1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/swap.h> 264 #include <linux/cache.h> 265 #include <linux/err.h> 266 #include <linux/time.h> 267 #include <linux/slab.h> 268 #include <linux/errqueue.h> 269 #include <linux/static_key.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 struct percpu_counter tcp_orphan_count; 284 EXPORT_SYMBOL_GPL(tcp_orphan_count); 285 286 long sysctl_tcp_mem[3] __read_mostly; 287 EXPORT_SYMBOL(sysctl_tcp_mem); 288 289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 290 EXPORT_SYMBOL(tcp_memory_allocated); 291 292 #if IS_ENABLED(CONFIG_SMC) 293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 294 EXPORT_SYMBOL(tcp_have_smc); 295 #endif 296 297 /* 298 * Current number of TCP sockets. 299 */ 300 struct percpu_counter tcp_sockets_allocated; 301 EXPORT_SYMBOL(tcp_sockets_allocated); 302 303 /* 304 * TCP splice context 305 */ 306 struct tcp_splice_state { 307 struct pipe_inode_info *pipe; 308 size_t len; 309 unsigned int flags; 310 }; 311 312 /* 313 * Pressure flag: try to collapse. 314 * Technical note: it is used by multiple contexts non atomically. 315 * All the __sk_mem_schedule() is of this nature: accounting 316 * is strict, actions are advisory and have some latency. 317 */ 318 unsigned long tcp_memory_pressure __read_mostly; 319 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 320 321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key); 322 EXPORT_SYMBOL(tcp_rx_skb_cache_key); 323 324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key); 325 326 void tcp_enter_memory_pressure(struct sock *sk) 327 { 328 unsigned long val; 329 330 if (READ_ONCE(tcp_memory_pressure)) 331 return; 332 val = jiffies; 333 334 if (!val) 335 val--; 336 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 338 } 339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 340 341 void tcp_leave_memory_pressure(struct sock *sk) 342 { 343 unsigned long val; 344 345 if (!READ_ONCE(tcp_memory_pressure)) 346 return; 347 val = xchg(&tcp_memory_pressure, 0); 348 if (val) 349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 350 jiffies_to_msecs(jiffies - val)); 351 } 352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 353 354 /* Convert seconds to retransmits based on initial and max timeout */ 355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 356 { 357 u8 res = 0; 358 359 if (seconds > 0) { 360 int period = timeout; 361 362 res = 1; 363 while (seconds > period && res < 255) { 364 res++; 365 timeout <<= 1; 366 if (timeout > rto_max) 367 timeout = rto_max; 368 period += timeout; 369 } 370 } 371 return res; 372 } 373 374 /* Convert retransmits to seconds based on initial and max timeout */ 375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 376 { 377 int period = 0; 378 379 if (retrans > 0) { 380 period = timeout; 381 while (--retrans) { 382 timeout <<= 1; 383 if (timeout > rto_max) 384 timeout = rto_max; 385 period += timeout; 386 } 387 } 388 return period; 389 } 390 391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 392 { 393 u32 rate = READ_ONCE(tp->rate_delivered); 394 u32 intv = READ_ONCE(tp->rate_interval_us); 395 u64 rate64 = 0; 396 397 if (rate && intv) { 398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 399 do_div(rate64, intv); 400 } 401 return rate64; 402 } 403 404 /* Address-family independent initialization for a tcp_sock. 405 * 406 * NOTE: A lot of things set to zero explicitly by call to 407 * sk_alloc() so need not be done here. 408 */ 409 void tcp_init_sock(struct sock *sk) 410 { 411 struct inet_connection_sock *icsk = inet_csk(sk); 412 struct tcp_sock *tp = tcp_sk(sk); 413 414 tp->out_of_order_queue = RB_ROOT; 415 sk->tcp_rtx_queue = RB_ROOT; 416 tcp_init_xmit_timers(sk); 417 INIT_LIST_HEAD(&tp->tsq_node); 418 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 419 420 icsk->icsk_rto = TCP_TIMEOUT_INIT; 421 icsk->icsk_rto_min = TCP_RTO_MIN; 422 icsk->icsk_delack_max = TCP_DELACK_MAX; 423 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 424 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 425 426 /* So many TCP implementations out there (incorrectly) count the 427 * initial SYN frame in their delayed-ACK and congestion control 428 * algorithms that we must have the following bandaid to talk 429 * efficiently to them. -DaveM 430 */ 431 tp->snd_cwnd = TCP_INIT_CWND; 432 433 /* There's a bubble in the pipe until at least the first ACK. */ 434 tp->app_limited = ~0U; 435 436 /* See draft-stevens-tcpca-spec-01 for discussion of the 437 * initialization of these values. 438 */ 439 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 440 tp->snd_cwnd_clamp = ~0; 441 tp->mss_cache = TCP_MSS_DEFAULT; 442 443 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 444 tcp_assign_congestion_control(sk); 445 446 tp->tsoffset = 0; 447 tp->rack.reo_wnd_steps = 1; 448 449 sk->sk_write_space = sk_stream_write_space; 450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 451 452 icsk->icsk_sync_mss = tcp_sync_mss; 453 454 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 455 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 456 457 sk_sockets_allocated_inc(sk); 458 sk->sk_route_forced_caps = NETIF_F_GSO; 459 } 460 EXPORT_SYMBOL(tcp_init_sock); 461 462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 463 { 464 struct sk_buff *skb = tcp_write_queue_tail(sk); 465 466 if (tsflags && skb) { 467 struct skb_shared_info *shinfo = skb_shinfo(skb); 468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 469 470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 471 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 472 tcb->txstamp_ack = 1; 473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 475 } 476 } 477 478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 479 int target, struct sock *sk) 480 { 481 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 482 483 if (avail > 0) { 484 if (avail >= target) 485 return true; 486 if (tcp_rmem_pressure(sk)) 487 return true; 488 } 489 if (sk->sk_prot->stream_memory_read) 490 return sk->sk_prot->stream_memory_read(sk); 491 return false; 492 } 493 494 /* 495 * Wait for a TCP event. 496 * 497 * Note that we don't need to lock the socket, as the upper poll layers 498 * take care of normal races (between the test and the event) and we don't 499 * go look at any of the socket buffers directly. 500 */ 501 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 502 { 503 __poll_t mask; 504 struct sock *sk = sock->sk; 505 const struct tcp_sock *tp = tcp_sk(sk); 506 int state; 507 508 sock_poll_wait(file, sock, wait); 509 510 state = inet_sk_state_load(sk); 511 if (state == TCP_LISTEN) 512 return inet_csk_listen_poll(sk); 513 514 /* Socket is not locked. We are protected from async events 515 * by poll logic and correct handling of state changes 516 * made by other threads is impossible in any case. 517 */ 518 519 mask = 0; 520 521 /* 522 * EPOLLHUP is certainly not done right. But poll() doesn't 523 * have a notion of HUP in just one direction, and for a 524 * socket the read side is more interesting. 525 * 526 * Some poll() documentation says that EPOLLHUP is incompatible 527 * with the EPOLLOUT/POLLWR flags, so somebody should check this 528 * all. But careful, it tends to be safer to return too many 529 * bits than too few, and you can easily break real applications 530 * if you don't tell them that something has hung up! 531 * 532 * Check-me. 533 * 534 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 535 * our fs/select.c). It means that after we received EOF, 536 * poll always returns immediately, making impossible poll() on write() 537 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 538 * if and only if shutdown has been made in both directions. 539 * Actually, it is interesting to look how Solaris and DUX 540 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 541 * then we could set it on SND_SHUTDOWN. BTW examples given 542 * in Stevens' books assume exactly this behaviour, it explains 543 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 544 * 545 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 546 * blocking on fresh not-connected or disconnected socket. --ANK 547 */ 548 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 549 mask |= EPOLLHUP; 550 if (sk->sk_shutdown & RCV_SHUTDOWN) 551 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 552 553 /* Connected or passive Fast Open socket? */ 554 if (state != TCP_SYN_SENT && 555 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 556 int target = sock_rcvlowat(sk, 0, INT_MAX); 557 558 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE) && 560 tp->urg_data) 561 target++; 562 563 if (tcp_stream_is_readable(tp, target, sk)) 564 mask |= EPOLLIN | EPOLLRDNORM; 565 566 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 567 if (sk_stream_is_writeable(sk)) { 568 mask |= EPOLLOUT | EPOLLWRNORM; 569 } else { /* send SIGIO later */ 570 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 571 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 572 573 /* Race breaker. If space is freed after 574 * wspace test but before the flags are set, 575 * IO signal will be lost. Memory barrier 576 * pairs with the input side. 577 */ 578 smp_mb__after_atomic(); 579 if (sk_stream_is_writeable(sk)) 580 mask |= EPOLLOUT | EPOLLWRNORM; 581 } 582 } else 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 585 if (tp->urg_data & TCP_URG_VALID) 586 mask |= EPOLLPRI; 587 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 597 mask |= EPOLLERR; 598 599 return mask; 600 } 601 EXPORT_SYMBOL(tcp_poll); 602 603 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 int answ; 607 bool slow; 608 609 switch (cmd) { 610 case SIOCINQ: 611 if (sk->sk_state == TCP_LISTEN) 612 return -EINVAL; 613 614 slow = lock_sock_fast(sk); 615 answ = tcp_inq(sk); 616 unlock_sock_fast(sk, slow); 617 break; 618 case SIOCATMARK: 619 answ = tp->urg_data && 620 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 621 break; 622 case SIOCOUTQ: 623 if (sk->sk_state == TCP_LISTEN) 624 return -EINVAL; 625 626 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 627 answ = 0; 628 else 629 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 630 break; 631 case SIOCOUTQNSD: 632 if (sk->sk_state == TCP_LISTEN) 633 return -EINVAL; 634 635 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 636 answ = 0; 637 else 638 answ = READ_ONCE(tp->write_seq) - 639 READ_ONCE(tp->snd_nxt); 640 break; 641 default: 642 return -ENOIOCTLCMD; 643 } 644 645 return put_user(answ, (int __user *)arg); 646 } 647 EXPORT_SYMBOL(tcp_ioctl); 648 649 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 650 { 651 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 652 tp->pushed_seq = tp->write_seq; 653 } 654 655 static inline bool forced_push(const struct tcp_sock *tp) 656 { 657 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 658 } 659 660 static void skb_entail(struct sock *sk, struct sk_buff *skb) 661 { 662 struct tcp_sock *tp = tcp_sk(sk); 663 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 664 665 skb->csum = 0; 666 tcb->seq = tcb->end_seq = tp->write_seq; 667 tcb->tcp_flags = TCPHDR_ACK; 668 tcb->sacked = 0; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 702 } 703 704 void tcp_push(struct sock *sk, int flags, int mss_now, 705 int nonagle, int size_goal) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 struct sk_buff *skb; 709 710 skb = tcp_write_queue_tail(sk); 711 if (!skb) 712 return; 713 if (!(flags & MSG_MORE) || forced_push(tp)) 714 tcp_mark_push(tp, skb); 715 716 tcp_mark_urg(tp, flags); 717 718 if (tcp_should_autocork(sk, skb, size_goal)) { 719 720 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 721 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 723 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 724 } 725 /* It is possible TX completion already happened 726 * before we set TSQ_THROTTLED. 727 */ 728 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 729 return; 730 } 731 732 if (flags & MSG_MORE) 733 nonagle = TCP_NAGLE_CORK; 734 735 __tcp_push_pending_frames(sk, mss_now, nonagle); 736 } 737 738 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 739 unsigned int offset, size_t len) 740 { 741 struct tcp_splice_state *tss = rd_desc->arg.data; 742 int ret; 743 744 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 745 min(rd_desc->count, len), tss->flags); 746 if (ret > 0) 747 rd_desc->count -= ret; 748 return ret; 749 } 750 751 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 752 { 753 /* Store TCP splice context information in read_descriptor_t. */ 754 read_descriptor_t rd_desc = { 755 .arg.data = tss, 756 .count = tss->len, 757 }; 758 759 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 760 } 761 762 /** 763 * tcp_splice_read - splice data from TCP socket to a pipe 764 * @sock: socket to splice from 765 * @ppos: position (not valid) 766 * @pipe: pipe to splice to 767 * @len: number of bytes to splice 768 * @flags: splice modifier flags 769 * 770 * Description: 771 * Will read pages from given socket and fill them into a pipe. 772 * 773 **/ 774 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct sock *sk = sock->sk; 779 struct tcp_splice_state tss = { 780 .pipe = pipe, 781 .len = len, 782 .flags = flags, 783 }; 784 long timeo; 785 ssize_t spliced; 786 int ret; 787 788 sock_rps_record_flow(sk); 789 /* 790 * We can't seek on a socket input 791 */ 792 if (unlikely(*ppos)) 793 return -ESPIPE; 794 795 ret = spliced = 0; 796 797 lock_sock(sk); 798 799 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 800 while (tss.len) { 801 ret = __tcp_splice_read(sk, &tss); 802 if (ret < 0) 803 break; 804 else if (!ret) { 805 if (spliced) 806 break; 807 if (sock_flag(sk, SOCK_DONE)) 808 break; 809 if (sk->sk_err) { 810 ret = sock_error(sk); 811 break; 812 } 813 if (sk->sk_shutdown & RCV_SHUTDOWN) 814 break; 815 if (sk->sk_state == TCP_CLOSE) { 816 /* 817 * This occurs when user tries to read 818 * from never connected socket. 819 */ 820 ret = -ENOTCONN; 821 break; 822 } 823 if (!timeo) { 824 ret = -EAGAIN; 825 break; 826 } 827 /* if __tcp_splice_read() got nothing while we have 828 * an skb in receive queue, we do not want to loop. 829 * This might happen with URG data. 830 */ 831 if (!skb_queue_empty(&sk->sk_receive_queue)) 832 break; 833 sk_wait_data(sk, &timeo, NULL); 834 if (signal_pending(current)) { 835 ret = sock_intr_errno(timeo); 836 break; 837 } 838 continue; 839 } 840 tss.len -= ret; 841 spliced += ret; 842 843 if (!timeo) 844 break; 845 release_sock(sk); 846 lock_sock(sk); 847 848 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 849 (sk->sk_shutdown & RCV_SHUTDOWN) || 850 signal_pending(current)) 851 break; 852 } 853 854 release_sock(sk); 855 856 if (spliced) 857 return spliced; 858 859 return ret; 860 } 861 EXPORT_SYMBOL(tcp_splice_read); 862 863 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 864 bool force_schedule) 865 { 866 struct sk_buff *skb; 867 868 if (likely(!size)) { 869 skb = sk->sk_tx_skb_cache; 870 if (skb) { 871 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 872 sk->sk_tx_skb_cache = NULL; 873 pskb_trim(skb, 0); 874 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 875 skb_shinfo(skb)->tx_flags = 0; 876 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb)); 877 return skb; 878 } 879 } 880 /* The TCP header must be at least 32-bit aligned. */ 881 size = ALIGN(size, 4); 882 883 if (unlikely(tcp_under_memory_pressure(sk))) 884 sk_mem_reclaim_partial(sk); 885 886 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 887 if (likely(skb)) { 888 bool mem_scheduled; 889 890 if (force_schedule) { 891 mem_scheduled = true; 892 sk_forced_mem_schedule(sk, skb->truesize); 893 } else { 894 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 895 } 896 if (likely(mem_scheduled)) { 897 skb_reserve(skb, sk->sk_prot->max_header); 898 /* 899 * Make sure that we have exactly size bytes 900 * available to the caller, no more, no less. 901 */ 902 skb->reserved_tailroom = skb->end - skb->tail - size; 903 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 904 return skb; 905 } 906 __kfree_skb(skb); 907 } else { 908 sk->sk_prot->enter_memory_pressure(sk); 909 sk_stream_moderate_sndbuf(sk); 910 } 911 return NULL; 912 } 913 914 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 915 int large_allowed) 916 { 917 struct tcp_sock *tp = tcp_sk(sk); 918 u32 new_size_goal, size_goal; 919 920 if (!large_allowed) 921 return mss_now; 922 923 /* Note : tcp_tso_autosize() will eventually split this later */ 924 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 925 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 926 927 /* We try hard to avoid divides here */ 928 size_goal = tp->gso_segs * mss_now; 929 if (unlikely(new_size_goal < size_goal || 930 new_size_goal >= size_goal + mss_now)) { 931 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 932 sk->sk_gso_max_segs); 933 size_goal = tp->gso_segs * mss_now; 934 } 935 936 return max(size_goal, mss_now); 937 } 938 939 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 940 { 941 int mss_now; 942 943 mss_now = tcp_current_mss(sk); 944 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 945 946 return mss_now; 947 } 948 949 /* In some cases, both sendpage() and sendmsg() could have added 950 * an skb to the write queue, but failed adding payload on it. 951 * We need to remove it to consume less memory, but more 952 * importantly be able to generate EPOLLOUT for Edge Trigger epoll() 953 * users. 954 */ 955 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb) 956 { 957 if (skb && !skb->len) { 958 tcp_unlink_write_queue(skb, sk); 959 if (tcp_write_queue_empty(sk)) 960 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 961 sk_wmem_free_skb(sk, skb); 962 } 963 } 964 965 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 966 size_t size, int flags) 967 { 968 struct tcp_sock *tp = tcp_sk(sk); 969 int mss_now, size_goal; 970 int err; 971 ssize_t copied; 972 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 973 974 if (IS_ENABLED(CONFIG_DEBUG_VM) && 975 WARN_ONCE(PageSlab(page), "page must not be a Slab one")) 976 return -EINVAL; 977 978 /* Wait for a connection to finish. One exception is TCP Fast Open 979 * (passive side) where data is allowed to be sent before a connection 980 * is fully established. 981 */ 982 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 983 !tcp_passive_fastopen(sk)) { 984 err = sk_stream_wait_connect(sk, &timeo); 985 if (err != 0) 986 goto out_err; 987 } 988 989 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 990 991 mss_now = tcp_send_mss(sk, &size_goal, flags); 992 copied = 0; 993 994 err = -EPIPE; 995 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 996 goto out_err; 997 998 while (size > 0) { 999 struct sk_buff *skb = tcp_write_queue_tail(sk); 1000 int copy, i; 1001 bool can_coalesce; 1002 1003 if (!skb || (copy = size_goal - skb->len) <= 0 || 1004 !tcp_skb_can_collapse_to(skb)) { 1005 new_segment: 1006 if (!sk_stream_memory_free(sk)) 1007 goto wait_for_sndbuf; 1008 1009 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1010 tcp_rtx_and_write_queues_empty(sk)); 1011 if (!skb) 1012 goto wait_for_memory; 1013 1014 #ifdef CONFIG_TLS_DEVICE 1015 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1016 #endif 1017 skb_entail(sk, skb); 1018 copy = size_goal; 1019 } 1020 1021 if (copy > size) 1022 copy = size; 1023 1024 i = skb_shinfo(skb)->nr_frags; 1025 can_coalesce = skb_can_coalesce(skb, i, page, offset); 1026 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1027 tcp_mark_push(tp, skb); 1028 goto new_segment; 1029 } 1030 if (!sk_wmem_schedule(sk, copy)) 1031 goto wait_for_memory; 1032 1033 if (can_coalesce) { 1034 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1035 } else { 1036 get_page(page); 1037 skb_fill_page_desc(skb, i, page, offset, copy); 1038 } 1039 1040 if (!(flags & MSG_NO_SHARED_FRAGS)) 1041 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1042 1043 skb->len += copy; 1044 skb->data_len += copy; 1045 skb->truesize += copy; 1046 sk_wmem_queued_add(sk, copy); 1047 sk_mem_charge(sk, copy); 1048 skb->ip_summed = CHECKSUM_PARTIAL; 1049 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1050 TCP_SKB_CB(skb)->end_seq += copy; 1051 tcp_skb_pcount_set(skb, 0); 1052 1053 if (!copied) 1054 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1055 1056 copied += copy; 1057 offset += copy; 1058 size -= copy; 1059 if (!size) 1060 goto out; 1061 1062 if (skb->len < size_goal || (flags & MSG_OOB)) 1063 continue; 1064 1065 if (forced_push(tp)) { 1066 tcp_mark_push(tp, skb); 1067 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1068 } else if (skb == tcp_send_head(sk)) 1069 tcp_push_one(sk, mss_now); 1070 continue; 1071 1072 wait_for_sndbuf: 1073 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1074 wait_for_memory: 1075 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1076 TCP_NAGLE_PUSH, size_goal); 1077 1078 err = sk_stream_wait_memory(sk, &timeo); 1079 if (err != 0) 1080 goto do_error; 1081 1082 mss_now = tcp_send_mss(sk, &size_goal, flags); 1083 } 1084 1085 out: 1086 if (copied) { 1087 tcp_tx_timestamp(sk, sk->sk_tsflags); 1088 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1089 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1090 } 1091 return copied; 1092 1093 do_error: 1094 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk)); 1095 if (copied) 1096 goto out; 1097 out_err: 1098 /* make sure we wake any epoll edge trigger waiter */ 1099 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1100 sk->sk_write_space(sk); 1101 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1102 } 1103 return sk_stream_error(sk, flags, err); 1104 } 1105 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1106 1107 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1108 size_t size, int flags) 1109 { 1110 if (!(sk->sk_route_caps & NETIF_F_SG)) 1111 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1112 1113 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1114 1115 return do_tcp_sendpages(sk, page, offset, size, flags); 1116 } 1117 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1118 1119 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1120 size_t size, int flags) 1121 { 1122 int ret; 1123 1124 lock_sock(sk); 1125 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1126 release_sock(sk); 1127 1128 return ret; 1129 } 1130 EXPORT_SYMBOL(tcp_sendpage); 1131 1132 void tcp_free_fastopen_req(struct tcp_sock *tp) 1133 { 1134 if (tp->fastopen_req) { 1135 kfree(tp->fastopen_req); 1136 tp->fastopen_req = NULL; 1137 } 1138 } 1139 1140 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1141 int *copied, size_t size, 1142 struct ubuf_info *uarg) 1143 { 1144 struct tcp_sock *tp = tcp_sk(sk); 1145 struct inet_sock *inet = inet_sk(sk); 1146 struct sockaddr *uaddr = msg->msg_name; 1147 int err, flags; 1148 1149 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1150 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1151 uaddr->sa_family == AF_UNSPEC)) 1152 return -EOPNOTSUPP; 1153 if (tp->fastopen_req) 1154 return -EALREADY; /* Another Fast Open is in progress */ 1155 1156 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1157 sk->sk_allocation); 1158 if (unlikely(!tp->fastopen_req)) 1159 return -ENOBUFS; 1160 tp->fastopen_req->data = msg; 1161 tp->fastopen_req->size = size; 1162 tp->fastopen_req->uarg = uarg; 1163 1164 if (inet->defer_connect) { 1165 err = tcp_connect(sk); 1166 /* Same failure procedure as in tcp_v4/6_connect */ 1167 if (err) { 1168 tcp_set_state(sk, TCP_CLOSE); 1169 inet->inet_dport = 0; 1170 sk->sk_route_caps = 0; 1171 } 1172 } 1173 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1174 err = __inet_stream_connect(sk->sk_socket, uaddr, 1175 msg->msg_namelen, flags, 1); 1176 /* fastopen_req could already be freed in __inet_stream_connect 1177 * if the connection times out or gets rst 1178 */ 1179 if (tp->fastopen_req) { 1180 *copied = tp->fastopen_req->copied; 1181 tcp_free_fastopen_req(tp); 1182 inet->defer_connect = 0; 1183 } 1184 return err; 1185 } 1186 1187 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1188 { 1189 struct tcp_sock *tp = tcp_sk(sk); 1190 struct ubuf_info *uarg = NULL; 1191 struct sk_buff *skb; 1192 struct sockcm_cookie sockc; 1193 int flags, err, copied = 0; 1194 int mss_now = 0, size_goal, copied_syn = 0; 1195 int process_backlog = 0; 1196 bool zc = false; 1197 long timeo; 1198 1199 flags = msg->msg_flags; 1200 1201 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) { 1202 skb = tcp_write_queue_tail(sk); 1203 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1204 if (!uarg) { 1205 err = -ENOBUFS; 1206 goto out_err; 1207 } 1208 1209 zc = sk->sk_route_caps & NETIF_F_SG; 1210 if (!zc) 1211 uarg->zerocopy = 0; 1212 } 1213 1214 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1215 !tp->repair) { 1216 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1217 if (err == -EINPROGRESS && copied_syn > 0) 1218 goto out; 1219 else if (err) 1220 goto out_err; 1221 } 1222 1223 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1224 1225 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1226 1227 /* Wait for a connection to finish. One exception is TCP Fast Open 1228 * (passive side) where data is allowed to be sent before a connection 1229 * is fully established. 1230 */ 1231 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1232 !tcp_passive_fastopen(sk)) { 1233 err = sk_stream_wait_connect(sk, &timeo); 1234 if (err != 0) 1235 goto do_error; 1236 } 1237 1238 if (unlikely(tp->repair)) { 1239 if (tp->repair_queue == TCP_RECV_QUEUE) { 1240 copied = tcp_send_rcvq(sk, msg, size); 1241 goto out_nopush; 1242 } 1243 1244 err = -EINVAL; 1245 if (tp->repair_queue == TCP_NO_QUEUE) 1246 goto out_err; 1247 1248 /* 'common' sending to sendq */ 1249 } 1250 1251 sockcm_init(&sockc, sk); 1252 if (msg->msg_controllen) { 1253 err = sock_cmsg_send(sk, msg, &sockc); 1254 if (unlikely(err)) { 1255 err = -EINVAL; 1256 goto out_err; 1257 } 1258 } 1259 1260 /* This should be in poll */ 1261 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1262 1263 /* Ok commence sending. */ 1264 copied = 0; 1265 1266 restart: 1267 mss_now = tcp_send_mss(sk, &size_goal, flags); 1268 1269 err = -EPIPE; 1270 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1271 goto do_error; 1272 1273 while (msg_data_left(msg)) { 1274 int copy = 0; 1275 1276 skb = tcp_write_queue_tail(sk); 1277 if (skb) 1278 copy = size_goal - skb->len; 1279 1280 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1281 bool first_skb; 1282 1283 new_segment: 1284 if (!sk_stream_memory_free(sk)) 1285 goto wait_for_sndbuf; 1286 1287 if (unlikely(process_backlog >= 16)) { 1288 process_backlog = 0; 1289 if (sk_flush_backlog(sk)) 1290 goto restart; 1291 } 1292 first_skb = tcp_rtx_and_write_queues_empty(sk); 1293 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 1294 first_skb); 1295 if (!skb) 1296 goto wait_for_memory; 1297 1298 process_backlog++; 1299 skb->ip_summed = CHECKSUM_PARTIAL; 1300 1301 skb_entail(sk, skb); 1302 copy = size_goal; 1303 1304 /* All packets are restored as if they have 1305 * already been sent. skb_mstamp_ns isn't set to 1306 * avoid wrong rtt estimation. 1307 */ 1308 if (tp->repair) 1309 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1310 } 1311 1312 /* Try to append data to the end of skb. */ 1313 if (copy > msg_data_left(msg)) 1314 copy = msg_data_left(msg); 1315 1316 /* Where to copy to? */ 1317 if (skb_availroom(skb) > 0 && !zc) { 1318 /* We have some space in skb head. Superb! */ 1319 copy = min_t(int, copy, skb_availroom(skb)); 1320 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1321 if (err) 1322 goto do_fault; 1323 } else if (!zc) { 1324 bool merge = true; 1325 int i = skb_shinfo(skb)->nr_frags; 1326 struct page_frag *pfrag = sk_page_frag(sk); 1327 1328 if (!sk_page_frag_refill(sk, pfrag)) 1329 goto wait_for_memory; 1330 1331 if (!skb_can_coalesce(skb, i, pfrag->page, 1332 pfrag->offset)) { 1333 if (i >= sysctl_max_skb_frags) { 1334 tcp_mark_push(tp, skb); 1335 goto new_segment; 1336 } 1337 merge = false; 1338 } 1339 1340 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1341 1342 if (!sk_wmem_schedule(sk, copy)) 1343 goto wait_for_memory; 1344 1345 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1346 pfrag->page, 1347 pfrag->offset, 1348 copy); 1349 if (err) 1350 goto do_error; 1351 1352 /* Update the skb. */ 1353 if (merge) { 1354 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1355 } else { 1356 skb_fill_page_desc(skb, i, pfrag->page, 1357 pfrag->offset, copy); 1358 page_ref_inc(pfrag->page); 1359 } 1360 pfrag->offset += copy; 1361 } else { 1362 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1363 if (err == -EMSGSIZE || err == -EEXIST) { 1364 tcp_mark_push(tp, skb); 1365 goto new_segment; 1366 } 1367 if (err < 0) 1368 goto do_error; 1369 copy = err; 1370 } 1371 1372 if (!copied) 1373 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1374 1375 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 copied += copy; 1380 if (!msg_data_left(msg)) { 1381 if (unlikely(flags & MSG_EOR)) 1382 TCP_SKB_CB(skb)->eor = 1; 1383 goto out; 1384 } 1385 1386 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1387 continue; 1388 1389 if (forced_push(tp)) { 1390 tcp_mark_push(tp, skb); 1391 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1392 } else if (skb == tcp_send_head(sk)) 1393 tcp_push_one(sk, mss_now); 1394 continue; 1395 1396 wait_for_sndbuf: 1397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1398 wait_for_memory: 1399 if (copied) 1400 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1401 TCP_NAGLE_PUSH, size_goal); 1402 1403 err = sk_stream_wait_memory(sk, &timeo); 1404 if (err != 0) 1405 goto do_error; 1406 1407 mss_now = tcp_send_mss(sk, &size_goal, flags); 1408 } 1409 1410 out: 1411 if (copied) { 1412 tcp_tx_timestamp(sk, sockc.tsflags); 1413 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1414 } 1415 out_nopush: 1416 sock_zerocopy_put(uarg); 1417 return copied + copied_syn; 1418 1419 do_error: 1420 skb = tcp_write_queue_tail(sk); 1421 do_fault: 1422 tcp_remove_empty_skb(sk, skb); 1423 1424 if (copied + copied_syn) 1425 goto out; 1426 out_err: 1427 sock_zerocopy_put_abort(uarg, true); 1428 err = sk_stream_error(sk, flags, err); 1429 /* make sure we wake any epoll edge trigger waiter */ 1430 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1431 sk->sk_write_space(sk); 1432 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1433 } 1434 return err; 1435 } 1436 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1437 1438 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1439 { 1440 int ret; 1441 1442 lock_sock(sk); 1443 ret = tcp_sendmsg_locked(sk, msg, size); 1444 release_sock(sk); 1445 1446 return ret; 1447 } 1448 EXPORT_SYMBOL(tcp_sendmsg); 1449 1450 /* 1451 * Handle reading urgent data. BSD has very simple semantics for 1452 * this, no blocking and very strange errors 8) 1453 */ 1454 1455 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1456 { 1457 struct tcp_sock *tp = tcp_sk(sk); 1458 1459 /* No URG data to read. */ 1460 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1461 tp->urg_data == TCP_URG_READ) 1462 return -EINVAL; /* Yes this is right ! */ 1463 1464 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1465 return -ENOTCONN; 1466 1467 if (tp->urg_data & TCP_URG_VALID) { 1468 int err = 0; 1469 char c = tp->urg_data; 1470 1471 if (!(flags & MSG_PEEK)) 1472 tp->urg_data = TCP_URG_READ; 1473 1474 /* Read urgent data. */ 1475 msg->msg_flags |= MSG_OOB; 1476 1477 if (len > 0) { 1478 if (!(flags & MSG_TRUNC)) 1479 err = memcpy_to_msg(msg, &c, 1); 1480 len = 1; 1481 } else 1482 msg->msg_flags |= MSG_TRUNC; 1483 1484 return err ? -EFAULT : len; 1485 } 1486 1487 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1488 return 0; 1489 1490 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1491 * the available implementations agree in this case: 1492 * this call should never block, independent of the 1493 * blocking state of the socket. 1494 * Mike <pall@rz.uni-karlsruhe.de> 1495 */ 1496 return -EAGAIN; 1497 } 1498 1499 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1500 { 1501 struct sk_buff *skb; 1502 int copied = 0, err = 0; 1503 1504 /* XXX -- need to support SO_PEEK_OFF */ 1505 1506 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1508 if (err) 1509 return err; 1510 copied += skb->len; 1511 } 1512 1513 skb_queue_walk(&sk->sk_write_queue, skb) { 1514 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1515 if (err) 1516 break; 1517 1518 copied += skb->len; 1519 } 1520 1521 return err ?: copied; 1522 } 1523 1524 /* Clean up the receive buffer for full frames taken by the user, 1525 * then send an ACK if necessary. COPIED is the number of bytes 1526 * tcp_recvmsg has given to the user so far, it speeds up the 1527 * calculation of whether or not we must ACK for the sake of 1528 * a window update. 1529 */ 1530 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1531 { 1532 struct tcp_sock *tp = tcp_sk(sk); 1533 bool time_to_ack = false; 1534 1535 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1536 1537 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1538 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1539 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1540 1541 if (inet_csk_ack_scheduled(sk)) { 1542 const struct inet_connection_sock *icsk = inet_csk(sk); 1543 /* Delayed ACKs frequently hit locked sockets during bulk 1544 * receive. */ 1545 if (icsk->icsk_ack.blocked || 1546 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1547 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1548 /* 1549 * If this read emptied read buffer, we send ACK, if 1550 * connection is not bidirectional, user drained 1551 * receive buffer and there was a small segment 1552 * in queue. 1553 */ 1554 (copied > 0 && 1555 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1556 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1557 !inet_csk_in_pingpong_mode(sk))) && 1558 !atomic_read(&sk->sk_rmem_alloc))) 1559 time_to_ack = true; 1560 } 1561 1562 /* We send an ACK if we can now advertise a non-zero window 1563 * which has been raised "significantly". 1564 * 1565 * Even if window raised up to infinity, do not send window open ACK 1566 * in states, where we will not receive more. It is useless. 1567 */ 1568 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1569 __u32 rcv_window_now = tcp_receive_window(tp); 1570 1571 /* Optimize, __tcp_select_window() is not cheap. */ 1572 if (2*rcv_window_now <= tp->window_clamp) { 1573 __u32 new_window = __tcp_select_window(sk); 1574 1575 /* Send ACK now, if this read freed lots of space 1576 * in our buffer. Certainly, new_window is new window. 1577 * We can advertise it now, if it is not less than current one. 1578 * "Lots" means "at least twice" here. 1579 */ 1580 if (new_window && new_window >= 2 * rcv_window_now) 1581 time_to_ack = true; 1582 } 1583 } 1584 if (time_to_ack) 1585 tcp_send_ack(sk); 1586 } 1587 1588 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1589 { 1590 struct sk_buff *skb; 1591 u32 offset; 1592 1593 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1594 offset = seq - TCP_SKB_CB(skb)->seq; 1595 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1596 pr_err_once("%s: found a SYN, please report !\n", __func__); 1597 offset--; 1598 } 1599 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1600 *off = offset; 1601 return skb; 1602 } 1603 /* This looks weird, but this can happen if TCP collapsing 1604 * splitted a fat GRO packet, while we released socket lock 1605 * in skb_splice_bits() 1606 */ 1607 sk_eat_skb(sk, skb); 1608 } 1609 return NULL; 1610 } 1611 1612 /* 1613 * This routine provides an alternative to tcp_recvmsg() for routines 1614 * that would like to handle copying from skbuffs directly in 'sendfile' 1615 * fashion. 1616 * Note: 1617 * - It is assumed that the socket was locked by the caller. 1618 * - The routine does not block. 1619 * - At present, there is no support for reading OOB data 1620 * or for 'peeking' the socket using this routine 1621 * (although both would be easy to implement). 1622 */ 1623 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1624 sk_read_actor_t recv_actor) 1625 { 1626 struct sk_buff *skb; 1627 struct tcp_sock *tp = tcp_sk(sk); 1628 u32 seq = tp->copied_seq; 1629 u32 offset; 1630 int copied = 0; 1631 1632 if (sk->sk_state == TCP_LISTEN) 1633 return -ENOTCONN; 1634 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1635 if (offset < skb->len) { 1636 int used; 1637 size_t len; 1638 1639 len = skb->len - offset; 1640 /* Stop reading if we hit a patch of urgent data */ 1641 if (tp->urg_data) { 1642 u32 urg_offset = tp->urg_seq - seq; 1643 if (urg_offset < len) 1644 len = urg_offset; 1645 if (!len) 1646 break; 1647 } 1648 used = recv_actor(desc, skb, offset, len); 1649 if (used <= 0) { 1650 if (!copied) 1651 copied = used; 1652 break; 1653 } else if (used <= len) { 1654 seq += used; 1655 copied += used; 1656 offset += used; 1657 } 1658 /* If recv_actor drops the lock (e.g. TCP splice 1659 * receive) the skb pointer might be invalid when 1660 * getting here: tcp_collapse might have deleted it 1661 * while aggregating skbs from the socket queue. 1662 */ 1663 skb = tcp_recv_skb(sk, seq - 1, &offset); 1664 if (!skb) 1665 break; 1666 /* TCP coalescing might have appended data to the skb. 1667 * Try to splice more frags 1668 */ 1669 if (offset + 1 != skb->len) 1670 continue; 1671 } 1672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1673 sk_eat_skb(sk, skb); 1674 ++seq; 1675 break; 1676 } 1677 sk_eat_skb(sk, skb); 1678 if (!desc->count) 1679 break; 1680 WRITE_ONCE(tp->copied_seq, seq); 1681 } 1682 WRITE_ONCE(tp->copied_seq, seq); 1683 1684 tcp_rcv_space_adjust(sk); 1685 1686 /* Clean up data we have read: This will do ACK frames. */ 1687 if (copied > 0) { 1688 tcp_recv_skb(sk, seq, &offset); 1689 tcp_cleanup_rbuf(sk, copied); 1690 } 1691 return copied; 1692 } 1693 EXPORT_SYMBOL(tcp_read_sock); 1694 1695 int tcp_peek_len(struct socket *sock) 1696 { 1697 return tcp_inq(sock->sk); 1698 } 1699 EXPORT_SYMBOL(tcp_peek_len); 1700 1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1702 int tcp_set_rcvlowat(struct sock *sk, int val) 1703 { 1704 int cap; 1705 1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1707 cap = sk->sk_rcvbuf >> 1; 1708 else 1709 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1; 1710 val = min(val, cap); 1711 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1712 1713 /* Check if we need to signal EPOLLIN right now */ 1714 tcp_data_ready(sk); 1715 1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1717 return 0; 1718 1719 val <<= 1; 1720 if (val > sk->sk_rcvbuf) { 1721 WRITE_ONCE(sk->sk_rcvbuf, val); 1722 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1723 } 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(tcp_set_rcvlowat); 1727 1728 #ifdef CONFIG_MMU 1729 static const struct vm_operations_struct tcp_vm_ops = { 1730 }; 1731 1732 int tcp_mmap(struct file *file, struct socket *sock, 1733 struct vm_area_struct *vma) 1734 { 1735 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1736 return -EPERM; 1737 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1738 1739 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1740 vma->vm_flags |= VM_MIXEDMAP; 1741 1742 vma->vm_ops = &tcp_vm_ops; 1743 return 0; 1744 } 1745 EXPORT_SYMBOL(tcp_mmap); 1746 1747 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1748 struct page **pages, 1749 unsigned long pages_to_map, 1750 unsigned long *insert_addr, 1751 u32 *length_with_pending, 1752 u32 *seq, 1753 struct tcp_zerocopy_receive *zc) 1754 { 1755 unsigned long pages_remaining = pages_to_map; 1756 int bytes_mapped; 1757 int ret; 1758 1759 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining); 1760 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining); 1761 /* Even if vm_insert_pages fails, it may have partially succeeded in 1762 * mapping (some but not all of the pages). 1763 */ 1764 *seq += bytes_mapped; 1765 *insert_addr += bytes_mapped; 1766 if (ret) { 1767 /* But if vm_insert_pages did fail, we have to unroll some state 1768 * we speculatively touched before. 1769 */ 1770 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1771 *length_with_pending -= bytes_not_mapped; 1772 zc->recv_skip_hint += bytes_not_mapped; 1773 } 1774 return ret; 1775 } 1776 1777 static int tcp_zerocopy_receive(struct sock *sk, 1778 struct tcp_zerocopy_receive *zc) 1779 { 1780 unsigned long address = (unsigned long)zc->address; 1781 u32 length = 0, seq, offset, zap_len; 1782 #define PAGE_BATCH_SIZE 8 1783 struct page *pages[PAGE_BATCH_SIZE]; 1784 const skb_frag_t *frags = NULL; 1785 struct vm_area_struct *vma; 1786 struct sk_buff *skb = NULL; 1787 unsigned long pg_idx = 0; 1788 unsigned long curr_addr; 1789 struct tcp_sock *tp; 1790 int inq; 1791 int ret; 1792 1793 if (address & (PAGE_SIZE - 1) || address != zc->address) 1794 return -EINVAL; 1795 1796 if (sk->sk_state == TCP_LISTEN) 1797 return -ENOTCONN; 1798 1799 sock_rps_record_flow(sk); 1800 1801 tp = tcp_sk(sk); 1802 1803 mmap_read_lock(current->mm); 1804 1805 vma = find_vma(current->mm, address); 1806 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) { 1807 mmap_read_unlock(current->mm); 1808 return -EINVAL; 1809 } 1810 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1811 1812 seq = tp->copied_seq; 1813 inq = tcp_inq(sk); 1814 zc->length = min_t(u32, zc->length, inq); 1815 zap_len = zc->length & ~(PAGE_SIZE - 1); 1816 if (zap_len) { 1817 zap_page_range(vma, address, zap_len); 1818 zc->recv_skip_hint = 0; 1819 } else { 1820 zc->recv_skip_hint = zc->length; 1821 } 1822 ret = 0; 1823 curr_addr = address; 1824 while (length + PAGE_SIZE <= zc->length) { 1825 if (zc->recv_skip_hint < PAGE_SIZE) { 1826 /* If we're here, finish the current batch. */ 1827 if (pg_idx) { 1828 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 1829 pg_idx, 1830 &curr_addr, 1831 &length, 1832 &seq, zc); 1833 if (ret) 1834 goto out; 1835 pg_idx = 0; 1836 } 1837 if (skb) { 1838 if (zc->recv_skip_hint > 0) 1839 break; 1840 skb = skb->next; 1841 offset = seq - TCP_SKB_CB(skb)->seq; 1842 } else { 1843 skb = tcp_recv_skb(sk, seq, &offset); 1844 } 1845 zc->recv_skip_hint = skb->len - offset; 1846 offset -= skb_headlen(skb); 1847 if ((int)offset < 0 || skb_has_frag_list(skb)) 1848 break; 1849 frags = skb_shinfo(skb)->frags; 1850 while (offset) { 1851 if (skb_frag_size(frags) > offset) 1852 goto out; 1853 offset -= skb_frag_size(frags); 1854 frags++; 1855 } 1856 } 1857 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) { 1858 int remaining = zc->recv_skip_hint; 1859 1860 while (remaining && (skb_frag_size(frags) != PAGE_SIZE || 1861 skb_frag_off(frags))) { 1862 remaining -= skb_frag_size(frags); 1863 frags++; 1864 } 1865 zc->recv_skip_hint -= remaining; 1866 break; 1867 } 1868 pages[pg_idx] = skb_frag_page(frags); 1869 pg_idx++; 1870 length += PAGE_SIZE; 1871 zc->recv_skip_hint -= PAGE_SIZE; 1872 frags++; 1873 if (pg_idx == PAGE_BATCH_SIZE) { 1874 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 1875 &curr_addr, &length, 1876 &seq, zc); 1877 if (ret) 1878 goto out; 1879 pg_idx = 0; 1880 } 1881 } 1882 if (pg_idx) { 1883 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx, 1884 &curr_addr, &length, &seq, 1885 zc); 1886 } 1887 out: 1888 mmap_read_unlock(current->mm); 1889 if (length) { 1890 WRITE_ONCE(tp->copied_seq, seq); 1891 tcp_rcv_space_adjust(sk); 1892 1893 /* Clean up data we have read: This will do ACK frames. */ 1894 tcp_recv_skb(sk, seq, &offset); 1895 tcp_cleanup_rbuf(sk, length); 1896 ret = 0; 1897 if (length == zc->length) 1898 zc->recv_skip_hint = 0; 1899 } else { 1900 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1901 ret = -EIO; 1902 } 1903 zc->length = length; 1904 return ret; 1905 } 1906 #endif 1907 1908 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1909 struct scm_timestamping_internal *tss) 1910 { 1911 if (skb->tstamp) 1912 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1913 else 1914 tss->ts[0] = (struct timespec64) {0}; 1915 1916 if (skb_hwtstamps(skb)->hwtstamp) 1917 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1918 else 1919 tss->ts[2] = (struct timespec64) {0}; 1920 } 1921 1922 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1923 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1924 struct scm_timestamping_internal *tss) 1925 { 1926 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 1927 bool has_timestamping = false; 1928 1929 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1930 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1931 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1932 if (new_tstamp) { 1933 struct __kernel_timespec kts = { 1934 .tv_sec = tss->ts[0].tv_sec, 1935 .tv_nsec = tss->ts[0].tv_nsec, 1936 }; 1937 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 1938 sizeof(kts), &kts); 1939 } else { 1940 struct __kernel_old_timespec ts_old = { 1941 .tv_sec = tss->ts[0].tv_sec, 1942 .tv_nsec = tss->ts[0].tv_nsec, 1943 }; 1944 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 1945 sizeof(ts_old), &ts_old); 1946 } 1947 } else { 1948 if (new_tstamp) { 1949 struct __kernel_sock_timeval stv = { 1950 .tv_sec = tss->ts[0].tv_sec, 1951 .tv_usec = tss->ts[0].tv_nsec / 1000, 1952 }; 1953 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 1954 sizeof(stv), &stv); 1955 } else { 1956 struct __kernel_old_timeval tv = { 1957 .tv_sec = tss->ts[0].tv_sec, 1958 .tv_usec = tss->ts[0].tv_nsec / 1000, 1959 }; 1960 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 1961 sizeof(tv), &tv); 1962 } 1963 } 1964 } 1965 1966 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1967 has_timestamping = true; 1968 else 1969 tss->ts[0] = (struct timespec64) {0}; 1970 } 1971 1972 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1973 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1974 has_timestamping = true; 1975 else 1976 tss->ts[2] = (struct timespec64) {0}; 1977 } 1978 1979 if (has_timestamping) { 1980 tss->ts[1] = (struct timespec64) {0}; 1981 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 1982 put_cmsg_scm_timestamping64(msg, tss); 1983 else 1984 put_cmsg_scm_timestamping(msg, tss); 1985 } 1986 } 1987 1988 static int tcp_inq_hint(struct sock *sk) 1989 { 1990 const struct tcp_sock *tp = tcp_sk(sk); 1991 u32 copied_seq = READ_ONCE(tp->copied_seq); 1992 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1993 int inq; 1994 1995 inq = rcv_nxt - copied_seq; 1996 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1997 lock_sock(sk); 1998 inq = tp->rcv_nxt - tp->copied_seq; 1999 release_sock(sk); 2000 } 2001 /* After receiving a FIN, tell the user-space to continue reading 2002 * by returning a non-zero inq. 2003 */ 2004 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2005 inq = 1; 2006 return inq; 2007 } 2008 2009 /* 2010 * This routine copies from a sock struct into the user buffer. 2011 * 2012 * Technical note: in 2.3 we work on _locked_ socket, so that 2013 * tricks with *seq access order and skb->users are not required. 2014 * Probably, code can be easily improved even more. 2015 */ 2016 2017 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 2018 int flags, int *addr_len) 2019 { 2020 struct tcp_sock *tp = tcp_sk(sk); 2021 int copied = 0; 2022 u32 peek_seq; 2023 u32 *seq; 2024 unsigned long used; 2025 int err, inq; 2026 int target; /* Read at least this many bytes */ 2027 long timeo; 2028 struct sk_buff *skb, *last; 2029 u32 urg_hole = 0; 2030 struct scm_timestamping_internal tss; 2031 int cmsg_flags; 2032 2033 if (unlikely(flags & MSG_ERRQUEUE)) 2034 return inet_recv_error(sk, msg, len, addr_len); 2035 2036 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) && 2037 (sk->sk_state == TCP_ESTABLISHED)) 2038 sk_busy_loop(sk, nonblock); 2039 2040 lock_sock(sk); 2041 2042 err = -ENOTCONN; 2043 if (sk->sk_state == TCP_LISTEN) 2044 goto out; 2045 2046 cmsg_flags = tp->recvmsg_inq ? 1 : 0; 2047 timeo = sock_rcvtimeo(sk, nonblock); 2048 2049 /* Urgent data needs to be handled specially. */ 2050 if (flags & MSG_OOB) 2051 goto recv_urg; 2052 2053 if (unlikely(tp->repair)) { 2054 err = -EPERM; 2055 if (!(flags & MSG_PEEK)) 2056 goto out; 2057 2058 if (tp->repair_queue == TCP_SEND_QUEUE) 2059 goto recv_sndq; 2060 2061 err = -EINVAL; 2062 if (tp->repair_queue == TCP_NO_QUEUE) 2063 goto out; 2064 2065 /* 'common' recv queue MSG_PEEK-ing */ 2066 } 2067 2068 seq = &tp->copied_seq; 2069 if (flags & MSG_PEEK) { 2070 peek_seq = tp->copied_seq; 2071 seq = &peek_seq; 2072 } 2073 2074 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2075 2076 do { 2077 u32 offset; 2078 2079 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2080 if (tp->urg_data && tp->urg_seq == *seq) { 2081 if (copied) 2082 break; 2083 if (signal_pending(current)) { 2084 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2085 break; 2086 } 2087 } 2088 2089 /* Next get a buffer. */ 2090 2091 last = skb_peek_tail(&sk->sk_receive_queue); 2092 skb_queue_walk(&sk->sk_receive_queue, skb) { 2093 last = skb; 2094 /* Now that we have two receive queues this 2095 * shouldn't happen. 2096 */ 2097 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2098 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2099 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2100 flags)) 2101 break; 2102 2103 offset = *seq - TCP_SKB_CB(skb)->seq; 2104 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2105 pr_err_once("%s: found a SYN, please report !\n", __func__); 2106 offset--; 2107 } 2108 if (offset < skb->len) 2109 goto found_ok_skb; 2110 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2111 goto found_fin_ok; 2112 WARN(!(flags & MSG_PEEK), 2113 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2114 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2115 } 2116 2117 /* Well, if we have backlog, try to process it now yet. */ 2118 2119 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2120 break; 2121 2122 if (copied) { 2123 if (sk->sk_err || 2124 sk->sk_state == TCP_CLOSE || 2125 (sk->sk_shutdown & RCV_SHUTDOWN) || 2126 !timeo || 2127 signal_pending(current)) 2128 break; 2129 } else { 2130 if (sock_flag(sk, SOCK_DONE)) 2131 break; 2132 2133 if (sk->sk_err) { 2134 copied = sock_error(sk); 2135 break; 2136 } 2137 2138 if (sk->sk_shutdown & RCV_SHUTDOWN) 2139 break; 2140 2141 if (sk->sk_state == TCP_CLOSE) { 2142 /* This occurs when user tries to read 2143 * from never connected socket. 2144 */ 2145 copied = -ENOTCONN; 2146 break; 2147 } 2148 2149 if (!timeo) { 2150 copied = -EAGAIN; 2151 break; 2152 } 2153 2154 if (signal_pending(current)) { 2155 copied = sock_intr_errno(timeo); 2156 break; 2157 } 2158 } 2159 2160 tcp_cleanup_rbuf(sk, copied); 2161 2162 if (copied >= target) { 2163 /* Do not sleep, just process backlog. */ 2164 release_sock(sk); 2165 lock_sock(sk); 2166 } else { 2167 sk_wait_data(sk, &timeo, last); 2168 } 2169 2170 if ((flags & MSG_PEEK) && 2171 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2172 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2173 current->comm, 2174 task_pid_nr(current)); 2175 peek_seq = tp->copied_seq; 2176 } 2177 continue; 2178 2179 found_ok_skb: 2180 /* Ok so how much can we use? */ 2181 used = skb->len - offset; 2182 if (len < used) 2183 used = len; 2184 2185 /* Do we have urgent data here? */ 2186 if (tp->urg_data) { 2187 u32 urg_offset = tp->urg_seq - *seq; 2188 if (urg_offset < used) { 2189 if (!urg_offset) { 2190 if (!sock_flag(sk, SOCK_URGINLINE)) { 2191 WRITE_ONCE(*seq, *seq + 1); 2192 urg_hole++; 2193 offset++; 2194 used--; 2195 if (!used) 2196 goto skip_copy; 2197 } 2198 } else 2199 used = urg_offset; 2200 } 2201 } 2202 2203 if (!(flags & MSG_TRUNC)) { 2204 err = skb_copy_datagram_msg(skb, offset, msg, used); 2205 if (err) { 2206 /* Exception. Bailout! */ 2207 if (!copied) 2208 copied = -EFAULT; 2209 break; 2210 } 2211 } 2212 2213 WRITE_ONCE(*seq, *seq + used); 2214 copied += used; 2215 len -= used; 2216 2217 tcp_rcv_space_adjust(sk); 2218 2219 skip_copy: 2220 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2221 tp->urg_data = 0; 2222 tcp_fast_path_check(sk); 2223 } 2224 2225 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2226 tcp_update_recv_tstamps(skb, &tss); 2227 cmsg_flags |= 2; 2228 } 2229 2230 if (used + offset < skb->len) 2231 continue; 2232 2233 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2234 goto found_fin_ok; 2235 if (!(flags & MSG_PEEK)) 2236 sk_eat_skb(sk, skb); 2237 continue; 2238 2239 found_fin_ok: 2240 /* Process the FIN. */ 2241 WRITE_ONCE(*seq, *seq + 1); 2242 if (!(flags & MSG_PEEK)) 2243 sk_eat_skb(sk, skb); 2244 break; 2245 } while (len > 0); 2246 2247 /* According to UNIX98, msg_name/msg_namelen are ignored 2248 * on connected socket. I was just happy when found this 8) --ANK 2249 */ 2250 2251 /* Clean up data we have read: This will do ACK frames. */ 2252 tcp_cleanup_rbuf(sk, copied); 2253 2254 release_sock(sk); 2255 2256 if (cmsg_flags) { 2257 if (cmsg_flags & 2) 2258 tcp_recv_timestamp(msg, sk, &tss); 2259 if (cmsg_flags & 1) { 2260 inq = tcp_inq_hint(sk); 2261 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2262 } 2263 } 2264 2265 return copied; 2266 2267 out: 2268 release_sock(sk); 2269 return err; 2270 2271 recv_urg: 2272 err = tcp_recv_urg(sk, msg, len, flags); 2273 goto out; 2274 2275 recv_sndq: 2276 err = tcp_peek_sndq(sk, msg, len); 2277 goto out; 2278 } 2279 EXPORT_SYMBOL(tcp_recvmsg); 2280 2281 void tcp_set_state(struct sock *sk, int state) 2282 { 2283 int oldstate = sk->sk_state; 2284 2285 /* We defined a new enum for TCP states that are exported in BPF 2286 * so as not force the internal TCP states to be frozen. The 2287 * following checks will detect if an internal state value ever 2288 * differs from the BPF value. If this ever happens, then we will 2289 * need to remap the internal value to the BPF value before calling 2290 * tcp_call_bpf_2arg. 2291 */ 2292 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2293 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2294 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2295 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2296 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2297 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2298 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2299 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2300 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2301 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2302 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2303 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2304 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2305 2306 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2307 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2308 2309 switch (state) { 2310 case TCP_ESTABLISHED: 2311 if (oldstate != TCP_ESTABLISHED) 2312 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2313 break; 2314 2315 case TCP_CLOSE: 2316 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2317 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2318 2319 sk->sk_prot->unhash(sk); 2320 if (inet_csk(sk)->icsk_bind_hash && 2321 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2322 inet_put_port(sk); 2323 fallthrough; 2324 default: 2325 if (oldstate == TCP_ESTABLISHED) 2326 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2327 } 2328 2329 /* Change state AFTER socket is unhashed to avoid closed 2330 * socket sitting in hash tables. 2331 */ 2332 inet_sk_state_store(sk, state); 2333 } 2334 EXPORT_SYMBOL_GPL(tcp_set_state); 2335 2336 /* 2337 * State processing on a close. This implements the state shift for 2338 * sending our FIN frame. Note that we only send a FIN for some 2339 * states. A shutdown() may have already sent the FIN, or we may be 2340 * closed. 2341 */ 2342 2343 static const unsigned char new_state[16] = { 2344 /* current state: new state: action: */ 2345 [0 /* (Invalid) */] = TCP_CLOSE, 2346 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2347 [TCP_SYN_SENT] = TCP_CLOSE, 2348 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2349 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2350 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2351 [TCP_TIME_WAIT] = TCP_CLOSE, 2352 [TCP_CLOSE] = TCP_CLOSE, 2353 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2354 [TCP_LAST_ACK] = TCP_LAST_ACK, 2355 [TCP_LISTEN] = TCP_CLOSE, 2356 [TCP_CLOSING] = TCP_CLOSING, 2357 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2358 }; 2359 2360 static int tcp_close_state(struct sock *sk) 2361 { 2362 int next = (int)new_state[sk->sk_state]; 2363 int ns = next & TCP_STATE_MASK; 2364 2365 tcp_set_state(sk, ns); 2366 2367 return next & TCP_ACTION_FIN; 2368 } 2369 2370 /* 2371 * Shutdown the sending side of a connection. Much like close except 2372 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2373 */ 2374 2375 void tcp_shutdown(struct sock *sk, int how) 2376 { 2377 /* We need to grab some memory, and put together a FIN, 2378 * and then put it into the queue to be sent. 2379 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2380 */ 2381 if (!(how & SEND_SHUTDOWN)) 2382 return; 2383 2384 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2385 if ((1 << sk->sk_state) & 2386 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2387 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2388 /* Clear out any half completed packets. FIN if needed. */ 2389 if (tcp_close_state(sk)) 2390 tcp_send_fin(sk); 2391 } 2392 } 2393 EXPORT_SYMBOL(tcp_shutdown); 2394 2395 bool tcp_check_oom(struct sock *sk, int shift) 2396 { 2397 bool too_many_orphans, out_of_socket_memory; 2398 2399 too_many_orphans = tcp_too_many_orphans(sk, shift); 2400 out_of_socket_memory = tcp_out_of_memory(sk); 2401 2402 if (too_many_orphans) 2403 net_info_ratelimited("too many orphaned sockets\n"); 2404 if (out_of_socket_memory) 2405 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2406 return too_many_orphans || out_of_socket_memory; 2407 } 2408 2409 void tcp_close(struct sock *sk, long timeout) 2410 { 2411 struct sk_buff *skb; 2412 int data_was_unread = 0; 2413 int state; 2414 2415 lock_sock(sk); 2416 sk->sk_shutdown = SHUTDOWN_MASK; 2417 2418 if (sk->sk_state == TCP_LISTEN) { 2419 tcp_set_state(sk, TCP_CLOSE); 2420 2421 /* Special case. */ 2422 inet_csk_listen_stop(sk); 2423 2424 goto adjudge_to_death; 2425 } 2426 2427 /* We need to flush the recv. buffs. We do this only on the 2428 * descriptor close, not protocol-sourced closes, because the 2429 * reader process may not have drained the data yet! 2430 */ 2431 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2432 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2433 2434 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2435 len--; 2436 data_was_unread += len; 2437 __kfree_skb(skb); 2438 } 2439 2440 sk_mem_reclaim(sk); 2441 2442 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2443 if (sk->sk_state == TCP_CLOSE) 2444 goto adjudge_to_death; 2445 2446 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2447 * data was lost. To witness the awful effects of the old behavior of 2448 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2449 * GET in an FTP client, suspend the process, wait for the client to 2450 * advertise a zero window, then kill -9 the FTP client, wheee... 2451 * Note: timeout is always zero in such a case. 2452 */ 2453 if (unlikely(tcp_sk(sk)->repair)) { 2454 sk->sk_prot->disconnect(sk, 0); 2455 } else if (data_was_unread) { 2456 /* Unread data was tossed, zap the connection. */ 2457 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2458 tcp_set_state(sk, TCP_CLOSE); 2459 tcp_send_active_reset(sk, sk->sk_allocation); 2460 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2461 /* Check zero linger _after_ checking for unread data. */ 2462 sk->sk_prot->disconnect(sk, 0); 2463 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2464 } else if (tcp_close_state(sk)) { 2465 /* We FIN if the application ate all the data before 2466 * zapping the connection. 2467 */ 2468 2469 /* RED-PEN. Formally speaking, we have broken TCP state 2470 * machine. State transitions: 2471 * 2472 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2473 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2474 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2475 * 2476 * are legal only when FIN has been sent (i.e. in window), 2477 * rather than queued out of window. Purists blame. 2478 * 2479 * F.e. "RFC state" is ESTABLISHED, 2480 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2481 * 2482 * The visible declinations are that sometimes 2483 * we enter time-wait state, when it is not required really 2484 * (harmless), do not send active resets, when they are 2485 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2486 * they look as CLOSING or LAST_ACK for Linux) 2487 * Probably, I missed some more holelets. 2488 * --ANK 2489 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2490 * in a single packet! (May consider it later but will 2491 * probably need API support or TCP_CORK SYN-ACK until 2492 * data is written and socket is closed.) 2493 */ 2494 tcp_send_fin(sk); 2495 } 2496 2497 sk_stream_wait_close(sk, timeout); 2498 2499 adjudge_to_death: 2500 state = sk->sk_state; 2501 sock_hold(sk); 2502 sock_orphan(sk); 2503 2504 local_bh_disable(); 2505 bh_lock_sock(sk); 2506 /* remove backlog if any, without releasing ownership. */ 2507 __release_sock(sk); 2508 2509 percpu_counter_inc(sk->sk_prot->orphan_count); 2510 2511 /* Have we already been destroyed by a softirq or backlog? */ 2512 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2513 goto out; 2514 2515 /* This is a (useful) BSD violating of the RFC. There is a 2516 * problem with TCP as specified in that the other end could 2517 * keep a socket open forever with no application left this end. 2518 * We use a 1 minute timeout (about the same as BSD) then kill 2519 * our end. If they send after that then tough - BUT: long enough 2520 * that we won't make the old 4*rto = almost no time - whoops 2521 * reset mistake. 2522 * 2523 * Nope, it was not mistake. It is really desired behaviour 2524 * f.e. on http servers, when such sockets are useless, but 2525 * consume significant resources. Let's do it with special 2526 * linger2 option. --ANK 2527 */ 2528 2529 if (sk->sk_state == TCP_FIN_WAIT2) { 2530 struct tcp_sock *tp = tcp_sk(sk); 2531 if (tp->linger2 < 0) { 2532 tcp_set_state(sk, TCP_CLOSE); 2533 tcp_send_active_reset(sk, GFP_ATOMIC); 2534 __NET_INC_STATS(sock_net(sk), 2535 LINUX_MIB_TCPABORTONLINGER); 2536 } else { 2537 const int tmo = tcp_fin_time(sk); 2538 2539 if (tmo > TCP_TIMEWAIT_LEN) { 2540 inet_csk_reset_keepalive_timer(sk, 2541 tmo - TCP_TIMEWAIT_LEN); 2542 } else { 2543 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2544 goto out; 2545 } 2546 } 2547 } 2548 if (sk->sk_state != TCP_CLOSE) { 2549 sk_mem_reclaim(sk); 2550 if (tcp_check_oom(sk, 0)) { 2551 tcp_set_state(sk, TCP_CLOSE); 2552 tcp_send_active_reset(sk, GFP_ATOMIC); 2553 __NET_INC_STATS(sock_net(sk), 2554 LINUX_MIB_TCPABORTONMEMORY); 2555 } else if (!check_net(sock_net(sk))) { 2556 /* Not possible to send reset; just close */ 2557 tcp_set_state(sk, TCP_CLOSE); 2558 } 2559 } 2560 2561 if (sk->sk_state == TCP_CLOSE) { 2562 struct request_sock *req; 2563 2564 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2565 lockdep_sock_is_held(sk)); 2566 /* We could get here with a non-NULL req if the socket is 2567 * aborted (e.g., closed with unread data) before 3WHS 2568 * finishes. 2569 */ 2570 if (req) 2571 reqsk_fastopen_remove(sk, req, false); 2572 inet_csk_destroy_sock(sk); 2573 } 2574 /* Otherwise, socket is reprieved until protocol close. */ 2575 2576 out: 2577 bh_unlock_sock(sk); 2578 local_bh_enable(); 2579 release_sock(sk); 2580 sock_put(sk); 2581 } 2582 EXPORT_SYMBOL(tcp_close); 2583 2584 /* These states need RST on ABORT according to RFC793 */ 2585 2586 static inline bool tcp_need_reset(int state) 2587 { 2588 return (1 << state) & 2589 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2590 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2591 } 2592 2593 static void tcp_rtx_queue_purge(struct sock *sk) 2594 { 2595 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2596 2597 tcp_sk(sk)->highest_sack = NULL; 2598 while (p) { 2599 struct sk_buff *skb = rb_to_skb(p); 2600 2601 p = rb_next(p); 2602 /* Since we are deleting whole queue, no need to 2603 * list_del(&skb->tcp_tsorted_anchor) 2604 */ 2605 tcp_rtx_queue_unlink(skb, sk); 2606 sk_wmem_free_skb(sk, skb); 2607 } 2608 } 2609 2610 void tcp_write_queue_purge(struct sock *sk) 2611 { 2612 struct sk_buff *skb; 2613 2614 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2615 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2616 tcp_skb_tsorted_anchor_cleanup(skb); 2617 sk_wmem_free_skb(sk, skb); 2618 } 2619 tcp_rtx_queue_purge(sk); 2620 skb = sk->sk_tx_skb_cache; 2621 if (skb) { 2622 __kfree_skb(skb); 2623 sk->sk_tx_skb_cache = NULL; 2624 } 2625 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2626 sk_mem_reclaim(sk); 2627 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2628 tcp_sk(sk)->packets_out = 0; 2629 inet_csk(sk)->icsk_backoff = 0; 2630 } 2631 2632 int tcp_disconnect(struct sock *sk, int flags) 2633 { 2634 struct inet_sock *inet = inet_sk(sk); 2635 struct inet_connection_sock *icsk = inet_csk(sk); 2636 struct tcp_sock *tp = tcp_sk(sk); 2637 int old_state = sk->sk_state; 2638 u32 seq; 2639 2640 if (old_state != TCP_CLOSE) 2641 tcp_set_state(sk, TCP_CLOSE); 2642 2643 /* ABORT function of RFC793 */ 2644 if (old_state == TCP_LISTEN) { 2645 inet_csk_listen_stop(sk); 2646 } else if (unlikely(tp->repair)) { 2647 sk->sk_err = ECONNABORTED; 2648 } else if (tcp_need_reset(old_state) || 2649 (tp->snd_nxt != tp->write_seq && 2650 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2651 /* The last check adjusts for discrepancy of Linux wrt. RFC 2652 * states 2653 */ 2654 tcp_send_active_reset(sk, gfp_any()); 2655 sk->sk_err = ECONNRESET; 2656 } else if (old_state == TCP_SYN_SENT) 2657 sk->sk_err = ECONNRESET; 2658 2659 tcp_clear_xmit_timers(sk); 2660 __skb_queue_purge(&sk->sk_receive_queue); 2661 if (sk->sk_rx_skb_cache) { 2662 __kfree_skb(sk->sk_rx_skb_cache); 2663 sk->sk_rx_skb_cache = NULL; 2664 } 2665 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 2666 tp->urg_data = 0; 2667 tcp_write_queue_purge(sk); 2668 tcp_fastopen_active_disable_ofo_check(sk); 2669 skb_rbtree_purge(&tp->out_of_order_queue); 2670 2671 inet->inet_dport = 0; 2672 2673 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2674 inet_reset_saddr(sk); 2675 2676 sk->sk_shutdown = 0; 2677 sock_reset_flag(sk, SOCK_DONE); 2678 tp->srtt_us = 0; 2679 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 2680 tp->rcv_rtt_last_tsecr = 0; 2681 2682 seq = tp->write_seq + tp->max_window + 2; 2683 if (!seq) 2684 seq = 1; 2685 WRITE_ONCE(tp->write_seq, seq); 2686 2687 icsk->icsk_backoff = 0; 2688 icsk->icsk_probes_out = 0; 2689 icsk->icsk_rto = TCP_TIMEOUT_INIT; 2690 icsk->icsk_rto_min = TCP_RTO_MIN; 2691 icsk->icsk_delack_max = TCP_DELACK_MAX; 2692 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2693 tp->snd_cwnd = TCP_INIT_CWND; 2694 tp->snd_cwnd_cnt = 0; 2695 tp->window_clamp = 0; 2696 tp->delivered = 0; 2697 tp->delivered_ce = 0; 2698 if (icsk->icsk_ca_ops->release) 2699 icsk->icsk_ca_ops->release(sk); 2700 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 2701 tcp_set_ca_state(sk, TCP_CA_Open); 2702 tp->is_sack_reneg = 0; 2703 tcp_clear_retrans(tp); 2704 tp->total_retrans = 0; 2705 inet_csk_delack_init(sk); 2706 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2707 * issue in __tcp_select_window() 2708 */ 2709 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2710 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2711 __sk_dst_reset(sk); 2712 dst_release(sk->sk_rx_dst); 2713 sk->sk_rx_dst = NULL; 2714 tcp_saved_syn_free(tp); 2715 tp->compressed_ack = 0; 2716 tp->segs_in = 0; 2717 tp->segs_out = 0; 2718 tp->bytes_sent = 0; 2719 tp->bytes_acked = 0; 2720 tp->bytes_received = 0; 2721 tp->bytes_retrans = 0; 2722 tp->data_segs_in = 0; 2723 tp->data_segs_out = 0; 2724 tp->duplicate_sack[0].start_seq = 0; 2725 tp->duplicate_sack[0].end_seq = 0; 2726 tp->dsack_dups = 0; 2727 tp->reord_seen = 0; 2728 tp->retrans_out = 0; 2729 tp->sacked_out = 0; 2730 tp->tlp_high_seq = 0; 2731 tp->last_oow_ack_time = 0; 2732 /* There's a bubble in the pipe until at least the first ACK. */ 2733 tp->app_limited = ~0U; 2734 tp->rack.mstamp = 0; 2735 tp->rack.advanced = 0; 2736 tp->rack.reo_wnd_steps = 1; 2737 tp->rack.last_delivered = 0; 2738 tp->rack.reo_wnd_persist = 0; 2739 tp->rack.dsack_seen = 0; 2740 tp->syn_data_acked = 0; 2741 tp->rx_opt.saw_tstamp = 0; 2742 tp->rx_opt.dsack = 0; 2743 tp->rx_opt.num_sacks = 0; 2744 tp->rcv_ooopack = 0; 2745 2746 2747 /* Clean up fastopen related fields */ 2748 tcp_free_fastopen_req(tp); 2749 inet->defer_connect = 0; 2750 tp->fastopen_client_fail = 0; 2751 2752 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2753 2754 if (sk->sk_frag.page) { 2755 put_page(sk->sk_frag.page); 2756 sk->sk_frag.page = NULL; 2757 sk->sk_frag.offset = 0; 2758 } 2759 2760 sk->sk_error_report(sk); 2761 return 0; 2762 } 2763 EXPORT_SYMBOL(tcp_disconnect); 2764 2765 static inline bool tcp_can_repair_sock(const struct sock *sk) 2766 { 2767 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2768 (sk->sk_state != TCP_LISTEN); 2769 } 2770 2771 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 2772 { 2773 struct tcp_repair_window opt; 2774 2775 if (!tp->repair) 2776 return -EPERM; 2777 2778 if (len != sizeof(opt)) 2779 return -EINVAL; 2780 2781 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 2782 return -EFAULT; 2783 2784 if (opt.max_window < opt.snd_wnd) 2785 return -EINVAL; 2786 2787 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2788 return -EINVAL; 2789 2790 if (after(opt.rcv_wup, tp->rcv_nxt)) 2791 return -EINVAL; 2792 2793 tp->snd_wl1 = opt.snd_wl1; 2794 tp->snd_wnd = opt.snd_wnd; 2795 tp->max_window = opt.max_window; 2796 2797 tp->rcv_wnd = opt.rcv_wnd; 2798 tp->rcv_wup = opt.rcv_wup; 2799 2800 return 0; 2801 } 2802 2803 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 2804 unsigned int len) 2805 { 2806 struct tcp_sock *tp = tcp_sk(sk); 2807 struct tcp_repair_opt opt; 2808 size_t offset = 0; 2809 2810 while (len >= sizeof(opt)) { 2811 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 2812 return -EFAULT; 2813 2814 offset += sizeof(opt); 2815 len -= sizeof(opt); 2816 2817 switch (opt.opt_code) { 2818 case TCPOPT_MSS: 2819 tp->rx_opt.mss_clamp = opt.opt_val; 2820 tcp_mtup_init(sk); 2821 break; 2822 case TCPOPT_WINDOW: 2823 { 2824 u16 snd_wscale = opt.opt_val & 0xFFFF; 2825 u16 rcv_wscale = opt.opt_val >> 16; 2826 2827 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2828 return -EFBIG; 2829 2830 tp->rx_opt.snd_wscale = snd_wscale; 2831 tp->rx_opt.rcv_wscale = rcv_wscale; 2832 tp->rx_opt.wscale_ok = 1; 2833 } 2834 break; 2835 case TCPOPT_SACK_PERM: 2836 if (opt.opt_val != 0) 2837 return -EINVAL; 2838 2839 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2840 break; 2841 case TCPOPT_TIMESTAMP: 2842 if (opt.opt_val != 0) 2843 return -EINVAL; 2844 2845 tp->rx_opt.tstamp_ok = 1; 2846 break; 2847 } 2848 } 2849 2850 return 0; 2851 } 2852 2853 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2854 EXPORT_SYMBOL(tcp_tx_delay_enabled); 2855 2856 static void tcp_enable_tx_delay(void) 2857 { 2858 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 2859 static int __tcp_tx_delay_enabled = 0; 2860 2861 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 2862 static_branch_enable(&tcp_tx_delay_enabled); 2863 pr_info("TCP_TX_DELAY enabled\n"); 2864 } 2865 } 2866 } 2867 2868 /* When set indicates to always queue non-full frames. Later the user clears 2869 * this option and we transmit any pending partial frames in the queue. This is 2870 * meant to be used alongside sendfile() to get properly filled frames when the 2871 * user (for example) must write out headers with a write() call first and then 2872 * use sendfile to send out the data parts. 2873 * 2874 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 2875 * TCP_NODELAY. 2876 */ 2877 static void __tcp_sock_set_cork(struct sock *sk, bool on) 2878 { 2879 struct tcp_sock *tp = tcp_sk(sk); 2880 2881 if (on) { 2882 tp->nonagle |= TCP_NAGLE_CORK; 2883 } else { 2884 tp->nonagle &= ~TCP_NAGLE_CORK; 2885 if (tp->nonagle & TCP_NAGLE_OFF) 2886 tp->nonagle |= TCP_NAGLE_PUSH; 2887 tcp_push_pending_frames(sk); 2888 } 2889 } 2890 2891 void tcp_sock_set_cork(struct sock *sk, bool on) 2892 { 2893 lock_sock(sk); 2894 __tcp_sock_set_cork(sk, on); 2895 release_sock(sk); 2896 } 2897 EXPORT_SYMBOL(tcp_sock_set_cork); 2898 2899 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 2900 * remembered, but it is not activated until cork is cleared. 2901 * 2902 * However, when TCP_NODELAY is set we make an explicit push, which overrides 2903 * even TCP_CORK for currently queued segments. 2904 */ 2905 static void __tcp_sock_set_nodelay(struct sock *sk, bool on) 2906 { 2907 if (on) { 2908 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2909 tcp_push_pending_frames(sk); 2910 } else { 2911 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 2912 } 2913 } 2914 2915 void tcp_sock_set_nodelay(struct sock *sk) 2916 { 2917 lock_sock(sk); 2918 __tcp_sock_set_nodelay(sk, true); 2919 release_sock(sk); 2920 } 2921 EXPORT_SYMBOL(tcp_sock_set_nodelay); 2922 2923 static void __tcp_sock_set_quickack(struct sock *sk, int val) 2924 { 2925 if (!val) { 2926 inet_csk_enter_pingpong_mode(sk); 2927 return; 2928 } 2929 2930 inet_csk_exit_pingpong_mode(sk); 2931 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2932 inet_csk_ack_scheduled(sk)) { 2933 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 2934 tcp_cleanup_rbuf(sk, 1); 2935 if (!(val & 1)) 2936 inet_csk_enter_pingpong_mode(sk); 2937 } 2938 } 2939 2940 void tcp_sock_set_quickack(struct sock *sk, int val) 2941 { 2942 lock_sock(sk); 2943 __tcp_sock_set_quickack(sk, val); 2944 release_sock(sk); 2945 } 2946 EXPORT_SYMBOL(tcp_sock_set_quickack); 2947 2948 int tcp_sock_set_syncnt(struct sock *sk, int val) 2949 { 2950 if (val < 1 || val > MAX_TCP_SYNCNT) 2951 return -EINVAL; 2952 2953 lock_sock(sk); 2954 inet_csk(sk)->icsk_syn_retries = val; 2955 release_sock(sk); 2956 return 0; 2957 } 2958 EXPORT_SYMBOL(tcp_sock_set_syncnt); 2959 2960 void tcp_sock_set_user_timeout(struct sock *sk, u32 val) 2961 { 2962 lock_sock(sk); 2963 inet_csk(sk)->icsk_user_timeout = val; 2964 release_sock(sk); 2965 } 2966 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 2967 2968 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 2969 { 2970 struct tcp_sock *tp = tcp_sk(sk); 2971 2972 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2973 return -EINVAL; 2974 2975 tp->keepalive_time = val * HZ; 2976 if (sock_flag(sk, SOCK_KEEPOPEN) && 2977 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 2978 u32 elapsed = keepalive_time_elapsed(tp); 2979 2980 if (tp->keepalive_time > elapsed) 2981 elapsed = tp->keepalive_time - elapsed; 2982 else 2983 elapsed = 0; 2984 inet_csk_reset_keepalive_timer(sk, elapsed); 2985 } 2986 2987 return 0; 2988 } 2989 2990 int tcp_sock_set_keepidle(struct sock *sk, int val) 2991 { 2992 int err; 2993 2994 lock_sock(sk); 2995 err = tcp_sock_set_keepidle_locked(sk, val); 2996 release_sock(sk); 2997 return err; 2998 } 2999 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3000 3001 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3002 { 3003 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3004 return -EINVAL; 3005 3006 lock_sock(sk); 3007 tcp_sk(sk)->keepalive_intvl = val * HZ; 3008 release_sock(sk); 3009 return 0; 3010 } 3011 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3012 3013 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3014 { 3015 if (val < 1 || val > MAX_TCP_KEEPCNT) 3016 return -EINVAL; 3017 3018 lock_sock(sk); 3019 tcp_sk(sk)->keepalive_probes = val; 3020 release_sock(sk); 3021 return 0; 3022 } 3023 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3024 3025 /* 3026 * Socket option code for TCP. 3027 */ 3028 static int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3029 sockptr_t optval, unsigned int optlen) 3030 { 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 struct inet_connection_sock *icsk = inet_csk(sk); 3033 struct net *net = sock_net(sk); 3034 int val; 3035 int err = 0; 3036 3037 /* These are data/string values, all the others are ints */ 3038 switch (optname) { 3039 case TCP_CONGESTION: { 3040 char name[TCP_CA_NAME_MAX]; 3041 3042 if (optlen < 1) 3043 return -EINVAL; 3044 3045 val = strncpy_from_sockptr(name, optval, 3046 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3047 if (val < 0) 3048 return -EFAULT; 3049 name[val] = 0; 3050 3051 lock_sock(sk); 3052 err = tcp_set_congestion_control(sk, name, true, true, 3053 ns_capable(sock_net(sk)->user_ns, 3054 CAP_NET_ADMIN)); 3055 release_sock(sk); 3056 return err; 3057 } 3058 case TCP_ULP: { 3059 char name[TCP_ULP_NAME_MAX]; 3060 3061 if (optlen < 1) 3062 return -EINVAL; 3063 3064 val = strncpy_from_sockptr(name, optval, 3065 min_t(long, TCP_ULP_NAME_MAX - 1, 3066 optlen)); 3067 if (val < 0) 3068 return -EFAULT; 3069 name[val] = 0; 3070 3071 lock_sock(sk); 3072 err = tcp_set_ulp(sk, name); 3073 release_sock(sk); 3074 return err; 3075 } 3076 case TCP_FASTOPEN_KEY: { 3077 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3078 __u8 *backup_key = NULL; 3079 3080 /* Allow a backup key as well to facilitate key rotation 3081 * First key is the active one. 3082 */ 3083 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3084 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3085 return -EINVAL; 3086 3087 if (copy_from_sockptr(key, optval, optlen)) 3088 return -EFAULT; 3089 3090 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3091 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3092 3093 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3094 } 3095 default: 3096 /* fallthru */ 3097 break; 3098 } 3099 3100 if (optlen < sizeof(int)) 3101 return -EINVAL; 3102 3103 if (copy_from_sockptr(&val, optval, sizeof(val))) 3104 return -EFAULT; 3105 3106 lock_sock(sk); 3107 3108 switch (optname) { 3109 case TCP_MAXSEG: 3110 /* Values greater than interface MTU won't take effect. However 3111 * at the point when this call is done we typically don't yet 3112 * know which interface is going to be used 3113 */ 3114 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3115 err = -EINVAL; 3116 break; 3117 } 3118 tp->rx_opt.user_mss = val; 3119 break; 3120 3121 case TCP_NODELAY: 3122 __tcp_sock_set_nodelay(sk, val); 3123 break; 3124 3125 case TCP_THIN_LINEAR_TIMEOUTS: 3126 if (val < 0 || val > 1) 3127 err = -EINVAL; 3128 else 3129 tp->thin_lto = val; 3130 break; 3131 3132 case TCP_THIN_DUPACK: 3133 if (val < 0 || val > 1) 3134 err = -EINVAL; 3135 break; 3136 3137 case TCP_REPAIR: 3138 if (!tcp_can_repair_sock(sk)) 3139 err = -EPERM; 3140 else if (val == TCP_REPAIR_ON) { 3141 tp->repair = 1; 3142 sk->sk_reuse = SK_FORCE_REUSE; 3143 tp->repair_queue = TCP_NO_QUEUE; 3144 } else if (val == TCP_REPAIR_OFF) { 3145 tp->repair = 0; 3146 sk->sk_reuse = SK_NO_REUSE; 3147 tcp_send_window_probe(sk); 3148 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3149 tp->repair = 0; 3150 sk->sk_reuse = SK_NO_REUSE; 3151 } else 3152 err = -EINVAL; 3153 3154 break; 3155 3156 case TCP_REPAIR_QUEUE: 3157 if (!tp->repair) 3158 err = -EPERM; 3159 else if ((unsigned int)val < TCP_QUEUES_NR) 3160 tp->repair_queue = val; 3161 else 3162 err = -EINVAL; 3163 break; 3164 3165 case TCP_QUEUE_SEQ: 3166 if (sk->sk_state != TCP_CLOSE) 3167 err = -EPERM; 3168 else if (tp->repair_queue == TCP_SEND_QUEUE) 3169 WRITE_ONCE(tp->write_seq, val); 3170 else if (tp->repair_queue == TCP_RECV_QUEUE) { 3171 WRITE_ONCE(tp->rcv_nxt, val); 3172 WRITE_ONCE(tp->copied_seq, val); 3173 } 3174 else 3175 err = -EINVAL; 3176 break; 3177 3178 case TCP_REPAIR_OPTIONS: 3179 if (!tp->repair) 3180 err = -EINVAL; 3181 else if (sk->sk_state == TCP_ESTABLISHED) 3182 err = tcp_repair_options_est(sk, optval, optlen); 3183 else 3184 err = -EPERM; 3185 break; 3186 3187 case TCP_CORK: 3188 __tcp_sock_set_cork(sk, val); 3189 break; 3190 3191 case TCP_KEEPIDLE: 3192 err = tcp_sock_set_keepidle_locked(sk, val); 3193 break; 3194 case TCP_KEEPINTVL: 3195 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3196 err = -EINVAL; 3197 else 3198 tp->keepalive_intvl = val * HZ; 3199 break; 3200 case TCP_KEEPCNT: 3201 if (val < 1 || val > MAX_TCP_KEEPCNT) 3202 err = -EINVAL; 3203 else 3204 tp->keepalive_probes = val; 3205 break; 3206 case TCP_SYNCNT: 3207 if (val < 1 || val > MAX_TCP_SYNCNT) 3208 err = -EINVAL; 3209 else 3210 icsk->icsk_syn_retries = val; 3211 break; 3212 3213 case TCP_SAVE_SYN: 3214 /* 0: disable, 1: enable, 2: start from ether_header */ 3215 if (val < 0 || val > 2) 3216 err = -EINVAL; 3217 else 3218 tp->save_syn = val; 3219 break; 3220 3221 case TCP_LINGER2: 3222 if (val < 0) 3223 tp->linger2 = -1; 3224 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3225 tp->linger2 = TCP_FIN_TIMEOUT_MAX; 3226 else 3227 tp->linger2 = val * HZ; 3228 break; 3229 3230 case TCP_DEFER_ACCEPT: 3231 /* Translate value in seconds to number of retransmits */ 3232 icsk->icsk_accept_queue.rskq_defer_accept = 3233 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3234 TCP_RTO_MAX / HZ); 3235 break; 3236 3237 case TCP_WINDOW_CLAMP: 3238 if (!val) { 3239 if (sk->sk_state != TCP_CLOSE) { 3240 err = -EINVAL; 3241 break; 3242 } 3243 tp->window_clamp = 0; 3244 } else 3245 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3246 SOCK_MIN_RCVBUF / 2 : val; 3247 break; 3248 3249 case TCP_QUICKACK: 3250 __tcp_sock_set_quickack(sk, val); 3251 break; 3252 3253 #ifdef CONFIG_TCP_MD5SIG 3254 case TCP_MD5SIG: 3255 case TCP_MD5SIG_EXT: 3256 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3257 break; 3258 #endif 3259 case TCP_USER_TIMEOUT: 3260 /* Cap the max time in ms TCP will retry or probe the window 3261 * before giving up and aborting (ETIMEDOUT) a connection. 3262 */ 3263 if (val < 0) 3264 err = -EINVAL; 3265 else 3266 icsk->icsk_user_timeout = val; 3267 break; 3268 3269 case TCP_FASTOPEN: 3270 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3271 TCPF_LISTEN))) { 3272 tcp_fastopen_init_key_once(net); 3273 3274 fastopen_queue_tune(sk, val); 3275 } else { 3276 err = -EINVAL; 3277 } 3278 break; 3279 case TCP_FASTOPEN_CONNECT: 3280 if (val > 1 || val < 0) { 3281 err = -EINVAL; 3282 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 3283 if (sk->sk_state == TCP_CLOSE) 3284 tp->fastopen_connect = val; 3285 else 3286 err = -EINVAL; 3287 } else { 3288 err = -EOPNOTSUPP; 3289 } 3290 break; 3291 case TCP_FASTOPEN_NO_COOKIE: 3292 if (val > 1 || val < 0) 3293 err = -EINVAL; 3294 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3295 err = -EINVAL; 3296 else 3297 tp->fastopen_no_cookie = val; 3298 break; 3299 case TCP_TIMESTAMP: 3300 if (!tp->repair) 3301 err = -EPERM; 3302 else 3303 tp->tsoffset = val - tcp_time_stamp_raw(); 3304 break; 3305 case TCP_REPAIR_WINDOW: 3306 err = tcp_repair_set_window(tp, optval, optlen); 3307 break; 3308 case TCP_NOTSENT_LOWAT: 3309 tp->notsent_lowat = val; 3310 sk->sk_write_space(sk); 3311 break; 3312 case TCP_INQ: 3313 if (val > 1 || val < 0) 3314 err = -EINVAL; 3315 else 3316 tp->recvmsg_inq = val; 3317 break; 3318 case TCP_TX_DELAY: 3319 if (val) 3320 tcp_enable_tx_delay(); 3321 tp->tcp_tx_delay = val; 3322 break; 3323 default: 3324 err = -ENOPROTOOPT; 3325 break; 3326 } 3327 3328 release_sock(sk); 3329 return err; 3330 } 3331 3332 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3333 unsigned int optlen) 3334 { 3335 const struct inet_connection_sock *icsk = inet_csk(sk); 3336 3337 if (level != SOL_TCP) 3338 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3339 optval, optlen); 3340 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3341 } 3342 EXPORT_SYMBOL(tcp_setsockopt); 3343 3344 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3345 struct tcp_info *info) 3346 { 3347 u64 stats[__TCP_CHRONO_MAX], total = 0; 3348 enum tcp_chrono i; 3349 3350 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3351 stats[i] = tp->chrono_stat[i - 1]; 3352 if (i == tp->chrono_type) 3353 stats[i] += tcp_jiffies32 - tp->chrono_start; 3354 stats[i] *= USEC_PER_SEC / HZ; 3355 total += stats[i]; 3356 } 3357 3358 info->tcpi_busy_time = total; 3359 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3360 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3361 } 3362 3363 /* Return information about state of tcp endpoint in API format. */ 3364 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3365 { 3366 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3367 const struct inet_connection_sock *icsk = inet_csk(sk); 3368 unsigned long rate; 3369 u32 now; 3370 u64 rate64; 3371 bool slow; 3372 3373 memset(info, 0, sizeof(*info)); 3374 if (sk->sk_type != SOCK_STREAM) 3375 return; 3376 3377 info->tcpi_state = inet_sk_state_load(sk); 3378 3379 /* Report meaningful fields for all TCP states, including listeners */ 3380 rate = READ_ONCE(sk->sk_pacing_rate); 3381 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3382 info->tcpi_pacing_rate = rate64; 3383 3384 rate = READ_ONCE(sk->sk_max_pacing_rate); 3385 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3386 info->tcpi_max_pacing_rate = rate64; 3387 3388 info->tcpi_reordering = tp->reordering; 3389 info->tcpi_snd_cwnd = tp->snd_cwnd; 3390 3391 if (info->tcpi_state == TCP_LISTEN) { 3392 /* listeners aliased fields : 3393 * tcpi_unacked -> Number of children ready for accept() 3394 * tcpi_sacked -> max backlog 3395 */ 3396 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3397 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3398 return; 3399 } 3400 3401 slow = lock_sock_fast(sk); 3402 3403 info->tcpi_ca_state = icsk->icsk_ca_state; 3404 info->tcpi_retransmits = icsk->icsk_retransmits; 3405 info->tcpi_probes = icsk->icsk_probes_out; 3406 info->tcpi_backoff = icsk->icsk_backoff; 3407 3408 if (tp->rx_opt.tstamp_ok) 3409 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3410 if (tcp_is_sack(tp)) 3411 info->tcpi_options |= TCPI_OPT_SACK; 3412 if (tp->rx_opt.wscale_ok) { 3413 info->tcpi_options |= TCPI_OPT_WSCALE; 3414 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3415 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3416 } 3417 3418 if (tp->ecn_flags & TCP_ECN_OK) 3419 info->tcpi_options |= TCPI_OPT_ECN; 3420 if (tp->ecn_flags & TCP_ECN_SEEN) 3421 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3422 if (tp->syn_data_acked) 3423 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3424 3425 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3426 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3427 info->tcpi_snd_mss = tp->mss_cache; 3428 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3429 3430 info->tcpi_unacked = tp->packets_out; 3431 info->tcpi_sacked = tp->sacked_out; 3432 3433 info->tcpi_lost = tp->lost_out; 3434 info->tcpi_retrans = tp->retrans_out; 3435 3436 now = tcp_jiffies32; 3437 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3438 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3439 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3440 3441 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3442 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3443 info->tcpi_rtt = tp->srtt_us >> 3; 3444 info->tcpi_rttvar = tp->mdev_us >> 2; 3445 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3446 info->tcpi_advmss = tp->advmss; 3447 3448 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3449 info->tcpi_rcv_space = tp->rcvq_space.space; 3450 3451 info->tcpi_total_retrans = tp->total_retrans; 3452 3453 info->tcpi_bytes_acked = tp->bytes_acked; 3454 info->tcpi_bytes_received = tp->bytes_received; 3455 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3456 tcp_get_info_chrono_stats(tp, info); 3457 3458 info->tcpi_segs_out = tp->segs_out; 3459 info->tcpi_segs_in = tp->segs_in; 3460 3461 info->tcpi_min_rtt = tcp_min_rtt(tp); 3462 info->tcpi_data_segs_in = tp->data_segs_in; 3463 info->tcpi_data_segs_out = tp->data_segs_out; 3464 3465 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3466 rate64 = tcp_compute_delivery_rate(tp); 3467 if (rate64) 3468 info->tcpi_delivery_rate = rate64; 3469 info->tcpi_delivered = tp->delivered; 3470 info->tcpi_delivered_ce = tp->delivered_ce; 3471 info->tcpi_bytes_sent = tp->bytes_sent; 3472 info->tcpi_bytes_retrans = tp->bytes_retrans; 3473 info->tcpi_dsack_dups = tp->dsack_dups; 3474 info->tcpi_reord_seen = tp->reord_seen; 3475 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3476 info->tcpi_snd_wnd = tp->snd_wnd; 3477 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3478 unlock_sock_fast(sk, slow); 3479 } 3480 EXPORT_SYMBOL_GPL(tcp_get_info); 3481 3482 static size_t tcp_opt_stats_get_size(void) 3483 { 3484 return 3485 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3486 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3487 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3488 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3489 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3490 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3491 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3492 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3493 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3494 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3495 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3496 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3497 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3498 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3499 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3500 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3501 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3502 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3503 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3504 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3505 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3506 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3507 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3508 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3509 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3510 0; 3511 } 3512 3513 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3514 const struct sk_buff *orig_skb) 3515 { 3516 const struct tcp_sock *tp = tcp_sk(sk); 3517 struct sk_buff *stats; 3518 struct tcp_info info; 3519 unsigned long rate; 3520 u64 rate64; 3521 3522 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3523 if (!stats) 3524 return NULL; 3525 3526 tcp_get_info_chrono_stats(tp, &info); 3527 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3528 info.tcpi_busy_time, TCP_NLA_PAD); 3529 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3530 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3531 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3532 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3533 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3534 tp->data_segs_out, TCP_NLA_PAD); 3535 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3536 tp->total_retrans, TCP_NLA_PAD); 3537 3538 rate = READ_ONCE(sk->sk_pacing_rate); 3539 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3540 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3541 3542 rate64 = tcp_compute_delivery_rate(tp); 3543 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3544 3545 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3546 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3547 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3548 3549 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3550 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3551 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3552 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3553 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3554 3555 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3556 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3557 3558 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3559 TCP_NLA_PAD); 3560 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3561 TCP_NLA_PAD); 3562 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3563 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3564 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3565 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3566 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3567 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3568 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3569 TCP_NLA_PAD); 3570 3571 return stats; 3572 } 3573 3574 static int do_tcp_getsockopt(struct sock *sk, int level, 3575 int optname, char __user *optval, int __user *optlen) 3576 { 3577 struct inet_connection_sock *icsk = inet_csk(sk); 3578 struct tcp_sock *tp = tcp_sk(sk); 3579 struct net *net = sock_net(sk); 3580 int val, len; 3581 3582 if (get_user(len, optlen)) 3583 return -EFAULT; 3584 3585 len = min_t(unsigned int, len, sizeof(int)); 3586 3587 if (len < 0) 3588 return -EINVAL; 3589 3590 switch (optname) { 3591 case TCP_MAXSEG: 3592 val = tp->mss_cache; 3593 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3594 val = tp->rx_opt.user_mss; 3595 if (tp->repair) 3596 val = tp->rx_opt.mss_clamp; 3597 break; 3598 case TCP_NODELAY: 3599 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3600 break; 3601 case TCP_CORK: 3602 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3603 break; 3604 case TCP_KEEPIDLE: 3605 val = keepalive_time_when(tp) / HZ; 3606 break; 3607 case TCP_KEEPINTVL: 3608 val = keepalive_intvl_when(tp) / HZ; 3609 break; 3610 case TCP_KEEPCNT: 3611 val = keepalive_probes(tp); 3612 break; 3613 case TCP_SYNCNT: 3614 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3615 break; 3616 case TCP_LINGER2: 3617 val = tp->linger2; 3618 if (val >= 0) 3619 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3620 break; 3621 case TCP_DEFER_ACCEPT: 3622 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3623 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3624 break; 3625 case TCP_WINDOW_CLAMP: 3626 val = tp->window_clamp; 3627 break; 3628 case TCP_INFO: { 3629 struct tcp_info info; 3630 3631 if (get_user(len, optlen)) 3632 return -EFAULT; 3633 3634 tcp_get_info(sk, &info); 3635 3636 len = min_t(unsigned int, len, sizeof(info)); 3637 if (put_user(len, optlen)) 3638 return -EFAULT; 3639 if (copy_to_user(optval, &info, len)) 3640 return -EFAULT; 3641 return 0; 3642 } 3643 case TCP_CC_INFO: { 3644 const struct tcp_congestion_ops *ca_ops; 3645 union tcp_cc_info info; 3646 size_t sz = 0; 3647 int attr; 3648 3649 if (get_user(len, optlen)) 3650 return -EFAULT; 3651 3652 ca_ops = icsk->icsk_ca_ops; 3653 if (ca_ops && ca_ops->get_info) 3654 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3655 3656 len = min_t(unsigned int, len, sz); 3657 if (put_user(len, optlen)) 3658 return -EFAULT; 3659 if (copy_to_user(optval, &info, len)) 3660 return -EFAULT; 3661 return 0; 3662 } 3663 case TCP_QUICKACK: 3664 val = !inet_csk_in_pingpong_mode(sk); 3665 break; 3666 3667 case TCP_CONGESTION: 3668 if (get_user(len, optlen)) 3669 return -EFAULT; 3670 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3671 if (put_user(len, optlen)) 3672 return -EFAULT; 3673 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3674 return -EFAULT; 3675 return 0; 3676 3677 case TCP_ULP: 3678 if (get_user(len, optlen)) 3679 return -EFAULT; 3680 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3681 if (!icsk->icsk_ulp_ops) { 3682 if (put_user(0, optlen)) 3683 return -EFAULT; 3684 return 0; 3685 } 3686 if (put_user(len, optlen)) 3687 return -EFAULT; 3688 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3689 return -EFAULT; 3690 return 0; 3691 3692 case TCP_FASTOPEN_KEY: { 3693 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 3694 unsigned int key_len; 3695 3696 if (get_user(len, optlen)) 3697 return -EFAULT; 3698 3699 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 3700 TCP_FASTOPEN_KEY_LENGTH; 3701 len = min_t(unsigned int, len, key_len); 3702 if (put_user(len, optlen)) 3703 return -EFAULT; 3704 if (copy_to_user(optval, key, len)) 3705 return -EFAULT; 3706 return 0; 3707 } 3708 case TCP_THIN_LINEAR_TIMEOUTS: 3709 val = tp->thin_lto; 3710 break; 3711 3712 case TCP_THIN_DUPACK: 3713 val = 0; 3714 break; 3715 3716 case TCP_REPAIR: 3717 val = tp->repair; 3718 break; 3719 3720 case TCP_REPAIR_QUEUE: 3721 if (tp->repair) 3722 val = tp->repair_queue; 3723 else 3724 return -EINVAL; 3725 break; 3726 3727 case TCP_REPAIR_WINDOW: { 3728 struct tcp_repair_window opt; 3729 3730 if (get_user(len, optlen)) 3731 return -EFAULT; 3732 3733 if (len != sizeof(opt)) 3734 return -EINVAL; 3735 3736 if (!tp->repair) 3737 return -EPERM; 3738 3739 opt.snd_wl1 = tp->snd_wl1; 3740 opt.snd_wnd = tp->snd_wnd; 3741 opt.max_window = tp->max_window; 3742 opt.rcv_wnd = tp->rcv_wnd; 3743 opt.rcv_wup = tp->rcv_wup; 3744 3745 if (copy_to_user(optval, &opt, len)) 3746 return -EFAULT; 3747 return 0; 3748 } 3749 case TCP_QUEUE_SEQ: 3750 if (tp->repair_queue == TCP_SEND_QUEUE) 3751 val = tp->write_seq; 3752 else if (tp->repair_queue == TCP_RECV_QUEUE) 3753 val = tp->rcv_nxt; 3754 else 3755 return -EINVAL; 3756 break; 3757 3758 case TCP_USER_TIMEOUT: 3759 val = icsk->icsk_user_timeout; 3760 break; 3761 3762 case TCP_FASTOPEN: 3763 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3764 break; 3765 3766 case TCP_FASTOPEN_CONNECT: 3767 val = tp->fastopen_connect; 3768 break; 3769 3770 case TCP_FASTOPEN_NO_COOKIE: 3771 val = tp->fastopen_no_cookie; 3772 break; 3773 3774 case TCP_TX_DELAY: 3775 val = tp->tcp_tx_delay; 3776 break; 3777 3778 case TCP_TIMESTAMP: 3779 val = tcp_time_stamp_raw() + tp->tsoffset; 3780 break; 3781 case TCP_NOTSENT_LOWAT: 3782 val = tp->notsent_lowat; 3783 break; 3784 case TCP_INQ: 3785 val = tp->recvmsg_inq; 3786 break; 3787 case TCP_SAVE_SYN: 3788 val = tp->save_syn; 3789 break; 3790 case TCP_SAVED_SYN: { 3791 if (get_user(len, optlen)) 3792 return -EFAULT; 3793 3794 lock_sock(sk); 3795 if (tp->saved_syn) { 3796 if (len < tcp_saved_syn_len(tp->saved_syn)) { 3797 if (put_user(tcp_saved_syn_len(tp->saved_syn), 3798 optlen)) { 3799 release_sock(sk); 3800 return -EFAULT; 3801 } 3802 release_sock(sk); 3803 return -EINVAL; 3804 } 3805 len = tcp_saved_syn_len(tp->saved_syn); 3806 if (put_user(len, optlen)) { 3807 release_sock(sk); 3808 return -EFAULT; 3809 } 3810 if (copy_to_user(optval, tp->saved_syn->data, len)) { 3811 release_sock(sk); 3812 return -EFAULT; 3813 } 3814 tcp_saved_syn_free(tp); 3815 release_sock(sk); 3816 } else { 3817 release_sock(sk); 3818 len = 0; 3819 if (put_user(len, optlen)) 3820 return -EFAULT; 3821 } 3822 return 0; 3823 } 3824 #ifdef CONFIG_MMU 3825 case TCP_ZEROCOPY_RECEIVE: { 3826 struct tcp_zerocopy_receive zc; 3827 int err; 3828 3829 if (get_user(len, optlen)) 3830 return -EFAULT; 3831 if (len < offsetofend(struct tcp_zerocopy_receive, length)) 3832 return -EINVAL; 3833 if (len > sizeof(zc)) { 3834 len = sizeof(zc); 3835 if (put_user(len, optlen)) 3836 return -EFAULT; 3837 } 3838 if (copy_from_user(&zc, optval, len)) 3839 return -EFAULT; 3840 lock_sock(sk); 3841 err = tcp_zerocopy_receive(sk, &zc); 3842 release_sock(sk); 3843 if (len == sizeof(zc)) 3844 goto zerocopy_rcv_sk_err; 3845 switch (len) { 3846 case offsetofend(struct tcp_zerocopy_receive, err): 3847 goto zerocopy_rcv_sk_err; 3848 case offsetofend(struct tcp_zerocopy_receive, inq): 3849 goto zerocopy_rcv_inq; 3850 case offsetofend(struct tcp_zerocopy_receive, length): 3851 default: 3852 goto zerocopy_rcv_out; 3853 } 3854 zerocopy_rcv_sk_err: 3855 if (!err) 3856 zc.err = sock_error(sk); 3857 zerocopy_rcv_inq: 3858 zc.inq = tcp_inq_hint(sk); 3859 zerocopy_rcv_out: 3860 if (!err && copy_to_user(optval, &zc, len)) 3861 err = -EFAULT; 3862 return err; 3863 } 3864 #endif 3865 default: 3866 return -ENOPROTOOPT; 3867 } 3868 3869 if (put_user(len, optlen)) 3870 return -EFAULT; 3871 if (copy_to_user(optval, &val, len)) 3872 return -EFAULT; 3873 return 0; 3874 } 3875 3876 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3877 int __user *optlen) 3878 { 3879 struct inet_connection_sock *icsk = inet_csk(sk); 3880 3881 if (level != SOL_TCP) 3882 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3883 optval, optlen); 3884 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3885 } 3886 EXPORT_SYMBOL(tcp_getsockopt); 3887 3888 #ifdef CONFIG_TCP_MD5SIG 3889 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3890 static DEFINE_MUTEX(tcp_md5sig_mutex); 3891 static bool tcp_md5sig_pool_populated = false; 3892 3893 static void __tcp_alloc_md5sig_pool(void) 3894 { 3895 struct crypto_ahash *hash; 3896 int cpu; 3897 3898 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3899 if (IS_ERR(hash)) 3900 return; 3901 3902 for_each_possible_cpu(cpu) { 3903 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3904 struct ahash_request *req; 3905 3906 if (!scratch) { 3907 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3908 sizeof(struct tcphdr), 3909 GFP_KERNEL, 3910 cpu_to_node(cpu)); 3911 if (!scratch) 3912 return; 3913 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3914 } 3915 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3916 continue; 3917 3918 req = ahash_request_alloc(hash, GFP_KERNEL); 3919 if (!req) 3920 return; 3921 3922 ahash_request_set_callback(req, 0, NULL, NULL); 3923 3924 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3925 } 3926 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3927 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3928 */ 3929 smp_wmb(); 3930 tcp_md5sig_pool_populated = true; 3931 } 3932 3933 bool tcp_alloc_md5sig_pool(void) 3934 { 3935 if (unlikely(!tcp_md5sig_pool_populated)) { 3936 mutex_lock(&tcp_md5sig_mutex); 3937 3938 if (!tcp_md5sig_pool_populated) { 3939 __tcp_alloc_md5sig_pool(); 3940 if (tcp_md5sig_pool_populated) 3941 static_branch_inc(&tcp_md5_needed); 3942 } 3943 3944 mutex_unlock(&tcp_md5sig_mutex); 3945 } 3946 return tcp_md5sig_pool_populated; 3947 } 3948 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3949 3950 3951 /** 3952 * tcp_get_md5sig_pool - get md5sig_pool for this user 3953 * 3954 * We use percpu structure, so if we succeed, we exit with preemption 3955 * and BH disabled, to make sure another thread or softirq handling 3956 * wont try to get same context. 3957 */ 3958 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3959 { 3960 local_bh_disable(); 3961 3962 if (tcp_md5sig_pool_populated) { 3963 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3964 smp_rmb(); 3965 return this_cpu_ptr(&tcp_md5sig_pool); 3966 } 3967 local_bh_enable(); 3968 return NULL; 3969 } 3970 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3971 3972 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3973 const struct sk_buff *skb, unsigned int header_len) 3974 { 3975 struct scatterlist sg; 3976 const struct tcphdr *tp = tcp_hdr(skb); 3977 struct ahash_request *req = hp->md5_req; 3978 unsigned int i; 3979 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3980 skb_headlen(skb) - header_len : 0; 3981 const struct skb_shared_info *shi = skb_shinfo(skb); 3982 struct sk_buff *frag_iter; 3983 3984 sg_init_table(&sg, 1); 3985 3986 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3987 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3988 if (crypto_ahash_update(req)) 3989 return 1; 3990 3991 for (i = 0; i < shi->nr_frags; ++i) { 3992 const skb_frag_t *f = &shi->frags[i]; 3993 unsigned int offset = skb_frag_off(f); 3994 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3995 3996 sg_set_page(&sg, page, skb_frag_size(f), 3997 offset_in_page(offset)); 3998 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3999 if (crypto_ahash_update(req)) 4000 return 1; 4001 } 4002 4003 skb_walk_frags(skb, frag_iter) 4004 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4005 return 1; 4006 4007 return 0; 4008 } 4009 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4010 4011 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4012 { 4013 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4014 struct scatterlist sg; 4015 4016 sg_init_one(&sg, key->key, keylen); 4017 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4018 4019 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4020 return data_race(crypto_ahash_update(hp->md5_req)); 4021 } 4022 EXPORT_SYMBOL(tcp_md5_hash_key); 4023 4024 #endif 4025 4026 void tcp_done(struct sock *sk) 4027 { 4028 struct request_sock *req; 4029 4030 /* We might be called with a new socket, after 4031 * inet_csk_prepare_forced_close() has been called 4032 * so we can not use lockdep_sock_is_held(sk) 4033 */ 4034 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4035 4036 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4037 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4038 4039 tcp_set_state(sk, TCP_CLOSE); 4040 tcp_clear_xmit_timers(sk); 4041 if (req) 4042 reqsk_fastopen_remove(sk, req, false); 4043 4044 sk->sk_shutdown = SHUTDOWN_MASK; 4045 4046 if (!sock_flag(sk, SOCK_DEAD)) 4047 sk->sk_state_change(sk); 4048 else 4049 inet_csk_destroy_sock(sk); 4050 } 4051 EXPORT_SYMBOL_GPL(tcp_done); 4052 4053 int tcp_abort(struct sock *sk, int err) 4054 { 4055 if (!sk_fullsock(sk)) { 4056 if (sk->sk_state == TCP_NEW_SYN_RECV) { 4057 struct request_sock *req = inet_reqsk(sk); 4058 4059 local_bh_disable(); 4060 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4061 local_bh_enable(); 4062 return 0; 4063 } 4064 return -EOPNOTSUPP; 4065 } 4066 4067 /* Don't race with userspace socket closes such as tcp_close. */ 4068 lock_sock(sk); 4069 4070 if (sk->sk_state == TCP_LISTEN) { 4071 tcp_set_state(sk, TCP_CLOSE); 4072 inet_csk_listen_stop(sk); 4073 } 4074 4075 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4076 local_bh_disable(); 4077 bh_lock_sock(sk); 4078 4079 if (!sock_flag(sk, SOCK_DEAD)) { 4080 sk->sk_err = err; 4081 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4082 smp_wmb(); 4083 sk->sk_error_report(sk); 4084 if (tcp_need_reset(sk->sk_state)) 4085 tcp_send_active_reset(sk, GFP_ATOMIC); 4086 tcp_done(sk); 4087 } 4088 4089 bh_unlock_sock(sk); 4090 local_bh_enable(); 4091 tcp_write_queue_purge(sk); 4092 release_sock(sk); 4093 return 0; 4094 } 4095 EXPORT_SYMBOL_GPL(tcp_abort); 4096 4097 extern struct tcp_congestion_ops tcp_reno; 4098 4099 static __initdata unsigned long thash_entries; 4100 static int __init set_thash_entries(char *str) 4101 { 4102 ssize_t ret; 4103 4104 if (!str) 4105 return 0; 4106 4107 ret = kstrtoul(str, 0, &thash_entries); 4108 if (ret) 4109 return 0; 4110 4111 return 1; 4112 } 4113 __setup("thash_entries=", set_thash_entries); 4114 4115 static void __init tcp_init_mem(void) 4116 { 4117 unsigned long limit = nr_free_buffer_pages() / 16; 4118 4119 limit = max(limit, 128UL); 4120 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4121 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4122 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4123 } 4124 4125 void __init tcp_init(void) 4126 { 4127 int max_rshare, max_wshare, cnt; 4128 unsigned long limit; 4129 unsigned int i; 4130 4131 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4132 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4133 sizeof_field(struct sk_buff, cb)); 4134 4135 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4136 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 4137 inet_hashinfo_init(&tcp_hashinfo); 4138 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4139 thash_entries, 21, /* one slot per 2 MB*/ 4140 0, 64 * 1024); 4141 tcp_hashinfo.bind_bucket_cachep = 4142 kmem_cache_create("tcp_bind_bucket", 4143 sizeof(struct inet_bind_bucket), 0, 4144 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 4145 4146 /* Size and allocate the main established and bind bucket 4147 * hash tables. 4148 * 4149 * The methodology is similar to that of the buffer cache. 4150 */ 4151 tcp_hashinfo.ehash = 4152 alloc_large_system_hash("TCP established", 4153 sizeof(struct inet_ehash_bucket), 4154 thash_entries, 4155 17, /* one slot per 128 KB of memory */ 4156 0, 4157 NULL, 4158 &tcp_hashinfo.ehash_mask, 4159 0, 4160 thash_entries ? 0 : 512 * 1024); 4161 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4162 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4163 4164 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4165 panic("TCP: failed to alloc ehash_locks"); 4166 tcp_hashinfo.bhash = 4167 alloc_large_system_hash("TCP bind", 4168 sizeof(struct inet_bind_hashbucket), 4169 tcp_hashinfo.ehash_mask + 1, 4170 17, /* one slot per 128 KB of memory */ 4171 0, 4172 &tcp_hashinfo.bhash_size, 4173 NULL, 4174 0, 4175 64 * 1024); 4176 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4177 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4178 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4179 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4180 } 4181 4182 4183 cnt = tcp_hashinfo.ehash_mask + 1; 4184 sysctl_tcp_max_orphans = cnt / 2; 4185 4186 tcp_init_mem(); 4187 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4188 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4189 max_wshare = min(4UL*1024*1024, limit); 4190 max_rshare = min(6UL*1024*1024, limit); 4191 4192 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 4193 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4194 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4195 4196 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 4197 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4198 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4199 4200 pr_info("Hash tables configured (established %u bind %u)\n", 4201 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4202 4203 tcp_v4_init(); 4204 tcp_metrics_init(); 4205 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4206 tcp_tasklet_init(); 4207 mptcp_init(); 4208 } 4209