xref: /openbmc/linux/net/ipv4/syncookies.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  Syncookies implementation for the Linux kernel
3  *
4  *  Copyright (C) 1997 Andi Kleen
5  *  Based on ideas by D.J.Bernstein and Eric Schenk.
6  *
7  *	This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/cryptohash.h>
17 #include <linux/kernel.h>
18 #include <net/tcp.h>
19 
20 /* Timestamps: lowest 9 bits store TCP options */
21 #define TSBITS 9
22 #define TSMASK (((__u32)1 << TSBITS) - 1)
23 
24 extern int sysctl_tcp_syncookies;
25 
26 __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
27 EXPORT_SYMBOL(syncookie_secret);
28 
29 static __init int init_syncookies(void)
30 {
31 	get_random_bytes(syncookie_secret, sizeof(syncookie_secret));
32 	return 0;
33 }
34 __initcall(init_syncookies);
35 
36 #define COOKIEBITS 24	/* Upper bits store count */
37 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
38 
39 static DEFINE_PER_CPU(__u32, cookie_scratch)[16 + 5 + SHA_WORKSPACE_WORDS];
40 
41 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
42 		       u32 count, int c)
43 {
44 	__u32 *tmp = __get_cpu_var(cookie_scratch);
45 
46 	memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
47 	tmp[0] = (__force u32)saddr;
48 	tmp[1] = (__force u32)daddr;
49 	tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
50 	tmp[3] = count;
51 	sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
52 
53 	return tmp[17];
54 }
55 
56 
57 /*
58  * when syncookies are in effect and tcp timestamps are enabled we encode
59  * tcp options in the lowest 9 bits of the timestamp value that will be
60  * sent in the syn-ack.
61  * Since subsequent timestamps use the normal tcp_time_stamp value, we
62  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
63  */
64 __u32 cookie_init_timestamp(struct request_sock *req)
65 {
66 	struct inet_request_sock *ireq;
67 	u32 ts, ts_now = tcp_time_stamp;
68 	u32 options = 0;
69 
70 	ireq = inet_rsk(req);
71 	if (ireq->wscale_ok) {
72 		options = ireq->snd_wscale;
73 		options |= ireq->rcv_wscale << 4;
74 	}
75 	options |= ireq->sack_ok << 8;
76 
77 	ts = ts_now & ~TSMASK;
78 	ts |= options;
79 	if (ts > ts_now) {
80 		ts >>= TSBITS;
81 		ts--;
82 		ts <<= TSBITS;
83 		ts |= options;
84 	}
85 	return ts;
86 }
87 
88 
89 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
90 				   __be16 dport, __u32 sseq, __u32 count,
91 				   __u32 data)
92 {
93 	/*
94 	 * Compute the secure sequence number.
95 	 * The output should be:
96 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
97 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
98 	 * Where sseq is their sequence number and count increases every
99 	 * minute by 1.
100 	 * As an extra hack, we add a small "data" value that encodes the
101 	 * MSS into the second hash value.
102 	 */
103 
104 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
105 		sseq + (count << COOKIEBITS) +
106 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
107 		 & COOKIEMASK));
108 }
109 
110 /*
111  * This retrieves the small "data" value from the syncookie.
112  * If the syncookie is bad, the data returned will be out of
113  * range.  This must be checked by the caller.
114  *
115  * The count value used to generate the cookie must be within
116  * "maxdiff" if the current (passed-in) "count".  The return value
117  * is (__u32)-1 if this test fails.
118  */
119 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
120 				  __be16 sport, __be16 dport, __u32 sseq,
121 				  __u32 count, __u32 maxdiff)
122 {
123 	__u32 diff;
124 
125 	/* Strip away the layers from the cookie */
126 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127 
128 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) - 1 >> COOKIEBITS);
130 	if (diff >= maxdiff)
131 		return (__u32)-1;
132 
133 	return (cookie -
134 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135 		& COOKIEMASK;	/* Leaving the data behind */
136 }
137 
138 /*
139  * This table has to be sorted and terminated with (__u16)-1.
140  * XXX generate a better table.
141  * Unresolved Issues: HIPPI with a 64k MSS is not well supported.
142  */
143 static __u16 const msstab[] = {
144 	64 - 1,
145 	256 - 1,
146 	512 - 1,
147 	536 - 1,
148 	1024 - 1,
149 	1440 - 1,
150 	1460 - 1,
151 	4312 - 1,
152 	(__u16)-1
153 };
154 /* The number doesn't include the -1 terminator */
155 #define NUM_MSS (ARRAY_SIZE(msstab) - 1)
156 
157 /*
158  * Generate a syncookie.  mssp points to the mss, which is returned
159  * rounded down to the value encoded in the cookie.
160  */
161 __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mssp)
162 {
163 	struct tcp_sock *tp = tcp_sk(sk);
164 	const struct iphdr *iph = ip_hdr(skb);
165 	const struct tcphdr *th = tcp_hdr(skb);
166 	int mssind;
167 	const __u16 mss = *mssp;
168 
169 	tp->last_synq_overflow = jiffies;
170 
171 	/* XXX sort msstab[] by probability?  Binary search? */
172 	for (mssind = 0; mss > msstab[mssind + 1]; mssind++)
173 		;
174 	*mssp = msstab[mssind] + 1;
175 
176 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
177 
178 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
179 				     th->source, th->dest, ntohl(th->seq),
180 				     jiffies / (HZ * 60), mssind);
181 }
182 
183 /*
184  * This (misnamed) value is the age of syncookie which is permitted.
185  * Its ideal value should be dependent on TCP_TIMEOUT_INIT and
186  * sysctl_tcp_retries1. It's a rather complicated formula (exponential
187  * backoff) to compute at runtime so it's currently hardcoded here.
188  */
189 #define COUNTER_TRIES 4
190 /*
191  * Check if a ack sequence number is a valid syncookie.
192  * Return the decoded mss if it is, or 0 if not.
193  */
194 static inline int cookie_check(struct sk_buff *skb, __u32 cookie)
195 {
196 	const struct iphdr *iph = ip_hdr(skb);
197 	const struct tcphdr *th = tcp_hdr(skb);
198 	__u32 seq = ntohl(th->seq) - 1;
199 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
200 					    th->source, th->dest, seq,
201 					    jiffies / (HZ * 60),
202 					    COUNTER_TRIES);
203 
204 	return mssind < NUM_MSS ? msstab[mssind] + 1 : 0;
205 }
206 
207 static inline struct sock *get_cookie_sock(struct sock *sk, struct sk_buff *skb,
208 					   struct request_sock *req,
209 					   struct dst_entry *dst)
210 {
211 	struct inet_connection_sock *icsk = inet_csk(sk);
212 	struct sock *child;
213 
214 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst);
215 	if (child)
216 		inet_csk_reqsk_queue_add(sk, req, child);
217 	else
218 		reqsk_free(req);
219 
220 	return child;
221 }
222 
223 
224 /*
225  * when syncookies are in effect and tcp timestamps are enabled we stored
226  * additional tcp options in the timestamp.
227  * This extracts these options from the timestamp echo.
228  *
229  * The lowest 4 bits are for snd_wscale
230  * The next 4 lsb are for rcv_wscale
231  * The next lsb is for sack_ok
232  */
233 void cookie_check_timestamp(struct tcp_options_received *tcp_opt)
234 {
235 	/* echoed timestamp, 9 lowest bits contain options */
236 	u32 options = tcp_opt->rcv_tsecr & TSMASK;
237 
238 	tcp_opt->snd_wscale = options & 0xf;
239 	options >>= 4;
240 	tcp_opt->rcv_wscale = options & 0xf;
241 
242 	tcp_opt->sack_ok = (options >> 4) & 0x1;
243 
244 	if (tcp_opt->sack_ok)
245 		tcp_sack_reset(tcp_opt);
246 
247 	if (tcp_opt->snd_wscale || tcp_opt->rcv_wscale)
248 		tcp_opt->wscale_ok = 1;
249 }
250 EXPORT_SYMBOL(cookie_check_timestamp);
251 
252 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
253 			     struct ip_options *opt)
254 {
255 	struct inet_request_sock *ireq;
256 	struct tcp_request_sock *treq;
257 	struct tcp_sock *tp = tcp_sk(sk);
258 	const struct tcphdr *th = tcp_hdr(skb);
259 	__u32 cookie = ntohl(th->ack_seq) - 1;
260 	struct sock *ret = sk;
261 	struct request_sock *req;
262 	int mss;
263 	struct rtable *rt;
264 	__u8 rcv_wscale;
265 	struct tcp_options_received tcp_opt;
266 
267 	if (!sysctl_tcp_syncookies || !th->ack)
268 		goto out;
269 
270 	if (time_after(jiffies, tp->last_synq_overflow + TCP_TIMEOUT_INIT) ||
271 	    (mss = cookie_check(skb, cookie)) == 0) {
272 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
273 		goto out;
274 	}
275 
276 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
277 
278 	/* check for timestamp cookie support */
279 	memset(&tcp_opt, 0, sizeof(tcp_opt));
280 	tcp_parse_options(skb, &tcp_opt, 0);
281 
282 	if (tcp_opt.saw_tstamp)
283 		cookie_check_timestamp(&tcp_opt);
284 
285 	ret = NULL;
286 	req = inet_reqsk_alloc(&tcp_request_sock_ops); /* for safety */
287 	if (!req)
288 		goto out;
289 
290 	if (security_inet_conn_request(sk, skb, req)) {
291 		reqsk_free(req);
292 		goto out;
293 	}
294 	ireq = inet_rsk(req);
295 	treq = tcp_rsk(req);
296 	treq->rcv_isn		= ntohl(th->seq) - 1;
297 	treq->snt_isn		= cookie;
298 	req->mss		= mss;
299 	ireq->rmt_port		= th->source;
300 	ireq->loc_addr		= ip_hdr(skb)->daddr;
301 	ireq->rmt_addr		= ip_hdr(skb)->saddr;
302 	ireq->ecn_ok		= 0;
303 	ireq->snd_wscale	= tcp_opt.snd_wscale;
304 	ireq->rcv_wscale	= tcp_opt.rcv_wscale;
305 	ireq->sack_ok		= tcp_opt.sack_ok;
306 	ireq->wscale_ok		= tcp_opt.wscale_ok;
307 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
308 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
309 
310 	/* We throwed the options of the initial SYN away, so we hope
311 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
312 	 */
313 	if (opt && opt->optlen) {
314 		int opt_size = sizeof(struct ip_options) + opt->optlen;
315 
316 		ireq->opt = kmalloc(opt_size, GFP_ATOMIC);
317 		if (ireq->opt != NULL && ip_options_echo(ireq->opt, skb)) {
318 			kfree(ireq->opt);
319 			ireq->opt = NULL;
320 		}
321 	}
322 
323 	req->expires	= 0UL;
324 	req->retrans	= 0;
325 
326 	/*
327 	 * We need to lookup the route here to get at the correct
328 	 * window size. We should better make sure that the window size
329 	 * hasn't changed since we received the original syn, but I see
330 	 * no easy way to do this.
331 	 */
332 	{
333 		struct flowi fl = { .nl_u = { .ip4_u =
334 					      { .daddr = ((opt && opt->srr) ?
335 							  opt->faddr :
336 							  ireq->rmt_addr),
337 						.saddr = ireq->loc_addr,
338 						.tos = RT_CONN_FLAGS(sk) } },
339 				    .proto = IPPROTO_TCP,
340 				    .uli_u = { .ports =
341 					       { .sport = th->dest,
342 						 .dport = th->source } } };
343 		security_req_classify_flow(req, &fl);
344 		if (ip_route_output_key(&init_net, &rt, &fl)) {
345 			reqsk_free(req);
346 			goto out;
347 		}
348 	}
349 
350 	/* Try to redo what tcp_v4_send_synack did. */
351 	req->window_clamp = tp->window_clamp ? :dst_metric(&rt->u.dst, RTAX_WINDOW);
352 
353 	tcp_select_initial_window(tcp_full_space(sk), req->mss,
354 				  &req->rcv_wnd, &req->window_clamp,
355 				  ireq->wscale_ok, &rcv_wscale);
356 
357 	ireq->rcv_wscale  = rcv_wscale;
358 
359 	ret = get_cookie_sock(sk, skb, req, &rt->u.dst);
360 out:	return ret;
361 }
362