xref: /openbmc/linux/net/ipv4/ipmr.c (revision faa16bc4)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/cache.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/icmp.h>
56 #include <net/udp.h>
57 #include <net/raw.h>
58 #include <linux/notifier.h>
59 #include <linux/if_arp.h>
60 #include <linux/netfilter_ipv4.h>
61 #include <linux/compat.h>
62 #include <linux/export.h>
63 #include <net/ip_tunnels.h>
64 #include <net/checksum.h>
65 #include <net/netlink.h>
66 #include <net/fib_rules.h>
67 #include <linux/netconf.h>
68 #include <net/nexthop.h>
69 #include <net/switchdev.h>
70 
71 struct ipmr_rule {
72 	struct fib_rule		common;
73 };
74 
75 struct ipmr_result {
76 	struct mr_table		*mrt;
77 };
78 
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80  * Note that the changes are semaphored via rtnl_lock.
81  */
82 
83 static DEFINE_RWLOCK(mrt_lock);
84 
85 /* Multicast router control variables */
86 
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89 
90 /* We return to original Alan's scheme. Hash table of resolved
91  * entries is changed only in process context and protected
92  * with weak lock mrt_lock. Queue of unresolved entries is protected
93  * with strong spinlock mfc_unres_lock.
94  *
95  * In this case data path is free of exclusive locks at all.
96  */
97 
98 static struct kmem_cache *mrt_cachep __ro_after_init;
99 
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102 
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 			  struct net_device *dev, struct sk_buff *skb,
105 			  struct mfc_cache *cache, int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 			     struct sk_buff *pkt, vifi_t vifi, int assert);
108 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
109 				 int cmd);
110 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
111 static void mroute_clean_tables(struct mr_table *mrt, bool all);
112 static void ipmr_expire_process(struct timer_list *t);
113 
114 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
115 #define ipmr_for_each_table(mrt, net) \
116 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
117 
118 static struct mr_table *ipmr_mr_table_iter(struct net *net,
119 					   struct mr_table *mrt)
120 {
121 	struct mr_table *ret;
122 
123 	if (!mrt)
124 		ret = list_entry_rcu(net->ipv4.mr_tables.next,
125 				     struct mr_table, list);
126 	else
127 		ret = list_entry_rcu(mrt->list.next,
128 				     struct mr_table, list);
129 
130 	if (&ret->list == &net->ipv4.mr_tables)
131 		return NULL;
132 	return ret;
133 }
134 
135 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
136 {
137 	struct mr_table *mrt;
138 
139 	ipmr_for_each_table(mrt, net) {
140 		if (mrt->id == id)
141 			return mrt;
142 	}
143 	return NULL;
144 }
145 
146 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
147 			   struct mr_table **mrt)
148 {
149 	int err;
150 	struct ipmr_result res;
151 	struct fib_lookup_arg arg = {
152 		.result = &res,
153 		.flags = FIB_LOOKUP_NOREF,
154 	};
155 
156 	/* update flow if oif or iif point to device enslaved to l3mdev */
157 	l3mdev_update_flow(net, flowi4_to_flowi(flp4));
158 
159 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
160 			       flowi4_to_flowi(flp4), 0, &arg);
161 	if (err < 0)
162 		return err;
163 	*mrt = res.mrt;
164 	return 0;
165 }
166 
167 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
168 			    int flags, struct fib_lookup_arg *arg)
169 {
170 	struct ipmr_result *res = arg->result;
171 	struct mr_table *mrt;
172 
173 	switch (rule->action) {
174 	case FR_ACT_TO_TBL:
175 		break;
176 	case FR_ACT_UNREACHABLE:
177 		return -ENETUNREACH;
178 	case FR_ACT_PROHIBIT:
179 		return -EACCES;
180 	case FR_ACT_BLACKHOLE:
181 	default:
182 		return -EINVAL;
183 	}
184 
185 	arg->table = fib_rule_get_table(rule, arg);
186 
187 	mrt = ipmr_get_table(rule->fr_net, arg->table);
188 	if (!mrt)
189 		return -EAGAIN;
190 	res->mrt = mrt;
191 	return 0;
192 }
193 
194 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
195 {
196 	return 1;
197 }
198 
199 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
200 	FRA_GENERIC_POLICY,
201 };
202 
203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 			       struct fib_rule_hdr *frh, struct nlattr **tb,
205 			       struct netlink_ext_ack *extack)
206 {
207 	return 0;
208 }
209 
210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
211 			     struct nlattr **tb)
212 {
213 	return 1;
214 }
215 
216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
217 			  struct fib_rule_hdr *frh)
218 {
219 	frh->dst_len = 0;
220 	frh->src_len = 0;
221 	frh->tos     = 0;
222 	return 0;
223 }
224 
225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
226 	.family		= RTNL_FAMILY_IPMR,
227 	.rule_size	= sizeof(struct ipmr_rule),
228 	.addr_size	= sizeof(u32),
229 	.action		= ipmr_rule_action,
230 	.match		= ipmr_rule_match,
231 	.configure	= ipmr_rule_configure,
232 	.compare	= ipmr_rule_compare,
233 	.fill		= ipmr_rule_fill,
234 	.nlgroup	= RTNLGRP_IPV4_RULE,
235 	.policy		= ipmr_rule_policy,
236 	.owner		= THIS_MODULE,
237 };
238 
239 static int __net_init ipmr_rules_init(struct net *net)
240 {
241 	struct fib_rules_ops *ops;
242 	struct mr_table *mrt;
243 	int err;
244 
245 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
246 	if (IS_ERR(ops))
247 		return PTR_ERR(ops);
248 
249 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
250 
251 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
252 	if (IS_ERR(mrt)) {
253 		err = PTR_ERR(mrt);
254 		goto err1;
255 	}
256 
257 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
258 	if (err < 0)
259 		goto err2;
260 
261 	net->ipv4.mr_rules_ops = ops;
262 	return 0;
263 
264 err2:
265 	ipmr_free_table(mrt);
266 err1:
267 	fib_rules_unregister(ops);
268 	return err;
269 }
270 
271 static void __net_exit ipmr_rules_exit(struct net *net)
272 {
273 	struct mr_table *mrt, *next;
274 
275 	rtnl_lock();
276 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
277 		list_del(&mrt->list);
278 		ipmr_free_table(mrt);
279 	}
280 	fib_rules_unregister(net->ipv4.mr_rules_ops);
281 	rtnl_unlock();
282 }
283 
284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
285 {
286 	return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
287 }
288 
289 static unsigned int ipmr_rules_seq_read(struct net *net)
290 {
291 	return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
292 }
293 
294 bool ipmr_rule_default(const struct fib_rule *rule)
295 {
296 	return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
297 }
298 EXPORT_SYMBOL(ipmr_rule_default);
299 #else
300 #define ipmr_for_each_table(mrt, net) \
301 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
302 
303 static struct mr_table *ipmr_mr_table_iter(struct net *net,
304 					   struct mr_table *mrt)
305 {
306 	if (!mrt)
307 		return net->ipv4.mrt;
308 	return NULL;
309 }
310 
311 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
312 {
313 	return net->ipv4.mrt;
314 }
315 
316 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
317 			   struct mr_table **mrt)
318 {
319 	*mrt = net->ipv4.mrt;
320 	return 0;
321 }
322 
323 static int __net_init ipmr_rules_init(struct net *net)
324 {
325 	struct mr_table *mrt;
326 
327 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
328 	if (IS_ERR(mrt))
329 		return PTR_ERR(mrt);
330 	net->ipv4.mrt = mrt;
331 	return 0;
332 }
333 
334 static void __net_exit ipmr_rules_exit(struct net *net)
335 {
336 	rtnl_lock();
337 	ipmr_free_table(net->ipv4.mrt);
338 	net->ipv4.mrt = NULL;
339 	rtnl_unlock();
340 }
341 
342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
343 {
344 	return 0;
345 }
346 
347 static unsigned int ipmr_rules_seq_read(struct net *net)
348 {
349 	return 0;
350 }
351 
352 bool ipmr_rule_default(const struct fib_rule *rule)
353 {
354 	return true;
355 }
356 EXPORT_SYMBOL(ipmr_rule_default);
357 #endif
358 
359 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
360 				const void *ptr)
361 {
362 	const struct mfc_cache_cmp_arg *cmparg = arg->key;
363 	struct mfc_cache *c = (struct mfc_cache *)ptr;
364 
365 	return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
366 	       cmparg->mfc_origin != c->mfc_origin;
367 }
368 
369 static const struct rhashtable_params ipmr_rht_params = {
370 	.head_offset = offsetof(struct mr_mfc, mnode),
371 	.key_offset = offsetof(struct mfc_cache, cmparg),
372 	.key_len = sizeof(struct mfc_cache_cmp_arg),
373 	.nelem_hint = 3,
374 	.locks_mul = 1,
375 	.obj_cmpfn = ipmr_hash_cmp,
376 	.automatic_shrinking = true,
377 };
378 
379 static void ipmr_new_table_set(struct mr_table *mrt,
380 			       struct net *net)
381 {
382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384 #endif
385 }
386 
387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 	.mfc_mcastgrp = htonl(INADDR_ANY),
389 	.mfc_origin = htonl(INADDR_ANY),
390 };
391 
392 static struct mr_table_ops ipmr_mr_table_ops = {
393 	.rht_params = &ipmr_rht_params,
394 	.cmparg_any = &ipmr_mr_table_ops_cmparg_any,
395 };
396 
397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
398 {
399 	struct mr_table *mrt;
400 
401 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 		return ERR_PTR(-EINVAL);
404 
405 	mrt = ipmr_get_table(net, id);
406 	if (mrt)
407 		return mrt;
408 
409 	return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 			      ipmr_expire_process, ipmr_new_table_set);
411 }
412 
413 static void ipmr_free_table(struct mr_table *mrt)
414 {
415 	del_timer_sync(&mrt->ipmr_expire_timer);
416 	mroute_clean_tables(mrt, true);
417 	rhltable_destroy(&mrt->mfc_hash);
418 	kfree(mrt);
419 }
420 
421 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
422 
423 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
424 {
425 	struct net *net = dev_net(dev);
426 
427 	dev_close(dev);
428 
429 	dev = __dev_get_by_name(net, "tunl0");
430 	if (dev) {
431 		const struct net_device_ops *ops = dev->netdev_ops;
432 		struct ifreq ifr;
433 		struct ip_tunnel_parm p;
434 
435 		memset(&p, 0, sizeof(p));
436 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
437 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
438 		p.iph.version = 4;
439 		p.iph.ihl = 5;
440 		p.iph.protocol = IPPROTO_IPIP;
441 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
442 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
443 
444 		if (ops->ndo_do_ioctl) {
445 			mm_segment_t oldfs = get_fs();
446 
447 			set_fs(KERNEL_DS);
448 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
449 			set_fs(oldfs);
450 		}
451 	}
452 }
453 
454 /* Initialize ipmr pimreg/tunnel in_device */
455 static bool ipmr_init_vif_indev(const struct net_device *dev)
456 {
457 	struct in_device *in_dev;
458 
459 	ASSERT_RTNL();
460 
461 	in_dev = __in_dev_get_rtnl(dev);
462 	if (!in_dev)
463 		return false;
464 	ipv4_devconf_setall(in_dev);
465 	neigh_parms_data_state_setall(in_dev->arp_parms);
466 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
467 
468 	return true;
469 }
470 
471 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
472 {
473 	struct net_device  *dev;
474 
475 	dev = __dev_get_by_name(net, "tunl0");
476 
477 	if (dev) {
478 		const struct net_device_ops *ops = dev->netdev_ops;
479 		int err;
480 		struct ifreq ifr;
481 		struct ip_tunnel_parm p;
482 
483 		memset(&p, 0, sizeof(p));
484 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
485 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
486 		p.iph.version = 4;
487 		p.iph.ihl = 5;
488 		p.iph.protocol = IPPROTO_IPIP;
489 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
490 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
491 
492 		if (ops->ndo_do_ioctl) {
493 			mm_segment_t oldfs = get_fs();
494 
495 			set_fs(KERNEL_DS);
496 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
497 			set_fs(oldfs);
498 		} else {
499 			err = -EOPNOTSUPP;
500 		}
501 		dev = NULL;
502 
503 		if (err == 0 &&
504 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
505 			dev->flags |= IFF_MULTICAST;
506 			if (!ipmr_init_vif_indev(dev))
507 				goto failure;
508 			if (dev_open(dev))
509 				goto failure;
510 			dev_hold(dev);
511 		}
512 	}
513 	return dev;
514 
515 failure:
516 	unregister_netdevice(dev);
517 	return NULL;
518 }
519 
520 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
521 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
522 {
523 	struct net *net = dev_net(dev);
524 	struct mr_table *mrt;
525 	struct flowi4 fl4 = {
526 		.flowi4_oif	= dev->ifindex,
527 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
528 		.flowi4_mark	= skb->mark,
529 	};
530 	int err;
531 
532 	err = ipmr_fib_lookup(net, &fl4, &mrt);
533 	if (err < 0) {
534 		kfree_skb(skb);
535 		return err;
536 	}
537 
538 	read_lock(&mrt_lock);
539 	dev->stats.tx_bytes += skb->len;
540 	dev->stats.tx_packets++;
541 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
542 	read_unlock(&mrt_lock);
543 	kfree_skb(skb);
544 	return NETDEV_TX_OK;
545 }
546 
547 static int reg_vif_get_iflink(const struct net_device *dev)
548 {
549 	return 0;
550 }
551 
552 static const struct net_device_ops reg_vif_netdev_ops = {
553 	.ndo_start_xmit	= reg_vif_xmit,
554 	.ndo_get_iflink = reg_vif_get_iflink,
555 };
556 
557 static void reg_vif_setup(struct net_device *dev)
558 {
559 	dev->type		= ARPHRD_PIMREG;
560 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
561 	dev->flags		= IFF_NOARP;
562 	dev->netdev_ops		= &reg_vif_netdev_ops;
563 	dev->needs_free_netdev	= true;
564 	dev->features		|= NETIF_F_NETNS_LOCAL;
565 }
566 
567 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
568 {
569 	struct net_device *dev;
570 	char name[IFNAMSIZ];
571 
572 	if (mrt->id == RT_TABLE_DEFAULT)
573 		sprintf(name, "pimreg");
574 	else
575 		sprintf(name, "pimreg%u", mrt->id);
576 
577 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
578 
579 	if (!dev)
580 		return NULL;
581 
582 	dev_net_set(dev, net);
583 
584 	if (register_netdevice(dev)) {
585 		free_netdev(dev);
586 		return NULL;
587 	}
588 
589 	if (!ipmr_init_vif_indev(dev))
590 		goto failure;
591 	if (dev_open(dev))
592 		goto failure;
593 
594 	dev_hold(dev);
595 
596 	return dev;
597 
598 failure:
599 	unregister_netdevice(dev);
600 	return NULL;
601 }
602 
603 /* called with rcu_read_lock() */
604 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
605 		     unsigned int pimlen)
606 {
607 	struct net_device *reg_dev = NULL;
608 	struct iphdr *encap;
609 
610 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
611 	/* Check that:
612 	 * a. packet is really sent to a multicast group
613 	 * b. packet is not a NULL-REGISTER
614 	 * c. packet is not truncated
615 	 */
616 	if (!ipv4_is_multicast(encap->daddr) ||
617 	    encap->tot_len == 0 ||
618 	    ntohs(encap->tot_len) + pimlen > skb->len)
619 		return 1;
620 
621 	read_lock(&mrt_lock);
622 	if (mrt->mroute_reg_vif_num >= 0)
623 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
624 	read_unlock(&mrt_lock);
625 
626 	if (!reg_dev)
627 		return 1;
628 
629 	skb->mac_header = skb->network_header;
630 	skb_pull(skb, (u8 *)encap - skb->data);
631 	skb_reset_network_header(skb);
632 	skb->protocol = htons(ETH_P_IP);
633 	skb->ip_summed = CHECKSUM_NONE;
634 
635 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
636 
637 	netif_rx(skb);
638 
639 	return NET_RX_SUCCESS;
640 }
641 #else
642 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
643 {
644 	return NULL;
645 }
646 #endif
647 
648 static int call_ipmr_vif_entry_notifiers(struct net *net,
649 					 enum fib_event_type event_type,
650 					 struct vif_device *vif,
651 					 vifi_t vif_index, u32 tb_id)
652 {
653 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
654 				     vif, vif_index, tb_id,
655 				     &net->ipv4.ipmr_seq);
656 }
657 
658 static int call_ipmr_mfc_entry_notifiers(struct net *net,
659 					 enum fib_event_type event_type,
660 					 struct mfc_cache *mfc, u32 tb_id)
661 {
662 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
663 				     &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
664 }
665 
666 /**
667  *	vif_delete - Delete a VIF entry
668  *	@notify: Set to 1, if the caller is a notifier_call
669  */
670 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
671 		      struct list_head *head)
672 {
673 	struct net *net = read_pnet(&mrt->net);
674 	struct vif_device *v;
675 	struct net_device *dev;
676 	struct in_device *in_dev;
677 
678 	if (vifi < 0 || vifi >= mrt->maxvif)
679 		return -EADDRNOTAVAIL;
680 
681 	v = &mrt->vif_table[vifi];
682 
683 	if (VIF_EXISTS(mrt, vifi))
684 		call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
685 					      mrt->id);
686 
687 	write_lock_bh(&mrt_lock);
688 	dev = v->dev;
689 	v->dev = NULL;
690 
691 	if (!dev) {
692 		write_unlock_bh(&mrt_lock);
693 		return -EADDRNOTAVAIL;
694 	}
695 
696 	if (vifi == mrt->mroute_reg_vif_num)
697 		mrt->mroute_reg_vif_num = -1;
698 
699 	if (vifi + 1 == mrt->maxvif) {
700 		int tmp;
701 
702 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
703 			if (VIF_EXISTS(mrt, tmp))
704 				break;
705 		}
706 		mrt->maxvif = tmp+1;
707 	}
708 
709 	write_unlock_bh(&mrt_lock);
710 
711 	dev_set_allmulti(dev, -1);
712 
713 	in_dev = __in_dev_get_rtnl(dev);
714 	if (in_dev) {
715 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
716 		inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
717 					    NETCONFA_MC_FORWARDING,
718 					    dev->ifindex, &in_dev->cnf);
719 		ip_rt_multicast_event(in_dev);
720 	}
721 
722 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
723 		unregister_netdevice_queue(dev, head);
724 
725 	dev_put(dev);
726 	return 0;
727 }
728 
729 static void ipmr_cache_free_rcu(struct rcu_head *head)
730 {
731 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
732 
733 	kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
734 }
735 
736 static void ipmr_cache_free(struct mfc_cache *c)
737 {
738 	call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
739 }
740 
741 /* Destroy an unresolved cache entry, killing queued skbs
742  * and reporting error to netlink readers.
743  */
744 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
745 {
746 	struct net *net = read_pnet(&mrt->net);
747 	struct sk_buff *skb;
748 	struct nlmsgerr *e;
749 
750 	atomic_dec(&mrt->cache_resolve_queue_len);
751 
752 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
753 		if (ip_hdr(skb)->version == 0) {
754 			struct nlmsghdr *nlh = skb_pull(skb,
755 							sizeof(struct iphdr));
756 			nlh->nlmsg_type = NLMSG_ERROR;
757 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
758 			skb_trim(skb, nlh->nlmsg_len);
759 			e = nlmsg_data(nlh);
760 			e->error = -ETIMEDOUT;
761 			memset(&e->msg, 0, sizeof(e->msg));
762 
763 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
764 		} else {
765 			kfree_skb(skb);
766 		}
767 	}
768 
769 	ipmr_cache_free(c);
770 }
771 
772 /* Timer process for the unresolved queue. */
773 static void ipmr_expire_process(struct timer_list *t)
774 {
775 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
776 	struct mr_mfc *c, *next;
777 	unsigned long expires;
778 	unsigned long now;
779 
780 	if (!spin_trylock(&mfc_unres_lock)) {
781 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
782 		return;
783 	}
784 
785 	if (list_empty(&mrt->mfc_unres_queue))
786 		goto out;
787 
788 	now = jiffies;
789 	expires = 10*HZ;
790 
791 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
792 		if (time_after(c->mfc_un.unres.expires, now)) {
793 			unsigned long interval = c->mfc_un.unres.expires - now;
794 			if (interval < expires)
795 				expires = interval;
796 			continue;
797 		}
798 
799 		list_del(&c->list);
800 		mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
801 		ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
802 	}
803 
804 	if (!list_empty(&mrt->mfc_unres_queue))
805 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
806 
807 out:
808 	spin_unlock(&mfc_unres_lock);
809 }
810 
811 /* Fill oifs list. It is called under write locked mrt_lock. */
812 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
813 				   unsigned char *ttls)
814 {
815 	int vifi;
816 
817 	cache->mfc_un.res.minvif = MAXVIFS;
818 	cache->mfc_un.res.maxvif = 0;
819 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
820 
821 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
822 		if (VIF_EXISTS(mrt, vifi) &&
823 		    ttls[vifi] && ttls[vifi] < 255) {
824 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
825 			if (cache->mfc_un.res.minvif > vifi)
826 				cache->mfc_un.res.minvif = vifi;
827 			if (cache->mfc_un.res.maxvif <= vifi)
828 				cache->mfc_un.res.maxvif = vifi + 1;
829 		}
830 	}
831 	cache->mfc_un.res.lastuse = jiffies;
832 }
833 
834 static int vif_add(struct net *net, struct mr_table *mrt,
835 		   struct vifctl *vifc, int mrtsock)
836 {
837 	int vifi = vifc->vifc_vifi;
838 	struct switchdev_attr attr = {
839 		.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
840 	};
841 	struct vif_device *v = &mrt->vif_table[vifi];
842 	struct net_device *dev;
843 	struct in_device *in_dev;
844 	int err;
845 
846 	/* Is vif busy ? */
847 	if (VIF_EXISTS(mrt, vifi))
848 		return -EADDRINUSE;
849 
850 	switch (vifc->vifc_flags) {
851 	case VIFF_REGISTER:
852 		if (!ipmr_pimsm_enabled())
853 			return -EINVAL;
854 		/* Special Purpose VIF in PIM
855 		 * All the packets will be sent to the daemon
856 		 */
857 		if (mrt->mroute_reg_vif_num >= 0)
858 			return -EADDRINUSE;
859 		dev = ipmr_reg_vif(net, mrt);
860 		if (!dev)
861 			return -ENOBUFS;
862 		err = dev_set_allmulti(dev, 1);
863 		if (err) {
864 			unregister_netdevice(dev);
865 			dev_put(dev);
866 			return err;
867 		}
868 		break;
869 	case VIFF_TUNNEL:
870 		dev = ipmr_new_tunnel(net, vifc);
871 		if (!dev)
872 			return -ENOBUFS;
873 		err = dev_set_allmulti(dev, 1);
874 		if (err) {
875 			ipmr_del_tunnel(dev, vifc);
876 			dev_put(dev);
877 			return err;
878 		}
879 		break;
880 	case VIFF_USE_IFINDEX:
881 	case 0:
882 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
883 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
884 			if (dev && !__in_dev_get_rtnl(dev)) {
885 				dev_put(dev);
886 				return -EADDRNOTAVAIL;
887 			}
888 		} else {
889 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
890 		}
891 		if (!dev)
892 			return -EADDRNOTAVAIL;
893 		err = dev_set_allmulti(dev, 1);
894 		if (err) {
895 			dev_put(dev);
896 			return err;
897 		}
898 		break;
899 	default:
900 		return -EINVAL;
901 	}
902 
903 	in_dev = __in_dev_get_rtnl(dev);
904 	if (!in_dev) {
905 		dev_put(dev);
906 		return -EADDRNOTAVAIL;
907 	}
908 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
909 	inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
910 				    dev->ifindex, &in_dev->cnf);
911 	ip_rt_multicast_event(in_dev);
912 
913 	/* Fill in the VIF structures */
914 	vif_device_init(v, dev, vifc->vifc_rate_limit,
915 			vifc->vifc_threshold,
916 			vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
917 			(VIFF_TUNNEL | VIFF_REGISTER));
918 
919 	attr.orig_dev = dev;
920 	if (!switchdev_port_attr_get(dev, &attr)) {
921 		memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
922 		v->dev_parent_id.id_len = attr.u.ppid.id_len;
923 	} else {
924 		v->dev_parent_id.id_len = 0;
925 	}
926 
927 	v->local = vifc->vifc_lcl_addr.s_addr;
928 	v->remote = vifc->vifc_rmt_addr.s_addr;
929 
930 	/* And finish update writing critical data */
931 	write_lock_bh(&mrt_lock);
932 	v->dev = dev;
933 	if (v->flags & VIFF_REGISTER)
934 		mrt->mroute_reg_vif_num = vifi;
935 	if (vifi+1 > mrt->maxvif)
936 		mrt->maxvif = vifi+1;
937 	write_unlock_bh(&mrt_lock);
938 	call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
939 	return 0;
940 }
941 
942 /* called with rcu_read_lock() */
943 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
944 					 __be32 origin,
945 					 __be32 mcastgrp)
946 {
947 	struct mfc_cache_cmp_arg arg = {
948 			.mfc_mcastgrp = mcastgrp,
949 			.mfc_origin = origin
950 	};
951 
952 	return mr_mfc_find(mrt, &arg);
953 }
954 
955 /* Look for a (*,G) entry */
956 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
957 					     __be32 mcastgrp, int vifi)
958 {
959 	struct mfc_cache_cmp_arg arg = {
960 			.mfc_mcastgrp = mcastgrp,
961 			.mfc_origin = htonl(INADDR_ANY)
962 	};
963 
964 	if (mcastgrp == htonl(INADDR_ANY))
965 		return mr_mfc_find_any_parent(mrt, vifi);
966 	return mr_mfc_find_any(mrt, vifi, &arg);
967 }
968 
969 /* Look for a (S,G,iif) entry if parent != -1 */
970 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
971 						__be32 origin, __be32 mcastgrp,
972 						int parent)
973 {
974 	struct mfc_cache_cmp_arg arg = {
975 			.mfc_mcastgrp = mcastgrp,
976 			.mfc_origin = origin,
977 	};
978 
979 	return mr_mfc_find_parent(mrt, &arg, parent);
980 }
981 
982 /* Allocate a multicast cache entry */
983 static struct mfc_cache *ipmr_cache_alloc(void)
984 {
985 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
986 
987 	if (c) {
988 		c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
989 		c->_c.mfc_un.res.minvif = MAXVIFS;
990 		c->_c.free = ipmr_cache_free_rcu;
991 		refcount_set(&c->_c.mfc_un.res.refcount, 1);
992 	}
993 	return c;
994 }
995 
996 static struct mfc_cache *ipmr_cache_alloc_unres(void)
997 {
998 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
999 
1000 	if (c) {
1001 		skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1002 		c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1003 	}
1004 	return c;
1005 }
1006 
1007 /* A cache entry has gone into a resolved state from queued */
1008 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1009 			       struct mfc_cache *uc, struct mfc_cache *c)
1010 {
1011 	struct sk_buff *skb;
1012 	struct nlmsgerr *e;
1013 
1014 	/* Play the pending entries through our router */
1015 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1016 		if (ip_hdr(skb)->version == 0) {
1017 			struct nlmsghdr *nlh = skb_pull(skb,
1018 							sizeof(struct iphdr));
1019 
1020 			if (mr_fill_mroute(mrt, skb, &c->_c,
1021 					   nlmsg_data(nlh)) > 0) {
1022 				nlh->nlmsg_len = skb_tail_pointer(skb) -
1023 						 (u8 *)nlh;
1024 			} else {
1025 				nlh->nlmsg_type = NLMSG_ERROR;
1026 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1027 				skb_trim(skb, nlh->nlmsg_len);
1028 				e = nlmsg_data(nlh);
1029 				e->error = -EMSGSIZE;
1030 				memset(&e->msg, 0, sizeof(e->msg));
1031 			}
1032 
1033 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1034 		} else {
1035 			ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1036 		}
1037 	}
1038 }
1039 
1040 /* Bounce a cache query up to mrouted and netlink.
1041  *
1042  * Called under mrt_lock.
1043  */
1044 static int ipmr_cache_report(struct mr_table *mrt,
1045 			     struct sk_buff *pkt, vifi_t vifi, int assert)
1046 {
1047 	const int ihl = ip_hdrlen(pkt);
1048 	struct sock *mroute_sk;
1049 	struct igmphdr *igmp;
1050 	struct igmpmsg *msg;
1051 	struct sk_buff *skb;
1052 	int ret;
1053 
1054 	if (assert == IGMPMSG_WHOLEPKT)
1055 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1056 	else
1057 		skb = alloc_skb(128, GFP_ATOMIC);
1058 
1059 	if (!skb)
1060 		return -ENOBUFS;
1061 
1062 	if (assert == IGMPMSG_WHOLEPKT) {
1063 		/* Ugly, but we have no choice with this interface.
1064 		 * Duplicate old header, fix ihl, length etc.
1065 		 * And all this only to mangle msg->im_msgtype and
1066 		 * to set msg->im_mbz to "mbz" :-)
1067 		 */
1068 		skb_push(skb, sizeof(struct iphdr));
1069 		skb_reset_network_header(skb);
1070 		skb_reset_transport_header(skb);
1071 		msg = (struct igmpmsg *)skb_network_header(skb);
1072 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1073 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
1074 		msg->im_mbz = 0;
1075 		msg->im_vif = mrt->mroute_reg_vif_num;
1076 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1077 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1078 					     sizeof(struct iphdr));
1079 	} else {
1080 		/* Copy the IP header */
1081 		skb_set_network_header(skb, skb->len);
1082 		skb_put(skb, ihl);
1083 		skb_copy_to_linear_data(skb, pkt->data, ihl);
1084 		/* Flag to the kernel this is a route add */
1085 		ip_hdr(skb)->protocol = 0;
1086 		msg = (struct igmpmsg *)skb_network_header(skb);
1087 		msg->im_vif = vifi;
1088 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1089 		/* Add our header */
1090 		igmp = skb_put(skb, sizeof(struct igmphdr));
1091 		igmp->type = assert;
1092 		msg->im_msgtype = assert;
1093 		igmp->code = 0;
1094 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1095 		skb->transport_header = skb->network_header;
1096 	}
1097 
1098 	rcu_read_lock();
1099 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1100 	if (!mroute_sk) {
1101 		rcu_read_unlock();
1102 		kfree_skb(skb);
1103 		return -EINVAL;
1104 	}
1105 
1106 	igmpmsg_netlink_event(mrt, skb);
1107 
1108 	/* Deliver to mrouted */
1109 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1110 	rcu_read_unlock();
1111 	if (ret < 0) {
1112 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1113 		kfree_skb(skb);
1114 	}
1115 
1116 	return ret;
1117 }
1118 
1119 /* Queue a packet for resolution. It gets locked cache entry! */
1120 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1121 				 struct sk_buff *skb, struct net_device *dev)
1122 {
1123 	const struct iphdr *iph = ip_hdr(skb);
1124 	struct mfc_cache *c;
1125 	bool found = false;
1126 	int err;
1127 
1128 	spin_lock_bh(&mfc_unres_lock);
1129 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1130 		if (c->mfc_mcastgrp == iph->daddr &&
1131 		    c->mfc_origin == iph->saddr) {
1132 			found = true;
1133 			break;
1134 		}
1135 	}
1136 
1137 	if (!found) {
1138 		/* Create a new entry if allowable */
1139 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1140 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1141 			spin_unlock_bh(&mfc_unres_lock);
1142 
1143 			kfree_skb(skb);
1144 			return -ENOBUFS;
1145 		}
1146 
1147 		/* Fill in the new cache entry */
1148 		c->_c.mfc_parent = -1;
1149 		c->mfc_origin	= iph->saddr;
1150 		c->mfc_mcastgrp	= iph->daddr;
1151 
1152 		/* Reflect first query at mrouted. */
1153 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1154 
1155 		if (err < 0) {
1156 			/* If the report failed throw the cache entry
1157 			   out - Brad Parker
1158 			 */
1159 			spin_unlock_bh(&mfc_unres_lock);
1160 
1161 			ipmr_cache_free(c);
1162 			kfree_skb(skb);
1163 			return err;
1164 		}
1165 
1166 		atomic_inc(&mrt->cache_resolve_queue_len);
1167 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1168 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1169 
1170 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1171 			mod_timer(&mrt->ipmr_expire_timer,
1172 				  c->_c.mfc_un.unres.expires);
1173 	}
1174 
1175 	/* See if we can append the packet */
1176 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1177 		kfree_skb(skb);
1178 		err = -ENOBUFS;
1179 	} else {
1180 		if (dev) {
1181 			skb->dev = dev;
1182 			skb->skb_iif = dev->ifindex;
1183 		}
1184 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1185 		err = 0;
1186 	}
1187 
1188 	spin_unlock_bh(&mfc_unres_lock);
1189 	return err;
1190 }
1191 
1192 /* MFC cache manipulation by user space mroute daemon */
1193 
1194 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1195 {
1196 	struct net *net = read_pnet(&mrt->net);
1197 	struct mfc_cache *c;
1198 
1199 	/* The entries are added/deleted only under RTNL */
1200 	rcu_read_lock();
1201 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1202 				   mfc->mfcc_mcastgrp.s_addr, parent);
1203 	rcu_read_unlock();
1204 	if (!c)
1205 		return -ENOENT;
1206 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1207 	list_del_rcu(&c->_c.list);
1208 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1209 	mroute_netlink_event(mrt, c, RTM_DELROUTE);
1210 	mr_cache_put(&c->_c);
1211 
1212 	return 0;
1213 }
1214 
1215 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1216 			struct mfcctl *mfc, int mrtsock, int parent)
1217 {
1218 	struct mfc_cache *uc, *c;
1219 	struct mr_mfc *_uc;
1220 	bool found;
1221 	int ret;
1222 
1223 	if (mfc->mfcc_parent >= MAXVIFS)
1224 		return -ENFILE;
1225 
1226 	/* The entries are added/deleted only under RTNL */
1227 	rcu_read_lock();
1228 	c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1229 				   mfc->mfcc_mcastgrp.s_addr, parent);
1230 	rcu_read_unlock();
1231 	if (c) {
1232 		write_lock_bh(&mrt_lock);
1233 		c->_c.mfc_parent = mfc->mfcc_parent;
1234 		ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1235 		if (!mrtsock)
1236 			c->_c.mfc_flags |= MFC_STATIC;
1237 		write_unlock_bh(&mrt_lock);
1238 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1239 					      mrt->id);
1240 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1241 		return 0;
1242 	}
1243 
1244 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1245 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1246 		return -EINVAL;
1247 
1248 	c = ipmr_cache_alloc();
1249 	if (!c)
1250 		return -ENOMEM;
1251 
1252 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1253 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1254 	c->_c.mfc_parent = mfc->mfcc_parent;
1255 	ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1256 	if (!mrtsock)
1257 		c->_c.mfc_flags |= MFC_STATIC;
1258 
1259 	ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1260 				  ipmr_rht_params);
1261 	if (ret) {
1262 		pr_err("ipmr: rhtable insert error %d\n", ret);
1263 		ipmr_cache_free(c);
1264 		return ret;
1265 	}
1266 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1267 	/* Check to see if we resolved a queued list. If so we
1268 	 * need to send on the frames and tidy up.
1269 	 */
1270 	found = false;
1271 	spin_lock_bh(&mfc_unres_lock);
1272 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1273 		uc = (struct mfc_cache *)_uc;
1274 		if (uc->mfc_origin == c->mfc_origin &&
1275 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1276 			list_del(&_uc->list);
1277 			atomic_dec(&mrt->cache_resolve_queue_len);
1278 			found = true;
1279 			break;
1280 		}
1281 	}
1282 	if (list_empty(&mrt->mfc_unres_queue))
1283 		del_timer(&mrt->ipmr_expire_timer);
1284 	spin_unlock_bh(&mfc_unres_lock);
1285 
1286 	if (found) {
1287 		ipmr_cache_resolve(net, mrt, uc, c);
1288 		ipmr_cache_free(uc);
1289 	}
1290 	call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1291 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1292 	return 0;
1293 }
1294 
1295 /* Close the multicast socket, and clear the vif tables etc */
1296 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1297 {
1298 	struct net *net = read_pnet(&mrt->net);
1299 	struct mr_mfc *c, *tmp;
1300 	struct mfc_cache *cache;
1301 	LIST_HEAD(list);
1302 	int i;
1303 
1304 	/* Shut down all active vif entries */
1305 	for (i = 0; i < mrt->maxvif; i++) {
1306 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1307 			continue;
1308 		vif_delete(mrt, i, 0, &list);
1309 	}
1310 	unregister_netdevice_many(&list);
1311 
1312 	/* Wipe the cache */
1313 	list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1314 		if (!all && (c->mfc_flags & MFC_STATIC))
1315 			continue;
1316 		rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1317 		list_del_rcu(&c->list);
1318 		cache = (struct mfc_cache *)c;
1319 		call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1320 					      mrt->id);
1321 		mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1322 		mr_cache_put(c);
1323 	}
1324 
1325 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1326 		spin_lock_bh(&mfc_unres_lock);
1327 		list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1328 			list_del(&c->list);
1329 			cache = (struct mfc_cache *)c;
1330 			mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1331 			ipmr_destroy_unres(mrt, cache);
1332 		}
1333 		spin_unlock_bh(&mfc_unres_lock);
1334 	}
1335 }
1336 
1337 /* called from ip_ra_control(), before an RCU grace period,
1338  * we dont need to call synchronize_rcu() here
1339  */
1340 static void mrtsock_destruct(struct sock *sk)
1341 {
1342 	struct net *net = sock_net(sk);
1343 	struct mr_table *mrt;
1344 
1345 	rtnl_lock();
1346 	ipmr_for_each_table(mrt, net) {
1347 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1348 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1349 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1350 						    NETCONFA_MC_FORWARDING,
1351 						    NETCONFA_IFINDEX_ALL,
1352 						    net->ipv4.devconf_all);
1353 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1354 			mroute_clean_tables(mrt, false);
1355 		}
1356 	}
1357 	rtnl_unlock();
1358 }
1359 
1360 /* Socket options and virtual interface manipulation. The whole
1361  * virtual interface system is a complete heap, but unfortunately
1362  * that's how BSD mrouted happens to think. Maybe one day with a proper
1363  * MOSPF/PIM router set up we can clean this up.
1364  */
1365 
1366 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1367 			 unsigned int optlen)
1368 {
1369 	struct net *net = sock_net(sk);
1370 	int val, ret = 0, parent = 0;
1371 	struct mr_table *mrt;
1372 	struct vifctl vif;
1373 	struct mfcctl mfc;
1374 	u32 uval;
1375 
1376 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1377 	rtnl_lock();
1378 	if (sk->sk_type != SOCK_RAW ||
1379 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1380 		ret = -EOPNOTSUPP;
1381 		goto out_unlock;
1382 	}
1383 
1384 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1385 	if (!mrt) {
1386 		ret = -ENOENT;
1387 		goto out_unlock;
1388 	}
1389 	if (optname != MRT_INIT) {
1390 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1391 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1392 			ret = -EACCES;
1393 			goto out_unlock;
1394 		}
1395 	}
1396 
1397 	switch (optname) {
1398 	case MRT_INIT:
1399 		if (optlen != sizeof(int)) {
1400 			ret = -EINVAL;
1401 			break;
1402 		}
1403 		if (rtnl_dereference(mrt->mroute_sk)) {
1404 			ret = -EADDRINUSE;
1405 			break;
1406 		}
1407 
1408 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1409 		if (ret == 0) {
1410 			rcu_assign_pointer(mrt->mroute_sk, sk);
1411 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1412 			inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1413 						    NETCONFA_MC_FORWARDING,
1414 						    NETCONFA_IFINDEX_ALL,
1415 						    net->ipv4.devconf_all);
1416 		}
1417 		break;
1418 	case MRT_DONE:
1419 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1420 			ret = -EACCES;
1421 		} else {
1422 			/* We need to unlock here because mrtsock_destruct takes
1423 			 * care of rtnl itself and we can't change that due to
1424 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1425 			 */
1426 			rtnl_unlock();
1427 			ret = ip_ra_control(sk, 0, NULL);
1428 			goto out;
1429 		}
1430 		break;
1431 	case MRT_ADD_VIF:
1432 	case MRT_DEL_VIF:
1433 		if (optlen != sizeof(vif)) {
1434 			ret = -EINVAL;
1435 			break;
1436 		}
1437 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1438 			ret = -EFAULT;
1439 			break;
1440 		}
1441 		if (vif.vifc_vifi >= MAXVIFS) {
1442 			ret = -ENFILE;
1443 			break;
1444 		}
1445 		if (optname == MRT_ADD_VIF) {
1446 			ret = vif_add(net, mrt, &vif,
1447 				      sk == rtnl_dereference(mrt->mroute_sk));
1448 		} else {
1449 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1450 		}
1451 		break;
1452 	/* Manipulate the forwarding caches. These live
1453 	 * in a sort of kernel/user symbiosis.
1454 	 */
1455 	case MRT_ADD_MFC:
1456 	case MRT_DEL_MFC:
1457 		parent = -1;
1458 		/* fall through */
1459 	case MRT_ADD_MFC_PROXY:
1460 	case MRT_DEL_MFC_PROXY:
1461 		if (optlen != sizeof(mfc)) {
1462 			ret = -EINVAL;
1463 			break;
1464 		}
1465 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1466 			ret = -EFAULT;
1467 			break;
1468 		}
1469 		if (parent == 0)
1470 			parent = mfc.mfcc_parent;
1471 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1472 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1473 		else
1474 			ret = ipmr_mfc_add(net, mrt, &mfc,
1475 					   sk == rtnl_dereference(mrt->mroute_sk),
1476 					   parent);
1477 		break;
1478 	/* Control PIM assert. */
1479 	case MRT_ASSERT:
1480 		if (optlen != sizeof(val)) {
1481 			ret = -EINVAL;
1482 			break;
1483 		}
1484 		if (get_user(val, (int __user *)optval)) {
1485 			ret = -EFAULT;
1486 			break;
1487 		}
1488 		mrt->mroute_do_assert = val;
1489 		break;
1490 	case MRT_PIM:
1491 		if (!ipmr_pimsm_enabled()) {
1492 			ret = -ENOPROTOOPT;
1493 			break;
1494 		}
1495 		if (optlen != sizeof(val)) {
1496 			ret = -EINVAL;
1497 			break;
1498 		}
1499 		if (get_user(val, (int __user *)optval)) {
1500 			ret = -EFAULT;
1501 			break;
1502 		}
1503 
1504 		val = !!val;
1505 		if (val != mrt->mroute_do_pim) {
1506 			mrt->mroute_do_pim = val;
1507 			mrt->mroute_do_assert = val;
1508 		}
1509 		break;
1510 	case MRT_TABLE:
1511 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1512 			ret = -ENOPROTOOPT;
1513 			break;
1514 		}
1515 		if (optlen != sizeof(uval)) {
1516 			ret = -EINVAL;
1517 			break;
1518 		}
1519 		if (get_user(uval, (u32 __user *)optval)) {
1520 			ret = -EFAULT;
1521 			break;
1522 		}
1523 
1524 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1525 			ret = -EBUSY;
1526 		} else {
1527 			mrt = ipmr_new_table(net, uval);
1528 			if (IS_ERR(mrt))
1529 				ret = PTR_ERR(mrt);
1530 			else
1531 				raw_sk(sk)->ipmr_table = uval;
1532 		}
1533 		break;
1534 	/* Spurious command, or MRT_VERSION which you cannot set. */
1535 	default:
1536 		ret = -ENOPROTOOPT;
1537 	}
1538 out_unlock:
1539 	rtnl_unlock();
1540 out:
1541 	return ret;
1542 }
1543 
1544 /* Getsock opt support for the multicast routing system. */
1545 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1546 {
1547 	int olr;
1548 	int val;
1549 	struct net *net = sock_net(sk);
1550 	struct mr_table *mrt;
1551 
1552 	if (sk->sk_type != SOCK_RAW ||
1553 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1554 		return -EOPNOTSUPP;
1555 
1556 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1557 	if (!mrt)
1558 		return -ENOENT;
1559 
1560 	switch (optname) {
1561 	case MRT_VERSION:
1562 		val = 0x0305;
1563 		break;
1564 	case MRT_PIM:
1565 		if (!ipmr_pimsm_enabled())
1566 			return -ENOPROTOOPT;
1567 		val = mrt->mroute_do_pim;
1568 		break;
1569 	case MRT_ASSERT:
1570 		val = mrt->mroute_do_assert;
1571 		break;
1572 	default:
1573 		return -ENOPROTOOPT;
1574 	}
1575 
1576 	if (get_user(olr, optlen))
1577 		return -EFAULT;
1578 	olr = min_t(unsigned int, olr, sizeof(int));
1579 	if (olr < 0)
1580 		return -EINVAL;
1581 	if (put_user(olr, optlen))
1582 		return -EFAULT;
1583 	if (copy_to_user(optval, &val, olr))
1584 		return -EFAULT;
1585 	return 0;
1586 }
1587 
1588 /* The IP multicast ioctl support routines. */
1589 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1590 {
1591 	struct sioc_sg_req sr;
1592 	struct sioc_vif_req vr;
1593 	struct vif_device *vif;
1594 	struct mfc_cache *c;
1595 	struct net *net = sock_net(sk);
1596 	struct mr_table *mrt;
1597 
1598 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1599 	if (!mrt)
1600 		return -ENOENT;
1601 
1602 	switch (cmd) {
1603 	case SIOCGETVIFCNT:
1604 		if (copy_from_user(&vr, arg, sizeof(vr)))
1605 			return -EFAULT;
1606 		if (vr.vifi >= mrt->maxvif)
1607 			return -EINVAL;
1608 		read_lock(&mrt_lock);
1609 		vif = &mrt->vif_table[vr.vifi];
1610 		if (VIF_EXISTS(mrt, vr.vifi)) {
1611 			vr.icount = vif->pkt_in;
1612 			vr.ocount = vif->pkt_out;
1613 			vr.ibytes = vif->bytes_in;
1614 			vr.obytes = vif->bytes_out;
1615 			read_unlock(&mrt_lock);
1616 
1617 			if (copy_to_user(arg, &vr, sizeof(vr)))
1618 				return -EFAULT;
1619 			return 0;
1620 		}
1621 		read_unlock(&mrt_lock);
1622 		return -EADDRNOTAVAIL;
1623 	case SIOCGETSGCNT:
1624 		if (copy_from_user(&sr, arg, sizeof(sr)))
1625 			return -EFAULT;
1626 
1627 		rcu_read_lock();
1628 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1629 		if (c) {
1630 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1631 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1632 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1633 			rcu_read_unlock();
1634 
1635 			if (copy_to_user(arg, &sr, sizeof(sr)))
1636 				return -EFAULT;
1637 			return 0;
1638 		}
1639 		rcu_read_unlock();
1640 		return -EADDRNOTAVAIL;
1641 	default:
1642 		return -ENOIOCTLCMD;
1643 	}
1644 }
1645 
1646 #ifdef CONFIG_COMPAT
1647 struct compat_sioc_sg_req {
1648 	struct in_addr src;
1649 	struct in_addr grp;
1650 	compat_ulong_t pktcnt;
1651 	compat_ulong_t bytecnt;
1652 	compat_ulong_t wrong_if;
1653 };
1654 
1655 struct compat_sioc_vif_req {
1656 	vifi_t	vifi;		/* Which iface */
1657 	compat_ulong_t icount;
1658 	compat_ulong_t ocount;
1659 	compat_ulong_t ibytes;
1660 	compat_ulong_t obytes;
1661 };
1662 
1663 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1664 {
1665 	struct compat_sioc_sg_req sr;
1666 	struct compat_sioc_vif_req vr;
1667 	struct vif_device *vif;
1668 	struct mfc_cache *c;
1669 	struct net *net = sock_net(sk);
1670 	struct mr_table *mrt;
1671 
1672 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1673 	if (!mrt)
1674 		return -ENOENT;
1675 
1676 	switch (cmd) {
1677 	case SIOCGETVIFCNT:
1678 		if (copy_from_user(&vr, arg, sizeof(vr)))
1679 			return -EFAULT;
1680 		if (vr.vifi >= mrt->maxvif)
1681 			return -EINVAL;
1682 		read_lock(&mrt_lock);
1683 		vif = &mrt->vif_table[vr.vifi];
1684 		if (VIF_EXISTS(mrt, vr.vifi)) {
1685 			vr.icount = vif->pkt_in;
1686 			vr.ocount = vif->pkt_out;
1687 			vr.ibytes = vif->bytes_in;
1688 			vr.obytes = vif->bytes_out;
1689 			read_unlock(&mrt_lock);
1690 
1691 			if (copy_to_user(arg, &vr, sizeof(vr)))
1692 				return -EFAULT;
1693 			return 0;
1694 		}
1695 		read_unlock(&mrt_lock);
1696 		return -EADDRNOTAVAIL;
1697 	case SIOCGETSGCNT:
1698 		if (copy_from_user(&sr, arg, sizeof(sr)))
1699 			return -EFAULT;
1700 
1701 		rcu_read_lock();
1702 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1703 		if (c) {
1704 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1705 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1706 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1707 			rcu_read_unlock();
1708 
1709 			if (copy_to_user(arg, &sr, sizeof(sr)))
1710 				return -EFAULT;
1711 			return 0;
1712 		}
1713 		rcu_read_unlock();
1714 		return -EADDRNOTAVAIL;
1715 	default:
1716 		return -ENOIOCTLCMD;
1717 	}
1718 }
1719 #endif
1720 
1721 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1722 {
1723 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1724 	struct net *net = dev_net(dev);
1725 	struct mr_table *mrt;
1726 	struct vif_device *v;
1727 	int ct;
1728 
1729 	if (event != NETDEV_UNREGISTER)
1730 		return NOTIFY_DONE;
1731 
1732 	ipmr_for_each_table(mrt, net) {
1733 		v = &mrt->vif_table[0];
1734 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1735 			if (v->dev == dev)
1736 				vif_delete(mrt, ct, 1, NULL);
1737 		}
1738 	}
1739 	return NOTIFY_DONE;
1740 }
1741 
1742 static struct notifier_block ip_mr_notifier = {
1743 	.notifier_call = ipmr_device_event,
1744 };
1745 
1746 /* Encapsulate a packet by attaching a valid IPIP header to it.
1747  * This avoids tunnel drivers and other mess and gives us the speed so
1748  * important for multicast video.
1749  */
1750 static void ip_encap(struct net *net, struct sk_buff *skb,
1751 		     __be32 saddr, __be32 daddr)
1752 {
1753 	struct iphdr *iph;
1754 	const struct iphdr *old_iph = ip_hdr(skb);
1755 
1756 	skb_push(skb, sizeof(struct iphdr));
1757 	skb->transport_header = skb->network_header;
1758 	skb_reset_network_header(skb);
1759 	iph = ip_hdr(skb);
1760 
1761 	iph->version	=	4;
1762 	iph->tos	=	old_iph->tos;
1763 	iph->ttl	=	old_iph->ttl;
1764 	iph->frag_off	=	0;
1765 	iph->daddr	=	daddr;
1766 	iph->saddr	=	saddr;
1767 	iph->protocol	=	IPPROTO_IPIP;
1768 	iph->ihl	=	5;
1769 	iph->tot_len	=	htons(skb->len);
1770 	ip_select_ident(net, skb, NULL);
1771 	ip_send_check(iph);
1772 
1773 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1774 	nf_reset(skb);
1775 }
1776 
1777 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1778 				      struct sk_buff *skb)
1779 {
1780 	struct ip_options *opt = &(IPCB(skb)->opt);
1781 
1782 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1783 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1784 
1785 	if (unlikely(opt->optlen))
1786 		ip_forward_options(skb);
1787 
1788 	return dst_output(net, sk, skb);
1789 }
1790 
1791 #ifdef CONFIG_NET_SWITCHDEV
1792 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1793 				   int in_vifi, int out_vifi)
1794 {
1795 	struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1796 	struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1797 
1798 	if (!skb->offload_mr_fwd_mark)
1799 		return false;
1800 	if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1801 		return false;
1802 	return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1803 					&in_vif->dev_parent_id);
1804 }
1805 #else
1806 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1807 				   int in_vifi, int out_vifi)
1808 {
1809 	return false;
1810 }
1811 #endif
1812 
1813 /* Processing handlers for ipmr_forward */
1814 
1815 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1816 			    int in_vifi, struct sk_buff *skb,
1817 			    struct mfc_cache *c, int vifi)
1818 {
1819 	const struct iphdr *iph = ip_hdr(skb);
1820 	struct vif_device *vif = &mrt->vif_table[vifi];
1821 	struct net_device *dev;
1822 	struct rtable *rt;
1823 	struct flowi4 fl4;
1824 	int    encap = 0;
1825 
1826 	if (!vif->dev)
1827 		goto out_free;
1828 
1829 	if (vif->flags & VIFF_REGISTER) {
1830 		vif->pkt_out++;
1831 		vif->bytes_out += skb->len;
1832 		vif->dev->stats.tx_bytes += skb->len;
1833 		vif->dev->stats.tx_packets++;
1834 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1835 		goto out_free;
1836 	}
1837 
1838 	if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1839 		goto out_free;
1840 
1841 	if (vif->flags & VIFF_TUNNEL) {
1842 		rt = ip_route_output_ports(net, &fl4, NULL,
1843 					   vif->remote, vif->local,
1844 					   0, 0,
1845 					   IPPROTO_IPIP,
1846 					   RT_TOS(iph->tos), vif->link);
1847 		if (IS_ERR(rt))
1848 			goto out_free;
1849 		encap = sizeof(struct iphdr);
1850 	} else {
1851 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1852 					   0, 0,
1853 					   IPPROTO_IPIP,
1854 					   RT_TOS(iph->tos), vif->link);
1855 		if (IS_ERR(rt))
1856 			goto out_free;
1857 	}
1858 
1859 	dev = rt->dst.dev;
1860 
1861 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1862 		/* Do not fragment multicasts. Alas, IPv4 does not
1863 		 * allow to send ICMP, so that packets will disappear
1864 		 * to blackhole.
1865 		 */
1866 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1867 		ip_rt_put(rt);
1868 		goto out_free;
1869 	}
1870 
1871 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1872 
1873 	if (skb_cow(skb, encap)) {
1874 		ip_rt_put(rt);
1875 		goto out_free;
1876 	}
1877 
1878 	vif->pkt_out++;
1879 	vif->bytes_out += skb->len;
1880 
1881 	skb_dst_drop(skb);
1882 	skb_dst_set(skb, &rt->dst);
1883 	ip_decrease_ttl(ip_hdr(skb));
1884 
1885 	/* FIXME: forward and output firewalls used to be called here.
1886 	 * What do we do with netfilter? -- RR
1887 	 */
1888 	if (vif->flags & VIFF_TUNNEL) {
1889 		ip_encap(net, skb, vif->local, vif->remote);
1890 		/* FIXME: extra output firewall step used to be here. --RR */
1891 		vif->dev->stats.tx_packets++;
1892 		vif->dev->stats.tx_bytes += skb->len;
1893 	}
1894 
1895 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1896 
1897 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1898 	 * not only before forwarding, but after forwarding on all output
1899 	 * interfaces. It is clear, if mrouter runs a multicasting
1900 	 * program, it should receive packets not depending to what interface
1901 	 * program is joined.
1902 	 * If we will not make it, the program will have to join on all
1903 	 * interfaces. On the other hand, multihoming host (or router, but
1904 	 * not mrouter) cannot join to more than one interface - it will
1905 	 * result in receiving multiple packets.
1906 	 */
1907 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1908 		net, NULL, skb, skb->dev, dev,
1909 		ipmr_forward_finish);
1910 	return;
1911 
1912 out_free:
1913 	kfree_skb(skb);
1914 }
1915 
1916 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1917 {
1918 	int ct;
1919 
1920 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1921 		if (mrt->vif_table[ct].dev == dev)
1922 			break;
1923 	}
1924 	return ct;
1925 }
1926 
1927 /* "local" means that we should preserve one skb (for local delivery) */
1928 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1929 			  struct net_device *dev, struct sk_buff *skb,
1930 			  struct mfc_cache *c, int local)
1931 {
1932 	int true_vifi = ipmr_find_vif(mrt, dev);
1933 	int psend = -1;
1934 	int vif, ct;
1935 
1936 	vif = c->_c.mfc_parent;
1937 	c->_c.mfc_un.res.pkt++;
1938 	c->_c.mfc_un.res.bytes += skb->len;
1939 	c->_c.mfc_un.res.lastuse = jiffies;
1940 
1941 	if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1942 		struct mfc_cache *cache_proxy;
1943 
1944 		/* For an (*,G) entry, we only check that the incomming
1945 		 * interface is part of the static tree.
1946 		 */
1947 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1948 		if (cache_proxy &&
1949 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1950 			goto forward;
1951 	}
1952 
1953 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1954 	if (mrt->vif_table[vif].dev != dev) {
1955 		if (rt_is_output_route(skb_rtable(skb))) {
1956 			/* It is our own packet, looped back.
1957 			 * Very complicated situation...
1958 			 *
1959 			 * The best workaround until routing daemons will be
1960 			 * fixed is not to redistribute packet, if it was
1961 			 * send through wrong interface. It means, that
1962 			 * multicast applications WILL NOT work for
1963 			 * (S,G), which have default multicast route pointing
1964 			 * to wrong oif. In any case, it is not a good
1965 			 * idea to use multicasting applications on router.
1966 			 */
1967 			goto dont_forward;
1968 		}
1969 
1970 		c->_c.mfc_un.res.wrong_if++;
1971 
1972 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1973 		    /* pimsm uses asserts, when switching from RPT to SPT,
1974 		     * so that we cannot check that packet arrived on an oif.
1975 		     * It is bad, but otherwise we would need to move pretty
1976 		     * large chunk of pimd to kernel. Ough... --ANK
1977 		     */
1978 		    (mrt->mroute_do_pim ||
1979 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1980 		    time_after(jiffies,
1981 			       c->_c.mfc_un.res.last_assert +
1982 			       MFC_ASSERT_THRESH)) {
1983 			c->_c.mfc_un.res.last_assert = jiffies;
1984 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1985 		}
1986 		goto dont_forward;
1987 	}
1988 
1989 forward:
1990 	mrt->vif_table[vif].pkt_in++;
1991 	mrt->vif_table[vif].bytes_in += skb->len;
1992 
1993 	/* Forward the frame */
1994 	if (c->mfc_origin == htonl(INADDR_ANY) &&
1995 	    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1996 		if (true_vifi >= 0 &&
1997 		    true_vifi != c->_c.mfc_parent &&
1998 		    ip_hdr(skb)->ttl >
1999 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2000 			/* It's an (*,*) entry and the packet is not coming from
2001 			 * the upstream: forward the packet to the upstream
2002 			 * only.
2003 			 */
2004 			psend = c->_c.mfc_parent;
2005 			goto last_forward;
2006 		}
2007 		goto dont_forward;
2008 	}
2009 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2010 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2011 		/* For (*,G) entry, don't forward to the incoming interface */
2012 		if ((c->mfc_origin != htonl(INADDR_ANY) ||
2013 		     ct != true_vifi) &&
2014 		    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2015 			if (psend != -1) {
2016 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2017 
2018 				if (skb2)
2019 					ipmr_queue_xmit(net, mrt, true_vifi,
2020 							skb2, c, psend);
2021 			}
2022 			psend = ct;
2023 		}
2024 	}
2025 last_forward:
2026 	if (psend != -1) {
2027 		if (local) {
2028 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2029 
2030 			if (skb2)
2031 				ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2032 						c, psend);
2033 		} else {
2034 			ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
2035 			return;
2036 		}
2037 	}
2038 
2039 dont_forward:
2040 	if (!local)
2041 		kfree_skb(skb);
2042 }
2043 
2044 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2045 {
2046 	struct rtable *rt = skb_rtable(skb);
2047 	struct iphdr *iph = ip_hdr(skb);
2048 	struct flowi4 fl4 = {
2049 		.daddr = iph->daddr,
2050 		.saddr = iph->saddr,
2051 		.flowi4_tos = RT_TOS(iph->tos),
2052 		.flowi4_oif = (rt_is_output_route(rt) ?
2053 			       skb->dev->ifindex : 0),
2054 		.flowi4_iif = (rt_is_output_route(rt) ?
2055 			       LOOPBACK_IFINDEX :
2056 			       skb->dev->ifindex),
2057 		.flowi4_mark = skb->mark,
2058 	};
2059 	struct mr_table *mrt;
2060 	int err;
2061 
2062 	err = ipmr_fib_lookup(net, &fl4, &mrt);
2063 	if (err)
2064 		return ERR_PTR(err);
2065 	return mrt;
2066 }
2067 
2068 /* Multicast packets for forwarding arrive here
2069  * Called with rcu_read_lock();
2070  */
2071 int ip_mr_input(struct sk_buff *skb)
2072 {
2073 	struct mfc_cache *cache;
2074 	struct net *net = dev_net(skb->dev);
2075 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2076 	struct mr_table *mrt;
2077 	struct net_device *dev;
2078 
2079 	/* skb->dev passed in is the loX master dev for vrfs.
2080 	 * As there are no vifs associated with loopback devices,
2081 	 * get the proper interface that does have a vif associated with it.
2082 	 */
2083 	dev = skb->dev;
2084 	if (netif_is_l3_master(skb->dev)) {
2085 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2086 		if (!dev) {
2087 			kfree_skb(skb);
2088 			return -ENODEV;
2089 		}
2090 	}
2091 
2092 	/* Packet is looped back after forward, it should not be
2093 	 * forwarded second time, but still can be delivered locally.
2094 	 */
2095 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
2096 		goto dont_forward;
2097 
2098 	mrt = ipmr_rt_fib_lookup(net, skb);
2099 	if (IS_ERR(mrt)) {
2100 		kfree_skb(skb);
2101 		return PTR_ERR(mrt);
2102 	}
2103 	if (!local) {
2104 		if (IPCB(skb)->opt.router_alert) {
2105 			if (ip_call_ra_chain(skb))
2106 				return 0;
2107 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2108 			/* IGMPv1 (and broken IGMPv2 implementations sort of
2109 			 * Cisco IOS <= 11.2(8)) do not put router alert
2110 			 * option to IGMP packets destined to routable
2111 			 * groups. It is very bad, because it means
2112 			 * that we can forward NO IGMP messages.
2113 			 */
2114 			struct sock *mroute_sk;
2115 
2116 			mroute_sk = rcu_dereference(mrt->mroute_sk);
2117 			if (mroute_sk) {
2118 				nf_reset(skb);
2119 				raw_rcv(mroute_sk, skb);
2120 				return 0;
2121 			}
2122 		    }
2123 	}
2124 
2125 	/* already under rcu_read_lock() */
2126 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2127 	if (!cache) {
2128 		int vif = ipmr_find_vif(mrt, dev);
2129 
2130 		if (vif >= 0)
2131 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2132 						    vif);
2133 	}
2134 
2135 	/* No usable cache entry */
2136 	if (!cache) {
2137 		int vif;
2138 
2139 		if (local) {
2140 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2141 			ip_local_deliver(skb);
2142 			if (!skb2)
2143 				return -ENOBUFS;
2144 			skb = skb2;
2145 		}
2146 
2147 		read_lock(&mrt_lock);
2148 		vif = ipmr_find_vif(mrt, dev);
2149 		if (vif >= 0) {
2150 			int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2151 			read_unlock(&mrt_lock);
2152 
2153 			return err2;
2154 		}
2155 		read_unlock(&mrt_lock);
2156 		kfree_skb(skb);
2157 		return -ENODEV;
2158 	}
2159 
2160 	read_lock(&mrt_lock);
2161 	ip_mr_forward(net, mrt, dev, skb, cache, local);
2162 	read_unlock(&mrt_lock);
2163 
2164 	if (local)
2165 		return ip_local_deliver(skb);
2166 
2167 	return 0;
2168 
2169 dont_forward:
2170 	if (local)
2171 		return ip_local_deliver(skb);
2172 	kfree_skb(skb);
2173 	return 0;
2174 }
2175 
2176 #ifdef CONFIG_IP_PIMSM_V1
2177 /* Handle IGMP messages of PIMv1 */
2178 int pim_rcv_v1(struct sk_buff *skb)
2179 {
2180 	struct igmphdr *pim;
2181 	struct net *net = dev_net(skb->dev);
2182 	struct mr_table *mrt;
2183 
2184 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2185 		goto drop;
2186 
2187 	pim = igmp_hdr(skb);
2188 
2189 	mrt = ipmr_rt_fib_lookup(net, skb);
2190 	if (IS_ERR(mrt))
2191 		goto drop;
2192 	if (!mrt->mroute_do_pim ||
2193 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2194 		goto drop;
2195 
2196 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2197 drop:
2198 		kfree_skb(skb);
2199 	}
2200 	return 0;
2201 }
2202 #endif
2203 
2204 #ifdef CONFIG_IP_PIMSM_V2
2205 static int pim_rcv(struct sk_buff *skb)
2206 {
2207 	struct pimreghdr *pim;
2208 	struct net *net = dev_net(skb->dev);
2209 	struct mr_table *mrt;
2210 
2211 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2212 		goto drop;
2213 
2214 	pim = (struct pimreghdr *)skb_transport_header(skb);
2215 	if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2216 	    (pim->flags & PIM_NULL_REGISTER) ||
2217 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2218 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2219 		goto drop;
2220 
2221 	mrt = ipmr_rt_fib_lookup(net, skb);
2222 	if (IS_ERR(mrt))
2223 		goto drop;
2224 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2225 drop:
2226 		kfree_skb(skb);
2227 	}
2228 	return 0;
2229 }
2230 #endif
2231 
2232 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2233 		   __be32 saddr, __be32 daddr,
2234 		   struct rtmsg *rtm, u32 portid)
2235 {
2236 	struct mfc_cache *cache;
2237 	struct mr_table *mrt;
2238 	int err;
2239 
2240 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2241 	if (!mrt)
2242 		return -ENOENT;
2243 
2244 	rcu_read_lock();
2245 	cache = ipmr_cache_find(mrt, saddr, daddr);
2246 	if (!cache && skb->dev) {
2247 		int vif = ipmr_find_vif(mrt, skb->dev);
2248 
2249 		if (vif >= 0)
2250 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2251 	}
2252 	if (!cache) {
2253 		struct sk_buff *skb2;
2254 		struct iphdr *iph;
2255 		struct net_device *dev;
2256 		int vif = -1;
2257 
2258 		dev = skb->dev;
2259 		read_lock(&mrt_lock);
2260 		if (dev)
2261 			vif = ipmr_find_vif(mrt, dev);
2262 		if (vif < 0) {
2263 			read_unlock(&mrt_lock);
2264 			rcu_read_unlock();
2265 			return -ENODEV;
2266 		}
2267 		skb2 = skb_clone(skb, GFP_ATOMIC);
2268 		if (!skb2) {
2269 			read_unlock(&mrt_lock);
2270 			rcu_read_unlock();
2271 			return -ENOMEM;
2272 		}
2273 
2274 		NETLINK_CB(skb2).portid = portid;
2275 		skb_push(skb2, sizeof(struct iphdr));
2276 		skb_reset_network_header(skb2);
2277 		iph = ip_hdr(skb2);
2278 		iph->ihl = sizeof(struct iphdr) >> 2;
2279 		iph->saddr = saddr;
2280 		iph->daddr = daddr;
2281 		iph->version = 0;
2282 		err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2283 		read_unlock(&mrt_lock);
2284 		rcu_read_unlock();
2285 		return err;
2286 	}
2287 
2288 	read_lock(&mrt_lock);
2289 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2290 	read_unlock(&mrt_lock);
2291 	rcu_read_unlock();
2292 	return err;
2293 }
2294 
2295 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2296 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2297 			    int flags)
2298 {
2299 	struct nlmsghdr *nlh;
2300 	struct rtmsg *rtm;
2301 	int err;
2302 
2303 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2304 	if (!nlh)
2305 		return -EMSGSIZE;
2306 
2307 	rtm = nlmsg_data(nlh);
2308 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2309 	rtm->rtm_dst_len  = 32;
2310 	rtm->rtm_src_len  = 32;
2311 	rtm->rtm_tos      = 0;
2312 	rtm->rtm_table    = mrt->id;
2313 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2314 		goto nla_put_failure;
2315 	rtm->rtm_type     = RTN_MULTICAST;
2316 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2317 	if (c->_c.mfc_flags & MFC_STATIC)
2318 		rtm->rtm_protocol = RTPROT_STATIC;
2319 	else
2320 		rtm->rtm_protocol = RTPROT_MROUTED;
2321 	rtm->rtm_flags    = 0;
2322 
2323 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2324 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2325 		goto nla_put_failure;
2326 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2327 	/* do not break the dump if cache is unresolved */
2328 	if (err < 0 && err != -ENOENT)
2329 		goto nla_put_failure;
2330 
2331 	nlmsg_end(skb, nlh);
2332 	return 0;
2333 
2334 nla_put_failure:
2335 	nlmsg_cancel(skb, nlh);
2336 	return -EMSGSIZE;
2337 }
2338 
2339 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2340 			     u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2341 			     int flags)
2342 {
2343 	return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2344 				cmd, flags);
2345 }
2346 
2347 static size_t mroute_msgsize(bool unresolved, int maxvif)
2348 {
2349 	size_t len =
2350 		NLMSG_ALIGN(sizeof(struct rtmsg))
2351 		+ nla_total_size(4)	/* RTA_TABLE */
2352 		+ nla_total_size(4)	/* RTA_SRC */
2353 		+ nla_total_size(4)	/* RTA_DST */
2354 		;
2355 
2356 	if (!unresolved)
2357 		len = len
2358 		      + nla_total_size(4)	/* RTA_IIF */
2359 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2360 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2361 						/* RTA_MFC_STATS */
2362 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2363 		;
2364 
2365 	return len;
2366 }
2367 
2368 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2369 				 int cmd)
2370 {
2371 	struct net *net = read_pnet(&mrt->net);
2372 	struct sk_buff *skb;
2373 	int err = -ENOBUFS;
2374 
2375 	skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2376 				       mrt->maxvif),
2377 			GFP_ATOMIC);
2378 	if (!skb)
2379 		goto errout;
2380 
2381 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2382 	if (err < 0)
2383 		goto errout;
2384 
2385 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2386 	return;
2387 
2388 errout:
2389 	kfree_skb(skb);
2390 	if (err < 0)
2391 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2392 }
2393 
2394 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2395 {
2396 	size_t len =
2397 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2398 		+ nla_total_size(1)	/* IPMRA_CREPORT_MSGTYPE */
2399 		+ nla_total_size(4)	/* IPMRA_CREPORT_VIF_ID */
2400 		+ nla_total_size(4)	/* IPMRA_CREPORT_SRC_ADDR */
2401 		+ nla_total_size(4)	/* IPMRA_CREPORT_DST_ADDR */
2402 					/* IPMRA_CREPORT_PKT */
2403 		+ nla_total_size(payloadlen)
2404 		;
2405 
2406 	return len;
2407 }
2408 
2409 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2410 {
2411 	struct net *net = read_pnet(&mrt->net);
2412 	struct nlmsghdr *nlh;
2413 	struct rtgenmsg *rtgenm;
2414 	struct igmpmsg *msg;
2415 	struct sk_buff *skb;
2416 	struct nlattr *nla;
2417 	int payloadlen;
2418 
2419 	payloadlen = pkt->len - sizeof(struct igmpmsg);
2420 	msg = (struct igmpmsg *)skb_network_header(pkt);
2421 
2422 	skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2423 	if (!skb)
2424 		goto errout;
2425 
2426 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2427 			sizeof(struct rtgenmsg), 0);
2428 	if (!nlh)
2429 		goto errout;
2430 	rtgenm = nlmsg_data(nlh);
2431 	rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2432 	if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2433 	    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2434 	    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2435 			    msg->im_src.s_addr) ||
2436 	    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2437 			    msg->im_dst.s_addr))
2438 		goto nla_put_failure;
2439 
2440 	nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2441 	if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2442 				  nla_data(nla), payloadlen))
2443 		goto nla_put_failure;
2444 
2445 	nlmsg_end(skb, nlh);
2446 
2447 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2448 	return;
2449 
2450 nla_put_failure:
2451 	nlmsg_cancel(skb, nlh);
2452 errout:
2453 	kfree_skb(skb);
2454 	rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2455 }
2456 
2457 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2458 			     struct netlink_ext_ack *extack)
2459 {
2460 	struct net *net = sock_net(in_skb->sk);
2461 	struct nlattr *tb[RTA_MAX + 1];
2462 	struct sk_buff *skb = NULL;
2463 	struct mfc_cache *cache;
2464 	struct mr_table *mrt;
2465 	struct rtmsg *rtm;
2466 	__be32 src, grp;
2467 	u32 tableid;
2468 	int err;
2469 
2470 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2471 			  rtm_ipv4_policy, extack);
2472 	if (err < 0)
2473 		goto errout;
2474 
2475 	rtm = nlmsg_data(nlh);
2476 
2477 	src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2478 	grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2479 	tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2480 
2481 	mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2482 	if (!mrt) {
2483 		err = -ENOENT;
2484 		goto errout_free;
2485 	}
2486 
2487 	/* entries are added/deleted only under RTNL */
2488 	rcu_read_lock();
2489 	cache = ipmr_cache_find(mrt, src, grp);
2490 	rcu_read_unlock();
2491 	if (!cache) {
2492 		err = -ENOENT;
2493 		goto errout_free;
2494 	}
2495 
2496 	skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2497 	if (!skb) {
2498 		err = -ENOBUFS;
2499 		goto errout_free;
2500 	}
2501 
2502 	err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2503 			       nlh->nlmsg_seq, cache,
2504 			       RTM_NEWROUTE, 0);
2505 	if (err < 0)
2506 		goto errout_free;
2507 
2508 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2509 
2510 errout:
2511 	return err;
2512 
2513 errout_free:
2514 	kfree_skb(skb);
2515 	goto errout;
2516 }
2517 
2518 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2519 {
2520 	return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2521 				_ipmr_fill_mroute, &mfc_unres_lock);
2522 }
2523 
2524 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2525 	[RTA_SRC]	= { .type = NLA_U32 },
2526 	[RTA_DST]	= { .type = NLA_U32 },
2527 	[RTA_IIF]	= { .type = NLA_U32 },
2528 	[RTA_TABLE]	= { .type = NLA_U32 },
2529 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2530 };
2531 
2532 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2533 {
2534 	switch (rtm_protocol) {
2535 	case RTPROT_STATIC:
2536 	case RTPROT_MROUTED:
2537 		return true;
2538 	}
2539 	return false;
2540 }
2541 
2542 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2543 {
2544 	struct rtnexthop *rtnh = nla_data(nla);
2545 	int remaining = nla_len(nla), vifi = 0;
2546 
2547 	while (rtnh_ok(rtnh, remaining)) {
2548 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2549 		if (++vifi == MAXVIFS)
2550 			break;
2551 		rtnh = rtnh_next(rtnh, &remaining);
2552 	}
2553 
2554 	return remaining > 0 ? -EINVAL : vifi;
2555 }
2556 
2557 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2558 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2559 			    struct mfcctl *mfcc, int *mrtsock,
2560 			    struct mr_table **mrtret,
2561 			    struct netlink_ext_ack *extack)
2562 {
2563 	struct net_device *dev = NULL;
2564 	u32 tblid = RT_TABLE_DEFAULT;
2565 	struct mr_table *mrt;
2566 	struct nlattr *attr;
2567 	struct rtmsg *rtm;
2568 	int ret, rem;
2569 
2570 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2571 			     extack);
2572 	if (ret < 0)
2573 		goto out;
2574 	rtm = nlmsg_data(nlh);
2575 
2576 	ret = -EINVAL;
2577 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2578 	    rtm->rtm_type != RTN_MULTICAST ||
2579 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2580 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2581 		goto out;
2582 
2583 	memset(mfcc, 0, sizeof(*mfcc));
2584 	mfcc->mfcc_parent = -1;
2585 	ret = 0;
2586 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2587 		switch (nla_type(attr)) {
2588 		case RTA_SRC:
2589 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2590 			break;
2591 		case RTA_DST:
2592 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2593 			break;
2594 		case RTA_IIF:
2595 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2596 			if (!dev) {
2597 				ret = -ENODEV;
2598 				goto out;
2599 			}
2600 			break;
2601 		case RTA_MULTIPATH:
2602 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2603 				ret = -EINVAL;
2604 				goto out;
2605 			}
2606 			break;
2607 		case RTA_PREFSRC:
2608 			ret = 1;
2609 			break;
2610 		case RTA_TABLE:
2611 			tblid = nla_get_u32(attr);
2612 			break;
2613 		}
2614 	}
2615 	mrt = ipmr_get_table(net, tblid);
2616 	if (!mrt) {
2617 		ret = -ENOENT;
2618 		goto out;
2619 	}
2620 	*mrtret = mrt;
2621 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2622 	if (dev)
2623 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2624 
2625 out:
2626 	return ret;
2627 }
2628 
2629 /* takes care of both newroute and delroute */
2630 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2631 			  struct netlink_ext_ack *extack)
2632 {
2633 	struct net *net = sock_net(skb->sk);
2634 	int ret, mrtsock, parent;
2635 	struct mr_table *tbl;
2636 	struct mfcctl mfcc;
2637 
2638 	mrtsock = 0;
2639 	tbl = NULL;
2640 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2641 	if (ret < 0)
2642 		return ret;
2643 
2644 	parent = ret ? mfcc.mfcc_parent : -1;
2645 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2646 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2647 	else
2648 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2649 }
2650 
2651 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2652 {
2653 	u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2654 
2655 	if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2656 	    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2657 	    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2658 			mrt->mroute_reg_vif_num) ||
2659 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2660 		       mrt->mroute_do_assert) ||
2661 	    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
2662 		return false;
2663 
2664 	return true;
2665 }
2666 
2667 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2668 {
2669 	struct nlattr *vif_nest;
2670 	struct vif_device *vif;
2671 
2672 	/* if the VIF doesn't exist just continue */
2673 	if (!VIF_EXISTS(mrt, vifid))
2674 		return true;
2675 
2676 	vif = &mrt->vif_table[vifid];
2677 	vif_nest = nla_nest_start(skb, IPMRA_VIF);
2678 	if (!vif_nest)
2679 		return false;
2680 	if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2681 	    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2682 	    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2683 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2684 			      IPMRA_VIFA_PAD) ||
2685 	    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2686 			      IPMRA_VIFA_PAD) ||
2687 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2688 			      IPMRA_VIFA_PAD) ||
2689 	    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2690 			      IPMRA_VIFA_PAD) ||
2691 	    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2692 	    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2693 		nla_nest_cancel(skb, vif_nest);
2694 		return false;
2695 	}
2696 	nla_nest_end(skb, vif_nest);
2697 
2698 	return true;
2699 }
2700 
2701 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2702 {
2703 	struct net *net = sock_net(skb->sk);
2704 	struct nlmsghdr *nlh = NULL;
2705 	unsigned int t = 0, s_t;
2706 	unsigned int e = 0, s_e;
2707 	struct mr_table *mrt;
2708 
2709 	s_t = cb->args[0];
2710 	s_e = cb->args[1];
2711 
2712 	ipmr_for_each_table(mrt, net) {
2713 		struct nlattr *vifs, *af;
2714 		struct ifinfomsg *hdr;
2715 		u32 i;
2716 
2717 		if (t < s_t)
2718 			goto skip_table;
2719 		nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2720 				cb->nlh->nlmsg_seq, RTM_NEWLINK,
2721 				sizeof(*hdr), NLM_F_MULTI);
2722 		if (!nlh)
2723 			break;
2724 
2725 		hdr = nlmsg_data(nlh);
2726 		memset(hdr, 0, sizeof(*hdr));
2727 		hdr->ifi_family = RTNL_FAMILY_IPMR;
2728 
2729 		af = nla_nest_start(skb, IFLA_AF_SPEC);
2730 		if (!af) {
2731 			nlmsg_cancel(skb, nlh);
2732 			goto out;
2733 		}
2734 
2735 		if (!ipmr_fill_table(mrt, skb)) {
2736 			nlmsg_cancel(skb, nlh);
2737 			goto out;
2738 		}
2739 
2740 		vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2741 		if (!vifs) {
2742 			nla_nest_end(skb, af);
2743 			nlmsg_end(skb, nlh);
2744 			goto out;
2745 		}
2746 		for (i = 0; i < mrt->maxvif; i++) {
2747 			if (e < s_e)
2748 				goto skip_entry;
2749 			if (!ipmr_fill_vif(mrt, i, skb)) {
2750 				nla_nest_end(skb, vifs);
2751 				nla_nest_end(skb, af);
2752 				nlmsg_end(skb, nlh);
2753 				goto out;
2754 			}
2755 skip_entry:
2756 			e++;
2757 		}
2758 		s_e = 0;
2759 		e = 0;
2760 		nla_nest_end(skb, vifs);
2761 		nla_nest_end(skb, af);
2762 		nlmsg_end(skb, nlh);
2763 skip_table:
2764 		t++;
2765 	}
2766 
2767 out:
2768 	cb->args[1] = e;
2769 	cb->args[0] = t;
2770 
2771 	return skb->len;
2772 }
2773 
2774 #ifdef CONFIG_PROC_FS
2775 /* The /proc interfaces to multicast routing :
2776  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2777  */
2778 
2779 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2780 	__acquires(mrt_lock)
2781 {
2782 	struct mr_vif_iter *iter = seq->private;
2783 	struct net *net = seq_file_net(seq);
2784 	struct mr_table *mrt;
2785 
2786 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2787 	if (!mrt)
2788 		return ERR_PTR(-ENOENT);
2789 
2790 	iter->mrt = mrt;
2791 
2792 	read_lock(&mrt_lock);
2793 	return mr_vif_seq_start(seq, pos);
2794 }
2795 
2796 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2797 	__releases(mrt_lock)
2798 {
2799 	read_unlock(&mrt_lock);
2800 }
2801 
2802 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2803 {
2804 	struct mr_vif_iter *iter = seq->private;
2805 	struct mr_table *mrt = iter->mrt;
2806 
2807 	if (v == SEQ_START_TOKEN) {
2808 		seq_puts(seq,
2809 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2810 	} else {
2811 		const struct vif_device *vif = v;
2812 		const char *name =  vif->dev ?
2813 				    vif->dev->name : "none";
2814 
2815 		seq_printf(seq,
2816 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2817 			   vif - mrt->vif_table,
2818 			   name, vif->bytes_in, vif->pkt_in,
2819 			   vif->bytes_out, vif->pkt_out,
2820 			   vif->flags, vif->local, vif->remote);
2821 	}
2822 	return 0;
2823 }
2824 
2825 static const struct seq_operations ipmr_vif_seq_ops = {
2826 	.start = ipmr_vif_seq_start,
2827 	.next  = mr_vif_seq_next,
2828 	.stop  = ipmr_vif_seq_stop,
2829 	.show  = ipmr_vif_seq_show,
2830 };
2831 
2832 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2833 {
2834 	struct net *net = seq_file_net(seq);
2835 	struct mr_table *mrt;
2836 
2837 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2838 	if (!mrt)
2839 		return ERR_PTR(-ENOENT);
2840 
2841 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2842 }
2843 
2844 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2845 {
2846 	int n;
2847 
2848 	if (v == SEQ_START_TOKEN) {
2849 		seq_puts(seq,
2850 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2851 	} else {
2852 		const struct mfc_cache *mfc = v;
2853 		const struct mr_mfc_iter *it = seq->private;
2854 		const struct mr_table *mrt = it->mrt;
2855 
2856 		seq_printf(seq, "%08X %08X %-3hd",
2857 			   (__force u32) mfc->mfc_mcastgrp,
2858 			   (__force u32) mfc->mfc_origin,
2859 			   mfc->_c.mfc_parent);
2860 
2861 		if (it->cache != &mrt->mfc_unres_queue) {
2862 			seq_printf(seq, " %8lu %8lu %8lu",
2863 				   mfc->_c.mfc_un.res.pkt,
2864 				   mfc->_c.mfc_un.res.bytes,
2865 				   mfc->_c.mfc_un.res.wrong_if);
2866 			for (n = mfc->_c.mfc_un.res.minvif;
2867 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
2868 				if (VIF_EXISTS(mrt, n) &&
2869 				    mfc->_c.mfc_un.res.ttls[n] < 255)
2870 					seq_printf(seq,
2871 					   " %2d:%-3d",
2872 					   n, mfc->_c.mfc_un.res.ttls[n]);
2873 			}
2874 		} else {
2875 			/* unresolved mfc_caches don't contain
2876 			 * pkt, bytes and wrong_if values
2877 			 */
2878 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2879 		}
2880 		seq_putc(seq, '\n');
2881 	}
2882 	return 0;
2883 }
2884 
2885 static const struct seq_operations ipmr_mfc_seq_ops = {
2886 	.start = ipmr_mfc_seq_start,
2887 	.next  = mr_mfc_seq_next,
2888 	.stop  = mr_mfc_seq_stop,
2889 	.show  = ipmr_mfc_seq_show,
2890 };
2891 #endif
2892 
2893 #ifdef CONFIG_IP_PIMSM_V2
2894 static const struct net_protocol pim_protocol = {
2895 	.handler	=	pim_rcv,
2896 	.netns_ok	=	1,
2897 };
2898 #endif
2899 
2900 static unsigned int ipmr_seq_read(struct net *net)
2901 {
2902 	ASSERT_RTNL();
2903 
2904 	return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
2905 }
2906 
2907 static int ipmr_dump(struct net *net, struct notifier_block *nb)
2908 {
2909 	return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
2910 		       ipmr_mr_table_iter, &mrt_lock);
2911 }
2912 
2913 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
2914 	.family		= RTNL_FAMILY_IPMR,
2915 	.fib_seq_read	= ipmr_seq_read,
2916 	.fib_dump	= ipmr_dump,
2917 	.owner		= THIS_MODULE,
2918 };
2919 
2920 static int __net_init ipmr_notifier_init(struct net *net)
2921 {
2922 	struct fib_notifier_ops *ops;
2923 
2924 	net->ipv4.ipmr_seq = 0;
2925 
2926 	ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
2927 	if (IS_ERR(ops))
2928 		return PTR_ERR(ops);
2929 	net->ipv4.ipmr_notifier_ops = ops;
2930 
2931 	return 0;
2932 }
2933 
2934 static void __net_exit ipmr_notifier_exit(struct net *net)
2935 {
2936 	fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
2937 	net->ipv4.ipmr_notifier_ops = NULL;
2938 }
2939 
2940 /* Setup for IP multicast routing */
2941 static int __net_init ipmr_net_init(struct net *net)
2942 {
2943 	int err;
2944 
2945 	err = ipmr_notifier_init(net);
2946 	if (err)
2947 		goto ipmr_notifier_fail;
2948 
2949 	err = ipmr_rules_init(net);
2950 	if (err < 0)
2951 		goto ipmr_rules_fail;
2952 
2953 #ifdef CONFIG_PROC_FS
2954 	err = -ENOMEM;
2955 	if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
2956 			sizeof(struct mr_vif_iter)))
2957 		goto proc_vif_fail;
2958 	if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
2959 			sizeof(struct mr_mfc_iter)))
2960 		goto proc_cache_fail;
2961 #endif
2962 	return 0;
2963 
2964 #ifdef CONFIG_PROC_FS
2965 proc_cache_fail:
2966 	remove_proc_entry("ip_mr_vif", net->proc_net);
2967 proc_vif_fail:
2968 	ipmr_rules_exit(net);
2969 #endif
2970 ipmr_rules_fail:
2971 	ipmr_notifier_exit(net);
2972 ipmr_notifier_fail:
2973 	return err;
2974 }
2975 
2976 static void __net_exit ipmr_net_exit(struct net *net)
2977 {
2978 #ifdef CONFIG_PROC_FS
2979 	remove_proc_entry("ip_mr_cache", net->proc_net);
2980 	remove_proc_entry("ip_mr_vif", net->proc_net);
2981 #endif
2982 	ipmr_notifier_exit(net);
2983 	ipmr_rules_exit(net);
2984 }
2985 
2986 static struct pernet_operations ipmr_net_ops = {
2987 	.init = ipmr_net_init,
2988 	.exit = ipmr_net_exit,
2989 };
2990 
2991 int __init ip_mr_init(void)
2992 {
2993 	int err;
2994 
2995 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2996 				       sizeof(struct mfc_cache),
2997 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2998 				       NULL);
2999 
3000 	err = register_pernet_subsys(&ipmr_net_ops);
3001 	if (err)
3002 		goto reg_pernet_fail;
3003 
3004 	err = register_netdevice_notifier(&ip_mr_notifier);
3005 	if (err)
3006 		goto reg_notif_fail;
3007 #ifdef CONFIG_IP_PIMSM_V2
3008 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3009 		pr_err("%s: can't add PIM protocol\n", __func__);
3010 		err = -EAGAIN;
3011 		goto add_proto_fail;
3012 	}
3013 #endif
3014 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3015 		      ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3016 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3017 		      ipmr_rtm_route, NULL, 0);
3018 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3019 		      ipmr_rtm_route, NULL, 0);
3020 
3021 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3022 		      NULL, ipmr_rtm_dumplink, 0);
3023 	return 0;
3024 
3025 #ifdef CONFIG_IP_PIMSM_V2
3026 add_proto_fail:
3027 	unregister_netdevice_notifier(&ip_mr_notifier);
3028 #endif
3029 reg_notif_fail:
3030 	unregister_pernet_subsys(&ipmr_net_ops);
3031 reg_pernet_fail:
3032 	kmem_cache_destroy(mrt_cachep);
3033 	return err;
3034 }
3035