xref: /openbmc/linux/net/ipv4/syncookies.c (revision a8fe58ce)
1 /*
2  *  Syncookies implementation for the Linux kernel
3  *
4  *  Copyright (C) 1997 Andi Kleen
5  *  Based on ideas by D.J.Bernstein and Eric Schenk.
6  *
7  *	This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/cryptohash.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <net/tcp.h>
20 #include <net/route.h>
21 
22 extern int sysctl_tcp_syncookies;
23 
24 static u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS] __read_mostly;
25 
26 #define COOKIEBITS 24	/* Upper bits store count */
27 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
28 
29 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
30  * stores TCP options:
31  *
32  * MSB                               LSB
33  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
34  * |  Timestamp | ECN | SACK | WScale  |
35  *
36  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
37  * any) to figure out which TCP options we should use for the rebuilt
38  * connection.
39  *
40  * A WScale setting of '0xf' (which is an invalid scaling value)
41  * means that original syn did not include the TCP window scaling option.
42  */
43 #define TS_OPT_WSCALE_MASK	0xf
44 #define TS_OPT_SACK		BIT(4)
45 #define TS_OPT_ECN		BIT(5)
46 /* There is no TS_OPT_TIMESTAMP:
47  * if ACK contains timestamp option, we already know it was
48  * requested/supported by the syn/synack exchange.
49  */
50 #define TSBITS	6
51 #define TSMASK	(((__u32)1 << TSBITS) - 1)
52 
53 static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
54 		      ipv4_cookie_scratch);
55 
56 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
57 		       u32 count, int c)
58 {
59 	__u32 *tmp;
60 
61 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
62 
63 	tmp  = this_cpu_ptr(ipv4_cookie_scratch);
64 	memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
65 	tmp[0] = (__force u32)saddr;
66 	tmp[1] = (__force u32)daddr;
67 	tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
68 	tmp[3] = count;
69 	sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
70 
71 	return tmp[17];
72 }
73 
74 
75 /*
76  * when syncookies are in effect and tcp timestamps are enabled we encode
77  * tcp options in the lower bits of the timestamp value that will be
78  * sent in the syn-ack.
79  * Since subsequent timestamps use the normal tcp_time_stamp value, we
80  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
81  */
82 __u32 cookie_init_timestamp(struct request_sock *req)
83 {
84 	struct inet_request_sock *ireq;
85 	u32 ts, ts_now = tcp_time_stamp;
86 	u32 options = 0;
87 
88 	ireq = inet_rsk(req);
89 
90 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
91 	if (ireq->sack_ok)
92 		options |= TS_OPT_SACK;
93 	if (ireq->ecn_ok)
94 		options |= TS_OPT_ECN;
95 
96 	ts = ts_now & ~TSMASK;
97 	ts |= options;
98 	if (ts > ts_now) {
99 		ts >>= TSBITS;
100 		ts--;
101 		ts <<= TSBITS;
102 		ts |= options;
103 	}
104 	return ts;
105 }
106 
107 
108 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
109 				   __be16 dport, __u32 sseq, __u32 data)
110 {
111 	/*
112 	 * Compute the secure sequence number.
113 	 * The output should be:
114 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
115 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
116 	 * Where sseq is their sequence number and count increases every
117 	 * minute by 1.
118 	 * As an extra hack, we add a small "data" value that encodes the
119 	 * MSS into the second hash value.
120 	 */
121 	u32 count = tcp_cookie_time();
122 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
123 		sseq + (count << COOKIEBITS) +
124 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
125 		 & COOKIEMASK));
126 }
127 
128 /*
129  * This retrieves the small "data" value from the syncookie.
130  * If the syncookie is bad, the data returned will be out of
131  * range.  This must be checked by the caller.
132  *
133  * The count value used to generate the cookie must be less than
134  * MAX_SYNCOOKIE_AGE minutes in the past.
135  * The return value (__u32)-1 if this test fails.
136  */
137 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
138 				  __be16 sport, __be16 dport, __u32 sseq)
139 {
140 	u32 diff, count = tcp_cookie_time();
141 
142 	/* Strip away the layers from the cookie */
143 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
144 
145 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
146 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
147 	if (diff >= MAX_SYNCOOKIE_AGE)
148 		return (__u32)-1;
149 
150 	return (cookie -
151 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
152 		& COOKIEMASK;	/* Leaving the data behind */
153 }
154 
155 /*
156  * MSS Values are chosen based on the 2011 paper
157  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
158  * Values ..
159  *  .. lower than 536 are rare (< 0.2%)
160  *  .. between 537 and 1299 account for less than < 1.5% of observed values
161  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
162  *  .. exceeding 1460 are very rare (< 0.04%)
163  *
164  *  1460 is the single most frequently announced mss value (30 to 46% depending
165  *  on monitor location).  Table must be sorted.
166  */
167 static __u16 const msstab[] = {
168 	536,
169 	1300,
170 	1440,	/* 1440, 1452: PPPoE */
171 	1460,
172 };
173 
174 /*
175  * Generate a syncookie.  mssp points to the mss, which is returned
176  * rounded down to the value encoded in the cookie.
177  */
178 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
179 			      u16 *mssp)
180 {
181 	int mssind;
182 	const __u16 mss = *mssp;
183 
184 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
185 		if (mss >= msstab[mssind])
186 			break;
187 	*mssp = msstab[mssind];
188 
189 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
190 				     th->source, th->dest, ntohl(th->seq),
191 				     mssind);
192 }
193 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
194 
195 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
196 {
197 	const struct iphdr *iph = ip_hdr(skb);
198 	const struct tcphdr *th = tcp_hdr(skb);
199 
200 	return __cookie_v4_init_sequence(iph, th, mssp);
201 }
202 
203 /*
204  * Check if a ack sequence number is a valid syncookie.
205  * Return the decoded mss if it is, or 0 if not.
206  */
207 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
208 		      u32 cookie)
209 {
210 	__u32 seq = ntohl(th->seq) - 1;
211 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
212 					    th->source, th->dest, seq);
213 
214 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
215 }
216 EXPORT_SYMBOL_GPL(__cookie_v4_check);
217 
218 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
219 				 struct request_sock *req,
220 				 struct dst_entry *dst)
221 {
222 	struct inet_connection_sock *icsk = inet_csk(sk);
223 	struct sock *child;
224 	bool own_req;
225 
226 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
227 						 NULL, &own_req);
228 	if (child) {
229 		atomic_set(&req->rsk_refcnt, 1);
230 		sock_rps_save_rxhash(child, skb);
231 		inet_csk_reqsk_queue_add(sk, req, child);
232 	} else {
233 		reqsk_free(req);
234 	}
235 	return child;
236 }
237 EXPORT_SYMBOL(tcp_get_cookie_sock);
238 
239 /*
240  * when syncookies are in effect and tcp timestamps are enabled we stored
241  * additional tcp options in the timestamp.
242  * This extracts these options from the timestamp echo.
243  *
244  * return false if we decode a tcp option that is disabled
245  * on the host.
246  */
247 bool cookie_timestamp_decode(struct tcp_options_received *tcp_opt)
248 {
249 	/* echoed timestamp, lowest bits contain options */
250 	u32 options = tcp_opt->rcv_tsecr;
251 
252 	if (!tcp_opt->saw_tstamp)  {
253 		tcp_clear_options(tcp_opt);
254 		return true;
255 	}
256 
257 	if (!sysctl_tcp_timestamps)
258 		return false;
259 
260 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
261 
262 	if (tcp_opt->sack_ok && !sysctl_tcp_sack)
263 		return false;
264 
265 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
266 		return true; /* no window scaling */
267 
268 	tcp_opt->wscale_ok = 1;
269 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
270 
271 	return sysctl_tcp_window_scaling != 0;
272 }
273 EXPORT_SYMBOL(cookie_timestamp_decode);
274 
275 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
276 		   const struct net *net, const struct dst_entry *dst)
277 {
278 	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
279 
280 	if (!ecn_ok)
281 		return false;
282 
283 	if (net->ipv4.sysctl_tcp_ecn)
284 		return true;
285 
286 	return dst_feature(dst, RTAX_FEATURE_ECN);
287 }
288 EXPORT_SYMBOL(cookie_ecn_ok);
289 
290 /* On input, sk is a listener.
291  * Output is listener if incoming packet would not create a child
292  *           NULL if memory could not be allocated.
293  */
294 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
295 {
296 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
297 	struct tcp_options_received tcp_opt;
298 	struct inet_request_sock *ireq;
299 	struct tcp_request_sock *treq;
300 	struct tcp_sock *tp = tcp_sk(sk);
301 	const struct tcphdr *th = tcp_hdr(skb);
302 	__u32 cookie = ntohl(th->ack_seq) - 1;
303 	struct sock *ret = sk;
304 	struct request_sock *req;
305 	int mss;
306 	struct rtable *rt;
307 	__u8 rcv_wscale;
308 	struct flowi4 fl4;
309 
310 	if (!sysctl_tcp_syncookies || !th->ack || th->rst)
311 		goto out;
312 
313 	if (tcp_synq_no_recent_overflow(sk))
314 		goto out;
315 
316 	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
317 	if (mss == 0) {
318 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
319 		goto out;
320 	}
321 
322 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
323 
324 	/* check for timestamp cookie support */
325 	memset(&tcp_opt, 0, sizeof(tcp_opt));
326 	tcp_parse_options(skb, &tcp_opt, 0, NULL);
327 
328 	if (!cookie_timestamp_decode(&tcp_opt))
329 		goto out;
330 
331 	ret = NULL;
332 	req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
333 	if (!req)
334 		goto out;
335 
336 	ireq = inet_rsk(req);
337 	treq = tcp_rsk(req);
338 	treq->rcv_isn		= ntohl(th->seq) - 1;
339 	treq->snt_isn		= cookie;
340 	req->mss		= mss;
341 	ireq->ir_num		= ntohs(th->dest);
342 	ireq->ir_rmt_port	= th->source;
343 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
344 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
345 	ireq->ir_mark		= inet_request_mark(sk, skb);
346 	ireq->snd_wscale	= tcp_opt.snd_wscale;
347 	ireq->sack_ok		= tcp_opt.sack_ok;
348 	ireq->wscale_ok		= tcp_opt.wscale_ok;
349 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
350 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
351 	treq->snt_synack.v64	= 0;
352 	treq->tfo_listener	= false;
353 
354 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
355 
356 	/* We throwed the options of the initial SYN away, so we hope
357 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
358 	 */
359 	ireq->opt = tcp_v4_save_options(skb);
360 
361 	if (security_inet_conn_request(sk, skb, req)) {
362 		reqsk_free(req);
363 		goto out;
364 	}
365 
366 	req->num_retrans = 0;
367 
368 	/*
369 	 * We need to lookup the route here to get at the correct
370 	 * window size. We should better make sure that the window size
371 	 * hasn't changed since we received the original syn, but I see
372 	 * no easy way to do this.
373 	 */
374 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
375 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
376 			   inet_sk_flowi_flags(sk),
377 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
378 			   ireq->ir_loc_addr, th->source, th->dest);
379 	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
380 	rt = ip_route_output_key(sock_net(sk), &fl4);
381 	if (IS_ERR(rt)) {
382 		reqsk_free(req);
383 		goto out;
384 	}
385 
386 	/* Try to redo what tcp_v4_send_synack did. */
387 	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
388 
389 	tcp_select_initial_window(tcp_full_space(sk), req->mss,
390 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
391 				  ireq->wscale_ok, &rcv_wscale,
392 				  dst_metric(&rt->dst, RTAX_INITRWND));
393 
394 	ireq->rcv_wscale  = rcv_wscale;
395 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
396 
397 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
398 	/* ip_queue_xmit() depends on our flow being setup
399 	 * Normal sockets get it right from inet_csk_route_child_sock()
400 	 */
401 	if (ret)
402 		inet_sk(ret)->cork.fl.u.ip4 = fl4;
403 out:	return ret;
404 }
405