len, optlen)) 3697 return -EFAULT; 3698 3699 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 3700 TCP_FASTOPEN_KEY_LENGTH; 3701 len = min_t(unsigned int, len, key_len); 3702 if (put_user(len, optlen)) 3703 return -EFAULT; 3704 if (copy_to_user(optval, key, len)) 3705 return -EFAULT; 3706 return 0; 3707 } 3708 case TCP_THIN_LINEAR_TIMEOUTS: 3709 val = tp->thin_lto; 3710 break; 3711 3712 case TCP_THIN_DUPACK: 3713 val = 0; 3714 break; 3715 3716 case TCP_REPAIR: 3717 val = tp->repair; 3718 break; 3719 3720 case TCP_REPAIR_QUEUE: 3721 if (tp->repair) 3722 val = tp->repair_queue; 3723 else 3724 return -EINVAL; 3725 break; 3726 3727 case TCP_REPAIR_WINDOW: { 3728 struct tcp_repair_window opt; 3729 3730 if (get_user(len, optlen)) 3731 return -EFAULT; 3732 3733 if (len != sizeof(opt)) 3734 return -EINVAL; 3735 3736 if (!tp->repair) 3737 return -EPERM; 3738 3739 opt.snd_wl1 = tp->snd_wl1; 3740 opt.snd_wnd = tp->snd_wnd; 3741 opt.max_window = tp->max_window; 3742 opt.rcv_wnd = tp->rcv_wnd; 3743 opt.rcv_wup = tp->rcv_wup; 3744 3745 if (copy_to_user(optval, &opt, len)) 3746 return -EFAULT; 3747 return 0; 3748 } 3749 case TCP_QUEUE_SEQ: 3750 if (tp->repair_queue == TCP_SEND_QUEUE) 3751 val = tp->write_seq; 3752 else if (tp->repair_queue == TCP_RECV_QUEUE) 3753 val = tp->rcv_nxt; 3754 else 3755 return -EINVAL; 3756 break; 3757 3758 case TCP_USER_TIMEOUT: 3759 val = icsk->icsk_user_timeout; 3760 break; 3761 3762 case TCP_FASTOPEN: 3763 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3764 break; 3765 3766 case TCP_FASTOPEN_CONNECT: 3767 val = tp->fastopen_connect; 3768 break; 3769 3770 case TCP_FASTOPEN_NO_COOKIE: 3771 val = tp->fastopen_no_cookie; 3772 break; 3773 3774 case TCP_TX_DELAY: 3775 val = tp->tcp_tx_delay; 3776 break; 3777 3778 case TCP_TIMESTAMP: 3779 val = tcp_time_stamp_raw() + tp->tsoffset; 3780 break; 3781 case TCP_NOTSENT_LOWAT: 3782 val = tp->notsent_lowat; 3783 break; 3784 case TCP_INQ: 3785 val = tp->recvmsg_inq; 3786 break; 3787 case TCP_SAVE_SYN: 3788 val = tp->save_syn; 3789 break; 3790 case TCP_SAVED_SYN: { 3791 if (get_user(len, optlen)) 3792 return -EFAULT; 3793 3794 lock_sock(sk); 3795 if (tp->saved_syn) { 3796 if (len < tcp_saved_syn_len(tp->saved_syn)) { 3797 if (put_user(tcp_saved_syn_len(tp->saved_syn), 3798 optlen)) { 3799 release_sock(sk); 3800 return -EFAULT; 3801 } 3802 release_sock(sk); 3803 return -EINVAL; 3804 } 3805 len = tcp_saved_syn_len(tp->saved_syn); 3806 if (put_user(len, optlen)) { 3807 release_sock(sk); 3808 return -EFAULT; 3809 } 3810 if (copy_to_user(optval, tp->saved_syn->data, len)) { 3811 release_sock(sk); 3812 return -EFAULT; 3813 } 3814 tcp_saved_syn_free(tp); 3815 release_sock(sk); 3816 } else { 3817 release_sock(sk); 3818 len = 0; 3819 if (put_user(len, optlen)) 3820 return -EFAULT; 3821 } 3822 return 0; 3823 } 3824 #ifdef CONFIG_MMU 3825 case TCP_ZEROCOPY_RECEIVE: { 3826 struct tcp_zerocopy_receive zc; 3827 int err; 3828 3829 if (get_user(len, optlen)) 3830 return -EFAULT; 3831 if (len < offsetofend(struct tcp_zerocopy_receive, length)) 3832 return -EINVAL; 3833 if (len > sizeof(zc)) { 3834 len = sizeof(zc); 3835 if (put_user(len, optlen)) 3836 return -EFAULT; 3837 } 3838 if (copy_from_user(&zc, optval, len)) 3839 return -EFAULT; 3840 lock_sock(sk); 3841 err = tcp_zerocopy_receive(sk, &zc); 3842 release_sock(sk); 3843 if (len == sizeof(zc)) 3844 goto zerocopy_rcv_sk_err; 3845 switch (len) { 3846 case offsetofend(struct tcp_zerocopy_receive, err): 3847 goto zerocopy_rcv_sk_err; 3848 case offsetofend(struct tcp_zerocopy_receive, inq): 3849 goto zerocopy_rcv_inq; 3850 case offsetofend(struct tcp_zerocopy_receive, length): 3851 default: 3852 goto zerocopy_rcv_out; 3853 } 3854 zerocopy_rcv_sk_err: 3855 if (!err) 3856 zc.err = sock_error(sk); 3857 zerocopy_rcv_inq: 3858 zc.inq = tcp_inq_hint(sk); 3859 zerocopy_rcv_out: 3860 if (!err && copy_to_user(optval, &zc, len)) 3861 err = -EFAULT; 3862 return err; 3863 } 3864 #endif 3865 default: 3866 return -ENOPROTOOPT; 3867 } 3868 3869 if (put_user(len, optlen)) 3870 return -EFAULT; 3871 if (copy_to_user(optval, &val, len)) 3872 return -EFAULT; 3873 return 0; 3874 } 3875 3876 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3877 int __user *optlen) 3878 { 3879 struct inet_connection_sock *icsk = inet_csk(sk); 3880 3881 if (level != SOL_TCP) 3882 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3883 optval, optlen); 3884 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3885 } 3886 EXPORT_SYMBOL(tcp_getsockopt); 3887 3888 #ifdef CONFIG_TCP_MD5SIG 3889 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3890 static DEFINE_MUTEX(tcp_md5sig_mutex); 3891 static bool tcp_md5sig_pool_populated = false; 3892 3893 static void __tcp_alloc_md5sig_pool(void) 3894 { 3895 struct crypto_ahash *hash; 3896 int cpu; 3897 3898 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3899 if (IS_ERR(hash)) 3900 return; 3901 3902 for_each_possible_cpu(cpu) { 3903 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3904 struct ahash_request *req; 3905 3906 if (!scratch) { 3907 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3908 sizeof(struct tcphdr), 3909 GFP_KERNEL, 3910 cpu_to_node(cpu)); 3911 if (!scratch) 3912 return; 3913 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3914 } 3915 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3916 continue; 3917 3918 req = ahash_request_alloc(hash, GFP_KERNEL); 3919 if (!req) 3920 return; 3921 3922 ahash_request_set_callback(req, 0, NULL, NULL); 3923 3924 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3925 } 3926 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3927 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3928 */ 3929 smp_wmb(); 3930 tcp_md5sig_pool_populated = true; 3931 } 3932 3933 bool tcp_alloc_md5sig_pool(void) 3934 { 3935 if (unlikely(!tcp_md5sig_pool_populated)) { 3936 mutex_lock(&tcp_md5sig_mutex); 3937 3938 if (!tcp_md5sig_pool_populated) { 3939 __tcp_alloc_md5sig_pool(); 3940 if (tcp_md5sig_pool_populated) 3941 static_branch_inc(&tcp_md5_needed); 3942 } 3943 3944 mutex_unlock(&tcp_md5sig_mutex); 3945 } 3946 return tcp_md5sig_pool_populated; 3947 } 3948 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3949 3950 3951 /** 3952 * tcp_get_md5sig_pool - get md5sig_pool for this user 3953 * 3954 * We use percpu structure, so if we succeed, we exit with preemption 3955 * and BH disabled, to make sure another thread or softirq handling 3956 * wont try to get same context. 3957 */ 3958 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3959 { 3960 local_bh_disable(); 3961 3962 if (tcp_md5sig_pool_populated) { 3963 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3964 smp_rmb(); 3965 return this_cpu_ptr(&tcp_md5sig_pool); 3966 } 3967 local_bh_enable(); 3968 return NULL; 3969 } 3970 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3971 3972 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3973 const struct sk_buff *skb, unsigned int header_len) 3974 { 3975 struct scatterlist sg; 3976 const struct tcphdr *tp = tcp_hdr(skb); 3977 struct ahash_request *req = hp->md5_req; 3978 unsigned int i; 3979 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3980 skb_headlen(skb) - header_len : 0; 3981 const struct skb_shared_info *shi = skb_shinfo(skb); 3982 struct sk_buff *frag_iter; 3983 3984 sg_init_table(&sg, 1); 3985 3986 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3987 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3988 if (crypto_ahash_update(req)) 3989 return 1; 3990 3991 for (i = 0; i < shi->nr_frags; ++i) { 3992 const skb_frag_t *f = &shi->frags[i]; 3993 unsigned int offset = skb_frag_off(f); 3994 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3995 3996 sg_set_page(&sg, page, skb_frag_size(f), 3997 offset_in_page(offset)); 3998 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3999 if (crypto_ahash_update(req)) 4000 return 1; 4001 } 4002 4003 skb_walk_frags(skb, frag_iter) 4004 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4005 return 1; 4006 4007 return 0; 4008 } 4009 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4010 4011 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4012 { 4013 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4014 struct scatterlist sg; 4015 4016 sg_init_one(&sg, key->key, keylen); 4017 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4018 4019 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4020 return data_race(crypto_ahash_update(hp->md5_req)); 4021 } 4022 EXPORT_SYMBOL(tcp_md5_hash_key); 4023 4024 #endif 4025 4026 void tcp_done(struct sock *sk) 4027 { 4028 struct request_sock *req; 4029 4030 /* We might be called with a new socket, after 4031 * inet_csk_prepare_forced_close() has been called 4032 * so we can not use lockdep_sock_is_held(sk) 4033 */ 4034 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4035 4036 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4037 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4038 4039 tcp_set_state(sk, TCP_CLOSE); 4040 tcp_clear_xmit_timers(sk); 4041 if (req) 4042 reqsk_fastopen_remove(sk, req, false); 4043 4044 sk->sk_shutdown = SHUTDOWN_MASK; 4045 4046 if (!sock_flag(sk, SOCK_DEAD)) 4047 sk->sk_state_change(sk); 4048 else 4049 inet_csk_destroy_sock(sk); 4050 } 4051 EXPORT_SYMBOL_GPL(tcp_done); 4052 4053 int tcp_abort(struct sock *sk, int err) 4054 { 4055 if (!sk_fullsock(sk)) { 4056 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4057 struct request_sock *req = inet_reqsk(sk); 4058 4059 local_bh_disable(); 4060 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4061 local_bh_enable(); 4062 return 0; 4063 } 4064 return -EOPNOTSUPP; 4065 } 4066 4067 /* Don't race with userspace socket closes such as tcp_close. */ 4068 lock_sock(sk); 4069 4070 if (sk->sk_state == TCP_LISTEN) { 4071 tcp_set_state(sk, TCP_CLOSE); 4072 inet_csk_listen_stop(sk); 4073 } 4074 4075 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4076 local_bh_disable(); 4077 bh_lock_sock(sk); 4078 4079 if (!sock_flag(sk, SOCK_DEAD)) { 4080 sk->sk_err = err; 4081 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4082 smp_wmb(); 4083 sk->sk_error_report(sk); 4084 if (tcp_need_reset(sk->sk_state)) 4085 tcp_send_active_reset(sk, GFP_ATOMIC); 4086 tcp_done(sk); 4087 } 4088 4089 bh_unlock_sock(sk); 4090 local_bh_enable(); 4091 tcp_write_queue_purge(sk); 4092 release_sock(sk); 4093 return 0; 4094 } 4095 EXPORT_SYMBOL_GPL(tcp_abort); 4096 4097 extern struct tcp_congestion_ops tcp_reno; 4098 4099 static __initdata unsigned long thash_entries; 4100 static int __init set_thash_entries(char *str) 4101 { 4102 ssize_t ret; 4103 4104 if (!str) 4105 return 0; 4106 4107 ret = kstrtoul(str, 0, &thash_entries); 4108 if (ret) 4109 return 0; 4110 4111 return 1; 4112 } 4113 __setup("thash_entries=", set_thash_entries); 4114 4115 static void __init tcp_init_mem(void) 4116 { 4117 unsigned long limit = nr_free_buffer_pages() / 16; 4118 4119 limit = max(limit, 128UL); 4120 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4121 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4122 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4123 } 4124 4125 void __init tcp_init(void) 4126 { 4127 int max_rshare, max_wshare, cnt; 4128 unsigned long limit; 4129 unsigned int i; 4130 4131 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4132 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4133 sizeof_field(struct sk_buff, cb)); 4134 4135 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4136 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 4137 inet_hashinfo_init(&tcp_hashinfo); 4138 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4139 thash_entries, 21, /* one slot per 2 MB*/ 4140 0, 64 * 1024); 4141 tcp_hashinfo.bind_bucket_cachep = 4142 kmem_cache_create("tcp_bind_bucket", 4143 sizeof(struct inet_bind_bucket), 0, 4144 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4145 4146 /* Size and allocate the main established and bind bucket 4147 * hash tables. 4148 * 4149 * The methodology is similar to that of the buffer cache. 4150 */ 4151 tcp_hashinfo.ehash = 4152 alloc_large_system_hash("TCP established", 4153 sizeof(struct inet_ehash_bucket), 4154 thash_entries, 4155 17, /* one slot per 128 KB of memory */ 4156 0, 4157 NULL, 4158 &tcp_hashinfo.ehash_mask, 4159 0, 4160 thash_entries ? 0 : 512 * 1024); 4161 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4162 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4163 4164 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4165 panic("TCP: failed to alloc ehash_locks"); 4166 tcp_hashinfo.bhash = 4167 alloc_large_system_hash("TCP bind", 4168 sizeof(struct inet_bind_hashbucket), 4169 tcp_hashinfo.ehash_mask + 1, 4170 17, /* one slot per 128 KB of memory */ 4171 0, 4172 &tcp_hashinfo.bhash_size, 4173 NULL, 4174 0, 4175 64 * 1024); 4176 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4177 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4178 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4179 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4180 } 4181 4182 4183 cnt = tcp_hashinfo.ehash_mask + 1; 4184 sysctl_tcp_max_orphans = cnt / 2; 4185 4186 tcp_init_mem(); 4187 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4188 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4189 max_wshare = min(4UL*1024*1024, limit); 4190 max_rshare = min(6UL*1024*1024, limit); 4191 4192 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4193 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4194 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4195 4196 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4197 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4198 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4199 4200 pr_info("Hash tables configured (established %u bind %u)\n", 4201 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4202 4203 tcp_v4_init(); 4204 tcp_metrics_init(); 4205 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4206 tcp_tasklet_init(); 4207 mptcp_init(); 4208 } 4209