xref: /openbmc/linux/net/ipv4/syncookies.c (revision 6b66a6f2)
1 /*
2  *  Syncookies implementation for the Linux kernel
3  *
4  *  Copyright (C) 1997 Andi Kleen
5  *  Based on ideas by D.J.Bernstein and Eric Schenk.
6  *
7  *	This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/cryptohash.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <net/tcp.h>
20 #include <net/route.h>
21 
22 static u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS] __read_mostly;
23 
24 #define COOKIEBITS 24	/* Upper bits store count */
25 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
26 
27 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
28  * stores TCP options:
29  *
30  * MSB                               LSB
31  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
32  * |  Timestamp | ECN | SACK | WScale  |
33  *
34  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
35  * any) to figure out which TCP options we should use for the rebuilt
36  * connection.
37  *
38  * A WScale setting of '0xf' (which is an invalid scaling value)
39  * means that original syn did not include the TCP window scaling option.
40  */
41 #define TS_OPT_WSCALE_MASK	0xf
42 #define TS_OPT_SACK		BIT(4)
43 #define TS_OPT_ECN		BIT(5)
44 /* There is no TS_OPT_TIMESTAMP:
45  * if ACK contains timestamp option, we already know it was
46  * requested/supported by the syn/synack exchange.
47  */
48 #define TSBITS	6
49 #define TSMASK	(((__u32)1 << TSBITS) - 1)
50 
51 static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS], ipv4_cookie_scratch);
52 
53 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
54 		       u32 count, int c)
55 {
56 	__u32 *tmp;
57 
58 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
59 
60 	tmp  = this_cpu_ptr(ipv4_cookie_scratch);
61 	memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
62 	tmp[0] = (__force u32)saddr;
63 	tmp[1] = (__force u32)daddr;
64 	tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
65 	tmp[3] = count;
66 	sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
67 
68 	return tmp[17];
69 }
70 
71 
72 /*
73  * when syncookies are in effect and tcp timestamps are enabled we encode
74  * tcp options in the lower bits of the timestamp value that will be
75  * sent in the syn-ack.
76  * Since subsequent timestamps use the normal tcp_time_stamp value, we
77  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
78  */
79 __u32 cookie_init_timestamp(struct request_sock *req)
80 {
81 	struct inet_request_sock *ireq;
82 	u32 ts, ts_now = tcp_time_stamp;
83 	u32 options = 0;
84 
85 	ireq = inet_rsk(req);
86 
87 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
88 	if (ireq->sack_ok)
89 		options |= TS_OPT_SACK;
90 	if (ireq->ecn_ok)
91 		options |= TS_OPT_ECN;
92 
93 	ts = ts_now & ~TSMASK;
94 	ts |= options;
95 	if (ts > ts_now) {
96 		ts >>= TSBITS;
97 		ts--;
98 		ts <<= TSBITS;
99 		ts |= options;
100 	}
101 	return ts;
102 }
103 
104 
105 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
106 				   __be16 dport, __u32 sseq, __u32 data)
107 {
108 	/*
109 	 * Compute the secure sequence number.
110 	 * The output should be:
111 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
112 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
113 	 * Where sseq is their sequence number and count increases every
114 	 * minute by 1.
115 	 * As an extra hack, we add a small "data" value that encodes the
116 	 * MSS into the second hash value.
117 	 */
118 	u32 count = tcp_cookie_time();
119 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
120 		sseq + (count << COOKIEBITS) +
121 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
122 		 & COOKIEMASK));
123 }
124 
125 /*
126  * This retrieves the small "data" value from the syncookie.
127  * If the syncookie is bad, the data returned will be out of
128  * range.  This must be checked by the caller.
129  *
130  * The count value used to generate the cookie must be less than
131  * MAX_SYNCOOKIE_AGE minutes in the past.
132  * The return value (__u32)-1 if this test fails.
133  */
134 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
135 				  __be16 sport, __be16 dport, __u32 sseq)
136 {
137 	u32 diff, count = tcp_cookie_time();
138 
139 	/* Strip away the layers from the cookie */
140 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
141 
142 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
143 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
144 	if (diff >= MAX_SYNCOOKIE_AGE)
145 		return (__u32)-1;
146 
147 	return (cookie -
148 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
149 		& COOKIEMASK;	/* Leaving the data behind */
150 }
151 
152 /*
153  * MSS Values are chosen based on the 2011 paper
154  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
155  * Values ..
156  *  .. lower than 536 are rare (< 0.2%)
157  *  .. between 537 and 1299 account for less than < 1.5% of observed values
158  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
159  *  .. exceeding 1460 are very rare (< 0.04%)
160  *
161  *  1460 is the single most frequently announced mss value (30 to 46% depending
162  *  on monitor location).  Table must be sorted.
163  */
164 static __u16 const msstab[] = {
165 	536,
166 	1300,
167 	1440,	/* 1440, 1452: PPPoE */
168 	1460,
169 };
170 
171 /*
172  * Generate a syncookie.  mssp points to the mss, which is returned
173  * rounded down to the value encoded in the cookie.
174  */
175 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
176 			      u16 *mssp)
177 {
178 	int mssind;
179 	const __u16 mss = *mssp;
180 
181 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
182 		if (mss >= msstab[mssind])
183 			break;
184 	*mssp = msstab[mssind];
185 
186 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
187 				     th->source, th->dest, ntohl(th->seq),
188 				     mssind);
189 }
190 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
191 
192 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
193 {
194 	const struct iphdr *iph = ip_hdr(skb);
195 	const struct tcphdr *th = tcp_hdr(skb);
196 
197 	return __cookie_v4_init_sequence(iph, th, mssp);
198 }
199 
200 /*
201  * Check if a ack sequence number is a valid syncookie.
202  * Return the decoded mss if it is, or 0 if not.
203  */
204 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
205 		      u32 cookie)
206 {
207 	__u32 seq = ntohl(th->seq) - 1;
208 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
209 					    th->source, th->dest, seq);
210 
211 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
212 }
213 EXPORT_SYMBOL_GPL(__cookie_v4_check);
214 
215 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
216 				 struct request_sock *req,
217 				 struct dst_entry *dst)
218 {
219 	struct inet_connection_sock *icsk = inet_csk(sk);
220 	struct sock *child;
221 	bool own_req;
222 
223 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
224 						 NULL, &own_req);
225 	if (child) {
226 		atomic_set(&req->rsk_refcnt, 1);
227 		sock_rps_save_rxhash(child, skb);
228 		inet_csk_reqsk_queue_add(sk, req, child);
229 	} else {
230 		reqsk_free(req);
231 	}
232 	return child;
233 }
234 EXPORT_SYMBOL(tcp_get_cookie_sock);
235 
236 /*
237  * when syncookies are in effect and tcp timestamps are enabled we stored
238  * additional tcp options in the timestamp.
239  * This extracts these options from the timestamp echo.
240  *
241  * return false if we decode a tcp option that is disabled
242  * on the host.
243  */
244 bool cookie_timestamp_decode(struct tcp_options_received *tcp_opt)
245 {
246 	/* echoed timestamp, lowest bits contain options */
247 	u32 options = tcp_opt->rcv_tsecr;
248 
249 	if (!tcp_opt->saw_tstamp)  {
250 		tcp_clear_options(tcp_opt);
251 		return true;
252 	}
253 
254 	if (!sysctl_tcp_timestamps)
255 		return false;
256 
257 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
258 
259 	if (tcp_opt->sack_ok && !sysctl_tcp_sack)
260 		return false;
261 
262 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
263 		return true; /* no window scaling */
264 
265 	tcp_opt->wscale_ok = 1;
266 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
267 
268 	return sysctl_tcp_window_scaling != 0;
269 }
270 EXPORT_SYMBOL(cookie_timestamp_decode);
271 
272 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
273 		   const struct net *net, const struct dst_entry *dst)
274 {
275 	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
276 
277 	if (!ecn_ok)
278 		return false;
279 
280 	if (net->ipv4.sysctl_tcp_ecn)
281 		return true;
282 
283 	return dst_feature(dst, RTAX_FEATURE_ECN);
284 }
285 EXPORT_SYMBOL(cookie_ecn_ok);
286 
287 /* On input, sk is a listener.
288  * Output is listener if incoming packet would not create a child
289  *           NULL if memory could not be allocated.
290  */
291 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
292 {
293 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
294 	struct tcp_options_received tcp_opt;
295 	struct inet_request_sock *ireq;
296 	struct tcp_request_sock *treq;
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	const struct tcphdr *th = tcp_hdr(skb);
299 	__u32 cookie = ntohl(th->ack_seq) - 1;
300 	struct sock *ret = sk;
301 	struct request_sock *req;
302 	int mss;
303 	struct rtable *rt;
304 	__u8 rcv_wscale;
305 	struct flowi4 fl4;
306 
307 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
308 		goto out;
309 
310 	if (tcp_synq_no_recent_overflow(sk))
311 		goto out;
312 
313 	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
314 	if (mss == 0) {
315 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
316 		goto out;
317 	}
318 
319 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
320 
321 	/* check for timestamp cookie support */
322 	memset(&tcp_opt, 0, sizeof(tcp_opt));
323 	tcp_parse_options(skb, &tcp_opt, 0, NULL);
324 
325 	if (!cookie_timestamp_decode(&tcp_opt))
326 		goto out;
327 
328 	ret = NULL;
329 	req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
330 	if (!req)
331 		goto out;
332 
333 	ireq = inet_rsk(req);
334 	treq = tcp_rsk(req);
335 	treq->rcv_isn		= ntohl(th->seq) - 1;
336 	treq->snt_isn		= cookie;
337 	treq->ts_off		= 0;
338 	req->mss		= mss;
339 	ireq->ir_num		= ntohs(th->dest);
340 	ireq->ir_rmt_port	= th->source;
341 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
342 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
343 	ireq->ir_mark		= inet_request_mark(sk, skb);
344 	ireq->snd_wscale	= tcp_opt.snd_wscale;
345 	ireq->sack_ok		= tcp_opt.sack_ok;
346 	ireq->wscale_ok		= tcp_opt.wscale_ok;
347 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
348 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
349 	treq->snt_synack.v64	= 0;
350 	treq->tfo_listener	= false;
351 
352 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
353 
354 	/* We throwed the options of the initial SYN away, so we hope
355 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
356 	 */
357 	ireq->opt = tcp_v4_save_options(skb);
358 
359 	if (security_inet_conn_request(sk, skb, req)) {
360 		reqsk_free(req);
361 		goto out;
362 	}
363 
364 	req->num_retrans = 0;
365 
366 	/*
367 	 * We need to lookup the route here to get at the correct
368 	 * window size. We should better make sure that the window size
369 	 * hasn't changed since we received the original syn, but I see
370 	 * no easy way to do this.
371 	 */
372 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
373 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
374 			   inet_sk_flowi_flags(sk),
375 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
376 			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
377 	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
378 	rt = ip_route_output_key(sock_net(sk), &fl4);
379 	if (IS_ERR(rt)) {
380 		reqsk_free(req);
381 		goto out;
382 	}
383 
384 	/* Try to redo what tcp_v4_send_synack did. */
385 	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
386 
387 	tcp_select_initial_window(tcp_full_space(sk), req->mss,
388 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
389 				  ireq->wscale_ok, &rcv_wscale,
390 				  dst_metric(&rt->dst, RTAX_INITRWND));
391 
392 	ireq->rcv_wscale  = rcv_wscale;
393 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
394 
395 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
396 	/* ip_queue_xmit() depends on our flow being setup
397 	 * Normal sockets get it right from inet_csk_route_child_sock()
398 	 */
399 	if (ret)
400 		inet_sk(ret)->cork.fl.u.ip4 = fl4;
401 out:	return ret;
402 }
403