1 /* 2 * Syncookies implementation for the Linux kernel 3 * 4 * Copyright (C) 1997 Andi Kleen 5 * Based on ideas by D.J.Bernstein and Eric Schenk. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #include <linux/tcp.h> 14 #include <linux/slab.h> 15 #include <linux/random.h> 16 #include <linux/siphash.h> 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <net/secure_seq.h> 20 #include <net/tcp.h> 21 #include <net/route.h> 22 23 static siphash_key_t syncookie_secret[2] __read_mostly; 24 25 #define COOKIEBITS 24 /* Upper bits store count */ 26 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1) 27 28 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK 29 * stores TCP options: 30 * 31 * MSB LSB 32 * | 31 ... 6 | 5 | 4 | 3 2 1 0 | 33 * | Timestamp | ECN | SACK | WScale | 34 * 35 * When we receive a valid cookie-ACK, we look at the echoed tsval (if 36 * any) to figure out which TCP options we should use for the rebuilt 37 * connection. 38 * 39 * A WScale setting of '0xf' (which is an invalid scaling value) 40 * means that original syn did not include the TCP window scaling option. 41 */ 42 #define TS_OPT_WSCALE_MASK 0xf 43 #define TS_OPT_SACK BIT(4) 44 #define TS_OPT_ECN BIT(5) 45 /* There is no TS_OPT_TIMESTAMP: 46 * if ACK contains timestamp option, we already know it was 47 * requested/supported by the syn/synack exchange. 48 */ 49 #define TSBITS 6 50 #define TSMASK (((__u32)1 << TSBITS) - 1) 51 52 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport, 53 u32 count, int c) 54 { 55 net_get_random_once(syncookie_secret, sizeof(syncookie_secret)); 56 return siphash_4u32((__force u32)saddr, (__force u32)daddr, 57 (__force u32)sport << 16 | (__force u32)dport, 58 count, &syncookie_secret[c]); 59 } 60 61 62 /* 63 * when syncookies are in effect and tcp timestamps are enabled we encode 64 * tcp options in the lower bits of the timestamp value that will be 65 * sent in the syn-ack. 66 * Since subsequent timestamps use the normal tcp_time_stamp value, we 67 * must make sure that the resulting initial timestamp is <= tcp_time_stamp. 68 */ 69 u64 cookie_init_timestamp(struct request_sock *req) 70 { 71 struct inet_request_sock *ireq; 72 u32 ts, ts_now = tcp_time_stamp_raw(); 73 u32 options = 0; 74 75 ireq = inet_rsk(req); 76 77 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK; 78 if (ireq->sack_ok) 79 options |= TS_OPT_SACK; 80 if (ireq->ecn_ok) 81 options |= TS_OPT_ECN; 82 83 ts = ts_now & ~TSMASK; 84 ts |= options; 85 if (ts > ts_now) { 86 ts >>= TSBITS; 87 ts--; 88 ts <<= TSBITS; 89 ts |= options; 90 } 91 return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ); 92 } 93 94 95 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport, 96 __be16 dport, __u32 sseq, __u32 data) 97 { 98 /* 99 * Compute the secure sequence number. 100 * The output should be: 101 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24) 102 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24). 103 * Where sseq is their sequence number and count increases every 104 * minute by 1. 105 * As an extra hack, we add a small "data" value that encodes the 106 * MSS into the second hash value. 107 */ 108 u32 count = tcp_cookie_time(); 109 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) + 110 sseq + (count << COOKIEBITS) + 111 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data) 112 & COOKIEMASK)); 113 } 114 115 /* 116 * This retrieves the small "data" value from the syncookie. 117 * If the syncookie is bad, the data returned will be out of 118 * range. This must be checked by the caller. 119 * 120 * The count value used to generate the cookie must be less than 121 * MAX_SYNCOOKIE_AGE minutes in the past. 122 * The return value (__u32)-1 if this test fails. 123 */ 124 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr, 125 __be16 sport, __be16 dport, __u32 sseq) 126 { 127 u32 diff, count = tcp_cookie_time(); 128 129 /* Strip away the layers from the cookie */ 130 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq; 131 132 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */ 133 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS); 134 if (diff >= MAX_SYNCOOKIE_AGE) 135 return (__u32)-1; 136 137 return (cookie - 138 cookie_hash(saddr, daddr, sport, dport, count - diff, 1)) 139 & COOKIEMASK; /* Leaving the data behind */ 140 } 141 142 /* 143 * MSS Values are chosen based on the 2011 paper 144 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson. 145 * Values .. 146 * .. lower than 536 are rare (< 0.2%) 147 * .. between 537 and 1299 account for less than < 1.5% of observed values 148 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values 149 * .. exceeding 1460 are very rare (< 0.04%) 150 * 151 * 1460 is the single most frequently announced mss value (30 to 46% depending 152 * on monitor location). Table must be sorted. 153 */ 154 static __u16 const msstab[] = { 155 536, 156 1300, 157 1440, /* 1440, 1452: PPPoE */ 158 1460, 159 }; 160 161 /* 162 * Generate a syncookie. mssp points to the mss, which is returned 163 * rounded down to the value encoded in the cookie. 164 */ 165 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 166 u16 *mssp) 167 { 168 int mssind; 169 const __u16 mss = *mssp; 170 171 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--) 172 if (mss >= msstab[mssind]) 173 break; 174 *mssp = msstab[mssind]; 175 176 return secure_tcp_syn_cookie(iph->saddr, iph->daddr, 177 th->source, th->dest, ntohl(th->seq), 178 mssind); 179 } 180 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence); 181 182 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp) 183 { 184 const struct iphdr *iph = ip_hdr(skb); 185 const struct tcphdr *th = tcp_hdr(skb); 186 187 return __cookie_v4_init_sequence(iph, th, mssp); 188 } 189 190 /* 191 * Check if a ack sequence number is a valid syncookie. 192 * Return the decoded mss if it is, or 0 if not. 193 */ 194 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 195 u32 cookie) 196 { 197 __u32 seq = ntohl(th->seq) - 1; 198 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr, 199 th->source, th->dest, seq); 200 201 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0; 202 } 203 EXPORT_SYMBOL_GPL(__cookie_v4_check); 204 205 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 206 struct request_sock *req, 207 struct dst_entry *dst, u32 tsoff) 208 { 209 struct inet_connection_sock *icsk = inet_csk(sk); 210 struct sock *child; 211 bool own_req; 212 213 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst, 214 NULL, &own_req); 215 if (child) { 216 refcount_set(&req->rsk_refcnt, 1); 217 tcp_sk(child)->tsoffset = tsoff; 218 sock_rps_save_rxhash(child, skb); 219 if (inet_csk_reqsk_queue_add(sk, req, child)) 220 return child; 221 222 bh_unlock_sock(child); 223 sock_put(child); 224 } 225 __reqsk_free(req); 226 227 return NULL; 228 } 229 EXPORT_SYMBOL(tcp_get_cookie_sock); 230 231 /* 232 * when syncookies are in effect and tcp timestamps are enabled we stored 233 * additional tcp options in the timestamp. 234 * This extracts these options from the timestamp echo. 235 * 236 * return false if we decode a tcp option that is disabled 237 * on the host. 238 */ 239 bool cookie_timestamp_decode(const struct net *net, 240 struct tcp_options_received *tcp_opt) 241 { 242 /* echoed timestamp, lowest bits contain options */ 243 u32 options = tcp_opt->rcv_tsecr; 244 245 if (!tcp_opt->saw_tstamp) { 246 tcp_clear_options(tcp_opt); 247 return true; 248 } 249 250 if (!net->ipv4.sysctl_tcp_timestamps) 251 return false; 252 253 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0; 254 255 if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack) 256 return false; 257 258 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK) 259 return true; /* no window scaling */ 260 261 tcp_opt->wscale_ok = 1; 262 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK; 263 264 return net->ipv4.sysctl_tcp_window_scaling != 0; 265 } 266 EXPORT_SYMBOL(cookie_timestamp_decode); 267 268 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt, 269 const struct net *net, const struct dst_entry *dst) 270 { 271 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN; 272 273 if (!ecn_ok) 274 return false; 275 276 if (net->ipv4.sysctl_tcp_ecn) 277 return true; 278 279 return dst_feature(dst, RTAX_FEATURE_ECN); 280 } 281 EXPORT_SYMBOL(cookie_ecn_ok); 282 283 /* On input, sk is a listener. 284 * Output is listener if incoming packet would not create a child 285 * NULL if memory could not be allocated. 286 */ 287 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb) 288 { 289 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 290 struct tcp_options_received tcp_opt; 291 struct inet_request_sock *ireq; 292 struct tcp_request_sock *treq; 293 struct tcp_sock *tp = tcp_sk(sk); 294 const struct tcphdr *th = tcp_hdr(skb); 295 __u32 cookie = ntohl(th->ack_seq) - 1; 296 struct sock *ret = sk; 297 struct request_sock *req; 298 int mss; 299 struct rtable *rt; 300 __u8 rcv_wscale; 301 struct flowi4 fl4; 302 u32 tsoff = 0; 303 304 if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst) 305 goto out; 306 307 if (tcp_synq_no_recent_overflow(sk)) 308 goto out; 309 310 mss = __cookie_v4_check(ip_hdr(skb), th, cookie); 311 if (mss == 0) { 312 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED); 313 goto out; 314 } 315 316 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV); 317 318 /* check for timestamp cookie support */ 319 memset(&tcp_opt, 0, sizeof(tcp_opt)); 320 tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL); 321 322 if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) { 323 tsoff = secure_tcp_ts_off(sock_net(sk), 324 ip_hdr(skb)->daddr, 325 ip_hdr(skb)->saddr); 326 tcp_opt.rcv_tsecr -= tsoff; 327 } 328 329 if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt)) 330 goto out; 331 332 ret = NULL; 333 req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */ 334 if (!req) 335 goto out; 336 337 ireq = inet_rsk(req); 338 treq = tcp_rsk(req); 339 treq->rcv_isn = ntohl(th->seq) - 1; 340 treq->snt_isn = cookie; 341 treq->ts_off = 0; 342 treq->txhash = net_tx_rndhash(); 343 req->mss = mss; 344 ireq->ir_num = ntohs(th->dest); 345 ireq->ir_rmt_port = th->source; 346 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 347 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 348 ireq->ir_mark = inet_request_mark(sk, skb); 349 ireq->snd_wscale = tcp_opt.snd_wscale; 350 ireq->sack_ok = tcp_opt.sack_ok; 351 ireq->wscale_ok = tcp_opt.wscale_ok; 352 ireq->tstamp_ok = tcp_opt.saw_tstamp; 353 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0; 354 treq->snt_synack = 0; 355 treq->tfo_listener = false; 356 if (IS_ENABLED(CONFIG_SMC)) 357 ireq->smc_ok = 0; 358 359 ireq->ir_iif = inet_request_bound_dev_if(sk, skb); 360 361 /* We throwed the options of the initial SYN away, so we hope 362 * the ACK carries the same options again (see RFC1122 4.2.3.8) 363 */ 364 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb)); 365 366 if (security_inet_conn_request(sk, skb, req)) { 367 reqsk_free(req); 368 goto out; 369 } 370 371 req->num_retrans = 0; 372 373 /* 374 * We need to lookup the route here to get at the correct 375 * window size. We should better make sure that the window size 376 * hasn't changed since we received the original syn, but I see 377 * no easy way to do this. 378 */ 379 flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark, 380 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP, 381 inet_sk_flowi_flags(sk), 382 opt->srr ? opt->faddr : ireq->ir_rmt_addr, 383 ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid); 384 security_req_classify_flow(req, flowi4_to_flowi(&fl4)); 385 rt = ip_route_output_key(sock_net(sk), &fl4); 386 if (IS_ERR(rt)) { 387 reqsk_free(req); 388 goto out; 389 } 390 391 /* Try to redo what tcp_v4_send_synack did. */ 392 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW); 393 394 tcp_select_initial_window(sk, tcp_full_space(sk), req->mss, 395 &req->rsk_rcv_wnd, &req->rsk_window_clamp, 396 ireq->wscale_ok, &rcv_wscale, 397 dst_metric(&rt->dst, RTAX_INITRWND)); 398 399 ireq->rcv_wscale = rcv_wscale; 400 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst); 401 402 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff); 403 /* ip_queue_xmit() depends on our flow being setup 404 * Normal sockets get it right from inet_csk_route_child_sock() 405 */ 406 if (ret) 407 inet_sk(ret)->cork.fl.u.ip4 = fl4; 408 out: return ret; 409 } 410