xref: /openbmc/linux/net/ipv4/route.c (revision e190bfe5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		ROUTE - implementation of the IP router.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *		Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12  *		Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13  *
14  * Fixes:
15  *		Alan Cox	:	Verify area fixes.
16  *		Alan Cox	:	cli() protects routing changes
17  *		Rui Oliveira	:	ICMP routing table updates
18  *		(rco@di.uminho.pt)	Routing table insertion and update
19  *		Linus Torvalds	:	Rewrote bits to be sensible
20  *		Alan Cox	:	Added BSD route gw semantics
21  *		Alan Cox	:	Super /proc >4K
22  *		Alan Cox	:	MTU in route table
23  *		Alan Cox	: 	MSS actually. Also added the window
24  *					clamper.
25  *		Sam Lantinga	:	Fixed route matching in rt_del()
26  *		Alan Cox	:	Routing cache support.
27  *		Alan Cox	:	Removed compatibility cruft.
28  *		Alan Cox	:	RTF_REJECT support.
29  *		Alan Cox	:	TCP irtt support.
30  *		Jonathan Naylor	:	Added Metric support.
31  *	Miquel van Smoorenburg	:	BSD API fixes.
32  *	Miquel van Smoorenburg	:	Metrics.
33  *		Alan Cox	:	Use __u32 properly
34  *		Alan Cox	:	Aligned routing errors more closely with BSD
35  *					our system is still very different.
36  *		Alan Cox	:	Faster /proc handling
37  *	Alexey Kuznetsov	:	Massive rework to support tree based routing,
38  *					routing caches and better behaviour.
39  *
40  *		Olaf Erb	:	irtt wasn't being copied right.
41  *		Bjorn Ekwall	:	Kerneld route support.
42  *		Alan Cox	:	Multicast fixed (I hope)
43  * 		Pavel Krauz	:	Limited broadcast fixed
44  *		Mike McLagan	:	Routing by source
45  *	Alexey Kuznetsov	:	End of old history. Split to fib.c and
46  *					route.c and rewritten from scratch.
47  *		Andi Kleen	:	Load-limit warning messages.
48  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
49  *	Vitaly E. Lavrov	:	Race condition in ip_route_input_slow.
50  *	Tobias Ringstrom	:	Uninitialized res.type in ip_route_output_slow.
51  *	Vladimir V. Ivanov	:	IP rule info (flowid) is really useful.
52  *		Marc Boucher	:	routing by fwmark
53  *	Robert Olsson		:	Added rt_cache statistics
54  *	Arnaldo C. Melo		:	Convert proc stuff to seq_file
55  *	Eric Dumazet		:	hashed spinlocks and rt_check_expire() fixes.
56  * 	Ilia Sotnikov		:	Ignore TOS on PMTUD and Redirect
57  * 	Ilia Sotnikov		:	Removed TOS from hash calculations
58  *
59  *		This program is free software; you can redistribute it and/or
60  *		modify it under the terms of the GNU General Public License
61  *		as published by the Free Software Foundation; either version
62  *		2 of the License, or (at your option) any later version.
63  */
64 
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <linux/slab.h>
94 #include <net/dst.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
97 #include <net/ip.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
102 #include <net/arp.h>
103 #include <net/tcp.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
108 #ifdef CONFIG_SYSCTL
109 #include <linux/sysctl.h>
110 #endif
111 
112 #define RT_FL_TOS(oldflp) \
113     ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
114 
115 #define IP_MAX_MTU	0xFFF0
116 
117 #define RT_GC_TIMEOUT (300*HZ)
118 
119 static int ip_rt_max_size;
120 static int ip_rt_gc_timeout __read_mostly	= RT_GC_TIMEOUT;
121 static int ip_rt_gc_interval __read_mostly	= 60 * HZ;
122 static int ip_rt_gc_min_interval __read_mostly	= HZ / 2;
123 static int ip_rt_redirect_number __read_mostly	= 9;
124 static int ip_rt_redirect_load __read_mostly	= HZ / 50;
125 static int ip_rt_redirect_silence __read_mostly	= ((HZ / 50) << (9 + 1));
126 static int ip_rt_error_cost __read_mostly	= HZ;
127 static int ip_rt_error_burst __read_mostly	= 5 * HZ;
128 static int ip_rt_gc_elasticity __read_mostly	= 8;
129 static int ip_rt_mtu_expires __read_mostly	= 10 * 60 * HZ;
130 static int ip_rt_min_pmtu __read_mostly		= 512 + 20 + 20;
131 static int ip_rt_min_advmss __read_mostly	= 256;
132 static int rt_chain_length_max __read_mostly	= 20;
133 
134 static struct delayed_work expires_work;
135 static unsigned long expires_ljiffies;
136 
137 /*
138  *	Interface to generic destination cache.
139  */
140 
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void		 ipv4_dst_destroy(struct dst_entry *dst);
143 static void		 ipv4_dst_ifdown(struct dst_entry *dst,
144 					 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void		 ipv4_link_failure(struct sk_buff *skb);
147 static void		 ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
149 
150 
151 static struct dst_ops ipv4_dst_ops = {
152 	.family =		AF_INET,
153 	.protocol =		cpu_to_be16(ETH_P_IP),
154 	.gc =			rt_garbage_collect,
155 	.check =		ipv4_dst_check,
156 	.destroy =		ipv4_dst_destroy,
157 	.ifdown =		ipv4_dst_ifdown,
158 	.negative_advice =	ipv4_negative_advice,
159 	.link_failure =		ipv4_link_failure,
160 	.update_pmtu =		ip_rt_update_pmtu,
161 	.local_out =		__ip_local_out,
162 	.entries =		ATOMIC_INIT(0),
163 };
164 
165 #define ECN_OR_COST(class)	TC_PRIO_##class
166 
167 const __u8 ip_tos2prio[16] = {
168 	TC_PRIO_BESTEFFORT,
169 	ECN_OR_COST(FILLER),
170 	TC_PRIO_BESTEFFORT,
171 	ECN_OR_COST(BESTEFFORT),
172 	TC_PRIO_BULK,
173 	ECN_OR_COST(BULK),
174 	TC_PRIO_BULK,
175 	ECN_OR_COST(BULK),
176 	TC_PRIO_INTERACTIVE,
177 	ECN_OR_COST(INTERACTIVE),
178 	TC_PRIO_INTERACTIVE,
179 	ECN_OR_COST(INTERACTIVE),
180 	TC_PRIO_INTERACTIVE_BULK,
181 	ECN_OR_COST(INTERACTIVE_BULK),
182 	TC_PRIO_INTERACTIVE_BULK,
183 	ECN_OR_COST(INTERACTIVE_BULK)
184 };
185 
186 
187 /*
188  * Route cache.
189  */
190 
191 /* The locking scheme is rather straight forward:
192  *
193  * 1) Read-Copy Update protects the buckets of the central route hash.
194  * 2) Only writers remove entries, and they hold the lock
195  *    as they look at rtable reference counts.
196  * 3) Only readers acquire references to rtable entries,
197  *    they do so with atomic increments and with the
198  *    lock held.
199  */
200 
201 struct rt_hash_bucket {
202 	struct rtable	*chain;
203 };
204 
205 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
206 	defined(CONFIG_PROVE_LOCKING)
207 /*
208  * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
209  * The size of this table is a power of two and depends on the number of CPUS.
210  * (on lockdep we have a quite big spinlock_t, so keep the size down there)
211  */
212 #ifdef CONFIG_LOCKDEP
213 # define RT_HASH_LOCK_SZ	256
214 #else
215 # if NR_CPUS >= 32
216 #  define RT_HASH_LOCK_SZ	4096
217 # elif NR_CPUS >= 16
218 #  define RT_HASH_LOCK_SZ	2048
219 # elif NR_CPUS >= 8
220 #  define RT_HASH_LOCK_SZ	1024
221 # elif NR_CPUS >= 4
222 #  define RT_HASH_LOCK_SZ	512
223 # else
224 #  define RT_HASH_LOCK_SZ	256
225 # endif
226 #endif
227 
228 static spinlock_t	*rt_hash_locks;
229 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
230 
231 static __init void rt_hash_lock_init(void)
232 {
233 	int i;
234 
235 	rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
236 			GFP_KERNEL);
237 	if (!rt_hash_locks)
238 		panic("IP: failed to allocate rt_hash_locks\n");
239 
240 	for (i = 0; i < RT_HASH_LOCK_SZ; i++)
241 		spin_lock_init(&rt_hash_locks[i]);
242 }
243 #else
244 # define rt_hash_lock_addr(slot) NULL
245 
246 static inline void rt_hash_lock_init(void)
247 {
248 }
249 #endif
250 
251 static struct rt_hash_bucket 	*rt_hash_table __read_mostly;
252 static unsigned			rt_hash_mask __read_mostly;
253 static unsigned int		rt_hash_log  __read_mostly;
254 
255 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
256 #define RT_CACHE_STAT_INC(field) \
257 	(__raw_get_cpu_var(rt_cache_stat).field++)
258 
259 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
260 				   int genid)
261 {
262 	return jhash_3words((__force u32)daddr, (__force u32)saddr,
263 			    idx, genid)
264 		& rt_hash_mask;
265 }
266 
267 static inline int rt_genid(struct net *net)
268 {
269 	return atomic_read(&net->ipv4.rt_genid);
270 }
271 
272 #ifdef CONFIG_PROC_FS
273 struct rt_cache_iter_state {
274 	struct seq_net_private p;
275 	int bucket;
276 	int genid;
277 };
278 
279 static struct rtable *rt_cache_get_first(struct seq_file *seq)
280 {
281 	struct rt_cache_iter_state *st = seq->private;
282 	struct rtable *r = NULL;
283 
284 	for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
285 		if (!rt_hash_table[st->bucket].chain)
286 			continue;
287 		rcu_read_lock_bh();
288 		r = rcu_dereference_bh(rt_hash_table[st->bucket].chain);
289 		while (r) {
290 			if (dev_net(r->u.dst.dev) == seq_file_net(seq) &&
291 			    r->rt_genid == st->genid)
292 				return r;
293 			r = rcu_dereference_bh(r->u.dst.rt_next);
294 		}
295 		rcu_read_unlock_bh();
296 	}
297 	return r;
298 }
299 
300 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
301 					  struct rtable *r)
302 {
303 	struct rt_cache_iter_state *st = seq->private;
304 
305 	r = r->u.dst.rt_next;
306 	while (!r) {
307 		rcu_read_unlock_bh();
308 		do {
309 			if (--st->bucket < 0)
310 				return NULL;
311 		} while (!rt_hash_table[st->bucket].chain);
312 		rcu_read_lock_bh();
313 		r = rt_hash_table[st->bucket].chain;
314 	}
315 	return rcu_dereference_bh(r);
316 }
317 
318 static struct rtable *rt_cache_get_next(struct seq_file *seq,
319 					struct rtable *r)
320 {
321 	struct rt_cache_iter_state *st = seq->private;
322 	while ((r = __rt_cache_get_next(seq, r)) != NULL) {
323 		if (dev_net(r->u.dst.dev) != seq_file_net(seq))
324 			continue;
325 		if (r->rt_genid == st->genid)
326 			break;
327 	}
328 	return r;
329 }
330 
331 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
332 {
333 	struct rtable *r = rt_cache_get_first(seq);
334 
335 	if (r)
336 		while (pos && (r = rt_cache_get_next(seq, r)))
337 			--pos;
338 	return pos ? NULL : r;
339 }
340 
341 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
342 {
343 	struct rt_cache_iter_state *st = seq->private;
344 	if (*pos)
345 		return rt_cache_get_idx(seq, *pos - 1);
346 	st->genid = rt_genid(seq_file_net(seq));
347 	return SEQ_START_TOKEN;
348 }
349 
350 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
351 {
352 	struct rtable *r;
353 
354 	if (v == SEQ_START_TOKEN)
355 		r = rt_cache_get_first(seq);
356 	else
357 		r = rt_cache_get_next(seq, v);
358 	++*pos;
359 	return r;
360 }
361 
362 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
363 {
364 	if (v && v != SEQ_START_TOKEN)
365 		rcu_read_unlock_bh();
366 }
367 
368 static int rt_cache_seq_show(struct seq_file *seq, void *v)
369 {
370 	if (v == SEQ_START_TOKEN)
371 		seq_printf(seq, "%-127s\n",
372 			   "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
373 			   "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
374 			   "HHUptod\tSpecDst");
375 	else {
376 		struct rtable *r = v;
377 		int len;
378 
379 		seq_printf(seq, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
380 			      "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
381 			r->u.dst.dev ? r->u.dst.dev->name : "*",
382 			(__force u32)r->rt_dst,
383 			(__force u32)r->rt_gateway,
384 			r->rt_flags, atomic_read(&r->u.dst.__refcnt),
385 			r->u.dst.__use, 0, (__force u32)r->rt_src,
386 			(dst_metric(&r->u.dst, RTAX_ADVMSS) ?
387 			     (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
388 			dst_metric(&r->u.dst, RTAX_WINDOW),
389 			(int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
390 			      dst_metric(&r->u.dst, RTAX_RTTVAR)),
391 			r->fl.fl4_tos,
392 			r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
393 			r->u.dst.hh ? (r->u.dst.hh->hh_output ==
394 				       dev_queue_xmit) : 0,
395 			r->rt_spec_dst, &len);
396 
397 		seq_printf(seq, "%*s\n", 127 - len, "");
398 	}
399 	return 0;
400 }
401 
402 static const struct seq_operations rt_cache_seq_ops = {
403 	.start  = rt_cache_seq_start,
404 	.next   = rt_cache_seq_next,
405 	.stop   = rt_cache_seq_stop,
406 	.show   = rt_cache_seq_show,
407 };
408 
409 static int rt_cache_seq_open(struct inode *inode, struct file *file)
410 {
411 	return seq_open_net(inode, file, &rt_cache_seq_ops,
412 			sizeof(struct rt_cache_iter_state));
413 }
414 
415 static const struct file_operations rt_cache_seq_fops = {
416 	.owner	 = THIS_MODULE,
417 	.open	 = rt_cache_seq_open,
418 	.read	 = seq_read,
419 	.llseek	 = seq_lseek,
420 	.release = seq_release_net,
421 };
422 
423 
424 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
425 {
426 	int cpu;
427 
428 	if (*pos == 0)
429 		return SEQ_START_TOKEN;
430 
431 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
432 		if (!cpu_possible(cpu))
433 			continue;
434 		*pos = cpu+1;
435 		return &per_cpu(rt_cache_stat, cpu);
436 	}
437 	return NULL;
438 }
439 
440 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
441 {
442 	int cpu;
443 
444 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
445 		if (!cpu_possible(cpu))
446 			continue;
447 		*pos = cpu+1;
448 		return &per_cpu(rt_cache_stat, cpu);
449 	}
450 	return NULL;
451 
452 }
453 
454 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
455 {
456 
457 }
458 
459 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
460 {
461 	struct rt_cache_stat *st = v;
462 
463 	if (v == SEQ_START_TOKEN) {
464 		seq_printf(seq, "entries  in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src  out_hit out_slow_tot out_slow_mc  gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
465 		return 0;
466 	}
467 
468 	seq_printf(seq,"%08x  %08x %08x %08x %08x %08x %08x %08x "
469 		   " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
470 		   atomic_read(&ipv4_dst_ops.entries),
471 		   st->in_hit,
472 		   st->in_slow_tot,
473 		   st->in_slow_mc,
474 		   st->in_no_route,
475 		   st->in_brd,
476 		   st->in_martian_dst,
477 		   st->in_martian_src,
478 
479 		   st->out_hit,
480 		   st->out_slow_tot,
481 		   st->out_slow_mc,
482 
483 		   st->gc_total,
484 		   st->gc_ignored,
485 		   st->gc_goal_miss,
486 		   st->gc_dst_overflow,
487 		   st->in_hlist_search,
488 		   st->out_hlist_search
489 		);
490 	return 0;
491 }
492 
493 static const struct seq_operations rt_cpu_seq_ops = {
494 	.start  = rt_cpu_seq_start,
495 	.next   = rt_cpu_seq_next,
496 	.stop   = rt_cpu_seq_stop,
497 	.show   = rt_cpu_seq_show,
498 };
499 
500 
501 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
502 {
503 	return seq_open(file, &rt_cpu_seq_ops);
504 }
505 
506 static const struct file_operations rt_cpu_seq_fops = {
507 	.owner	 = THIS_MODULE,
508 	.open	 = rt_cpu_seq_open,
509 	.read	 = seq_read,
510 	.llseek	 = seq_lseek,
511 	.release = seq_release,
512 };
513 
514 #ifdef CONFIG_NET_CLS_ROUTE
515 static int rt_acct_proc_show(struct seq_file *m, void *v)
516 {
517 	struct ip_rt_acct *dst, *src;
518 	unsigned int i, j;
519 
520 	dst = kcalloc(256, sizeof(struct ip_rt_acct), GFP_KERNEL);
521 	if (!dst)
522 		return -ENOMEM;
523 
524 	for_each_possible_cpu(i) {
525 		src = (struct ip_rt_acct *)per_cpu_ptr(ip_rt_acct, i);
526 		for (j = 0; j < 256; j++) {
527 			dst[j].o_bytes   += src[j].o_bytes;
528 			dst[j].o_packets += src[j].o_packets;
529 			dst[j].i_bytes   += src[j].i_bytes;
530 			dst[j].i_packets += src[j].i_packets;
531 		}
532 	}
533 
534 	seq_write(m, dst, 256 * sizeof(struct ip_rt_acct));
535 	kfree(dst);
536 	return 0;
537 }
538 
539 static int rt_acct_proc_open(struct inode *inode, struct file *file)
540 {
541 	return single_open(file, rt_acct_proc_show, NULL);
542 }
543 
544 static const struct file_operations rt_acct_proc_fops = {
545 	.owner		= THIS_MODULE,
546 	.open		= rt_acct_proc_open,
547 	.read		= seq_read,
548 	.llseek		= seq_lseek,
549 	.release	= single_release,
550 };
551 #endif
552 
553 static int __net_init ip_rt_do_proc_init(struct net *net)
554 {
555 	struct proc_dir_entry *pde;
556 
557 	pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
558 			&rt_cache_seq_fops);
559 	if (!pde)
560 		goto err1;
561 
562 	pde = proc_create("rt_cache", S_IRUGO,
563 			  net->proc_net_stat, &rt_cpu_seq_fops);
564 	if (!pde)
565 		goto err2;
566 
567 #ifdef CONFIG_NET_CLS_ROUTE
568 	pde = proc_create("rt_acct", 0, net->proc_net, &rt_acct_proc_fops);
569 	if (!pde)
570 		goto err3;
571 #endif
572 	return 0;
573 
574 #ifdef CONFIG_NET_CLS_ROUTE
575 err3:
576 	remove_proc_entry("rt_cache", net->proc_net_stat);
577 #endif
578 err2:
579 	remove_proc_entry("rt_cache", net->proc_net);
580 err1:
581 	return -ENOMEM;
582 }
583 
584 static void __net_exit ip_rt_do_proc_exit(struct net *net)
585 {
586 	remove_proc_entry("rt_cache", net->proc_net_stat);
587 	remove_proc_entry("rt_cache", net->proc_net);
588 #ifdef CONFIG_NET_CLS_ROUTE
589 	remove_proc_entry("rt_acct", net->proc_net);
590 #endif
591 }
592 
593 static struct pernet_operations ip_rt_proc_ops __net_initdata =  {
594 	.init = ip_rt_do_proc_init,
595 	.exit = ip_rt_do_proc_exit,
596 };
597 
598 static int __init ip_rt_proc_init(void)
599 {
600 	return register_pernet_subsys(&ip_rt_proc_ops);
601 }
602 
603 #else
604 static inline int ip_rt_proc_init(void)
605 {
606 	return 0;
607 }
608 #endif /* CONFIG_PROC_FS */
609 
610 static inline void rt_free(struct rtable *rt)
611 {
612 	call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
613 }
614 
615 static inline void rt_drop(struct rtable *rt)
616 {
617 	ip_rt_put(rt);
618 	call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
619 }
620 
621 static inline int rt_fast_clean(struct rtable *rth)
622 {
623 	/* Kill broadcast/multicast entries very aggresively, if they
624 	   collide in hash table with more useful entries */
625 	return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
626 		rth->fl.iif && rth->u.dst.rt_next;
627 }
628 
629 static inline int rt_valuable(struct rtable *rth)
630 {
631 	return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
632 		rth->u.dst.expires;
633 }
634 
635 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
636 {
637 	unsigned long age;
638 	int ret = 0;
639 
640 	if (atomic_read(&rth->u.dst.__refcnt))
641 		goto out;
642 
643 	ret = 1;
644 	if (rth->u.dst.expires &&
645 	    time_after_eq(jiffies, rth->u.dst.expires))
646 		goto out;
647 
648 	age = jiffies - rth->u.dst.lastuse;
649 	ret = 0;
650 	if ((age <= tmo1 && !rt_fast_clean(rth)) ||
651 	    (age <= tmo2 && rt_valuable(rth)))
652 		goto out;
653 	ret = 1;
654 out:	return ret;
655 }
656 
657 /* Bits of score are:
658  * 31: very valuable
659  * 30: not quite useless
660  * 29..0: usage counter
661  */
662 static inline u32 rt_score(struct rtable *rt)
663 {
664 	u32 score = jiffies - rt->u.dst.lastuse;
665 
666 	score = ~score & ~(3<<30);
667 
668 	if (rt_valuable(rt))
669 		score |= (1<<31);
670 
671 	if (!rt->fl.iif ||
672 	    !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
673 		score |= (1<<30);
674 
675 	return score;
676 }
677 
678 static inline bool rt_caching(const struct net *net)
679 {
680 	return net->ipv4.current_rt_cache_rebuild_count <=
681 		net->ipv4.sysctl_rt_cache_rebuild_count;
682 }
683 
684 static inline bool compare_hash_inputs(const struct flowi *fl1,
685 					const struct flowi *fl2)
686 {
687 	return ((((__force u32)fl1->nl_u.ip4_u.daddr ^ (__force u32)fl2->nl_u.ip4_u.daddr) |
688 		((__force u32)fl1->nl_u.ip4_u.saddr ^ (__force u32)fl2->nl_u.ip4_u.saddr) |
689 		(fl1->iif ^ fl2->iif)) == 0);
690 }
691 
692 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
693 {
694 	return (((__force u32)fl1->nl_u.ip4_u.daddr ^ (__force u32)fl2->nl_u.ip4_u.daddr) |
695 		((__force u32)fl1->nl_u.ip4_u.saddr ^ (__force u32)fl2->nl_u.ip4_u.saddr) |
696 		(fl1->mark ^ fl2->mark) |
697 		(*(u16 *)&fl1->nl_u.ip4_u.tos ^ *(u16 *)&fl2->nl_u.ip4_u.tos) |
698 		(fl1->oif ^ fl2->oif) |
699 		(fl1->iif ^ fl2->iif)) == 0;
700 }
701 
702 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
703 {
704 	return net_eq(dev_net(rt1->u.dst.dev), dev_net(rt2->u.dst.dev));
705 }
706 
707 static inline int rt_is_expired(struct rtable *rth)
708 {
709 	return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev));
710 }
711 
712 /*
713  * Perform a full scan of hash table and free all entries.
714  * Can be called by a softirq or a process.
715  * In the later case, we want to be reschedule if necessary
716  */
717 static void rt_do_flush(int process_context)
718 {
719 	unsigned int i;
720 	struct rtable *rth, *next;
721 	struct rtable * tail;
722 
723 	for (i = 0; i <= rt_hash_mask; i++) {
724 		if (process_context && need_resched())
725 			cond_resched();
726 		rth = rt_hash_table[i].chain;
727 		if (!rth)
728 			continue;
729 
730 		spin_lock_bh(rt_hash_lock_addr(i));
731 #ifdef CONFIG_NET_NS
732 		{
733 		struct rtable ** prev, * p;
734 
735 		rth = rt_hash_table[i].chain;
736 
737 		/* defer releasing the head of the list after spin_unlock */
738 		for (tail = rth; tail; tail = tail->u.dst.rt_next)
739 			if (!rt_is_expired(tail))
740 				break;
741 		if (rth != tail)
742 			rt_hash_table[i].chain = tail;
743 
744 		/* call rt_free on entries after the tail requiring flush */
745 		prev = &rt_hash_table[i].chain;
746 		for (p = *prev; p; p = next) {
747 			next = p->u.dst.rt_next;
748 			if (!rt_is_expired(p)) {
749 				prev = &p->u.dst.rt_next;
750 			} else {
751 				*prev = next;
752 				rt_free(p);
753 			}
754 		}
755 		}
756 #else
757 		rth = rt_hash_table[i].chain;
758 		rt_hash_table[i].chain = NULL;
759 		tail = NULL;
760 #endif
761 		spin_unlock_bh(rt_hash_lock_addr(i));
762 
763 		for (; rth != tail; rth = next) {
764 			next = rth->u.dst.rt_next;
765 			rt_free(rth);
766 		}
767 	}
768 }
769 
770 /*
771  * While freeing expired entries, we compute average chain length
772  * and standard deviation, using fixed-point arithmetic.
773  * This to have an estimation of rt_chain_length_max
774  *  rt_chain_length_max = max(elasticity, AVG + 4*SD)
775  * We use 3 bits for frational part, and 29 (or 61) for magnitude.
776  */
777 
778 #define FRACT_BITS 3
779 #define ONE (1UL << FRACT_BITS)
780 
781 /*
782  * Given a hash chain and an item in this hash chain,
783  * find if a previous entry has the same hash_inputs
784  * (but differs on tos, mark or oif)
785  * Returns 0 if an alias is found.
786  * Returns ONE if rth has no alias before itself.
787  */
788 static int has_noalias(const struct rtable *head, const struct rtable *rth)
789 {
790 	const struct rtable *aux = head;
791 
792 	while (aux != rth) {
793 		if (compare_hash_inputs(&aux->fl, &rth->fl))
794 			return 0;
795 		aux = aux->u.dst.rt_next;
796 	}
797 	return ONE;
798 }
799 
800 static void rt_check_expire(void)
801 {
802 	static unsigned int rover;
803 	unsigned int i = rover, goal;
804 	struct rtable *rth, **rthp;
805 	unsigned long samples = 0;
806 	unsigned long sum = 0, sum2 = 0;
807 	unsigned long delta;
808 	u64 mult;
809 
810 	delta = jiffies - expires_ljiffies;
811 	expires_ljiffies = jiffies;
812 	mult = ((u64)delta) << rt_hash_log;
813 	if (ip_rt_gc_timeout > 1)
814 		do_div(mult, ip_rt_gc_timeout);
815 	goal = (unsigned int)mult;
816 	if (goal > rt_hash_mask)
817 		goal = rt_hash_mask + 1;
818 	for (; goal > 0; goal--) {
819 		unsigned long tmo = ip_rt_gc_timeout;
820 		unsigned long length;
821 
822 		i = (i + 1) & rt_hash_mask;
823 		rthp = &rt_hash_table[i].chain;
824 
825 		if (need_resched())
826 			cond_resched();
827 
828 		samples++;
829 
830 		if (*rthp == NULL)
831 			continue;
832 		length = 0;
833 		spin_lock_bh(rt_hash_lock_addr(i));
834 		while ((rth = *rthp) != NULL) {
835 			prefetch(rth->u.dst.rt_next);
836 			if (rt_is_expired(rth)) {
837 				*rthp = rth->u.dst.rt_next;
838 				rt_free(rth);
839 				continue;
840 			}
841 			if (rth->u.dst.expires) {
842 				/* Entry is expired even if it is in use */
843 				if (time_before_eq(jiffies, rth->u.dst.expires)) {
844 nofree:
845 					tmo >>= 1;
846 					rthp = &rth->u.dst.rt_next;
847 					/*
848 					 * We only count entries on
849 					 * a chain with equal hash inputs once
850 					 * so that entries for different QOS
851 					 * levels, and other non-hash input
852 					 * attributes don't unfairly skew
853 					 * the length computation
854 					 */
855 					length += has_noalias(rt_hash_table[i].chain, rth);
856 					continue;
857 				}
858 			} else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout))
859 				goto nofree;
860 
861 			/* Cleanup aged off entries. */
862 			*rthp = rth->u.dst.rt_next;
863 			rt_free(rth);
864 		}
865 		spin_unlock_bh(rt_hash_lock_addr(i));
866 		sum += length;
867 		sum2 += length*length;
868 	}
869 	if (samples) {
870 		unsigned long avg = sum / samples;
871 		unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
872 		rt_chain_length_max = max_t(unsigned long,
873 					ip_rt_gc_elasticity,
874 					(avg + 4*sd) >> FRACT_BITS);
875 	}
876 	rover = i;
877 }
878 
879 /*
880  * rt_worker_func() is run in process context.
881  * we call rt_check_expire() to scan part of the hash table
882  */
883 static void rt_worker_func(struct work_struct *work)
884 {
885 	rt_check_expire();
886 	schedule_delayed_work(&expires_work, ip_rt_gc_interval);
887 }
888 
889 /*
890  * Pertubation of rt_genid by a small quantity [1..256]
891  * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
892  * many times (2^24) without giving recent rt_genid.
893  * Jenkins hash is strong enough that litle changes of rt_genid are OK.
894  */
895 static void rt_cache_invalidate(struct net *net)
896 {
897 	unsigned char shuffle;
898 
899 	get_random_bytes(&shuffle, sizeof(shuffle));
900 	atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
901 }
902 
903 /*
904  * delay < 0  : invalidate cache (fast : entries will be deleted later)
905  * delay >= 0 : invalidate & flush cache (can be long)
906  */
907 void rt_cache_flush(struct net *net, int delay)
908 {
909 	rt_cache_invalidate(net);
910 	if (delay >= 0)
911 		rt_do_flush(!in_softirq());
912 }
913 
914 /* Flush previous cache invalidated entries from the cache */
915 void rt_cache_flush_batch(void)
916 {
917 	rt_do_flush(!in_softirq());
918 }
919 
920 static void rt_emergency_hash_rebuild(struct net *net)
921 {
922 	if (net_ratelimit())
923 		printk(KERN_WARNING "Route hash chain too long!\n");
924 	rt_cache_invalidate(net);
925 }
926 
927 /*
928    Short description of GC goals.
929 
930    We want to build algorithm, which will keep routing cache
931    at some equilibrium point, when number of aged off entries
932    is kept approximately equal to newly generated ones.
933 
934    Current expiration strength is variable "expire".
935    We try to adjust it dynamically, so that if networking
936    is idle expires is large enough to keep enough of warm entries,
937    and when load increases it reduces to limit cache size.
938  */
939 
940 static int rt_garbage_collect(struct dst_ops *ops)
941 {
942 	static unsigned long expire = RT_GC_TIMEOUT;
943 	static unsigned long last_gc;
944 	static int rover;
945 	static int equilibrium;
946 	struct rtable *rth, **rthp;
947 	unsigned long now = jiffies;
948 	int goal;
949 
950 	/*
951 	 * Garbage collection is pretty expensive,
952 	 * do not make it too frequently.
953 	 */
954 
955 	RT_CACHE_STAT_INC(gc_total);
956 
957 	if (now - last_gc < ip_rt_gc_min_interval &&
958 	    atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
959 		RT_CACHE_STAT_INC(gc_ignored);
960 		goto out;
961 	}
962 
963 	/* Calculate number of entries, which we want to expire now. */
964 	goal = atomic_read(&ipv4_dst_ops.entries) -
965 		(ip_rt_gc_elasticity << rt_hash_log);
966 	if (goal <= 0) {
967 		if (equilibrium < ipv4_dst_ops.gc_thresh)
968 			equilibrium = ipv4_dst_ops.gc_thresh;
969 		goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
970 		if (goal > 0) {
971 			equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
972 			goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
973 		}
974 	} else {
975 		/* We are in dangerous area. Try to reduce cache really
976 		 * aggressively.
977 		 */
978 		goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
979 		equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
980 	}
981 
982 	if (now - last_gc >= ip_rt_gc_min_interval)
983 		last_gc = now;
984 
985 	if (goal <= 0) {
986 		equilibrium += goal;
987 		goto work_done;
988 	}
989 
990 	do {
991 		int i, k;
992 
993 		for (i = rt_hash_mask, k = rover; i >= 0; i--) {
994 			unsigned long tmo = expire;
995 
996 			k = (k + 1) & rt_hash_mask;
997 			rthp = &rt_hash_table[k].chain;
998 			spin_lock_bh(rt_hash_lock_addr(k));
999 			while ((rth = *rthp) != NULL) {
1000 				if (!rt_is_expired(rth) &&
1001 					!rt_may_expire(rth, tmo, expire)) {
1002 					tmo >>= 1;
1003 					rthp = &rth->u.dst.rt_next;
1004 					continue;
1005 				}
1006 				*rthp = rth->u.dst.rt_next;
1007 				rt_free(rth);
1008 				goal--;
1009 			}
1010 			spin_unlock_bh(rt_hash_lock_addr(k));
1011 			if (goal <= 0)
1012 				break;
1013 		}
1014 		rover = k;
1015 
1016 		if (goal <= 0)
1017 			goto work_done;
1018 
1019 		/* Goal is not achieved. We stop process if:
1020 
1021 		   - if expire reduced to zero. Otherwise, expire is halfed.
1022 		   - if table is not full.
1023 		   - if we are called from interrupt.
1024 		   - jiffies check is just fallback/debug loop breaker.
1025 		     We will not spin here for long time in any case.
1026 		 */
1027 
1028 		RT_CACHE_STAT_INC(gc_goal_miss);
1029 
1030 		if (expire == 0)
1031 			break;
1032 
1033 		expire >>= 1;
1034 #if RT_CACHE_DEBUG >= 2
1035 		printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1036 				atomic_read(&ipv4_dst_ops.entries), goal, i);
1037 #endif
1038 
1039 		if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1040 			goto out;
1041 	} while (!in_softirq() && time_before_eq(jiffies, now));
1042 
1043 	if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1044 		goto out;
1045 	if (net_ratelimit())
1046 		printk(KERN_WARNING "dst cache overflow\n");
1047 	RT_CACHE_STAT_INC(gc_dst_overflow);
1048 	return 1;
1049 
1050 work_done:
1051 	expire += ip_rt_gc_min_interval;
1052 	if (expire > ip_rt_gc_timeout ||
1053 	    atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1054 		expire = ip_rt_gc_timeout;
1055 #if RT_CACHE_DEBUG >= 2
1056 	printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1057 			atomic_read(&ipv4_dst_ops.entries), goal, rover);
1058 #endif
1059 out:	return 0;
1060 }
1061 
1062 /*
1063  * Returns number of entries in a hash chain that have different hash_inputs
1064  */
1065 static int slow_chain_length(const struct rtable *head)
1066 {
1067 	int length = 0;
1068 	const struct rtable *rth = head;
1069 
1070 	while (rth) {
1071 		length += has_noalias(head, rth);
1072 		rth = rth->u.dst.rt_next;
1073 	}
1074 	return length >> FRACT_BITS;
1075 }
1076 
1077 static int rt_intern_hash(unsigned hash, struct rtable *rt,
1078 			  struct rtable **rp, struct sk_buff *skb, int ifindex)
1079 {
1080 	struct rtable	*rth, **rthp;
1081 	unsigned long	now;
1082 	struct rtable *cand, **candp;
1083 	u32 		min_score;
1084 	int		chain_length;
1085 	int attempts = !in_softirq();
1086 
1087 restart:
1088 	chain_length = 0;
1089 	min_score = ~(u32)0;
1090 	cand = NULL;
1091 	candp = NULL;
1092 	now = jiffies;
1093 
1094 	if (!rt_caching(dev_net(rt->u.dst.dev))) {
1095 		/*
1096 		 * If we're not caching, just tell the caller we
1097 		 * were successful and don't touch the route.  The
1098 		 * caller hold the sole reference to the cache entry, and
1099 		 * it will be released when the caller is done with it.
1100 		 * If we drop it here, the callers have no way to resolve routes
1101 		 * when we're not caching.  Instead, just point *rp at rt, so
1102 		 * the caller gets a single use out of the route
1103 		 * Note that we do rt_free on this new route entry, so that
1104 		 * once its refcount hits zero, we are still able to reap it
1105 		 * (Thanks Alexey)
1106 		 * Note also the rt_free uses call_rcu.  We don't actually
1107 		 * need rcu protection here, this is just our path to get
1108 		 * on the route gc list.
1109 		 */
1110 
1111 		if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1112 			int err = arp_bind_neighbour(&rt->u.dst);
1113 			if (err) {
1114 				if (net_ratelimit())
1115 					printk(KERN_WARNING
1116 					    "Neighbour table failure & not caching routes.\n");
1117 				rt_drop(rt);
1118 				return err;
1119 			}
1120 		}
1121 
1122 		rt_free(rt);
1123 		goto skip_hashing;
1124 	}
1125 
1126 	rthp = &rt_hash_table[hash].chain;
1127 
1128 	spin_lock_bh(rt_hash_lock_addr(hash));
1129 	while ((rth = *rthp) != NULL) {
1130 		if (rt_is_expired(rth)) {
1131 			*rthp = rth->u.dst.rt_next;
1132 			rt_free(rth);
1133 			continue;
1134 		}
1135 		if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1136 			/* Put it first */
1137 			*rthp = rth->u.dst.rt_next;
1138 			/*
1139 			 * Since lookup is lockfree, the deletion
1140 			 * must be visible to another weakly ordered CPU before
1141 			 * the insertion at the start of the hash chain.
1142 			 */
1143 			rcu_assign_pointer(rth->u.dst.rt_next,
1144 					   rt_hash_table[hash].chain);
1145 			/*
1146 			 * Since lookup is lockfree, the update writes
1147 			 * must be ordered for consistency on SMP.
1148 			 */
1149 			rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1150 
1151 			dst_use(&rth->u.dst, now);
1152 			spin_unlock_bh(rt_hash_lock_addr(hash));
1153 
1154 			rt_drop(rt);
1155 			if (rp)
1156 				*rp = rth;
1157 			else
1158 				skb_dst_set(skb, &rth->u.dst);
1159 			return 0;
1160 		}
1161 
1162 		if (!atomic_read(&rth->u.dst.__refcnt)) {
1163 			u32 score = rt_score(rth);
1164 
1165 			if (score <= min_score) {
1166 				cand = rth;
1167 				candp = rthp;
1168 				min_score = score;
1169 			}
1170 		}
1171 
1172 		chain_length++;
1173 
1174 		rthp = &rth->u.dst.rt_next;
1175 	}
1176 
1177 	if (cand) {
1178 		/* ip_rt_gc_elasticity used to be average length of chain
1179 		 * length, when exceeded gc becomes really aggressive.
1180 		 *
1181 		 * The second limit is less certain. At the moment it allows
1182 		 * only 2 entries per bucket. We will see.
1183 		 */
1184 		if (chain_length > ip_rt_gc_elasticity) {
1185 			*candp = cand->u.dst.rt_next;
1186 			rt_free(cand);
1187 		}
1188 	} else {
1189 		if (chain_length > rt_chain_length_max &&
1190 		    slow_chain_length(rt_hash_table[hash].chain) > rt_chain_length_max) {
1191 			struct net *net = dev_net(rt->u.dst.dev);
1192 			int num = ++net->ipv4.current_rt_cache_rebuild_count;
1193 			if (!rt_caching(net)) {
1194 				printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1195 					rt->u.dst.dev->name, num);
1196 			}
1197 			rt_emergency_hash_rebuild(net);
1198 			spin_unlock_bh(rt_hash_lock_addr(hash));
1199 
1200 			hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1201 					ifindex, rt_genid(net));
1202 			goto restart;
1203 		}
1204 	}
1205 
1206 	/* Try to bind route to arp only if it is output
1207 	   route or unicast forwarding path.
1208 	 */
1209 	if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1210 		int err = arp_bind_neighbour(&rt->u.dst);
1211 		if (err) {
1212 			spin_unlock_bh(rt_hash_lock_addr(hash));
1213 
1214 			if (err != -ENOBUFS) {
1215 				rt_drop(rt);
1216 				return err;
1217 			}
1218 
1219 			/* Neighbour tables are full and nothing
1220 			   can be released. Try to shrink route cache,
1221 			   it is most likely it holds some neighbour records.
1222 			 */
1223 			if (attempts-- > 0) {
1224 				int saved_elasticity = ip_rt_gc_elasticity;
1225 				int saved_int = ip_rt_gc_min_interval;
1226 				ip_rt_gc_elasticity	= 1;
1227 				ip_rt_gc_min_interval	= 0;
1228 				rt_garbage_collect(&ipv4_dst_ops);
1229 				ip_rt_gc_min_interval	= saved_int;
1230 				ip_rt_gc_elasticity	= saved_elasticity;
1231 				goto restart;
1232 			}
1233 
1234 			if (net_ratelimit())
1235 				printk(KERN_WARNING "Neighbour table overflow.\n");
1236 			rt_drop(rt);
1237 			return -ENOBUFS;
1238 		}
1239 	}
1240 
1241 	rt->u.dst.rt_next = rt_hash_table[hash].chain;
1242 
1243 #if RT_CACHE_DEBUG >= 2
1244 	if (rt->u.dst.rt_next) {
1245 		struct rtable *trt;
1246 		printk(KERN_DEBUG "rt_cache @%02x: %pI4",
1247 		       hash, &rt->rt_dst);
1248 		for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1249 			printk(" . %pI4", &trt->rt_dst);
1250 		printk("\n");
1251 	}
1252 #endif
1253 	/*
1254 	 * Since lookup is lockfree, we must make sure
1255 	 * previous writes to rt are comitted to memory
1256 	 * before making rt visible to other CPUS.
1257 	 */
1258 	rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1259 
1260 	spin_unlock_bh(rt_hash_lock_addr(hash));
1261 
1262 skip_hashing:
1263 	if (rp)
1264 		*rp = rt;
1265 	else
1266 		skb_dst_set(skb, &rt->u.dst);
1267 	return 0;
1268 }
1269 
1270 void rt_bind_peer(struct rtable *rt, int create)
1271 {
1272 	static DEFINE_SPINLOCK(rt_peer_lock);
1273 	struct inet_peer *peer;
1274 
1275 	peer = inet_getpeer(rt->rt_dst, create);
1276 
1277 	spin_lock_bh(&rt_peer_lock);
1278 	if (rt->peer == NULL) {
1279 		rt->peer = peer;
1280 		peer = NULL;
1281 	}
1282 	spin_unlock_bh(&rt_peer_lock);
1283 	if (peer)
1284 		inet_putpeer(peer);
1285 }
1286 
1287 /*
1288  * Peer allocation may fail only in serious out-of-memory conditions.  However
1289  * we still can generate some output.
1290  * Random ID selection looks a bit dangerous because we have no chances to
1291  * select ID being unique in a reasonable period of time.
1292  * But broken packet identifier may be better than no packet at all.
1293  */
1294 static void ip_select_fb_ident(struct iphdr *iph)
1295 {
1296 	static DEFINE_SPINLOCK(ip_fb_id_lock);
1297 	static u32 ip_fallback_id;
1298 	u32 salt;
1299 
1300 	spin_lock_bh(&ip_fb_id_lock);
1301 	salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1302 	iph->id = htons(salt & 0xFFFF);
1303 	ip_fallback_id = salt;
1304 	spin_unlock_bh(&ip_fb_id_lock);
1305 }
1306 
1307 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1308 {
1309 	struct rtable *rt = (struct rtable *) dst;
1310 
1311 	if (rt) {
1312 		if (rt->peer == NULL)
1313 			rt_bind_peer(rt, 1);
1314 
1315 		/* If peer is attached to destination, it is never detached,
1316 		   so that we need not to grab a lock to dereference it.
1317 		 */
1318 		if (rt->peer) {
1319 			iph->id = htons(inet_getid(rt->peer, more));
1320 			return;
1321 		}
1322 	} else
1323 		printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1324 		       __builtin_return_address(0));
1325 
1326 	ip_select_fb_ident(iph);
1327 }
1328 
1329 static void rt_del(unsigned hash, struct rtable *rt)
1330 {
1331 	struct rtable **rthp, *aux;
1332 
1333 	rthp = &rt_hash_table[hash].chain;
1334 	spin_lock_bh(rt_hash_lock_addr(hash));
1335 	ip_rt_put(rt);
1336 	while ((aux = *rthp) != NULL) {
1337 		if (aux == rt || rt_is_expired(aux)) {
1338 			*rthp = aux->u.dst.rt_next;
1339 			rt_free(aux);
1340 			continue;
1341 		}
1342 		rthp = &aux->u.dst.rt_next;
1343 	}
1344 	spin_unlock_bh(rt_hash_lock_addr(hash));
1345 }
1346 
1347 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1348 		    __be32 saddr, struct net_device *dev)
1349 {
1350 	int i, k;
1351 	struct in_device *in_dev = in_dev_get(dev);
1352 	struct rtable *rth, **rthp;
1353 	__be32  skeys[2] = { saddr, 0 };
1354 	int  ikeys[2] = { dev->ifindex, 0 };
1355 	struct netevent_redirect netevent;
1356 	struct net *net;
1357 
1358 	if (!in_dev)
1359 		return;
1360 
1361 	net = dev_net(dev);
1362 	if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
1363 	    ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||
1364 	    ipv4_is_zeronet(new_gw))
1365 		goto reject_redirect;
1366 
1367 	if (!rt_caching(net))
1368 		goto reject_redirect;
1369 
1370 	if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1371 		if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1372 			goto reject_redirect;
1373 		if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1374 			goto reject_redirect;
1375 	} else {
1376 		if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1377 			goto reject_redirect;
1378 	}
1379 
1380 	for (i = 0; i < 2; i++) {
1381 		for (k = 0; k < 2; k++) {
1382 			unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1383 						rt_genid(net));
1384 
1385 			rthp=&rt_hash_table[hash].chain;
1386 
1387 			rcu_read_lock();
1388 			while ((rth = rcu_dereference(*rthp)) != NULL) {
1389 				struct rtable *rt;
1390 
1391 				if (rth->fl.fl4_dst != daddr ||
1392 				    rth->fl.fl4_src != skeys[i] ||
1393 				    rth->fl.oif != ikeys[k] ||
1394 				    rth->fl.iif != 0 ||
1395 				    rt_is_expired(rth) ||
1396 				    !net_eq(dev_net(rth->u.dst.dev), net)) {
1397 					rthp = &rth->u.dst.rt_next;
1398 					continue;
1399 				}
1400 
1401 				if (rth->rt_dst != daddr ||
1402 				    rth->rt_src != saddr ||
1403 				    rth->u.dst.error ||
1404 				    rth->rt_gateway != old_gw ||
1405 				    rth->u.dst.dev != dev)
1406 					break;
1407 
1408 				dst_hold(&rth->u.dst);
1409 				rcu_read_unlock();
1410 
1411 				rt = dst_alloc(&ipv4_dst_ops);
1412 				if (rt == NULL) {
1413 					ip_rt_put(rth);
1414 					in_dev_put(in_dev);
1415 					return;
1416 				}
1417 
1418 				/* Copy all the information. */
1419 				*rt = *rth;
1420 				rt->u.dst.__use		= 1;
1421 				atomic_set(&rt->u.dst.__refcnt, 1);
1422 				rt->u.dst.child		= NULL;
1423 				if (rt->u.dst.dev)
1424 					dev_hold(rt->u.dst.dev);
1425 				if (rt->idev)
1426 					in_dev_hold(rt->idev);
1427 				rt->u.dst.obsolete	= -1;
1428 				rt->u.dst.lastuse	= jiffies;
1429 				rt->u.dst.path		= &rt->u.dst;
1430 				rt->u.dst.neighbour	= NULL;
1431 				rt->u.dst.hh		= NULL;
1432 #ifdef CONFIG_XFRM
1433 				rt->u.dst.xfrm		= NULL;
1434 #endif
1435 				rt->rt_genid		= rt_genid(net);
1436 				rt->rt_flags		|= RTCF_REDIRECTED;
1437 
1438 				/* Gateway is different ... */
1439 				rt->rt_gateway		= new_gw;
1440 
1441 				/* Redirect received -> path was valid */
1442 				dst_confirm(&rth->u.dst);
1443 
1444 				if (rt->peer)
1445 					atomic_inc(&rt->peer->refcnt);
1446 
1447 				if (arp_bind_neighbour(&rt->u.dst) ||
1448 				    !(rt->u.dst.neighbour->nud_state &
1449 					    NUD_VALID)) {
1450 					if (rt->u.dst.neighbour)
1451 						neigh_event_send(rt->u.dst.neighbour, NULL);
1452 					ip_rt_put(rth);
1453 					rt_drop(rt);
1454 					goto do_next;
1455 				}
1456 
1457 				netevent.old = &rth->u.dst;
1458 				netevent.new = &rt->u.dst;
1459 				call_netevent_notifiers(NETEVENT_REDIRECT,
1460 							&netevent);
1461 
1462 				rt_del(hash, rth);
1463 				if (!rt_intern_hash(hash, rt, &rt, NULL, rt->fl.oif))
1464 					ip_rt_put(rt);
1465 				goto do_next;
1466 			}
1467 			rcu_read_unlock();
1468 		do_next:
1469 			;
1470 		}
1471 	}
1472 	in_dev_put(in_dev);
1473 	return;
1474 
1475 reject_redirect:
1476 #ifdef CONFIG_IP_ROUTE_VERBOSE
1477 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1478 		printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1479 			"  Advised path = %pI4 -> %pI4\n",
1480 		       &old_gw, dev->name, &new_gw,
1481 		       &saddr, &daddr);
1482 #endif
1483 	in_dev_put(in_dev);
1484 }
1485 
1486 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1487 {
1488 	struct rtable *rt = (struct rtable *)dst;
1489 	struct dst_entry *ret = dst;
1490 
1491 	if (rt) {
1492 		if (dst->obsolete > 0) {
1493 			ip_rt_put(rt);
1494 			ret = NULL;
1495 		} else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1496 			   (rt->u.dst.expires &&
1497 			    time_after_eq(jiffies, rt->u.dst.expires))) {
1498 			unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1499 						rt->fl.oif,
1500 						rt_genid(dev_net(dst->dev)));
1501 #if RT_CACHE_DEBUG >= 1
1502 			printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1503 				&rt->rt_dst, rt->fl.fl4_tos);
1504 #endif
1505 			rt_del(hash, rt);
1506 			ret = NULL;
1507 		}
1508 	}
1509 	return ret;
1510 }
1511 
1512 /*
1513  * Algorithm:
1514  *	1. The first ip_rt_redirect_number redirects are sent
1515  *	   with exponential backoff, then we stop sending them at all,
1516  *	   assuming that the host ignores our redirects.
1517  *	2. If we did not see packets requiring redirects
1518  *	   during ip_rt_redirect_silence, we assume that the host
1519  *	   forgot redirected route and start to send redirects again.
1520  *
1521  * This algorithm is much cheaper and more intelligent than dumb load limiting
1522  * in icmp.c.
1523  *
1524  * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1525  * and "frag. need" (breaks PMTU discovery) in icmp.c.
1526  */
1527 
1528 void ip_rt_send_redirect(struct sk_buff *skb)
1529 {
1530 	struct rtable *rt = skb_rtable(skb);
1531 	struct in_device *in_dev;
1532 	int log_martians;
1533 
1534 	rcu_read_lock();
1535 	in_dev = __in_dev_get_rcu(rt->u.dst.dev);
1536 	if (!in_dev || !IN_DEV_TX_REDIRECTS(in_dev)) {
1537 		rcu_read_unlock();
1538 		return;
1539 	}
1540 	log_martians = IN_DEV_LOG_MARTIANS(in_dev);
1541 	rcu_read_unlock();
1542 
1543 	/* No redirected packets during ip_rt_redirect_silence;
1544 	 * reset the algorithm.
1545 	 */
1546 	if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1547 		rt->u.dst.rate_tokens = 0;
1548 
1549 	/* Too many ignored redirects; do not send anything
1550 	 * set u.dst.rate_last to the last seen redirected packet.
1551 	 */
1552 	if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1553 		rt->u.dst.rate_last = jiffies;
1554 		return;
1555 	}
1556 
1557 	/* Check for load limit; set rate_last to the latest sent
1558 	 * redirect.
1559 	 */
1560 	if (rt->u.dst.rate_tokens == 0 ||
1561 	    time_after(jiffies,
1562 		       (rt->u.dst.rate_last +
1563 			(ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1564 		icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1565 		rt->u.dst.rate_last = jiffies;
1566 		++rt->u.dst.rate_tokens;
1567 #ifdef CONFIG_IP_ROUTE_VERBOSE
1568 		if (log_martians &&
1569 		    rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1570 		    net_ratelimit())
1571 			printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1572 				&rt->rt_src, rt->rt_iif,
1573 				&rt->rt_dst, &rt->rt_gateway);
1574 #endif
1575 	}
1576 }
1577 
1578 static int ip_error(struct sk_buff *skb)
1579 {
1580 	struct rtable *rt = skb_rtable(skb);
1581 	unsigned long now;
1582 	int code;
1583 
1584 	switch (rt->u.dst.error) {
1585 		case EINVAL:
1586 		default:
1587 			goto out;
1588 		case EHOSTUNREACH:
1589 			code = ICMP_HOST_UNREACH;
1590 			break;
1591 		case ENETUNREACH:
1592 			code = ICMP_NET_UNREACH;
1593 			IP_INC_STATS_BH(dev_net(rt->u.dst.dev),
1594 					IPSTATS_MIB_INNOROUTES);
1595 			break;
1596 		case EACCES:
1597 			code = ICMP_PKT_FILTERED;
1598 			break;
1599 	}
1600 
1601 	now = jiffies;
1602 	rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1603 	if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1604 		rt->u.dst.rate_tokens = ip_rt_error_burst;
1605 	rt->u.dst.rate_last = now;
1606 	if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1607 		rt->u.dst.rate_tokens -= ip_rt_error_cost;
1608 		icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1609 	}
1610 
1611 out:	kfree_skb(skb);
1612 	return 0;
1613 }
1614 
1615 /*
1616  *	The last two values are not from the RFC but
1617  *	are needed for AMPRnet AX.25 paths.
1618  */
1619 
1620 static const unsigned short mtu_plateau[] =
1621 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1622 
1623 static inline unsigned short guess_mtu(unsigned short old_mtu)
1624 {
1625 	int i;
1626 
1627 	for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1628 		if (old_mtu > mtu_plateau[i])
1629 			return mtu_plateau[i];
1630 	return 68;
1631 }
1632 
1633 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1634 				 unsigned short new_mtu,
1635 				 struct net_device *dev)
1636 {
1637 	int i, k;
1638 	unsigned short old_mtu = ntohs(iph->tot_len);
1639 	struct rtable *rth;
1640 	int  ikeys[2] = { dev->ifindex, 0 };
1641 	__be32  skeys[2] = { iph->saddr, 0, };
1642 	__be32  daddr = iph->daddr;
1643 	unsigned short est_mtu = 0;
1644 
1645 	for (k = 0; k < 2; k++) {
1646 		for (i = 0; i < 2; i++) {
1647 			unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1648 						rt_genid(net));
1649 
1650 			rcu_read_lock();
1651 			for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1652 			     rth = rcu_dereference(rth->u.dst.rt_next)) {
1653 				unsigned short mtu = new_mtu;
1654 
1655 				if (rth->fl.fl4_dst != daddr ||
1656 				    rth->fl.fl4_src != skeys[i] ||
1657 				    rth->rt_dst != daddr ||
1658 				    rth->rt_src != iph->saddr ||
1659 				    rth->fl.oif != ikeys[k] ||
1660 				    rth->fl.iif != 0 ||
1661 				    dst_metric_locked(&rth->u.dst, RTAX_MTU) ||
1662 				    !net_eq(dev_net(rth->u.dst.dev), net) ||
1663 				    rt_is_expired(rth))
1664 					continue;
1665 
1666 				if (new_mtu < 68 || new_mtu >= old_mtu) {
1667 
1668 					/* BSD 4.2 compatibility hack :-( */
1669 					if (mtu == 0 &&
1670 					    old_mtu >= dst_mtu(&rth->u.dst) &&
1671 					    old_mtu >= 68 + (iph->ihl << 2))
1672 						old_mtu -= iph->ihl << 2;
1673 
1674 					mtu = guess_mtu(old_mtu);
1675 				}
1676 				if (mtu <= dst_mtu(&rth->u.dst)) {
1677 					if (mtu < dst_mtu(&rth->u.dst)) {
1678 						dst_confirm(&rth->u.dst);
1679 						if (mtu < ip_rt_min_pmtu) {
1680 							mtu = ip_rt_min_pmtu;
1681 							rth->u.dst.metrics[RTAX_LOCK-1] |=
1682 								(1 << RTAX_MTU);
1683 						}
1684 						rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1685 						dst_set_expires(&rth->u.dst,
1686 							ip_rt_mtu_expires);
1687 					}
1688 					est_mtu = mtu;
1689 				}
1690 			}
1691 			rcu_read_unlock();
1692 		}
1693 	}
1694 	return est_mtu ? : new_mtu;
1695 }
1696 
1697 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1698 {
1699 	if (dst_mtu(dst) > mtu && mtu >= 68 &&
1700 	    !(dst_metric_locked(dst, RTAX_MTU))) {
1701 		if (mtu < ip_rt_min_pmtu) {
1702 			mtu = ip_rt_min_pmtu;
1703 			dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1704 		}
1705 		dst->metrics[RTAX_MTU-1] = mtu;
1706 		dst_set_expires(dst, ip_rt_mtu_expires);
1707 		call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1708 	}
1709 }
1710 
1711 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1712 {
1713 	if (rt_is_expired((struct rtable *)dst))
1714 		return NULL;
1715 	return dst;
1716 }
1717 
1718 static void ipv4_dst_destroy(struct dst_entry *dst)
1719 {
1720 	struct rtable *rt = (struct rtable *) dst;
1721 	struct inet_peer *peer = rt->peer;
1722 	struct in_device *idev = rt->idev;
1723 
1724 	if (peer) {
1725 		rt->peer = NULL;
1726 		inet_putpeer(peer);
1727 	}
1728 
1729 	if (idev) {
1730 		rt->idev = NULL;
1731 		in_dev_put(idev);
1732 	}
1733 }
1734 
1735 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1736 			    int how)
1737 {
1738 	struct rtable *rt = (struct rtable *) dst;
1739 	struct in_device *idev = rt->idev;
1740 	if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1741 		struct in_device *loopback_idev =
1742 			in_dev_get(dev_net(dev)->loopback_dev);
1743 		if (loopback_idev) {
1744 			rt->idev = loopback_idev;
1745 			in_dev_put(idev);
1746 		}
1747 	}
1748 }
1749 
1750 static void ipv4_link_failure(struct sk_buff *skb)
1751 {
1752 	struct rtable *rt;
1753 
1754 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1755 
1756 	rt = skb_rtable(skb);
1757 	if (rt)
1758 		dst_set_expires(&rt->u.dst, 0);
1759 }
1760 
1761 static int ip_rt_bug(struct sk_buff *skb)
1762 {
1763 	printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1764 		&ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1765 		skb->dev ? skb->dev->name : "?");
1766 	kfree_skb(skb);
1767 	return 0;
1768 }
1769 
1770 /*
1771    We do not cache source address of outgoing interface,
1772    because it is used only by IP RR, TS and SRR options,
1773    so that it out of fast path.
1774 
1775    BTW remember: "addr" is allowed to be not aligned
1776    in IP options!
1777  */
1778 
1779 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1780 {
1781 	__be32 src;
1782 	struct fib_result res;
1783 
1784 	if (rt->fl.iif == 0)
1785 		src = rt->rt_src;
1786 	else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1787 		src = FIB_RES_PREFSRC(res);
1788 		fib_res_put(&res);
1789 	} else
1790 		src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1791 					RT_SCOPE_UNIVERSE);
1792 	memcpy(addr, &src, 4);
1793 }
1794 
1795 #ifdef CONFIG_NET_CLS_ROUTE
1796 static void set_class_tag(struct rtable *rt, u32 tag)
1797 {
1798 	if (!(rt->u.dst.tclassid & 0xFFFF))
1799 		rt->u.dst.tclassid |= tag & 0xFFFF;
1800 	if (!(rt->u.dst.tclassid & 0xFFFF0000))
1801 		rt->u.dst.tclassid |= tag & 0xFFFF0000;
1802 }
1803 #endif
1804 
1805 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1806 {
1807 	struct fib_info *fi = res->fi;
1808 
1809 	if (fi) {
1810 		if (FIB_RES_GW(*res) &&
1811 		    FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1812 			rt->rt_gateway = FIB_RES_GW(*res);
1813 		memcpy(rt->u.dst.metrics, fi->fib_metrics,
1814 		       sizeof(rt->u.dst.metrics));
1815 		if (fi->fib_mtu == 0) {
1816 			rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1817 			if (dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1818 			    rt->rt_gateway != rt->rt_dst &&
1819 			    rt->u.dst.dev->mtu > 576)
1820 				rt->u.dst.metrics[RTAX_MTU-1] = 576;
1821 		}
1822 #ifdef CONFIG_NET_CLS_ROUTE
1823 		rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1824 #endif
1825 	} else
1826 		rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1827 
1828 	if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1829 		rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1830 	if (dst_mtu(&rt->u.dst) > IP_MAX_MTU)
1831 		rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1832 	if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0)
1833 		rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1834 				       ip_rt_min_advmss);
1835 	if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40)
1836 		rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1837 
1838 #ifdef CONFIG_NET_CLS_ROUTE
1839 #ifdef CONFIG_IP_MULTIPLE_TABLES
1840 	set_class_tag(rt, fib_rules_tclass(res));
1841 #endif
1842 	set_class_tag(rt, itag);
1843 #endif
1844 	rt->rt_type = res->type;
1845 }
1846 
1847 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1848 				u8 tos, struct net_device *dev, int our)
1849 {
1850 	unsigned hash;
1851 	struct rtable *rth;
1852 	__be32 spec_dst;
1853 	struct in_device *in_dev = in_dev_get(dev);
1854 	u32 itag = 0;
1855 
1856 	/* Primary sanity checks. */
1857 
1858 	if (in_dev == NULL)
1859 		return -EINVAL;
1860 
1861 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1862 	    ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1863 		goto e_inval;
1864 
1865 	if (ipv4_is_zeronet(saddr)) {
1866 		if (!ipv4_is_local_multicast(daddr))
1867 			goto e_inval;
1868 		spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1869 	} else if (fib_validate_source(saddr, 0, tos, 0,
1870 					dev, &spec_dst, &itag, 0) < 0)
1871 		goto e_inval;
1872 
1873 	rth = dst_alloc(&ipv4_dst_ops);
1874 	if (!rth)
1875 		goto e_nobufs;
1876 
1877 	rth->u.dst.output = ip_rt_bug;
1878 	rth->u.dst.obsolete = -1;
1879 
1880 	atomic_set(&rth->u.dst.__refcnt, 1);
1881 	rth->u.dst.flags= DST_HOST;
1882 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1883 		rth->u.dst.flags |= DST_NOPOLICY;
1884 	rth->fl.fl4_dst	= daddr;
1885 	rth->rt_dst	= daddr;
1886 	rth->fl.fl4_tos	= tos;
1887 	rth->fl.mark    = skb->mark;
1888 	rth->fl.fl4_src	= saddr;
1889 	rth->rt_src	= saddr;
1890 #ifdef CONFIG_NET_CLS_ROUTE
1891 	rth->u.dst.tclassid = itag;
1892 #endif
1893 	rth->rt_iif	=
1894 	rth->fl.iif	= dev->ifindex;
1895 	rth->u.dst.dev	= init_net.loopback_dev;
1896 	dev_hold(rth->u.dst.dev);
1897 	rth->idev	= in_dev_get(rth->u.dst.dev);
1898 	rth->fl.oif	= 0;
1899 	rth->rt_gateway	= daddr;
1900 	rth->rt_spec_dst= spec_dst;
1901 	rth->rt_genid	= rt_genid(dev_net(dev));
1902 	rth->rt_flags	= RTCF_MULTICAST;
1903 	rth->rt_type	= RTN_MULTICAST;
1904 	if (our) {
1905 		rth->u.dst.input= ip_local_deliver;
1906 		rth->rt_flags |= RTCF_LOCAL;
1907 	}
1908 
1909 #ifdef CONFIG_IP_MROUTE
1910 	if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1911 		rth->u.dst.input = ip_mr_input;
1912 #endif
1913 	RT_CACHE_STAT_INC(in_slow_mc);
1914 
1915 	in_dev_put(in_dev);
1916 	hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1917 	return rt_intern_hash(hash, rth, NULL, skb, dev->ifindex);
1918 
1919 e_nobufs:
1920 	in_dev_put(in_dev);
1921 	return -ENOBUFS;
1922 
1923 e_inval:
1924 	in_dev_put(in_dev);
1925 	return -EINVAL;
1926 }
1927 
1928 
1929 static void ip_handle_martian_source(struct net_device *dev,
1930 				     struct in_device *in_dev,
1931 				     struct sk_buff *skb,
1932 				     __be32 daddr,
1933 				     __be32 saddr)
1934 {
1935 	RT_CACHE_STAT_INC(in_martian_src);
1936 #ifdef CONFIG_IP_ROUTE_VERBOSE
1937 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1938 		/*
1939 		 *	RFC1812 recommendation, if source is martian,
1940 		 *	the only hint is MAC header.
1941 		 */
1942 		printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1943 			&daddr, &saddr, dev->name);
1944 		if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1945 			int i;
1946 			const unsigned char *p = skb_mac_header(skb);
1947 			printk(KERN_WARNING "ll header: ");
1948 			for (i = 0; i < dev->hard_header_len; i++, p++) {
1949 				printk("%02x", *p);
1950 				if (i < (dev->hard_header_len - 1))
1951 					printk(":");
1952 			}
1953 			printk("\n");
1954 		}
1955 	}
1956 #endif
1957 }
1958 
1959 static int __mkroute_input(struct sk_buff *skb,
1960 			   struct fib_result *res,
1961 			   struct in_device *in_dev,
1962 			   __be32 daddr, __be32 saddr, u32 tos,
1963 			   struct rtable **result)
1964 {
1965 
1966 	struct rtable *rth;
1967 	int err;
1968 	struct in_device *out_dev;
1969 	unsigned flags = 0;
1970 	__be32 spec_dst;
1971 	u32 itag;
1972 
1973 	/* get a working reference to the output device */
1974 	out_dev = in_dev_get(FIB_RES_DEV(*res));
1975 	if (out_dev == NULL) {
1976 		if (net_ratelimit())
1977 			printk(KERN_CRIT "Bug in ip_route_input" \
1978 			       "_slow(). Please, report\n");
1979 		return -EINVAL;
1980 	}
1981 
1982 
1983 	err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1984 				  in_dev->dev, &spec_dst, &itag, skb->mark);
1985 	if (err < 0) {
1986 		ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1987 					 saddr);
1988 
1989 		err = -EINVAL;
1990 		goto cleanup;
1991 	}
1992 
1993 	if (err)
1994 		flags |= RTCF_DIRECTSRC;
1995 
1996 	if (out_dev == in_dev && err &&
1997 	    (IN_DEV_SHARED_MEDIA(out_dev) ||
1998 	     inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1999 		flags |= RTCF_DOREDIRECT;
2000 
2001 	if (skb->protocol != htons(ETH_P_IP)) {
2002 		/* Not IP (i.e. ARP). Do not create route, if it is
2003 		 * invalid for proxy arp. DNAT routes are always valid.
2004 		 *
2005 		 * Proxy arp feature have been extended to allow, ARP
2006 		 * replies back to the same interface, to support
2007 		 * Private VLAN switch technologies. See arp.c.
2008 		 */
2009 		if (out_dev == in_dev &&
2010 		    IN_DEV_PROXY_ARP_PVLAN(in_dev) == 0) {
2011 			err = -EINVAL;
2012 			goto cleanup;
2013 		}
2014 	}
2015 
2016 
2017 	rth = dst_alloc(&ipv4_dst_ops);
2018 	if (!rth) {
2019 		err = -ENOBUFS;
2020 		goto cleanup;
2021 	}
2022 
2023 	atomic_set(&rth->u.dst.__refcnt, 1);
2024 	rth->u.dst.flags= DST_HOST;
2025 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2026 		rth->u.dst.flags |= DST_NOPOLICY;
2027 	if (IN_DEV_CONF_GET(out_dev, NOXFRM))
2028 		rth->u.dst.flags |= DST_NOXFRM;
2029 	rth->fl.fl4_dst	= daddr;
2030 	rth->rt_dst	= daddr;
2031 	rth->fl.fl4_tos	= tos;
2032 	rth->fl.mark    = skb->mark;
2033 	rth->fl.fl4_src	= saddr;
2034 	rth->rt_src	= saddr;
2035 	rth->rt_gateway	= daddr;
2036 	rth->rt_iif 	=
2037 		rth->fl.iif	= in_dev->dev->ifindex;
2038 	rth->u.dst.dev	= (out_dev)->dev;
2039 	dev_hold(rth->u.dst.dev);
2040 	rth->idev	= in_dev_get(rth->u.dst.dev);
2041 	rth->fl.oif 	= 0;
2042 	rth->rt_spec_dst= spec_dst;
2043 
2044 	rth->u.dst.obsolete = -1;
2045 	rth->u.dst.input = ip_forward;
2046 	rth->u.dst.output = ip_output;
2047 	rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev));
2048 
2049 	rt_set_nexthop(rth, res, itag);
2050 
2051 	rth->rt_flags = flags;
2052 
2053 	*result = rth;
2054 	err = 0;
2055  cleanup:
2056 	/* release the working reference to the output device */
2057 	in_dev_put(out_dev);
2058 	return err;
2059 }
2060 
2061 static int ip_mkroute_input(struct sk_buff *skb,
2062 			    struct fib_result *res,
2063 			    const struct flowi *fl,
2064 			    struct in_device *in_dev,
2065 			    __be32 daddr, __be32 saddr, u32 tos)
2066 {
2067 	struct rtable* rth = NULL;
2068 	int err;
2069 	unsigned hash;
2070 
2071 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2072 	if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2073 		fib_select_multipath(fl, res);
2074 #endif
2075 
2076 	/* create a routing cache entry */
2077 	err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2078 	if (err)
2079 		return err;
2080 
2081 	/* put it into the cache */
2082 	hash = rt_hash(daddr, saddr, fl->iif,
2083 		       rt_genid(dev_net(rth->u.dst.dev)));
2084 	return rt_intern_hash(hash, rth, NULL, skb, fl->iif);
2085 }
2086 
2087 /*
2088  *	NOTE. We drop all the packets that has local source
2089  *	addresses, because every properly looped back packet
2090  *	must have correct destination already attached by output routine.
2091  *
2092  *	Such approach solves two big problems:
2093  *	1. Not simplex devices are handled properly.
2094  *	2. IP spoofing attempts are filtered with 100% of guarantee.
2095  */
2096 
2097 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2098 			       u8 tos, struct net_device *dev)
2099 {
2100 	struct fib_result res;
2101 	struct in_device *in_dev = in_dev_get(dev);
2102 	struct flowi fl = { .nl_u = { .ip4_u =
2103 				      { .daddr = daddr,
2104 					.saddr = saddr,
2105 					.tos = tos,
2106 					.scope = RT_SCOPE_UNIVERSE,
2107 				      } },
2108 			    .mark = skb->mark,
2109 			    .iif = dev->ifindex };
2110 	unsigned	flags = 0;
2111 	u32		itag = 0;
2112 	struct rtable * rth;
2113 	unsigned	hash;
2114 	__be32		spec_dst;
2115 	int		err = -EINVAL;
2116 	int		free_res = 0;
2117 	struct net    * net = dev_net(dev);
2118 
2119 	/* IP on this device is disabled. */
2120 
2121 	if (!in_dev)
2122 		goto out;
2123 
2124 	/* Check for the most weird martians, which can be not detected
2125 	   by fib_lookup.
2126 	 */
2127 
2128 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2129 	    ipv4_is_loopback(saddr))
2130 		goto martian_source;
2131 
2132 	if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2133 		goto brd_input;
2134 
2135 	/* Accept zero addresses only to limited broadcast;
2136 	 * I even do not know to fix it or not. Waiting for complains :-)
2137 	 */
2138 	if (ipv4_is_zeronet(saddr))
2139 		goto martian_source;
2140 
2141 	if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2142 	    ipv4_is_loopback(daddr))
2143 		goto martian_destination;
2144 
2145 	/*
2146 	 *	Now we are ready to route packet.
2147 	 */
2148 	if ((err = fib_lookup(net, &fl, &res)) != 0) {
2149 		if (!IN_DEV_FORWARD(in_dev))
2150 			goto e_hostunreach;
2151 		goto no_route;
2152 	}
2153 	free_res = 1;
2154 
2155 	RT_CACHE_STAT_INC(in_slow_tot);
2156 
2157 	if (res.type == RTN_BROADCAST)
2158 		goto brd_input;
2159 
2160 	if (res.type == RTN_LOCAL) {
2161 		int result;
2162 		result = fib_validate_source(saddr, daddr, tos,
2163 					     net->loopback_dev->ifindex,
2164 					     dev, &spec_dst, &itag, skb->mark);
2165 		if (result < 0)
2166 			goto martian_source;
2167 		if (result)
2168 			flags |= RTCF_DIRECTSRC;
2169 		spec_dst = daddr;
2170 		goto local_input;
2171 	}
2172 
2173 	if (!IN_DEV_FORWARD(in_dev))
2174 		goto e_hostunreach;
2175 	if (res.type != RTN_UNICAST)
2176 		goto martian_destination;
2177 
2178 	err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2179 done:
2180 	in_dev_put(in_dev);
2181 	if (free_res)
2182 		fib_res_put(&res);
2183 out:	return err;
2184 
2185 brd_input:
2186 	if (skb->protocol != htons(ETH_P_IP))
2187 		goto e_inval;
2188 
2189 	if (ipv4_is_zeronet(saddr))
2190 		spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2191 	else {
2192 		err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2193 					  &itag, skb->mark);
2194 		if (err < 0)
2195 			goto martian_source;
2196 		if (err)
2197 			flags |= RTCF_DIRECTSRC;
2198 	}
2199 	flags |= RTCF_BROADCAST;
2200 	res.type = RTN_BROADCAST;
2201 	RT_CACHE_STAT_INC(in_brd);
2202 
2203 local_input:
2204 	rth = dst_alloc(&ipv4_dst_ops);
2205 	if (!rth)
2206 		goto e_nobufs;
2207 
2208 	rth->u.dst.output= ip_rt_bug;
2209 	rth->u.dst.obsolete = -1;
2210 	rth->rt_genid = rt_genid(net);
2211 
2212 	atomic_set(&rth->u.dst.__refcnt, 1);
2213 	rth->u.dst.flags= DST_HOST;
2214 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2215 		rth->u.dst.flags |= DST_NOPOLICY;
2216 	rth->fl.fl4_dst	= daddr;
2217 	rth->rt_dst	= daddr;
2218 	rth->fl.fl4_tos	= tos;
2219 	rth->fl.mark    = skb->mark;
2220 	rth->fl.fl4_src	= saddr;
2221 	rth->rt_src	= saddr;
2222 #ifdef CONFIG_NET_CLS_ROUTE
2223 	rth->u.dst.tclassid = itag;
2224 #endif
2225 	rth->rt_iif	=
2226 	rth->fl.iif	= dev->ifindex;
2227 	rth->u.dst.dev	= net->loopback_dev;
2228 	dev_hold(rth->u.dst.dev);
2229 	rth->idev	= in_dev_get(rth->u.dst.dev);
2230 	rth->rt_gateway	= daddr;
2231 	rth->rt_spec_dst= spec_dst;
2232 	rth->u.dst.input= ip_local_deliver;
2233 	rth->rt_flags 	= flags|RTCF_LOCAL;
2234 	if (res.type == RTN_UNREACHABLE) {
2235 		rth->u.dst.input= ip_error;
2236 		rth->u.dst.error= -err;
2237 		rth->rt_flags 	&= ~RTCF_LOCAL;
2238 	}
2239 	rth->rt_type	= res.type;
2240 	hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2241 	err = rt_intern_hash(hash, rth, NULL, skb, fl.iif);
2242 	goto done;
2243 
2244 no_route:
2245 	RT_CACHE_STAT_INC(in_no_route);
2246 	spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2247 	res.type = RTN_UNREACHABLE;
2248 	if (err == -ESRCH)
2249 		err = -ENETUNREACH;
2250 	goto local_input;
2251 
2252 	/*
2253 	 *	Do not cache martian addresses: they should be logged (RFC1812)
2254 	 */
2255 martian_destination:
2256 	RT_CACHE_STAT_INC(in_martian_dst);
2257 #ifdef CONFIG_IP_ROUTE_VERBOSE
2258 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2259 		printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2260 			&daddr, &saddr, dev->name);
2261 #endif
2262 
2263 e_hostunreach:
2264 	err = -EHOSTUNREACH;
2265 	goto done;
2266 
2267 e_inval:
2268 	err = -EINVAL;
2269 	goto done;
2270 
2271 e_nobufs:
2272 	err = -ENOBUFS;
2273 	goto done;
2274 
2275 martian_source:
2276 	ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2277 	goto e_inval;
2278 }
2279 
2280 int ip_route_input_common(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2281 			   u8 tos, struct net_device *dev, bool noref)
2282 {
2283 	struct rtable * rth;
2284 	unsigned	hash;
2285 	int iif = dev->ifindex;
2286 	struct net *net;
2287 
2288 	net = dev_net(dev);
2289 
2290 	if (!rt_caching(net))
2291 		goto skip_cache;
2292 
2293 	tos &= IPTOS_RT_MASK;
2294 	hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2295 
2296 	rcu_read_lock();
2297 	for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2298 	     rth = rcu_dereference(rth->u.dst.rt_next)) {
2299 		if ((((__force u32)rth->fl.fl4_dst ^ (__force u32)daddr) |
2300 		     ((__force u32)rth->fl.fl4_src ^ (__force u32)saddr) |
2301 		     (rth->fl.iif ^ iif) |
2302 		     rth->fl.oif |
2303 		     (rth->fl.fl4_tos ^ tos)) == 0 &&
2304 		    rth->fl.mark == skb->mark &&
2305 		    net_eq(dev_net(rth->u.dst.dev), net) &&
2306 		    !rt_is_expired(rth)) {
2307 			if (noref) {
2308 				dst_use_noref(&rth->u.dst, jiffies);
2309 				skb_dst_set_noref(skb, &rth->u.dst);
2310 			} else {
2311 				dst_use(&rth->u.dst, jiffies);
2312 				skb_dst_set(skb, &rth->u.dst);
2313 			}
2314 			RT_CACHE_STAT_INC(in_hit);
2315 			rcu_read_unlock();
2316 			return 0;
2317 		}
2318 		RT_CACHE_STAT_INC(in_hlist_search);
2319 	}
2320 	rcu_read_unlock();
2321 
2322 skip_cache:
2323 	/* Multicast recognition logic is moved from route cache to here.
2324 	   The problem was that too many Ethernet cards have broken/missing
2325 	   hardware multicast filters :-( As result the host on multicasting
2326 	   network acquires a lot of useless route cache entries, sort of
2327 	   SDR messages from all the world. Now we try to get rid of them.
2328 	   Really, provided software IP multicast filter is organized
2329 	   reasonably (at least, hashed), it does not result in a slowdown
2330 	   comparing with route cache reject entries.
2331 	   Note, that multicast routers are not affected, because
2332 	   route cache entry is created eventually.
2333 	 */
2334 	if (ipv4_is_multicast(daddr)) {
2335 		struct in_device *in_dev;
2336 
2337 		rcu_read_lock();
2338 		if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2339 			int our = ip_check_mc(in_dev, daddr, saddr,
2340 				ip_hdr(skb)->protocol);
2341 			if (our
2342 #ifdef CONFIG_IP_MROUTE
2343 				||
2344 			    (!ipv4_is_local_multicast(daddr) &&
2345 			     IN_DEV_MFORWARD(in_dev))
2346 #endif
2347 			   ) {
2348 				rcu_read_unlock();
2349 				return ip_route_input_mc(skb, daddr, saddr,
2350 							 tos, dev, our);
2351 			}
2352 		}
2353 		rcu_read_unlock();
2354 		return -EINVAL;
2355 	}
2356 	return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2357 }
2358 EXPORT_SYMBOL(ip_route_input_common);
2359 
2360 static int __mkroute_output(struct rtable **result,
2361 			    struct fib_result *res,
2362 			    const struct flowi *fl,
2363 			    const struct flowi *oldflp,
2364 			    struct net_device *dev_out,
2365 			    unsigned flags)
2366 {
2367 	struct rtable *rth;
2368 	struct in_device *in_dev;
2369 	u32 tos = RT_FL_TOS(oldflp);
2370 	int err = 0;
2371 
2372 	if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2373 		return -EINVAL;
2374 
2375 	if (fl->fl4_dst == htonl(0xFFFFFFFF))
2376 		res->type = RTN_BROADCAST;
2377 	else if (ipv4_is_multicast(fl->fl4_dst))
2378 		res->type = RTN_MULTICAST;
2379 	else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2380 		return -EINVAL;
2381 
2382 	if (dev_out->flags & IFF_LOOPBACK)
2383 		flags |= RTCF_LOCAL;
2384 
2385 	/* get work reference to inet device */
2386 	in_dev = in_dev_get(dev_out);
2387 	if (!in_dev)
2388 		return -EINVAL;
2389 
2390 	if (res->type == RTN_BROADCAST) {
2391 		flags |= RTCF_BROADCAST | RTCF_LOCAL;
2392 		if (res->fi) {
2393 			fib_info_put(res->fi);
2394 			res->fi = NULL;
2395 		}
2396 	} else if (res->type == RTN_MULTICAST) {
2397 		flags |= RTCF_MULTICAST|RTCF_LOCAL;
2398 		if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2399 				 oldflp->proto))
2400 			flags &= ~RTCF_LOCAL;
2401 		/* If multicast route do not exist use
2402 		   default one, but do not gateway in this case.
2403 		   Yes, it is hack.
2404 		 */
2405 		if (res->fi && res->prefixlen < 4) {
2406 			fib_info_put(res->fi);
2407 			res->fi = NULL;
2408 		}
2409 	}
2410 
2411 
2412 	rth = dst_alloc(&ipv4_dst_ops);
2413 	if (!rth) {
2414 		err = -ENOBUFS;
2415 		goto cleanup;
2416 	}
2417 
2418 	atomic_set(&rth->u.dst.__refcnt, 1);
2419 	rth->u.dst.flags= DST_HOST;
2420 	if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2421 		rth->u.dst.flags |= DST_NOXFRM;
2422 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2423 		rth->u.dst.flags |= DST_NOPOLICY;
2424 
2425 	rth->fl.fl4_dst	= oldflp->fl4_dst;
2426 	rth->fl.fl4_tos	= tos;
2427 	rth->fl.fl4_src	= oldflp->fl4_src;
2428 	rth->fl.oif	= oldflp->oif;
2429 	rth->fl.mark    = oldflp->mark;
2430 	rth->rt_dst	= fl->fl4_dst;
2431 	rth->rt_src	= fl->fl4_src;
2432 	rth->rt_iif	= oldflp->oif ? : dev_out->ifindex;
2433 	/* get references to the devices that are to be hold by the routing
2434 	   cache entry */
2435 	rth->u.dst.dev	= dev_out;
2436 	dev_hold(dev_out);
2437 	rth->idev	= in_dev_get(dev_out);
2438 	rth->rt_gateway = fl->fl4_dst;
2439 	rth->rt_spec_dst= fl->fl4_src;
2440 
2441 	rth->u.dst.output=ip_output;
2442 	rth->u.dst.obsolete = -1;
2443 	rth->rt_genid = rt_genid(dev_net(dev_out));
2444 
2445 	RT_CACHE_STAT_INC(out_slow_tot);
2446 
2447 	if (flags & RTCF_LOCAL) {
2448 		rth->u.dst.input = ip_local_deliver;
2449 		rth->rt_spec_dst = fl->fl4_dst;
2450 	}
2451 	if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2452 		rth->rt_spec_dst = fl->fl4_src;
2453 		if (flags & RTCF_LOCAL &&
2454 		    !(dev_out->flags & IFF_LOOPBACK)) {
2455 			rth->u.dst.output = ip_mc_output;
2456 			RT_CACHE_STAT_INC(out_slow_mc);
2457 		}
2458 #ifdef CONFIG_IP_MROUTE
2459 		if (res->type == RTN_MULTICAST) {
2460 			if (IN_DEV_MFORWARD(in_dev) &&
2461 			    !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2462 				rth->u.dst.input = ip_mr_input;
2463 				rth->u.dst.output = ip_mc_output;
2464 			}
2465 		}
2466 #endif
2467 	}
2468 
2469 	rt_set_nexthop(rth, res, 0);
2470 
2471 	rth->rt_flags = flags;
2472 
2473 	*result = rth;
2474  cleanup:
2475 	/* release work reference to inet device */
2476 	in_dev_put(in_dev);
2477 
2478 	return err;
2479 }
2480 
2481 static int ip_mkroute_output(struct rtable **rp,
2482 			     struct fib_result *res,
2483 			     const struct flowi *fl,
2484 			     const struct flowi *oldflp,
2485 			     struct net_device *dev_out,
2486 			     unsigned flags)
2487 {
2488 	struct rtable *rth = NULL;
2489 	int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2490 	unsigned hash;
2491 	if (err == 0) {
2492 		hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2493 			       rt_genid(dev_net(dev_out)));
2494 		err = rt_intern_hash(hash, rth, rp, NULL, oldflp->oif);
2495 	}
2496 
2497 	return err;
2498 }
2499 
2500 /*
2501  * Major route resolver routine.
2502  */
2503 
2504 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2505 				const struct flowi *oldflp)
2506 {
2507 	u32 tos	= RT_FL_TOS(oldflp);
2508 	struct flowi fl = { .nl_u = { .ip4_u =
2509 				      { .daddr = oldflp->fl4_dst,
2510 					.saddr = oldflp->fl4_src,
2511 					.tos = tos & IPTOS_RT_MASK,
2512 					.scope = ((tos & RTO_ONLINK) ?
2513 						  RT_SCOPE_LINK :
2514 						  RT_SCOPE_UNIVERSE),
2515 				      } },
2516 			    .mark = oldflp->mark,
2517 			    .iif = net->loopback_dev->ifindex,
2518 			    .oif = oldflp->oif };
2519 	struct fib_result res;
2520 	unsigned flags = 0;
2521 	struct net_device *dev_out = NULL;
2522 	int free_res = 0;
2523 	int err;
2524 
2525 
2526 	res.fi		= NULL;
2527 #ifdef CONFIG_IP_MULTIPLE_TABLES
2528 	res.r		= NULL;
2529 #endif
2530 
2531 	if (oldflp->fl4_src) {
2532 		err = -EINVAL;
2533 		if (ipv4_is_multicast(oldflp->fl4_src) ||
2534 		    ipv4_is_lbcast(oldflp->fl4_src) ||
2535 		    ipv4_is_zeronet(oldflp->fl4_src))
2536 			goto out;
2537 
2538 		/* I removed check for oif == dev_out->oif here.
2539 		   It was wrong for two reasons:
2540 		   1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2541 		      is assigned to multiple interfaces.
2542 		   2. Moreover, we are allowed to send packets with saddr
2543 		      of another iface. --ANK
2544 		 */
2545 
2546 		if (oldflp->oif == 0 &&
2547 		    (ipv4_is_multicast(oldflp->fl4_dst) ||
2548 		     oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2549 			/* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2550 			dev_out = ip_dev_find(net, oldflp->fl4_src);
2551 			if (dev_out == NULL)
2552 				goto out;
2553 
2554 			/* Special hack: user can direct multicasts
2555 			   and limited broadcast via necessary interface
2556 			   without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2557 			   This hack is not just for fun, it allows
2558 			   vic,vat and friends to work.
2559 			   They bind socket to loopback, set ttl to zero
2560 			   and expect that it will work.
2561 			   From the viewpoint of routing cache they are broken,
2562 			   because we are not allowed to build multicast path
2563 			   with loopback source addr (look, routing cache
2564 			   cannot know, that ttl is zero, so that packet
2565 			   will not leave this host and route is valid).
2566 			   Luckily, this hack is good workaround.
2567 			 */
2568 
2569 			fl.oif = dev_out->ifindex;
2570 			goto make_route;
2571 		}
2572 
2573 		if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2574 			/* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2575 			dev_out = ip_dev_find(net, oldflp->fl4_src);
2576 			if (dev_out == NULL)
2577 				goto out;
2578 			dev_put(dev_out);
2579 			dev_out = NULL;
2580 		}
2581 	}
2582 
2583 
2584 	if (oldflp->oif) {
2585 		dev_out = dev_get_by_index(net, oldflp->oif);
2586 		err = -ENODEV;
2587 		if (dev_out == NULL)
2588 			goto out;
2589 
2590 		/* RACE: Check return value of inet_select_addr instead. */
2591 		if (__in_dev_get_rtnl(dev_out) == NULL) {
2592 			dev_put(dev_out);
2593 			goto out;	/* Wrong error code */
2594 		}
2595 
2596 		if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2597 		    oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2598 			if (!fl.fl4_src)
2599 				fl.fl4_src = inet_select_addr(dev_out, 0,
2600 							      RT_SCOPE_LINK);
2601 			goto make_route;
2602 		}
2603 		if (!fl.fl4_src) {
2604 			if (ipv4_is_multicast(oldflp->fl4_dst))
2605 				fl.fl4_src = inet_select_addr(dev_out, 0,
2606 							      fl.fl4_scope);
2607 			else if (!oldflp->fl4_dst)
2608 				fl.fl4_src = inet_select_addr(dev_out, 0,
2609 							      RT_SCOPE_HOST);
2610 		}
2611 	}
2612 
2613 	if (!fl.fl4_dst) {
2614 		fl.fl4_dst = fl.fl4_src;
2615 		if (!fl.fl4_dst)
2616 			fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2617 		if (dev_out)
2618 			dev_put(dev_out);
2619 		dev_out = net->loopback_dev;
2620 		dev_hold(dev_out);
2621 		fl.oif = net->loopback_dev->ifindex;
2622 		res.type = RTN_LOCAL;
2623 		flags |= RTCF_LOCAL;
2624 		goto make_route;
2625 	}
2626 
2627 	if (fib_lookup(net, &fl, &res)) {
2628 		res.fi = NULL;
2629 		if (oldflp->oif) {
2630 			/* Apparently, routing tables are wrong. Assume,
2631 			   that the destination is on link.
2632 
2633 			   WHY? DW.
2634 			   Because we are allowed to send to iface
2635 			   even if it has NO routes and NO assigned
2636 			   addresses. When oif is specified, routing
2637 			   tables are looked up with only one purpose:
2638 			   to catch if destination is gatewayed, rather than
2639 			   direct. Moreover, if MSG_DONTROUTE is set,
2640 			   we send packet, ignoring both routing tables
2641 			   and ifaddr state. --ANK
2642 
2643 
2644 			   We could make it even if oif is unknown,
2645 			   likely IPv6, but we do not.
2646 			 */
2647 
2648 			if (fl.fl4_src == 0)
2649 				fl.fl4_src = inet_select_addr(dev_out, 0,
2650 							      RT_SCOPE_LINK);
2651 			res.type = RTN_UNICAST;
2652 			goto make_route;
2653 		}
2654 		if (dev_out)
2655 			dev_put(dev_out);
2656 		err = -ENETUNREACH;
2657 		goto out;
2658 	}
2659 	free_res = 1;
2660 
2661 	if (res.type == RTN_LOCAL) {
2662 		if (!fl.fl4_src)
2663 			fl.fl4_src = fl.fl4_dst;
2664 		if (dev_out)
2665 			dev_put(dev_out);
2666 		dev_out = net->loopback_dev;
2667 		dev_hold(dev_out);
2668 		fl.oif = dev_out->ifindex;
2669 		if (res.fi)
2670 			fib_info_put(res.fi);
2671 		res.fi = NULL;
2672 		flags |= RTCF_LOCAL;
2673 		goto make_route;
2674 	}
2675 
2676 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2677 	if (res.fi->fib_nhs > 1 && fl.oif == 0)
2678 		fib_select_multipath(&fl, &res);
2679 	else
2680 #endif
2681 	if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2682 		fib_select_default(net, &fl, &res);
2683 
2684 	if (!fl.fl4_src)
2685 		fl.fl4_src = FIB_RES_PREFSRC(res);
2686 
2687 	if (dev_out)
2688 		dev_put(dev_out);
2689 	dev_out = FIB_RES_DEV(res);
2690 	dev_hold(dev_out);
2691 	fl.oif = dev_out->ifindex;
2692 
2693 
2694 make_route:
2695 	err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2696 
2697 
2698 	if (free_res)
2699 		fib_res_put(&res);
2700 	if (dev_out)
2701 		dev_put(dev_out);
2702 out:	return err;
2703 }
2704 
2705 int __ip_route_output_key(struct net *net, struct rtable **rp,
2706 			  const struct flowi *flp)
2707 {
2708 	unsigned hash;
2709 	struct rtable *rth;
2710 
2711 	if (!rt_caching(net))
2712 		goto slow_output;
2713 
2714 	hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2715 
2716 	rcu_read_lock_bh();
2717 	for (rth = rcu_dereference_bh(rt_hash_table[hash].chain); rth;
2718 		rth = rcu_dereference_bh(rth->u.dst.rt_next)) {
2719 		if (rth->fl.fl4_dst == flp->fl4_dst &&
2720 		    rth->fl.fl4_src == flp->fl4_src &&
2721 		    rth->fl.iif == 0 &&
2722 		    rth->fl.oif == flp->oif &&
2723 		    rth->fl.mark == flp->mark &&
2724 		    !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2725 			    (IPTOS_RT_MASK | RTO_ONLINK)) &&
2726 		    net_eq(dev_net(rth->u.dst.dev), net) &&
2727 		    !rt_is_expired(rth)) {
2728 			dst_use(&rth->u.dst, jiffies);
2729 			RT_CACHE_STAT_INC(out_hit);
2730 			rcu_read_unlock_bh();
2731 			*rp = rth;
2732 			return 0;
2733 		}
2734 		RT_CACHE_STAT_INC(out_hlist_search);
2735 	}
2736 	rcu_read_unlock_bh();
2737 
2738 slow_output:
2739 	return ip_route_output_slow(net, rp, flp);
2740 }
2741 
2742 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2743 
2744 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2745 {
2746 }
2747 
2748 static struct dst_ops ipv4_dst_blackhole_ops = {
2749 	.family			=	AF_INET,
2750 	.protocol		=	cpu_to_be16(ETH_P_IP),
2751 	.destroy		=	ipv4_dst_destroy,
2752 	.check			=	ipv4_dst_check,
2753 	.update_pmtu		=	ipv4_rt_blackhole_update_pmtu,
2754 	.entries		=	ATOMIC_INIT(0),
2755 };
2756 
2757 
2758 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2759 {
2760 	struct rtable *ort = *rp;
2761 	struct rtable *rt = (struct rtable *)
2762 		dst_alloc(&ipv4_dst_blackhole_ops);
2763 
2764 	if (rt) {
2765 		struct dst_entry *new = &rt->u.dst;
2766 
2767 		atomic_set(&new->__refcnt, 1);
2768 		new->__use = 1;
2769 		new->input = dst_discard;
2770 		new->output = dst_discard;
2771 		memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2772 
2773 		new->dev = ort->u.dst.dev;
2774 		if (new->dev)
2775 			dev_hold(new->dev);
2776 
2777 		rt->fl = ort->fl;
2778 
2779 		rt->idev = ort->idev;
2780 		if (rt->idev)
2781 			in_dev_hold(rt->idev);
2782 		rt->rt_genid = rt_genid(net);
2783 		rt->rt_flags = ort->rt_flags;
2784 		rt->rt_type = ort->rt_type;
2785 		rt->rt_dst = ort->rt_dst;
2786 		rt->rt_src = ort->rt_src;
2787 		rt->rt_iif = ort->rt_iif;
2788 		rt->rt_gateway = ort->rt_gateway;
2789 		rt->rt_spec_dst = ort->rt_spec_dst;
2790 		rt->peer = ort->peer;
2791 		if (rt->peer)
2792 			atomic_inc(&rt->peer->refcnt);
2793 
2794 		dst_free(new);
2795 	}
2796 
2797 	dst_release(&(*rp)->u.dst);
2798 	*rp = rt;
2799 	return (rt ? 0 : -ENOMEM);
2800 }
2801 
2802 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2803 			 struct sock *sk, int flags)
2804 {
2805 	int err;
2806 
2807 	if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2808 		return err;
2809 
2810 	if (flp->proto) {
2811 		if (!flp->fl4_src)
2812 			flp->fl4_src = (*rp)->rt_src;
2813 		if (!flp->fl4_dst)
2814 			flp->fl4_dst = (*rp)->rt_dst;
2815 		err = __xfrm_lookup(net, (struct dst_entry **)rp, flp, sk,
2816 				    flags ? XFRM_LOOKUP_WAIT : 0);
2817 		if (err == -EREMOTE)
2818 			err = ipv4_dst_blackhole(net, rp, flp);
2819 
2820 		return err;
2821 	}
2822 
2823 	return 0;
2824 }
2825 
2826 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2827 
2828 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2829 {
2830 	return ip_route_output_flow(net, rp, flp, NULL, 0);
2831 }
2832 
2833 static int rt_fill_info(struct net *net,
2834 			struct sk_buff *skb, u32 pid, u32 seq, int event,
2835 			int nowait, unsigned int flags)
2836 {
2837 	struct rtable *rt = skb_rtable(skb);
2838 	struct rtmsg *r;
2839 	struct nlmsghdr *nlh;
2840 	long expires;
2841 	u32 id = 0, ts = 0, tsage = 0, error;
2842 
2843 	nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2844 	if (nlh == NULL)
2845 		return -EMSGSIZE;
2846 
2847 	r = nlmsg_data(nlh);
2848 	r->rtm_family	 = AF_INET;
2849 	r->rtm_dst_len	= 32;
2850 	r->rtm_src_len	= 0;
2851 	r->rtm_tos	= rt->fl.fl4_tos;
2852 	r->rtm_table	= RT_TABLE_MAIN;
2853 	NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2854 	r->rtm_type	= rt->rt_type;
2855 	r->rtm_scope	= RT_SCOPE_UNIVERSE;
2856 	r->rtm_protocol = RTPROT_UNSPEC;
2857 	r->rtm_flags	= (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2858 	if (rt->rt_flags & RTCF_NOTIFY)
2859 		r->rtm_flags |= RTM_F_NOTIFY;
2860 
2861 	NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2862 
2863 	if (rt->fl.fl4_src) {
2864 		r->rtm_src_len = 32;
2865 		NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2866 	}
2867 	if (rt->u.dst.dev)
2868 		NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2869 #ifdef CONFIG_NET_CLS_ROUTE
2870 	if (rt->u.dst.tclassid)
2871 		NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2872 #endif
2873 	if (rt->fl.iif)
2874 		NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2875 	else if (rt->rt_src != rt->fl.fl4_src)
2876 		NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2877 
2878 	if (rt->rt_dst != rt->rt_gateway)
2879 		NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2880 
2881 	if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2882 		goto nla_put_failure;
2883 
2884 	error = rt->u.dst.error;
2885 	expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2886 	if (rt->peer) {
2887 		id = atomic_read(&rt->peer->ip_id_count) & 0xffff;
2888 		if (rt->peer->tcp_ts_stamp) {
2889 			ts = rt->peer->tcp_ts;
2890 			tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2891 		}
2892 	}
2893 
2894 	if (rt->fl.iif) {
2895 #ifdef CONFIG_IP_MROUTE
2896 		__be32 dst = rt->rt_dst;
2897 
2898 		if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2899 		    IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2900 			int err = ipmr_get_route(net, skb, r, nowait);
2901 			if (err <= 0) {
2902 				if (!nowait) {
2903 					if (err == 0)
2904 						return 0;
2905 					goto nla_put_failure;
2906 				} else {
2907 					if (err == -EMSGSIZE)
2908 						goto nla_put_failure;
2909 					error = err;
2910 				}
2911 			}
2912 		} else
2913 #endif
2914 			NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2915 	}
2916 
2917 	if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2918 			       expires, error) < 0)
2919 		goto nla_put_failure;
2920 
2921 	return nlmsg_end(skb, nlh);
2922 
2923 nla_put_failure:
2924 	nlmsg_cancel(skb, nlh);
2925 	return -EMSGSIZE;
2926 }
2927 
2928 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2929 {
2930 	struct net *net = sock_net(in_skb->sk);
2931 	struct rtmsg *rtm;
2932 	struct nlattr *tb[RTA_MAX+1];
2933 	struct rtable *rt = NULL;
2934 	__be32 dst = 0;
2935 	__be32 src = 0;
2936 	u32 iif;
2937 	int err;
2938 	struct sk_buff *skb;
2939 
2940 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2941 	if (err < 0)
2942 		goto errout;
2943 
2944 	rtm = nlmsg_data(nlh);
2945 
2946 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2947 	if (skb == NULL) {
2948 		err = -ENOBUFS;
2949 		goto errout;
2950 	}
2951 
2952 	/* Reserve room for dummy headers, this skb can pass
2953 	   through good chunk of routing engine.
2954 	 */
2955 	skb_reset_mac_header(skb);
2956 	skb_reset_network_header(skb);
2957 
2958 	/* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2959 	ip_hdr(skb)->protocol = IPPROTO_ICMP;
2960 	skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2961 
2962 	src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2963 	dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2964 	iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2965 
2966 	if (iif) {
2967 		struct net_device *dev;
2968 
2969 		dev = __dev_get_by_index(net, iif);
2970 		if (dev == NULL) {
2971 			err = -ENODEV;
2972 			goto errout_free;
2973 		}
2974 
2975 		skb->protocol	= htons(ETH_P_IP);
2976 		skb->dev	= dev;
2977 		local_bh_disable();
2978 		err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2979 		local_bh_enable();
2980 
2981 		rt = skb_rtable(skb);
2982 		if (err == 0 && rt->u.dst.error)
2983 			err = -rt->u.dst.error;
2984 	} else {
2985 		struct flowi fl = {
2986 			.nl_u = {
2987 				.ip4_u = {
2988 					.daddr = dst,
2989 					.saddr = src,
2990 					.tos = rtm->rtm_tos,
2991 				},
2992 			},
2993 			.oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2994 		};
2995 		err = ip_route_output_key(net, &rt, &fl);
2996 	}
2997 
2998 	if (err)
2999 		goto errout_free;
3000 
3001 	skb_dst_set(skb, &rt->u.dst);
3002 	if (rtm->rtm_flags & RTM_F_NOTIFY)
3003 		rt->rt_flags |= RTCF_NOTIFY;
3004 
3005 	err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
3006 			   RTM_NEWROUTE, 0, 0);
3007 	if (err <= 0)
3008 		goto errout_free;
3009 
3010 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
3011 errout:
3012 	return err;
3013 
3014 errout_free:
3015 	kfree_skb(skb);
3016 	goto errout;
3017 }
3018 
3019 int ip_rt_dump(struct sk_buff *skb,  struct netlink_callback *cb)
3020 {
3021 	struct rtable *rt;
3022 	int h, s_h;
3023 	int idx, s_idx;
3024 	struct net *net;
3025 
3026 	net = sock_net(skb->sk);
3027 
3028 	s_h = cb->args[0];
3029 	if (s_h < 0)
3030 		s_h = 0;
3031 	s_idx = idx = cb->args[1];
3032 	for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
3033 		if (!rt_hash_table[h].chain)
3034 			continue;
3035 		rcu_read_lock_bh();
3036 		for (rt = rcu_dereference_bh(rt_hash_table[h].chain), idx = 0; rt;
3037 		     rt = rcu_dereference_bh(rt->u.dst.rt_next), idx++) {
3038 			if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx)
3039 				continue;
3040 			if (rt_is_expired(rt))
3041 				continue;
3042 			skb_dst_set_noref(skb, &rt->u.dst);
3043 			if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
3044 					 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
3045 					 1, NLM_F_MULTI) <= 0) {
3046 				skb_dst_drop(skb);
3047 				rcu_read_unlock_bh();
3048 				goto done;
3049 			}
3050 			skb_dst_drop(skb);
3051 		}
3052 		rcu_read_unlock_bh();
3053 	}
3054 
3055 done:
3056 	cb->args[0] = h;
3057 	cb->args[1] = idx;
3058 	return skb->len;
3059 }
3060 
3061 void ip_rt_multicast_event(struct in_device *in_dev)
3062 {
3063 	rt_cache_flush(dev_net(in_dev->dev), 0);
3064 }
3065 
3066 #ifdef CONFIG_SYSCTL
3067 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3068 					void __user *buffer,
3069 					size_t *lenp, loff_t *ppos)
3070 {
3071 	if (write) {
3072 		int flush_delay;
3073 		ctl_table ctl;
3074 		struct net *net;
3075 
3076 		memcpy(&ctl, __ctl, sizeof(ctl));
3077 		ctl.data = &flush_delay;
3078 		proc_dointvec(&ctl, write, buffer, lenp, ppos);
3079 
3080 		net = (struct net *)__ctl->extra1;
3081 		rt_cache_flush(net, flush_delay);
3082 		return 0;
3083 	}
3084 
3085 	return -EINVAL;
3086 }
3087 
3088 static ctl_table ipv4_route_table[] = {
3089 	{
3090 		.procname	= "gc_thresh",
3091 		.data		= &ipv4_dst_ops.gc_thresh,
3092 		.maxlen		= sizeof(int),
3093 		.mode		= 0644,
3094 		.proc_handler	= proc_dointvec,
3095 	},
3096 	{
3097 		.procname	= "max_size",
3098 		.data		= &ip_rt_max_size,
3099 		.maxlen		= sizeof(int),
3100 		.mode		= 0644,
3101 		.proc_handler	= proc_dointvec,
3102 	},
3103 	{
3104 		/*  Deprecated. Use gc_min_interval_ms */
3105 
3106 		.procname	= "gc_min_interval",
3107 		.data		= &ip_rt_gc_min_interval,
3108 		.maxlen		= sizeof(int),
3109 		.mode		= 0644,
3110 		.proc_handler	= proc_dointvec_jiffies,
3111 	},
3112 	{
3113 		.procname	= "gc_min_interval_ms",
3114 		.data		= &ip_rt_gc_min_interval,
3115 		.maxlen		= sizeof(int),
3116 		.mode		= 0644,
3117 		.proc_handler	= proc_dointvec_ms_jiffies,
3118 	},
3119 	{
3120 		.procname	= "gc_timeout",
3121 		.data		= &ip_rt_gc_timeout,
3122 		.maxlen		= sizeof(int),
3123 		.mode		= 0644,
3124 		.proc_handler	= proc_dointvec_jiffies,
3125 	},
3126 	{
3127 		.procname	= "gc_interval",
3128 		.data		= &ip_rt_gc_interval,
3129 		.maxlen		= sizeof(int),
3130 		.mode		= 0644,
3131 		.proc_handler	= proc_dointvec_jiffies,
3132 	},
3133 	{
3134 		.procname	= "redirect_load",
3135 		.data		= &ip_rt_redirect_load,
3136 		.maxlen		= sizeof(int),
3137 		.mode		= 0644,
3138 		.proc_handler	= proc_dointvec,
3139 	},
3140 	{
3141 		.procname	= "redirect_number",
3142 		.data		= &ip_rt_redirect_number,
3143 		.maxlen		= sizeof(int),
3144 		.mode		= 0644,
3145 		.proc_handler	= proc_dointvec,
3146 	},
3147 	{
3148 		.procname	= "redirect_silence",
3149 		.data		= &ip_rt_redirect_silence,
3150 		.maxlen		= sizeof(int),
3151 		.mode		= 0644,
3152 		.proc_handler	= proc_dointvec,
3153 	},
3154 	{
3155 		.procname	= "error_cost",
3156 		.data		= &ip_rt_error_cost,
3157 		.maxlen		= sizeof(int),
3158 		.mode		= 0644,
3159 		.proc_handler	= proc_dointvec,
3160 	},
3161 	{
3162 		.procname	= "error_burst",
3163 		.data		= &ip_rt_error_burst,
3164 		.maxlen		= sizeof(int),
3165 		.mode		= 0644,
3166 		.proc_handler	= proc_dointvec,
3167 	},
3168 	{
3169 		.procname	= "gc_elasticity",
3170 		.data		= &ip_rt_gc_elasticity,
3171 		.maxlen		= sizeof(int),
3172 		.mode		= 0644,
3173 		.proc_handler	= proc_dointvec,
3174 	},
3175 	{
3176 		.procname	= "mtu_expires",
3177 		.data		= &ip_rt_mtu_expires,
3178 		.maxlen		= sizeof(int),
3179 		.mode		= 0644,
3180 		.proc_handler	= proc_dointvec_jiffies,
3181 	},
3182 	{
3183 		.procname	= "min_pmtu",
3184 		.data		= &ip_rt_min_pmtu,
3185 		.maxlen		= sizeof(int),
3186 		.mode		= 0644,
3187 		.proc_handler	= proc_dointvec,
3188 	},
3189 	{
3190 		.procname	= "min_adv_mss",
3191 		.data		= &ip_rt_min_advmss,
3192 		.maxlen		= sizeof(int),
3193 		.mode		= 0644,
3194 		.proc_handler	= proc_dointvec,
3195 	},
3196 	{ }
3197 };
3198 
3199 static struct ctl_table empty[1];
3200 
3201 static struct ctl_table ipv4_skeleton[] =
3202 {
3203 	{ .procname = "route",
3204 	  .mode = 0555, .child = ipv4_route_table},
3205 	{ .procname = "neigh",
3206 	  .mode = 0555, .child = empty},
3207 	{ }
3208 };
3209 
3210 static __net_initdata struct ctl_path ipv4_path[] = {
3211 	{ .procname = "net", },
3212 	{ .procname = "ipv4", },
3213 	{ },
3214 };
3215 
3216 static struct ctl_table ipv4_route_flush_table[] = {
3217 	{
3218 		.procname	= "flush",
3219 		.maxlen		= sizeof(int),
3220 		.mode		= 0200,
3221 		.proc_handler	= ipv4_sysctl_rtcache_flush,
3222 	},
3223 	{ },
3224 };
3225 
3226 static __net_initdata struct ctl_path ipv4_route_path[] = {
3227 	{ .procname = "net", },
3228 	{ .procname = "ipv4", },
3229 	{ .procname = "route", },
3230 	{ },
3231 };
3232 
3233 static __net_init int sysctl_route_net_init(struct net *net)
3234 {
3235 	struct ctl_table *tbl;
3236 
3237 	tbl = ipv4_route_flush_table;
3238 	if (!net_eq(net, &init_net)) {
3239 		tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3240 		if (tbl == NULL)
3241 			goto err_dup;
3242 	}
3243 	tbl[0].extra1 = net;
3244 
3245 	net->ipv4.route_hdr =
3246 		register_net_sysctl_table(net, ipv4_route_path, tbl);
3247 	if (net->ipv4.route_hdr == NULL)
3248 		goto err_reg;
3249 	return 0;
3250 
3251 err_reg:
3252 	if (tbl != ipv4_route_flush_table)
3253 		kfree(tbl);
3254 err_dup:
3255 	return -ENOMEM;
3256 }
3257 
3258 static __net_exit void sysctl_route_net_exit(struct net *net)
3259 {
3260 	struct ctl_table *tbl;
3261 
3262 	tbl = net->ipv4.route_hdr->ctl_table_arg;
3263 	unregister_net_sysctl_table(net->ipv4.route_hdr);
3264 	BUG_ON(tbl == ipv4_route_flush_table);
3265 	kfree(tbl);
3266 }
3267 
3268 static __net_initdata struct pernet_operations sysctl_route_ops = {
3269 	.init = sysctl_route_net_init,
3270 	.exit = sysctl_route_net_exit,
3271 };
3272 #endif
3273 
3274 static __net_init int rt_genid_init(struct net *net)
3275 {
3276 	get_random_bytes(&net->ipv4.rt_genid,
3277 			 sizeof(net->ipv4.rt_genid));
3278 	return 0;
3279 }
3280 
3281 static __net_initdata struct pernet_operations rt_genid_ops = {
3282 	.init = rt_genid_init,
3283 };
3284 
3285 
3286 #ifdef CONFIG_NET_CLS_ROUTE
3287 struct ip_rt_acct __percpu *ip_rt_acct __read_mostly;
3288 #endif /* CONFIG_NET_CLS_ROUTE */
3289 
3290 static __initdata unsigned long rhash_entries;
3291 static int __init set_rhash_entries(char *str)
3292 {
3293 	if (!str)
3294 		return 0;
3295 	rhash_entries = simple_strtoul(str, &str, 0);
3296 	return 1;
3297 }
3298 __setup("rhash_entries=", set_rhash_entries);
3299 
3300 int __init ip_rt_init(void)
3301 {
3302 	int rc = 0;
3303 
3304 #ifdef CONFIG_NET_CLS_ROUTE
3305 	ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3306 	if (!ip_rt_acct)
3307 		panic("IP: failed to allocate ip_rt_acct\n");
3308 #endif
3309 
3310 	ipv4_dst_ops.kmem_cachep =
3311 		kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3312 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3313 
3314 	ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3315 
3316 	rt_hash_table = (struct rt_hash_bucket *)
3317 		alloc_large_system_hash("IP route cache",
3318 					sizeof(struct rt_hash_bucket),
3319 					rhash_entries,
3320 					(totalram_pages >= 128 * 1024) ?
3321 					15 : 17,
3322 					0,
3323 					&rt_hash_log,
3324 					&rt_hash_mask,
3325 					rhash_entries ? 0 : 512 * 1024);
3326 	memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3327 	rt_hash_lock_init();
3328 
3329 	ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3330 	ip_rt_max_size = (rt_hash_mask + 1) * 16;
3331 
3332 	devinet_init();
3333 	ip_fib_init();
3334 
3335 	/* All the timers, started at system startup tend
3336 	   to synchronize. Perturb it a bit.
3337 	 */
3338 	INIT_DELAYED_WORK_DEFERRABLE(&expires_work, rt_worker_func);
3339 	expires_ljiffies = jiffies;
3340 	schedule_delayed_work(&expires_work,
3341 		net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3342 
3343 	if (ip_rt_proc_init())
3344 		printk(KERN_ERR "Unable to create route proc files\n");
3345 #ifdef CONFIG_XFRM
3346 	xfrm_init();
3347 	xfrm4_init(ip_rt_max_size);
3348 #endif
3349 	rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3350 
3351 #ifdef CONFIG_SYSCTL
3352 	register_pernet_subsys(&sysctl_route_ops);
3353 #endif
3354 	register_pernet_subsys(&rt_genid_ops);
3355 	return rc;
3356 }
3357 
3358 #ifdef CONFIG_SYSCTL
3359 /*
3360  * We really need to sanitize the damn ipv4 init order, then all
3361  * this nonsense will go away.
3362  */
3363 void __init ip_static_sysctl_init(void)
3364 {
3365 	register_sysctl_paths(ipv4_path, ipv4_skeleton);
3366 }
3367 #endif
3368 
3369 EXPORT_SYMBOL(__ip_select_ident);
3370 EXPORT_SYMBOL(ip_route_output_key);
3371