xref: /openbmc/linux/net/ipv4/ipmr.c (revision f3a8b664)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70 
71 struct ipmr_rule {
72 	struct fib_rule		common;
73 };
74 
75 struct ipmr_result {
76 	struct mr_table		*mrt;
77 };
78 
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80  * Note that the changes are semaphored via rtnl_lock.
81  */
82 
83 static DEFINE_RWLOCK(mrt_lock);
84 
85 /* Multicast router control variables */
86 
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89 
90 /* We return to original Alan's scheme. Hash table of resolved
91  * entries is changed only in process context and protected
92  * with weak lock mrt_lock. Queue of unresolved entries is protected
93  * with strong spinlock mfc_unres_lock.
94  *
95  * In this case data path is free of exclusive locks at all.
96  */
97 
98 static struct kmem_cache *mrt_cachep __read_mostly;
99 
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102 
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 			  struct sk_buff *skb, struct mfc_cache *cache,
105 			  int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 			     struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 			      struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 				 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114 
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118 
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 	struct mr_table *mrt;
122 
123 	ipmr_for_each_table(mrt, net) {
124 		if (mrt->id == id)
125 			return mrt;
126 	}
127 	return NULL;
128 }
129 
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 			   struct mr_table **mrt)
132 {
133 	int err;
134 	struct ipmr_result res;
135 	struct fib_lookup_arg arg = {
136 		.result = &res,
137 		.flags = FIB_LOOKUP_NOREF,
138 	};
139 
140 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
141 			       flowi4_to_flowi(flp4), 0, &arg);
142 	if (err < 0)
143 		return err;
144 	*mrt = res.mrt;
145 	return 0;
146 }
147 
148 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
149 			    int flags, struct fib_lookup_arg *arg)
150 {
151 	struct ipmr_result *res = arg->result;
152 	struct mr_table *mrt;
153 
154 	switch (rule->action) {
155 	case FR_ACT_TO_TBL:
156 		break;
157 	case FR_ACT_UNREACHABLE:
158 		return -ENETUNREACH;
159 	case FR_ACT_PROHIBIT:
160 		return -EACCES;
161 	case FR_ACT_BLACKHOLE:
162 	default:
163 		return -EINVAL;
164 	}
165 
166 	mrt = ipmr_get_table(rule->fr_net, rule->table);
167 	if (!mrt)
168 		return -EAGAIN;
169 	res->mrt = mrt;
170 	return 0;
171 }
172 
173 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
174 {
175 	return 1;
176 }
177 
178 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
179 	FRA_GENERIC_POLICY,
180 };
181 
182 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
183 			       struct fib_rule_hdr *frh, struct nlattr **tb)
184 {
185 	return 0;
186 }
187 
188 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
189 			     struct nlattr **tb)
190 {
191 	return 1;
192 }
193 
194 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
195 			  struct fib_rule_hdr *frh)
196 {
197 	frh->dst_len = 0;
198 	frh->src_len = 0;
199 	frh->tos     = 0;
200 	return 0;
201 }
202 
203 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
204 	.family		= RTNL_FAMILY_IPMR,
205 	.rule_size	= sizeof(struct ipmr_rule),
206 	.addr_size	= sizeof(u32),
207 	.action		= ipmr_rule_action,
208 	.match		= ipmr_rule_match,
209 	.configure	= ipmr_rule_configure,
210 	.compare	= ipmr_rule_compare,
211 	.fill		= ipmr_rule_fill,
212 	.nlgroup	= RTNLGRP_IPV4_RULE,
213 	.policy		= ipmr_rule_policy,
214 	.owner		= THIS_MODULE,
215 };
216 
217 static int __net_init ipmr_rules_init(struct net *net)
218 {
219 	struct fib_rules_ops *ops;
220 	struct mr_table *mrt;
221 	int err;
222 
223 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
224 	if (IS_ERR(ops))
225 		return PTR_ERR(ops);
226 
227 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
228 
229 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
230 	if (IS_ERR(mrt)) {
231 		err = PTR_ERR(mrt);
232 		goto err1;
233 	}
234 
235 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
236 	if (err < 0)
237 		goto err2;
238 
239 	net->ipv4.mr_rules_ops = ops;
240 	return 0;
241 
242 err2:
243 	ipmr_free_table(mrt);
244 err1:
245 	fib_rules_unregister(ops);
246 	return err;
247 }
248 
249 static void __net_exit ipmr_rules_exit(struct net *net)
250 {
251 	struct mr_table *mrt, *next;
252 
253 	rtnl_lock();
254 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
255 		list_del(&mrt->list);
256 		ipmr_free_table(mrt);
257 	}
258 	fib_rules_unregister(net->ipv4.mr_rules_ops);
259 	rtnl_unlock();
260 }
261 #else
262 #define ipmr_for_each_table(mrt, net) \
263 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
264 
265 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
266 {
267 	return net->ipv4.mrt;
268 }
269 
270 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
271 			   struct mr_table **mrt)
272 {
273 	*mrt = net->ipv4.mrt;
274 	return 0;
275 }
276 
277 static int __net_init ipmr_rules_init(struct net *net)
278 {
279 	struct mr_table *mrt;
280 
281 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
282 	if (IS_ERR(mrt))
283 		return PTR_ERR(mrt);
284 	net->ipv4.mrt = mrt;
285 	return 0;
286 }
287 
288 static void __net_exit ipmr_rules_exit(struct net *net)
289 {
290 	rtnl_lock();
291 	ipmr_free_table(net->ipv4.mrt);
292 	net->ipv4.mrt = NULL;
293 	rtnl_unlock();
294 }
295 #endif
296 
297 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
298 {
299 	struct mr_table *mrt;
300 	unsigned int i;
301 
302 	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
303 	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
304 		return ERR_PTR(-EINVAL);
305 
306 	mrt = ipmr_get_table(net, id);
307 	if (mrt)
308 		return mrt;
309 
310 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
311 	if (!mrt)
312 		return ERR_PTR(-ENOMEM);
313 	write_pnet(&mrt->net, net);
314 	mrt->id = id;
315 
316 	/* Forwarding cache */
317 	for (i = 0; i < MFC_LINES; i++)
318 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
319 
320 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
321 
322 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
323 		    (unsigned long)mrt);
324 
325 	mrt->mroute_reg_vif_num = -1;
326 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
327 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
328 #endif
329 	return mrt;
330 }
331 
332 static void ipmr_free_table(struct mr_table *mrt)
333 {
334 	del_timer_sync(&mrt->ipmr_expire_timer);
335 	mroute_clean_tables(mrt, true);
336 	kfree(mrt);
337 }
338 
339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
340 
341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
342 {
343 	struct net *net = dev_net(dev);
344 
345 	dev_close(dev);
346 
347 	dev = __dev_get_by_name(net, "tunl0");
348 	if (dev) {
349 		const struct net_device_ops *ops = dev->netdev_ops;
350 		struct ifreq ifr;
351 		struct ip_tunnel_parm p;
352 
353 		memset(&p, 0, sizeof(p));
354 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
355 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
356 		p.iph.version = 4;
357 		p.iph.ihl = 5;
358 		p.iph.protocol = IPPROTO_IPIP;
359 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
360 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
361 
362 		if (ops->ndo_do_ioctl) {
363 			mm_segment_t oldfs = get_fs();
364 
365 			set_fs(KERNEL_DS);
366 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
367 			set_fs(oldfs);
368 		}
369 	}
370 }
371 
372 /* Initialize ipmr pimreg/tunnel in_device */
373 static bool ipmr_init_vif_indev(const struct net_device *dev)
374 {
375 	struct in_device *in_dev;
376 
377 	ASSERT_RTNL();
378 
379 	in_dev = __in_dev_get_rtnl(dev);
380 	if (!in_dev)
381 		return false;
382 	ipv4_devconf_setall(in_dev);
383 	neigh_parms_data_state_setall(in_dev->arp_parms);
384 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
385 
386 	return true;
387 }
388 
389 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
390 {
391 	struct net_device  *dev;
392 
393 	dev = __dev_get_by_name(net, "tunl0");
394 
395 	if (dev) {
396 		const struct net_device_ops *ops = dev->netdev_ops;
397 		int err;
398 		struct ifreq ifr;
399 		struct ip_tunnel_parm p;
400 
401 		memset(&p, 0, sizeof(p));
402 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
403 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
404 		p.iph.version = 4;
405 		p.iph.ihl = 5;
406 		p.iph.protocol = IPPROTO_IPIP;
407 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
408 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
409 
410 		if (ops->ndo_do_ioctl) {
411 			mm_segment_t oldfs = get_fs();
412 
413 			set_fs(KERNEL_DS);
414 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
415 			set_fs(oldfs);
416 		} else {
417 			err = -EOPNOTSUPP;
418 		}
419 		dev = NULL;
420 
421 		if (err == 0 &&
422 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
423 			dev->flags |= IFF_MULTICAST;
424 			if (!ipmr_init_vif_indev(dev))
425 				goto failure;
426 			if (dev_open(dev))
427 				goto failure;
428 			dev_hold(dev);
429 		}
430 	}
431 	return dev;
432 
433 failure:
434 	unregister_netdevice(dev);
435 	return NULL;
436 }
437 
438 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
439 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
440 {
441 	struct net *net = dev_net(dev);
442 	struct mr_table *mrt;
443 	struct flowi4 fl4 = {
444 		.flowi4_oif	= dev->ifindex,
445 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
446 		.flowi4_mark	= skb->mark,
447 	};
448 	int err;
449 
450 	err = ipmr_fib_lookup(net, &fl4, &mrt);
451 	if (err < 0) {
452 		kfree_skb(skb);
453 		return err;
454 	}
455 
456 	read_lock(&mrt_lock);
457 	dev->stats.tx_bytes += skb->len;
458 	dev->stats.tx_packets++;
459 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
460 	read_unlock(&mrt_lock);
461 	kfree_skb(skb);
462 	return NETDEV_TX_OK;
463 }
464 
465 static int reg_vif_get_iflink(const struct net_device *dev)
466 {
467 	return 0;
468 }
469 
470 static const struct net_device_ops reg_vif_netdev_ops = {
471 	.ndo_start_xmit	= reg_vif_xmit,
472 	.ndo_get_iflink = reg_vif_get_iflink,
473 };
474 
475 static void reg_vif_setup(struct net_device *dev)
476 {
477 	dev->type		= ARPHRD_PIMREG;
478 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
479 	dev->flags		= IFF_NOARP;
480 	dev->netdev_ops		= &reg_vif_netdev_ops;
481 	dev->destructor		= free_netdev;
482 	dev->features		|= NETIF_F_NETNS_LOCAL;
483 }
484 
485 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
486 {
487 	struct net_device *dev;
488 	char name[IFNAMSIZ];
489 
490 	if (mrt->id == RT_TABLE_DEFAULT)
491 		sprintf(name, "pimreg");
492 	else
493 		sprintf(name, "pimreg%u", mrt->id);
494 
495 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
496 
497 	if (!dev)
498 		return NULL;
499 
500 	dev_net_set(dev, net);
501 
502 	if (register_netdevice(dev)) {
503 		free_netdev(dev);
504 		return NULL;
505 	}
506 
507 	if (!ipmr_init_vif_indev(dev))
508 		goto failure;
509 	if (dev_open(dev))
510 		goto failure;
511 
512 	dev_hold(dev);
513 
514 	return dev;
515 
516 failure:
517 	unregister_netdevice(dev);
518 	return NULL;
519 }
520 
521 /* called with rcu_read_lock() */
522 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
523 		     unsigned int pimlen)
524 {
525 	struct net_device *reg_dev = NULL;
526 	struct iphdr *encap;
527 
528 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
529 	/* Check that:
530 	 * a. packet is really sent to a multicast group
531 	 * b. packet is not a NULL-REGISTER
532 	 * c. packet is not truncated
533 	 */
534 	if (!ipv4_is_multicast(encap->daddr) ||
535 	    encap->tot_len == 0 ||
536 	    ntohs(encap->tot_len) + pimlen > skb->len)
537 		return 1;
538 
539 	read_lock(&mrt_lock);
540 	if (mrt->mroute_reg_vif_num >= 0)
541 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
542 	read_unlock(&mrt_lock);
543 
544 	if (!reg_dev)
545 		return 1;
546 
547 	skb->mac_header = skb->network_header;
548 	skb_pull(skb, (u8 *)encap - skb->data);
549 	skb_reset_network_header(skb);
550 	skb->protocol = htons(ETH_P_IP);
551 	skb->ip_summed = CHECKSUM_NONE;
552 
553 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
554 
555 	netif_rx(skb);
556 
557 	return NET_RX_SUCCESS;
558 }
559 #else
560 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
561 {
562 	return NULL;
563 }
564 #endif
565 
566 /**
567  *	vif_delete - Delete a VIF entry
568  *	@notify: Set to 1, if the caller is a notifier_call
569  */
570 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
571 		      struct list_head *head)
572 {
573 	struct vif_device *v;
574 	struct net_device *dev;
575 	struct in_device *in_dev;
576 
577 	if (vifi < 0 || vifi >= mrt->maxvif)
578 		return -EADDRNOTAVAIL;
579 
580 	v = &mrt->vif_table[vifi];
581 
582 	write_lock_bh(&mrt_lock);
583 	dev = v->dev;
584 	v->dev = NULL;
585 
586 	if (!dev) {
587 		write_unlock_bh(&mrt_lock);
588 		return -EADDRNOTAVAIL;
589 	}
590 
591 	if (vifi == mrt->mroute_reg_vif_num)
592 		mrt->mroute_reg_vif_num = -1;
593 
594 	if (vifi + 1 == mrt->maxvif) {
595 		int tmp;
596 
597 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
598 			if (VIF_EXISTS(mrt, tmp))
599 				break;
600 		}
601 		mrt->maxvif = tmp+1;
602 	}
603 
604 	write_unlock_bh(&mrt_lock);
605 
606 	dev_set_allmulti(dev, -1);
607 
608 	in_dev = __in_dev_get_rtnl(dev);
609 	if (in_dev) {
610 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
611 		inet_netconf_notify_devconf(dev_net(dev),
612 					    NETCONFA_MC_FORWARDING,
613 					    dev->ifindex, &in_dev->cnf);
614 		ip_rt_multicast_event(in_dev);
615 	}
616 
617 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
618 		unregister_netdevice_queue(dev, head);
619 
620 	dev_put(dev);
621 	return 0;
622 }
623 
624 static void ipmr_cache_free_rcu(struct rcu_head *head)
625 {
626 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
627 
628 	kmem_cache_free(mrt_cachep, c);
629 }
630 
631 static inline void ipmr_cache_free(struct mfc_cache *c)
632 {
633 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
634 }
635 
636 /* Destroy an unresolved cache entry, killing queued skbs
637  * and reporting error to netlink readers.
638  */
639 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
640 {
641 	struct net *net = read_pnet(&mrt->net);
642 	struct sk_buff *skb;
643 	struct nlmsgerr *e;
644 
645 	atomic_dec(&mrt->cache_resolve_queue_len);
646 
647 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
648 		if (ip_hdr(skb)->version == 0) {
649 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
650 			nlh->nlmsg_type = NLMSG_ERROR;
651 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
652 			skb_trim(skb, nlh->nlmsg_len);
653 			e = nlmsg_data(nlh);
654 			e->error = -ETIMEDOUT;
655 			memset(&e->msg, 0, sizeof(e->msg));
656 
657 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
658 		} else {
659 			kfree_skb(skb);
660 		}
661 	}
662 
663 	ipmr_cache_free(c);
664 }
665 
666 /* Timer process for the unresolved queue. */
667 static void ipmr_expire_process(unsigned long arg)
668 {
669 	struct mr_table *mrt = (struct mr_table *)arg;
670 	unsigned long now;
671 	unsigned long expires;
672 	struct mfc_cache *c, *next;
673 
674 	if (!spin_trylock(&mfc_unres_lock)) {
675 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
676 		return;
677 	}
678 
679 	if (list_empty(&mrt->mfc_unres_queue))
680 		goto out;
681 
682 	now = jiffies;
683 	expires = 10*HZ;
684 
685 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
686 		if (time_after(c->mfc_un.unres.expires, now)) {
687 			unsigned long interval = c->mfc_un.unres.expires - now;
688 			if (interval < expires)
689 				expires = interval;
690 			continue;
691 		}
692 
693 		list_del(&c->list);
694 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
695 		ipmr_destroy_unres(mrt, c);
696 	}
697 
698 	if (!list_empty(&mrt->mfc_unres_queue))
699 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
700 
701 out:
702 	spin_unlock(&mfc_unres_lock);
703 }
704 
705 /* Fill oifs list. It is called under write locked mrt_lock. */
706 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
707 				   unsigned char *ttls)
708 {
709 	int vifi;
710 
711 	cache->mfc_un.res.minvif = MAXVIFS;
712 	cache->mfc_un.res.maxvif = 0;
713 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
714 
715 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
716 		if (VIF_EXISTS(mrt, vifi) &&
717 		    ttls[vifi] && ttls[vifi] < 255) {
718 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
719 			if (cache->mfc_un.res.minvif > vifi)
720 				cache->mfc_un.res.minvif = vifi;
721 			if (cache->mfc_un.res.maxvif <= vifi)
722 				cache->mfc_un.res.maxvif = vifi + 1;
723 		}
724 	}
725 	cache->mfc_un.res.lastuse = jiffies;
726 }
727 
728 static int vif_add(struct net *net, struct mr_table *mrt,
729 		   struct vifctl *vifc, int mrtsock)
730 {
731 	int vifi = vifc->vifc_vifi;
732 	struct vif_device *v = &mrt->vif_table[vifi];
733 	struct net_device *dev;
734 	struct in_device *in_dev;
735 	int err;
736 
737 	/* Is vif busy ? */
738 	if (VIF_EXISTS(mrt, vifi))
739 		return -EADDRINUSE;
740 
741 	switch (vifc->vifc_flags) {
742 	case VIFF_REGISTER:
743 		if (!ipmr_pimsm_enabled())
744 			return -EINVAL;
745 		/* Special Purpose VIF in PIM
746 		 * All the packets will be sent to the daemon
747 		 */
748 		if (mrt->mroute_reg_vif_num >= 0)
749 			return -EADDRINUSE;
750 		dev = ipmr_reg_vif(net, mrt);
751 		if (!dev)
752 			return -ENOBUFS;
753 		err = dev_set_allmulti(dev, 1);
754 		if (err) {
755 			unregister_netdevice(dev);
756 			dev_put(dev);
757 			return err;
758 		}
759 		break;
760 	case VIFF_TUNNEL:
761 		dev = ipmr_new_tunnel(net, vifc);
762 		if (!dev)
763 			return -ENOBUFS;
764 		err = dev_set_allmulti(dev, 1);
765 		if (err) {
766 			ipmr_del_tunnel(dev, vifc);
767 			dev_put(dev);
768 			return err;
769 		}
770 		break;
771 	case VIFF_USE_IFINDEX:
772 	case 0:
773 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
774 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
775 			if (dev && !__in_dev_get_rtnl(dev)) {
776 				dev_put(dev);
777 				return -EADDRNOTAVAIL;
778 			}
779 		} else {
780 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
781 		}
782 		if (!dev)
783 			return -EADDRNOTAVAIL;
784 		err = dev_set_allmulti(dev, 1);
785 		if (err) {
786 			dev_put(dev);
787 			return err;
788 		}
789 		break;
790 	default:
791 		return -EINVAL;
792 	}
793 
794 	in_dev = __in_dev_get_rtnl(dev);
795 	if (!in_dev) {
796 		dev_put(dev);
797 		return -EADDRNOTAVAIL;
798 	}
799 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
800 	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
801 				    &in_dev->cnf);
802 	ip_rt_multicast_event(in_dev);
803 
804 	/* Fill in the VIF structures */
805 
806 	v->rate_limit = vifc->vifc_rate_limit;
807 	v->local = vifc->vifc_lcl_addr.s_addr;
808 	v->remote = vifc->vifc_rmt_addr.s_addr;
809 	v->flags = vifc->vifc_flags;
810 	if (!mrtsock)
811 		v->flags |= VIFF_STATIC;
812 	v->threshold = vifc->vifc_threshold;
813 	v->bytes_in = 0;
814 	v->bytes_out = 0;
815 	v->pkt_in = 0;
816 	v->pkt_out = 0;
817 	v->link = dev->ifindex;
818 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
819 		v->link = dev_get_iflink(dev);
820 
821 	/* And finish update writing critical data */
822 	write_lock_bh(&mrt_lock);
823 	v->dev = dev;
824 	if (v->flags & VIFF_REGISTER)
825 		mrt->mroute_reg_vif_num = vifi;
826 	if (vifi+1 > mrt->maxvif)
827 		mrt->maxvif = vifi+1;
828 	write_unlock_bh(&mrt_lock);
829 	return 0;
830 }
831 
832 /* called with rcu_read_lock() */
833 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
834 					 __be32 origin,
835 					 __be32 mcastgrp)
836 {
837 	int line = MFC_HASH(mcastgrp, origin);
838 	struct mfc_cache *c;
839 
840 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
841 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
842 			return c;
843 	}
844 	return NULL;
845 }
846 
847 /* Look for a (*,*,oif) entry */
848 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
849 						    int vifi)
850 {
851 	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
852 	struct mfc_cache *c;
853 
854 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
855 		if (c->mfc_origin == htonl(INADDR_ANY) &&
856 		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
857 		    c->mfc_un.res.ttls[vifi] < 255)
858 			return c;
859 
860 	return NULL;
861 }
862 
863 /* Look for a (*,G) entry */
864 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
865 					     __be32 mcastgrp, int vifi)
866 {
867 	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
868 	struct mfc_cache *c, *proxy;
869 
870 	if (mcastgrp == htonl(INADDR_ANY))
871 		goto skip;
872 
873 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
874 		if (c->mfc_origin == htonl(INADDR_ANY) &&
875 		    c->mfc_mcastgrp == mcastgrp) {
876 			if (c->mfc_un.res.ttls[vifi] < 255)
877 				return c;
878 
879 			/* It's ok if the vifi is part of the static tree */
880 			proxy = ipmr_cache_find_any_parent(mrt,
881 							   c->mfc_parent);
882 			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
883 				return c;
884 		}
885 
886 skip:
887 	return ipmr_cache_find_any_parent(mrt, vifi);
888 }
889 
890 /* Allocate a multicast cache entry */
891 static struct mfc_cache *ipmr_cache_alloc(void)
892 {
893 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
894 
895 	if (c) {
896 		c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
897 		c->mfc_un.res.minvif = MAXVIFS;
898 	}
899 	return c;
900 }
901 
902 static struct mfc_cache *ipmr_cache_alloc_unres(void)
903 {
904 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
905 
906 	if (c) {
907 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
908 		c->mfc_un.unres.expires = jiffies + 10*HZ;
909 	}
910 	return c;
911 }
912 
913 /* A cache entry has gone into a resolved state from queued */
914 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
915 			       struct mfc_cache *uc, struct mfc_cache *c)
916 {
917 	struct sk_buff *skb;
918 	struct nlmsgerr *e;
919 
920 	/* Play the pending entries through our router */
921 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
922 		if (ip_hdr(skb)->version == 0) {
923 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
924 
925 			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
926 				nlh->nlmsg_len = skb_tail_pointer(skb) -
927 						 (u8 *)nlh;
928 			} else {
929 				nlh->nlmsg_type = NLMSG_ERROR;
930 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
931 				skb_trim(skb, nlh->nlmsg_len);
932 				e = nlmsg_data(nlh);
933 				e->error = -EMSGSIZE;
934 				memset(&e->msg, 0, sizeof(e->msg));
935 			}
936 
937 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
938 		} else {
939 			ip_mr_forward(net, mrt, skb, c, 0);
940 		}
941 	}
942 }
943 
944 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
945  * expects the following bizarre scheme.
946  *
947  * Called under mrt_lock.
948  */
949 static int ipmr_cache_report(struct mr_table *mrt,
950 			     struct sk_buff *pkt, vifi_t vifi, int assert)
951 {
952 	const int ihl = ip_hdrlen(pkt);
953 	struct sock *mroute_sk;
954 	struct igmphdr *igmp;
955 	struct igmpmsg *msg;
956 	struct sk_buff *skb;
957 	int ret;
958 
959 	if (assert == IGMPMSG_WHOLEPKT)
960 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
961 	else
962 		skb = alloc_skb(128, GFP_ATOMIC);
963 
964 	if (!skb)
965 		return -ENOBUFS;
966 
967 	if (assert == IGMPMSG_WHOLEPKT) {
968 		/* Ugly, but we have no choice with this interface.
969 		 * Duplicate old header, fix ihl, length etc.
970 		 * And all this only to mangle msg->im_msgtype and
971 		 * to set msg->im_mbz to "mbz" :-)
972 		 */
973 		skb_push(skb, sizeof(struct iphdr));
974 		skb_reset_network_header(skb);
975 		skb_reset_transport_header(skb);
976 		msg = (struct igmpmsg *)skb_network_header(skb);
977 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
978 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
979 		msg->im_mbz = 0;
980 		msg->im_vif = mrt->mroute_reg_vif_num;
981 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
982 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
983 					     sizeof(struct iphdr));
984 	} else {
985 		/* Copy the IP header */
986 		skb_set_network_header(skb, skb->len);
987 		skb_put(skb, ihl);
988 		skb_copy_to_linear_data(skb, pkt->data, ihl);
989 		/* Flag to the kernel this is a route add */
990 		ip_hdr(skb)->protocol = 0;
991 		msg = (struct igmpmsg *)skb_network_header(skb);
992 		msg->im_vif = vifi;
993 		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
994 		/* Add our header */
995 		igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
996 		igmp->type = assert;
997 		msg->im_msgtype = assert;
998 		igmp->code = 0;
999 		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
1000 		skb->transport_header = skb->network_header;
1001 	}
1002 
1003 	rcu_read_lock();
1004 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1005 	if (!mroute_sk) {
1006 		rcu_read_unlock();
1007 		kfree_skb(skb);
1008 		return -EINVAL;
1009 	}
1010 
1011 	/* Deliver to mrouted */
1012 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1013 	rcu_read_unlock();
1014 	if (ret < 0) {
1015 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1016 		kfree_skb(skb);
1017 	}
1018 
1019 	return ret;
1020 }
1021 
1022 /* Queue a packet for resolution. It gets locked cache entry! */
1023 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1024 				 struct sk_buff *skb)
1025 {
1026 	bool found = false;
1027 	int err;
1028 	struct mfc_cache *c;
1029 	const struct iphdr *iph = ip_hdr(skb);
1030 
1031 	spin_lock_bh(&mfc_unres_lock);
1032 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1033 		if (c->mfc_mcastgrp == iph->daddr &&
1034 		    c->mfc_origin == iph->saddr) {
1035 			found = true;
1036 			break;
1037 		}
1038 	}
1039 
1040 	if (!found) {
1041 		/* Create a new entry if allowable */
1042 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1043 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1044 			spin_unlock_bh(&mfc_unres_lock);
1045 
1046 			kfree_skb(skb);
1047 			return -ENOBUFS;
1048 		}
1049 
1050 		/* Fill in the new cache entry */
1051 		c->mfc_parent	= -1;
1052 		c->mfc_origin	= iph->saddr;
1053 		c->mfc_mcastgrp	= iph->daddr;
1054 
1055 		/* Reflect first query at mrouted. */
1056 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1057 		if (err < 0) {
1058 			/* If the report failed throw the cache entry
1059 			   out - Brad Parker
1060 			 */
1061 			spin_unlock_bh(&mfc_unres_lock);
1062 
1063 			ipmr_cache_free(c);
1064 			kfree_skb(skb);
1065 			return err;
1066 		}
1067 
1068 		atomic_inc(&mrt->cache_resolve_queue_len);
1069 		list_add(&c->list, &mrt->mfc_unres_queue);
1070 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1071 
1072 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1073 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1074 	}
1075 
1076 	/* See if we can append the packet */
1077 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1078 		kfree_skb(skb);
1079 		err = -ENOBUFS;
1080 	} else {
1081 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1082 		err = 0;
1083 	}
1084 
1085 	spin_unlock_bh(&mfc_unres_lock);
1086 	return err;
1087 }
1088 
1089 /* MFC cache manipulation by user space mroute daemon */
1090 
1091 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1092 {
1093 	int line;
1094 	struct mfc_cache *c, *next;
1095 
1096 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1097 
1098 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1099 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1100 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1101 		    (parent == -1 || parent == c->mfc_parent)) {
1102 			list_del_rcu(&c->list);
1103 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1104 			ipmr_cache_free(c);
1105 			return 0;
1106 		}
1107 	}
1108 	return -ENOENT;
1109 }
1110 
1111 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1112 			struct mfcctl *mfc, int mrtsock, int parent)
1113 {
1114 	bool found = false;
1115 	int line;
1116 	struct mfc_cache *uc, *c;
1117 
1118 	if (mfc->mfcc_parent >= MAXVIFS)
1119 		return -ENFILE;
1120 
1121 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1122 
1123 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1124 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1125 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1126 		    (parent == -1 || parent == c->mfc_parent)) {
1127 			found = true;
1128 			break;
1129 		}
1130 	}
1131 
1132 	if (found) {
1133 		write_lock_bh(&mrt_lock);
1134 		c->mfc_parent = mfc->mfcc_parent;
1135 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1136 		if (!mrtsock)
1137 			c->mfc_flags |= MFC_STATIC;
1138 		write_unlock_bh(&mrt_lock);
1139 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1140 		return 0;
1141 	}
1142 
1143 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1144 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1145 		return -EINVAL;
1146 
1147 	c = ipmr_cache_alloc();
1148 	if (!c)
1149 		return -ENOMEM;
1150 
1151 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1152 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1153 	c->mfc_parent = mfc->mfcc_parent;
1154 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1155 	if (!mrtsock)
1156 		c->mfc_flags |= MFC_STATIC;
1157 
1158 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1159 
1160 	/* Check to see if we resolved a queued list. If so we
1161 	 * need to send on the frames and tidy up.
1162 	 */
1163 	found = false;
1164 	spin_lock_bh(&mfc_unres_lock);
1165 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1166 		if (uc->mfc_origin == c->mfc_origin &&
1167 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1168 			list_del(&uc->list);
1169 			atomic_dec(&mrt->cache_resolve_queue_len);
1170 			found = true;
1171 			break;
1172 		}
1173 	}
1174 	if (list_empty(&mrt->mfc_unres_queue))
1175 		del_timer(&mrt->ipmr_expire_timer);
1176 	spin_unlock_bh(&mfc_unres_lock);
1177 
1178 	if (found) {
1179 		ipmr_cache_resolve(net, mrt, uc, c);
1180 		ipmr_cache_free(uc);
1181 	}
1182 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1183 	return 0;
1184 }
1185 
1186 /* Close the multicast socket, and clear the vif tables etc */
1187 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1188 {
1189 	int i;
1190 	LIST_HEAD(list);
1191 	struct mfc_cache *c, *next;
1192 
1193 	/* Shut down all active vif entries */
1194 	for (i = 0; i < mrt->maxvif; i++) {
1195 		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1196 			continue;
1197 		vif_delete(mrt, i, 0, &list);
1198 	}
1199 	unregister_netdevice_many(&list);
1200 
1201 	/* Wipe the cache */
1202 	for (i = 0; i < MFC_LINES; i++) {
1203 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1204 			if (!all && (c->mfc_flags & MFC_STATIC))
1205 				continue;
1206 			list_del_rcu(&c->list);
1207 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1208 			ipmr_cache_free(c);
1209 		}
1210 	}
1211 
1212 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1213 		spin_lock_bh(&mfc_unres_lock);
1214 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1215 			list_del(&c->list);
1216 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1217 			ipmr_destroy_unres(mrt, c);
1218 		}
1219 		spin_unlock_bh(&mfc_unres_lock);
1220 	}
1221 }
1222 
1223 /* called from ip_ra_control(), before an RCU grace period,
1224  * we dont need to call synchronize_rcu() here
1225  */
1226 static void mrtsock_destruct(struct sock *sk)
1227 {
1228 	struct net *net = sock_net(sk);
1229 	struct mr_table *mrt;
1230 
1231 	rtnl_lock();
1232 	ipmr_for_each_table(mrt, net) {
1233 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1234 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1235 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1236 						    NETCONFA_IFINDEX_ALL,
1237 						    net->ipv4.devconf_all);
1238 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1239 			mroute_clean_tables(mrt, false);
1240 		}
1241 	}
1242 	rtnl_unlock();
1243 }
1244 
1245 /* Socket options and virtual interface manipulation. The whole
1246  * virtual interface system is a complete heap, but unfortunately
1247  * that's how BSD mrouted happens to think. Maybe one day with a proper
1248  * MOSPF/PIM router set up we can clean this up.
1249  */
1250 
1251 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1252 			 unsigned int optlen)
1253 {
1254 	struct net *net = sock_net(sk);
1255 	int val, ret = 0, parent = 0;
1256 	struct mr_table *mrt;
1257 	struct vifctl vif;
1258 	struct mfcctl mfc;
1259 	u32 uval;
1260 
1261 	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1262 	rtnl_lock();
1263 	if (sk->sk_type != SOCK_RAW ||
1264 	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1265 		ret = -EOPNOTSUPP;
1266 		goto out_unlock;
1267 	}
1268 
1269 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1270 	if (!mrt) {
1271 		ret = -ENOENT;
1272 		goto out_unlock;
1273 	}
1274 	if (optname != MRT_INIT) {
1275 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1276 		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1277 			ret = -EACCES;
1278 			goto out_unlock;
1279 		}
1280 	}
1281 
1282 	switch (optname) {
1283 	case MRT_INIT:
1284 		if (optlen != sizeof(int)) {
1285 			ret = -EINVAL;
1286 			break;
1287 		}
1288 		if (rtnl_dereference(mrt->mroute_sk)) {
1289 			ret = -EADDRINUSE;
1290 			break;
1291 		}
1292 
1293 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1294 		if (ret == 0) {
1295 			rcu_assign_pointer(mrt->mroute_sk, sk);
1296 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1297 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1298 						    NETCONFA_IFINDEX_ALL,
1299 						    net->ipv4.devconf_all);
1300 		}
1301 		break;
1302 	case MRT_DONE:
1303 		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1304 			ret = -EACCES;
1305 		} else {
1306 			/* We need to unlock here because mrtsock_destruct takes
1307 			 * care of rtnl itself and we can't change that due to
1308 			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1309 			 */
1310 			rtnl_unlock();
1311 			ret = ip_ra_control(sk, 0, NULL);
1312 			goto out;
1313 		}
1314 		break;
1315 	case MRT_ADD_VIF:
1316 	case MRT_DEL_VIF:
1317 		if (optlen != sizeof(vif)) {
1318 			ret = -EINVAL;
1319 			break;
1320 		}
1321 		if (copy_from_user(&vif, optval, sizeof(vif))) {
1322 			ret = -EFAULT;
1323 			break;
1324 		}
1325 		if (vif.vifc_vifi >= MAXVIFS) {
1326 			ret = -ENFILE;
1327 			break;
1328 		}
1329 		if (optname == MRT_ADD_VIF) {
1330 			ret = vif_add(net, mrt, &vif,
1331 				      sk == rtnl_dereference(mrt->mroute_sk));
1332 		} else {
1333 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1334 		}
1335 		break;
1336 	/* Manipulate the forwarding caches. These live
1337 	 * in a sort of kernel/user symbiosis.
1338 	 */
1339 	case MRT_ADD_MFC:
1340 	case MRT_DEL_MFC:
1341 		parent = -1;
1342 	case MRT_ADD_MFC_PROXY:
1343 	case MRT_DEL_MFC_PROXY:
1344 		if (optlen != sizeof(mfc)) {
1345 			ret = -EINVAL;
1346 			break;
1347 		}
1348 		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1349 			ret = -EFAULT;
1350 			break;
1351 		}
1352 		if (parent == 0)
1353 			parent = mfc.mfcc_parent;
1354 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1355 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1356 		else
1357 			ret = ipmr_mfc_add(net, mrt, &mfc,
1358 					   sk == rtnl_dereference(mrt->mroute_sk),
1359 					   parent);
1360 		break;
1361 	/* Control PIM assert. */
1362 	case MRT_ASSERT:
1363 		if (optlen != sizeof(val)) {
1364 			ret = -EINVAL;
1365 			break;
1366 		}
1367 		if (get_user(val, (int __user *)optval)) {
1368 			ret = -EFAULT;
1369 			break;
1370 		}
1371 		mrt->mroute_do_assert = val;
1372 		break;
1373 	case MRT_PIM:
1374 		if (!ipmr_pimsm_enabled()) {
1375 			ret = -ENOPROTOOPT;
1376 			break;
1377 		}
1378 		if (optlen != sizeof(val)) {
1379 			ret = -EINVAL;
1380 			break;
1381 		}
1382 		if (get_user(val, (int __user *)optval)) {
1383 			ret = -EFAULT;
1384 			break;
1385 		}
1386 
1387 		val = !!val;
1388 		if (val != mrt->mroute_do_pim) {
1389 			mrt->mroute_do_pim = val;
1390 			mrt->mroute_do_assert = val;
1391 		}
1392 		break;
1393 	case MRT_TABLE:
1394 		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1395 			ret = -ENOPROTOOPT;
1396 			break;
1397 		}
1398 		if (optlen != sizeof(uval)) {
1399 			ret = -EINVAL;
1400 			break;
1401 		}
1402 		if (get_user(uval, (u32 __user *)optval)) {
1403 			ret = -EFAULT;
1404 			break;
1405 		}
1406 
1407 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1408 			ret = -EBUSY;
1409 		} else {
1410 			mrt = ipmr_new_table(net, uval);
1411 			if (IS_ERR(mrt))
1412 				ret = PTR_ERR(mrt);
1413 			else
1414 				raw_sk(sk)->ipmr_table = uval;
1415 		}
1416 		break;
1417 	/* Spurious command, or MRT_VERSION which you cannot set. */
1418 	default:
1419 		ret = -ENOPROTOOPT;
1420 	}
1421 out_unlock:
1422 	rtnl_unlock();
1423 out:
1424 	return ret;
1425 }
1426 
1427 /* Getsock opt support for the multicast routing system. */
1428 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1429 {
1430 	int olr;
1431 	int val;
1432 	struct net *net = sock_net(sk);
1433 	struct mr_table *mrt;
1434 
1435 	if (sk->sk_type != SOCK_RAW ||
1436 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1437 		return -EOPNOTSUPP;
1438 
1439 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1440 	if (!mrt)
1441 		return -ENOENT;
1442 
1443 	switch (optname) {
1444 	case MRT_VERSION:
1445 		val = 0x0305;
1446 		break;
1447 	case MRT_PIM:
1448 		if (!ipmr_pimsm_enabled())
1449 			return -ENOPROTOOPT;
1450 		val = mrt->mroute_do_pim;
1451 		break;
1452 	case MRT_ASSERT:
1453 		val = mrt->mroute_do_assert;
1454 		break;
1455 	default:
1456 		return -ENOPROTOOPT;
1457 	}
1458 
1459 	if (get_user(olr, optlen))
1460 		return -EFAULT;
1461 	olr = min_t(unsigned int, olr, sizeof(int));
1462 	if (olr < 0)
1463 		return -EINVAL;
1464 	if (put_user(olr, optlen))
1465 		return -EFAULT;
1466 	if (copy_to_user(optval, &val, olr))
1467 		return -EFAULT;
1468 	return 0;
1469 }
1470 
1471 /* The IP multicast ioctl support routines. */
1472 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1473 {
1474 	struct sioc_sg_req sr;
1475 	struct sioc_vif_req vr;
1476 	struct vif_device *vif;
1477 	struct mfc_cache *c;
1478 	struct net *net = sock_net(sk);
1479 	struct mr_table *mrt;
1480 
1481 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1482 	if (!mrt)
1483 		return -ENOENT;
1484 
1485 	switch (cmd) {
1486 	case SIOCGETVIFCNT:
1487 		if (copy_from_user(&vr, arg, sizeof(vr)))
1488 			return -EFAULT;
1489 		if (vr.vifi >= mrt->maxvif)
1490 			return -EINVAL;
1491 		read_lock(&mrt_lock);
1492 		vif = &mrt->vif_table[vr.vifi];
1493 		if (VIF_EXISTS(mrt, vr.vifi)) {
1494 			vr.icount = vif->pkt_in;
1495 			vr.ocount = vif->pkt_out;
1496 			vr.ibytes = vif->bytes_in;
1497 			vr.obytes = vif->bytes_out;
1498 			read_unlock(&mrt_lock);
1499 
1500 			if (copy_to_user(arg, &vr, sizeof(vr)))
1501 				return -EFAULT;
1502 			return 0;
1503 		}
1504 		read_unlock(&mrt_lock);
1505 		return -EADDRNOTAVAIL;
1506 	case SIOCGETSGCNT:
1507 		if (copy_from_user(&sr, arg, sizeof(sr)))
1508 			return -EFAULT;
1509 
1510 		rcu_read_lock();
1511 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1512 		if (c) {
1513 			sr.pktcnt = c->mfc_un.res.pkt;
1514 			sr.bytecnt = c->mfc_un.res.bytes;
1515 			sr.wrong_if = c->mfc_un.res.wrong_if;
1516 			rcu_read_unlock();
1517 
1518 			if (copy_to_user(arg, &sr, sizeof(sr)))
1519 				return -EFAULT;
1520 			return 0;
1521 		}
1522 		rcu_read_unlock();
1523 		return -EADDRNOTAVAIL;
1524 	default:
1525 		return -ENOIOCTLCMD;
1526 	}
1527 }
1528 
1529 #ifdef CONFIG_COMPAT
1530 struct compat_sioc_sg_req {
1531 	struct in_addr src;
1532 	struct in_addr grp;
1533 	compat_ulong_t pktcnt;
1534 	compat_ulong_t bytecnt;
1535 	compat_ulong_t wrong_if;
1536 };
1537 
1538 struct compat_sioc_vif_req {
1539 	vifi_t	vifi;		/* Which iface */
1540 	compat_ulong_t icount;
1541 	compat_ulong_t ocount;
1542 	compat_ulong_t ibytes;
1543 	compat_ulong_t obytes;
1544 };
1545 
1546 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1547 {
1548 	struct compat_sioc_sg_req sr;
1549 	struct compat_sioc_vif_req vr;
1550 	struct vif_device *vif;
1551 	struct mfc_cache *c;
1552 	struct net *net = sock_net(sk);
1553 	struct mr_table *mrt;
1554 
1555 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1556 	if (!mrt)
1557 		return -ENOENT;
1558 
1559 	switch (cmd) {
1560 	case SIOCGETVIFCNT:
1561 		if (copy_from_user(&vr, arg, sizeof(vr)))
1562 			return -EFAULT;
1563 		if (vr.vifi >= mrt->maxvif)
1564 			return -EINVAL;
1565 		read_lock(&mrt_lock);
1566 		vif = &mrt->vif_table[vr.vifi];
1567 		if (VIF_EXISTS(mrt, vr.vifi)) {
1568 			vr.icount = vif->pkt_in;
1569 			vr.ocount = vif->pkt_out;
1570 			vr.ibytes = vif->bytes_in;
1571 			vr.obytes = vif->bytes_out;
1572 			read_unlock(&mrt_lock);
1573 
1574 			if (copy_to_user(arg, &vr, sizeof(vr)))
1575 				return -EFAULT;
1576 			return 0;
1577 		}
1578 		read_unlock(&mrt_lock);
1579 		return -EADDRNOTAVAIL;
1580 	case SIOCGETSGCNT:
1581 		if (copy_from_user(&sr, arg, sizeof(sr)))
1582 			return -EFAULT;
1583 
1584 		rcu_read_lock();
1585 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1586 		if (c) {
1587 			sr.pktcnt = c->mfc_un.res.pkt;
1588 			sr.bytecnt = c->mfc_un.res.bytes;
1589 			sr.wrong_if = c->mfc_un.res.wrong_if;
1590 			rcu_read_unlock();
1591 
1592 			if (copy_to_user(arg, &sr, sizeof(sr)))
1593 				return -EFAULT;
1594 			return 0;
1595 		}
1596 		rcu_read_unlock();
1597 		return -EADDRNOTAVAIL;
1598 	default:
1599 		return -ENOIOCTLCMD;
1600 	}
1601 }
1602 #endif
1603 
1604 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1605 {
1606 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1607 	struct net *net = dev_net(dev);
1608 	struct mr_table *mrt;
1609 	struct vif_device *v;
1610 	int ct;
1611 
1612 	if (event != NETDEV_UNREGISTER)
1613 		return NOTIFY_DONE;
1614 
1615 	ipmr_for_each_table(mrt, net) {
1616 		v = &mrt->vif_table[0];
1617 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1618 			if (v->dev == dev)
1619 				vif_delete(mrt, ct, 1, NULL);
1620 		}
1621 	}
1622 	return NOTIFY_DONE;
1623 }
1624 
1625 static struct notifier_block ip_mr_notifier = {
1626 	.notifier_call = ipmr_device_event,
1627 };
1628 
1629 /* Encapsulate a packet by attaching a valid IPIP header to it.
1630  * This avoids tunnel drivers and other mess and gives us the speed so
1631  * important for multicast video.
1632  */
1633 static void ip_encap(struct net *net, struct sk_buff *skb,
1634 		     __be32 saddr, __be32 daddr)
1635 {
1636 	struct iphdr *iph;
1637 	const struct iphdr *old_iph = ip_hdr(skb);
1638 
1639 	skb_push(skb, sizeof(struct iphdr));
1640 	skb->transport_header = skb->network_header;
1641 	skb_reset_network_header(skb);
1642 	iph = ip_hdr(skb);
1643 
1644 	iph->version	=	4;
1645 	iph->tos	=	old_iph->tos;
1646 	iph->ttl	=	old_iph->ttl;
1647 	iph->frag_off	=	0;
1648 	iph->daddr	=	daddr;
1649 	iph->saddr	=	saddr;
1650 	iph->protocol	=	IPPROTO_IPIP;
1651 	iph->ihl	=	5;
1652 	iph->tot_len	=	htons(skb->len);
1653 	ip_select_ident(net, skb, NULL);
1654 	ip_send_check(iph);
1655 
1656 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1657 	nf_reset(skb);
1658 }
1659 
1660 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1661 				      struct sk_buff *skb)
1662 {
1663 	struct ip_options *opt = &(IPCB(skb)->opt);
1664 
1665 	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1666 	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1667 
1668 	if (unlikely(opt->optlen))
1669 		ip_forward_options(skb);
1670 
1671 	return dst_output(net, sk, skb);
1672 }
1673 
1674 /* Processing handlers for ipmr_forward */
1675 
1676 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1677 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1678 {
1679 	const struct iphdr *iph = ip_hdr(skb);
1680 	struct vif_device *vif = &mrt->vif_table[vifi];
1681 	struct net_device *dev;
1682 	struct rtable *rt;
1683 	struct flowi4 fl4;
1684 	int    encap = 0;
1685 
1686 	if (!vif->dev)
1687 		goto out_free;
1688 
1689 	if (vif->flags & VIFF_REGISTER) {
1690 		vif->pkt_out++;
1691 		vif->bytes_out += skb->len;
1692 		vif->dev->stats.tx_bytes += skb->len;
1693 		vif->dev->stats.tx_packets++;
1694 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1695 		goto out_free;
1696 	}
1697 
1698 	if (vif->flags & VIFF_TUNNEL) {
1699 		rt = ip_route_output_ports(net, &fl4, NULL,
1700 					   vif->remote, vif->local,
1701 					   0, 0,
1702 					   IPPROTO_IPIP,
1703 					   RT_TOS(iph->tos), vif->link);
1704 		if (IS_ERR(rt))
1705 			goto out_free;
1706 		encap = sizeof(struct iphdr);
1707 	} else {
1708 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1709 					   0, 0,
1710 					   IPPROTO_IPIP,
1711 					   RT_TOS(iph->tos), vif->link);
1712 		if (IS_ERR(rt))
1713 			goto out_free;
1714 	}
1715 
1716 	dev = rt->dst.dev;
1717 
1718 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1719 		/* Do not fragment multicasts. Alas, IPv4 does not
1720 		 * allow to send ICMP, so that packets will disappear
1721 		 * to blackhole.
1722 		 */
1723 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1724 		ip_rt_put(rt);
1725 		goto out_free;
1726 	}
1727 
1728 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1729 
1730 	if (skb_cow(skb, encap)) {
1731 		ip_rt_put(rt);
1732 		goto out_free;
1733 	}
1734 
1735 	vif->pkt_out++;
1736 	vif->bytes_out += skb->len;
1737 
1738 	skb_dst_drop(skb);
1739 	skb_dst_set(skb, &rt->dst);
1740 	ip_decrease_ttl(ip_hdr(skb));
1741 
1742 	/* FIXME: forward and output firewalls used to be called here.
1743 	 * What do we do with netfilter? -- RR
1744 	 */
1745 	if (vif->flags & VIFF_TUNNEL) {
1746 		ip_encap(net, skb, vif->local, vif->remote);
1747 		/* FIXME: extra output firewall step used to be here. --RR */
1748 		vif->dev->stats.tx_packets++;
1749 		vif->dev->stats.tx_bytes += skb->len;
1750 	}
1751 
1752 	IPCB(skb)->flags |= IPSKB_FORWARDED | IPSKB_FRAG_SEGS;
1753 
1754 	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1755 	 * not only before forwarding, but after forwarding on all output
1756 	 * interfaces. It is clear, if mrouter runs a multicasting
1757 	 * program, it should receive packets not depending to what interface
1758 	 * program is joined.
1759 	 * If we will not make it, the program will have to join on all
1760 	 * interfaces. On the other hand, multihoming host (or router, but
1761 	 * not mrouter) cannot join to more than one interface - it will
1762 	 * result in receiving multiple packets.
1763 	 */
1764 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1765 		net, NULL, skb, skb->dev, dev,
1766 		ipmr_forward_finish);
1767 	return;
1768 
1769 out_free:
1770 	kfree_skb(skb);
1771 }
1772 
1773 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1774 {
1775 	int ct;
1776 
1777 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1778 		if (mrt->vif_table[ct].dev == dev)
1779 			break;
1780 	}
1781 	return ct;
1782 }
1783 
1784 /* "local" means that we should preserve one skb (for local delivery) */
1785 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1786 			  struct sk_buff *skb, struct mfc_cache *cache,
1787 			  int local)
1788 {
1789 	int psend = -1;
1790 	int vif, ct;
1791 	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1792 
1793 	vif = cache->mfc_parent;
1794 	cache->mfc_un.res.pkt++;
1795 	cache->mfc_un.res.bytes += skb->len;
1796 	cache->mfc_un.res.lastuse = jiffies;
1797 
1798 	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1799 		struct mfc_cache *cache_proxy;
1800 
1801 		/* For an (*,G) entry, we only check that the incomming
1802 		 * interface is part of the static tree.
1803 		 */
1804 		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1805 		if (cache_proxy &&
1806 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1807 			goto forward;
1808 	}
1809 
1810 	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1811 	if (mrt->vif_table[vif].dev != skb->dev) {
1812 		if (rt_is_output_route(skb_rtable(skb))) {
1813 			/* It is our own packet, looped back.
1814 			 * Very complicated situation...
1815 			 *
1816 			 * The best workaround until routing daemons will be
1817 			 * fixed is not to redistribute packet, if it was
1818 			 * send through wrong interface. It means, that
1819 			 * multicast applications WILL NOT work for
1820 			 * (S,G), which have default multicast route pointing
1821 			 * to wrong oif. In any case, it is not a good
1822 			 * idea to use multicasting applications on router.
1823 			 */
1824 			goto dont_forward;
1825 		}
1826 
1827 		cache->mfc_un.res.wrong_if++;
1828 
1829 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1830 		    /* pimsm uses asserts, when switching from RPT to SPT,
1831 		     * so that we cannot check that packet arrived on an oif.
1832 		     * It is bad, but otherwise we would need to move pretty
1833 		     * large chunk of pimd to kernel. Ough... --ANK
1834 		     */
1835 		    (mrt->mroute_do_pim ||
1836 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1837 		    time_after(jiffies,
1838 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1839 			cache->mfc_un.res.last_assert = jiffies;
1840 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1841 		}
1842 		goto dont_forward;
1843 	}
1844 
1845 forward:
1846 	mrt->vif_table[vif].pkt_in++;
1847 	mrt->vif_table[vif].bytes_in += skb->len;
1848 
1849 	/* Forward the frame */
1850 	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1851 	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1852 		if (true_vifi >= 0 &&
1853 		    true_vifi != cache->mfc_parent &&
1854 		    ip_hdr(skb)->ttl >
1855 				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1856 			/* It's an (*,*) entry and the packet is not coming from
1857 			 * the upstream: forward the packet to the upstream
1858 			 * only.
1859 			 */
1860 			psend = cache->mfc_parent;
1861 			goto last_forward;
1862 		}
1863 		goto dont_forward;
1864 	}
1865 	for (ct = cache->mfc_un.res.maxvif - 1;
1866 	     ct >= cache->mfc_un.res.minvif; ct--) {
1867 		/* For (*,G) entry, don't forward to the incoming interface */
1868 		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1869 		     ct != true_vifi) &&
1870 		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1871 			if (psend != -1) {
1872 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1873 
1874 				if (skb2)
1875 					ipmr_queue_xmit(net, mrt, skb2, cache,
1876 							psend);
1877 			}
1878 			psend = ct;
1879 		}
1880 	}
1881 last_forward:
1882 	if (psend != -1) {
1883 		if (local) {
1884 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1885 
1886 			if (skb2)
1887 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1888 		} else {
1889 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1890 			return;
1891 		}
1892 	}
1893 
1894 dont_forward:
1895 	if (!local)
1896 		kfree_skb(skb);
1897 }
1898 
1899 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1900 {
1901 	struct rtable *rt = skb_rtable(skb);
1902 	struct iphdr *iph = ip_hdr(skb);
1903 	struct flowi4 fl4 = {
1904 		.daddr = iph->daddr,
1905 		.saddr = iph->saddr,
1906 		.flowi4_tos = RT_TOS(iph->tos),
1907 		.flowi4_oif = (rt_is_output_route(rt) ?
1908 			       skb->dev->ifindex : 0),
1909 		.flowi4_iif = (rt_is_output_route(rt) ?
1910 			       LOOPBACK_IFINDEX :
1911 			       skb->dev->ifindex),
1912 		.flowi4_mark = skb->mark,
1913 	};
1914 	struct mr_table *mrt;
1915 	int err;
1916 
1917 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1918 	if (err)
1919 		return ERR_PTR(err);
1920 	return mrt;
1921 }
1922 
1923 /* Multicast packets for forwarding arrive here
1924  * Called with rcu_read_lock();
1925  */
1926 int ip_mr_input(struct sk_buff *skb)
1927 {
1928 	struct mfc_cache *cache;
1929 	struct net *net = dev_net(skb->dev);
1930 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1931 	struct mr_table *mrt;
1932 
1933 	/* Packet is looped back after forward, it should not be
1934 	 * forwarded second time, but still can be delivered locally.
1935 	 */
1936 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1937 		goto dont_forward;
1938 
1939 	mrt = ipmr_rt_fib_lookup(net, skb);
1940 	if (IS_ERR(mrt)) {
1941 		kfree_skb(skb);
1942 		return PTR_ERR(mrt);
1943 	}
1944 	if (!local) {
1945 		if (IPCB(skb)->opt.router_alert) {
1946 			if (ip_call_ra_chain(skb))
1947 				return 0;
1948 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1949 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1950 			 * Cisco IOS <= 11.2(8)) do not put router alert
1951 			 * option to IGMP packets destined to routable
1952 			 * groups. It is very bad, because it means
1953 			 * that we can forward NO IGMP messages.
1954 			 */
1955 			struct sock *mroute_sk;
1956 
1957 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1958 			if (mroute_sk) {
1959 				nf_reset(skb);
1960 				raw_rcv(mroute_sk, skb);
1961 				return 0;
1962 			}
1963 		    }
1964 	}
1965 
1966 	/* already under rcu_read_lock() */
1967 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1968 	if (!cache) {
1969 		int vif = ipmr_find_vif(mrt, skb->dev);
1970 
1971 		if (vif >= 0)
1972 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1973 						    vif);
1974 	}
1975 
1976 	/* No usable cache entry */
1977 	if (!cache) {
1978 		int vif;
1979 
1980 		if (local) {
1981 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1982 			ip_local_deliver(skb);
1983 			if (!skb2)
1984 				return -ENOBUFS;
1985 			skb = skb2;
1986 		}
1987 
1988 		read_lock(&mrt_lock);
1989 		vif = ipmr_find_vif(mrt, skb->dev);
1990 		if (vif >= 0) {
1991 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1992 			read_unlock(&mrt_lock);
1993 
1994 			return err2;
1995 		}
1996 		read_unlock(&mrt_lock);
1997 		kfree_skb(skb);
1998 		return -ENODEV;
1999 	}
2000 
2001 	read_lock(&mrt_lock);
2002 	ip_mr_forward(net, mrt, skb, cache, local);
2003 	read_unlock(&mrt_lock);
2004 
2005 	if (local)
2006 		return ip_local_deliver(skb);
2007 
2008 	return 0;
2009 
2010 dont_forward:
2011 	if (local)
2012 		return ip_local_deliver(skb);
2013 	kfree_skb(skb);
2014 	return 0;
2015 }
2016 
2017 #ifdef CONFIG_IP_PIMSM_V1
2018 /* Handle IGMP messages of PIMv1 */
2019 int pim_rcv_v1(struct sk_buff *skb)
2020 {
2021 	struct igmphdr *pim;
2022 	struct net *net = dev_net(skb->dev);
2023 	struct mr_table *mrt;
2024 
2025 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2026 		goto drop;
2027 
2028 	pim = igmp_hdr(skb);
2029 
2030 	mrt = ipmr_rt_fib_lookup(net, skb);
2031 	if (IS_ERR(mrt))
2032 		goto drop;
2033 	if (!mrt->mroute_do_pim ||
2034 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2035 		goto drop;
2036 
2037 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2038 drop:
2039 		kfree_skb(skb);
2040 	}
2041 	return 0;
2042 }
2043 #endif
2044 
2045 #ifdef CONFIG_IP_PIMSM_V2
2046 static int pim_rcv(struct sk_buff *skb)
2047 {
2048 	struct pimreghdr *pim;
2049 	struct net *net = dev_net(skb->dev);
2050 	struct mr_table *mrt;
2051 
2052 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2053 		goto drop;
2054 
2055 	pim = (struct pimreghdr *)skb_transport_header(skb);
2056 	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2057 	    (pim->flags & PIM_NULL_REGISTER) ||
2058 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2059 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2060 		goto drop;
2061 
2062 	mrt = ipmr_rt_fib_lookup(net, skb);
2063 	if (IS_ERR(mrt))
2064 		goto drop;
2065 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2066 drop:
2067 		kfree_skb(skb);
2068 	}
2069 	return 0;
2070 }
2071 #endif
2072 
2073 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2074 			      struct mfc_cache *c, struct rtmsg *rtm)
2075 {
2076 	struct rta_mfc_stats mfcs;
2077 	struct nlattr *mp_attr;
2078 	struct rtnexthop *nhp;
2079 	unsigned long lastuse;
2080 	int ct;
2081 
2082 	/* If cache is unresolved, don't try to parse IIF and OIF */
2083 	if (c->mfc_parent >= MAXVIFS)
2084 		return -ENOENT;
2085 
2086 	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2087 	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2088 		return -EMSGSIZE;
2089 
2090 	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2091 		return -EMSGSIZE;
2092 
2093 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2094 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2095 			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2096 				nla_nest_cancel(skb, mp_attr);
2097 				return -EMSGSIZE;
2098 			}
2099 
2100 			nhp->rtnh_flags = 0;
2101 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2102 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2103 			nhp->rtnh_len = sizeof(*nhp);
2104 		}
2105 	}
2106 
2107 	nla_nest_end(skb, mp_attr);
2108 
2109 	lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2110 	lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2111 
2112 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2113 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2114 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2115 	if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2116 	    nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2117 			      RTA_PAD))
2118 		return -EMSGSIZE;
2119 
2120 	rtm->rtm_type = RTN_MULTICAST;
2121 	return 1;
2122 }
2123 
2124 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2125 		   __be32 saddr, __be32 daddr,
2126 		   struct rtmsg *rtm, int nowait, u32 portid)
2127 {
2128 	struct mfc_cache *cache;
2129 	struct mr_table *mrt;
2130 	int err;
2131 
2132 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2133 	if (!mrt)
2134 		return -ENOENT;
2135 
2136 	rcu_read_lock();
2137 	cache = ipmr_cache_find(mrt, saddr, daddr);
2138 	if (!cache && skb->dev) {
2139 		int vif = ipmr_find_vif(mrt, skb->dev);
2140 
2141 		if (vif >= 0)
2142 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2143 	}
2144 	if (!cache) {
2145 		struct sk_buff *skb2;
2146 		struct iphdr *iph;
2147 		struct net_device *dev;
2148 		int vif = -1;
2149 
2150 		if (nowait) {
2151 			rcu_read_unlock();
2152 			return -EAGAIN;
2153 		}
2154 
2155 		dev = skb->dev;
2156 		read_lock(&mrt_lock);
2157 		if (dev)
2158 			vif = ipmr_find_vif(mrt, dev);
2159 		if (vif < 0) {
2160 			read_unlock(&mrt_lock);
2161 			rcu_read_unlock();
2162 			return -ENODEV;
2163 		}
2164 		skb2 = skb_clone(skb, GFP_ATOMIC);
2165 		if (!skb2) {
2166 			read_unlock(&mrt_lock);
2167 			rcu_read_unlock();
2168 			return -ENOMEM;
2169 		}
2170 
2171 		NETLINK_CB(skb2).portid = portid;
2172 		skb_push(skb2, sizeof(struct iphdr));
2173 		skb_reset_network_header(skb2);
2174 		iph = ip_hdr(skb2);
2175 		iph->ihl = sizeof(struct iphdr) >> 2;
2176 		iph->saddr = saddr;
2177 		iph->daddr = daddr;
2178 		iph->version = 0;
2179 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2180 		read_unlock(&mrt_lock);
2181 		rcu_read_unlock();
2182 		return err;
2183 	}
2184 
2185 	read_lock(&mrt_lock);
2186 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2187 	read_unlock(&mrt_lock);
2188 	rcu_read_unlock();
2189 	return err;
2190 }
2191 
2192 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2193 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2194 			    int flags)
2195 {
2196 	struct nlmsghdr *nlh;
2197 	struct rtmsg *rtm;
2198 	int err;
2199 
2200 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2201 	if (!nlh)
2202 		return -EMSGSIZE;
2203 
2204 	rtm = nlmsg_data(nlh);
2205 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2206 	rtm->rtm_dst_len  = 32;
2207 	rtm->rtm_src_len  = 32;
2208 	rtm->rtm_tos      = 0;
2209 	rtm->rtm_table    = mrt->id;
2210 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2211 		goto nla_put_failure;
2212 	rtm->rtm_type     = RTN_MULTICAST;
2213 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2214 	if (c->mfc_flags & MFC_STATIC)
2215 		rtm->rtm_protocol = RTPROT_STATIC;
2216 	else
2217 		rtm->rtm_protocol = RTPROT_MROUTED;
2218 	rtm->rtm_flags    = 0;
2219 
2220 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2221 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2222 		goto nla_put_failure;
2223 	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2224 	/* do not break the dump if cache is unresolved */
2225 	if (err < 0 && err != -ENOENT)
2226 		goto nla_put_failure;
2227 
2228 	nlmsg_end(skb, nlh);
2229 	return 0;
2230 
2231 nla_put_failure:
2232 	nlmsg_cancel(skb, nlh);
2233 	return -EMSGSIZE;
2234 }
2235 
2236 static size_t mroute_msgsize(bool unresolved, int maxvif)
2237 {
2238 	size_t len =
2239 		NLMSG_ALIGN(sizeof(struct rtmsg))
2240 		+ nla_total_size(4)	/* RTA_TABLE */
2241 		+ nla_total_size(4)	/* RTA_SRC */
2242 		+ nla_total_size(4)	/* RTA_DST */
2243 		;
2244 
2245 	if (!unresolved)
2246 		len = len
2247 		      + nla_total_size(4)	/* RTA_IIF */
2248 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2249 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2250 						/* RTA_MFC_STATS */
2251 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2252 		;
2253 
2254 	return len;
2255 }
2256 
2257 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2258 				 int cmd)
2259 {
2260 	struct net *net = read_pnet(&mrt->net);
2261 	struct sk_buff *skb;
2262 	int err = -ENOBUFS;
2263 
2264 	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2265 			GFP_ATOMIC);
2266 	if (!skb)
2267 		goto errout;
2268 
2269 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2270 	if (err < 0)
2271 		goto errout;
2272 
2273 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2274 	return;
2275 
2276 errout:
2277 	kfree_skb(skb);
2278 	if (err < 0)
2279 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2280 }
2281 
2282 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2283 {
2284 	struct net *net = sock_net(skb->sk);
2285 	struct mr_table *mrt;
2286 	struct mfc_cache *mfc;
2287 	unsigned int t = 0, s_t;
2288 	unsigned int h = 0, s_h;
2289 	unsigned int e = 0, s_e;
2290 
2291 	s_t = cb->args[0];
2292 	s_h = cb->args[1];
2293 	s_e = cb->args[2];
2294 
2295 	rcu_read_lock();
2296 	ipmr_for_each_table(mrt, net) {
2297 		if (t < s_t)
2298 			goto next_table;
2299 		if (t > s_t)
2300 			s_h = 0;
2301 		for (h = s_h; h < MFC_LINES; h++) {
2302 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2303 				if (e < s_e)
2304 					goto next_entry;
2305 				if (ipmr_fill_mroute(mrt, skb,
2306 						     NETLINK_CB(cb->skb).portid,
2307 						     cb->nlh->nlmsg_seq,
2308 						     mfc, RTM_NEWROUTE,
2309 						     NLM_F_MULTI) < 0)
2310 					goto done;
2311 next_entry:
2312 				e++;
2313 			}
2314 			e = s_e = 0;
2315 		}
2316 		spin_lock_bh(&mfc_unres_lock);
2317 		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2318 			if (e < s_e)
2319 				goto next_entry2;
2320 			if (ipmr_fill_mroute(mrt, skb,
2321 					     NETLINK_CB(cb->skb).portid,
2322 					     cb->nlh->nlmsg_seq,
2323 					     mfc, RTM_NEWROUTE,
2324 					     NLM_F_MULTI) < 0) {
2325 				spin_unlock_bh(&mfc_unres_lock);
2326 				goto done;
2327 			}
2328 next_entry2:
2329 			e++;
2330 		}
2331 		spin_unlock_bh(&mfc_unres_lock);
2332 		e = s_e = 0;
2333 		s_h = 0;
2334 next_table:
2335 		t++;
2336 	}
2337 done:
2338 	rcu_read_unlock();
2339 
2340 	cb->args[2] = e;
2341 	cb->args[1] = h;
2342 	cb->args[0] = t;
2343 
2344 	return skb->len;
2345 }
2346 
2347 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2348 	[RTA_SRC]	= { .type = NLA_U32 },
2349 	[RTA_DST]	= { .type = NLA_U32 },
2350 	[RTA_IIF]	= { .type = NLA_U32 },
2351 	[RTA_TABLE]	= { .type = NLA_U32 },
2352 	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2353 };
2354 
2355 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2356 {
2357 	switch (rtm_protocol) {
2358 	case RTPROT_STATIC:
2359 	case RTPROT_MROUTED:
2360 		return true;
2361 	}
2362 	return false;
2363 }
2364 
2365 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2366 {
2367 	struct rtnexthop *rtnh = nla_data(nla);
2368 	int remaining = nla_len(nla), vifi = 0;
2369 
2370 	while (rtnh_ok(rtnh, remaining)) {
2371 		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2372 		if (++vifi == MAXVIFS)
2373 			break;
2374 		rtnh = rtnh_next(rtnh, &remaining);
2375 	}
2376 
2377 	return remaining > 0 ? -EINVAL : vifi;
2378 }
2379 
2380 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2381 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2382 			    struct mfcctl *mfcc, int *mrtsock,
2383 			    struct mr_table **mrtret)
2384 {
2385 	struct net_device *dev = NULL;
2386 	u32 tblid = RT_TABLE_DEFAULT;
2387 	struct mr_table *mrt;
2388 	struct nlattr *attr;
2389 	struct rtmsg *rtm;
2390 	int ret, rem;
2391 
2392 	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2393 	if (ret < 0)
2394 		goto out;
2395 	rtm = nlmsg_data(nlh);
2396 
2397 	ret = -EINVAL;
2398 	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2399 	    rtm->rtm_type != RTN_MULTICAST ||
2400 	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2401 	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2402 		goto out;
2403 
2404 	memset(mfcc, 0, sizeof(*mfcc));
2405 	mfcc->mfcc_parent = -1;
2406 	ret = 0;
2407 	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2408 		switch (nla_type(attr)) {
2409 		case RTA_SRC:
2410 			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2411 			break;
2412 		case RTA_DST:
2413 			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2414 			break;
2415 		case RTA_IIF:
2416 			dev = __dev_get_by_index(net, nla_get_u32(attr));
2417 			if (!dev) {
2418 				ret = -ENODEV;
2419 				goto out;
2420 			}
2421 			break;
2422 		case RTA_MULTIPATH:
2423 			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2424 				ret = -EINVAL;
2425 				goto out;
2426 			}
2427 			break;
2428 		case RTA_PREFSRC:
2429 			ret = 1;
2430 			break;
2431 		case RTA_TABLE:
2432 			tblid = nla_get_u32(attr);
2433 			break;
2434 		}
2435 	}
2436 	mrt = ipmr_get_table(net, tblid);
2437 	if (!mrt) {
2438 		ret = -ENOENT;
2439 		goto out;
2440 	}
2441 	*mrtret = mrt;
2442 	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2443 	if (dev)
2444 		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2445 
2446 out:
2447 	return ret;
2448 }
2449 
2450 /* takes care of both newroute and delroute */
2451 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2452 {
2453 	struct net *net = sock_net(skb->sk);
2454 	int ret, mrtsock, parent;
2455 	struct mr_table *tbl;
2456 	struct mfcctl mfcc;
2457 
2458 	mrtsock = 0;
2459 	tbl = NULL;
2460 	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2461 	if (ret < 0)
2462 		return ret;
2463 
2464 	parent = ret ? mfcc.mfcc_parent : -1;
2465 	if (nlh->nlmsg_type == RTM_NEWROUTE)
2466 		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2467 	else
2468 		return ipmr_mfc_delete(tbl, &mfcc, parent);
2469 }
2470 
2471 #ifdef CONFIG_PROC_FS
2472 /* The /proc interfaces to multicast routing :
2473  * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2474  */
2475 struct ipmr_vif_iter {
2476 	struct seq_net_private p;
2477 	struct mr_table *mrt;
2478 	int ct;
2479 };
2480 
2481 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2482 					   struct ipmr_vif_iter *iter,
2483 					   loff_t pos)
2484 {
2485 	struct mr_table *mrt = iter->mrt;
2486 
2487 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2488 		if (!VIF_EXISTS(mrt, iter->ct))
2489 			continue;
2490 		if (pos-- == 0)
2491 			return &mrt->vif_table[iter->ct];
2492 	}
2493 	return NULL;
2494 }
2495 
2496 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2497 	__acquires(mrt_lock)
2498 {
2499 	struct ipmr_vif_iter *iter = seq->private;
2500 	struct net *net = seq_file_net(seq);
2501 	struct mr_table *mrt;
2502 
2503 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2504 	if (!mrt)
2505 		return ERR_PTR(-ENOENT);
2506 
2507 	iter->mrt = mrt;
2508 
2509 	read_lock(&mrt_lock);
2510 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2511 		: SEQ_START_TOKEN;
2512 }
2513 
2514 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2515 {
2516 	struct ipmr_vif_iter *iter = seq->private;
2517 	struct net *net = seq_file_net(seq);
2518 	struct mr_table *mrt = iter->mrt;
2519 
2520 	++*pos;
2521 	if (v == SEQ_START_TOKEN)
2522 		return ipmr_vif_seq_idx(net, iter, 0);
2523 
2524 	while (++iter->ct < mrt->maxvif) {
2525 		if (!VIF_EXISTS(mrt, iter->ct))
2526 			continue;
2527 		return &mrt->vif_table[iter->ct];
2528 	}
2529 	return NULL;
2530 }
2531 
2532 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2533 	__releases(mrt_lock)
2534 {
2535 	read_unlock(&mrt_lock);
2536 }
2537 
2538 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2539 {
2540 	struct ipmr_vif_iter *iter = seq->private;
2541 	struct mr_table *mrt = iter->mrt;
2542 
2543 	if (v == SEQ_START_TOKEN) {
2544 		seq_puts(seq,
2545 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2546 	} else {
2547 		const struct vif_device *vif = v;
2548 		const char *name =  vif->dev ? vif->dev->name : "none";
2549 
2550 		seq_printf(seq,
2551 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2552 			   vif - mrt->vif_table,
2553 			   name, vif->bytes_in, vif->pkt_in,
2554 			   vif->bytes_out, vif->pkt_out,
2555 			   vif->flags, vif->local, vif->remote);
2556 	}
2557 	return 0;
2558 }
2559 
2560 static const struct seq_operations ipmr_vif_seq_ops = {
2561 	.start = ipmr_vif_seq_start,
2562 	.next  = ipmr_vif_seq_next,
2563 	.stop  = ipmr_vif_seq_stop,
2564 	.show  = ipmr_vif_seq_show,
2565 };
2566 
2567 static int ipmr_vif_open(struct inode *inode, struct file *file)
2568 {
2569 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2570 			    sizeof(struct ipmr_vif_iter));
2571 }
2572 
2573 static const struct file_operations ipmr_vif_fops = {
2574 	.owner	 = THIS_MODULE,
2575 	.open    = ipmr_vif_open,
2576 	.read    = seq_read,
2577 	.llseek  = seq_lseek,
2578 	.release = seq_release_net,
2579 };
2580 
2581 struct ipmr_mfc_iter {
2582 	struct seq_net_private p;
2583 	struct mr_table *mrt;
2584 	struct list_head *cache;
2585 	int ct;
2586 };
2587 
2588 
2589 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2590 					  struct ipmr_mfc_iter *it, loff_t pos)
2591 {
2592 	struct mr_table *mrt = it->mrt;
2593 	struct mfc_cache *mfc;
2594 
2595 	rcu_read_lock();
2596 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2597 		it->cache = &mrt->mfc_cache_array[it->ct];
2598 		list_for_each_entry_rcu(mfc, it->cache, list)
2599 			if (pos-- == 0)
2600 				return mfc;
2601 	}
2602 	rcu_read_unlock();
2603 
2604 	spin_lock_bh(&mfc_unres_lock);
2605 	it->cache = &mrt->mfc_unres_queue;
2606 	list_for_each_entry(mfc, it->cache, list)
2607 		if (pos-- == 0)
2608 			return mfc;
2609 	spin_unlock_bh(&mfc_unres_lock);
2610 
2611 	it->cache = NULL;
2612 	return NULL;
2613 }
2614 
2615 
2616 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2617 {
2618 	struct ipmr_mfc_iter *it = seq->private;
2619 	struct net *net = seq_file_net(seq);
2620 	struct mr_table *mrt;
2621 
2622 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2623 	if (!mrt)
2624 		return ERR_PTR(-ENOENT);
2625 
2626 	it->mrt = mrt;
2627 	it->cache = NULL;
2628 	it->ct = 0;
2629 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2630 		: SEQ_START_TOKEN;
2631 }
2632 
2633 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2634 {
2635 	struct mfc_cache *mfc = v;
2636 	struct ipmr_mfc_iter *it = seq->private;
2637 	struct net *net = seq_file_net(seq);
2638 	struct mr_table *mrt = it->mrt;
2639 
2640 	++*pos;
2641 
2642 	if (v == SEQ_START_TOKEN)
2643 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2644 
2645 	if (mfc->list.next != it->cache)
2646 		return list_entry(mfc->list.next, struct mfc_cache, list);
2647 
2648 	if (it->cache == &mrt->mfc_unres_queue)
2649 		goto end_of_list;
2650 
2651 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2652 
2653 	while (++it->ct < MFC_LINES) {
2654 		it->cache = &mrt->mfc_cache_array[it->ct];
2655 		if (list_empty(it->cache))
2656 			continue;
2657 		return list_first_entry(it->cache, struct mfc_cache, list);
2658 	}
2659 
2660 	/* exhausted cache_array, show unresolved */
2661 	rcu_read_unlock();
2662 	it->cache = &mrt->mfc_unres_queue;
2663 	it->ct = 0;
2664 
2665 	spin_lock_bh(&mfc_unres_lock);
2666 	if (!list_empty(it->cache))
2667 		return list_first_entry(it->cache, struct mfc_cache, list);
2668 
2669 end_of_list:
2670 	spin_unlock_bh(&mfc_unres_lock);
2671 	it->cache = NULL;
2672 
2673 	return NULL;
2674 }
2675 
2676 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2677 {
2678 	struct ipmr_mfc_iter *it = seq->private;
2679 	struct mr_table *mrt = it->mrt;
2680 
2681 	if (it->cache == &mrt->mfc_unres_queue)
2682 		spin_unlock_bh(&mfc_unres_lock);
2683 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2684 		rcu_read_unlock();
2685 }
2686 
2687 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2688 {
2689 	int n;
2690 
2691 	if (v == SEQ_START_TOKEN) {
2692 		seq_puts(seq,
2693 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2694 	} else {
2695 		const struct mfc_cache *mfc = v;
2696 		const struct ipmr_mfc_iter *it = seq->private;
2697 		const struct mr_table *mrt = it->mrt;
2698 
2699 		seq_printf(seq, "%08X %08X %-3hd",
2700 			   (__force u32) mfc->mfc_mcastgrp,
2701 			   (__force u32) mfc->mfc_origin,
2702 			   mfc->mfc_parent);
2703 
2704 		if (it->cache != &mrt->mfc_unres_queue) {
2705 			seq_printf(seq, " %8lu %8lu %8lu",
2706 				   mfc->mfc_un.res.pkt,
2707 				   mfc->mfc_un.res.bytes,
2708 				   mfc->mfc_un.res.wrong_if);
2709 			for (n = mfc->mfc_un.res.minvif;
2710 			     n < mfc->mfc_un.res.maxvif; n++) {
2711 				if (VIF_EXISTS(mrt, n) &&
2712 				    mfc->mfc_un.res.ttls[n] < 255)
2713 					seq_printf(seq,
2714 					   " %2d:%-3d",
2715 					   n, mfc->mfc_un.res.ttls[n]);
2716 			}
2717 		} else {
2718 			/* unresolved mfc_caches don't contain
2719 			 * pkt, bytes and wrong_if values
2720 			 */
2721 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2722 		}
2723 		seq_putc(seq, '\n');
2724 	}
2725 	return 0;
2726 }
2727 
2728 static const struct seq_operations ipmr_mfc_seq_ops = {
2729 	.start = ipmr_mfc_seq_start,
2730 	.next  = ipmr_mfc_seq_next,
2731 	.stop  = ipmr_mfc_seq_stop,
2732 	.show  = ipmr_mfc_seq_show,
2733 };
2734 
2735 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2736 {
2737 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2738 			    sizeof(struct ipmr_mfc_iter));
2739 }
2740 
2741 static const struct file_operations ipmr_mfc_fops = {
2742 	.owner	 = THIS_MODULE,
2743 	.open    = ipmr_mfc_open,
2744 	.read    = seq_read,
2745 	.llseek  = seq_lseek,
2746 	.release = seq_release_net,
2747 };
2748 #endif
2749 
2750 #ifdef CONFIG_IP_PIMSM_V2
2751 static const struct net_protocol pim_protocol = {
2752 	.handler	=	pim_rcv,
2753 	.netns_ok	=	1,
2754 };
2755 #endif
2756 
2757 /* Setup for IP multicast routing */
2758 static int __net_init ipmr_net_init(struct net *net)
2759 {
2760 	int err;
2761 
2762 	err = ipmr_rules_init(net);
2763 	if (err < 0)
2764 		goto fail;
2765 
2766 #ifdef CONFIG_PROC_FS
2767 	err = -ENOMEM;
2768 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2769 		goto proc_vif_fail;
2770 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2771 		goto proc_cache_fail;
2772 #endif
2773 	return 0;
2774 
2775 #ifdef CONFIG_PROC_FS
2776 proc_cache_fail:
2777 	remove_proc_entry("ip_mr_vif", net->proc_net);
2778 proc_vif_fail:
2779 	ipmr_rules_exit(net);
2780 #endif
2781 fail:
2782 	return err;
2783 }
2784 
2785 static void __net_exit ipmr_net_exit(struct net *net)
2786 {
2787 #ifdef CONFIG_PROC_FS
2788 	remove_proc_entry("ip_mr_cache", net->proc_net);
2789 	remove_proc_entry("ip_mr_vif", net->proc_net);
2790 #endif
2791 	ipmr_rules_exit(net);
2792 }
2793 
2794 static struct pernet_operations ipmr_net_ops = {
2795 	.init = ipmr_net_init,
2796 	.exit = ipmr_net_exit,
2797 };
2798 
2799 int __init ip_mr_init(void)
2800 {
2801 	int err;
2802 
2803 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2804 				       sizeof(struct mfc_cache),
2805 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2806 				       NULL);
2807 
2808 	err = register_pernet_subsys(&ipmr_net_ops);
2809 	if (err)
2810 		goto reg_pernet_fail;
2811 
2812 	err = register_netdevice_notifier(&ip_mr_notifier);
2813 	if (err)
2814 		goto reg_notif_fail;
2815 #ifdef CONFIG_IP_PIMSM_V2
2816 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2817 		pr_err("%s: can't add PIM protocol\n", __func__);
2818 		err = -EAGAIN;
2819 		goto add_proto_fail;
2820 	}
2821 #endif
2822 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2823 		      NULL, ipmr_rtm_dumproute, NULL);
2824 	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2825 		      ipmr_rtm_route, NULL, NULL);
2826 	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2827 		      ipmr_rtm_route, NULL, NULL);
2828 	return 0;
2829 
2830 #ifdef CONFIG_IP_PIMSM_V2
2831 add_proto_fail:
2832 	unregister_netdevice_notifier(&ip_mr_notifier);
2833 #endif
2834 reg_notif_fail:
2835 	unregister_pernet_subsys(&ipmr_net_ops);
2836 reg_pernet_fail:
2837 	kmem_cache_destroy(mrt_cachep);
2838 	return err;
2839 }
2840