xref: /openbmc/linux/net/ipv4/syncookies.c (revision e7bae9bb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Syncookies implementation for the Linux kernel
4  *
5  *  Copyright (C) 1997 Andi Kleen
6  *  Based on ideas by D.J.Bernstein and Eric Schenk.
7  */
8 
9 #include <linux/tcp.h>
10 #include <linux/slab.h>
11 #include <linux/random.h>
12 #include <linux/siphash.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <net/secure_seq.h>
16 #include <net/tcp.h>
17 #include <net/route.h>
18 
19 static siphash_key_t syncookie_secret[2] __read_mostly;
20 
21 #define COOKIEBITS 24	/* Upper bits store count */
22 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
23 
24 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
25  * stores TCP options:
26  *
27  * MSB                               LSB
28  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
29  * |  Timestamp | ECN | SACK | WScale  |
30  *
31  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
32  * any) to figure out which TCP options we should use for the rebuilt
33  * connection.
34  *
35  * A WScale setting of '0xf' (which is an invalid scaling value)
36  * means that original syn did not include the TCP window scaling option.
37  */
38 #define TS_OPT_WSCALE_MASK	0xf
39 #define TS_OPT_SACK		BIT(4)
40 #define TS_OPT_ECN		BIT(5)
41 /* There is no TS_OPT_TIMESTAMP:
42  * if ACK contains timestamp option, we already know it was
43  * requested/supported by the syn/synack exchange.
44  */
45 #define TSBITS	6
46 #define TSMASK	(((__u32)1 << TSBITS) - 1)
47 
48 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
49 		       u32 count, int c)
50 {
51 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
52 	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
53 			    (__force u32)sport << 16 | (__force u32)dport,
54 			    count, &syncookie_secret[c]);
55 }
56 
57 
58 /*
59  * when syncookies are in effect and tcp timestamps are enabled we encode
60  * tcp options in the lower bits of the timestamp value that will be
61  * sent in the syn-ack.
62  * Since subsequent timestamps use the normal tcp_time_stamp value, we
63  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
64  */
65 u64 cookie_init_timestamp(struct request_sock *req, u64 now)
66 {
67 	struct inet_request_sock *ireq;
68 	u32 ts, ts_now = tcp_ns_to_ts(now);
69 	u32 options = 0;
70 
71 	ireq = inet_rsk(req);
72 
73 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
74 	if (ireq->sack_ok)
75 		options |= TS_OPT_SACK;
76 	if (ireq->ecn_ok)
77 		options |= TS_OPT_ECN;
78 
79 	ts = ts_now & ~TSMASK;
80 	ts |= options;
81 	if (ts > ts_now) {
82 		ts >>= TSBITS;
83 		ts--;
84 		ts <<= TSBITS;
85 		ts |= options;
86 	}
87 	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
88 }
89 
90 
91 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
92 				   __be16 dport, __u32 sseq, __u32 data)
93 {
94 	/*
95 	 * Compute the secure sequence number.
96 	 * The output should be:
97 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
98 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
99 	 * Where sseq is their sequence number and count increases every
100 	 * minute by 1.
101 	 * As an extra hack, we add a small "data" value that encodes the
102 	 * MSS into the second hash value.
103 	 */
104 	u32 count = tcp_cookie_time();
105 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106 		sseq + (count << COOKIEBITS) +
107 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108 		 & COOKIEMASK));
109 }
110 
111 /*
112  * This retrieves the small "data" value from the syncookie.
113  * If the syncookie is bad, the data returned will be out of
114  * range.  This must be checked by the caller.
115  *
116  * The count value used to generate the cookie must be less than
117  * MAX_SYNCOOKIE_AGE minutes in the past.
118  * The return value (__u32)-1 if this test fails.
119  */
120 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121 				  __be16 sport, __be16 dport, __u32 sseq)
122 {
123 	u32 diff, count = tcp_cookie_time();
124 
125 	/* Strip away the layers from the cookie */
126 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127 
128 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
130 	if (diff >= MAX_SYNCOOKIE_AGE)
131 		return (__u32)-1;
132 
133 	return (cookie -
134 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135 		& COOKIEMASK;	/* Leaving the data behind */
136 }
137 
138 /*
139  * MSS Values are chosen based on the 2011 paper
140  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141  * Values ..
142  *  .. lower than 536 are rare (< 0.2%)
143  *  .. between 537 and 1299 account for less than < 1.5% of observed values
144  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145  *  .. exceeding 1460 are very rare (< 0.04%)
146  *
147  *  1460 is the single most frequently announced mss value (30 to 46% depending
148  *  on monitor location).  Table must be sorted.
149  */
150 static __u16 const msstab[] = {
151 	536,
152 	1300,
153 	1440,	/* 1440, 1452: PPPoE */
154 	1460,
155 };
156 
157 /*
158  * Generate a syncookie.  mssp points to the mss, which is returned
159  * rounded down to the value encoded in the cookie.
160  */
161 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162 			      u16 *mssp)
163 {
164 	int mssind;
165 	const __u16 mss = *mssp;
166 
167 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168 		if (mss >= msstab[mssind])
169 			break;
170 	*mssp = msstab[mssind];
171 
172 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173 				     th->source, th->dest, ntohl(th->seq),
174 				     mssind);
175 }
176 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177 
178 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
179 {
180 	const struct iphdr *iph = ip_hdr(skb);
181 	const struct tcphdr *th = tcp_hdr(skb);
182 
183 	return __cookie_v4_init_sequence(iph, th, mssp);
184 }
185 
186 /*
187  * Check if a ack sequence number is a valid syncookie.
188  * Return the decoded mss if it is, or 0 if not.
189  */
190 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
191 		      u32 cookie)
192 {
193 	__u32 seq = ntohl(th->seq) - 1;
194 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
195 					    th->source, th->dest, seq);
196 
197 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
198 }
199 EXPORT_SYMBOL_GPL(__cookie_v4_check);
200 
201 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
202 				 struct request_sock *req,
203 				 struct dst_entry *dst, u32 tsoff)
204 {
205 	struct inet_connection_sock *icsk = inet_csk(sk);
206 	struct sock *child;
207 	bool own_req;
208 
209 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
210 						 NULL, &own_req);
211 	if (child) {
212 		refcount_set(&req->rsk_refcnt, 1);
213 		tcp_sk(child)->tsoffset = tsoff;
214 		sock_rps_save_rxhash(child, skb);
215 
216 		if (rsk_drop_req(req)) {
217 			refcount_set(&req->rsk_refcnt, 2);
218 			return child;
219 		}
220 
221 		if (inet_csk_reqsk_queue_add(sk, req, child))
222 			return child;
223 
224 		bh_unlock_sock(child);
225 		sock_put(child);
226 	}
227 	__reqsk_free(req);
228 
229 	return NULL;
230 }
231 EXPORT_SYMBOL(tcp_get_cookie_sock);
232 
233 /*
234  * when syncookies are in effect and tcp timestamps are enabled we stored
235  * additional tcp options in the timestamp.
236  * This extracts these options from the timestamp echo.
237  *
238  * return false if we decode a tcp option that is disabled
239  * on the host.
240  */
241 bool cookie_timestamp_decode(const struct net *net,
242 			     struct tcp_options_received *tcp_opt)
243 {
244 	/* echoed timestamp, lowest bits contain options */
245 	u32 options = tcp_opt->rcv_tsecr;
246 
247 	if (!tcp_opt->saw_tstamp)  {
248 		tcp_clear_options(tcp_opt);
249 		return true;
250 	}
251 
252 	if (!net->ipv4.sysctl_tcp_timestamps)
253 		return false;
254 
255 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
256 
257 	if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack)
258 		return false;
259 
260 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
261 		return true; /* no window scaling */
262 
263 	tcp_opt->wscale_ok = 1;
264 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
265 
266 	return net->ipv4.sysctl_tcp_window_scaling != 0;
267 }
268 EXPORT_SYMBOL(cookie_timestamp_decode);
269 
270 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
271 		   const struct net *net, const struct dst_entry *dst)
272 {
273 	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
274 
275 	if (!ecn_ok)
276 		return false;
277 
278 	if (net->ipv4.sysctl_tcp_ecn)
279 		return true;
280 
281 	return dst_feature(dst, RTAX_FEATURE_ECN);
282 }
283 EXPORT_SYMBOL(cookie_ecn_ok);
284 
285 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
286 					    struct sock *sk,
287 					    struct sk_buff *skb)
288 {
289 	struct request_sock *req;
290 
291 #ifdef CONFIG_MPTCP
292 	struct tcp_request_sock *treq;
293 
294 	if (sk_is_mptcp(sk))
295 		ops = &mptcp_subflow_request_sock_ops;
296 #endif
297 
298 	req = inet_reqsk_alloc(ops, sk, false);
299 	if (!req)
300 		return NULL;
301 
302 #if IS_ENABLED(CONFIG_MPTCP)
303 	treq = tcp_rsk(req);
304 	treq->is_mptcp = sk_is_mptcp(sk);
305 	if (treq->is_mptcp) {
306 		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
307 
308 		if (err) {
309 			reqsk_free(req);
310 			return NULL;
311 		}
312 	}
313 #endif
314 
315 	return req;
316 }
317 EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
318 
319 /* On input, sk is a listener.
320  * Output is listener if incoming packet would not create a child
321  *           NULL if memory could not be allocated.
322  */
323 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
324 {
325 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
326 	struct tcp_options_received tcp_opt;
327 	struct inet_request_sock *ireq;
328 	struct tcp_request_sock *treq;
329 	struct tcp_sock *tp = tcp_sk(sk);
330 	const struct tcphdr *th = tcp_hdr(skb);
331 	__u32 cookie = ntohl(th->ack_seq) - 1;
332 	struct sock *ret = sk;
333 	struct request_sock *req;
334 	int mss;
335 	struct rtable *rt;
336 	__u8 rcv_wscale;
337 	struct flowi4 fl4;
338 	u32 tsoff = 0;
339 
340 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
341 		goto out;
342 
343 	if (tcp_synq_no_recent_overflow(sk))
344 		goto out;
345 
346 	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
347 	if (mss == 0) {
348 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
349 		goto out;
350 	}
351 
352 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
353 
354 	/* check for timestamp cookie support */
355 	memset(&tcp_opt, 0, sizeof(tcp_opt));
356 	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
357 
358 	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
359 		tsoff = secure_tcp_ts_off(sock_net(sk),
360 					  ip_hdr(skb)->daddr,
361 					  ip_hdr(skb)->saddr);
362 		tcp_opt.rcv_tsecr -= tsoff;
363 	}
364 
365 	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
366 		goto out;
367 
368 	ret = NULL;
369 	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, sk, skb);
370 	if (!req)
371 		goto out;
372 
373 	ireq = inet_rsk(req);
374 	treq = tcp_rsk(req);
375 	treq->rcv_isn		= ntohl(th->seq) - 1;
376 	treq->snt_isn		= cookie;
377 	treq->ts_off		= 0;
378 	treq->txhash		= net_tx_rndhash();
379 	req->mss		= mss;
380 	ireq->ir_num		= ntohs(th->dest);
381 	ireq->ir_rmt_port	= th->source;
382 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
383 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
384 	ireq->ir_mark		= inet_request_mark(sk, skb);
385 	ireq->snd_wscale	= tcp_opt.snd_wscale;
386 	ireq->sack_ok		= tcp_opt.sack_ok;
387 	ireq->wscale_ok		= tcp_opt.wscale_ok;
388 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
389 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
390 	treq->snt_synack	= 0;
391 	treq->tfo_listener	= false;
392 
393 	if (IS_ENABLED(CONFIG_SMC))
394 		ireq->smc_ok = 0;
395 
396 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
397 
398 	/* We throwed the options of the initial SYN away, so we hope
399 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
400 	 */
401 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
402 
403 	if (security_inet_conn_request(sk, skb, req)) {
404 		reqsk_free(req);
405 		goto out;
406 	}
407 
408 	req->num_retrans = 0;
409 
410 	/*
411 	 * We need to lookup the route here to get at the correct
412 	 * window size. We should better make sure that the window size
413 	 * hasn't changed since we received the original syn, but I see
414 	 * no easy way to do this.
415 	 */
416 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
417 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
418 			   inet_sk_flowi_flags(sk),
419 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
420 			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
421 	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
422 	rt = ip_route_output_key(sock_net(sk), &fl4);
423 	if (IS_ERR(rt)) {
424 		reqsk_free(req);
425 		goto out;
426 	}
427 
428 	/* Try to redo what tcp_v4_send_synack did. */
429 	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
430 
431 	tcp_select_initial_window(sk, tcp_full_space(sk), req->mss,
432 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
433 				  ireq->wscale_ok, &rcv_wscale,
434 				  dst_metric(&rt->dst, RTAX_INITRWND));
435 
436 	ireq->rcv_wscale  = rcv_wscale;
437 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
438 
439 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
440 	/* ip_queue_xmit() depends on our flow being setup
441 	 * Normal sockets get it right from inet_csk_route_child_sock()
442 	 */
443 	if (ret)
444 		inet_sk(ret)->cork.fl.u.ip4 = fl4;
445 out:	return ret;
446 }
447