1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Syncookies implementation for the Linux kernel 4 * 5 * Copyright (C) 1997 Andi Kleen 6 * Based on ideas by D.J.Bernstein and Eric Schenk. 7 */ 8 9 #include <linux/tcp.h> 10 #include <linux/siphash.h> 11 #include <linux/kernel.h> 12 #include <linux/export.h> 13 #include <net/secure_seq.h> 14 #include <net/tcp.h> 15 #include <net/route.h> 16 17 static siphash_aligned_key_t syncookie_secret[2]; 18 19 #define COOKIEBITS 24 /* Upper bits store count */ 20 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1) 21 22 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK 23 * stores TCP options: 24 * 25 * MSB LSB 26 * | 31 ... 6 | 5 | 4 | 3 2 1 0 | 27 * | Timestamp | ECN | SACK | WScale | 28 * 29 * When we receive a valid cookie-ACK, we look at the echoed tsval (if 30 * any) to figure out which TCP options we should use for the rebuilt 31 * connection. 32 * 33 * A WScale setting of '0xf' (which is an invalid scaling value) 34 * means that original syn did not include the TCP window scaling option. 35 */ 36 #define TS_OPT_WSCALE_MASK 0xf 37 #define TS_OPT_SACK BIT(4) 38 #define TS_OPT_ECN BIT(5) 39 /* There is no TS_OPT_TIMESTAMP: 40 * if ACK contains timestamp option, we already know it was 41 * requested/supported by the syn/synack exchange. 42 */ 43 #define TSBITS 6 44 45 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport, 46 u32 count, int c) 47 { 48 net_get_random_once(syncookie_secret, sizeof(syncookie_secret)); 49 return siphash_4u32((__force u32)saddr, (__force u32)daddr, 50 (__force u32)sport << 16 | (__force u32)dport, 51 count, &syncookie_secret[c]); 52 } 53 54 55 /* 56 * when syncookies are in effect and tcp timestamps are enabled we encode 57 * tcp options in the lower bits of the timestamp value that will be 58 * sent in the syn-ack. 59 * Since subsequent timestamps use the normal tcp_time_stamp value, we 60 * must make sure that the resulting initial timestamp is <= tcp_time_stamp. 61 */ 62 u64 cookie_init_timestamp(struct request_sock *req, u64 now) 63 { 64 const struct inet_request_sock *ireq = inet_rsk(req); 65 u64 ts, ts_now = tcp_ns_to_ts(now); 66 u32 options = 0; 67 68 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK; 69 if (ireq->sack_ok) 70 options |= TS_OPT_SACK; 71 if (ireq->ecn_ok) 72 options |= TS_OPT_ECN; 73 74 ts = (ts_now >> TSBITS) << TSBITS; 75 ts |= options; 76 if (ts > ts_now) 77 ts -= (1UL << TSBITS); 78 79 return ts * (NSEC_PER_SEC / TCP_TS_HZ); 80 } 81 82 83 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport, 84 __be16 dport, __u32 sseq, __u32 data) 85 { 86 /* 87 * Compute the secure sequence number. 88 * The output should be: 89 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24) 90 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24). 91 * Where sseq is their sequence number and count increases every 92 * minute by 1. 93 * As an extra hack, we add a small "data" value that encodes the 94 * MSS into the second hash value. 95 */ 96 u32 count = tcp_cookie_time(); 97 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) + 98 sseq + (count << COOKIEBITS) + 99 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data) 100 & COOKIEMASK)); 101 } 102 103 /* 104 * This retrieves the small "data" value from the syncookie. 105 * If the syncookie is bad, the data returned will be out of 106 * range. This must be checked by the caller. 107 * 108 * The count value used to generate the cookie must be less than 109 * MAX_SYNCOOKIE_AGE minutes in the past. 110 * The return value (__u32)-1 if this test fails. 111 */ 112 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr, 113 __be16 sport, __be16 dport, __u32 sseq) 114 { 115 u32 diff, count = tcp_cookie_time(); 116 117 /* Strip away the layers from the cookie */ 118 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq; 119 120 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */ 121 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS); 122 if (diff >= MAX_SYNCOOKIE_AGE) 123 return (__u32)-1; 124 125 return (cookie - 126 cookie_hash(saddr, daddr, sport, dport, count - diff, 1)) 127 & COOKIEMASK; /* Leaving the data behind */ 128 } 129 130 /* 131 * MSS Values are chosen based on the 2011 paper 132 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson. 133 * Values .. 134 * .. lower than 536 are rare (< 0.2%) 135 * .. between 537 and 1299 account for less than < 1.5% of observed values 136 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values 137 * .. exceeding 1460 are very rare (< 0.04%) 138 * 139 * 1460 is the single most frequently announced mss value (30 to 46% depending 140 * on monitor location). Table must be sorted. 141 */ 142 static __u16 const msstab[] = { 143 536, 144 1300, 145 1440, /* 1440, 1452: PPPoE */ 146 1460, 147 }; 148 149 /* 150 * Generate a syncookie. mssp points to the mss, which is returned 151 * rounded down to the value encoded in the cookie. 152 */ 153 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 154 u16 *mssp) 155 { 156 int mssind; 157 const __u16 mss = *mssp; 158 159 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--) 160 if (mss >= msstab[mssind]) 161 break; 162 *mssp = msstab[mssind]; 163 164 return secure_tcp_syn_cookie(iph->saddr, iph->daddr, 165 th->source, th->dest, ntohl(th->seq), 166 mssind); 167 } 168 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence); 169 170 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp) 171 { 172 const struct iphdr *iph = ip_hdr(skb); 173 const struct tcphdr *th = tcp_hdr(skb); 174 175 return __cookie_v4_init_sequence(iph, th, mssp); 176 } 177 178 /* 179 * Check if a ack sequence number is a valid syncookie. 180 * Return the decoded mss if it is, or 0 if not. 181 */ 182 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 183 u32 cookie) 184 { 185 __u32 seq = ntohl(th->seq) - 1; 186 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr, 187 th->source, th->dest, seq); 188 189 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0; 190 } 191 EXPORT_SYMBOL_GPL(__cookie_v4_check); 192 193 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 194 struct request_sock *req, 195 struct dst_entry *dst, u32 tsoff) 196 { 197 struct inet_connection_sock *icsk = inet_csk(sk); 198 struct sock *child; 199 bool own_req; 200 201 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst, 202 NULL, &own_req); 203 if (child) { 204 refcount_set(&req->rsk_refcnt, 1); 205 tcp_sk(child)->tsoffset = tsoff; 206 sock_rps_save_rxhash(child, skb); 207 208 if (rsk_drop_req(req)) { 209 reqsk_put(req); 210 return child; 211 } 212 213 if (inet_csk_reqsk_queue_add(sk, req, child)) 214 return child; 215 216 bh_unlock_sock(child); 217 sock_put(child); 218 } 219 __reqsk_free(req); 220 221 return NULL; 222 } 223 EXPORT_SYMBOL(tcp_get_cookie_sock); 224 225 /* 226 * when syncookies are in effect and tcp timestamps are enabled we stored 227 * additional tcp options in the timestamp. 228 * This extracts these options from the timestamp echo. 229 * 230 * return false if we decode a tcp option that is disabled 231 * on the host. 232 */ 233 bool cookie_timestamp_decode(const struct net *net, 234 struct tcp_options_received *tcp_opt) 235 { 236 /* echoed timestamp, lowest bits contain options */ 237 u32 options = tcp_opt->rcv_tsecr; 238 239 if (!tcp_opt->saw_tstamp) { 240 tcp_clear_options(tcp_opt); 241 return true; 242 } 243 244 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps)) 245 return false; 246 247 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0; 248 249 if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack)) 250 return false; 251 252 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK) 253 return true; /* no window scaling */ 254 255 tcp_opt->wscale_ok = 1; 256 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK; 257 258 return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0; 259 } 260 EXPORT_SYMBOL(cookie_timestamp_decode); 261 262 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt, 263 const struct net *net, const struct dst_entry *dst) 264 { 265 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN; 266 267 if (!ecn_ok) 268 return false; 269 270 if (READ_ONCE(net->ipv4.sysctl_tcp_ecn)) 271 return true; 272 273 return dst_feature(dst, RTAX_FEATURE_ECN); 274 } 275 EXPORT_SYMBOL(cookie_ecn_ok); 276 277 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 278 const struct tcp_request_sock_ops *af_ops, 279 struct sock *sk, 280 struct sk_buff *skb) 281 { 282 struct tcp_request_sock *treq; 283 struct request_sock *req; 284 285 if (sk_is_mptcp(sk)) 286 req = mptcp_subflow_reqsk_alloc(ops, sk, false); 287 else 288 req = inet_reqsk_alloc(ops, sk, false); 289 290 if (!req) 291 return NULL; 292 293 treq = tcp_rsk(req); 294 295 /* treq->af_specific might be used to perform TCP_MD5 lookup */ 296 treq->af_specific = af_ops; 297 298 treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 299 #if IS_ENABLED(CONFIG_MPTCP) 300 treq->is_mptcp = sk_is_mptcp(sk); 301 if (treq->is_mptcp) { 302 int err = mptcp_subflow_init_cookie_req(req, sk, skb); 303 304 if (err) { 305 reqsk_free(req); 306 return NULL; 307 } 308 } 309 #endif 310 311 return req; 312 } 313 EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc); 314 315 /* On input, sk is a listener. 316 * Output is listener if incoming packet would not create a child 317 * NULL if memory could not be allocated. 318 */ 319 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb) 320 { 321 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 322 struct tcp_options_received tcp_opt; 323 struct inet_request_sock *ireq; 324 struct tcp_request_sock *treq; 325 struct tcp_sock *tp = tcp_sk(sk); 326 const struct tcphdr *th = tcp_hdr(skb); 327 __u32 cookie = ntohl(th->ack_seq) - 1; 328 struct sock *ret = sk; 329 struct request_sock *req; 330 int full_space, mss; 331 struct rtable *rt; 332 __u8 rcv_wscale; 333 struct flowi4 fl4; 334 u32 tsoff = 0; 335 336 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) || 337 !th->ack || th->rst) 338 goto out; 339 340 if (tcp_synq_no_recent_overflow(sk)) 341 goto out; 342 343 mss = __cookie_v4_check(ip_hdr(skb), th, cookie); 344 if (mss == 0) { 345 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED); 346 goto out; 347 } 348 349 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV); 350 351 /* check for timestamp cookie support */ 352 memset(&tcp_opt, 0, sizeof(tcp_opt)); 353 tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL); 354 355 if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) { 356 tsoff = secure_tcp_ts_off(sock_net(sk), 357 ip_hdr(skb)->daddr, 358 ip_hdr(skb)->saddr); 359 tcp_opt.rcv_tsecr -= tsoff; 360 } 361 362 if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt)) 363 goto out; 364 365 ret = NULL; 366 req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, 367 &tcp_request_sock_ipv4_ops, sk, skb); 368 if (!req) 369 goto out; 370 371 ireq = inet_rsk(req); 372 treq = tcp_rsk(req); 373 treq->rcv_isn = ntohl(th->seq) - 1; 374 treq->snt_isn = cookie; 375 treq->ts_off = 0; 376 treq->txhash = net_tx_rndhash(); 377 req->mss = mss; 378 ireq->ir_num = ntohs(th->dest); 379 ireq->ir_rmt_port = th->source; 380 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 381 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 382 ireq->ir_mark = inet_request_mark(sk, skb); 383 ireq->snd_wscale = tcp_opt.snd_wscale; 384 ireq->sack_ok = tcp_opt.sack_ok; 385 ireq->wscale_ok = tcp_opt.wscale_ok; 386 ireq->tstamp_ok = tcp_opt.saw_tstamp; 387 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0; 388 treq->snt_synack = 0; 389 treq->tfo_listener = false; 390 391 if (IS_ENABLED(CONFIG_SMC)) 392 ireq->smc_ok = 0; 393 394 ireq->ir_iif = inet_request_bound_dev_if(sk, skb); 395 396 /* We throwed the options of the initial SYN away, so we hope 397 * the ACK carries the same options again (see RFC1122 4.2.3.8) 398 */ 399 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb)); 400 401 if (security_inet_conn_request(sk, skb, req)) { 402 reqsk_free(req); 403 goto out; 404 } 405 406 req->num_retrans = 0; 407 408 /* 409 * We need to lookup the route here to get at the correct 410 * window size. We should better make sure that the window size 411 * hasn't changed since we received the original syn, but I see 412 * no easy way to do this. 413 */ 414 flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark, 415 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 416 IPPROTO_TCP, inet_sk_flowi_flags(sk), 417 opt->srr ? opt->faddr : ireq->ir_rmt_addr, 418 ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid); 419 security_req_classify_flow(req, flowi4_to_flowi_common(&fl4)); 420 rt = ip_route_output_key(sock_net(sk), &fl4); 421 if (IS_ERR(rt)) { 422 reqsk_free(req); 423 goto out; 424 } 425 426 /* Try to redo what tcp_v4_send_synack did. */ 427 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW); 428 /* limit the window selection if the user enforce a smaller rx buffer */ 429 full_space = tcp_full_space(sk); 430 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 431 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0)) 432 req->rsk_window_clamp = full_space; 433 434 tcp_select_initial_window(sk, full_space, req->mss, 435 &req->rsk_rcv_wnd, &req->rsk_window_clamp, 436 ireq->wscale_ok, &rcv_wscale, 437 dst_metric(&rt->dst, RTAX_INITRWND)); 438 439 ireq->rcv_wscale = rcv_wscale; 440 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst); 441 442 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff); 443 /* ip_queue_xmit() depends on our flow being setup 444 * Normal sockets get it right from inet_csk_route_child_sock() 445 */ 446 if (ret) 447 inet_sk(ret)->cork.fl.u.ip4 = fl4; 448 out: return ret; 449 } 450