xref: /openbmc/linux/net/ipv4/route.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		ROUTE - implementation of the IP router.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
11  *		Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12  *		Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
13  *
14  * Fixes:
15  *		Alan Cox	:	Verify area fixes.
16  *		Alan Cox	:	cli() protects routing changes
17  *		Rui Oliveira	:	ICMP routing table updates
18  *		(rco@di.uminho.pt)	Routing table insertion and update
19  *		Linus Torvalds	:	Rewrote bits to be sensible
20  *		Alan Cox	:	Added BSD route gw semantics
21  *		Alan Cox	:	Super /proc >4K
22  *		Alan Cox	:	MTU in route table
23  *		Alan Cox	: 	MSS actually. Also added the window
24  *					clamper.
25  *		Sam Lantinga	:	Fixed route matching in rt_del()
26  *		Alan Cox	:	Routing cache support.
27  *		Alan Cox	:	Removed compatibility cruft.
28  *		Alan Cox	:	RTF_REJECT support.
29  *		Alan Cox	:	TCP irtt support.
30  *		Jonathan Naylor	:	Added Metric support.
31  *	Miquel van Smoorenburg	:	BSD API fixes.
32  *	Miquel van Smoorenburg	:	Metrics.
33  *		Alan Cox	:	Use __u32 properly
34  *		Alan Cox	:	Aligned routing errors more closely with BSD
35  *					our system is still very different.
36  *		Alan Cox	:	Faster /proc handling
37  *	Alexey Kuznetsov	:	Massive rework to support tree based routing,
38  *					routing caches and better behaviour.
39  *
40  *		Olaf Erb	:	irtt wasn't being copied right.
41  *		Bjorn Ekwall	:	Kerneld route support.
42  *		Alan Cox	:	Multicast fixed (I hope)
43  * 		Pavel Krauz	:	Limited broadcast fixed
44  *		Mike McLagan	:	Routing by source
45  *	Alexey Kuznetsov	:	End of old history. Split to fib.c and
46  *					route.c and rewritten from scratch.
47  *		Andi Kleen	:	Load-limit warning messages.
48  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
49  *	Vitaly E. Lavrov	:	Race condition in ip_route_input_slow.
50  *	Tobias Ringstrom	:	Uninitialized res.type in ip_route_output_slow.
51  *	Vladimir V. Ivanov	:	IP rule info (flowid) is really useful.
52  *		Marc Boucher	:	routing by fwmark
53  *	Robert Olsson		:	Added rt_cache statistics
54  *	Arnaldo C. Melo		:	Convert proc stuff to seq_file
55  *	Eric Dumazet		:	hashed spinlocks and rt_check_expire() fixes.
56  * 	Ilia Sotnikov		:	Ignore TOS on PMTUD and Redirect
57  * 	Ilia Sotnikov		:	Removed TOS from hash calculations
58  *
59  *		This program is free software; you can redistribute it and/or
60  *		modify it under the terms of the GNU General Public License
61  *		as published by the Free Software Foundation; either version
62  *		2 of the License, or (at your option) any later version.
63  */
64 
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
71 #include <linux/mm.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
77 #include <linux/in.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <net/dst.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
96 #include <net/ip.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
99 #include <net/sock.h>
100 #include <net/ip_fib.h>
101 #include <net/arp.h>
102 #include <net/tcp.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
107 #ifdef CONFIG_SYSCTL
108 #include <linux/sysctl.h>
109 #endif
110 
111 #define RT_FL_TOS(oldflp) \
112     ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
113 
114 #define IP_MAX_MTU	0xFFF0
115 
116 #define RT_GC_TIMEOUT (300*HZ)
117 
118 static int ip_rt_max_size;
119 static int ip_rt_gc_timeout __read_mostly	= RT_GC_TIMEOUT;
120 static int ip_rt_gc_interval __read_mostly	= 60 * HZ;
121 static int ip_rt_gc_min_interval __read_mostly	= HZ / 2;
122 static int ip_rt_redirect_number __read_mostly	= 9;
123 static int ip_rt_redirect_load __read_mostly	= HZ / 50;
124 static int ip_rt_redirect_silence __read_mostly	= ((HZ / 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly	= HZ;
126 static int ip_rt_error_burst __read_mostly	= 5 * HZ;
127 static int ip_rt_gc_elasticity __read_mostly	= 8;
128 static int ip_rt_mtu_expires __read_mostly	= 10 * 60 * HZ;
129 static int ip_rt_min_pmtu __read_mostly		= 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly	= 256;
131 static int ip_rt_secret_interval __read_mostly	= 10 * 60 * HZ;
132 static int rt_chain_length_max __read_mostly	= 20;
133 
134 static void rt_worker_func(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func);
136 
137 /*
138  *	Interface to generic destination cache.
139  */
140 
141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie);
142 static void		 ipv4_dst_destroy(struct dst_entry *dst);
143 static void		 ipv4_dst_ifdown(struct dst_entry *dst,
144 					 struct net_device *dev, int how);
145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst);
146 static void		 ipv4_link_failure(struct sk_buff *skb);
147 static void		 ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
148 static int rt_garbage_collect(struct dst_ops *ops);
149 static void rt_emergency_hash_rebuild(struct net *net);
150 
151 
152 static struct dst_ops ipv4_dst_ops = {
153 	.family =		AF_INET,
154 	.protocol =		cpu_to_be16(ETH_P_IP),
155 	.gc =			rt_garbage_collect,
156 	.check =		ipv4_dst_check,
157 	.destroy =		ipv4_dst_destroy,
158 	.ifdown =		ipv4_dst_ifdown,
159 	.negative_advice =	ipv4_negative_advice,
160 	.link_failure =		ipv4_link_failure,
161 	.update_pmtu =		ip_rt_update_pmtu,
162 	.local_out =		__ip_local_out,
163 	.entries =		ATOMIC_INIT(0),
164 };
165 
166 #define ECN_OR_COST(class)	TC_PRIO_##class
167 
168 const __u8 ip_tos2prio[16] = {
169 	TC_PRIO_BESTEFFORT,
170 	ECN_OR_COST(FILLER),
171 	TC_PRIO_BESTEFFORT,
172 	ECN_OR_COST(BESTEFFORT),
173 	TC_PRIO_BULK,
174 	ECN_OR_COST(BULK),
175 	TC_PRIO_BULK,
176 	ECN_OR_COST(BULK),
177 	TC_PRIO_INTERACTIVE,
178 	ECN_OR_COST(INTERACTIVE),
179 	TC_PRIO_INTERACTIVE,
180 	ECN_OR_COST(INTERACTIVE),
181 	TC_PRIO_INTERACTIVE_BULK,
182 	ECN_OR_COST(INTERACTIVE_BULK),
183 	TC_PRIO_INTERACTIVE_BULK,
184 	ECN_OR_COST(INTERACTIVE_BULK)
185 };
186 
187 
188 /*
189  * Route cache.
190  */
191 
192 /* The locking scheme is rather straight forward:
193  *
194  * 1) Read-Copy Update protects the buckets of the central route hash.
195  * 2) Only writers remove entries, and they hold the lock
196  *    as they look at rtable reference counts.
197  * 3) Only readers acquire references to rtable entries,
198  *    they do so with atomic increments and with the
199  *    lock held.
200  */
201 
202 struct rt_hash_bucket {
203 	struct rtable	*chain;
204 };
205 
206 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
207 	defined(CONFIG_PROVE_LOCKING)
208 /*
209  * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
210  * The size of this table is a power of two and depends on the number of CPUS.
211  * (on lockdep we have a quite big spinlock_t, so keep the size down there)
212  */
213 #ifdef CONFIG_LOCKDEP
214 # define RT_HASH_LOCK_SZ	256
215 #else
216 # if NR_CPUS >= 32
217 #  define RT_HASH_LOCK_SZ	4096
218 # elif NR_CPUS >= 16
219 #  define RT_HASH_LOCK_SZ	2048
220 # elif NR_CPUS >= 8
221 #  define RT_HASH_LOCK_SZ	1024
222 # elif NR_CPUS >= 4
223 #  define RT_HASH_LOCK_SZ	512
224 # else
225 #  define RT_HASH_LOCK_SZ	256
226 # endif
227 #endif
228 
229 static spinlock_t	*rt_hash_locks;
230 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
231 
232 static __init void rt_hash_lock_init(void)
233 {
234 	int i;
235 
236 	rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ,
237 			GFP_KERNEL);
238 	if (!rt_hash_locks)
239 		panic("IP: failed to allocate rt_hash_locks\n");
240 
241 	for (i = 0; i < RT_HASH_LOCK_SZ; i++)
242 		spin_lock_init(&rt_hash_locks[i]);
243 }
244 #else
245 # define rt_hash_lock_addr(slot) NULL
246 
247 static inline void rt_hash_lock_init(void)
248 {
249 }
250 #endif
251 
252 static struct rt_hash_bucket 	*rt_hash_table __read_mostly;
253 static unsigned			rt_hash_mask __read_mostly;
254 static unsigned int		rt_hash_log  __read_mostly;
255 
256 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat);
257 #define RT_CACHE_STAT_INC(field) \
258 	(__raw_get_cpu_var(rt_cache_stat).field++)
259 
260 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx,
261 		int genid)
262 {
263 	return jhash_3words((__force u32)(__be32)(daddr),
264 			    (__force u32)(__be32)(saddr),
265 			    idx, genid)
266 		& rt_hash_mask;
267 }
268 
269 static inline int rt_genid(struct net *net)
270 {
271 	return atomic_read(&net->ipv4.rt_genid);
272 }
273 
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state {
276 	struct seq_net_private p;
277 	int bucket;
278 	int genid;
279 };
280 
281 static struct rtable *rt_cache_get_first(struct seq_file *seq)
282 {
283 	struct rt_cache_iter_state *st = seq->private;
284 	struct rtable *r = NULL;
285 
286 	for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) {
287 		if (!rt_hash_table[st->bucket].chain)
288 			continue;
289 		rcu_read_lock_bh();
290 		r = rcu_dereference(rt_hash_table[st->bucket].chain);
291 		while (r) {
292 			if (dev_net(r->u.dst.dev) == seq_file_net(seq) &&
293 			    r->rt_genid == st->genid)
294 				return r;
295 			r = rcu_dereference(r->u.dst.rt_next);
296 		}
297 		rcu_read_unlock_bh();
298 	}
299 	return r;
300 }
301 
302 static struct rtable *__rt_cache_get_next(struct seq_file *seq,
303 					  struct rtable *r)
304 {
305 	struct rt_cache_iter_state *st = seq->private;
306 
307 	r = r->u.dst.rt_next;
308 	while (!r) {
309 		rcu_read_unlock_bh();
310 		do {
311 			if (--st->bucket < 0)
312 				return NULL;
313 		} while (!rt_hash_table[st->bucket].chain);
314 		rcu_read_lock_bh();
315 		r = rt_hash_table[st->bucket].chain;
316 	}
317 	return rcu_dereference(r);
318 }
319 
320 static struct rtable *rt_cache_get_next(struct seq_file *seq,
321 					struct rtable *r)
322 {
323 	struct rt_cache_iter_state *st = seq->private;
324 	while ((r = __rt_cache_get_next(seq, r)) != NULL) {
325 		if (dev_net(r->u.dst.dev) != seq_file_net(seq))
326 			continue;
327 		if (r->rt_genid == st->genid)
328 			break;
329 	}
330 	return r;
331 }
332 
333 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos)
334 {
335 	struct rtable *r = rt_cache_get_first(seq);
336 
337 	if (r)
338 		while (pos && (r = rt_cache_get_next(seq, r)))
339 			--pos;
340 	return pos ? NULL : r;
341 }
342 
343 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos)
344 {
345 	struct rt_cache_iter_state *st = seq->private;
346 	if (*pos)
347 		return rt_cache_get_idx(seq, *pos - 1);
348 	st->genid = rt_genid(seq_file_net(seq));
349 	return SEQ_START_TOKEN;
350 }
351 
352 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos)
353 {
354 	struct rtable *r;
355 
356 	if (v == SEQ_START_TOKEN)
357 		r = rt_cache_get_first(seq);
358 	else
359 		r = rt_cache_get_next(seq, v);
360 	++*pos;
361 	return r;
362 }
363 
364 static void rt_cache_seq_stop(struct seq_file *seq, void *v)
365 {
366 	if (v && v != SEQ_START_TOKEN)
367 		rcu_read_unlock_bh();
368 }
369 
370 static int rt_cache_seq_show(struct seq_file *seq, void *v)
371 {
372 	if (v == SEQ_START_TOKEN)
373 		seq_printf(seq, "%-127s\n",
374 			   "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
375 			   "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
376 			   "HHUptod\tSpecDst");
377 	else {
378 		struct rtable *r = v;
379 		int len;
380 
381 		seq_printf(seq, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
382 			      "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
383 			r->u.dst.dev ? r->u.dst.dev->name : "*",
384 			(unsigned long)r->rt_dst, (unsigned long)r->rt_gateway,
385 			r->rt_flags, atomic_read(&r->u.dst.__refcnt),
386 			r->u.dst.__use, 0, (unsigned long)r->rt_src,
387 			(dst_metric(&r->u.dst, RTAX_ADVMSS) ?
388 			     (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0),
389 			dst_metric(&r->u.dst, RTAX_WINDOW),
390 			(int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) +
391 			      dst_metric(&r->u.dst, RTAX_RTTVAR)),
392 			r->fl.fl4_tos,
393 			r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1,
394 			r->u.dst.hh ? (r->u.dst.hh->hh_output ==
395 				       dev_queue_xmit) : 0,
396 			r->rt_spec_dst, &len);
397 
398 		seq_printf(seq, "%*s\n", 127 - len, "");
399 	}
400 	return 0;
401 }
402 
403 static const struct seq_operations rt_cache_seq_ops = {
404 	.start  = rt_cache_seq_start,
405 	.next   = rt_cache_seq_next,
406 	.stop   = rt_cache_seq_stop,
407 	.show   = rt_cache_seq_show,
408 };
409 
410 static int rt_cache_seq_open(struct inode *inode, struct file *file)
411 {
412 	return seq_open_net(inode, file, &rt_cache_seq_ops,
413 			sizeof(struct rt_cache_iter_state));
414 }
415 
416 static const struct file_operations rt_cache_seq_fops = {
417 	.owner	 = THIS_MODULE,
418 	.open	 = rt_cache_seq_open,
419 	.read	 = seq_read,
420 	.llseek	 = seq_lseek,
421 	.release = seq_release_net,
422 };
423 
424 
425 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos)
426 {
427 	int cpu;
428 
429 	if (*pos == 0)
430 		return SEQ_START_TOKEN;
431 
432 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
433 		if (!cpu_possible(cpu))
434 			continue;
435 		*pos = cpu+1;
436 		return &per_cpu(rt_cache_stat, cpu);
437 	}
438 	return NULL;
439 }
440 
441 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos)
442 {
443 	int cpu;
444 
445 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
446 		if (!cpu_possible(cpu))
447 			continue;
448 		*pos = cpu+1;
449 		return &per_cpu(rt_cache_stat, cpu);
450 	}
451 	return NULL;
452 
453 }
454 
455 static void rt_cpu_seq_stop(struct seq_file *seq, void *v)
456 {
457 
458 }
459 
460 static int rt_cpu_seq_show(struct seq_file *seq, void *v)
461 {
462 	struct rt_cache_stat *st = v;
463 
464 	if (v == SEQ_START_TOKEN) {
465 		seq_printf(seq, "entries  in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src  out_hit out_slow_tot out_slow_mc  gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
466 		return 0;
467 	}
468 
469 	seq_printf(seq,"%08x  %08x %08x %08x %08x %08x %08x %08x "
470 		   " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
471 		   atomic_read(&ipv4_dst_ops.entries),
472 		   st->in_hit,
473 		   st->in_slow_tot,
474 		   st->in_slow_mc,
475 		   st->in_no_route,
476 		   st->in_brd,
477 		   st->in_martian_dst,
478 		   st->in_martian_src,
479 
480 		   st->out_hit,
481 		   st->out_slow_tot,
482 		   st->out_slow_mc,
483 
484 		   st->gc_total,
485 		   st->gc_ignored,
486 		   st->gc_goal_miss,
487 		   st->gc_dst_overflow,
488 		   st->in_hlist_search,
489 		   st->out_hlist_search
490 		);
491 	return 0;
492 }
493 
494 static const struct seq_operations rt_cpu_seq_ops = {
495 	.start  = rt_cpu_seq_start,
496 	.next   = rt_cpu_seq_next,
497 	.stop   = rt_cpu_seq_stop,
498 	.show   = rt_cpu_seq_show,
499 };
500 
501 
502 static int rt_cpu_seq_open(struct inode *inode, struct file *file)
503 {
504 	return seq_open(file, &rt_cpu_seq_ops);
505 }
506 
507 static const struct file_operations rt_cpu_seq_fops = {
508 	.owner	 = THIS_MODULE,
509 	.open	 = rt_cpu_seq_open,
510 	.read	 = seq_read,
511 	.llseek	 = seq_lseek,
512 	.release = seq_release,
513 };
514 
515 #ifdef CONFIG_NET_CLS_ROUTE
516 static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
517 			   int length, int *eof, void *data)
518 {
519 	unsigned int i;
520 
521 	if ((offset & 3) || (length & 3))
522 		return -EIO;
523 
524 	if (offset >= sizeof(struct ip_rt_acct) * 256) {
525 		*eof = 1;
526 		return 0;
527 	}
528 
529 	if (offset + length >= sizeof(struct ip_rt_acct) * 256) {
530 		length = sizeof(struct ip_rt_acct) * 256 - offset;
531 		*eof = 1;
532 	}
533 
534 	offset /= sizeof(u32);
535 
536 	if (length > 0) {
537 		u32 *dst = (u32 *) buffer;
538 
539 		*start = buffer;
540 		memset(dst, 0, length);
541 
542 		for_each_possible_cpu(i) {
543 			unsigned int j;
544 			u32 *src;
545 
546 			src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset;
547 			for (j = 0; j < length/4; j++)
548 				dst[j] += src[j];
549 		}
550 	}
551 	return length;
552 }
553 #endif
554 
555 static int __net_init ip_rt_do_proc_init(struct net *net)
556 {
557 	struct proc_dir_entry *pde;
558 
559 	pde = proc_net_fops_create(net, "rt_cache", S_IRUGO,
560 			&rt_cache_seq_fops);
561 	if (!pde)
562 		goto err1;
563 
564 	pde = proc_create("rt_cache", S_IRUGO,
565 			  net->proc_net_stat, &rt_cpu_seq_fops);
566 	if (!pde)
567 		goto err2;
568 
569 #ifdef CONFIG_NET_CLS_ROUTE
570 	pde = create_proc_read_entry("rt_acct", 0, net->proc_net,
571 			ip_rt_acct_read, NULL);
572 	if (!pde)
573 		goto err3;
574 #endif
575 	return 0;
576 
577 #ifdef CONFIG_NET_CLS_ROUTE
578 err3:
579 	remove_proc_entry("rt_cache", net->proc_net_stat);
580 #endif
581 err2:
582 	remove_proc_entry("rt_cache", net->proc_net);
583 err1:
584 	return -ENOMEM;
585 }
586 
587 static void __net_exit ip_rt_do_proc_exit(struct net *net)
588 {
589 	remove_proc_entry("rt_cache", net->proc_net_stat);
590 	remove_proc_entry("rt_cache", net->proc_net);
591 	remove_proc_entry("rt_acct", net->proc_net);
592 }
593 
594 static struct pernet_operations ip_rt_proc_ops __net_initdata =  {
595 	.init = ip_rt_do_proc_init,
596 	.exit = ip_rt_do_proc_exit,
597 };
598 
599 static int __init ip_rt_proc_init(void)
600 {
601 	return register_pernet_subsys(&ip_rt_proc_ops);
602 }
603 
604 #else
605 static inline int ip_rt_proc_init(void)
606 {
607 	return 0;
608 }
609 #endif /* CONFIG_PROC_FS */
610 
611 static inline void rt_free(struct rtable *rt)
612 {
613 	call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
614 }
615 
616 static inline void rt_drop(struct rtable *rt)
617 {
618 	ip_rt_put(rt);
619 	call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free);
620 }
621 
622 static inline int rt_fast_clean(struct rtable *rth)
623 {
624 	/* Kill broadcast/multicast entries very aggresively, if they
625 	   collide in hash table with more useful entries */
626 	return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) &&
627 		rth->fl.iif && rth->u.dst.rt_next;
628 }
629 
630 static inline int rt_valuable(struct rtable *rth)
631 {
632 	return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) ||
633 		rth->u.dst.expires;
634 }
635 
636 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2)
637 {
638 	unsigned long age;
639 	int ret = 0;
640 
641 	if (atomic_read(&rth->u.dst.__refcnt))
642 		goto out;
643 
644 	ret = 1;
645 	if (rth->u.dst.expires &&
646 	    time_after_eq(jiffies, rth->u.dst.expires))
647 		goto out;
648 
649 	age = jiffies - rth->u.dst.lastuse;
650 	ret = 0;
651 	if ((age <= tmo1 && !rt_fast_clean(rth)) ||
652 	    (age <= tmo2 && rt_valuable(rth)))
653 		goto out;
654 	ret = 1;
655 out:	return ret;
656 }
657 
658 /* Bits of score are:
659  * 31: very valuable
660  * 30: not quite useless
661  * 29..0: usage counter
662  */
663 static inline u32 rt_score(struct rtable *rt)
664 {
665 	u32 score = jiffies - rt->u.dst.lastuse;
666 
667 	score = ~score & ~(3<<30);
668 
669 	if (rt_valuable(rt))
670 		score |= (1<<31);
671 
672 	if (!rt->fl.iif ||
673 	    !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL)))
674 		score |= (1<<30);
675 
676 	return score;
677 }
678 
679 static inline bool rt_caching(const struct net *net)
680 {
681 	return net->ipv4.current_rt_cache_rebuild_count <=
682 		net->ipv4.sysctl_rt_cache_rebuild_count;
683 }
684 
685 static inline bool compare_hash_inputs(const struct flowi *fl1,
686 					const struct flowi *fl2)
687 {
688 	return (__force u32)(((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
689 		(fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr) |
690 		(fl1->iif ^ fl2->iif)) == 0);
691 }
692 
693 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2)
694 {
695 	return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) |
696 		(fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) |
697 		(fl1->mark ^ fl2->mark) |
698 		(*(u16 *)&fl1->nl_u.ip4_u.tos ^
699 		 *(u16 *)&fl2->nl_u.ip4_u.tos) |
700 		(fl1->oif ^ fl2->oif) |
701 		(fl1->iif ^ fl2->iif)) == 0;
702 }
703 
704 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2)
705 {
706 	return dev_net(rt1->u.dst.dev) == dev_net(rt2->u.dst.dev);
707 }
708 
709 static inline int rt_is_expired(struct rtable *rth)
710 {
711 	return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev));
712 }
713 
714 /*
715  * Perform a full scan of hash table and free all entries.
716  * Can be called by a softirq or a process.
717  * In the later case, we want to be reschedule if necessary
718  */
719 static void rt_do_flush(int process_context)
720 {
721 	unsigned int i;
722 	struct rtable *rth, *next;
723 	struct rtable * tail;
724 
725 	for (i = 0; i <= rt_hash_mask; i++) {
726 		if (process_context && need_resched())
727 			cond_resched();
728 		rth = rt_hash_table[i].chain;
729 		if (!rth)
730 			continue;
731 
732 		spin_lock_bh(rt_hash_lock_addr(i));
733 #ifdef CONFIG_NET_NS
734 		{
735 		struct rtable ** prev, * p;
736 
737 		rth = rt_hash_table[i].chain;
738 
739 		/* defer releasing the head of the list after spin_unlock */
740 		for (tail = rth; tail; tail = tail->u.dst.rt_next)
741 			if (!rt_is_expired(tail))
742 				break;
743 		if (rth != tail)
744 			rt_hash_table[i].chain = tail;
745 
746 		/* call rt_free on entries after the tail requiring flush */
747 		prev = &rt_hash_table[i].chain;
748 		for (p = *prev; p; p = next) {
749 			next = p->u.dst.rt_next;
750 			if (!rt_is_expired(p)) {
751 				prev = &p->u.dst.rt_next;
752 			} else {
753 				*prev = next;
754 				rt_free(p);
755 			}
756 		}
757 		}
758 #else
759 		rth = rt_hash_table[i].chain;
760 		rt_hash_table[i].chain = NULL;
761 		tail = NULL;
762 #endif
763 		spin_unlock_bh(rt_hash_lock_addr(i));
764 
765 		for (; rth != tail; rth = next) {
766 			next = rth->u.dst.rt_next;
767 			rt_free(rth);
768 		}
769 	}
770 }
771 
772 /*
773  * While freeing expired entries, we compute average chain length
774  * and standard deviation, using fixed-point arithmetic.
775  * This to have an estimation of rt_chain_length_max
776  *  rt_chain_length_max = max(elasticity, AVG + 4*SD)
777  * We use 3 bits for frational part, and 29 (or 61) for magnitude.
778  */
779 
780 #define FRACT_BITS 3
781 #define ONE (1UL << FRACT_BITS)
782 
783 static void rt_check_expire(void)
784 {
785 	static unsigned int rover;
786 	unsigned int i = rover, goal;
787 	struct rtable *rth, **rthp;
788 	unsigned long length = 0, samples = 0;
789 	unsigned long sum = 0, sum2 = 0;
790 	u64 mult;
791 
792 	mult = ((u64)ip_rt_gc_interval) << rt_hash_log;
793 	if (ip_rt_gc_timeout > 1)
794 		do_div(mult, ip_rt_gc_timeout);
795 	goal = (unsigned int)mult;
796 	if (goal > rt_hash_mask)
797 		goal = rt_hash_mask + 1;
798 	length = 0;
799 	for (; goal > 0; goal--) {
800 		unsigned long tmo = ip_rt_gc_timeout;
801 
802 		i = (i + 1) & rt_hash_mask;
803 		rthp = &rt_hash_table[i].chain;
804 
805 		if (need_resched())
806 			cond_resched();
807 
808 		samples++;
809 
810 		if (*rthp == NULL)
811 			continue;
812 		spin_lock_bh(rt_hash_lock_addr(i));
813 		while ((rth = *rthp) != NULL) {
814 			if (rt_is_expired(rth)) {
815 				*rthp = rth->u.dst.rt_next;
816 				rt_free(rth);
817 				continue;
818 			}
819 			if (rth->u.dst.expires) {
820 				/* Entry is expired even if it is in use */
821 				if (time_before_eq(jiffies, rth->u.dst.expires)) {
822 					tmo >>= 1;
823 					rthp = &rth->u.dst.rt_next;
824 					/*
825 					 * Only bump our length if the hash
826 					 * inputs on entries n and n+1 are not
827 					 * the same, we only count entries on
828 					 * a chain with equal hash inputs once
829 					 * so that entries for different QOS
830 					 * levels, and other non-hash input
831 					 * attributes don't unfairly skew
832 					 * the length computation
833 					 */
834 					if ((*rthp == NULL) ||
835 					    !compare_hash_inputs(&(*rthp)->fl,
836 								 &rth->fl))
837 						length += ONE;
838 					continue;
839 				}
840 			} else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) {
841 				tmo >>= 1;
842 				rthp = &rth->u.dst.rt_next;
843 				if ((*rthp == NULL) ||
844 				    !compare_hash_inputs(&(*rthp)->fl,
845 							 &rth->fl))
846 					length += ONE;
847 				continue;
848 			}
849 
850 			/* Cleanup aged off entries. */
851 			*rthp = rth->u.dst.rt_next;
852 			rt_free(rth);
853 		}
854 		spin_unlock_bh(rt_hash_lock_addr(i));
855 		sum += length;
856 		sum2 += length*length;
857 	}
858 	if (samples) {
859 		unsigned long avg = sum / samples;
860 		unsigned long sd = int_sqrt(sum2 / samples - avg*avg);
861 		rt_chain_length_max = max_t(unsigned long,
862 					ip_rt_gc_elasticity,
863 					(avg + 4*sd) >> FRACT_BITS);
864 	}
865 	rover = i;
866 }
867 
868 /*
869  * rt_worker_func() is run in process context.
870  * we call rt_check_expire() to scan part of the hash table
871  */
872 static void rt_worker_func(struct work_struct *work)
873 {
874 	rt_check_expire();
875 	schedule_delayed_work(&expires_work, ip_rt_gc_interval);
876 }
877 
878 /*
879  * Pertubation of rt_genid by a small quantity [1..256]
880  * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
881  * many times (2^24) without giving recent rt_genid.
882  * Jenkins hash is strong enough that litle changes of rt_genid are OK.
883  */
884 static void rt_cache_invalidate(struct net *net)
885 {
886 	unsigned char shuffle;
887 
888 	get_random_bytes(&shuffle, sizeof(shuffle));
889 	atomic_add(shuffle + 1U, &net->ipv4.rt_genid);
890 }
891 
892 /*
893  * delay < 0  : invalidate cache (fast : entries will be deleted later)
894  * delay >= 0 : invalidate & flush cache (can be long)
895  */
896 void rt_cache_flush(struct net *net, int delay)
897 {
898 	rt_cache_invalidate(net);
899 	if (delay >= 0)
900 		rt_do_flush(!in_softirq());
901 }
902 
903 /*
904  * We change rt_genid and let gc do the cleanup
905  */
906 static void rt_secret_rebuild(unsigned long __net)
907 {
908 	struct net *net = (struct net *)__net;
909 	rt_cache_invalidate(net);
910 	mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval);
911 }
912 
913 static void rt_secret_rebuild_oneshot(struct net *net)
914 {
915 	del_timer_sync(&net->ipv4.rt_secret_timer);
916 	rt_cache_invalidate(net);
917 	if (ip_rt_secret_interval) {
918 		net->ipv4.rt_secret_timer.expires += ip_rt_secret_interval;
919 		add_timer(&net->ipv4.rt_secret_timer);
920 	}
921 }
922 
923 static void rt_emergency_hash_rebuild(struct net *net)
924 {
925 	if (net_ratelimit()) {
926 		printk(KERN_WARNING "Route hash chain too long!\n");
927 		printk(KERN_WARNING "Adjust your secret_interval!\n");
928 	}
929 
930 	rt_secret_rebuild_oneshot(net);
931 }
932 
933 /*
934    Short description of GC goals.
935 
936    We want to build algorithm, which will keep routing cache
937    at some equilibrium point, when number of aged off entries
938    is kept approximately equal to newly generated ones.
939 
940    Current expiration strength is variable "expire".
941    We try to adjust it dynamically, so that if networking
942    is idle expires is large enough to keep enough of warm entries,
943    and when load increases it reduces to limit cache size.
944  */
945 
946 static int rt_garbage_collect(struct dst_ops *ops)
947 {
948 	static unsigned long expire = RT_GC_TIMEOUT;
949 	static unsigned long last_gc;
950 	static int rover;
951 	static int equilibrium;
952 	struct rtable *rth, **rthp;
953 	unsigned long now = jiffies;
954 	int goal;
955 
956 	/*
957 	 * Garbage collection is pretty expensive,
958 	 * do not make it too frequently.
959 	 */
960 
961 	RT_CACHE_STAT_INC(gc_total);
962 
963 	if (now - last_gc < ip_rt_gc_min_interval &&
964 	    atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) {
965 		RT_CACHE_STAT_INC(gc_ignored);
966 		goto out;
967 	}
968 
969 	/* Calculate number of entries, which we want to expire now. */
970 	goal = atomic_read(&ipv4_dst_ops.entries) -
971 		(ip_rt_gc_elasticity << rt_hash_log);
972 	if (goal <= 0) {
973 		if (equilibrium < ipv4_dst_ops.gc_thresh)
974 			equilibrium = ipv4_dst_ops.gc_thresh;
975 		goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
976 		if (goal > 0) {
977 			equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1);
978 			goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium;
979 		}
980 	} else {
981 		/* We are in dangerous area. Try to reduce cache really
982 		 * aggressively.
983 		 */
984 		goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1);
985 		equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal;
986 	}
987 
988 	if (now - last_gc >= ip_rt_gc_min_interval)
989 		last_gc = now;
990 
991 	if (goal <= 0) {
992 		equilibrium += goal;
993 		goto work_done;
994 	}
995 
996 	do {
997 		int i, k;
998 
999 		for (i = rt_hash_mask, k = rover; i >= 0; i--) {
1000 			unsigned long tmo = expire;
1001 
1002 			k = (k + 1) & rt_hash_mask;
1003 			rthp = &rt_hash_table[k].chain;
1004 			spin_lock_bh(rt_hash_lock_addr(k));
1005 			while ((rth = *rthp) != NULL) {
1006 				if (!rt_is_expired(rth) &&
1007 					!rt_may_expire(rth, tmo, expire)) {
1008 					tmo >>= 1;
1009 					rthp = &rth->u.dst.rt_next;
1010 					continue;
1011 				}
1012 				*rthp = rth->u.dst.rt_next;
1013 				rt_free(rth);
1014 				goal--;
1015 			}
1016 			spin_unlock_bh(rt_hash_lock_addr(k));
1017 			if (goal <= 0)
1018 				break;
1019 		}
1020 		rover = k;
1021 
1022 		if (goal <= 0)
1023 			goto work_done;
1024 
1025 		/* Goal is not achieved. We stop process if:
1026 
1027 		   - if expire reduced to zero. Otherwise, expire is halfed.
1028 		   - if table is not full.
1029 		   - if we are called from interrupt.
1030 		   - jiffies check is just fallback/debug loop breaker.
1031 		     We will not spin here for long time in any case.
1032 		 */
1033 
1034 		RT_CACHE_STAT_INC(gc_goal_miss);
1035 
1036 		if (expire == 0)
1037 			break;
1038 
1039 		expire >>= 1;
1040 #if RT_CACHE_DEBUG >= 2
1041 		printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire,
1042 				atomic_read(&ipv4_dst_ops.entries), goal, i);
1043 #endif
1044 
1045 		if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1046 			goto out;
1047 	} while (!in_softirq() && time_before_eq(jiffies, now));
1048 
1049 	if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size)
1050 		goto out;
1051 	if (net_ratelimit())
1052 		printk(KERN_WARNING "dst cache overflow\n");
1053 	RT_CACHE_STAT_INC(gc_dst_overflow);
1054 	return 1;
1055 
1056 work_done:
1057 	expire += ip_rt_gc_min_interval;
1058 	if (expire > ip_rt_gc_timeout ||
1059 	    atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh)
1060 		expire = ip_rt_gc_timeout;
1061 #if RT_CACHE_DEBUG >= 2
1062 	printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire,
1063 			atomic_read(&ipv4_dst_ops.entries), goal, rover);
1064 #endif
1065 out:	return 0;
1066 }
1067 
1068 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp)
1069 {
1070 	struct rtable	*rth, **rthp;
1071 	struct rtable	*rthi;
1072 	unsigned long	now;
1073 	struct rtable *cand, **candp;
1074 	u32 		min_score;
1075 	int		chain_length;
1076 	int attempts = !in_softirq();
1077 
1078 restart:
1079 	chain_length = 0;
1080 	min_score = ~(u32)0;
1081 	cand = NULL;
1082 	candp = NULL;
1083 	now = jiffies;
1084 
1085 	if (!rt_caching(dev_net(rt->u.dst.dev))) {
1086 		rt_drop(rt);
1087 		return 0;
1088 	}
1089 
1090 	rthp = &rt_hash_table[hash].chain;
1091 	rthi = NULL;
1092 
1093 	spin_lock_bh(rt_hash_lock_addr(hash));
1094 	while ((rth = *rthp) != NULL) {
1095 		if (rt_is_expired(rth)) {
1096 			*rthp = rth->u.dst.rt_next;
1097 			rt_free(rth);
1098 			continue;
1099 		}
1100 		if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) {
1101 			/* Put it first */
1102 			*rthp = rth->u.dst.rt_next;
1103 			/*
1104 			 * Since lookup is lockfree, the deletion
1105 			 * must be visible to another weakly ordered CPU before
1106 			 * the insertion at the start of the hash chain.
1107 			 */
1108 			rcu_assign_pointer(rth->u.dst.rt_next,
1109 					   rt_hash_table[hash].chain);
1110 			/*
1111 			 * Since lookup is lockfree, the update writes
1112 			 * must be ordered for consistency on SMP.
1113 			 */
1114 			rcu_assign_pointer(rt_hash_table[hash].chain, rth);
1115 
1116 			dst_use(&rth->u.dst, now);
1117 			spin_unlock_bh(rt_hash_lock_addr(hash));
1118 
1119 			rt_drop(rt);
1120 			*rp = rth;
1121 			return 0;
1122 		}
1123 
1124 		if (!atomic_read(&rth->u.dst.__refcnt)) {
1125 			u32 score = rt_score(rth);
1126 
1127 			if (score <= min_score) {
1128 				cand = rth;
1129 				candp = rthp;
1130 				min_score = score;
1131 			}
1132 		}
1133 
1134 		chain_length++;
1135 
1136 		rthp = &rth->u.dst.rt_next;
1137 
1138 		/*
1139 		 * check to see if the next entry in the chain
1140 		 * contains the same hash input values as rt.  If it does
1141 		 * This is where we will insert into the list, instead of
1142 		 * at the head.  This groups entries that differ by aspects not
1143 		 * relvant to the hash function together, which we use to adjust
1144 		 * our chain length
1145 		 */
1146 		if (*rthp && compare_hash_inputs(&(*rthp)->fl, &rt->fl))
1147 			rthi = rth;
1148 	}
1149 
1150 	if (cand) {
1151 		/* ip_rt_gc_elasticity used to be average length of chain
1152 		 * length, when exceeded gc becomes really aggressive.
1153 		 *
1154 		 * The second limit is less certain. At the moment it allows
1155 		 * only 2 entries per bucket. We will see.
1156 		 */
1157 		if (chain_length > ip_rt_gc_elasticity) {
1158 			*candp = cand->u.dst.rt_next;
1159 			rt_free(cand);
1160 		}
1161 	} else {
1162 		if (chain_length > rt_chain_length_max) {
1163 			struct net *net = dev_net(rt->u.dst.dev);
1164 			int num = ++net->ipv4.current_rt_cache_rebuild_count;
1165 			if (!rt_caching(dev_net(rt->u.dst.dev))) {
1166 				printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n",
1167 					rt->u.dst.dev->name, num);
1168 			}
1169 			rt_emergency_hash_rebuild(dev_net(rt->u.dst.dev));
1170 		}
1171 	}
1172 
1173 	/* Try to bind route to arp only if it is output
1174 	   route or unicast forwarding path.
1175 	 */
1176 	if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) {
1177 		int err = arp_bind_neighbour(&rt->u.dst);
1178 		if (err) {
1179 			spin_unlock_bh(rt_hash_lock_addr(hash));
1180 
1181 			if (err != -ENOBUFS) {
1182 				rt_drop(rt);
1183 				return err;
1184 			}
1185 
1186 			/* Neighbour tables are full and nothing
1187 			   can be released. Try to shrink route cache,
1188 			   it is most likely it holds some neighbour records.
1189 			 */
1190 			if (attempts-- > 0) {
1191 				int saved_elasticity = ip_rt_gc_elasticity;
1192 				int saved_int = ip_rt_gc_min_interval;
1193 				ip_rt_gc_elasticity	= 1;
1194 				ip_rt_gc_min_interval	= 0;
1195 				rt_garbage_collect(&ipv4_dst_ops);
1196 				ip_rt_gc_min_interval	= saved_int;
1197 				ip_rt_gc_elasticity	= saved_elasticity;
1198 				goto restart;
1199 			}
1200 
1201 			if (net_ratelimit())
1202 				printk(KERN_WARNING "Neighbour table overflow.\n");
1203 			rt_drop(rt);
1204 			return -ENOBUFS;
1205 		}
1206 	}
1207 
1208 	if (rthi)
1209 		rt->u.dst.rt_next = rthi->u.dst.rt_next;
1210 	else
1211 		rt->u.dst.rt_next = rt_hash_table[hash].chain;
1212 
1213 #if RT_CACHE_DEBUG >= 2
1214 	if (rt->u.dst.rt_next) {
1215 		struct rtable *trt;
1216 		printk(KERN_DEBUG "rt_cache @%02x: %pI4", hash, &rt->rt_dst);
1217 		for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next)
1218 			printk(" . %pI4", &trt->rt_dst);
1219 		printk("\n");
1220 	}
1221 #endif
1222 	/*
1223 	 * Since lookup is lockfree, we must make sure
1224 	 * previous writes to rt are comitted to memory
1225 	 * before making rt visible to other CPUS.
1226 	 */
1227 	if (rthi)
1228 		rcu_assign_pointer(rthi->u.dst.rt_next, rt);
1229 	else
1230 		rcu_assign_pointer(rt_hash_table[hash].chain, rt);
1231 
1232 	spin_unlock_bh(rt_hash_lock_addr(hash));
1233 	*rp = rt;
1234 	return 0;
1235 }
1236 
1237 void rt_bind_peer(struct rtable *rt, int create)
1238 {
1239 	static DEFINE_SPINLOCK(rt_peer_lock);
1240 	struct inet_peer *peer;
1241 
1242 	peer = inet_getpeer(rt->rt_dst, create);
1243 
1244 	spin_lock_bh(&rt_peer_lock);
1245 	if (rt->peer == NULL) {
1246 		rt->peer = peer;
1247 		peer = NULL;
1248 	}
1249 	spin_unlock_bh(&rt_peer_lock);
1250 	if (peer)
1251 		inet_putpeer(peer);
1252 }
1253 
1254 /*
1255  * Peer allocation may fail only in serious out-of-memory conditions.  However
1256  * we still can generate some output.
1257  * Random ID selection looks a bit dangerous because we have no chances to
1258  * select ID being unique in a reasonable period of time.
1259  * But broken packet identifier may be better than no packet at all.
1260  */
1261 static void ip_select_fb_ident(struct iphdr *iph)
1262 {
1263 	static DEFINE_SPINLOCK(ip_fb_id_lock);
1264 	static u32 ip_fallback_id;
1265 	u32 salt;
1266 
1267 	spin_lock_bh(&ip_fb_id_lock);
1268 	salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr);
1269 	iph->id = htons(salt & 0xFFFF);
1270 	ip_fallback_id = salt;
1271 	spin_unlock_bh(&ip_fb_id_lock);
1272 }
1273 
1274 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more)
1275 {
1276 	struct rtable *rt = (struct rtable *) dst;
1277 
1278 	if (rt) {
1279 		if (rt->peer == NULL)
1280 			rt_bind_peer(rt, 1);
1281 
1282 		/* If peer is attached to destination, it is never detached,
1283 		   so that we need not to grab a lock to dereference it.
1284 		 */
1285 		if (rt->peer) {
1286 			iph->id = htons(inet_getid(rt->peer, more));
1287 			return;
1288 		}
1289 	} else
1290 		printk(KERN_DEBUG "rt_bind_peer(0) @%p\n",
1291 		       __builtin_return_address(0));
1292 
1293 	ip_select_fb_ident(iph);
1294 }
1295 
1296 static void rt_del(unsigned hash, struct rtable *rt)
1297 {
1298 	struct rtable **rthp, *aux;
1299 
1300 	rthp = &rt_hash_table[hash].chain;
1301 	spin_lock_bh(rt_hash_lock_addr(hash));
1302 	ip_rt_put(rt);
1303 	while ((aux = *rthp) != NULL) {
1304 		if (aux == rt || rt_is_expired(aux)) {
1305 			*rthp = aux->u.dst.rt_next;
1306 			rt_free(aux);
1307 			continue;
1308 		}
1309 		rthp = &aux->u.dst.rt_next;
1310 	}
1311 	spin_unlock_bh(rt_hash_lock_addr(hash));
1312 }
1313 
1314 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw,
1315 		    __be32 saddr, struct net_device *dev)
1316 {
1317 	int i, k;
1318 	struct in_device *in_dev = in_dev_get(dev);
1319 	struct rtable *rth, **rthp;
1320 	__be32  skeys[2] = { saddr, 0 };
1321 	int  ikeys[2] = { dev->ifindex, 0 };
1322 	struct netevent_redirect netevent;
1323 	struct net *net;
1324 
1325 	if (!in_dev)
1326 		return;
1327 
1328 	net = dev_net(dev);
1329 	if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev)
1330 	    || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw)
1331 	    || ipv4_is_zeronet(new_gw))
1332 		goto reject_redirect;
1333 
1334 	if (!rt_caching(net))
1335 		goto reject_redirect;
1336 
1337 	if (!IN_DEV_SHARED_MEDIA(in_dev)) {
1338 		if (!inet_addr_onlink(in_dev, new_gw, old_gw))
1339 			goto reject_redirect;
1340 		if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
1341 			goto reject_redirect;
1342 	} else {
1343 		if (inet_addr_type(net, new_gw) != RTN_UNICAST)
1344 			goto reject_redirect;
1345 	}
1346 
1347 	for (i = 0; i < 2; i++) {
1348 		for (k = 0; k < 2; k++) {
1349 			unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1350 						rt_genid(net));
1351 
1352 			rthp=&rt_hash_table[hash].chain;
1353 
1354 			rcu_read_lock();
1355 			while ((rth = rcu_dereference(*rthp)) != NULL) {
1356 				struct rtable *rt;
1357 
1358 				if (rth->fl.fl4_dst != daddr ||
1359 				    rth->fl.fl4_src != skeys[i] ||
1360 				    rth->fl.oif != ikeys[k] ||
1361 				    rth->fl.iif != 0 ||
1362 				    rt_is_expired(rth) ||
1363 				    !net_eq(dev_net(rth->u.dst.dev), net)) {
1364 					rthp = &rth->u.dst.rt_next;
1365 					continue;
1366 				}
1367 
1368 				if (rth->rt_dst != daddr ||
1369 				    rth->rt_src != saddr ||
1370 				    rth->u.dst.error ||
1371 				    rth->rt_gateway != old_gw ||
1372 				    rth->u.dst.dev != dev)
1373 					break;
1374 
1375 				dst_hold(&rth->u.dst);
1376 				rcu_read_unlock();
1377 
1378 				rt = dst_alloc(&ipv4_dst_ops);
1379 				if (rt == NULL) {
1380 					ip_rt_put(rth);
1381 					in_dev_put(in_dev);
1382 					return;
1383 				}
1384 
1385 				/* Copy all the information. */
1386 				*rt = *rth;
1387 				rt->u.dst.__use		= 1;
1388 				atomic_set(&rt->u.dst.__refcnt, 1);
1389 				rt->u.dst.child		= NULL;
1390 				if (rt->u.dst.dev)
1391 					dev_hold(rt->u.dst.dev);
1392 				if (rt->idev)
1393 					in_dev_hold(rt->idev);
1394 				rt->u.dst.obsolete	= 0;
1395 				rt->u.dst.lastuse	= jiffies;
1396 				rt->u.dst.path		= &rt->u.dst;
1397 				rt->u.dst.neighbour	= NULL;
1398 				rt->u.dst.hh		= NULL;
1399 #ifdef CONFIG_XFRM
1400 				rt->u.dst.xfrm		= NULL;
1401 #endif
1402 				rt->rt_genid		= rt_genid(net);
1403 				rt->rt_flags		|= RTCF_REDIRECTED;
1404 
1405 				/* Gateway is different ... */
1406 				rt->rt_gateway		= new_gw;
1407 
1408 				/* Redirect received -> path was valid */
1409 				dst_confirm(&rth->u.dst);
1410 
1411 				if (rt->peer)
1412 					atomic_inc(&rt->peer->refcnt);
1413 
1414 				if (arp_bind_neighbour(&rt->u.dst) ||
1415 				    !(rt->u.dst.neighbour->nud_state &
1416 					    NUD_VALID)) {
1417 					if (rt->u.dst.neighbour)
1418 						neigh_event_send(rt->u.dst.neighbour, NULL);
1419 					ip_rt_put(rth);
1420 					rt_drop(rt);
1421 					goto do_next;
1422 				}
1423 
1424 				netevent.old = &rth->u.dst;
1425 				netevent.new = &rt->u.dst;
1426 				call_netevent_notifiers(NETEVENT_REDIRECT,
1427 							&netevent);
1428 
1429 				rt_del(hash, rth);
1430 				if (!rt_intern_hash(hash, rt, &rt))
1431 					ip_rt_put(rt);
1432 				goto do_next;
1433 			}
1434 			rcu_read_unlock();
1435 		do_next:
1436 			;
1437 		}
1438 	}
1439 	in_dev_put(in_dev);
1440 	return;
1441 
1442 reject_redirect:
1443 #ifdef CONFIG_IP_ROUTE_VERBOSE
1444 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
1445 		printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n"
1446 			"  Advised path = %pI4 -> %pI4\n",
1447 		       &old_gw, dev->name, &new_gw,
1448 		       &saddr, &daddr);
1449 #endif
1450 	in_dev_put(in_dev);
1451 }
1452 
1453 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst)
1454 {
1455 	struct rtable *rt = (struct rtable *)dst;
1456 	struct dst_entry *ret = dst;
1457 
1458 	if (rt) {
1459 		if (dst->obsolete) {
1460 			ip_rt_put(rt);
1461 			ret = NULL;
1462 		} else if ((rt->rt_flags & RTCF_REDIRECTED) ||
1463 			   rt->u.dst.expires) {
1464 			unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src,
1465 						rt->fl.oif,
1466 						rt_genid(dev_net(dst->dev)));
1467 #if RT_CACHE_DEBUG >= 1
1468 			printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1469 				&rt->rt_dst, rt->fl.fl4_tos);
1470 #endif
1471 			rt_del(hash, rt);
1472 			ret = NULL;
1473 		}
1474 	}
1475 	return ret;
1476 }
1477 
1478 /*
1479  * Algorithm:
1480  *	1. The first ip_rt_redirect_number redirects are sent
1481  *	   with exponential backoff, then we stop sending them at all,
1482  *	   assuming that the host ignores our redirects.
1483  *	2. If we did not see packets requiring redirects
1484  *	   during ip_rt_redirect_silence, we assume that the host
1485  *	   forgot redirected route and start to send redirects again.
1486  *
1487  * This algorithm is much cheaper and more intelligent than dumb load limiting
1488  * in icmp.c.
1489  *
1490  * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1491  * and "frag. need" (breaks PMTU discovery) in icmp.c.
1492  */
1493 
1494 void ip_rt_send_redirect(struct sk_buff *skb)
1495 {
1496 	struct rtable *rt = skb->rtable;
1497 	struct in_device *in_dev = in_dev_get(rt->u.dst.dev);
1498 
1499 	if (!in_dev)
1500 		return;
1501 
1502 	if (!IN_DEV_TX_REDIRECTS(in_dev))
1503 		goto out;
1504 
1505 	/* No redirected packets during ip_rt_redirect_silence;
1506 	 * reset the algorithm.
1507 	 */
1508 	if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence))
1509 		rt->u.dst.rate_tokens = 0;
1510 
1511 	/* Too many ignored redirects; do not send anything
1512 	 * set u.dst.rate_last to the last seen redirected packet.
1513 	 */
1514 	if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) {
1515 		rt->u.dst.rate_last = jiffies;
1516 		goto out;
1517 	}
1518 
1519 	/* Check for load limit; set rate_last to the latest sent
1520 	 * redirect.
1521 	 */
1522 	if (rt->u.dst.rate_tokens == 0 ||
1523 	    time_after(jiffies,
1524 		       (rt->u.dst.rate_last +
1525 			(ip_rt_redirect_load << rt->u.dst.rate_tokens)))) {
1526 		icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway);
1527 		rt->u.dst.rate_last = jiffies;
1528 		++rt->u.dst.rate_tokens;
1529 #ifdef CONFIG_IP_ROUTE_VERBOSE
1530 		if (IN_DEV_LOG_MARTIANS(in_dev) &&
1531 		    rt->u.dst.rate_tokens == ip_rt_redirect_number &&
1532 		    net_ratelimit())
1533 			printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1534 				&rt->rt_src, rt->rt_iif,
1535 				&rt->rt_dst, &rt->rt_gateway);
1536 #endif
1537 	}
1538 out:
1539 	in_dev_put(in_dev);
1540 }
1541 
1542 static int ip_error(struct sk_buff *skb)
1543 {
1544 	struct rtable *rt = skb->rtable;
1545 	unsigned long now;
1546 	int code;
1547 
1548 	switch (rt->u.dst.error) {
1549 		case EINVAL:
1550 		default:
1551 			goto out;
1552 		case EHOSTUNREACH:
1553 			code = ICMP_HOST_UNREACH;
1554 			break;
1555 		case ENETUNREACH:
1556 			code = ICMP_NET_UNREACH;
1557 			IP_INC_STATS_BH(dev_net(rt->u.dst.dev),
1558 					IPSTATS_MIB_INNOROUTES);
1559 			break;
1560 		case EACCES:
1561 			code = ICMP_PKT_FILTERED;
1562 			break;
1563 	}
1564 
1565 	now = jiffies;
1566 	rt->u.dst.rate_tokens += now - rt->u.dst.rate_last;
1567 	if (rt->u.dst.rate_tokens > ip_rt_error_burst)
1568 		rt->u.dst.rate_tokens = ip_rt_error_burst;
1569 	rt->u.dst.rate_last = now;
1570 	if (rt->u.dst.rate_tokens >= ip_rt_error_cost) {
1571 		rt->u.dst.rate_tokens -= ip_rt_error_cost;
1572 		icmp_send(skb, ICMP_DEST_UNREACH, code, 0);
1573 	}
1574 
1575 out:	kfree_skb(skb);
1576 	return 0;
1577 }
1578 
1579 /*
1580  *	The last two values are not from the RFC but
1581  *	are needed for AMPRnet AX.25 paths.
1582  */
1583 
1584 static const unsigned short mtu_plateau[] =
1585 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1586 
1587 static inline unsigned short guess_mtu(unsigned short old_mtu)
1588 {
1589 	int i;
1590 
1591 	for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++)
1592 		if (old_mtu > mtu_plateau[i])
1593 			return mtu_plateau[i];
1594 	return 68;
1595 }
1596 
1597 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph,
1598 				 unsigned short new_mtu,
1599 				 struct net_device *dev)
1600 {
1601 	int i, k;
1602 	unsigned short old_mtu = ntohs(iph->tot_len);
1603 	struct rtable *rth;
1604 	int  ikeys[2] = { dev->ifindex, 0 };
1605 	__be32  skeys[2] = { iph->saddr, 0, };
1606 	__be32  daddr = iph->daddr;
1607 	unsigned short est_mtu = 0;
1608 
1609 	if (ipv4_config.no_pmtu_disc)
1610 		return 0;
1611 
1612 	for (k = 0; k < 2; k++) {
1613 		for (i = 0; i < 2; i++) {
1614 			unsigned hash = rt_hash(daddr, skeys[i], ikeys[k],
1615 						rt_genid(net));
1616 
1617 			rcu_read_lock();
1618 			for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
1619 			     rth = rcu_dereference(rth->u.dst.rt_next)) {
1620 				unsigned short mtu = new_mtu;
1621 
1622 				if (rth->fl.fl4_dst != daddr ||
1623 				    rth->fl.fl4_src != skeys[i] ||
1624 				    rth->rt_dst != daddr ||
1625 				    rth->rt_src != iph->saddr ||
1626 				    rth->fl.oif != ikeys[k] ||
1627 				    rth->fl.iif != 0 ||
1628 				    dst_metric_locked(&rth->u.dst, RTAX_MTU) ||
1629 				    !net_eq(dev_net(rth->u.dst.dev), net) ||
1630 				    rt_is_expired(rth))
1631 					continue;
1632 
1633 				if (new_mtu < 68 || new_mtu >= old_mtu) {
1634 
1635 					/* BSD 4.2 compatibility hack :-( */
1636 					if (mtu == 0 &&
1637 					    old_mtu >= dst_mtu(&rth->u.dst) &&
1638 					    old_mtu >= 68 + (iph->ihl << 2))
1639 						old_mtu -= iph->ihl << 2;
1640 
1641 					mtu = guess_mtu(old_mtu);
1642 				}
1643 				if (mtu <= dst_mtu(&rth->u.dst)) {
1644 					if (mtu < dst_mtu(&rth->u.dst)) {
1645 						dst_confirm(&rth->u.dst);
1646 						if (mtu < ip_rt_min_pmtu) {
1647 							mtu = ip_rt_min_pmtu;
1648 							rth->u.dst.metrics[RTAX_LOCK-1] |=
1649 								(1 << RTAX_MTU);
1650 						}
1651 						rth->u.dst.metrics[RTAX_MTU-1] = mtu;
1652 						dst_set_expires(&rth->u.dst,
1653 							ip_rt_mtu_expires);
1654 					}
1655 					est_mtu = mtu;
1656 				}
1657 			}
1658 			rcu_read_unlock();
1659 		}
1660 	}
1661 	return est_mtu ? : new_mtu;
1662 }
1663 
1664 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
1665 {
1666 	if (dst_mtu(dst) > mtu && mtu >= 68 &&
1667 	    !(dst_metric_locked(dst, RTAX_MTU))) {
1668 		if (mtu < ip_rt_min_pmtu) {
1669 			mtu = ip_rt_min_pmtu;
1670 			dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU);
1671 		}
1672 		dst->metrics[RTAX_MTU-1] = mtu;
1673 		dst_set_expires(dst, ip_rt_mtu_expires);
1674 		call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
1675 	}
1676 }
1677 
1678 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie)
1679 {
1680 	return NULL;
1681 }
1682 
1683 static void ipv4_dst_destroy(struct dst_entry *dst)
1684 {
1685 	struct rtable *rt = (struct rtable *) dst;
1686 	struct inet_peer *peer = rt->peer;
1687 	struct in_device *idev = rt->idev;
1688 
1689 	if (peer) {
1690 		rt->peer = NULL;
1691 		inet_putpeer(peer);
1692 	}
1693 
1694 	if (idev) {
1695 		rt->idev = NULL;
1696 		in_dev_put(idev);
1697 	}
1698 }
1699 
1700 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
1701 			    int how)
1702 {
1703 	struct rtable *rt = (struct rtable *) dst;
1704 	struct in_device *idev = rt->idev;
1705 	if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) {
1706 		struct in_device *loopback_idev =
1707 			in_dev_get(dev_net(dev)->loopback_dev);
1708 		if (loopback_idev) {
1709 			rt->idev = loopback_idev;
1710 			in_dev_put(idev);
1711 		}
1712 	}
1713 }
1714 
1715 static void ipv4_link_failure(struct sk_buff *skb)
1716 {
1717 	struct rtable *rt;
1718 
1719 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
1720 
1721 	rt = skb->rtable;
1722 	if (rt)
1723 		dst_set_expires(&rt->u.dst, 0);
1724 }
1725 
1726 static int ip_rt_bug(struct sk_buff *skb)
1727 {
1728 	printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n",
1729 		&ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr,
1730 		skb->dev ? skb->dev->name : "?");
1731 	kfree_skb(skb);
1732 	return 0;
1733 }
1734 
1735 /*
1736    We do not cache source address of outgoing interface,
1737    because it is used only by IP RR, TS and SRR options,
1738    so that it out of fast path.
1739 
1740    BTW remember: "addr" is allowed to be not aligned
1741    in IP options!
1742  */
1743 
1744 void ip_rt_get_source(u8 *addr, struct rtable *rt)
1745 {
1746 	__be32 src;
1747 	struct fib_result res;
1748 
1749 	if (rt->fl.iif == 0)
1750 		src = rt->rt_src;
1751 	else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) {
1752 		src = FIB_RES_PREFSRC(res);
1753 		fib_res_put(&res);
1754 	} else
1755 		src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway,
1756 					RT_SCOPE_UNIVERSE);
1757 	memcpy(addr, &src, 4);
1758 }
1759 
1760 #ifdef CONFIG_NET_CLS_ROUTE
1761 static void set_class_tag(struct rtable *rt, u32 tag)
1762 {
1763 	if (!(rt->u.dst.tclassid & 0xFFFF))
1764 		rt->u.dst.tclassid |= tag & 0xFFFF;
1765 	if (!(rt->u.dst.tclassid & 0xFFFF0000))
1766 		rt->u.dst.tclassid |= tag & 0xFFFF0000;
1767 }
1768 #endif
1769 
1770 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag)
1771 {
1772 	struct fib_info *fi = res->fi;
1773 
1774 	if (fi) {
1775 		if (FIB_RES_GW(*res) &&
1776 		    FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK)
1777 			rt->rt_gateway = FIB_RES_GW(*res);
1778 		memcpy(rt->u.dst.metrics, fi->fib_metrics,
1779 		       sizeof(rt->u.dst.metrics));
1780 		if (fi->fib_mtu == 0) {
1781 			rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu;
1782 			if (dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1783 			    rt->rt_gateway != rt->rt_dst &&
1784 			    rt->u.dst.dev->mtu > 576)
1785 				rt->u.dst.metrics[RTAX_MTU-1] = 576;
1786 		}
1787 #ifdef CONFIG_NET_CLS_ROUTE
1788 		rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid;
1789 #endif
1790 	} else
1791 		rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu;
1792 
1793 	if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1794 		rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl;
1795 	if (dst_mtu(&rt->u.dst) > IP_MAX_MTU)
1796 		rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU;
1797 	if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0)
1798 		rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40,
1799 				       ip_rt_min_advmss);
1800 	if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40)
1801 		rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40;
1802 
1803 #ifdef CONFIG_NET_CLS_ROUTE
1804 #ifdef CONFIG_IP_MULTIPLE_TABLES
1805 	set_class_tag(rt, fib_rules_tclass(res));
1806 #endif
1807 	set_class_tag(rt, itag);
1808 #endif
1809 	rt->rt_type = res->type;
1810 }
1811 
1812 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
1813 				u8 tos, struct net_device *dev, int our)
1814 {
1815 	unsigned hash;
1816 	struct rtable *rth;
1817 	__be32 spec_dst;
1818 	struct in_device *in_dev = in_dev_get(dev);
1819 	u32 itag = 0;
1820 
1821 	/* Primary sanity checks. */
1822 
1823 	if (in_dev == NULL)
1824 		return -EINVAL;
1825 
1826 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1827 	    ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP))
1828 		goto e_inval;
1829 
1830 	if (ipv4_is_zeronet(saddr)) {
1831 		if (!ipv4_is_local_multicast(daddr))
1832 			goto e_inval;
1833 		spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
1834 	} else if (fib_validate_source(saddr, 0, tos, 0,
1835 					dev, &spec_dst, &itag) < 0)
1836 		goto e_inval;
1837 
1838 	rth = dst_alloc(&ipv4_dst_ops);
1839 	if (!rth)
1840 		goto e_nobufs;
1841 
1842 	rth->u.dst.output= ip_rt_bug;
1843 
1844 	atomic_set(&rth->u.dst.__refcnt, 1);
1845 	rth->u.dst.flags= DST_HOST;
1846 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1847 		rth->u.dst.flags |= DST_NOPOLICY;
1848 	rth->fl.fl4_dst	= daddr;
1849 	rth->rt_dst	= daddr;
1850 	rth->fl.fl4_tos	= tos;
1851 	rth->fl.mark    = skb->mark;
1852 	rth->fl.fl4_src	= saddr;
1853 	rth->rt_src	= saddr;
1854 #ifdef CONFIG_NET_CLS_ROUTE
1855 	rth->u.dst.tclassid = itag;
1856 #endif
1857 	rth->rt_iif	=
1858 	rth->fl.iif	= dev->ifindex;
1859 	rth->u.dst.dev	= init_net.loopback_dev;
1860 	dev_hold(rth->u.dst.dev);
1861 	rth->idev	= in_dev_get(rth->u.dst.dev);
1862 	rth->fl.oif	= 0;
1863 	rth->rt_gateway	= daddr;
1864 	rth->rt_spec_dst= spec_dst;
1865 	rth->rt_genid	= rt_genid(dev_net(dev));
1866 	rth->rt_flags	= RTCF_MULTICAST;
1867 	rth->rt_type	= RTN_MULTICAST;
1868 	if (our) {
1869 		rth->u.dst.input= ip_local_deliver;
1870 		rth->rt_flags |= RTCF_LOCAL;
1871 	}
1872 
1873 #ifdef CONFIG_IP_MROUTE
1874 	if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
1875 		rth->u.dst.input = ip_mr_input;
1876 #endif
1877 	RT_CACHE_STAT_INC(in_slow_mc);
1878 
1879 	in_dev_put(in_dev);
1880 	hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev)));
1881 	return rt_intern_hash(hash, rth, &skb->rtable);
1882 
1883 e_nobufs:
1884 	in_dev_put(in_dev);
1885 	return -ENOBUFS;
1886 
1887 e_inval:
1888 	in_dev_put(in_dev);
1889 	return -EINVAL;
1890 }
1891 
1892 
1893 static void ip_handle_martian_source(struct net_device *dev,
1894 				     struct in_device *in_dev,
1895 				     struct sk_buff *skb,
1896 				     __be32 daddr,
1897 				     __be32 saddr)
1898 {
1899 	RT_CACHE_STAT_INC(in_martian_src);
1900 #ifdef CONFIG_IP_ROUTE_VERBOSE
1901 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) {
1902 		/*
1903 		 *	RFC1812 recommendation, if source is martian,
1904 		 *	the only hint is MAC header.
1905 		 */
1906 		printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n",
1907 			&daddr, &saddr, dev->name);
1908 		if (dev->hard_header_len && skb_mac_header_was_set(skb)) {
1909 			int i;
1910 			const unsigned char *p = skb_mac_header(skb);
1911 			printk(KERN_WARNING "ll header: ");
1912 			for (i = 0; i < dev->hard_header_len; i++, p++) {
1913 				printk("%02x", *p);
1914 				if (i < (dev->hard_header_len - 1))
1915 					printk(":");
1916 			}
1917 			printk("\n");
1918 		}
1919 	}
1920 #endif
1921 }
1922 
1923 static int __mkroute_input(struct sk_buff *skb,
1924 			   struct fib_result *res,
1925 			   struct in_device *in_dev,
1926 			   __be32 daddr, __be32 saddr, u32 tos,
1927 			   struct rtable **result)
1928 {
1929 
1930 	struct rtable *rth;
1931 	int err;
1932 	struct in_device *out_dev;
1933 	unsigned flags = 0;
1934 	__be32 spec_dst;
1935 	u32 itag;
1936 
1937 	/* get a working reference to the output device */
1938 	out_dev = in_dev_get(FIB_RES_DEV(*res));
1939 	if (out_dev == NULL) {
1940 		if (net_ratelimit())
1941 			printk(KERN_CRIT "Bug in ip_route_input" \
1942 			       "_slow(). Please, report\n");
1943 		return -EINVAL;
1944 	}
1945 
1946 
1947 	err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res),
1948 				  in_dev->dev, &spec_dst, &itag);
1949 	if (err < 0) {
1950 		ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr,
1951 					 saddr);
1952 
1953 		err = -EINVAL;
1954 		goto cleanup;
1955 	}
1956 
1957 	if (err)
1958 		flags |= RTCF_DIRECTSRC;
1959 
1960 	if (out_dev == in_dev && err &&
1961 	    (IN_DEV_SHARED_MEDIA(out_dev) ||
1962 	     inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res))))
1963 		flags |= RTCF_DOREDIRECT;
1964 
1965 	if (skb->protocol != htons(ETH_P_IP)) {
1966 		/* Not IP (i.e. ARP). Do not create route, if it is
1967 		 * invalid for proxy arp. DNAT routes are always valid.
1968 		 */
1969 		if (out_dev == in_dev) {
1970 			err = -EINVAL;
1971 			goto cleanup;
1972 		}
1973 	}
1974 
1975 
1976 	rth = dst_alloc(&ipv4_dst_ops);
1977 	if (!rth) {
1978 		err = -ENOBUFS;
1979 		goto cleanup;
1980 	}
1981 
1982 	atomic_set(&rth->u.dst.__refcnt, 1);
1983 	rth->u.dst.flags= DST_HOST;
1984 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
1985 		rth->u.dst.flags |= DST_NOPOLICY;
1986 	if (IN_DEV_CONF_GET(out_dev, NOXFRM))
1987 		rth->u.dst.flags |= DST_NOXFRM;
1988 	rth->fl.fl4_dst	= daddr;
1989 	rth->rt_dst	= daddr;
1990 	rth->fl.fl4_tos	= tos;
1991 	rth->fl.mark    = skb->mark;
1992 	rth->fl.fl4_src	= saddr;
1993 	rth->rt_src	= saddr;
1994 	rth->rt_gateway	= daddr;
1995 	rth->rt_iif 	=
1996 		rth->fl.iif	= in_dev->dev->ifindex;
1997 	rth->u.dst.dev	= (out_dev)->dev;
1998 	dev_hold(rth->u.dst.dev);
1999 	rth->idev	= in_dev_get(rth->u.dst.dev);
2000 	rth->fl.oif 	= 0;
2001 	rth->rt_spec_dst= spec_dst;
2002 
2003 	rth->u.dst.input = ip_forward;
2004 	rth->u.dst.output = ip_output;
2005 	rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev));
2006 
2007 	rt_set_nexthop(rth, res, itag);
2008 
2009 	rth->rt_flags = flags;
2010 
2011 	*result = rth;
2012 	err = 0;
2013  cleanup:
2014 	/* release the working reference to the output device */
2015 	in_dev_put(out_dev);
2016 	return err;
2017 }
2018 
2019 static int ip_mkroute_input(struct sk_buff *skb,
2020 			    struct fib_result *res,
2021 			    const struct flowi *fl,
2022 			    struct in_device *in_dev,
2023 			    __be32 daddr, __be32 saddr, u32 tos)
2024 {
2025 	struct rtable* rth = NULL;
2026 	int err;
2027 	unsigned hash;
2028 
2029 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2030 	if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0)
2031 		fib_select_multipath(fl, res);
2032 #endif
2033 
2034 	/* create a routing cache entry */
2035 	err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth);
2036 	if (err)
2037 		return err;
2038 
2039 	/* put it into the cache */
2040 	hash = rt_hash(daddr, saddr, fl->iif,
2041 		       rt_genid(dev_net(rth->u.dst.dev)));
2042 	return rt_intern_hash(hash, rth, &skb->rtable);
2043 }
2044 
2045 /*
2046  *	NOTE. We drop all the packets that has local source
2047  *	addresses, because every properly looped back packet
2048  *	must have correct destination already attached by output routine.
2049  *
2050  *	Such approach solves two big problems:
2051  *	1. Not simplex devices are handled properly.
2052  *	2. IP spoofing attempts are filtered with 100% of guarantee.
2053  */
2054 
2055 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2056 			       u8 tos, struct net_device *dev)
2057 {
2058 	struct fib_result res;
2059 	struct in_device *in_dev = in_dev_get(dev);
2060 	struct flowi fl = { .nl_u = { .ip4_u =
2061 				      { .daddr = daddr,
2062 					.saddr = saddr,
2063 					.tos = tos,
2064 					.scope = RT_SCOPE_UNIVERSE,
2065 				      } },
2066 			    .mark = skb->mark,
2067 			    .iif = dev->ifindex };
2068 	unsigned	flags = 0;
2069 	u32		itag = 0;
2070 	struct rtable * rth;
2071 	unsigned	hash;
2072 	__be32		spec_dst;
2073 	int		err = -EINVAL;
2074 	int		free_res = 0;
2075 	struct net    * net = dev_net(dev);
2076 
2077 	/* IP on this device is disabled. */
2078 
2079 	if (!in_dev)
2080 		goto out;
2081 
2082 	/* Check for the most weird martians, which can be not detected
2083 	   by fib_lookup.
2084 	 */
2085 
2086 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
2087 	    ipv4_is_loopback(saddr))
2088 		goto martian_source;
2089 
2090 	if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0))
2091 		goto brd_input;
2092 
2093 	/* Accept zero addresses only to limited broadcast;
2094 	 * I even do not know to fix it or not. Waiting for complains :-)
2095 	 */
2096 	if (ipv4_is_zeronet(saddr))
2097 		goto martian_source;
2098 
2099 	if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) ||
2100 	    ipv4_is_loopback(daddr))
2101 		goto martian_destination;
2102 
2103 	/*
2104 	 *	Now we are ready to route packet.
2105 	 */
2106 	if ((err = fib_lookup(net, &fl, &res)) != 0) {
2107 		if (!IN_DEV_FORWARD(in_dev))
2108 			goto e_hostunreach;
2109 		goto no_route;
2110 	}
2111 	free_res = 1;
2112 
2113 	RT_CACHE_STAT_INC(in_slow_tot);
2114 
2115 	if (res.type == RTN_BROADCAST)
2116 		goto brd_input;
2117 
2118 	if (res.type == RTN_LOCAL) {
2119 		int result;
2120 		result = fib_validate_source(saddr, daddr, tos,
2121 					     net->loopback_dev->ifindex,
2122 					     dev, &spec_dst, &itag);
2123 		if (result < 0)
2124 			goto martian_source;
2125 		if (result)
2126 			flags |= RTCF_DIRECTSRC;
2127 		spec_dst = daddr;
2128 		goto local_input;
2129 	}
2130 
2131 	if (!IN_DEV_FORWARD(in_dev))
2132 		goto e_hostunreach;
2133 	if (res.type != RTN_UNICAST)
2134 		goto martian_destination;
2135 
2136 	err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos);
2137 done:
2138 	in_dev_put(in_dev);
2139 	if (free_res)
2140 		fib_res_put(&res);
2141 out:	return err;
2142 
2143 brd_input:
2144 	if (skb->protocol != htons(ETH_P_IP))
2145 		goto e_inval;
2146 
2147 	if (ipv4_is_zeronet(saddr))
2148 		spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK);
2149 	else {
2150 		err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst,
2151 					  &itag);
2152 		if (err < 0)
2153 			goto martian_source;
2154 		if (err)
2155 			flags |= RTCF_DIRECTSRC;
2156 	}
2157 	flags |= RTCF_BROADCAST;
2158 	res.type = RTN_BROADCAST;
2159 	RT_CACHE_STAT_INC(in_brd);
2160 
2161 local_input:
2162 	rth = dst_alloc(&ipv4_dst_ops);
2163 	if (!rth)
2164 		goto e_nobufs;
2165 
2166 	rth->u.dst.output= ip_rt_bug;
2167 	rth->rt_genid = rt_genid(net);
2168 
2169 	atomic_set(&rth->u.dst.__refcnt, 1);
2170 	rth->u.dst.flags= DST_HOST;
2171 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2172 		rth->u.dst.flags |= DST_NOPOLICY;
2173 	rth->fl.fl4_dst	= daddr;
2174 	rth->rt_dst	= daddr;
2175 	rth->fl.fl4_tos	= tos;
2176 	rth->fl.mark    = skb->mark;
2177 	rth->fl.fl4_src	= saddr;
2178 	rth->rt_src	= saddr;
2179 #ifdef CONFIG_NET_CLS_ROUTE
2180 	rth->u.dst.tclassid = itag;
2181 #endif
2182 	rth->rt_iif	=
2183 	rth->fl.iif	= dev->ifindex;
2184 	rth->u.dst.dev	= net->loopback_dev;
2185 	dev_hold(rth->u.dst.dev);
2186 	rth->idev	= in_dev_get(rth->u.dst.dev);
2187 	rth->rt_gateway	= daddr;
2188 	rth->rt_spec_dst= spec_dst;
2189 	rth->u.dst.input= ip_local_deliver;
2190 	rth->rt_flags 	= flags|RTCF_LOCAL;
2191 	if (res.type == RTN_UNREACHABLE) {
2192 		rth->u.dst.input= ip_error;
2193 		rth->u.dst.error= -err;
2194 		rth->rt_flags 	&= ~RTCF_LOCAL;
2195 	}
2196 	rth->rt_type	= res.type;
2197 	hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net));
2198 	err = rt_intern_hash(hash, rth, &skb->rtable);
2199 	goto done;
2200 
2201 no_route:
2202 	RT_CACHE_STAT_INC(in_no_route);
2203 	spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE);
2204 	res.type = RTN_UNREACHABLE;
2205 	if (err == -ESRCH)
2206 		err = -ENETUNREACH;
2207 	goto local_input;
2208 
2209 	/*
2210 	 *	Do not cache martian addresses: they should be logged (RFC1812)
2211 	 */
2212 martian_destination:
2213 	RT_CACHE_STAT_INC(in_martian_dst);
2214 #ifdef CONFIG_IP_ROUTE_VERBOSE
2215 	if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit())
2216 		printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n",
2217 			&daddr, &saddr, dev->name);
2218 #endif
2219 
2220 e_hostunreach:
2221 	err = -EHOSTUNREACH;
2222 	goto done;
2223 
2224 e_inval:
2225 	err = -EINVAL;
2226 	goto done;
2227 
2228 e_nobufs:
2229 	err = -ENOBUFS;
2230 	goto done;
2231 
2232 martian_source:
2233 	ip_handle_martian_source(dev, in_dev, skb, daddr, saddr);
2234 	goto e_inval;
2235 }
2236 
2237 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr,
2238 		   u8 tos, struct net_device *dev)
2239 {
2240 	struct rtable * rth;
2241 	unsigned	hash;
2242 	int iif = dev->ifindex;
2243 	struct net *net;
2244 
2245 	net = dev_net(dev);
2246 
2247 	if (!rt_caching(net))
2248 		goto skip_cache;
2249 
2250 	tos &= IPTOS_RT_MASK;
2251 	hash = rt_hash(daddr, saddr, iif, rt_genid(net));
2252 
2253 	rcu_read_lock();
2254 	for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2255 	     rth = rcu_dereference(rth->u.dst.rt_next)) {
2256 		if (((rth->fl.fl4_dst ^ daddr) |
2257 		     (rth->fl.fl4_src ^ saddr) |
2258 		     (rth->fl.iif ^ iif) |
2259 		     rth->fl.oif |
2260 		     (rth->fl.fl4_tos ^ tos)) == 0 &&
2261 		    rth->fl.mark == skb->mark &&
2262 		    net_eq(dev_net(rth->u.dst.dev), net) &&
2263 		    !rt_is_expired(rth)) {
2264 			dst_use(&rth->u.dst, jiffies);
2265 			RT_CACHE_STAT_INC(in_hit);
2266 			rcu_read_unlock();
2267 			skb->rtable = rth;
2268 			return 0;
2269 		}
2270 		RT_CACHE_STAT_INC(in_hlist_search);
2271 	}
2272 	rcu_read_unlock();
2273 
2274 skip_cache:
2275 	/* Multicast recognition logic is moved from route cache to here.
2276 	   The problem was that too many Ethernet cards have broken/missing
2277 	   hardware multicast filters :-( As result the host on multicasting
2278 	   network acquires a lot of useless route cache entries, sort of
2279 	   SDR messages from all the world. Now we try to get rid of them.
2280 	   Really, provided software IP multicast filter is organized
2281 	   reasonably (at least, hashed), it does not result in a slowdown
2282 	   comparing with route cache reject entries.
2283 	   Note, that multicast routers are not affected, because
2284 	   route cache entry is created eventually.
2285 	 */
2286 	if (ipv4_is_multicast(daddr)) {
2287 		struct in_device *in_dev;
2288 
2289 		rcu_read_lock();
2290 		if ((in_dev = __in_dev_get_rcu(dev)) != NULL) {
2291 			int our = ip_check_mc(in_dev, daddr, saddr,
2292 				ip_hdr(skb)->protocol);
2293 			if (our
2294 #ifdef CONFIG_IP_MROUTE
2295 			    || (!ipv4_is_local_multicast(daddr) &&
2296 				IN_DEV_MFORWARD(in_dev))
2297 #endif
2298 			    ) {
2299 				rcu_read_unlock();
2300 				return ip_route_input_mc(skb, daddr, saddr,
2301 							 tos, dev, our);
2302 			}
2303 		}
2304 		rcu_read_unlock();
2305 		return -EINVAL;
2306 	}
2307 	return ip_route_input_slow(skb, daddr, saddr, tos, dev);
2308 }
2309 
2310 static int __mkroute_output(struct rtable **result,
2311 			    struct fib_result *res,
2312 			    const struct flowi *fl,
2313 			    const struct flowi *oldflp,
2314 			    struct net_device *dev_out,
2315 			    unsigned flags)
2316 {
2317 	struct rtable *rth;
2318 	struct in_device *in_dev;
2319 	u32 tos = RT_FL_TOS(oldflp);
2320 	int err = 0;
2321 
2322 	if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK))
2323 		return -EINVAL;
2324 
2325 	if (fl->fl4_dst == htonl(0xFFFFFFFF))
2326 		res->type = RTN_BROADCAST;
2327 	else if (ipv4_is_multicast(fl->fl4_dst))
2328 		res->type = RTN_MULTICAST;
2329 	else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst))
2330 		return -EINVAL;
2331 
2332 	if (dev_out->flags & IFF_LOOPBACK)
2333 		flags |= RTCF_LOCAL;
2334 
2335 	/* get work reference to inet device */
2336 	in_dev = in_dev_get(dev_out);
2337 	if (!in_dev)
2338 		return -EINVAL;
2339 
2340 	if (res->type == RTN_BROADCAST) {
2341 		flags |= RTCF_BROADCAST | RTCF_LOCAL;
2342 		if (res->fi) {
2343 			fib_info_put(res->fi);
2344 			res->fi = NULL;
2345 		}
2346 	} else if (res->type == RTN_MULTICAST) {
2347 		flags |= RTCF_MULTICAST|RTCF_LOCAL;
2348 		if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src,
2349 				 oldflp->proto))
2350 			flags &= ~RTCF_LOCAL;
2351 		/* If multicast route do not exist use
2352 		   default one, but do not gateway in this case.
2353 		   Yes, it is hack.
2354 		 */
2355 		if (res->fi && res->prefixlen < 4) {
2356 			fib_info_put(res->fi);
2357 			res->fi = NULL;
2358 		}
2359 	}
2360 
2361 
2362 	rth = dst_alloc(&ipv4_dst_ops);
2363 	if (!rth) {
2364 		err = -ENOBUFS;
2365 		goto cleanup;
2366 	}
2367 
2368 	atomic_set(&rth->u.dst.__refcnt, 1);
2369 	rth->u.dst.flags= DST_HOST;
2370 	if (IN_DEV_CONF_GET(in_dev, NOXFRM))
2371 		rth->u.dst.flags |= DST_NOXFRM;
2372 	if (IN_DEV_CONF_GET(in_dev, NOPOLICY))
2373 		rth->u.dst.flags |= DST_NOPOLICY;
2374 
2375 	rth->fl.fl4_dst	= oldflp->fl4_dst;
2376 	rth->fl.fl4_tos	= tos;
2377 	rth->fl.fl4_src	= oldflp->fl4_src;
2378 	rth->fl.oif	= oldflp->oif;
2379 	rth->fl.mark    = oldflp->mark;
2380 	rth->rt_dst	= fl->fl4_dst;
2381 	rth->rt_src	= fl->fl4_src;
2382 	rth->rt_iif	= oldflp->oif ? : dev_out->ifindex;
2383 	/* get references to the devices that are to be hold by the routing
2384 	   cache entry */
2385 	rth->u.dst.dev	= dev_out;
2386 	dev_hold(dev_out);
2387 	rth->idev	= in_dev_get(dev_out);
2388 	rth->rt_gateway = fl->fl4_dst;
2389 	rth->rt_spec_dst= fl->fl4_src;
2390 
2391 	rth->u.dst.output=ip_output;
2392 	rth->rt_genid = rt_genid(dev_net(dev_out));
2393 
2394 	RT_CACHE_STAT_INC(out_slow_tot);
2395 
2396 	if (flags & RTCF_LOCAL) {
2397 		rth->u.dst.input = ip_local_deliver;
2398 		rth->rt_spec_dst = fl->fl4_dst;
2399 	}
2400 	if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) {
2401 		rth->rt_spec_dst = fl->fl4_src;
2402 		if (flags & RTCF_LOCAL &&
2403 		    !(dev_out->flags & IFF_LOOPBACK)) {
2404 			rth->u.dst.output = ip_mc_output;
2405 			RT_CACHE_STAT_INC(out_slow_mc);
2406 		}
2407 #ifdef CONFIG_IP_MROUTE
2408 		if (res->type == RTN_MULTICAST) {
2409 			if (IN_DEV_MFORWARD(in_dev) &&
2410 			    !ipv4_is_local_multicast(oldflp->fl4_dst)) {
2411 				rth->u.dst.input = ip_mr_input;
2412 				rth->u.dst.output = ip_mc_output;
2413 			}
2414 		}
2415 #endif
2416 	}
2417 
2418 	rt_set_nexthop(rth, res, 0);
2419 
2420 	rth->rt_flags = flags;
2421 
2422 	*result = rth;
2423  cleanup:
2424 	/* release work reference to inet device */
2425 	in_dev_put(in_dev);
2426 
2427 	return err;
2428 }
2429 
2430 static int ip_mkroute_output(struct rtable **rp,
2431 			     struct fib_result *res,
2432 			     const struct flowi *fl,
2433 			     const struct flowi *oldflp,
2434 			     struct net_device *dev_out,
2435 			     unsigned flags)
2436 {
2437 	struct rtable *rth = NULL;
2438 	int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags);
2439 	unsigned hash;
2440 	if (err == 0) {
2441 		hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif,
2442 			       rt_genid(dev_net(dev_out)));
2443 		err = rt_intern_hash(hash, rth, rp);
2444 	}
2445 
2446 	return err;
2447 }
2448 
2449 /*
2450  * Major route resolver routine.
2451  */
2452 
2453 static int ip_route_output_slow(struct net *net, struct rtable **rp,
2454 				const struct flowi *oldflp)
2455 {
2456 	u32 tos	= RT_FL_TOS(oldflp);
2457 	struct flowi fl = { .nl_u = { .ip4_u =
2458 				      { .daddr = oldflp->fl4_dst,
2459 					.saddr = oldflp->fl4_src,
2460 					.tos = tos & IPTOS_RT_MASK,
2461 					.scope = ((tos & RTO_ONLINK) ?
2462 						  RT_SCOPE_LINK :
2463 						  RT_SCOPE_UNIVERSE),
2464 				      } },
2465 			    .mark = oldflp->mark,
2466 			    .iif = net->loopback_dev->ifindex,
2467 			    .oif = oldflp->oif };
2468 	struct fib_result res;
2469 	unsigned flags = 0;
2470 	struct net_device *dev_out = NULL;
2471 	int free_res = 0;
2472 	int err;
2473 
2474 
2475 	res.fi		= NULL;
2476 #ifdef CONFIG_IP_MULTIPLE_TABLES
2477 	res.r		= NULL;
2478 #endif
2479 
2480 	if (oldflp->fl4_src) {
2481 		err = -EINVAL;
2482 		if (ipv4_is_multicast(oldflp->fl4_src) ||
2483 		    ipv4_is_lbcast(oldflp->fl4_src) ||
2484 		    ipv4_is_zeronet(oldflp->fl4_src))
2485 			goto out;
2486 
2487 		/* I removed check for oif == dev_out->oif here.
2488 		   It was wrong for two reasons:
2489 		   1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2490 		      is assigned to multiple interfaces.
2491 		   2. Moreover, we are allowed to send packets with saddr
2492 		      of another iface. --ANK
2493 		 */
2494 
2495 		if (oldflp->oif == 0
2496 		    && (ipv4_is_multicast(oldflp->fl4_dst) ||
2497 			oldflp->fl4_dst == htonl(0xFFFFFFFF))) {
2498 			/* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2499 			dev_out = ip_dev_find(net, oldflp->fl4_src);
2500 			if (dev_out == NULL)
2501 				goto out;
2502 
2503 			/* Special hack: user can direct multicasts
2504 			   and limited broadcast via necessary interface
2505 			   without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2506 			   This hack is not just for fun, it allows
2507 			   vic,vat and friends to work.
2508 			   They bind socket to loopback, set ttl to zero
2509 			   and expect that it will work.
2510 			   From the viewpoint of routing cache they are broken,
2511 			   because we are not allowed to build multicast path
2512 			   with loopback source addr (look, routing cache
2513 			   cannot know, that ttl is zero, so that packet
2514 			   will not leave this host and route is valid).
2515 			   Luckily, this hack is good workaround.
2516 			 */
2517 
2518 			fl.oif = dev_out->ifindex;
2519 			goto make_route;
2520 		}
2521 
2522 		if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) {
2523 			/* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2524 			dev_out = ip_dev_find(net, oldflp->fl4_src);
2525 			if (dev_out == NULL)
2526 				goto out;
2527 			dev_put(dev_out);
2528 			dev_out = NULL;
2529 		}
2530 	}
2531 
2532 
2533 	if (oldflp->oif) {
2534 		dev_out = dev_get_by_index(net, oldflp->oif);
2535 		err = -ENODEV;
2536 		if (dev_out == NULL)
2537 			goto out;
2538 
2539 		/* RACE: Check return value of inet_select_addr instead. */
2540 		if (__in_dev_get_rtnl(dev_out) == NULL) {
2541 			dev_put(dev_out);
2542 			goto out;	/* Wrong error code */
2543 		}
2544 
2545 		if (ipv4_is_local_multicast(oldflp->fl4_dst) ||
2546 		    oldflp->fl4_dst == htonl(0xFFFFFFFF)) {
2547 			if (!fl.fl4_src)
2548 				fl.fl4_src = inet_select_addr(dev_out, 0,
2549 							      RT_SCOPE_LINK);
2550 			goto make_route;
2551 		}
2552 		if (!fl.fl4_src) {
2553 			if (ipv4_is_multicast(oldflp->fl4_dst))
2554 				fl.fl4_src = inet_select_addr(dev_out, 0,
2555 							      fl.fl4_scope);
2556 			else if (!oldflp->fl4_dst)
2557 				fl.fl4_src = inet_select_addr(dev_out, 0,
2558 							      RT_SCOPE_HOST);
2559 		}
2560 	}
2561 
2562 	if (!fl.fl4_dst) {
2563 		fl.fl4_dst = fl.fl4_src;
2564 		if (!fl.fl4_dst)
2565 			fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK);
2566 		if (dev_out)
2567 			dev_put(dev_out);
2568 		dev_out = net->loopback_dev;
2569 		dev_hold(dev_out);
2570 		fl.oif = net->loopback_dev->ifindex;
2571 		res.type = RTN_LOCAL;
2572 		flags |= RTCF_LOCAL;
2573 		goto make_route;
2574 	}
2575 
2576 	if (fib_lookup(net, &fl, &res)) {
2577 		res.fi = NULL;
2578 		if (oldflp->oif) {
2579 			/* Apparently, routing tables are wrong. Assume,
2580 			   that the destination is on link.
2581 
2582 			   WHY? DW.
2583 			   Because we are allowed to send to iface
2584 			   even if it has NO routes and NO assigned
2585 			   addresses. When oif is specified, routing
2586 			   tables are looked up with only one purpose:
2587 			   to catch if destination is gatewayed, rather than
2588 			   direct. Moreover, if MSG_DONTROUTE is set,
2589 			   we send packet, ignoring both routing tables
2590 			   and ifaddr state. --ANK
2591 
2592 
2593 			   We could make it even if oif is unknown,
2594 			   likely IPv6, but we do not.
2595 			 */
2596 
2597 			if (fl.fl4_src == 0)
2598 				fl.fl4_src = inet_select_addr(dev_out, 0,
2599 							      RT_SCOPE_LINK);
2600 			res.type = RTN_UNICAST;
2601 			goto make_route;
2602 		}
2603 		if (dev_out)
2604 			dev_put(dev_out);
2605 		err = -ENETUNREACH;
2606 		goto out;
2607 	}
2608 	free_res = 1;
2609 
2610 	if (res.type == RTN_LOCAL) {
2611 		if (!fl.fl4_src)
2612 			fl.fl4_src = fl.fl4_dst;
2613 		if (dev_out)
2614 			dev_put(dev_out);
2615 		dev_out = net->loopback_dev;
2616 		dev_hold(dev_out);
2617 		fl.oif = dev_out->ifindex;
2618 		if (res.fi)
2619 			fib_info_put(res.fi);
2620 		res.fi = NULL;
2621 		flags |= RTCF_LOCAL;
2622 		goto make_route;
2623 	}
2624 
2625 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2626 	if (res.fi->fib_nhs > 1 && fl.oif == 0)
2627 		fib_select_multipath(&fl, &res);
2628 	else
2629 #endif
2630 	if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif)
2631 		fib_select_default(net, &fl, &res);
2632 
2633 	if (!fl.fl4_src)
2634 		fl.fl4_src = FIB_RES_PREFSRC(res);
2635 
2636 	if (dev_out)
2637 		dev_put(dev_out);
2638 	dev_out = FIB_RES_DEV(res);
2639 	dev_hold(dev_out);
2640 	fl.oif = dev_out->ifindex;
2641 
2642 
2643 make_route:
2644 	err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags);
2645 
2646 
2647 	if (free_res)
2648 		fib_res_put(&res);
2649 	if (dev_out)
2650 		dev_put(dev_out);
2651 out:	return err;
2652 }
2653 
2654 int __ip_route_output_key(struct net *net, struct rtable **rp,
2655 			  const struct flowi *flp)
2656 {
2657 	unsigned hash;
2658 	struct rtable *rth;
2659 
2660 	if (!rt_caching(net))
2661 		goto slow_output;
2662 
2663 	hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net));
2664 
2665 	rcu_read_lock_bh();
2666 	for (rth = rcu_dereference(rt_hash_table[hash].chain); rth;
2667 		rth = rcu_dereference(rth->u.dst.rt_next)) {
2668 		if (rth->fl.fl4_dst == flp->fl4_dst &&
2669 		    rth->fl.fl4_src == flp->fl4_src &&
2670 		    rth->fl.iif == 0 &&
2671 		    rth->fl.oif == flp->oif &&
2672 		    rth->fl.mark == flp->mark &&
2673 		    !((rth->fl.fl4_tos ^ flp->fl4_tos) &
2674 			    (IPTOS_RT_MASK | RTO_ONLINK)) &&
2675 		    net_eq(dev_net(rth->u.dst.dev), net) &&
2676 		    !rt_is_expired(rth)) {
2677 			dst_use(&rth->u.dst, jiffies);
2678 			RT_CACHE_STAT_INC(out_hit);
2679 			rcu_read_unlock_bh();
2680 			*rp = rth;
2681 			return 0;
2682 		}
2683 		RT_CACHE_STAT_INC(out_hlist_search);
2684 	}
2685 	rcu_read_unlock_bh();
2686 
2687 slow_output:
2688 	return ip_route_output_slow(net, rp, flp);
2689 }
2690 
2691 EXPORT_SYMBOL_GPL(__ip_route_output_key);
2692 
2693 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
2694 {
2695 }
2696 
2697 static struct dst_ops ipv4_dst_blackhole_ops = {
2698 	.family			=	AF_INET,
2699 	.protocol		=	cpu_to_be16(ETH_P_IP),
2700 	.destroy		=	ipv4_dst_destroy,
2701 	.check			=	ipv4_dst_check,
2702 	.update_pmtu		=	ipv4_rt_blackhole_update_pmtu,
2703 	.entries		=	ATOMIC_INIT(0),
2704 };
2705 
2706 
2707 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp)
2708 {
2709 	struct rtable *ort = *rp;
2710 	struct rtable *rt = (struct rtable *)
2711 		dst_alloc(&ipv4_dst_blackhole_ops);
2712 
2713 	if (rt) {
2714 		struct dst_entry *new = &rt->u.dst;
2715 
2716 		atomic_set(&new->__refcnt, 1);
2717 		new->__use = 1;
2718 		new->input = dst_discard;
2719 		new->output = dst_discard;
2720 		memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
2721 
2722 		new->dev = ort->u.dst.dev;
2723 		if (new->dev)
2724 			dev_hold(new->dev);
2725 
2726 		rt->fl = ort->fl;
2727 
2728 		rt->idev = ort->idev;
2729 		if (rt->idev)
2730 			in_dev_hold(rt->idev);
2731 		rt->rt_genid = rt_genid(net);
2732 		rt->rt_flags = ort->rt_flags;
2733 		rt->rt_type = ort->rt_type;
2734 		rt->rt_dst = ort->rt_dst;
2735 		rt->rt_src = ort->rt_src;
2736 		rt->rt_iif = ort->rt_iif;
2737 		rt->rt_gateway = ort->rt_gateway;
2738 		rt->rt_spec_dst = ort->rt_spec_dst;
2739 		rt->peer = ort->peer;
2740 		if (rt->peer)
2741 			atomic_inc(&rt->peer->refcnt);
2742 
2743 		dst_free(new);
2744 	}
2745 
2746 	dst_release(&(*rp)->u.dst);
2747 	*rp = rt;
2748 	return (rt ? 0 : -ENOMEM);
2749 }
2750 
2751 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp,
2752 			 struct sock *sk, int flags)
2753 {
2754 	int err;
2755 
2756 	if ((err = __ip_route_output_key(net, rp, flp)) != 0)
2757 		return err;
2758 
2759 	if (flp->proto) {
2760 		if (!flp->fl4_src)
2761 			flp->fl4_src = (*rp)->rt_src;
2762 		if (!flp->fl4_dst)
2763 			flp->fl4_dst = (*rp)->rt_dst;
2764 		err = __xfrm_lookup(net, (struct dst_entry **)rp, flp, sk,
2765 				    flags ? XFRM_LOOKUP_WAIT : 0);
2766 		if (err == -EREMOTE)
2767 			err = ipv4_dst_blackhole(net, rp, flp);
2768 
2769 		return err;
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 EXPORT_SYMBOL_GPL(ip_route_output_flow);
2776 
2777 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp)
2778 {
2779 	return ip_route_output_flow(net, rp, flp, NULL, 0);
2780 }
2781 
2782 static int rt_fill_info(struct net *net,
2783 			struct sk_buff *skb, u32 pid, u32 seq, int event,
2784 			int nowait, unsigned int flags)
2785 {
2786 	struct rtable *rt = skb->rtable;
2787 	struct rtmsg *r;
2788 	struct nlmsghdr *nlh;
2789 	long expires;
2790 	u32 id = 0, ts = 0, tsage = 0, error;
2791 
2792 	nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags);
2793 	if (nlh == NULL)
2794 		return -EMSGSIZE;
2795 
2796 	r = nlmsg_data(nlh);
2797 	r->rtm_family	 = AF_INET;
2798 	r->rtm_dst_len	= 32;
2799 	r->rtm_src_len	= 0;
2800 	r->rtm_tos	= rt->fl.fl4_tos;
2801 	r->rtm_table	= RT_TABLE_MAIN;
2802 	NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN);
2803 	r->rtm_type	= rt->rt_type;
2804 	r->rtm_scope	= RT_SCOPE_UNIVERSE;
2805 	r->rtm_protocol = RTPROT_UNSPEC;
2806 	r->rtm_flags	= (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED;
2807 	if (rt->rt_flags & RTCF_NOTIFY)
2808 		r->rtm_flags |= RTM_F_NOTIFY;
2809 
2810 	NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst);
2811 
2812 	if (rt->fl.fl4_src) {
2813 		r->rtm_src_len = 32;
2814 		NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src);
2815 	}
2816 	if (rt->u.dst.dev)
2817 		NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex);
2818 #ifdef CONFIG_NET_CLS_ROUTE
2819 	if (rt->u.dst.tclassid)
2820 		NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid);
2821 #endif
2822 	if (rt->fl.iif)
2823 		NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst);
2824 	else if (rt->rt_src != rt->fl.fl4_src)
2825 		NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src);
2826 
2827 	if (rt->rt_dst != rt->rt_gateway)
2828 		NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway);
2829 
2830 	if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2831 		goto nla_put_failure;
2832 
2833 	error = rt->u.dst.error;
2834 	expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0;
2835 	if (rt->peer) {
2836 		id = rt->peer->ip_id_count;
2837 		if (rt->peer->tcp_ts_stamp) {
2838 			ts = rt->peer->tcp_ts;
2839 			tsage = get_seconds() - rt->peer->tcp_ts_stamp;
2840 		}
2841 	}
2842 
2843 	if (rt->fl.iif) {
2844 #ifdef CONFIG_IP_MROUTE
2845 		__be32 dst = rt->rt_dst;
2846 
2847 		if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) &&
2848 		    IPV4_DEVCONF_ALL(net, MC_FORWARDING)) {
2849 			int err = ipmr_get_route(net, skb, r, nowait);
2850 			if (err <= 0) {
2851 				if (!nowait) {
2852 					if (err == 0)
2853 						return 0;
2854 					goto nla_put_failure;
2855 				} else {
2856 					if (err == -EMSGSIZE)
2857 						goto nla_put_failure;
2858 					error = err;
2859 				}
2860 			}
2861 		} else
2862 #endif
2863 			NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif);
2864 	}
2865 
2866 	if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage,
2867 			       expires, error) < 0)
2868 		goto nla_put_failure;
2869 
2870 	return nlmsg_end(skb, nlh);
2871 
2872 nla_put_failure:
2873 	nlmsg_cancel(skb, nlh);
2874 	return -EMSGSIZE;
2875 }
2876 
2877 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2878 {
2879 	struct net *net = sock_net(in_skb->sk);
2880 	struct rtmsg *rtm;
2881 	struct nlattr *tb[RTA_MAX+1];
2882 	struct rtable *rt = NULL;
2883 	__be32 dst = 0;
2884 	__be32 src = 0;
2885 	u32 iif;
2886 	int err;
2887 	struct sk_buff *skb;
2888 
2889 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy);
2890 	if (err < 0)
2891 		goto errout;
2892 
2893 	rtm = nlmsg_data(nlh);
2894 
2895 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2896 	if (skb == NULL) {
2897 		err = -ENOBUFS;
2898 		goto errout;
2899 	}
2900 
2901 	/* Reserve room for dummy headers, this skb can pass
2902 	   through good chunk of routing engine.
2903 	 */
2904 	skb_reset_mac_header(skb);
2905 	skb_reset_network_header(skb);
2906 
2907 	/* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2908 	ip_hdr(skb)->protocol = IPPROTO_ICMP;
2909 	skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr));
2910 
2911 	src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0;
2912 	dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0;
2913 	iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0;
2914 
2915 	if (iif) {
2916 		struct net_device *dev;
2917 
2918 		dev = __dev_get_by_index(net, iif);
2919 		if (dev == NULL) {
2920 			err = -ENODEV;
2921 			goto errout_free;
2922 		}
2923 
2924 		skb->protocol	= htons(ETH_P_IP);
2925 		skb->dev	= dev;
2926 		local_bh_disable();
2927 		err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev);
2928 		local_bh_enable();
2929 
2930 		rt = skb->rtable;
2931 		if (err == 0 && rt->u.dst.error)
2932 			err = -rt->u.dst.error;
2933 	} else {
2934 		struct flowi fl = {
2935 			.nl_u = {
2936 				.ip4_u = {
2937 					.daddr = dst,
2938 					.saddr = src,
2939 					.tos = rtm->rtm_tos,
2940 				},
2941 			},
2942 			.oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0,
2943 		};
2944 		err = ip_route_output_key(net, &rt, &fl);
2945 	}
2946 
2947 	if (err)
2948 		goto errout_free;
2949 
2950 	skb->rtable = rt;
2951 	if (rtm->rtm_flags & RTM_F_NOTIFY)
2952 		rt->rt_flags |= RTCF_NOTIFY;
2953 
2954 	err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
2955 			   RTM_NEWROUTE, 0, 0);
2956 	if (err <= 0)
2957 		goto errout_free;
2958 
2959 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2960 errout:
2961 	return err;
2962 
2963 errout_free:
2964 	kfree_skb(skb);
2965 	goto errout;
2966 }
2967 
2968 int ip_rt_dump(struct sk_buff *skb,  struct netlink_callback *cb)
2969 {
2970 	struct rtable *rt;
2971 	int h, s_h;
2972 	int idx, s_idx;
2973 	struct net *net;
2974 
2975 	net = sock_net(skb->sk);
2976 
2977 	s_h = cb->args[0];
2978 	if (s_h < 0)
2979 		s_h = 0;
2980 	s_idx = idx = cb->args[1];
2981 	for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) {
2982 		if (!rt_hash_table[h].chain)
2983 			continue;
2984 		rcu_read_lock_bh();
2985 		for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt;
2986 		     rt = rcu_dereference(rt->u.dst.rt_next), idx++) {
2987 			if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx)
2988 				continue;
2989 			if (rt_is_expired(rt))
2990 				continue;
2991 			skb->dst = dst_clone(&rt->u.dst);
2992 			if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid,
2993 					 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2994 					 1, NLM_F_MULTI) <= 0) {
2995 				dst_release(xchg(&skb->dst, NULL));
2996 				rcu_read_unlock_bh();
2997 				goto done;
2998 			}
2999 			dst_release(xchg(&skb->dst, NULL));
3000 		}
3001 		rcu_read_unlock_bh();
3002 	}
3003 
3004 done:
3005 	cb->args[0] = h;
3006 	cb->args[1] = idx;
3007 	return skb->len;
3008 }
3009 
3010 void ip_rt_multicast_event(struct in_device *in_dev)
3011 {
3012 	rt_cache_flush(dev_net(in_dev->dev), 0);
3013 }
3014 
3015 #ifdef CONFIG_SYSCTL
3016 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write,
3017 					struct file *filp, void __user *buffer,
3018 					size_t *lenp, loff_t *ppos)
3019 {
3020 	if (write) {
3021 		int flush_delay;
3022 		ctl_table ctl;
3023 		struct net *net;
3024 
3025 		memcpy(&ctl, __ctl, sizeof(ctl));
3026 		ctl.data = &flush_delay;
3027 		proc_dointvec(&ctl, write, filp, buffer, lenp, ppos);
3028 
3029 		net = (struct net *)__ctl->extra1;
3030 		rt_cache_flush(net, flush_delay);
3031 		return 0;
3032 	}
3033 
3034 	return -EINVAL;
3035 }
3036 
3037 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table,
3038 						void __user *oldval,
3039 						size_t __user *oldlenp,
3040 						void __user *newval,
3041 						size_t newlen)
3042 {
3043 	int delay;
3044 	struct net *net;
3045 	if (newlen != sizeof(int))
3046 		return -EINVAL;
3047 	if (get_user(delay, (int __user *)newval))
3048 		return -EFAULT;
3049 	net = (struct net *)table->extra1;
3050 	rt_cache_flush(net, delay);
3051 	return 0;
3052 }
3053 
3054 static void rt_secret_reschedule(int old)
3055 {
3056 	struct net *net;
3057 	int new = ip_rt_secret_interval;
3058 	int diff = new - old;
3059 
3060 	if (!diff)
3061 		return;
3062 
3063 	rtnl_lock();
3064 	for_each_net(net) {
3065 		int deleted = del_timer_sync(&net->ipv4.rt_secret_timer);
3066 
3067 		if (!new)
3068 			continue;
3069 
3070 		if (deleted) {
3071 			long time = net->ipv4.rt_secret_timer.expires - jiffies;
3072 
3073 			if (time <= 0 || (time += diff) <= 0)
3074 				time = 0;
3075 
3076 			net->ipv4.rt_secret_timer.expires = time;
3077 		} else
3078 			net->ipv4.rt_secret_timer.expires = new;
3079 
3080 		net->ipv4.rt_secret_timer.expires += jiffies;
3081 		add_timer(&net->ipv4.rt_secret_timer);
3082 	}
3083 	rtnl_unlock();
3084 }
3085 
3086 static int ipv4_sysctl_rt_secret_interval(ctl_table *ctl, int write,
3087 					  struct file *filp,
3088 					  void __user *buffer, size_t *lenp,
3089 					  loff_t *ppos)
3090 {
3091 	int old = ip_rt_secret_interval;
3092 	int ret = proc_dointvec_jiffies(ctl, write, filp, buffer, lenp, ppos);
3093 
3094 	rt_secret_reschedule(old);
3095 
3096 	return ret;
3097 }
3098 
3099 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table *table,
3100 						   void __user *oldval,
3101 						   size_t __user *oldlenp,
3102 						   void __user *newval,
3103 						   size_t newlen)
3104 {
3105 	int old = ip_rt_secret_interval;
3106 	int ret = sysctl_jiffies(table, oldval, oldlenp, newval, newlen);
3107 
3108 	rt_secret_reschedule(old);
3109 
3110 	return ret;
3111 }
3112 
3113 static ctl_table ipv4_route_table[] = {
3114 	{
3115 		.ctl_name	= NET_IPV4_ROUTE_GC_THRESH,
3116 		.procname	= "gc_thresh",
3117 		.data		= &ipv4_dst_ops.gc_thresh,
3118 		.maxlen		= sizeof(int),
3119 		.mode		= 0644,
3120 		.proc_handler	= proc_dointvec,
3121 	},
3122 	{
3123 		.ctl_name	= NET_IPV4_ROUTE_MAX_SIZE,
3124 		.procname	= "max_size",
3125 		.data		= &ip_rt_max_size,
3126 		.maxlen		= sizeof(int),
3127 		.mode		= 0644,
3128 		.proc_handler	= proc_dointvec,
3129 	},
3130 	{
3131 		/*  Deprecated. Use gc_min_interval_ms */
3132 
3133 		.ctl_name	= NET_IPV4_ROUTE_GC_MIN_INTERVAL,
3134 		.procname	= "gc_min_interval",
3135 		.data		= &ip_rt_gc_min_interval,
3136 		.maxlen		= sizeof(int),
3137 		.mode		= 0644,
3138 		.proc_handler	= proc_dointvec_jiffies,
3139 		.strategy	= sysctl_jiffies,
3140 	},
3141 	{
3142 		.ctl_name	= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS,
3143 		.procname	= "gc_min_interval_ms",
3144 		.data		= &ip_rt_gc_min_interval,
3145 		.maxlen		= sizeof(int),
3146 		.mode		= 0644,
3147 		.proc_handler	= proc_dointvec_ms_jiffies,
3148 		.strategy	= sysctl_ms_jiffies,
3149 	},
3150 	{
3151 		.ctl_name	= NET_IPV4_ROUTE_GC_TIMEOUT,
3152 		.procname	= "gc_timeout",
3153 		.data		= &ip_rt_gc_timeout,
3154 		.maxlen		= sizeof(int),
3155 		.mode		= 0644,
3156 		.proc_handler	= proc_dointvec_jiffies,
3157 		.strategy	= sysctl_jiffies,
3158 	},
3159 	{
3160 		.ctl_name	= NET_IPV4_ROUTE_GC_INTERVAL,
3161 		.procname	= "gc_interval",
3162 		.data		= &ip_rt_gc_interval,
3163 		.maxlen		= sizeof(int),
3164 		.mode		= 0644,
3165 		.proc_handler	= proc_dointvec_jiffies,
3166 		.strategy	= sysctl_jiffies,
3167 	},
3168 	{
3169 		.ctl_name	= NET_IPV4_ROUTE_REDIRECT_LOAD,
3170 		.procname	= "redirect_load",
3171 		.data		= &ip_rt_redirect_load,
3172 		.maxlen		= sizeof(int),
3173 		.mode		= 0644,
3174 		.proc_handler	= proc_dointvec,
3175 	},
3176 	{
3177 		.ctl_name	= NET_IPV4_ROUTE_REDIRECT_NUMBER,
3178 		.procname	= "redirect_number",
3179 		.data		= &ip_rt_redirect_number,
3180 		.maxlen		= sizeof(int),
3181 		.mode		= 0644,
3182 		.proc_handler	= proc_dointvec,
3183 	},
3184 	{
3185 		.ctl_name	= NET_IPV4_ROUTE_REDIRECT_SILENCE,
3186 		.procname	= "redirect_silence",
3187 		.data		= &ip_rt_redirect_silence,
3188 		.maxlen		= sizeof(int),
3189 		.mode		= 0644,
3190 		.proc_handler	= proc_dointvec,
3191 	},
3192 	{
3193 		.ctl_name	= NET_IPV4_ROUTE_ERROR_COST,
3194 		.procname	= "error_cost",
3195 		.data		= &ip_rt_error_cost,
3196 		.maxlen		= sizeof(int),
3197 		.mode		= 0644,
3198 		.proc_handler	= proc_dointvec,
3199 	},
3200 	{
3201 		.ctl_name	= NET_IPV4_ROUTE_ERROR_BURST,
3202 		.procname	= "error_burst",
3203 		.data		= &ip_rt_error_burst,
3204 		.maxlen		= sizeof(int),
3205 		.mode		= 0644,
3206 		.proc_handler	= proc_dointvec,
3207 	},
3208 	{
3209 		.ctl_name	= NET_IPV4_ROUTE_GC_ELASTICITY,
3210 		.procname	= "gc_elasticity",
3211 		.data		= &ip_rt_gc_elasticity,
3212 		.maxlen		= sizeof(int),
3213 		.mode		= 0644,
3214 		.proc_handler	= proc_dointvec,
3215 	},
3216 	{
3217 		.ctl_name	= NET_IPV4_ROUTE_MTU_EXPIRES,
3218 		.procname	= "mtu_expires",
3219 		.data		= &ip_rt_mtu_expires,
3220 		.maxlen		= sizeof(int),
3221 		.mode		= 0644,
3222 		.proc_handler	= proc_dointvec_jiffies,
3223 		.strategy	= sysctl_jiffies,
3224 	},
3225 	{
3226 		.ctl_name	= NET_IPV4_ROUTE_MIN_PMTU,
3227 		.procname	= "min_pmtu",
3228 		.data		= &ip_rt_min_pmtu,
3229 		.maxlen		= sizeof(int),
3230 		.mode		= 0644,
3231 		.proc_handler	= proc_dointvec,
3232 	},
3233 	{
3234 		.ctl_name	= NET_IPV4_ROUTE_MIN_ADVMSS,
3235 		.procname	= "min_adv_mss",
3236 		.data		= &ip_rt_min_advmss,
3237 		.maxlen		= sizeof(int),
3238 		.mode		= 0644,
3239 		.proc_handler	= proc_dointvec,
3240 	},
3241 	{
3242 		.ctl_name	= NET_IPV4_ROUTE_SECRET_INTERVAL,
3243 		.procname	= "secret_interval",
3244 		.data		= &ip_rt_secret_interval,
3245 		.maxlen		= sizeof(int),
3246 		.mode		= 0644,
3247 		.proc_handler	= ipv4_sysctl_rt_secret_interval,
3248 		.strategy	= ipv4_sysctl_rt_secret_interval_strategy,
3249 	},
3250 	{ .ctl_name = 0 }
3251 };
3252 
3253 static struct ctl_table empty[1];
3254 
3255 static struct ctl_table ipv4_skeleton[] =
3256 {
3257 	{ .procname = "route", .ctl_name = NET_IPV4_ROUTE,
3258 	  .mode = 0555, .child = ipv4_route_table},
3259 	{ .procname = "neigh", .ctl_name = NET_IPV4_NEIGH,
3260 	  .mode = 0555, .child = empty},
3261 	{ }
3262 };
3263 
3264 static __net_initdata struct ctl_path ipv4_path[] = {
3265 	{ .procname = "net", .ctl_name = CTL_NET, },
3266 	{ .procname = "ipv4", .ctl_name = NET_IPV4, },
3267 	{ },
3268 };
3269 
3270 static struct ctl_table ipv4_route_flush_table[] = {
3271 	{
3272 		.ctl_name 	= NET_IPV4_ROUTE_FLUSH,
3273 		.procname	= "flush",
3274 		.maxlen		= sizeof(int),
3275 		.mode		= 0200,
3276 		.proc_handler	= ipv4_sysctl_rtcache_flush,
3277 		.strategy	= ipv4_sysctl_rtcache_flush_strategy,
3278 	},
3279 	{ .ctl_name = 0 },
3280 };
3281 
3282 static __net_initdata struct ctl_path ipv4_route_path[] = {
3283 	{ .procname = "net", .ctl_name = CTL_NET, },
3284 	{ .procname = "ipv4", .ctl_name = NET_IPV4, },
3285 	{ .procname = "route", .ctl_name = NET_IPV4_ROUTE, },
3286 	{ },
3287 };
3288 
3289 static __net_init int sysctl_route_net_init(struct net *net)
3290 {
3291 	struct ctl_table *tbl;
3292 
3293 	tbl = ipv4_route_flush_table;
3294 	if (net != &init_net) {
3295 		tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL);
3296 		if (tbl == NULL)
3297 			goto err_dup;
3298 	}
3299 	tbl[0].extra1 = net;
3300 
3301 	net->ipv4.route_hdr =
3302 		register_net_sysctl_table(net, ipv4_route_path, tbl);
3303 	if (net->ipv4.route_hdr == NULL)
3304 		goto err_reg;
3305 	return 0;
3306 
3307 err_reg:
3308 	if (tbl != ipv4_route_flush_table)
3309 		kfree(tbl);
3310 err_dup:
3311 	return -ENOMEM;
3312 }
3313 
3314 static __net_exit void sysctl_route_net_exit(struct net *net)
3315 {
3316 	struct ctl_table *tbl;
3317 
3318 	tbl = net->ipv4.route_hdr->ctl_table_arg;
3319 	unregister_net_sysctl_table(net->ipv4.route_hdr);
3320 	BUG_ON(tbl == ipv4_route_flush_table);
3321 	kfree(tbl);
3322 }
3323 
3324 static __net_initdata struct pernet_operations sysctl_route_ops = {
3325 	.init = sysctl_route_net_init,
3326 	.exit = sysctl_route_net_exit,
3327 };
3328 #endif
3329 
3330 
3331 static __net_init int rt_secret_timer_init(struct net *net)
3332 {
3333 	atomic_set(&net->ipv4.rt_genid,
3334 			(int) ((num_physpages ^ (num_physpages>>8)) ^
3335 			(jiffies ^ (jiffies >> 7))));
3336 
3337 	net->ipv4.rt_secret_timer.function = rt_secret_rebuild;
3338 	net->ipv4.rt_secret_timer.data = (unsigned long)net;
3339 	init_timer_deferrable(&net->ipv4.rt_secret_timer);
3340 
3341 	if (ip_rt_secret_interval) {
3342 		net->ipv4.rt_secret_timer.expires =
3343 			jiffies + net_random() % ip_rt_secret_interval +
3344 			ip_rt_secret_interval;
3345 		add_timer(&net->ipv4.rt_secret_timer);
3346 	}
3347 	return 0;
3348 }
3349 
3350 static __net_exit void rt_secret_timer_exit(struct net *net)
3351 {
3352 	del_timer_sync(&net->ipv4.rt_secret_timer);
3353 }
3354 
3355 static __net_initdata struct pernet_operations rt_secret_timer_ops = {
3356 	.init = rt_secret_timer_init,
3357 	.exit = rt_secret_timer_exit,
3358 };
3359 
3360 
3361 #ifdef CONFIG_NET_CLS_ROUTE
3362 struct ip_rt_acct *ip_rt_acct __read_mostly;
3363 #endif /* CONFIG_NET_CLS_ROUTE */
3364 
3365 static __initdata unsigned long rhash_entries;
3366 static int __init set_rhash_entries(char *str)
3367 {
3368 	if (!str)
3369 		return 0;
3370 	rhash_entries = simple_strtoul(str, &str, 0);
3371 	return 1;
3372 }
3373 __setup("rhash_entries=", set_rhash_entries);
3374 
3375 int __init ip_rt_init(void)
3376 {
3377 	int rc = 0;
3378 
3379 #ifdef CONFIG_NET_CLS_ROUTE
3380 	ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct));
3381 	if (!ip_rt_acct)
3382 		panic("IP: failed to allocate ip_rt_acct\n");
3383 #endif
3384 
3385 	ipv4_dst_ops.kmem_cachep =
3386 		kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0,
3387 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3388 
3389 	ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep;
3390 
3391 	rt_hash_table = (struct rt_hash_bucket *)
3392 		alloc_large_system_hash("IP route cache",
3393 					sizeof(struct rt_hash_bucket),
3394 					rhash_entries,
3395 					(num_physpages >= 128 * 1024) ?
3396 					15 : 17,
3397 					0,
3398 					&rt_hash_log,
3399 					&rt_hash_mask,
3400 					0);
3401 	memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket));
3402 	rt_hash_lock_init();
3403 
3404 	ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1);
3405 	ip_rt_max_size = (rt_hash_mask + 1) * 16;
3406 
3407 	devinet_init();
3408 	ip_fib_init();
3409 
3410 	/* All the timers, started at system startup tend
3411 	   to synchronize. Perturb it a bit.
3412 	 */
3413 	schedule_delayed_work(&expires_work,
3414 		net_random() % ip_rt_gc_interval + ip_rt_gc_interval);
3415 
3416 	if (register_pernet_subsys(&rt_secret_timer_ops))
3417 		printk(KERN_ERR "Unable to setup rt_secret_timer\n");
3418 
3419 	if (ip_rt_proc_init())
3420 		printk(KERN_ERR "Unable to create route proc files\n");
3421 #ifdef CONFIG_XFRM
3422 	xfrm_init();
3423 	xfrm4_init();
3424 #endif
3425 	rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL);
3426 
3427 #ifdef CONFIG_SYSCTL
3428 	register_pernet_subsys(&sysctl_route_ops);
3429 #endif
3430 	return rc;
3431 }
3432 
3433 #ifdef CONFIG_SYSCTL
3434 /*
3435  * We really need to sanitize the damn ipv4 init order, then all
3436  * this nonsense will go away.
3437  */
3438 void __init ip_static_sysctl_init(void)
3439 {
3440 	register_sysctl_paths(ipv4_path, ipv4_skeleton);
3441 }
3442 #endif
3443 
3444 EXPORT_SYMBOL(__ip_select_ident);
3445 EXPORT_SYMBOL(ip_route_input);
3446 EXPORT_SYMBOL(ip_route_output_key);
3447