1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * ROUTE - implementation of the IP router. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox, <gw4pts@gw4pts.ampr.org> 11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi> 12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 13 * 14 * Fixes: 15 * Alan Cox : Verify area fixes. 16 * Alan Cox : cli() protects routing changes 17 * Rui Oliveira : ICMP routing table updates 18 * (rco@di.uminho.pt) Routing table insertion and update 19 * Linus Torvalds : Rewrote bits to be sensible 20 * Alan Cox : Added BSD route gw semantics 21 * Alan Cox : Super /proc >4K 22 * Alan Cox : MTU in route table 23 * Alan Cox : MSS actually. Also added the window 24 * clamper. 25 * Sam Lantinga : Fixed route matching in rt_del() 26 * Alan Cox : Routing cache support. 27 * Alan Cox : Removed compatibility cruft. 28 * Alan Cox : RTF_REJECT support. 29 * Alan Cox : TCP irtt support. 30 * Jonathan Naylor : Added Metric support. 31 * Miquel van Smoorenburg : BSD API fixes. 32 * Miquel van Smoorenburg : Metrics. 33 * Alan Cox : Use __u32 properly 34 * Alan Cox : Aligned routing errors more closely with BSD 35 * our system is still very different. 36 * Alan Cox : Faster /proc handling 37 * Alexey Kuznetsov : Massive rework to support tree based routing, 38 * routing caches and better behaviour. 39 * 40 * Olaf Erb : irtt wasn't being copied right. 41 * Bjorn Ekwall : Kerneld route support. 42 * Alan Cox : Multicast fixed (I hope) 43 * Pavel Krauz : Limited broadcast fixed 44 * Mike McLagan : Routing by source 45 * Alexey Kuznetsov : End of old history. Split to fib.c and 46 * route.c and rewritten from scratch. 47 * Andi Kleen : Load-limit warning messages. 48 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow. 50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow. 51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful. 52 * Marc Boucher : routing by fwmark 53 * Robert Olsson : Added rt_cache statistics 54 * Arnaldo C. Melo : Convert proc stuff to seq_file 55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes. 56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect 57 * Ilia Sotnikov : Removed TOS from hash calculations 58 * 59 * This program is free software; you can redistribute it and/or 60 * modify it under the terms of the GNU General Public License 61 * as published by the Free Software Foundation; either version 62 * 2 of the License, or (at your option) any later version. 63 */ 64 65 #include <linux/module.h> 66 #include <asm/uaccess.h> 67 #include <asm/system.h> 68 #include <linux/bitops.h> 69 #include <linux/types.h> 70 #include <linux/kernel.h> 71 #include <linux/mm.h> 72 #include <linux/bootmem.h> 73 #include <linux/string.h> 74 #include <linux/socket.h> 75 #include <linux/sockios.h> 76 #include <linux/errno.h> 77 #include <linux/in.h> 78 #include <linux/inet.h> 79 #include <linux/netdevice.h> 80 #include <linux/proc_fs.h> 81 #include <linux/init.h> 82 #include <linux/workqueue.h> 83 #include <linux/skbuff.h> 84 #include <linux/inetdevice.h> 85 #include <linux/igmp.h> 86 #include <linux/pkt_sched.h> 87 #include <linux/mroute.h> 88 #include <linux/netfilter_ipv4.h> 89 #include <linux/random.h> 90 #include <linux/jhash.h> 91 #include <linux/rcupdate.h> 92 #include <linux/times.h> 93 #include <net/dst.h> 94 #include <net/net_namespace.h> 95 #include <net/protocol.h> 96 #include <net/ip.h> 97 #include <net/route.h> 98 #include <net/inetpeer.h> 99 #include <net/sock.h> 100 #include <net/ip_fib.h> 101 #include <net/arp.h> 102 #include <net/tcp.h> 103 #include <net/icmp.h> 104 #include <net/xfrm.h> 105 #include <net/netevent.h> 106 #include <net/rtnetlink.h> 107 #ifdef CONFIG_SYSCTL 108 #include <linux/sysctl.h> 109 #endif 110 111 #define RT_FL_TOS(oldflp) \ 112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK))) 113 114 #define IP_MAX_MTU 0xFFF0 115 116 #define RT_GC_TIMEOUT (300*HZ) 117 118 static int ip_rt_max_size; 119 static int ip_rt_gc_timeout __read_mostly = RT_GC_TIMEOUT; 120 static int ip_rt_gc_interval __read_mostly = 60 * HZ; 121 static int ip_rt_gc_min_interval __read_mostly = HZ / 2; 122 static int ip_rt_redirect_number __read_mostly = 9; 123 static int ip_rt_redirect_load __read_mostly = HZ / 50; 124 static int ip_rt_redirect_silence __read_mostly = ((HZ / 50) << (9 + 1)); 125 static int ip_rt_error_cost __read_mostly = HZ; 126 static int ip_rt_error_burst __read_mostly = 5 * HZ; 127 static int ip_rt_gc_elasticity __read_mostly = 8; 128 static int ip_rt_mtu_expires __read_mostly = 10 * 60 * HZ; 129 static int ip_rt_min_pmtu __read_mostly = 512 + 20 + 20; 130 static int ip_rt_min_advmss __read_mostly = 256; 131 static int ip_rt_secret_interval __read_mostly = 10 * 60 * HZ; 132 static int rt_chain_length_max __read_mostly = 20; 133 134 static void rt_worker_func(struct work_struct *work); 135 static DECLARE_DELAYED_WORK(expires_work, rt_worker_func); 136 137 /* 138 * Interface to generic destination cache. 139 */ 140 141 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie); 142 static void ipv4_dst_destroy(struct dst_entry *dst); 143 static void ipv4_dst_ifdown(struct dst_entry *dst, 144 struct net_device *dev, int how); 145 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst); 146 static void ipv4_link_failure(struct sk_buff *skb); 147 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu); 148 static int rt_garbage_collect(struct dst_ops *ops); 149 static void rt_emergency_hash_rebuild(struct net *net); 150 151 152 static struct dst_ops ipv4_dst_ops = { 153 .family = AF_INET, 154 .protocol = cpu_to_be16(ETH_P_IP), 155 .gc = rt_garbage_collect, 156 .check = ipv4_dst_check, 157 .destroy = ipv4_dst_destroy, 158 .ifdown = ipv4_dst_ifdown, 159 .negative_advice = ipv4_negative_advice, 160 .link_failure = ipv4_link_failure, 161 .update_pmtu = ip_rt_update_pmtu, 162 .local_out = __ip_local_out, 163 .entries = ATOMIC_INIT(0), 164 }; 165 166 #define ECN_OR_COST(class) TC_PRIO_##class 167 168 const __u8 ip_tos2prio[16] = { 169 TC_PRIO_BESTEFFORT, 170 ECN_OR_COST(FILLER), 171 TC_PRIO_BESTEFFORT, 172 ECN_OR_COST(BESTEFFORT), 173 TC_PRIO_BULK, 174 ECN_OR_COST(BULK), 175 TC_PRIO_BULK, 176 ECN_OR_COST(BULK), 177 TC_PRIO_INTERACTIVE, 178 ECN_OR_COST(INTERACTIVE), 179 TC_PRIO_INTERACTIVE, 180 ECN_OR_COST(INTERACTIVE), 181 TC_PRIO_INTERACTIVE_BULK, 182 ECN_OR_COST(INTERACTIVE_BULK), 183 TC_PRIO_INTERACTIVE_BULK, 184 ECN_OR_COST(INTERACTIVE_BULK) 185 }; 186 187 188 /* 189 * Route cache. 190 */ 191 192 /* The locking scheme is rather straight forward: 193 * 194 * 1) Read-Copy Update protects the buckets of the central route hash. 195 * 2) Only writers remove entries, and they hold the lock 196 * as they look at rtable reference counts. 197 * 3) Only readers acquire references to rtable entries, 198 * they do so with atomic increments and with the 199 * lock held. 200 */ 201 202 struct rt_hash_bucket { 203 struct rtable *chain; 204 }; 205 206 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \ 207 defined(CONFIG_PROVE_LOCKING) 208 /* 209 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks 210 * The size of this table is a power of two and depends on the number of CPUS. 211 * (on lockdep we have a quite big spinlock_t, so keep the size down there) 212 */ 213 #ifdef CONFIG_LOCKDEP 214 # define RT_HASH_LOCK_SZ 256 215 #else 216 # if NR_CPUS >= 32 217 # define RT_HASH_LOCK_SZ 4096 218 # elif NR_CPUS >= 16 219 # define RT_HASH_LOCK_SZ 2048 220 # elif NR_CPUS >= 8 221 # define RT_HASH_LOCK_SZ 1024 222 # elif NR_CPUS >= 4 223 # define RT_HASH_LOCK_SZ 512 224 # else 225 # define RT_HASH_LOCK_SZ 256 226 # endif 227 #endif 228 229 static spinlock_t *rt_hash_locks; 230 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)] 231 232 static __init void rt_hash_lock_init(void) 233 { 234 int i; 235 236 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ, 237 GFP_KERNEL); 238 if (!rt_hash_locks) 239 panic("IP: failed to allocate rt_hash_locks\n"); 240 241 for (i = 0; i < RT_HASH_LOCK_SZ; i++) 242 spin_lock_init(&rt_hash_locks[i]); 243 } 244 #else 245 # define rt_hash_lock_addr(slot) NULL 246 247 static inline void rt_hash_lock_init(void) 248 { 249 } 250 #endif 251 252 static struct rt_hash_bucket *rt_hash_table __read_mostly; 253 static unsigned rt_hash_mask __read_mostly; 254 static unsigned int rt_hash_log __read_mostly; 255 256 static DEFINE_PER_CPU(struct rt_cache_stat, rt_cache_stat); 257 #define RT_CACHE_STAT_INC(field) \ 258 (__raw_get_cpu_var(rt_cache_stat).field++) 259 260 static inline unsigned int rt_hash(__be32 daddr, __be32 saddr, int idx, 261 int genid) 262 { 263 return jhash_3words((__force u32)(__be32)(daddr), 264 (__force u32)(__be32)(saddr), 265 idx, genid) 266 & rt_hash_mask; 267 } 268 269 static inline int rt_genid(struct net *net) 270 { 271 return atomic_read(&net->ipv4.rt_genid); 272 } 273 274 #ifdef CONFIG_PROC_FS 275 struct rt_cache_iter_state { 276 struct seq_net_private p; 277 int bucket; 278 int genid; 279 }; 280 281 static struct rtable *rt_cache_get_first(struct seq_file *seq) 282 { 283 struct rt_cache_iter_state *st = seq->private; 284 struct rtable *r = NULL; 285 286 for (st->bucket = rt_hash_mask; st->bucket >= 0; --st->bucket) { 287 if (!rt_hash_table[st->bucket].chain) 288 continue; 289 rcu_read_lock_bh(); 290 r = rcu_dereference(rt_hash_table[st->bucket].chain); 291 while (r) { 292 if (dev_net(r->u.dst.dev) == seq_file_net(seq) && 293 r->rt_genid == st->genid) 294 return r; 295 r = rcu_dereference(r->u.dst.rt_next); 296 } 297 rcu_read_unlock_bh(); 298 } 299 return r; 300 } 301 302 static struct rtable *__rt_cache_get_next(struct seq_file *seq, 303 struct rtable *r) 304 { 305 struct rt_cache_iter_state *st = seq->private; 306 307 r = r->u.dst.rt_next; 308 while (!r) { 309 rcu_read_unlock_bh(); 310 do { 311 if (--st->bucket < 0) 312 return NULL; 313 } while (!rt_hash_table[st->bucket].chain); 314 rcu_read_lock_bh(); 315 r = rt_hash_table[st->bucket].chain; 316 } 317 return rcu_dereference(r); 318 } 319 320 static struct rtable *rt_cache_get_next(struct seq_file *seq, 321 struct rtable *r) 322 { 323 struct rt_cache_iter_state *st = seq->private; 324 while ((r = __rt_cache_get_next(seq, r)) != NULL) { 325 if (dev_net(r->u.dst.dev) != seq_file_net(seq)) 326 continue; 327 if (r->rt_genid == st->genid) 328 break; 329 } 330 return r; 331 } 332 333 static struct rtable *rt_cache_get_idx(struct seq_file *seq, loff_t pos) 334 { 335 struct rtable *r = rt_cache_get_first(seq); 336 337 if (r) 338 while (pos && (r = rt_cache_get_next(seq, r))) 339 --pos; 340 return pos ? NULL : r; 341 } 342 343 static void *rt_cache_seq_start(struct seq_file *seq, loff_t *pos) 344 { 345 struct rt_cache_iter_state *st = seq->private; 346 if (*pos) 347 return rt_cache_get_idx(seq, *pos - 1); 348 st->genid = rt_genid(seq_file_net(seq)); 349 return SEQ_START_TOKEN; 350 } 351 352 static void *rt_cache_seq_next(struct seq_file *seq, void *v, loff_t *pos) 353 { 354 struct rtable *r; 355 356 if (v == SEQ_START_TOKEN) 357 r = rt_cache_get_first(seq); 358 else 359 r = rt_cache_get_next(seq, v); 360 ++*pos; 361 return r; 362 } 363 364 static void rt_cache_seq_stop(struct seq_file *seq, void *v) 365 { 366 if (v && v != SEQ_START_TOKEN) 367 rcu_read_unlock_bh(); 368 } 369 370 static int rt_cache_seq_show(struct seq_file *seq, void *v) 371 { 372 if (v == SEQ_START_TOKEN) 373 seq_printf(seq, "%-127s\n", 374 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t" 375 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t" 376 "HHUptod\tSpecDst"); 377 else { 378 struct rtable *r = v; 379 int len; 380 381 seq_printf(seq, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t" 382 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n", 383 r->u.dst.dev ? r->u.dst.dev->name : "*", 384 (unsigned long)r->rt_dst, (unsigned long)r->rt_gateway, 385 r->rt_flags, atomic_read(&r->u.dst.__refcnt), 386 r->u.dst.__use, 0, (unsigned long)r->rt_src, 387 (dst_metric(&r->u.dst, RTAX_ADVMSS) ? 388 (int)dst_metric(&r->u.dst, RTAX_ADVMSS) + 40 : 0), 389 dst_metric(&r->u.dst, RTAX_WINDOW), 390 (int)((dst_metric(&r->u.dst, RTAX_RTT) >> 3) + 391 dst_metric(&r->u.dst, RTAX_RTTVAR)), 392 r->fl.fl4_tos, 393 r->u.dst.hh ? atomic_read(&r->u.dst.hh->hh_refcnt) : -1, 394 r->u.dst.hh ? (r->u.dst.hh->hh_output == 395 dev_queue_xmit) : 0, 396 r->rt_spec_dst, &len); 397 398 seq_printf(seq, "%*s\n", 127 - len, ""); 399 } 400 return 0; 401 } 402 403 static const struct seq_operations rt_cache_seq_ops = { 404 .start = rt_cache_seq_start, 405 .next = rt_cache_seq_next, 406 .stop = rt_cache_seq_stop, 407 .show = rt_cache_seq_show, 408 }; 409 410 static int rt_cache_seq_open(struct inode *inode, struct file *file) 411 { 412 return seq_open_net(inode, file, &rt_cache_seq_ops, 413 sizeof(struct rt_cache_iter_state)); 414 } 415 416 static const struct file_operations rt_cache_seq_fops = { 417 .owner = THIS_MODULE, 418 .open = rt_cache_seq_open, 419 .read = seq_read, 420 .llseek = seq_lseek, 421 .release = seq_release_net, 422 }; 423 424 425 static void *rt_cpu_seq_start(struct seq_file *seq, loff_t *pos) 426 { 427 int cpu; 428 429 if (*pos == 0) 430 return SEQ_START_TOKEN; 431 432 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 433 if (!cpu_possible(cpu)) 434 continue; 435 *pos = cpu+1; 436 return &per_cpu(rt_cache_stat, cpu); 437 } 438 return NULL; 439 } 440 441 static void *rt_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos) 442 { 443 int cpu; 444 445 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 446 if (!cpu_possible(cpu)) 447 continue; 448 *pos = cpu+1; 449 return &per_cpu(rt_cache_stat, cpu); 450 } 451 return NULL; 452 453 } 454 455 static void rt_cpu_seq_stop(struct seq_file *seq, void *v) 456 { 457 458 } 459 460 static int rt_cpu_seq_show(struct seq_file *seq, void *v) 461 { 462 struct rt_cache_stat *st = v; 463 464 if (v == SEQ_START_TOKEN) { 465 seq_printf(seq, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n"); 466 return 0; 467 } 468 469 seq_printf(seq,"%08x %08x %08x %08x %08x %08x %08x %08x " 470 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n", 471 atomic_read(&ipv4_dst_ops.entries), 472 st->in_hit, 473 st->in_slow_tot, 474 st->in_slow_mc, 475 st->in_no_route, 476 st->in_brd, 477 st->in_martian_dst, 478 st->in_martian_src, 479 480 st->out_hit, 481 st->out_slow_tot, 482 st->out_slow_mc, 483 484 st->gc_total, 485 st->gc_ignored, 486 st->gc_goal_miss, 487 st->gc_dst_overflow, 488 st->in_hlist_search, 489 st->out_hlist_search 490 ); 491 return 0; 492 } 493 494 static const struct seq_operations rt_cpu_seq_ops = { 495 .start = rt_cpu_seq_start, 496 .next = rt_cpu_seq_next, 497 .stop = rt_cpu_seq_stop, 498 .show = rt_cpu_seq_show, 499 }; 500 501 502 static int rt_cpu_seq_open(struct inode *inode, struct file *file) 503 { 504 return seq_open(file, &rt_cpu_seq_ops); 505 } 506 507 static const struct file_operations rt_cpu_seq_fops = { 508 .owner = THIS_MODULE, 509 .open = rt_cpu_seq_open, 510 .read = seq_read, 511 .llseek = seq_lseek, 512 .release = seq_release, 513 }; 514 515 #ifdef CONFIG_NET_CLS_ROUTE 516 static int ip_rt_acct_read(char *buffer, char **start, off_t offset, 517 int length, int *eof, void *data) 518 { 519 unsigned int i; 520 521 if ((offset & 3) || (length & 3)) 522 return -EIO; 523 524 if (offset >= sizeof(struct ip_rt_acct) * 256) { 525 *eof = 1; 526 return 0; 527 } 528 529 if (offset + length >= sizeof(struct ip_rt_acct) * 256) { 530 length = sizeof(struct ip_rt_acct) * 256 - offset; 531 *eof = 1; 532 } 533 534 offset /= sizeof(u32); 535 536 if (length > 0) { 537 u32 *dst = (u32 *) buffer; 538 539 *start = buffer; 540 memset(dst, 0, length); 541 542 for_each_possible_cpu(i) { 543 unsigned int j; 544 u32 *src; 545 546 src = ((u32 *) per_cpu_ptr(ip_rt_acct, i)) + offset; 547 for (j = 0; j < length/4; j++) 548 dst[j] += src[j]; 549 } 550 } 551 return length; 552 } 553 #endif 554 555 static int __net_init ip_rt_do_proc_init(struct net *net) 556 { 557 struct proc_dir_entry *pde; 558 559 pde = proc_net_fops_create(net, "rt_cache", S_IRUGO, 560 &rt_cache_seq_fops); 561 if (!pde) 562 goto err1; 563 564 pde = proc_create("rt_cache", S_IRUGO, 565 net->proc_net_stat, &rt_cpu_seq_fops); 566 if (!pde) 567 goto err2; 568 569 #ifdef CONFIG_NET_CLS_ROUTE 570 pde = create_proc_read_entry("rt_acct", 0, net->proc_net, 571 ip_rt_acct_read, NULL); 572 if (!pde) 573 goto err3; 574 #endif 575 return 0; 576 577 #ifdef CONFIG_NET_CLS_ROUTE 578 err3: 579 remove_proc_entry("rt_cache", net->proc_net_stat); 580 #endif 581 err2: 582 remove_proc_entry("rt_cache", net->proc_net); 583 err1: 584 return -ENOMEM; 585 } 586 587 static void __net_exit ip_rt_do_proc_exit(struct net *net) 588 { 589 remove_proc_entry("rt_cache", net->proc_net_stat); 590 remove_proc_entry("rt_cache", net->proc_net); 591 remove_proc_entry("rt_acct", net->proc_net); 592 } 593 594 static struct pernet_operations ip_rt_proc_ops __net_initdata = { 595 .init = ip_rt_do_proc_init, 596 .exit = ip_rt_do_proc_exit, 597 }; 598 599 static int __init ip_rt_proc_init(void) 600 { 601 return register_pernet_subsys(&ip_rt_proc_ops); 602 } 603 604 #else 605 static inline int ip_rt_proc_init(void) 606 { 607 return 0; 608 } 609 #endif /* CONFIG_PROC_FS */ 610 611 static inline void rt_free(struct rtable *rt) 612 { 613 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free); 614 } 615 616 static inline void rt_drop(struct rtable *rt) 617 { 618 ip_rt_put(rt); 619 call_rcu_bh(&rt->u.dst.rcu_head, dst_rcu_free); 620 } 621 622 static inline int rt_fast_clean(struct rtable *rth) 623 { 624 /* Kill broadcast/multicast entries very aggresively, if they 625 collide in hash table with more useful entries */ 626 return (rth->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) && 627 rth->fl.iif && rth->u.dst.rt_next; 628 } 629 630 static inline int rt_valuable(struct rtable *rth) 631 { 632 return (rth->rt_flags & (RTCF_REDIRECTED | RTCF_NOTIFY)) || 633 rth->u.dst.expires; 634 } 635 636 static int rt_may_expire(struct rtable *rth, unsigned long tmo1, unsigned long tmo2) 637 { 638 unsigned long age; 639 int ret = 0; 640 641 if (atomic_read(&rth->u.dst.__refcnt)) 642 goto out; 643 644 ret = 1; 645 if (rth->u.dst.expires && 646 time_after_eq(jiffies, rth->u.dst.expires)) 647 goto out; 648 649 age = jiffies - rth->u.dst.lastuse; 650 ret = 0; 651 if ((age <= tmo1 && !rt_fast_clean(rth)) || 652 (age <= tmo2 && rt_valuable(rth))) 653 goto out; 654 ret = 1; 655 out: return ret; 656 } 657 658 /* Bits of score are: 659 * 31: very valuable 660 * 30: not quite useless 661 * 29..0: usage counter 662 */ 663 static inline u32 rt_score(struct rtable *rt) 664 { 665 u32 score = jiffies - rt->u.dst.lastuse; 666 667 score = ~score & ~(3<<30); 668 669 if (rt_valuable(rt)) 670 score |= (1<<31); 671 672 if (!rt->fl.iif || 673 !(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST|RTCF_LOCAL))) 674 score |= (1<<30); 675 676 return score; 677 } 678 679 static inline bool rt_caching(const struct net *net) 680 { 681 return net->ipv4.current_rt_cache_rebuild_count <= 682 net->ipv4.sysctl_rt_cache_rebuild_count; 683 } 684 685 static inline bool compare_hash_inputs(const struct flowi *fl1, 686 const struct flowi *fl2) 687 { 688 return (__force u32)(((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) | 689 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr) | 690 (fl1->iif ^ fl2->iif)) == 0); 691 } 692 693 static inline int compare_keys(struct flowi *fl1, struct flowi *fl2) 694 { 695 return ((__force u32)((fl1->nl_u.ip4_u.daddr ^ fl2->nl_u.ip4_u.daddr) | 696 (fl1->nl_u.ip4_u.saddr ^ fl2->nl_u.ip4_u.saddr)) | 697 (fl1->mark ^ fl2->mark) | 698 (*(u16 *)&fl1->nl_u.ip4_u.tos ^ 699 *(u16 *)&fl2->nl_u.ip4_u.tos) | 700 (fl1->oif ^ fl2->oif) | 701 (fl1->iif ^ fl2->iif)) == 0; 702 } 703 704 static inline int compare_netns(struct rtable *rt1, struct rtable *rt2) 705 { 706 return dev_net(rt1->u.dst.dev) == dev_net(rt2->u.dst.dev); 707 } 708 709 static inline int rt_is_expired(struct rtable *rth) 710 { 711 return rth->rt_genid != rt_genid(dev_net(rth->u.dst.dev)); 712 } 713 714 /* 715 * Perform a full scan of hash table and free all entries. 716 * Can be called by a softirq or a process. 717 * In the later case, we want to be reschedule if necessary 718 */ 719 static void rt_do_flush(int process_context) 720 { 721 unsigned int i; 722 struct rtable *rth, *next; 723 struct rtable * tail; 724 725 for (i = 0; i <= rt_hash_mask; i++) { 726 if (process_context && need_resched()) 727 cond_resched(); 728 rth = rt_hash_table[i].chain; 729 if (!rth) 730 continue; 731 732 spin_lock_bh(rt_hash_lock_addr(i)); 733 #ifdef CONFIG_NET_NS 734 { 735 struct rtable ** prev, * p; 736 737 rth = rt_hash_table[i].chain; 738 739 /* defer releasing the head of the list after spin_unlock */ 740 for (tail = rth; tail; tail = tail->u.dst.rt_next) 741 if (!rt_is_expired(tail)) 742 break; 743 if (rth != tail) 744 rt_hash_table[i].chain = tail; 745 746 /* call rt_free on entries after the tail requiring flush */ 747 prev = &rt_hash_table[i].chain; 748 for (p = *prev; p; p = next) { 749 next = p->u.dst.rt_next; 750 if (!rt_is_expired(p)) { 751 prev = &p->u.dst.rt_next; 752 } else { 753 *prev = next; 754 rt_free(p); 755 } 756 } 757 } 758 #else 759 rth = rt_hash_table[i].chain; 760 rt_hash_table[i].chain = NULL; 761 tail = NULL; 762 #endif 763 spin_unlock_bh(rt_hash_lock_addr(i)); 764 765 for (; rth != tail; rth = next) { 766 next = rth->u.dst.rt_next; 767 rt_free(rth); 768 } 769 } 770 } 771 772 /* 773 * While freeing expired entries, we compute average chain length 774 * and standard deviation, using fixed-point arithmetic. 775 * This to have an estimation of rt_chain_length_max 776 * rt_chain_length_max = max(elasticity, AVG + 4*SD) 777 * We use 3 bits for frational part, and 29 (or 61) for magnitude. 778 */ 779 780 #define FRACT_BITS 3 781 #define ONE (1UL << FRACT_BITS) 782 783 static void rt_check_expire(void) 784 { 785 static unsigned int rover; 786 unsigned int i = rover, goal; 787 struct rtable *rth, *aux, **rthp; 788 unsigned long samples = 0; 789 unsigned long sum = 0, sum2 = 0; 790 u64 mult; 791 792 mult = ((u64)ip_rt_gc_interval) << rt_hash_log; 793 if (ip_rt_gc_timeout > 1) 794 do_div(mult, ip_rt_gc_timeout); 795 goal = (unsigned int)mult; 796 if (goal > rt_hash_mask) 797 goal = rt_hash_mask + 1; 798 for (; goal > 0; goal--) { 799 unsigned long tmo = ip_rt_gc_timeout; 800 unsigned long length; 801 802 i = (i + 1) & rt_hash_mask; 803 rthp = &rt_hash_table[i].chain; 804 805 if (need_resched()) 806 cond_resched(); 807 808 samples++; 809 810 if (*rthp == NULL) 811 continue; 812 length = 0; 813 spin_lock_bh(rt_hash_lock_addr(i)); 814 while ((rth = *rthp) != NULL) { 815 prefetch(rth->u.dst.rt_next); 816 if (rt_is_expired(rth)) { 817 *rthp = rth->u.dst.rt_next; 818 rt_free(rth); 819 continue; 820 } 821 if (rth->u.dst.expires) { 822 /* Entry is expired even if it is in use */ 823 if (time_before_eq(jiffies, rth->u.dst.expires)) { 824 nofree: 825 tmo >>= 1; 826 rthp = &rth->u.dst.rt_next; 827 /* 828 * We only count entries on 829 * a chain with equal hash inputs once 830 * so that entries for different QOS 831 * levels, and other non-hash input 832 * attributes don't unfairly skew 833 * the length computation 834 */ 835 for (aux = rt_hash_table[i].chain;;) { 836 if (aux == rth) { 837 length += ONE; 838 break; 839 } 840 if (compare_hash_inputs(&aux->fl, &rth->fl)) 841 break; 842 aux = aux->u.dst.rt_next; 843 } 844 continue; 845 } 846 } else if (!rt_may_expire(rth, tmo, ip_rt_gc_timeout)) 847 goto nofree; 848 849 /* Cleanup aged off entries. */ 850 *rthp = rth->u.dst.rt_next; 851 rt_free(rth); 852 } 853 spin_unlock_bh(rt_hash_lock_addr(i)); 854 sum += length; 855 sum2 += length*length; 856 } 857 if (samples) { 858 unsigned long avg = sum / samples; 859 unsigned long sd = int_sqrt(sum2 / samples - avg*avg); 860 rt_chain_length_max = max_t(unsigned long, 861 ip_rt_gc_elasticity, 862 (avg + 4*sd) >> FRACT_BITS); 863 } 864 rover = i; 865 } 866 867 /* 868 * rt_worker_func() is run in process context. 869 * we call rt_check_expire() to scan part of the hash table 870 */ 871 static void rt_worker_func(struct work_struct *work) 872 { 873 rt_check_expire(); 874 schedule_delayed_work(&expires_work, ip_rt_gc_interval); 875 } 876 877 /* 878 * Pertubation of rt_genid by a small quantity [1..256] 879 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate() 880 * many times (2^24) without giving recent rt_genid. 881 * Jenkins hash is strong enough that litle changes of rt_genid are OK. 882 */ 883 static void rt_cache_invalidate(struct net *net) 884 { 885 unsigned char shuffle; 886 887 get_random_bytes(&shuffle, sizeof(shuffle)); 888 atomic_add(shuffle + 1U, &net->ipv4.rt_genid); 889 } 890 891 /* 892 * delay < 0 : invalidate cache (fast : entries will be deleted later) 893 * delay >= 0 : invalidate & flush cache (can be long) 894 */ 895 void rt_cache_flush(struct net *net, int delay) 896 { 897 rt_cache_invalidate(net); 898 if (delay >= 0) 899 rt_do_flush(!in_softirq()); 900 } 901 902 /* 903 * We change rt_genid and let gc do the cleanup 904 */ 905 static void rt_secret_rebuild(unsigned long __net) 906 { 907 struct net *net = (struct net *)__net; 908 rt_cache_invalidate(net); 909 mod_timer(&net->ipv4.rt_secret_timer, jiffies + ip_rt_secret_interval); 910 } 911 912 static void rt_secret_rebuild_oneshot(struct net *net) 913 { 914 del_timer_sync(&net->ipv4.rt_secret_timer); 915 rt_cache_invalidate(net); 916 if (ip_rt_secret_interval) { 917 net->ipv4.rt_secret_timer.expires += ip_rt_secret_interval; 918 add_timer(&net->ipv4.rt_secret_timer); 919 } 920 } 921 922 static void rt_emergency_hash_rebuild(struct net *net) 923 { 924 if (net_ratelimit()) { 925 printk(KERN_WARNING "Route hash chain too long!\n"); 926 printk(KERN_WARNING "Adjust your secret_interval!\n"); 927 } 928 929 rt_secret_rebuild_oneshot(net); 930 } 931 932 /* 933 Short description of GC goals. 934 935 We want to build algorithm, which will keep routing cache 936 at some equilibrium point, when number of aged off entries 937 is kept approximately equal to newly generated ones. 938 939 Current expiration strength is variable "expire". 940 We try to adjust it dynamically, so that if networking 941 is idle expires is large enough to keep enough of warm entries, 942 and when load increases it reduces to limit cache size. 943 */ 944 945 static int rt_garbage_collect(struct dst_ops *ops) 946 { 947 static unsigned long expire = RT_GC_TIMEOUT; 948 static unsigned long last_gc; 949 static int rover; 950 static int equilibrium; 951 struct rtable *rth, **rthp; 952 unsigned long now = jiffies; 953 int goal; 954 955 /* 956 * Garbage collection is pretty expensive, 957 * do not make it too frequently. 958 */ 959 960 RT_CACHE_STAT_INC(gc_total); 961 962 if (now - last_gc < ip_rt_gc_min_interval && 963 atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) { 964 RT_CACHE_STAT_INC(gc_ignored); 965 goto out; 966 } 967 968 /* Calculate number of entries, which we want to expire now. */ 969 goal = atomic_read(&ipv4_dst_ops.entries) - 970 (ip_rt_gc_elasticity << rt_hash_log); 971 if (goal <= 0) { 972 if (equilibrium < ipv4_dst_ops.gc_thresh) 973 equilibrium = ipv4_dst_ops.gc_thresh; 974 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium; 975 if (goal > 0) { 976 equilibrium += min_t(unsigned int, goal >> 1, rt_hash_mask + 1); 977 goal = atomic_read(&ipv4_dst_ops.entries) - equilibrium; 978 } 979 } else { 980 /* We are in dangerous area. Try to reduce cache really 981 * aggressively. 982 */ 983 goal = max_t(unsigned int, goal >> 1, rt_hash_mask + 1); 984 equilibrium = atomic_read(&ipv4_dst_ops.entries) - goal; 985 } 986 987 if (now - last_gc >= ip_rt_gc_min_interval) 988 last_gc = now; 989 990 if (goal <= 0) { 991 equilibrium += goal; 992 goto work_done; 993 } 994 995 do { 996 int i, k; 997 998 for (i = rt_hash_mask, k = rover; i >= 0; i--) { 999 unsigned long tmo = expire; 1000 1001 k = (k + 1) & rt_hash_mask; 1002 rthp = &rt_hash_table[k].chain; 1003 spin_lock_bh(rt_hash_lock_addr(k)); 1004 while ((rth = *rthp) != NULL) { 1005 if (!rt_is_expired(rth) && 1006 !rt_may_expire(rth, tmo, expire)) { 1007 tmo >>= 1; 1008 rthp = &rth->u.dst.rt_next; 1009 continue; 1010 } 1011 *rthp = rth->u.dst.rt_next; 1012 rt_free(rth); 1013 goal--; 1014 } 1015 spin_unlock_bh(rt_hash_lock_addr(k)); 1016 if (goal <= 0) 1017 break; 1018 } 1019 rover = k; 1020 1021 if (goal <= 0) 1022 goto work_done; 1023 1024 /* Goal is not achieved. We stop process if: 1025 1026 - if expire reduced to zero. Otherwise, expire is halfed. 1027 - if table is not full. 1028 - if we are called from interrupt. 1029 - jiffies check is just fallback/debug loop breaker. 1030 We will not spin here for long time in any case. 1031 */ 1032 1033 RT_CACHE_STAT_INC(gc_goal_miss); 1034 1035 if (expire == 0) 1036 break; 1037 1038 expire >>= 1; 1039 #if RT_CACHE_DEBUG >= 2 1040 printk(KERN_DEBUG "expire>> %u %d %d %d\n", expire, 1041 atomic_read(&ipv4_dst_ops.entries), goal, i); 1042 #endif 1043 1044 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) 1045 goto out; 1046 } while (!in_softirq() && time_before_eq(jiffies, now)); 1047 1048 if (atomic_read(&ipv4_dst_ops.entries) < ip_rt_max_size) 1049 goto out; 1050 if (net_ratelimit()) 1051 printk(KERN_WARNING "dst cache overflow\n"); 1052 RT_CACHE_STAT_INC(gc_dst_overflow); 1053 return 1; 1054 1055 work_done: 1056 expire += ip_rt_gc_min_interval; 1057 if (expire > ip_rt_gc_timeout || 1058 atomic_read(&ipv4_dst_ops.entries) < ipv4_dst_ops.gc_thresh) 1059 expire = ip_rt_gc_timeout; 1060 #if RT_CACHE_DEBUG >= 2 1061 printk(KERN_DEBUG "expire++ %u %d %d %d\n", expire, 1062 atomic_read(&ipv4_dst_ops.entries), goal, rover); 1063 #endif 1064 out: return 0; 1065 } 1066 1067 static int rt_intern_hash(unsigned hash, struct rtable *rt, struct rtable **rp) 1068 { 1069 struct rtable *rth, **rthp; 1070 unsigned long now; 1071 struct rtable *cand, **candp; 1072 u32 min_score; 1073 int chain_length; 1074 int attempts = !in_softirq(); 1075 1076 restart: 1077 chain_length = 0; 1078 min_score = ~(u32)0; 1079 cand = NULL; 1080 candp = NULL; 1081 now = jiffies; 1082 1083 if (!rt_caching(dev_net(rt->u.dst.dev))) { 1084 rt_drop(rt); 1085 return 0; 1086 } 1087 1088 rthp = &rt_hash_table[hash].chain; 1089 1090 spin_lock_bh(rt_hash_lock_addr(hash)); 1091 while ((rth = *rthp) != NULL) { 1092 if (rt_is_expired(rth)) { 1093 *rthp = rth->u.dst.rt_next; 1094 rt_free(rth); 1095 continue; 1096 } 1097 if (compare_keys(&rth->fl, &rt->fl) && compare_netns(rth, rt)) { 1098 /* Put it first */ 1099 *rthp = rth->u.dst.rt_next; 1100 /* 1101 * Since lookup is lockfree, the deletion 1102 * must be visible to another weakly ordered CPU before 1103 * the insertion at the start of the hash chain. 1104 */ 1105 rcu_assign_pointer(rth->u.dst.rt_next, 1106 rt_hash_table[hash].chain); 1107 /* 1108 * Since lookup is lockfree, the update writes 1109 * must be ordered for consistency on SMP. 1110 */ 1111 rcu_assign_pointer(rt_hash_table[hash].chain, rth); 1112 1113 dst_use(&rth->u.dst, now); 1114 spin_unlock_bh(rt_hash_lock_addr(hash)); 1115 1116 rt_drop(rt); 1117 *rp = rth; 1118 return 0; 1119 } 1120 1121 if (!atomic_read(&rth->u.dst.__refcnt)) { 1122 u32 score = rt_score(rth); 1123 1124 if (score <= min_score) { 1125 cand = rth; 1126 candp = rthp; 1127 min_score = score; 1128 } 1129 } 1130 1131 chain_length++; 1132 1133 rthp = &rth->u.dst.rt_next; 1134 } 1135 1136 if (cand) { 1137 /* ip_rt_gc_elasticity used to be average length of chain 1138 * length, when exceeded gc becomes really aggressive. 1139 * 1140 * The second limit is less certain. At the moment it allows 1141 * only 2 entries per bucket. We will see. 1142 */ 1143 if (chain_length > ip_rt_gc_elasticity) { 1144 *candp = cand->u.dst.rt_next; 1145 rt_free(cand); 1146 } 1147 } else { 1148 if (chain_length > rt_chain_length_max) { 1149 struct net *net = dev_net(rt->u.dst.dev); 1150 int num = ++net->ipv4.current_rt_cache_rebuild_count; 1151 if (!rt_caching(dev_net(rt->u.dst.dev))) { 1152 printk(KERN_WARNING "%s: %d rebuilds is over limit, route caching disabled\n", 1153 rt->u.dst.dev->name, num); 1154 } 1155 rt_emergency_hash_rebuild(dev_net(rt->u.dst.dev)); 1156 } 1157 } 1158 1159 /* Try to bind route to arp only if it is output 1160 route or unicast forwarding path. 1161 */ 1162 if (rt->rt_type == RTN_UNICAST || rt->fl.iif == 0) { 1163 int err = arp_bind_neighbour(&rt->u.dst); 1164 if (err) { 1165 spin_unlock_bh(rt_hash_lock_addr(hash)); 1166 1167 if (err != -ENOBUFS) { 1168 rt_drop(rt); 1169 return err; 1170 } 1171 1172 /* Neighbour tables are full and nothing 1173 can be released. Try to shrink route cache, 1174 it is most likely it holds some neighbour records. 1175 */ 1176 if (attempts-- > 0) { 1177 int saved_elasticity = ip_rt_gc_elasticity; 1178 int saved_int = ip_rt_gc_min_interval; 1179 ip_rt_gc_elasticity = 1; 1180 ip_rt_gc_min_interval = 0; 1181 rt_garbage_collect(&ipv4_dst_ops); 1182 ip_rt_gc_min_interval = saved_int; 1183 ip_rt_gc_elasticity = saved_elasticity; 1184 goto restart; 1185 } 1186 1187 if (net_ratelimit()) 1188 printk(KERN_WARNING "Neighbour table overflow.\n"); 1189 rt_drop(rt); 1190 return -ENOBUFS; 1191 } 1192 } 1193 1194 rt->u.dst.rt_next = rt_hash_table[hash].chain; 1195 1196 #if RT_CACHE_DEBUG >= 2 1197 if (rt->u.dst.rt_next) { 1198 struct rtable *trt; 1199 printk(KERN_DEBUG "rt_cache @%02x: %pI4", hash, &rt->rt_dst); 1200 for (trt = rt->u.dst.rt_next; trt; trt = trt->u.dst.rt_next) 1201 printk(" . %pI4", &trt->rt_dst); 1202 printk("\n"); 1203 } 1204 #endif 1205 /* 1206 * Since lookup is lockfree, we must make sure 1207 * previous writes to rt are comitted to memory 1208 * before making rt visible to other CPUS. 1209 */ 1210 rcu_assign_pointer(rt_hash_table[hash].chain, rt); 1211 1212 spin_unlock_bh(rt_hash_lock_addr(hash)); 1213 *rp = rt; 1214 return 0; 1215 } 1216 1217 void rt_bind_peer(struct rtable *rt, int create) 1218 { 1219 static DEFINE_SPINLOCK(rt_peer_lock); 1220 struct inet_peer *peer; 1221 1222 peer = inet_getpeer(rt->rt_dst, create); 1223 1224 spin_lock_bh(&rt_peer_lock); 1225 if (rt->peer == NULL) { 1226 rt->peer = peer; 1227 peer = NULL; 1228 } 1229 spin_unlock_bh(&rt_peer_lock); 1230 if (peer) 1231 inet_putpeer(peer); 1232 } 1233 1234 /* 1235 * Peer allocation may fail only in serious out-of-memory conditions. However 1236 * we still can generate some output. 1237 * Random ID selection looks a bit dangerous because we have no chances to 1238 * select ID being unique in a reasonable period of time. 1239 * But broken packet identifier may be better than no packet at all. 1240 */ 1241 static void ip_select_fb_ident(struct iphdr *iph) 1242 { 1243 static DEFINE_SPINLOCK(ip_fb_id_lock); 1244 static u32 ip_fallback_id; 1245 u32 salt; 1246 1247 spin_lock_bh(&ip_fb_id_lock); 1248 salt = secure_ip_id((__force __be32)ip_fallback_id ^ iph->daddr); 1249 iph->id = htons(salt & 0xFFFF); 1250 ip_fallback_id = salt; 1251 spin_unlock_bh(&ip_fb_id_lock); 1252 } 1253 1254 void __ip_select_ident(struct iphdr *iph, struct dst_entry *dst, int more) 1255 { 1256 struct rtable *rt = (struct rtable *) dst; 1257 1258 if (rt) { 1259 if (rt->peer == NULL) 1260 rt_bind_peer(rt, 1); 1261 1262 /* If peer is attached to destination, it is never detached, 1263 so that we need not to grab a lock to dereference it. 1264 */ 1265 if (rt->peer) { 1266 iph->id = htons(inet_getid(rt->peer, more)); 1267 return; 1268 } 1269 } else 1270 printk(KERN_DEBUG "rt_bind_peer(0) @%p\n", 1271 __builtin_return_address(0)); 1272 1273 ip_select_fb_ident(iph); 1274 } 1275 1276 static void rt_del(unsigned hash, struct rtable *rt) 1277 { 1278 struct rtable **rthp, *aux; 1279 1280 rthp = &rt_hash_table[hash].chain; 1281 spin_lock_bh(rt_hash_lock_addr(hash)); 1282 ip_rt_put(rt); 1283 while ((aux = *rthp) != NULL) { 1284 if (aux == rt || rt_is_expired(aux)) { 1285 *rthp = aux->u.dst.rt_next; 1286 rt_free(aux); 1287 continue; 1288 } 1289 rthp = &aux->u.dst.rt_next; 1290 } 1291 spin_unlock_bh(rt_hash_lock_addr(hash)); 1292 } 1293 1294 void ip_rt_redirect(__be32 old_gw, __be32 daddr, __be32 new_gw, 1295 __be32 saddr, struct net_device *dev) 1296 { 1297 int i, k; 1298 struct in_device *in_dev = in_dev_get(dev); 1299 struct rtable *rth, **rthp; 1300 __be32 skeys[2] = { saddr, 0 }; 1301 int ikeys[2] = { dev->ifindex, 0 }; 1302 struct netevent_redirect netevent; 1303 struct net *net; 1304 1305 if (!in_dev) 1306 return; 1307 1308 net = dev_net(dev); 1309 if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) 1310 || ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) 1311 || ipv4_is_zeronet(new_gw)) 1312 goto reject_redirect; 1313 1314 if (!rt_caching(net)) 1315 goto reject_redirect; 1316 1317 if (!IN_DEV_SHARED_MEDIA(in_dev)) { 1318 if (!inet_addr_onlink(in_dev, new_gw, old_gw)) 1319 goto reject_redirect; 1320 if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev)) 1321 goto reject_redirect; 1322 } else { 1323 if (inet_addr_type(net, new_gw) != RTN_UNICAST) 1324 goto reject_redirect; 1325 } 1326 1327 for (i = 0; i < 2; i++) { 1328 for (k = 0; k < 2; k++) { 1329 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k], 1330 rt_genid(net)); 1331 1332 rthp=&rt_hash_table[hash].chain; 1333 1334 rcu_read_lock(); 1335 while ((rth = rcu_dereference(*rthp)) != NULL) { 1336 struct rtable *rt; 1337 1338 if (rth->fl.fl4_dst != daddr || 1339 rth->fl.fl4_src != skeys[i] || 1340 rth->fl.oif != ikeys[k] || 1341 rth->fl.iif != 0 || 1342 rt_is_expired(rth) || 1343 !net_eq(dev_net(rth->u.dst.dev), net)) { 1344 rthp = &rth->u.dst.rt_next; 1345 continue; 1346 } 1347 1348 if (rth->rt_dst != daddr || 1349 rth->rt_src != saddr || 1350 rth->u.dst.error || 1351 rth->rt_gateway != old_gw || 1352 rth->u.dst.dev != dev) 1353 break; 1354 1355 dst_hold(&rth->u.dst); 1356 rcu_read_unlock(); 1357 1358 rt = dst_alloc(&ipv4_dst_ops); 1359 if (rt == NULL) { 1360 ip_rt_put(rth); 1361 in_dev_put(in_dev); 1362 return; 1363 } 1364 1365 /* Copy all the information. */ 1366 *rt = *rth; 1367 rt->u.dst.__use = 1; 1368 atomic_set(&rt->u.dst.__refcnt, 1); 1369 rt->u.dst.child = NULL; 1370 if (rt->u.dst.dev) 1371 dev_hold(rt->u.dst.dev); 1372 if (rt->idev) 1373 in_dev_hold(rt->idev); 1374 rt->u.dst.obsolete = 0; 1375 rt->u.dst.lastuse = jiffies; 1376 rt->u.dst.path = &rt->u.dst; 1377 rt->u.dst.neighbour = NULL; 1378 rt->u.dst.hh = NULL; 1379 #ifdef CONFIG_XFRM 1380 rt->u.dst.xfrm = NULL; 1381 #endif 1382 rt->rt_genid = rt_genid(net); 1383 rt->rt_flags |= RTCF_REDIRECTED; 1384 1385 /* Gateway is different ... */ 1386 rt->rt_gateway = new_gw; 1387 1388 /* Redirect received -> path was valid */ 1389 dst_confirm(&rth->u.dst); 1390 1391 if (rt->peer) 1392 atomic_inc(&rt->peer->refcnt); 1393 1394 if (arp_bind_neighbour(&rt->u.dst) || 1395 !(rt->u.dst.neighbour->nud_state & 1396 NUD_VALID)) { 1397 if (rt->u.dst.neighbour) 1398 neigh_event_send(rt->u.dst.neighbour, NULL); 1399 ip_rt_put(rth); 1400 rt_drop(rt); 1401 goto do_next; 1402 } 1403 1404 netevent.old = &rth->u.dst; 1405 netevent.new = &rt->u.dst; 1406 call_netevent_notifiers(NETEVENT_REDIRECT, 1407 &netevent); 1408 1409 rt_del(hash, rth); 1410 if (!rt_intern_hash(hash, rt, &rt)) 1411 ip_rt_put(rt); 1412 goto do_next; 1413 } 1414 rcu_read_unlock(); 1415 do_next: 1416 ; 1417 } 1418 } 1419 in_dev_put(in_dev); 1420 return; 1421 1422 reject_redirect: 1423 #ifdef CONFIG_IP_ROUTE_VERBOSE 1424 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) 1425 printk(KERN_INFO "Redirect from %pI4 on %s about %pI4 ignored.\n" 1426 " Advised path = %pI4 -> %pI4\n", 1427 &old_gw, dev->name, &new_gw, 1428 &saddr, &daddr); 1429 #endif 1430 in_dev_put(in_dev); 1431 } 1432 1433 static struct dst_entry *ipv4_negative_advice(struct dst_entry *dst) 1434 { 1435 struct rtable *rt = (struct rtable *)dst; 1436 struct dst_entry *ret = dst; 1437 1438 if (rt) { 1439 if (dst->obsolete) { 1440 ip_rt_put(rt); 1441 ret = NULL; 1442 } else if ((rt->rt_flags & RTCF_REDIRECTED) || 1443 rt->u.dst.expires) { 1444 unsigned hash = rt_hash(rt->fl.fl4_dst, rt->fl.fl4_src, 1445 rt->fl.oif, 1446 rt_genid(dev_net(dst->dev))); 1447 #if RT_CACHE_DEBUG >= 1 1448 printk(KERN_DEBUG "ipv4_negative_advice: redirect to %pI4/%02x dropped\n", 1449 &rt->rt_dst, rt->fl.fl4_tos); 1450 #endif 1451 rt_del(hash, rt); 1452 ret = NULL; 1453 } 1454 } 1455 return ret; 1456 } 1457 1458 /* 1459 * Algorithm: 1460 * 1. The first ip_rt_redirect_number redirects are sent 1461 * with exponential backoff, then we stop sending them at all, 1462 * assuming that the host ignores our redirects. 1463 * 2. If we did not see packets requiring redirects 1464 * during ip_rt_redirect_silence, we assume that the host 1465 * forgot redirected route and start to send redirects again. 1466 * 1467 * This algorithm is much cheaper and more intelligent than dumb load limiting 1468 * in icmp.c. 1469 * 1470 * NOTE. Do not forget to inhibit load limiting for redirects (redundant) 1471 * and "frag. need" (breaks PMTU discovery) in icmp.c. 1472 */ 1473 1474 void ip_rt_send_redirect(struct sk_buff *skb) 1475 { 1476 struct rtable *rt = skb->rtable; 1477 struct in_device *in_dev = in_dev_get(rt->u.dst.dev); 1478 1479 if (!in_dev) 1480 return; 1481 1482 if (!IN_DEV_TX_REDIRECTS(in_dev)) 1483 goto out; 1484 1485 /* No redirected packets during ip_rt_redirect_silence; 1486 * reset the algorithm. 1487 */ 1488 if (time_after(jiffies, rt->u.dst.rate_last + ip_rt_redirect_silence)) 1489 rt->u.dst.rate_tokens = 0; 1490 1491 /* Too many ignored redirects; do not send anything 1492 * set u.dst.rate_last to the last seen redirected packet. 1493 */ 1494 if (rt->u.dst.rate_tokens >= ip_rt_redirect_number) { 1495 rt->u.dst.rate_last = jiffies; 1496 goto out; 1497 } 1498 1499 /* Check for load limit; set rate_last to the latest sent 1500 * redirect. 1501 */ 1502 if (rt->u.dst.rate_tokens == 0 || 1503 time_after(jiffies, 1504 (rt->u.dst.rate_last + 1505 (ip_rt_redirect_load << rt->u.dst.rate_tokens)))) { 1506 icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST, rt->rt_gateway); 1507 rt->u.dst.rate_last = jiffies; 1508 ++rt->u.dst.rate_tokens; 1509 #ifdef CONFIG_IP_ROUTE_VERBOSE 1510 if (IN_DEV_LOG_MARTIANS(in_dev) && 1511 rt->u.dst.rate_tokens == ip_rt_redirect_number && 1512 net_ratelimit()) 1513 printk(KERN_WARNING "host %pI4/if%d ignores redirects for %pI4 to %pI4.\n", 1514 &rt->rt_src, rt->rt_iif, 1515 &rt->rt_dst, &rt->rt_gateway); 1516 #endif 1517 } 1518 out: 1519 in_dev_put(in_dev); 1520 } 1521 1522 static int ip_error(struct sk_buff *skb) 1523 { 1524 struct rtable *rt = skb->rtable; 1525 unsigned long now; 1526 int code; 1527 1528 switch (rt->u.dst.error) { 1529 case EINVAL: 1530 default: 1531 goto out; 1532 case EHOSTUNREACH: 1533 code = ICMP_HOST_UNREACH; 1534 break; 1535 case ENETUNREACH: 1536 code = ICMP_NET_UNREACH; 1537 IP_INC_STATS_BH(dev_net(rt->u.dst.dev), 1538 IPSTATS_MIB_INNOROUTES); 1539 break; 1540 case EACCES: 1541 code = ICMP_PKT_FILTERED; 1542 break; 1543 } 1544 1545 now = jiffies; 1546 rt->u.dst.rate_tokens += now - rt->u.dst.rate_last; 1547 if (rt->u.dst.rate_tokens > ip_rt_error_burst) 1548 rt->u.dst.rate_tokens = ip_rt_error_burst; 1549 rt->u.dst.rate_last = now; 1550 if (rt->u.dst.rate_tokens >= ip_rt_error_cost) { 1551 rt->u.dst.rate_tokens -= ip_rt_error_cost; 1552 icmp_send(skb, ICMP_DEST_UNREACH, code, 0); 1553 } 1554 1555 out: kfree_skb(skb); 1556 return 0; 1557 } 1558 1559 /* 1560 * The last two values are not from the RFC but 1561 * are needed for AMPRnet AX.25 paths. 1562 */ 1563 1564 static const unsigned short mtu_plateau[] = 1565 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 }; 1566 1567 static inline unsigned short guess_mtu(unsigned short old_mtu) 1568 { 1569 int i; 1570 1571 for (i = 0; i < ARRAY_SIZE(mtu_plateau); i++) 1572 if (old_mtu > mtu_plateau[i]) 1573 return mtu_plateau[i]; 1574 return 68; 1575 } 1576 1577 unsigned short ip_rt_frag_needed(struct net *net, struct iphdr *iph, 1578 unsigned short new_mtu, 1579 struct net_device *dev) 1580 { 1581 int i, k; 1582 unsigned short old_mtu = ntohs(iph->tot_len); 1583 struct rtable *rth; 1584 int ikeys[2] = { dev->ifindex, 0 }; 1585 __be32 skeys[2] = { iph->saddr, 0, }; 1586 __be32 daddr = iph->daddr; 1587 unsigned short est_mtu = 0; 1588 1589 if (ipv4_config.no_pmtu_disc) 1590 return 0; 1591 1592 for (k = 0; k < 2; k++) { 1593 for (i = 0; i < 2; i++) { 1594 unsigned hash = rt_hash(daddr, skeys[i], ikeys[k], 1595 rt_genid(net)); 1596 1597 rcu_read_lock(); 1598 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth; 1599 rth = rcu_dereference(rth->u.dst.rt_next)) { 1600 unsigned short mtu = new_mtu; 1601 1602 if (rth->fl.fl4_dst != daddr || 1603 rth->fl.fl4_src != skeys[i] || 1604 rth->rt_dst != daddr || 1605 rth->rt_src != iph->saddr || 1606 rth->fl.oif != ikeys[k] || 1607 rth->fl.iif != 0 || 1608 dst_metric_locked(&rth->u.dst, RTAX_MTU) || 1609 !net_eq(dev_net(rth->u.dst.dev), net) || 1610 rt_is_expired(rth)) 1611 continue; 1612 1613 if (new_mtu < 68 || new_mtu >= old_mtu) { 1614 1615 /* BSD 4.2 compatibility hack :-( */ 1616 if (mtu == 0 && 1617 old_mtu >= dst_mtu(&rth->u.dst) && 1618 old_mtu >= 68 + (iph->ihl << 2)) 1619 old_mtu -= iph->ihl << 2; 1620 1621 mtu = guess_mtu(old_mtu); 1622 } 1623 if (mtu <= dst_mtu(&rth->u.dst)) { 1624 if (mtu < dst_mtu(&rth->u.dst)) { 1625 dst_confirm(&rth->u.dst); 1626 if (mtu < ip_rt_min_pmtu) { 1627 mtu = ip_rt_min_pmtu; 1628 rth->u.dst.metrics[RTAX_LOCK-1] |= 1629 (1 << RTAX_MTU); 1630 } 1631 rth->u.dst.metrics[RTAX_MTU-1] = mtu; 1632 dst_set_expires(&rth->u.dst, 1633 ip_rt_mtu_expires); 1634 } 1635 est_mtu = mtu; 1636 } 1637 } 1638 rcu_read_unlock(); 1639 } 1640 } 1641 return est_mtu ? : new_mtu; 1642 } 1643 1644 static void ip_rt_update_pmtu(struct dst_entry *dst, u32 mtu) 1645 { 1646 if (dst_mtu(dst) > mtu && mtu >= 68 && 1647 !(dst_metric_locked(dst, RTAX_MTU))) { 1648 if (mtu < ip_rt_min_pmtu) { 1649 mtu = ip_rt_min_pmtu; 1650 dst->metrics[RTAX_LOCK-1] |= (1 << RTAX_MTU); 1651 } 1652 dst->metrics[RTAX_MTU-1] = mtu; 1653 dst_set_expires(dst, ip_rt_mtu_expires); 1654 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst); 1655 } 1656 } 1657 1658 static struct dst_entry *ipv4_dst_check(struct dst_entry *dst, u32 cookie) 1659 { 1660 return NULL; 1661 } 1662 1663 static void ipv4_dst_destroy(struct dst_entry *dst) 1664 { 1665 struct rtable *rt = (struct rtable *) dst; 1666 struct inet_peer *peer = rt->peer; 1667 struct in_device *idev = rt->idev; 1668 1669 if (peer) { 1670 rt->peer = NULL; 1671 inet_putpeer(peer); 1672 } 1673 1674 if (idev) { 1675 rt->idev = NULL; 1676 in_dev_put(idev); 1677 } 1678 } 1679 1680 static void ipv4_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 1681 int how) 1682 { 1683 struct rtable *rt = (struct rtable *) dst; 1684 struct in_device *idev = rt->idev; 1685 if (dev != dev_net(dev)->loopback_dev && idev && idev->dev == dev) { 1686 struct in_device *loopback_idev = 1687 in_dev_get(dev_net(dev)->loopback_dev); 1688 if (loopback_idev) { 1689 rt->idev = loopback_idev; 1690 in_dev_put(idev); 1691 } 1692 } 1693 } 1694 1695 static void ipv4_link_failure(struct sk_buff *skb) 1696 { 1697 struct rtable *rt; 1698 1699 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0); 1700 1701 rt = skb->rtable; 1702 if (rt) 1703 dst_set_expires(&rt->u.dst, 0); 1704 } 1705 1706 static int ip_rt_bug(struct sk_buff *skb) 1707 { 1708 printk(KERN_DEBUG "ip_rt_bug: %pI4 -> %pI4, %s\n", 1709 &ip_hdr(skb)->saddr, &ip_hdr(skb)->daddr, 1710 skb->dev ? skb->dev->name : "?"); 1711 kfree_skb(skb); 1712 return 0; 1713 } 1714 1715 /* 1716 We do not cache source address of outgoing interface, 1717 because it is used only by IP RR, TS and SRR options, 1718 so that it out of fast path. 1719 1720 BTW remember: "addr" is allowed to be not aligned 1721 in IP options! 1722 */ 1723 1724 void ip_rt_get_source(u8 *addr, struct rtable *rt) 1725 { 1726 __be32 src; 1727 struct fib_result res; 1728 1729 if (rt->fl.iif == 0) 1730 src = rt->rt_src; 1731 else if (fib_lookup(dev_net(rt->u.dst.dev), &rt->fl, &res) == 0) { 1732 src = FIB_RES_PREFSRC(res); 1733 fib_res_put(&res); 1734 } else 1735 src = inet_select_addr(rt->u.dst.dev, rt->rt_gateway, 1736 RT_SCOPE_UNIVERSE); 1737 memcpy(addr, &src, 4); 1738 } 1739 1740 #ifdef CONFIG_NET_CLS_ROUTE 1741 static void set_class_tag(struct rtable *rt, u32 tag) 1742 { 1743 if (!(rt->u.dst.tclassid & 0xFFFF)) 1744 rt->u.dst.tclassid |= tag & 0xFFFF; 1745 if (!(rt->u.dst.tclassid & 0xFFFF0000)) 1746 rt->u.dst.tclassid |= tag & 0xFFFF0000; 1747 } 1748 #endif 1749 1750 static void rt_set_nexthop(struct rtable *rt, struct fib_result *res, u32 itag) 1751 { 1752 struct fib_info *fi = res->fi; 1753 1754 if (fi) { 1755 if (FIB_RES_GW(*res) && 1756 FIB_RES_NH(*res).nh_scope == RT_SCOPE_LINK) 1757 rt->rt_gateway = FIB_RES_GW(*res); 1758 memcpy(rt->u.dst.metrics, fi->fib_metrics, 1759 sizeof(rt->u.dst.metrics)); 1760 if (fi->fib_mtu == 0) { 1761 rt->u.dst.metrics[RTAX_MTU-1] = rt->u.dst.dev->mtu; 1762 if (dst_metric_locked(&rt->u.dst, RTAX_MTU) && 1763 rt->rt_gateway != rt->rt_dst && 1764 rt->u.dst.dev->mtu > 576) 1765 rt->u.dst.metrics[RTAX_MTU-1] = 576; 1766 } 1767 #ifdef CONFIG_NET_CLS_ROUTE 1768 rt->u.dst.tclassid = FIB_RES_NH(*res).nh_tclassid; 1769 #endif 1770 } else 1771 rt->u.dst.metrics[RTAX_MTU-1]= rt->u.dst.dev->mtu; 1772 1773 if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0) 1774 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = sysctl_ip_default_ttl; 1775 if (dst_mtu(&rt->u.dst) > IP_MAX_MTU) 1776 rt->u.dst.metrics[RTAX_MTU-1] = IP_MAX_MTU; 1777 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) == 0) 1778 rt->u.dst.metrics[RTAX_ADVMSS-1] = max_t(unsigned int, rt->u.dst.dev->mtu - 40, 1779 ip_rt_min_advmss); 1780 if (dst_metric(&rt->u.dst, RTAX_ADVMSS) > 65535 - 40) 1781 rt->u.dst.metrics[RTAX_ADVMSS-1] = 65535 - 40; 1782 1783 #ifdef CONFIG_NET_CLS_ROUTE 1784 #ifdef CONFIG_IP_MULTIPLE_TABLES 1785 set_class_tag(rt, fib_rules_tclass(res)); 1786 #endif 1787 set_class_tag(rt, itag); 1788 #endif 1789 rt->rt_type = res->type; 1790 } 1791 1792 static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr, 1793 u8 tos, struct net_device *dev, int our) 1794 { 1795 unsigned hash; 1796 struct rtable *rth; 1797 __be32 spec_dst; 1798 struct in_device *in_dev = in_dev_get(dev); 1799 u32 itag = 0; 1800 1801 /* Primary sanity checks. */ 1802 1803 if (in_dev == NULL) 1804 return -EINVAL; 1805 1806 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1807 ipv4_is_loopback(saddr) || skb->protocol != htons(ETH_P_IP)) 1808 goto e_inval; 1809 1810 if (ipv4_is_zeronet(saddr)) { 1811 if (!ipv4_is_local_multicast(daddr)) 1812 goto e_inval; 1813 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK); 1814 } else if (fib_validate_source(saddr, 0, tos, 0, 1815 dev, &spec_dst, &itag) < 0) 1816 goto e_inval; 1817 1818 rth = dst_alloc(&ipv4_dst_ops); 1819 if (!rth) 1820 goto e_nobufs; 1821 1822 rth->u.dst.output= ip_rt_bug; 1823 1824 atomic_set(&rth->u.dst.__refcnt, 1); 1825 rth->u.dst.flags= DST_HOST; 1826 if (IN_DEV_CONF_GET(in_dev, NOPOLICY)) 1827 rth->u.dst.flags |= DST_NOPOLICY; 1828 rth->fl.fl4_dst = daddr; 1829 rth->rt_dst = daddr; 1830 rth->fl.fl4_tos = tos; 1831 rth->fl.mark = skb->mark; 1832 rth->fl.fl4_src = saddr; 1833 rth->rt_src = saddr; 1834 #ifdef CONFIG_NET_CLS_ROUTE 1835 rth->u.dst.tclassid = itag; 1836 #endif 1837 rth->rt_iif = 1838 rth->fl.iif = dev->ifindex; 1839 rth->u.dst.dev = init_net.loopback_dev; 1840 dev_hold(rth->u.dst.dev); 1841 rth->idev = in_dev_get(rth->u.dst.dev); 1842 rth->fl.oif = 0; 1843 rth->rt_gateway = daddr; 1844 rth->rt_spec_dst= spec_dst; 1845 rth->rt_genid = rt_genid(dev_net(dev)); 1846 rth->rt_flags = RTCF_MULTICAST; 1847 rth->rt_type = RTN_MULTICAST; 1848 if (our) { 1849 rth->u.dst.input= ip_local_deliver; 1850 rth->rt_flags |= RTCF_LOCAL; 1851 } 1852 1853 #ifdef CONFIG_IP_MROUTE 1854 if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev)) 1855 rth->u.dst.input = ip_mr_input; 1856 #endif 1857 RT_CACHE_STAT_INC(in_slow_mc); 1858 1859 in_dev_put(in_dev); 1860 hash = rt_hash(daddr, saddr, dev->ifindex, rt_genid(dev_net(dev))); 1861 return rt_intern_hash(hash, rth, &skb->rtable); 1862 1863 e_nobufs: 1864 in_dev_put(in_dev); 1865 return -ENOBUFS; 1866 1867 e_inval: 1868 in_dev_put(in_dev); 1869 return -EINVAL; 1870 } 1871 1872 1873 static void ip_handle_martian_source(struct net_device *dev, 1874 struct in_device *in_dev, 1875 struct sk_buff *skb, 1876 __be32 daddr, 1877 __be32 saddr) 1878 { 1879 RT_CACHE_STAT_INC(in_martian_src); 1880 #ifdef CONFIG_IP_ROUTE_VERBOSE 1881 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) { 1882 /* 1883 * RFC1812 recommendation, if source is martian, 1884 * the only hint is MAC header. 1885 */ 1886 printk(KERN_WARNING "martian source %pI4 from %pI4, on dev %s\n", 1887 &daddr, &saddr, dev->name); 1888 if (dev->hard_header_len && skb_mac_header_was_set(skb)) { 1889 int i; 1890 const unsigned char *p = skb_mac_header(skb); 1891 printk(KERN_WARNING "ll header: "); 1892 for (i = 0; i < dev->hard_header_len; i++, p++) { 1893 printk("%02x", *p); 1894 if (i < (dev->hard_header_len - 1)) 1895 printk(":"); 1896 } 1897 printk("\n"); 1898 } 1899 } 1900 #endif 1901 } 1902 1903 static int __mkroute_input(struct sk_buff *skb, 1904 struct fib_result *res, 1905 struct in_device *in_dev, 1906 __be32 daddr, __be32 saddr, u32 tos, 1907 struct rtable **result) 1908 { 1909 1910 struct rtable *rth; 1911 int err; 1912 struct in_device *out_dev; 1913 unsigned flags = 0; 1914 __be32 spec_dst; 1915 u32 itag; 1916 1917 /* get a working reference to the output device */ 1918 out_dev = in_dev_get(FIB_RES_DEV(*res)); 1919 if (out_dev == NULL) { 1920 if (net_ratelimit()) 1921 printk(KERN_CRIT "Bug in ip_route_input" \ 1922 "_slow(). Please, report\n"); 1923 return -EINVAL; 1924 } 1925 1926 1927 err = fib_validate_source(saddr, daddr, tos, FIB_RES_OIF(*res), 1928 in_dev->dev, &spec_dst, &itag); 1929 if (err < 0) { 1930 ip_handle_martian_source(in_dev->dev, in_dev, skb, daddr, 1931 saddr); 1932 1933 err = -EINVAL; 1934 goto cleanup; 1935 } 1936 1937 if (err) 1938 flags |= RTCF_DIRECTSRC; 1939 1940 if (out_dev == in_dev && err && 1941 (IN_DEV_SHARED_MEDIA(out_dev) || 1942 inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res)))) 1943 flags |= RTCF_DOREDIRECT; 1944 1945 if (skb->protocol != htons(ETH_P_IP)) { 1946 /* Not IP (i.e. ARP). Do not create route, if it is 1947 * invalid for proxy arp. DNAT routes are always valid. 1948 */ 1949 if (out_dev == in_dev) { 1950 err = -EINVAL; 1951 goto cleanup; 1952 } 1953 } 1954 1955 1956 rth = dst_alloc(&ipv4_dst_ops); 1957 if (!rth) { 1958 err = -ENOBUFS; 1959 goto cleanup; 1960 } 1961 1962 atomic_set(&rth->u.dst.__refcnt, 1); 1963 rth->u.dst.flags= DST_HOST; 1964 if (IN_DEV_CONF_GET(in_dev, NOPOLICY)) 1965 rth->u.dst.flags |= DST_NOPOLICY; 1966 if (IN_DEV_CONF_GET(out_dev, NOXFRM)) 1967 rth->u.dst.flags |= DST_NOXFRM; 1968 rth->fl.fl4_dst = daddr; 1969 rth->rt_dst = daddr; 1970 rth->fl.fl4_tos = tos; 1971 rth->fl.mark = skb->mark; 1972 rth->fl.fl4_src = saddr; 1973 rth->rt_src = saddr; 1974 rth->rt_gateway = daddr; 1975 rth->rt_iif = 1976 rth->fl.iif = in_dev->dev->ifindex; 1977 rth->u.dst.dev = (out_dev)->dev; 1978 dev_hold(rth->u.dst.dev); 1979 rth->idev = in_dev_get(rth->u.dst.dev); 1980 rth->fl.oif = 0; 1981 rth->rt_spec_dst= spec_dst; 1982 1983 rth->u.dst.input = ip_forward; 1984 rth->u.dst.output = ip_output; 1985 rth->rt_genid = rt_genid(dev_net(rth->u.dst.dev)); 1986 1987 rt_set_nexthop(rth, res, itag); 1988 1989 rth->rt_flags = flags; 1990 1991 *result = rth; 1992 err = 0; 1993 cleanup: 1994 /* release the working reference to the output device */ 1995 in_dev_put(out_dev); 1996 return err; 1997 } 1998 1999 static int ip_mkroute_input(struct sk_buff *skb, 2000 struct fib_result *res, 2001 const struct flowi *fl, 2002 struct in_device *in_dev, 2003 __be32 daddr, __be32 saddr, u32 tos) 2004 { 2005 struct rtable* rth = NULL; 2006 int err; 2007 unsigned hash; 2008 2009 #ifdef CONFIG_IP_ROUTE_MULTIPATH 2010 if (res->fi && res->fi->fib_nhs > 1 && fl->oif == 0) 2011 fib_select_multipath(fl, res); 2012 #endif 2013 2014 /* create a routing cache entry */ 2015 err = __mkroute_input(skb, res, in_dev, daddr, saddr, tos, &rth); 2016 if (err) 2017 return err; 2018 2019 /* put it into the cache */ 2020 hash = rt_hash(daddr, saddr, fl->iif, 2021 rt_genid(dev_net(rth->u.dst.dev))); 2022 return rt_intern_hash(hash, rth, &skb->rtable); 2023 } 2024 2025 /* 2026 * NOTE. We drop all the packets that has local source 2027 * addresses, because every properly looped back packet 2028 * must have correct destination already attached by output routine. 2029 * 2030 * Such approach solves two big problems: 2031 * 1. Not simplex devices are handled properly. 2032 * 2. IP spoofing attempts are filtered with 100% of guarantee. 2033 */ 2034 2035 static int ip_route_input_slow(struct sk_buff *skb, __be32 daddr, __be32 saddr, 2036 u8 tos, struct net_device *dev) 2037 { 2038 struct fib_result res; 2039 struct in_device *in_dev = in_dev_get(dev); 2040 struct flowi fl = { .nl_u = { .ip4_u = 2041 { .daddr = daddr, 2042 .saddr = saddr, 2043 .tos = tos, 2044 .scope = RT_SCOPE_UNIVERSE, 2045 } }, 2046 .mark = skb->mark, 2047 .iif = dev->ifindex }; 2048 unsigned flags = 0; 2049 u32 itag = 0; 2050 struct rtable * rth; 2051 unsigned hash; 2052 __be32 spec_dst; 2053 int err = -EINVAL; 2054 int free_res = 0; 2055 struct net * net = dev_net(dev); 2056 2057 /* IP on this device is disabled. */ 2058 2059 if (!in_dev) 2060 goto out; 2061 2062 /* Check for the most weird martians, which can be not detected 2063 by fib_lookup. 2064 */ 2065 2066 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 2067 ipv4_is_loopback(saddr)) 2068 goto martian_source; 2069 2070 if (daddr == htonl(0xFFFFFFFF) || (saddr == 0 && daddr == 0)) 2071 goto brd_input; 2072 2073 /* Accept zero addresses only to limited broadcast; 2074 * I even do not know to fix it or not. Waiting for complains :-) 2075 */ 2076 if (ipv4_is_zeronet(saddr)) 2077 goto martian_source; 2078 2079 if (ipv4_is_lbcast(daddr) || ipv4_is_zeronet(daddr) || 2080 ipv4_is_loopback(daddr)) 2081 goto martian_destination; 2082 2083 /* 2084 * Now we are ready to route packet. 2085 */ 2086 if ((err = fib_lookup(net, &fl, &res)) != 0) { 2087 if (!IN_DEV_FORWARD(in_dev)) 2088 goto e_hostunreach; 2089 goto no_route; 2090 } 2091 free_res = 1; 2092 2093 RT_CACHE_STAT_INC(in_slow_tot); 2094 2095 if (res.type == RTN_BROADCAST) 2096 goto brd_input; 2097 2098 if (res.type == RTN_LOCAL) { 2099 int result; 2100 result = fib_validate_source(saddr, daddr, tos, 2101 net->loopback_dev->ifindex, 2102 dev, &spec_dst, &itag); 2103 if (result < 0) 2104 goto martian_source; 2105 if (result) 2106 flags |= RTCF_DIRECTSRC; 2107 spec_dst = daddr; 2108 goto local_input; 2109 } 2110 2111 if (!IN_DEV_FORWARD(in_dev)) 2112 goto e_hostunreach; 2113 if (res.type != RTN_UNICAST) 2114 goto martian_destination; 2115 2116 err = ip_mkroute_input(skb, &res, &fl, in_dev, daddr, saddr, tos); 2117 done: 2118 in_dev_put(in_dev); 2119 if (free_res) 2120 fib_res_put(&res); 2121 out: return err; 2122 2123 brd_input: 2124 if (skb->protocol != htons(ETH_P_IP)) 2125 goto e_inval; 2126 2127 if (ipv4_is_zeronet(saddr)) 2128 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_LINK); 2129 else { 2130 err = fib_validate_source(saddr, 0, tos, 0, dev, &spec_dst, 2131 &itag); 2132 if (err < 0) 2133 goto martian_source; 2134 if (err) 2135 flags |= RTCF_DIRECTSRC; 2136 } 2137 flags |= RTCF_BROADCAST; 2138 res.type = RTN_BROADCAST; 2139 RT_CACHE_STAT_INC(in_brd); 2140 2141 local_input: 2142 rth = dst_alloc(&ipv4_dst_ops); 2143 if (!rth) 2144 goto e_nobufs; 2145 2146 rth->u.dst.output= ip_rt_bug; 2147 rth->rt_genid = rt_genid(net); 2148 2149 atomic_set(&rth->u.dst.__refcnt, 1); 2150 rth->u.dst.flags= DST_HOST; 2151 if (IN_DEV_CONF_GET(in_dev, NOPOLICY)) 2152 rth->u.dst.flags |= DST_NOPOLICY; 2153 rth->fl.fl4_dst = daddr; 2154 rth->rt_dst = daddr; 2155 rth->fl.fl4_tos = tos; 2156 rth->fl.mark = skb->mark; 2157 rth->fl.fl4_src = saddr; 2158 rth->rt_src = saddr; 2159 #ifdef CONFIG_NET_CLS_ROUTE 2160 rth->u.dst.tclassid = itag; 2161 #endif 2162 rth->rt_iif = 2163 rth->fl.iif = dev->ifindex; 2164 rth->u.dst.dev = net->loopback_dev; 2165 dev_hold(rth->u.dst.dev); 2166 rth->idev = in_dev_get(rth->u.dst.dev); 2167 rth->rt_gateway = daddr; 2168 rth->rt_spec_dst= spec_dst; 2169 rth->u.dst.input= ip_local_deliver; 2170 rth->rt_flags = flags|RTCF_LOCAL; 2171 if (res.type == RTN_UNREACHABLE) { 2172 rth->u.dst.input= ip_error; 2173 rth->u.dst.error= -err; 2174 rth->rt_flags &= ~RTCF_LOCAL; 2175 } 2176 rth->rt_type = res.type; 2177 hash = rt_hash(daddr, saddr, fl.iif, rt_genid(net)); 2178 err = rt_intern_hash(hash, rth, &skb->rtable); 2179 goto done; 2180 2181 no_route: 2182 RT_CACHE_STAT_INC(in_no_route); 2183 spec_dst = inet_select_addr(dev, 0, RT_SCOPE_UNIVERSE); 2184 res.type = RTN_UNREACHABLE; 2185 if (err == -ESRCH) 2186 err = -ENETUNREACH; 2187 goto local_input; 2188 2189 /* 2190 * Do not cache martian addresses: they should be logged (RFC1812) 2191 */ 2192 martian_destination: 2193 RT_CACHE_STAT_INC(in_martian_dst); 2194 #ifdef CONFIG_IP_ROUTE_VERBOSE 2195 if (IN_DEV_LOG_MARTIANS(in_dev) && net_ratelimit()) 2196 printk(KERN_WARNING "martian destination %pI4 from %pI4, dev %s\n", 2197 &daddr, &saddr, dev->name); 2198 #endif 2199 2200 e_hostunreach: 2201 err = -EHOSTUNREACH; 2202 goto done; 2203 2204 e_inval: 2205 err = -EINVAL; 2206 goto done; 2207 2208 e_nobufs: 2209 err = -ENOBUFS; 2210 goto done; 2211 2212 martian_source: 2213 ip_handle_martian_source(dev, in_dev, skb, daddr, saddr); 2214 goto e_inval; 2215 } 2216 2217 int ip_route_input(struct sk_buff *skb, __be32 daddr, __be32 saddr, 2218 u8 tos, struct net_device *dev) 2219 { 2220 struct rtable * rth; 2221 unsigned hash; 2222 int iif = dev->ifindex; 2223 struct net *net; 2224 2225 net = dev_net(dev); 2226 2227 if (!rt_caching(net)) 2228 goto skip_cache; 2229 2230 tos &= IPTOS_RT_MASK; 2231 hash = rt_hash(daddr, saddr, iif, rt_genid(net)); 2232 2233 rcu_read_lock(); 2234 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth; 2235 rth = rcu_dereference(rth->u.dst.rt_next)) { 2236 if (((rth->fl.fl4_dst ^ daddr) | 2237 (rth->fl.fl4_src ^ saddr) | 2238 (rth->fl.iif ^ iif) | 2239 rth->fl.oif | 2240 (rth->fl.fl4_tos ^ tos)) == 0 && 2241 rth->fl.mark == skb->mark && 2242 net_eq(dev_net(rth->u.dst.dev), net) && 2243 !rt_is_expired(rth)) { 2244 dst_use(&rth->u.dst, jiffies); 2245 RT_CACHE_STAT_INC(in_hit); 2246 rcu_read_unlock(); 2247 skb->rtable = rth; 2248 return 0; 2249 } 2250 RT_CACHE_STAT_INC(in_hlist_search); 2251 } 2252 rcu_read_unlock(); 2253 2254 skip_cache: 2255 /* Multicast recognition logic is moved from route cache to here. 2256 The problem was that too many Ethernet cards have broken/missing 2257 hardware multicast filters :-( As result the host on multicasting 2258 network acquires a lot of useless route cache entries, sort of 2259 SDR messages from all the world. Now we try to get rid of them. 2260 Really, provided software IP multicast filter is organized 2261 reasonably (at least, hashed), it does not result in a slowdown 2262 comparing with route cache reject entries. 2263 Note, that multicast routers are not affected, because 2264 route cache entry is created eventually. 2265 */ 2266 if (ipv4_is_multicast(daddr)) { 2267 struct in_device *in_dev; 2268 2269 rcu_read_lock(); 2270 if ((in_dev = __in_dev_get_rcu(dev)) != NULL) { 2271 int our = ip_check_mc(in_dev, daddr, saddr, 2272 ip_hdr(skb)->protocol); 2273 if (our 2274 #ifdef CONFIG_IP_MROUTE 2275 || (!ipv4_is_local_multicast(daddr) && 2276 IN_DEV_MFORWARD(in_dev)) 2277 #endif 2278 ) { 2279 rcu_read_unlock(); 2280 return ip_route_input_mc(skb, daddr, saddr, 2281 tos, dev, our); 2282 } 2283 } 2284 rcu_read_unlock(); 2285 return -EINVAL; 2286 } 2287 return ip_route_input_slow(skb, daddr, saddr, tos, dev); 2288 } 2289 2290 static int __mkroute_output(struct rtable **result, 2291 struct fib_result *res, 2292 const struct flowi *fl, 2293 const struct flowi *oldflp, 2294 struct net_device *dev_out, 2295 unsigned flags) 2296 { 2297 struct rtable *rth; 2298 struct in_device *in_dev; 2299 u32 tos = RT_FL_TOS(oldflp); 2300 int err = 0; 2301 2302 if (ipv4_is_loopback(fl->fl4_src) && !(dev_out->flags&IFF_LOOPBACK)) 2303 return -EINVAL; 2304 2305 if (fl->fl4_dst == htonl(0xFFFFFFFF)) 2306 res->type = RTN_BROADCAST; 2307 else if (ipv4_is_multicast(fl->fl4_dst)) 2308 res->type = RTN_MULTICAST; 2309 else if (ipv4_is_lbcast(fl->fl4_dst) || ipv4_is_zeronet(fl->fl4_dst)) 2310 return -EINVAL; 2311 2312 if (dev_out->flags & IFF_LOOPBACK) 2313 flags |= RTCF_LOCAL; 2314 2315 /* get work reference to inet device */ 2316 in_dev = in_dev_get(dev_out); 2317 if (!in_dev) 2318 return -EINVAL; 2319 2320 if (res->type == RTN_BROADCAST) { 2321 flags |= RTCF_BROADCAST | RTCF_LOCAL; 2322 if (res->fi) { 2323 fib_info_put(res->fi); 2324 res->fi = NULL; 2325 } 2326 } else if (res->type == RTN_MULTICAST) { 2327 flags |= RTCF_MULTICAST|RTCF_LOCAL; 2328 if (!ip_check_mc(in_dev, oldflp->fl4_dst, oldflp->fl4_src, 2329 oldflp->proto)) 2330 flags &= ~RTCF_LOCAL; 2331 /* If multicast route do not exist use 2332 default one, but do not gateway in this case. 2333 Yes, it is hack. 2334 */ 2335 if (res->fi && res->prefixlen < 4) { 2336 fib_info_put(res->fi); 2337 res->fi = NULL; 2338 } 2339 } 2340 2341 2342 rth = dst_alloc(&ipv4_dst_ops); 2343 if (!rth) { 2344 err = -ENOBUFS; 2345 goto cleanup; 2346 } 2347 2348 atomic_set(&rth->u.dst.__refcnt, 1); 2349 rth->u.dst.flags= DST_HOST; 2350 if (IN_DEV_CONF_GET(in_dev, NOXFRM)) 2351 rth->u.dst.flags |= DST_NOXFRM; 2352 if (IN_DEV_CONF_GET(in_dev, NOPOLICY)) 2353 rth->u.dst.flags |= DST_NOPOLICY; 2354 2355 rth->fl.fl4_dst = oldflp->fl4_dst; 2356 rth->fl.fl4_tos = tos; 2357 rth->fl.fl4_src = oldflp->fl4_src; 2358 rth->fl.oif = oldflp->oif; 2359 rth->fl.mark = oldflp->mark; 2360 rth->rt_dst = fl->fl4_dst; 2361 rth->rt_src = fl->fl4_src; 2362 rth->rt_iif = oldflp->oif ? : dev_out->ifindex; 2363 /* get references to the devices that are to be hold by the routing 2364 cache entry */ 2365 rth->u.dst.dev = dev_out; 2366 dev_hold(dev_out); 2367 rth->idev = in_dev_get(dev_out); 2368 rth->rt_gateway = fl->fl4_dst; 2369 rth->rt_spec_dst= fl->fl4_src; 2370 2371 rth->u.dst.output=ip_output; 2372 rth->rt_genid = rt_genid(dev_net(dev_out)); 2373 2374 RT_CACHE_STAT_INC(out_slow_tot); 2375 2376 if (flags & RTCF_LOCAL) { 2377 rth->u.dst.input = ip_local_deliver; 2378 rth->rt_spec_dst = fl->fl4_dst; 2379 } 2380 if (flags & (RTCF_BROADCAST | RTCF_MULTICAST)) { 2381 rth->rt_spec_dst = fl->fl4_src; 2382 if (flags & RTCF_LOCAL && 2383 !(dev_out->flags & IFF_LOOPBACK)) { 2384 rth->u.dst.output = ip_mc_output; 2385 RT_CACHE_STAT_INC(out_slow_mc); 2386 } 2387 #ifdef CONFIG_IP_MROUTE 2388 if (res->type == RTN_MULTICAST) { 2389 if (IN_DEV_MFORWARD(in_dev) && 2390 !ipv4_is_local_multicast(oldflp->fl4_dst)) { 2391 rth->u.dst.input = ip_mr_input; 2392 rth->u.dst.output = ip_mc_output; 2393 } 2394 } 2395 #endif 2396 } 2397 2398 rt_set_nexthop(rth, res, 0); 2399 2400 rth->rt_flags = flags; 2401 2402 *result = rth; 2403 cleanup: 2404 /* release work reference to inet device */ 2405 in_dev_put(in_dev); 2406 2407 return err; 2408 } 2409 2410 static int ip_mkroute_output(struct rtable **rp, 2411 struct fib_result *res, 2412 const struct flowi *fl, 2413 const struct flowi *oldflp, 2414 struct net_device *dev_out, 2415 unsigned flags) 2416 { 2417 struct rtable *rth = NULL; 2418 int err = __mkroute_output(&rth, res, fl, oldflp, dev_out, flags); 2419 unsigned hash; 2420 if (err == 0) { 2421 hash = rt_hash(oldflp->fl4_dst, oldflp->fl4_src, oldflp->oif, 2422 rt_genid(dev_net(dev_out))); 2423 err = rt_intern_hash(hash, rth, rp); 2424 } 2425 2426 return err; 2427 } 2428 2429 /* 2430 * Major route resolver routine. 2431 */ 2432 2433 static int ip_route_output_slow(struct net *net, struct rtable **rp, 2434 const struct flowi *oldflp) 2435 { 2436 u32 tos = RT_FL_TOS(oldflp); 2437 struct flowi fl = { .nl_u = { .ip4_u = 2438 { .daddr = oldflp->fl4_dst, 2439 .saddr = oldflp->fl4_src, 2440 .tos = tos & IPTOS_RT_MASK, 2441 .scope = ((tos & RTO_ONLINK) ? 2442 RT_SCOPE_LINK : 2443 RT_SCOPE_UNIVERSE), 2444 } }, 2445 .mark = oldflp->mark, 2446 .iif = net->loopback_dev->ifindex, 2447 .oif = oldflp->oif }; 2448 struct fib_result res; 2449 unsigned flags = 0; 2450 struct net_device *dev_out = NULL; 2451 int free_res = 0; 2452 int err; 2453 2454 2455 res.fi = NULL; 2456 #ifdef CONFIG_IP_MULTIPLE_TABLES 2457 res.r = NULL; 2458 #endif 2459 2460 if (oldflp->fl4_src) { 2461 err = -EINVAL; 2462 if (ipv4_is_multicast(oldflp->fl4_src) || 2463 ipv4_is_lbcast(oldflp->fl4_src) || 2464 ipv4_is_zeronet(oldflp->fl4_src)) 2465 goto out; 2466 2467 /* I removed check for oif == dev_out->oif here. 2468 It was wrong for two reasons: 2469 1. ip_dev_find(net, saddr) can return wrong iface, if saddr 2470 is assigned to multiple interfaces. 2471 2. Moreover, we are allowed to send packets with saddr 2472 of another iface. --ANK 2473 */ 2474 2475 if (oldflp->oif == 0 2476 && (ipv4_is_multicast(oldflp->fl4_dst) || 2477 oldflp->fl4_dst == htonl(0xFFFFFFFF))) { 2478 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */ 2479 dev_out = ip_dev_find(net, oldflp->fl4_src); 2480 if (dev_out == NULL) 2481 goto out; 2482 2483 /* Special hack: user can direct multicasts 2484 and limited broadcast via necessary interface 2485 without fiddling with IP_MULTICAST_IF or IP_PKTINFO. 2486 This hack is not just for fun, it allows 2487 vic,vat and friends to work. 2488 They bind socket to loopback, set ttl to zero 2489 and expect that it will work. 2490 From the viewpoint of routing cache they are broken, 2491 because we are not allowed to build multicast path 2492 with loopback source addr (look, routing cache 2493 cannot know, that ttl is zero, so that packet 2494 will not leave this host and route is valid). 2495 Luckily, this hack is good workaround. 2496 */ 2497 2498 fl.oif = dev_out->ifindex; 2499 goto make_route; 2500 } 2501 2502 if (!(oldflp->flags & FLOWI_FLAG_ANYSRC)) { 2503 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */ 2504 dev_out = ip_dev_find(net, oldflp->fl4_src); 2505 if (dev_out == NULL) 2506 goto out; 2507 dev_put(dev_out); 2508 dev_out = NULL; 2509 } 2510 } 2511 2512 2513 if (oldflp->oif) { 2514 dev_out = dev_get_by_index(net, oldflp->oif); 2515 err = -ENODEV; 2516 if (dev_out == NULL) 2517 goto out; 2518 2519 /* RACE: Check return value of inet_select_addr instead. */ 2520 if (__in_dev_get_rtnl(dev_out) == NULL) { 2521 dev_put(dev_out); 2522 goto out; /* Wrong error code */ 2523 } 2524 2525 if (ipv4_is_local_multicast(oldflp->fl4_dst) || 2526 oldflp->fl4_dst == htonl(0xFFFFFFFF)) { 2527 if (!fl.fl4_src) 2528 fl.fl4_src = inet_select_addr(dev_out, 0, 2529 RT_SCOPE_LINK); 2530 goto make_route; 2531 } 2532 if (!fl.fl4_src) { 2533 if (ipv4_is_multicast(oldflp->fl4_dst)) 2534 fl.fl4_src = inet_select_addr(dev_out, 0, 2535 fl.fl4_scope); 2536 else if (!oldflp->fl4_dst) 2537 fl.fl4_src = inet_select_addr(dev_out, 0, 2538 RT_SCOPE_HOST); 2539 } 2540 } 2541 2542 if (!fl.fl4_dst) { 2543 fl.fl4_dst = fl.fl4_src; 2544 if (!fl.fl4_dst) 2545 fl.fl4_dst = fl.fl4_src = htonl(INADDR_LOOPBACK); 2546 if (dev_out) 2547 dev_put(dev_out); 2548 dev_out = net->loopback_dev; 2549 dev_hold(dev_out); 2550 fl.oif = net->loopback_dev->ifindex; 2551 res.type = RTN_LOCAL; 2552 flags |= RTCF_LOCAL; 2553 goto make_route; 2554 } 2555 2556 if (fib_lookup(net, &fl, &res)) { 2557 res.fi = NULL; 2558 if (oldflp->oif) { 2559 /* Apparently, routing tables are wrong. Assume, 2560 that the destination is on link. 2561 2562 WHY? DW. 2563 Because we are allowed to send to iface 2564 even if it has NO routes and NO assigned 2565 addresses. When oif is specified, routing 2566 tables are looked up with only one purpose: 2567 to catch if destination is gatewayed, rather than 2568 direct. Moreover, if MSG_DONTROUTE is set, 2569 we send packet, ignoring both routing tables 2570 and ifaddr state. --ANK 2571 2572 2573 We could make it even if oif is unknown, 2574 likely IPv6, but we do not. 2575 */ 2576 2577 if (fl.fl4_src == 0) 2578 fl.fl4_src = inet_select_addr(dev_out, 0, 2579 RT_SCOPE_LINK); 2580 res.type = RTN_UNICAST; 2581 goto make_route; 2582 } 2583 if (dev_out) 2584 dev_put(dev_out); 2585 err = -ENETUNREACH; 2586 goto out; 2587 } 2588 free_res = 1; 2589 2590 if (res.type == RTN_LOCAL) { 2591 if (!fl.fl4_src) 2592 fl.fl4_src = fl.fl4_dst; 2593 if (dev_out) 2594 dev_put(dev_out); 2595 dev_out = net->loopback_dev; 2596 dev_hold(dev_out); 2597 fl.oif = dev_out->ifindex; 2598 if (res.fi) 2599 fib_info_put(res.fi); 2600 res.fi = NULL; 2601 flags |= RTCF_LOCAL; 2602 goto make_route; 2603 } 2604 2605 #ifdef CONFIG_IP_ROUTE_MULTIPATH 2606 if (res.fi->fib_nhs > 1 && fl.oif == 0) 2607 fib_select_multipath(&fl, &res); 2608 else 2609 #endif 2610 if (!res.prefixlen && res.type == RTN_UNICAST && !fl.oif) 2611 fib_select_default(net, &fl, &res); 2612 2613 if (!fl.fl4_src) 2614 fl.fl4_src = FIB_RES_PREFSRC(res); 2615 2616 if (dev_out) 2617 dev_put(dev_out); 2618 dev_out = FIB_RES_DEV(res); 2619 dev_hold(dev_out); 2620 fl.oif = dev_out->ifindex; 2621 2622 2623 make_route: 2624 err = ip_mkroute_output(rp, &res, &fl, oldflp, dev_out, flags); 2625 2626 2627 if (free_res) 2628 fib_res_put(&res); 2629 if (dev_out) 2630 dev_put(dev_out); 2631 out: return err; 2632 } 2633 2634 int __ip_route_output_key(struct net *net, struct rtable **rp, 2635 const struct flowi *flp) 2636 { 2637 unsigned hash; 2638 struct rtable *rth; 2639 2640 if (!rt_caching(net)) 2641 goto slow_output; 2642 2643 hash = rt_hash(flp->fl4_dst, flp->fl4_src, flp->oif, rt_genid(net)); 2644 2645 rcu_read_lock_bh(); 2646 for (rth = rcu_dereference(rt_hash_table[hash].chain); rth; 2647 rth = rcu_dereference(rth->u.dst.rt_next)) { 2648 if (rth->fl.fl4_dst == flp->fl4_dst && 2649 rth->fl.fl4_src == flp->fl4_src && 2650 rth->fl.iif == 0 && 2651 rth->fl.oif == flp->oif && 2652 rth->fl.mark == flp->mark && 2653 !((rth->fl.fl4_tos ^ flp->fl4_tos) & 2654 (IPTOS_RT_MASK | RTO_ONLINK)) && 2655 net_eq(dev_net(rth->u.dst.dev), net) && 2656 !rt_is_expired(rth)) { 2657 dst_use(&rth->u.dst, jiffies); 2658 RT_CACHE_STAT_INC(out_hit); 2659 rcu_read_unlock_bh(); 2660 *rp = rth; 2661 return 0; 2662 } 2663 RT_CACHE_STAT_INC(out_hlist_search); 2664 } 2665 rcu_read_unlock_bh(); 2666 2667 slow_output: 2668 return ip_route_output_slow(net, rp, flp); 2669 } 2670 2671 EXPORT_SYMBOL_GPL(__ip_route_output_key); 2672 2673 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu) 2674 { 2675 } 2676 2677 static struct dst_ops ipv4_dst_blackhole_ops = { 2678 .family = AF_INET, 2679 .protocol = cpu_to_be16(ETH_P_IP), 2680 .destroy = ipv4_dst_destroy, 2681 .check = ipv4_dst_check, 2682 .update_pmtu = ipv4_rt_blackhole_update_pmtu, 2683 .entries = ATOMIC_INIT(0), 2684 }; 2685 2686 2687 static int ipv4_dst_blackhole(struct net *net, struct rtable **rp, struct flowi *flp) 2688 { 2689 struct rtable *ort = *rp; 2690 struct rtable *rt = (struct rtable *) 2691 dst_alloc(&ipv4_dst_blackhole_ops); 2692 2693 if (rt) { 2694 struct dst_entry *new = &rt->u.dst; 2695 2696 atomic_set(&new->__refcnt, 1); 2697 new->__use = 1; 2698 new->input = dst_discard; 2699 new->output = dst_discard; 2700 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32)); 2701 2702 new->dev = ort->u.dst.dev; 2703 if (new->dev) 2704 dev_hold(new->dev); 2705 2706 rt->fl = ort->fl; 2707 2708 rt->idev = ort->idev; 2709 if (rt->idev) 2710 in_dev_hold(rt->idev); 2711 rt->rt_genid = rt_genid(net); 2712 rt->rt_flags = ort->rt_flags; 2713 rt->rt_type = ort->rt_type; 2714 rt->rt_dst = ort->rt_dst; 2715 rt->rt_src = ort->rt_src; 2716 rt->rt_iif = ort->rt_iif; 2717 rt->rt_gateway = ort->rt_gateway; 2718 rt->rt_spec_dst = ort->rt_spec_dst; 2719 rt->peer = ort->peer; 2720 if (rt->peer) 2721 atomic_inc(&rt->peer->refcnt); 2722 2723 dst_free(new); 2724 } 2725 2726 dst_release(&(*rp)->u.dst); 2727 *rp = rt; 2728 return (rt ? 0 : -ENOMEM); 2729 } 2730 2731 int ip_route_output_flow(struct net *net, struct rtable **rp, struct flowi *flp, 2732 struct sock *sk, int flags) 2733 { 2734 int err; 2735 2736 if ((err = __ip_route_output_key(net, rp, flp)) != 0) 2737 return err; 2738 2739 if (flp->proto) { 2740 if (!flp->fl4_src) 2741 flp->fl4_src = (*rp)->rt_src; 2742 if (!flp->fl4_dst) 2743 flp->fl4_dst = (*rp)->rt_dst; 2744 err = __xfrm_lookup(net, (struct dst_entry **)rp, flp, sk, 2745 flags ? XFRM_LOOKUP_WAIT : 0); 2746 if (err == -EREMOTE) 2747 err = ipv4_dst_blackhole(net, rp, flp); 2748 2749 return err; 2750 } 2751 2752 return 0; 2753 } 2754 2755 EXPORT_SYMBOL_GPL(ip_route_output_flow); 2756 2757 int ip_route_output_key(struct net *net, struct rtable **rp, struct flowi *flp) 2758 { 2759 return ip_route_output_flow(net, rp, flp, NULL, 0); 2760 } 2761 2762 static int rt_fill_info(struct net *net, 2763 struct sk_buff *skb, u32 pid, u32 seq, int event, 2764 int nowait, unsigned int flags) 2765 { 2766 struct rtable *rt = skb->rtable; 2767 struct rtmsg *r; 2768 struct nlmsghdr *nlh; 2769 long expires; 2770 u32 id = 0, ts = 0, tsage = 0, error; 2771 2772 nlh = nlmsg_put(skb, pid, seq, event, sizeof(*r), flags); 2773 if (nlh == NULL) 2774 return -EMSGSIZE; 2775 2776 r = nlmsg_data(nlh); 2777 r->rtm_family = AF_INET; 2778 r->rtm_dst_len = 32; 2779 r->rtm_src_len = 0; 2780 r->rtm_tos = rt->fl.fl4_tos; 2781 r->rtm_table = RT_TABLE_MAIN; 2782 NLA_PUT_U32(skb, RTA_TABLE, RT_TABLE_MAIN); 2783 r->rtm_type = rt->rt_type; 2784 r->rtm_scope = RT_SCOPE_UNIVERSE; 2785 r->rtm_protocol = RTPROT_UNSPEC; 2786 r->rtm_flags = (rt->rt_flags & ~0xFFFF) | RTM_F_CLONED; 2787 if (rt->rt_flags & RTCF_NOTIFY) 2788 r->rtm_flags |= RTM_F_NOTIFY; 2789 2790 NLA_PUT_BE32(skb, RTA_DST, rt->rt_dst); 2791 2792 if (rt->fl.fl4_src) { 2793 r->rtm_src_len = 32; 2794 NLA_PUT_BE32(skb, RTA_SRC, rt->fl.fl4_src); 2795 } 2796 if (rt->u.dst.dev) 2797 NLA_PUT_U32(skb, RTA_OIF, rt->u.dst.dev->ifindex); 2798 #ifdef CONFIG_NET_CLS_ROUTE 2799 if (rt->u.dst.tclassid) 2800 NLA_PUT_U32(skb, RTA_FLOW, rt->u.dst.tclassid); 2801 #endif 2802 if (rt->fl.iif) 2803 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_spec_dst); 2804 else if (rt->rt_src != rt->fl.fl4_src) 2805 NLA_PUT_BE32(skb, RTA_PREFSRC, rt->rt_src); 2806 2807 if (rt->rt_dst != rt->rt_gateway) 2808 NLA_PUT_BE32(skb, RTA_GATEWAY, rt->rt_gateway); 2809 2810 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0) 2811 goto nla_put_failure; 2812 2813 error = rt->u.dst.error; 2814 expires = rt->u.dst.expires ? rt->u.dst.expires - jiffies : 0; 2815 if (rt->peer) { 2816 id = rt->peer->ip_id_count; 2817 if (rt->peer->tcp_ts_stamp) { 2818 ts = rt->peer->tcp_ts; 2819 tsage = get_seconds() - rt->peer->tcp_ts_stamp; 2820 } 2821 } 2822 2823 if (rt->fl.iif) { 2824 #ifdef CONFIG_IP_MROUTE 2825 __be32 dst = rt->rt_dst; 2826 2827 if (ipv4_is_multicast(dst) && !ipv4_is_local_multicast(dst) && 2828 IPV4_DEVCONF_ALL(net, MC_FORWARDING)) { 2829 int err = ipmr_get_route(net, skb, r, nowait); 2830 if (err <= 0) { 2831 if (!nowait) { 2832 if (err == 0) 2833 return 0; 2834 goto nla_put_failure; 2835 } else { 2836 if (err == -EMSGSIZE) 2837 goto nla_put_failure; 2838 error = err; 2839 } 2840 } 2841 } else 2842 #endif 2843 NLA_PUT_U32(skb, RTA_IIF, rt->fl.iif); 2844 } 2845 2846 if (rtnl_put_cacheinfo(skb, &rt->u.dst, id, ts, tsage, 2847 expires, error) < 0) 2848 goto nla_put_failure; 2849 2850 return nlmsg_end(skb, nlh); 2851 2852 nla_put_failure: 2853 nlmsg_cancel(skb, nlh); 2854 return -EMSGSIZE; 2855 } 2856 2857 static int inet_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg) 2858 { 2859 struct net *net = sock_net(in_skb->sk); 2860 struct rtmsg *rtm; 2861 struct nlattr *tb[RTA_MAX+1]; 2862 struct rtable *rt = NULL; 2863 __be32 dst = 0; 2864 __be32 src = 0; 2865 u32 iif; 2866 int err; 2867 struct sk_buff *skb; 2868 2869 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv4_policy); 2870 if (err < 0) 2871 goto errout; 2872 2873 rtm = nlmsg_data(nlh); 2874 2875 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 2876 if (skb == NULL) { 2877 err = -ENOBUFS; 2878 goto errout; 2879 } 2880 2881 /* Reserve room for dummy headers, this skb can pass 2882 through good chunk of routing engine. 2883 */ 2884 skb_reset_mac_header(skb); 2885 skb_reset_network_header(skb); 2886 2887 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */ 2888 ip_hdr(skb)->protocol = IPPROTO_ICMP; 2889 skb_reserve(skb, MAX_HEADER + sizeof(struct iphdr)); 2890 2891 src = tb[RTA_SRC] ? nla_get_be32(tb[RTA_SRC]) : 0; 2892 dst = tb[RTA_DST] ? nla_get_be32(tb[RTA_DST]) : 0; 2893 iif = tb[RTA_IIF] ? nla_get_u32(tb[RTA_IIF]) : 0; 2894 2895 if (iif) { 2896 struct net_device *dev; 2897 2898 dev = __dev_get_by_index(net, iif); 2899 if (dev == NULL) { 2900 err = -ENODEV; 2901 goto errout_free; 2902 } 2903 2904 skb->protocol = htons(ETH_P_IP); 2905 skb->dev = dev; 2906 local_bh_disable(); 2907 err = ip_route_input(skb, dst, src, rtm->rtm_tos, dev); 2908 local_bh_enable(); 2909 2910 rt = skb->rtable; 2911 if (err == 0 && rt->u.dst.error) 2912 err = -rt->u.dst.error; 2913 } else { 2914 struct flowi fl = { 2915 .nl_u = { 2916 .ip4_u = { 2917 .daddr = dst, 2918 .saddr = src, 2919 .tos = rtm->rtm_tos, 2920 }, 2921 }, 2922 .oif = tb[RTA_OIF] ? nla_get_u32(tb[RTA_OIF]) : 0, 2923 }; 2924 err = ip_route_output_key(net, &rt, &fl); 2925 } 2926 2927 if (err) 2928 goto errout_free; 2929 2930 skb->rtable = rt; 2931 if (rtm->rtm_flags & RTM_F_NOTIFY) 2932 rt->rt_flags |= RTCF_NOTIFY; 2933 2934 err = rt_fill_info(net, skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq, 2935 RTM_NEWROUTE, 0, 0); 2936 if (err <= 0) 2937 goto errout_free; 2938 2939 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid); 2940 errout: 2941 return err; 2942 2943 errout_free: 2944 kfree_skb(skb); 2945 goto errout; 2946 } 2947 2948 int ip_rt_dump(struct sk_buff *skb, struct netlink_callback *cb) 2949 { 2950 struct rtable *rt; 2951 int h, s_h; 2952 int idx, s_idx; 2953 struct net *net; 2954 2955 net = sock_net(skb->sk); 2956 2957 s_h = cb->args[0]; 2958 if (s_h < 0) 2959 s_h = 0; 2960 s_idx = idx = cb->args[1]; 2961 for (h = s_h; h <= rt_hash_mask; h++, s_idx = 0) { 2962 if (!rt_hash_table[h].chain) 2963 continue; 2964 rcu_read_lock_bh(); 2965 for (rt = rcu_dereference(rt_hash_table[h].chain), idx = 0; rt; 2966 rt = rcu_dereference(rt->u.dst.rt_next), idx++) { 2967 if (!net_eq(dev_net(rt->u.dst.dev), net) || idx < s_idx) 2968 continue; 2969 if (rt_is_expired(rt)) 2970 continue; 2971 skb->dst = dst_clone(&rt->u.dst); 2972 if (rt_fill_info(net, skb, NETLINK_CB(cb->skb).pid, 2973 cb->nlh->nlmsg_seq, RTM_NEWROUTE, 2974 1, NLM_F_MULTI) <= 0) { 2975 dst_release(xchg(&skb->dst, NULL)); 2976 rcu_read_unlock_bh(); 2977 goto done; 2978 } 2979 dst_release(xchg(&skb->dst, NULL)); 2980 } 2981 rcu_read_unlock_bh(); 2982 } 2983 2984 done: 2985 cb->args[0] = h; 2986 cb->args[1] = idx; 2987 return skb->len; 2988 } 2989 2990 void ip_rt_multicast_event(struct in_device *in_dev) 2991 { 2992 rt_cache_flush(dev_net(in_dev->dev), 0); 2993 } 2994 2995 #ifdef CONFIG_SYSCTL 2996 static int ipv4_sysctl_rtcache_flush(ctl_table *__ctl, int write, 2997 struct file *filp, void __user *buffer, 2998 size_t *lenp, loff_t *ppos) 2999 { 3000 if (write) { 3001 int flush_delay; 3002 ctl_table ctl; 3003 struct net *net; 3004 3005 memcpy(&ctl, __ctl, sizeof(ctl)); 3006 ctl.data = &flush_delay; 3007 proc_dointvec(&ctl, write, filp, buffer, lenp, ppos); 3008 3009 net = (struct net *)__ctl->extra1; 3010 rt_cache_flush(net, flush_delay); 3011 return 0; 3012 } 3013 3014 return -EINVAL; 3015 } 3016 3017 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table *table, 3018 void __user *oldval, 3019 size_t __user *oldlenp, 3020 void __user *newval, 3021 size_t newlen) 3022 { 3023 int delay; 3024 struct net *net; 3025 if (newlen != sizeof(int)) 3026 return -EINVAL; 3027 if (get_user(delay, (int __user *)newval)) 3028 return -EFAULT; 3029 net = (struct net *)table->extra1; 3030 rt_cache_flush(net, delay); 3031 return 0; 3032 } 3033 3034 static void rt_secret_reschedule(int old) 3035 { 3036 struct net *net; 3037 int new = ip_rt_secret_interval; 3038 int diff = new - old; 3039 3040 if (!diff) 3041 return; 3042 3043 rtnl_lock(); 3044 for_each_net(net) { 3045 int deleted = del_timer_sync(&net->ipv4.rt_secret_timer); 3046 3047 if (!new) 3048 continue; 3049 3050 if (deleted) { 3051 long time = net->ipv4.rt_secret_timer.expires - jiffies; 3052 3053 if (time <= 0 || (time += diff) <= 0) 3054 time = 0; 3055 3056 net->ipv4.rt_secret_timer.expires = time; 3057 } else 3058 net->ipv4.rt_secret_timer.expires = new; 3059 3060 net->ipv4.rt_secret_timer.expires += jiffies; 3061 add_timer(&net->ipv4.rt_secret_timer); 3062 } 3063 rtnl_unlock(); 3064 } 3065 3066 static int ipv4_sysctl_rt_secret_interval(ctl_table *ctl, int write, 3067 struct file *filp, 3068 void __user *buffer, size_t *lenp, 3069 loff_t *ppos) 3070 { 3071 int old = ip_rt_secret_interval; 3072 int ret = proc_dointvec_jiffies(ctl, write, filp, buffer, lenp, ppos); 3073 3074 rt_secret_reschedule(old); 3075 3076 return ret; 3077 } 3078 3079 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table *table, 3080 void __user *oldval, 3081 size_t __user *oldlenp, 3082 void __user *newval, 3083 size_t newlen) 3084 { 3085 int old = ip_rt_secret_interval; 3086 int ret = sysctl_jiffies(table, oldval, oldlenp, newval, newlen); 3087 3088 rt_secret_reschedule(old); 3089 3090 return ret; 3091 } 3092 3093 static ctl_table ipv4_route_table[] = { 3094 { 3095 .ctl_name = NET_IPV4_ROUTE_GC_THRESH, 3096 .procname = "gc_thresh", 3097 .data = &ipv4_dst_ops.gc_thresh, 3098 .maxlen = sizeof(int), 3099 .mode = 0644, 3100 .proc_handler = proc_dointvec, 3101 }, 3102 { 3103 .ctl_name = NET_IPV4_ROUTE_MAX_SIZE, 3104 .procname = "max_size", 3105 .data = &ip_rt_max_size, 3106 .maxlen = sizeof(int), 3107 .mode = 0644, 3108 .proc_handler = proc_dointvec, 3109 }, 3110 { 3111 /* Deprecated. Use gc_min_interval_ms */ 3112 3113 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL, 3114 .procname = "gc_min_interval", 3115 .data = &ip_rt_gc_min_interval, 3116 .maxlen = sizeof(int), 3117 .mode = 0644, 3118 .proc_handler = proc_dointvec_jiffies, 3119 .strategy = sysctl_jiffies, 3120 }, 3121 { 3122 .ctl_name = NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS, 3123 .procname = "gc_min_interval_ms", 3124 .data = &ip_rt_gc_min_interval, 3125 .maxlen = sizeof(int), 3126 .mode = 0644, 3127 .proc_handler = proc_dointvec_ms_jiffies, 3128 .strategy = sysctl_ms_jiffies, 3129 }, 3130 { 3131 .ctl_name = NET_IPV4_ROUTE_GC_TIMEOUT, 3132 .procname = "gc_timeout", 3133 .data = &ip_rt_gc_timeout, 3134 .maxlen = sizeof(int), 3135 .mode = 0644, 3136 .proc_handler = proc_dointvec_jiffies, 3137 .strategy = sysctl_jiffies, 3138 }, 3139 { 3140 .ctl_name = NET_IPV4_ROUTE_GC_INTERVAL, 3141 .procname = "gc_interval", 3142 .data = &ip_rt_gc_interval, 3143 .maxlen = sizeof(int), 3144 .mode = 0644, 3145 .proc_handler = proc_dointvec_jiffies, 3146 .strategy = sysctl_jiffies, 3147 }, 3148 { 3149 .ctl_name = NET_IPV4_ROUTE_REDIRECT_LOAD, 3150 .procname = "redirect_load", 3151 .data = &ip_rt_redirect_load, 3152 .maxlen = sizeof(int), 3153 .mode = 0644, 3154 .proc_handler = proc_dointvec, 3155 }, 3156 { 3157 .ctl_name = NET_IPV4_ROUTE_REDIRECT_NUMBER, 3158 .procname = "redirect_number", 3159 .data = &ip_rt_redirect_number, 3160 .maxlen = sizeof(int), 3161 .mode = 0644, 3162 .proc_handler = proc_dointvec, 3163 }, 3164 { 3165 .ctl_name = NET_IPV4_ROUTE_REDIRECT_SILENCE, 3166 .procname = "redirect_silence", 3167 .data = &ip_rt_redirect_silence, 3168 .maxlen = sizeof(int), 3169 .mode = 0644, 3170 .proc_handler = proc_dointvec, 3171 }, 3172 { 3173 .ctl_name = NET_IPV4_ROUTE_ERROR_COST, 3174 .procname = "error_cost", 3175 .data = &ip_rt_error_cost, 3176 .maxlen = sizeof(int), 3177 .mode = 0644, 3178 .proc_handler = proc_dointvec, 3179 }, 3180 { 3181 .ctl_name = NET_IPV4_ROUTE_ERROR_BURST, 3182 .procname = "error_burst", 3183 .data = &ip_rt_error_burst, 3184 .maxlen = sizeof(int), 3185 .mode = 0644, 3186 .proc_handler = proc_dointvec, 3187 }, 3188 { 3189 .ctl_name = NET_IPV4_ROUTE_GC_ELASTICITY, 3190 .procname = "gc_elasticity", 3191 .data = &ip_rt_gc_elasticity, 3192 .maxlen = sizeof(int), 3193 .mode = 0644, 3194 .proc_handler = proc_dointvec, 3195 }, 3196 { 3197 .ctl_name = NET_IPV4_ROUTE_MTU_EXPIRES, 3198 .procname = "mtu_expires", 3199 .data = &ip_rt_mtu_expires, 3200 .maxlen = sizeof(int), 3201 .mode = 0644, 3202 .proc_handler = proc_dointvec_jiffies, 3203 .strategy = sysctl_jiffies, 3204 }, 3205 { 3206 .ctl_name = NET_IPV4_ROUTE_MIN_PMTU, 3207 .procname = "min_pmtu", 3208 .data = &ip_rt_min_pmtu, 3209 .maxlen = sizeof(int), 3210 .mode = 0644, 3211 .proc_handler = proc_dointvec, 3212 }, 3213 { 3214 .ctl_name = NET_IPV4_ROUTE_MIN_ADVMSS, 3215 .procname = "min_adv_mss", 3216 .data = &ip_rt_min_advmss, 3217 .maxlen = sizeof(int), 3218 .mode = 0644, 3219 .proc_handler = proc_dointvec, 3220 }, 3221 { 3222 .ctl_name = NET_IPV4_ROUTE_SECRET_INTERVAL, 3223 .procname = "secret_interval", 3224 .data = &ip_rt_secret_interval, 3225 .maxlen = sizeof(int), 3226 .mode = 0644, 3227 .proc_handler = ipv4_sysctl_rt_secret_interval, 3228 .strategy = ipv4_sysctl_rt_secret_interval_strategy, 3229 }, 3230 { .ctl_name = 0 } 3231 }; 3232 3233 static struct ctl_table empty[1]; 3234 3235 static struct ctl_table ipv4_skeleton[] = 3236 { 3237 { .procname = "route", .ctl_name = NET_IPV4_ROUTE, 3238 .mode = 0555, .child = ipv4_route_table}, 3239 { .procname = "neigh", .ctl_name = NET_IPV4_NEIGH, 3240 .mode = 0555, .child = empty}, 3241 { } 3242 }; 3243 3244 static __net_initdata struct ctl_path ipv4_path[] = { 3245 { .procname = "net", .ctl_name = CTL_NET, }, 3246 { .procname = "ipv4", .ctl_name = NET_IPV4, }, 3247 { }, 3248 }; 3249 3250 static struct ctl_table ipv4_route_flush_table[] = { 3251 { 3252 .ctl_name = NET_IPV4_ROUTE_FLUSH, 3253 .procname = "flush", 3254 .maxlen = sizeof(int), 3255 .mode = 0200, 3256 .proc_handler = ipv4_sysctl_rtcache_flush, 3257 .strategy = ipv4_sysctl_rtcache_flush_strategy, 3258 }, 3259 { .ctl_name = 0 }, 3260 }; 3261 3262 static __net_initdata struct ctl_path ipv4_route_path[] = { 3263 { .procname = "net", .ctl_name = CTL_NET, }, 3264 { .procname = "ipv4", .ctl_name = NET_IPV4, }, 3265 { .procname = "route", .ctl_name = NET_IPV4_ROUTE, }, 3266 { }, 3267 }; 3268 3269 static __net_init int sysctl_route_net_init(struct net *net) 3270 { 3271 struct ctl_table *tbl; 3272 3273 tbl = ipv4_route_flush_table; 3274 if (net != &init_net) { 3275 tbl = kmemdup(tbl, sizeof(ipv4_route_flush_table), GFP_KERNEL); 3276 if (tbl == NULL) 3277 goto err_dup; 3278 } 3279 tbl[0].extra1 = net; 3280 3281 net->ipv4.route_hdr = 3282 register_net_sysctl_table(net, ipv4_route_path, tbl); 3283 if (net->ipv4.route_hdr == NULL) 3284 goto err_reg; 3285 return 0; 3286 3287 err_reg: 3288 if (tbl != ipv4_route_flush_table) 3289 kfree(tbl); 3290 err_dup: 3291 return -ENOMEM; 3292 } 3293 3294 static __net_exit void sysctl_route_net_exit(struct net *net) 3295 { 3296 struct ctl_table *tbl; 3297 3298 tbl = net->ipv4.route_hdr->ctl_table_arg; 3299 unregister_net_sysctl_table(net->ipv4.route_hdr); 3300 BUG_ON(tbl == ipv4_route_flush_table); 3301 kfree(tbl); 3302 } 3303 3304 static __net_initdata struct pernet_operations sysctl_route_ops = { 3305 .init = sysctl_route_net_init, 3306 .exit = sysctl_route_net_exit, 3307 }; 3308 #endif 3309 3310 3311 static __net_init int rt_secret_timer_init(struct net *net) 3312 { 3313 atomic_set(&net->ipv4.rt_genid, 3314 (int) ((num_physpages ^ (num_physpages>>8)) ^ 3315 (jiffies ^ (jiffies >> 7)))); 3316 3317 net->ipv4.rt_secret_timer.function = rt_secret_rebuild; 3318 net->ipv4.rt_secret_timer.data = (unsigned long)net; 3319 init_timer_deferrable(&net->ipv4.rt_secret_timer); 3320 3321 if (ip_rt_secret_interval) { 3322 net->ipv4.rt_secret_timer.expires = 3323 jiffies + net_random() % ip_rt_secret_interval + 3324 ip_rt_secret_interval; 3325 add_timer(&net->ipv4.rt_secret_timer); 3326 } 3327 return 0; 3328 } 3329 3330 static __net_exit void rt_secret_timer_exit(struct net *net) 3331 { 3332 del_timer_sync(&net->ipv4.rt_secret_timer); 3333 } 3334 3335 static __net_initdata struct pernet_operations rt_secret_timer_ops = { 3336 .init = rt_secret_timer_init, 3337 .exit = rt_secret_timer_exit, 3338 }; 3339 3340 3341 #ifdef CONFIG_NET_CLS_ROUTE 3342 struct ip_rt_acct *ip_rt_acct __read_mostly; 3343 #endif /* CONFIG_NET_CLS_ROUTE */ 3344 3345 static __initdata unsigned long rhash_entries; 3346 static int __init set_rhash_entries(char *str) 3347 { 3348 if (!str) 3349 return 0; 3350 rhash_entries = simple_strtoul(str, &str, 0); 3351 return 1; 3352 } 3353 __setup("rhash_entries=", set_rhash_entries); 3354 3355 int __init ip_rt_init(void) 3356 { 3357 int rc = 0; 3358 3359 #ifdef CONFIG_NET_CLS_ROUTE 3360 ip_rt_acct = __alloc_percpu(256 * sizeof(struct ip_rt_acct), __alignof__(struct ip_rt_acct)); 3361 if (!ip_rt_acct) 3362 panic("IP: failed to allocate ip_rt_acct\n"); 3363 #endif 3364 3365 ipv4_dst_ops.kmem_cachep = 3366 kmem_cache_create("ip_dst_cache", sizeof(struct rtable), 0, 3367 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3368 3369 ipv4_dst_blackhole_ops.kmem_cachep = ipv4_dst_ops.kmem_cachep; 3370 3371 rt_hash_table = (struct rt_hash_bucket *) 3372 alloc_large_system_hash("IP route cache", 3373 sizeof(struct rt_hash_bucket), 3374 rhash_entries, 3375 (num_physpages >= 128 * 1024) ? 3376 15 : 17, 3377 0, 3378 &rt_hash_log, 3379 &rt_hash_mask, 3380 rhash_entries ? 0 : 512 * 1024); 3381 memset(rt_hash_table, 0, (rt_hash_mask + 1) * sizeof(struct rt_hash_bucket)); 3382 rt_hash_lock_init(); 3383 3384 ipv4_dst_ops.gc_thresh = (rt_hash_mask + 1); 3385 ip_rt_max_size = (rt_hash_mask + 1) * 16; 3386 3387 devinet_init(); 3388 ip_fib_init(); 3389 3390 /* All the timers, started at system startup tend 3391 to synchronize. Perturb it a bit. 3392 */ 3393 schedule_delayed_work(&expires_work, 3394 net_random() % ip_rt_gc_interval + ip_rt_gc_interval); 3395 3396 if (register_pernet_subsys(&rt_secret_timer_ops)) 3397 printk(KERN_ERR "Unable to setup rt_secret_timer\n"); 3398 3399 if (ip_rt_proc_init()) 3400 printk(KERN_ERR "Unable to create route proc files\n"); 3401 #ifdef CONFIG_XFRM 3402 xfrm_init(); 3403 xfrm4_init(); 3404 #endif 3405 rtnl_register(PF_INET, RTM_GETROUTE, inet_rtm_getroute, NULL); 3406 3407 #ifdef CONFIG_SYSCTL 3408 register_pernet_subsys(&sysctl_route_ops); 3409 #endif 3410 return rc; 3411 } 3412 3413 #ifdef CONFIG_SYSCTL 3414 /* 3415 * We really need to sanitize the damn ipv4 init order, then all 3416 * this nonsense will go away. 3417 */ 3418 void __init ip_static_sysctl_init(void) 3419 { 3420 register_sysctl_paths(ipv4_path, ipv4_skeleton); 3421 } 3422 #endif 3423 3424 EXPORT_SYMBOL(__ip_select_ident); 3425 EXPORT_SYMBOL(ip_route_input); 3426 EXPORT_SYMBOL(ip_route_output_key); 3427