1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IP multicast routing support for mrouted 3.6/3.8 4 * 5 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk> 6 * Linux Consultancy and Custom Driver Development 7 * 8 * Fixes: 9 * Michael Chastain : Incorrect size of copying. 10 * Alan Cox : Added the cache manager code 11 * Alan Cox : Fixed the clone/copy bug and device race. 12 * Mike McLagan : Routing by source 13 * Malcolm Beattie : Buffer handling fixes. 14 * Alexey Kuznetsov : Double buffer free and other fixes. 15 * SVR Anand : Fixed several multicast bugs and problems. 16 * Alexey Kuznetsov : Status, optimisations and more. 17 * Brad Parker : Better behaviour on mrouted upcall 18 * overflow. 19 * Carlos Picoto : PIMv1 Support 20 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header 21 * Relax this requirement to work with older peers. 22 */ 23 24 #include <linux/uaccess.h> 25 #include <linux/types.h> 26 #include <linux/cache.h> 27 #include <linux/capability.h> 28 #include <linux/errno.h> 29 #include <linux/mm.h> 30 #include <linux/kernel.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/in.h> 35 #include <linux/inet.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/igmp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/mroute.h> 42 #include <linux/init.h> 43 #include <linux/if_ether.h> 44 #include <linux/slab.h> 45 #include <net/net_namespace.h> 46 #include <net/ip.h> 47 #include <net/protocol.h> 48 #include <linux/skbuff.h> 49 #include <net/route.h> 50 #include <net/icmp.h> 51 #include <net/udp.h> 52 #include <net/raw.h> 53 #include <linux/notifier.h> 54 #include <linux/if_arp.h> 55 #include <linux/netfilter_ipv4.h> 56 #include <linux/compat.h> 57 #include <linux/export.h> 58 #include <linux/rhashtable.h> 59 #include <net/ip_tunnels.h> 60 #include <net/checksum.h> 61 #include <net/netlink.h> 62 #include <net/fib_rules.h> 63 #include <linux/netconf.h> 64 #include <net/rtnh.h> 65 66 #include <linux/nospec.h> 67 68 struct ipmr_rule { 69 struct fib_rule common; 70 }; 71 72 struct ipmr_result { 73 struct mr_table *mrt; 74 }; 75 76 /* Big lock, protecting vif table, mrt cache and mroute socket state. 77 * Note that the changes are semaphored via rtnl_lock. 78 */ 79 80 static DEFINE_SPINLOCK(mrt_lock); 81 82 static struct net_device *vif_dev_read(const struct vif_device *vif) 83 { 84 return rcu_dereference(vif->dev); 85 } 86 87 /* Multicast router control variables */ 88 89 /* Special spinlock for queue of unresolved entries */ 90 static DEFINE_SPINLOCK(mfc_unres_lock); 91 92 /* We return to original Alan's scheme. Hash table of resolved 93 * entries is changed only in process context and protected 94 * with weak lock mrt_lock. Queue of unresolved entries is protected 95 * with strong spinlock mfc_unres_lock. 96 * 97 * In this case data path is free of exclusive locks at all. 98 */ 99 100 static struct kmem_cache *mrt_cachep __ro_after_init; 101 102 static struct mr_table *ipmr_new_table(struct net *net, u32 id); 103 static void ipmr_free_table(struct mr_table *mrt); 104 105 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 106 struct net_device *dev, struct sk_buff *skb, 107 struct mfc_cache *cache, int local); 108 static int ipmr_cache_report(const struct mr_table *mrt, 109 struct sk_buff *pkt, vifi_t vifi, int assert); 110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 111 int cmd); 112 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt); 113 static void mroute_clean_tables(struct mr_table *mrt, int flags); 114 static void ipmr_expire_process(struct timer_list *t); 115 116 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 117 #define ipmr_for_each_table(mrt, net) \ 118 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list, \ 119 lockdep_rtnl_is_held() || \ 120 list_empty(&net->ipv4.mr_tables)) 121 122 static struct mr_table *ipmr_mr_table_iter(struct net *net, 123 struct mr_table *mrt) 124 { 125 struct mr_table *ret; 126 127 if (!mrt) 128 ret = list_entry_rcu(net->ipv4.mr_tables.next, 129 struct mr_table, list); 130 else 131 ret = list_entry_rcu(mrt->list.next, 132 struct mr_table, list); 133 134 if (&ret->list == &net->ipv4.mr_tables) 135 return NULL; 136 return ret; 137 } 138 139 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 140 { 141 struct mr_table *mrt; 142 143 ipmr_for_each_table(mrt, net) { 144 if (mrt->id == id) 145 return mrt; 146 } 147 return NULL; 148 } 149 150 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 151 struct mr_table **mrt) 152 { 153 int err; 154 struct ipmr_result res; 155 struct fib_lookup_arg arg = { 156 .result = &res, 157 .flags = FIB_LOOKUP_NOREF, 158 }; 159 160 /* update flow if oif or iif point to device enslaved to l3mdev */ 161 l3mdev_update_flow(net, flowi4_to_flowi(flp4)); 162 163 err = fib_rules_lookup(net->ipv4.mr_rules_ops, 164 flowi4_to_flowi(flp4), 0, &arg); 165 if (err < 0) 166 return err; 167 *mrt = res.mrt; 168 return 0; 169 } 170 171 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp, 172 int flags, struct fib_lookup_arg *arg) 173 { 174 struct ipmr_result *res = arg->result; 175 struct mr_table *mrt; 176 177 switch (rule->action) { 178 case FR_ACT_TO_TBL: 179 break; 180 case FR_ACT_UNREACHABLE: 181 return -ENETUNREACH; 182 case FR_ACT_PROHIBIT: 183 return -EACCES; 184 case FR_ACT_BLACKHOLE: 185 default: 186 return -EINVAL; 187 } 188 189 arg->table = fib_rule_get_table(rule, arg); 190 191 mrt = ipmr_get_table(rule->fr_net, arg->table); 192 if (!mrt) 193 return -EAGAIN; 194 res->mrt = mrt; 195 return 0; 196 } 197 198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags) 199 { 200 return 1; 201 } 202 203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 204 struct fib_rule_hdr *frh, struct nlattr **tb, 205 struct netlink_ext_ack *extack) 206 { 207 return 0; 208 } 209 210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 211 struct nlattr **tb) 212 { 213 return 1; 214 } 215 216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 217 struct fib_rule_hdr *frh) 218 { 219 frh->dst_len = 0; 220 frh->src_len = 0; 221 frh->tos = 0; 222 return 0; 223 } 224 225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = { 226 .family = RTNL_FAMILY_IPMR, 227 .rule_size = sizeof(struct ipmr_rule), 228 .addr_size = sizeof(u32), 229 .action = ipmr_rule_action, 230 .match = ipmr_rule_match, 231 .configure = ipmr_rule_configure, 232 .compare = ipmr_rule_compare, 233 .fill = ipmr_rule_fill, 234 .nlgroup = RTNLGRP_IPV4_RULE, 235 .owner = THIS_MODULE, 236 }; 237 238 static int __net_init ipmr_rules_init(struct net *net) 239 { 240 struct fib_rules_ops *ops; 241 struct mr_table *mrt; 242 int err; 243 244 ops = fib_rules_register(&ipmr_rules_ops_template, net); 245 if (IS_ERR(ops)) 246 return PTR_ERR(ops); 247 248 INIT_LIST_HEAD(&net->ipv4.mr_tables); 249 250 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 251 if (IS_ERR(mrt)) { 252 err = PTR_ERR(mrt); 253 goto err1; 254 } 255 256 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0); 257 if (err < 0) 258 goto err2; 259 260 net->ipv4.mr_rules_ops = ops; 261 return 0; 262 263 err2: 264 rtnl_lock(); 265 ipmr_free_table(mrt); 266 rtnl_unlock(); 267 err1: 268 fib_rules_unregister(ops); 269 return err; 270 } 271 272 static void __net_exit ipmr_rules_exit(struct net *net) 273 { 274 struct mr_table *mrt, *next; 275 276 ASSERT_RTNL(); 277 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) { 278 list_del(&mrt->list); 279 ipmr_free_table(mrt); 280 } 281 fib_rules_unregister(net->ipv4.mr_rules_ops); 282 } 283 284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 285 struct netlink_ext_ack *extack) 286 { 287 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR, extack); 288 } 289 290 static unsigned int ipmr_rules_seq_read(struct net *net) 291 { 292 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR); 293 } 294 295 bool ipmr_rule_default(const struct fib_rule *rule) 296 { 297 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT; 298 } 299 EXPORT_SYMBOL(ipmr_rule_default); 300 #else 301 #define ipmr_for_each_table(mrt, net) \ 302 for (mrt = net->ipv4.mrt; mrt; mrt = NULL) 303 304 static struct mr_table *ipmr_mr_table_iter(struct net *net, 305 struct mr_table *mrt) 306 { 307 if (!mrt) 308 return net->ipv4.mrt; 309 return NULL; 310 } 311 312 static struct mr_table *ipmr_get_table(struct net *net, u32 id) 313 { 314 return net->ipv4.mrt; 315 } 316 317 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4, 318 struct mr_table **mrt) 319 { 320 *mrt = net->ipv4.mrt; 321 return 0; 322 } 323 324 static int __net_init ipmr_rules_init(struct net *net) 325 { 326 struct mr_table *mrt; 327 328 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT); 329 if (IS_ERR(mrt)) 330 return PTR_ERR(mrt); 331 net->ipv4.mrt = mrt; 332 return 0; 333 } 334 335 static void __net_exit ipmr_rules_exit(struct net *net) 336 { 337 ASSERT_RTNL(); 338 ipmr_free_table(net->ipv4.mrt); 339 net->ipv4.mrt = NULL; 340 } 341 342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb, 343 struct netlink_ext_ack *extack) 344 { 345 return 0; 346 } 347 348 static unsigned int ipmr_rules_seq_read(struct net *net) 349 { 350 return 0; 351 } 352 353 bool ipmr_rule_default(const struct fib_rule *rule) 354 { 355 return true; 356 } 357 EXPORT_SYMBOL(ipmr_rule_default); 358 #endif 359 360 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg, 361 const void *ptr) 362 { 363 const struct mfc_cache_cmp_arg *cmparg = arg->key; 364 const struct mfc_cache *c = ptr; 365 366 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp || 367 cmparg->mfc_origin != c->mfc_origin; 368 } 369 370 static const struct rhashtable_params ipmr_rht_params = { 371 .head_offset = offsetof(struct mr_mfc, mnode), 372 .key_offset = offsetof(struct mfc_cache, cmparg), 373 .key_len = sizeof(struct mfc_cache_cmp_arg), 374 .nelem_hint = 3, 375 .obj_cmpfn = ipmr_hash_cmp, 376 .automatic_shrinking = true, 377 }; 378 379 static void ipmr_new_table_set(struct mr_table *mrt, 380 struct net *net) 381 { 382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES 383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables); 384 #endif 385 } 386 387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = { 388 .mfc_mcastgrp = htonl(INADDR_ANY), 389 .mfc_origin = htonl(INADDR_ANY), 390 }; 391 392 static struct mr_table_ops ipmr_mr_table_ops = { 393 .rht_params = &ipmr_rht_params, 394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any, 395 }; 396 397 static struct mr_table *ipmr_new_table(struct net *net, u32 id) 398 { 399 struct mr_table *mrt; 400 401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */ 402 if (id != RT_TABLE_DEFAULT && id >= 1000000000) 403 return ERR_PTR(-EINVAL); 404 405 mrt = ipmr_get_table(net, id); 406 if (mrt) 407 return mrt; 408 409 return mr_table_alloc(net, id, &ipmr_mr_table_ops, 410 ipmr_expire_process, ipmr_new_table_set); 411 } 412 413 static void ipmr_free_table(struct mr_table *mrt) 414 { 415 del_timer_sync(&mrt->ipmr_expire_timer); 416 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC | 417 MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC); 418 rhltable_destroy(&mrt->mfc_hash); 419 kfree(mrt); 420 } 421 422 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */ 423 424 /* Initialize ipmr pimreg/tunnel in_device */ 425 static bool ipmr_init_vif_indev(const struct net_device *dev) 426 { 427 struct in_device *in_dev; 428 429 ASSERT_RTNL(); 430 431 in_dev = __in_dev_get_rtnl(dev); 432 if (!in_dev) 433 return false; 434 ipv4_devconf_setall(in_dev); 435 neigh_parms_data_state_setall(in_dev->arp_parms); 436 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0; 437 438 return true; 439 } 440 441 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v) 442 { 443 struct net_device *tunnel_dev, *new_dev; 444 struct ip_tunnel_parm p = { }; 445 int err; 446 447 tunnel_dev = __dev_get_by_name(net, "tunl0"); 448 if (!tunnel_dev) 449 goto out; 450 451 p.iph.daddr = v->vifc_rmt_addr.s_addr; 452 p.iph.saddr = v->vifc_lcl_addr.s_addr; 453 p.iph.version = 4; 454 p.iph.ihl = 5; 455 p.iph.protocol = IPPROTO_IPIP; 456 sprintf(p.name, "dvmrp%d", v->vifc_vifi); 457 458 if (!tunnel_dev->netdev_ops->ndo_tunnel_ctl) 459 goto out; 460 err = tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 461 SIOCADDTUNNEL); 462 if (err) 463 goto out; 464 465 new_dev = __dev_get_by_name(net, p.name); 466 if (!new_dev) 467 goto out; 468 469 new_dev->flags |= IFF_MULTICAST; 470 if (!ipmr_init_vif_indev(new_dev)) 471 goto out_unregister; 472 if (dev_open(new_dev, NULL)) 473 goto out_unregister; 474 dev_hold(new_dev); 475 err = dev_set_allmulti(new_dev, 1); 476 if (err) { 477 dev_close(new_dev); 478 tunnel_dev->netdev_ops->ndo_tunnel_ctl(tunnel_dev, &p, 479 SIOCDELTUNNEL); 480 dev_put(new_dev); 481 new_dev = ERR_PTR(err); 482 } 483 return new_dev; 484 485 out_unregister: 486 unregister_netdevice(new_dev); 487 out: 488 return ERR_PTR(-ENOBUFS); 489 } 490 491 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2) 492 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev) 493 { 494 struct net *net = dev_net(dev); 495 struct mr_table *mrt; 496 struct flowi4 fl4 = { 497 .flowi4_oif = dev->ifindex, 498 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 499 .flowi4_mark = skb->mark, 500 }; 501 int err; 502 503 err = ipmr_fib_lookup(net, &fl4, &mrt); 504 if (err < 0) { 505 kfree_skb(skb); 506 return err; 507 } 508 509 dev->stats.tx_bytes += skb->len; 510 dev->stats.tx_packets++; 511 rcu_read_lock(); 512 513 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 514 ipmr_cache_report(mrt, skb, READ_ONCE(mrt->mroute_reg_vif_num), 515 IGMPMSG_WHOLEPKT); 516 517 rcu_read_unlock(); 518 kfree_skb(skb); 519 return NETDEV_TX_OK; 520 } 521 522 static int reg_vif_get_iflink(const struct net_device *dev) 523 { 524 return 0; 525 } 526 527 static const struct net_device_ops reg_vif_netdev_ops = { 528 .ndo_start_xmit = reg_vif_xmit, 529 .ndo_get_iflink = reg_vif_get_iflink, 530 }; 531 532 static void reg_vif_setup(struct net_device *dev) 533 { 534 dev->type = ARPHRD_PIMREG; 535 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8; 536 dev->flags = IFF_NOARP; 537 dev->netdev_ops = ®_vif_netdev_ops; 538 dev->needs_free_netdev = true; 539 dev->features |= NETIF_F_NETNS_LOCAL; 540 } 541 542 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 543 { 544 struct net_device *dev; 545 char name[IFNAMSIZ]; 546 547 if (mrt->id == RT_TABLE_DEFAULT) 548 sprintf(name, "pimreg"); 549 else 550 sprintf(name, "pimreg%u", mrt->id); 551 552 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 553 554 if (!dev) 555 return NULL; 556 557 dev_net_set(dev, net); 558 559 if (register_netdevice(dev)) { 560 free_netdev(dev); 561 return NULL; 562 } 563 564 if (!ipmr_init_vif_indev(dev)) 565 goto failure; 566 if (dev_open(dev, NULL)) 567 goto failure; 568 569 dev_hold(dev); 570 571 return dev; 572 573 failure: 574 unregister_netdevice(dev); 575 return NULL; 576 } 577 578 /* called with rcu_read_lock() */ 579 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb, 580 unsigned int pimlen) 581 { 582 struct net_device *reg_dev = NULL; 583 struct iphdr *encap; 584 int vif_num; 585 586 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen); 587 /* Check that: 588 * a. packet is really sent to a multicast group 589 * b. packet is not a NULL-REGISTER 590 * c. packet is not truncated 591 */ 592 if (!ipv4_is_multicast(encap->daddr) || 593 encap->tot_len == 0 || 594 ntohs(encap->tot_len) + pimlen > skb->len) 595 return 1; 596 597 /* Pairs with WRITE_ONCE() in vif_add()/vid_delete() */ 598 vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 599 if (vif_num >= 0) 600 reg_dev = vif_dev_read(&mrt->vif_table[vif_num]); 601 if (!reg_dev) 602 return 1; 603 604 skb->mac_header = skb->network_header; 605 skb_pull(skb, (u8 *)encap - skb->data); 606 skb_reset_network_header(skb); 607 skb->protocol = htons(ETH_P_IP); 608 skb->ip_summed = CHECKSUM_NONE; 609 610 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 611 612 netif_rx(skb); 613 614 return NET_RX_SUCCESS; 615 } 616 #else 617 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt) 618 { 619 return NULL; 620 } 621 #endif 622 623 static int call_ipmr_vif_entry_notifiers(struct net *net, 624 enum fib_event_type event_type, 625 struct vif_device *vif, 626 struct net_device *vif_dev, 627 vifi_t vif_index, u32 tb_id) 628 { 629 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type, 630 vif, vif_dev, vif_index, tb_id, 631 &net->ipv4.ipmr_seq); 632 } 633 634 static int call_ipmr_mfc_entry_notifiers(struct net *net, 635 enum fib_event_type event_type, 636 struct mfc_cache *mfc, u32 tb_id) 637 { 638 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type, 639 &mfc->_c, tb_id, &net->ipv4.ipmr_seq); 640 } 641 642 /** 643 * vif_delete - Delete a VIF entry 644 * @mrt: Table to delete from 645 * @vifi: VIF identifier to delete 646 * @notify: Set to 1, if the caller is a notifier_call 647 * @head: if unregistering the VIF, place it on this queue 648 */ 649 static int vif_delete(struct mr_table *mrt, int vifi, int notify, 650 struct list_head *head) 651 { 652 struct net *net = read_pnet(&mrt->net); 653 struct vif_device *v; 654 struct net_device *dev; 655 struct in_device *in_dev; 656 657 if (vifi < 0 || vifi >= mrt->maxvif) 658 return -EADDRNOTAVAIL; 659 660 v = &mrt->vif_table[vifi]; 661 662 dev = rtnl_dereference(v->dev); 663 if (!dev) 664 return -EADDRNOTAVAIL; 665 666 spin_lock(&mrt_lock); 667 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, dev, 668 vifi, mrt->id); 669 RCU_INIT_POINTER(v->dev, NULL); 670 671 if (vifi == mrt->mroute_reg_vif_num) { 672 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 673 WRITE_ONCE(mrt->mroute_reg_vif_num, -1); 674 } 675 if (vifi + 1 == mrt->maxvif) { 676 int tmp; 677 678 for (tmp = vifi - 1; tmp >= 0; tmp--) { 679 if (VIF_EXISTS(mrt, tmp)) 680 break; 681 } 682 WRITE_ONCE(mrt->maxvif, tmp + 1); 683 } 684 685 spin_unlock(&mrt_lock); 686 687 dev_set_allmulti(dev, -1); 688 689 in_dev = __in_dev_get_rtnl(dev); 690 if (in_dev) { 691 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--; 692 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 693 NETCONFA_MC_FORWARDING, 694 dev->ifindex, &in_dev->cnf); 695 ip_rt_multicast_event(in_dev); 696 } 697 698 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify) 699 unregister_netdevice_queue(dev, head); 700 701 netdev_put(dev, &v->dev_tracker); 702 return 0; 703 } 704 705 static void ipmr_cache_free_rcu(struct rcu_head *head) 706 { 707 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 708 709 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c); 710 } 711 712 static void ipmr_cache_free(struct mfc_cache *c) 713 { 714 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu); 715 } 716 717 /* Destroy an unresolved cache entry, killing queued skbs 718 * and reporting error to netlink readers. 719 */ 720 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c) 721 { 722 struct net *net = read_pnet(&mrt->net); 723 struct sk_buff *skb; 724 struct nlmsgerr *e; 725 726 atomic_dec(&mrt->cache_resolve_queue_len); 727 728 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) { 729 if (ip_hdr(skb)->version == 0) { 730 struct nlmsghdr *nlh = skb_pull(skb, 731 sizeof(struct iphdr)); 732 nlh->nlmsg_type = NLMSG_ERROR; 733 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 734 skb_trim(skb, nlh->nlmsg_len); 735 e = nlmsg_data(nlh); 736 e->error = -ETIMEDOUT; 737 memset(&e->msg, 0, sizeof(e->msg)); 738 739 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 740 } else { 741 kfree_skb(skb); 742 } 743 } 744 745 ipmr_cache_free(c); 746 } 747 748 /* Timer process for the unresolved queue. */ 749 static void ipmr_expire_process(struct timer_list *t) 750 { 751 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 752 struct mr_mfc *c, *next; 753 unsigned long expires; 754 unsigned long now; 755 756 if (!spin_trylock(&mfc_unres_lock)) { 757 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10); 758 return; 759 } 760 761 if (list_empty(&mrt->mfc_unres_queue)) 762 goto out; 763 764 now = jiffies; 765 expires = 10*HZ; 766 767 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 768 if (time_after(c->mfc_un.unres.expires, now)) { 769 unsigned long interval = c->mfc_un.unres.expires - now; 770 if (interval < expires) 771 expires = interval; 772 continue; 773 } 774 775 list_del(&c->list); 776 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE); 777 ipmr_destroy_unres(mrt, (struct mfc_cache *)c); 778 } 779 780 if (!list_empty(&mrt->mfc_unres_queue)) 781 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 782 783 out: 784 spin_unlock(&mfc_unres_lock); 785 } 786 787 /* Fill oifs list. It is called under locked mrt_lock. */ 788 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache, 789 unsigned char *ttls) 790 { 791 int vifi; 792 793 cache->mfc_un.res.minvif = MAXVIFS; 794 cache->mfc_un.res.maxvif = 0; 795 memset(cache->mfc_un.res.ttls, 255, MAXVIFS); 796 797 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 798 if (VIF_EXISTS(mrt, vifi) && 799 ttls[vifi] && ttls[vifi] < 255) { 800 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 801 if (cache->mfc_un.res.minvif > vifi) 802 cache->mfc_un.res.minvif = vifi; 803 if (cache->mfc_un.res.maxvif <= vifi) 804 cache->mfc_un.res.maxvif = vifi + 1; 805 } 806 } 807 cache->mfc_un.res.lastuse = jiffies; 808 } 809 810 static int vif_add(struct net *net, struct mr_table *mrt, 811 struct vifctl *vifc, int mrtsock) 812 { 813 struct netdev_phys_item_id ppid = { }; 814 int vifi = vifc->vifc_vifi; 815 struct vif_device *v = &mrt->vif_table[vifi]; 816 struct net_device *dev; 817 struct in_device *in_dev; 818 int err; 819 820 /* Is vif busy ? */ 821 if (VIF_EXISTS(mrt, vifi)) 822 return -EADDRINUSE; 823 824 switch (vifc->vifc_flags) { 825 case VIFF_REGISTER: 826 if (!ipmr_pimsm_enabled()) 827 return -EINVAL; 828 /* Special Purpose VIF in PIM 829 * All the packets will be sent to the daemon 830 */ 831 if (mrt->mroute_reg_vif_num >= 0) 832 return -EADDRINUSE; 833 dev = ipmr_reg_vif(net, mrt); 834 if (!dev) 835 return -ENOBUFS; 836 err = dev_set_allmulti(dev, 1); 837 if (err) { 838 unregister_netdevice(dev); 839 dev_put(dev); 840 return err; 841 } 842 break; 843 case VIFF_TUNNEL: 844 dev = ipmr_new_tunnel(net, vifc); 845 if (IS_ERR(dev)) 846 return PTR_ERR(dev); 847 break; 848 case VIFF_USE_IFINDEX: 849 case 0: 850 if (vifc->vifc_flags == VIFF_USE_IFINDEX) { 851 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex); 852 if (dev && !__in_dev_get_rtnl(dev)) { 853 dev_put(dev); 854 return -EADDRNOTAVAIL; 855 } 856 } else { 857 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr); 858 } 859 if (!dev) 860 return -EADDRNOTAVAIL; 861 err = dev_set_allmulti(dev, 1); 862 if (err) { 863 dev_put(dev); 864 return err; 865 } 866 break; 867 default: 868 return -EINVAL; 869 } 870 871 in_dev = __in_dev_get_rtnl(dev); 872 if (!in_dev) { 873 dev_put(dev); 874 return -EADDRNOTAVAIL; 875 } 876 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++; 877 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING, 878 dev->ifindex, &in_dev->cnf); 879 ip_rt_multicast_event(in_dev); 880 881 /* Fill in the VIF structures */ 882 vif_device_init(v, dev, vifc->vifc_rate_limit, 883 vifc->vifc_threshold, 884 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0), 885 (VIFF_TUNNEL | VIFF_REGISTER)); 886 887 err = dev_get_port_parent_id(dev, &ppid, true); 888 if (err == 0) { 889 memcpy(v->dev_parent_id.id, ppid.id, ppid.id_len); 890 v->dev_parent_id.id_len = ppid.id_len; 891 } else { 892 v->dev_parent_id.id_len = 0; 893 } 894 895 v->local = vifc->vifc_lcl_addr.s_addr; 896 v->remote = vifc->vifc_rmt_addr.s_addr; 897 898 /* And finish update writing critical data */ 899 spin_lock(&mrt_lock); 900 rcu_assign_pointer(v->dev, dev); 901 netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC); 902 if (v->flags & VIFF_REGISTER) { 903 /* Pairs with READ_ONCE() in ipmr_cache_report() and reg_vif_xmit() */ 904 WRITE_ONCE(mrt->mroute_reg_vif_num, vifi); 905 } 906 if (vifi+1 > mrt->maxvif) 907 WRITE_ONCE(mrt->maxvif, vifi + 1); 908 spin_unlock(&mrt_lock); 909 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, dev, 910 vifi, mrt->id); 911 return 0; 912 } 913 914 /* called with rcu_read_lock() */ 915 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, 916 __be32 origin, 917 __be32 mcastgrp) 918 { 919 struct mfc_cache_cmp_arg arg = { 920 .mfc_mcastgrp = mcastgrp, 921 .mfc_origin = origin 922 }; 923 924 return mr_mfc_find(mrt, &arg); 925 } 926 927 /* Look for a (*,G) entry */ 928 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt, 929 __be32 mcastgrp, int vifi) 930 { 931 struct mfc_cache_cmp_arg arg = { 932 .mfc_mcastgrp = mcastgrp, 933 .mfc_origin = htonl(INADDR_ANY) 934 }; 935 936 if (mcastgrp == htonl(INADDR_ANY)) 937 return mr_mfc_find_any_parent(mrt, vifi); 938 return mr_mfc_find_any(mrt, vifi, &arg); 939 } 940 941 /* Look for a (S,G,iif) entry if parent != -1 */ 942 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt, 943 __be32 origin, __be32 mcastgrp, 944 int parent) 945 { 946 struct mfc_cache_cmp_arg arg = { 947 .mfc_mcastgrp = mcastgrp, 948 .mfc_origin = origin, 949 }; 950 951 return mr_mfc_find_parent(mrt, &arg, parent); 952 } 953 954 /* Allocate a multicast cache entry */ 955 static struct mfc_cache *ipmr_cache_alloc(void) 956 { 957 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 958 959 if (c) { 960 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 961 c->_c.mfc_un.res.minvif = MAXVIFS; 962 c->_c.free = ipmr_cache_free_rcu; 963 refcount_set(&c->_c.mfc_un.res.refcount, 1); 964 } 965 return c; 966 } 967 968 static struct mfc_cache *ipmr_cache_alloc_unres(void) 969 { 970 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 971 972 if (c) { 973 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 974 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 975 } 976 return c; 977 } 978 979 /* A cache entry has gone into a resolved state from queued */ 980 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt, 981 struct mfc_cache *uc, struct mfc_cache *c) 982 { 983 struct sk_buff *skb; 984 struct nlmsgerr *e; 985 986 /* Play the pending entries through our router */ 987 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 988 if (ip_hdr(skb)->version == 0) { 989 struct nlmsghdr *nlh = skb_pull(skb, 990 sizeof(struct iphdr)); 991 992 if (mr_fill_mroute(mrt, skb, &c->_c, 993 nlmsg_data(nlh)) > 0) { 994 nlh->nlmsg_len = skb_tail_pointer(skb) - 995 (u8 *)nlh; 996 } else { 997 nlh->nlmsg_type = NLMSG_ERROR; 998 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 999 skb_trim(skb, nlh->nlmsg_len); 1000 e = nlmsg_data(nlh); 1001 e->error = -EMSGSIZE; 1002 memset(&e->msg, 0, sizeof(e->msg)); 1003 } 1004 1005 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1006 } else { 1007 ip_mr_forward(net, mrt, skb->dev, skb, c, 0); 1008 } 1009 } 1010 } 1011 1012 /* Bounce a cache query up to mrouted and netlink. 1013 * 1014 * Called under rcu_read_lock(). 1015 */ 1016 static int ipmr_cache_report(const struct mr_table *mrt, 1017 struct sk_buff *pkt, vifi_t vifi, int assert) 1018 { 1019 const int ihl = ip_hdrlen(pkt); 1020 struct sock *mroute_sk; 1021 struct igmphdr *igmp; 1022 struct igmpmsg *msg; 1023 struct sk_buff *skb; 1024 int ret; 1025 1026 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) 1027 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr)); 1028 else 1029 skb = alloc_skb(128, GFP_ATOMIC); 1030 1031 if (!skb) 1032 return -ENOBUFS; 1033 1034 if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) { 1035 /* Ugly, but we have no choice with this interface. 1036 * Duplicate old header, fix ihl, length etc. 1037 * And all this only to mangle msg->im_msgtype and 1038 * to set msg->im_mbz to "mbz" :-) 1039 */ 1040 skb_push(skb, sizeof(struct iphdr)); 1041 skb_reset_network_header(skb); 1042 skb_reset_transport_header(skb); 1043 msg = (struct igmpmsg *)skb_network_header(skb); 1044 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr)); 1045 msg->im_msgtype = assert; 1046 msg->im_mbz = 0; 1047 if (assert == IGMPMSG_WRVIFWHOLE) { 1048 msg->im_vif = vifi; 1049 msg->im_vif_hi = vifi >> 8; 1050 } else { 1051 /* Pairs with WRITE_ONCE() in vif_add() and vif_delete() */ 1052 int vif_num = READ_ONCE(mrt->mroute_reg_vif_num); 1053 1054 msg->im_vif = vif_num; 1055 msg->im_vif_hi = vif_num >> 8; 1056 } 1057 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2; 1058 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) + 1059 sizeof(struct iphdr)); 1060 } else { 1061 /* Copy the IP header */ 1062 skb_set_network_header(skb, skb->len); 1063 skb_put(skb, ihl); 1064 skb_copy_to_linear_data(skb, pkt->data, ihl); 1065 /* Flag to the kernel this is a route add */ 1066 ip_hdr(skb)->protocol = 0; 1067 msg = (struct igmpmsg *)skb_network_header(skb); 1068 msg->im_vif = vifi; 1069 msg->im_vif_hi = vifi >> 8; 1070 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1071 /* Add our header */ 1072 igmp = skb_put(skb, sizeof(struct igmphdr)); 1073 igmp->type = assert; 1074 msg->im_msgtype = assert; 1075 igmp->code = 0; 1076 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */ 1077 skb->transport_header = skb->network_header; 1078 } 1079 1080 mroute_sk = rcu_dereference(mrt->mroute_sk); 1081 if (!mroute_sk) { 1082 kfree_skb(skb); 1083 return -EINVAL; 1084 } 1085 1086 igmpmsg_netlink_event(mrt, skb); 1087 1088 /* Deliver to mrouted */ 1089 ret = sock_queue_rcv_skb(mroute_sk, skb); 1090 1091 if (ret < 0) { 1092 net_warn_ratelimited("mroute: pending queue full, dropping entries\n"); 1093 kfree_skb(skb); 1094 } 1095 1096 return ret; 1097 } 1098 1099 /* Queue a packet for resolution. It gets locked cache entry! */ 1100 /* Called under rcu_read_lock() */ 1101 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, 1102 struct sk_buff *skb, struct net_device *dev) 1103 { 1104 const struct iphdr *iph = ip_hdr(skb); 1105 struct mfc_cache *c; 1106 bool found = false; 1107 int err; 1108 1109 spin_lock_bh(&mfc_unres_lock); 1110 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1111 if (c->mfc_mcastgrp == iph->daddr && 1112 c->mfc_origin == iph->saddr) { 1113 found = true; 1114 break; 1115 } 1116 } 1117 1118 if (!found) { 1119 /* Create a new entry if allowable */ 1120 c = ipmr_cache_alloc_unres(); 1121 if (!c) { 1122 spin_unlock_bh(&mfc_unres_lock); 1123 1124 kfree_skb(skb); 1125 return -ENOBUFS; 1126 } 1127 1128 /* Fill in the new cache entry */ 1129 c->_c.mfc_parent = -1; 1130 c->mfc_origin = iph->saddr; 1131 c->mfc_mcastgrp = iph->daddr; 1132 1133 /* Reflect first query at mrouted. */ 1134 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE); 1135 1136 if (err < 0) { 1137 /* If the report failed throw the cache entry 1138 out - Brad Parker 1139 */ 1140 spin_unlock_bh(&mfc_unres_lock); 1141 1142 ipmr_cache_free(c); 1143 kfree_skb(skb); 1144 return err; 1145 } 1146 1147 atomic_inc(&mrt->cache_resolve_queue_len); 1148 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1149 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1150 1151 if (atomic_read(&mrt->cache_resolve_queue_len) == 1) 1152 mod_timer(&mrt->ipmr_expire_timer, 1153 c->_c.mfc_un.unres.expires); 1154 } 1155 1156 /* See if we can append the packet */ 1157 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1158 kfree_skb(skb); 1159 err = -ENOBUFS; 1160 } else { 1161 if (dev) { 1162 skb->dev = dev; 1163 skb->skb_iif = dev->ifindex; 1164 } 1165 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1166 err = 0; 1167 } 1168 1169 spin_unlock_bh(&mfc_unres_lock); 1170 return err; 1171 } 1172 1173 /* MFC cache manipulation by user space mroute daemon */ 1174 1175 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent) 1176 { 1177 struct net *net = read_pnet(&mrt->net); 1178 struct mfc_cache *c; 1179 1180 /* The entries are added/deleted only under RTNL */ 1181 rcu_read_lock(); 1182 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1183 mfc->mfcc_mcastgrp.s_addr, parent); 1184 rcu_read_unlock(); 1185 if (!c) 1186 return -ENOENT; 1187 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params); 1188 list_del_rcu(&c->_c.list); 1189 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id); 1190 mroute_netlink_event(mrt, c, RTM_DELROUTE); 1191 mr_cache_put(&c->_c); 1192 1193 return 0; 1194 } 1195 1196 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, 1197 struct mfcctl *mfc, int mrtsock, int parent) 1198 { 1199 struct mfc_cache *uc, *c; 1200 struct mr_mfc *_uc; 1201 bool found; 1202 int ret; 1203 1204 if (mfc->mfcc_parent >= MAXVIFS) 1205 return -ENFILE; 1206 1207 /* The entries are added/deleted only under RTNL */ 1208 rcu_read_lock(); 1209 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr, 1210 mfc->mfcc_mcastgrp.s_addr, parent); 1211 rcu_read_unlock(); 1212 if (c) { 1213 spin_lock(&mrt_lock); 1214 c->_c.mfc_parent = mfc->mfcc_parent; 1215 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1216 if (!mrtsock) 1217 c->_c.mfc_flags |= MFC_STATIC; 1218 spin_unlock(&mrt_lock); 1219 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c, 1220 mrt->id); 1221 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1222 return 0; 1223 } 1224 1225 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) && 1226 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr)) 1227 return -EINVAL; 1228 1229 c = ipmr_cache_alloc(); 1230 if (!c) 1231 return -ENOMEM; 1232 1233 c->mfc_origin = mfc->mfcc_origin.s_addr; 1234 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr; 1235 c->_c.mfc_parent = mfc->mfcc_parent; 1236 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls); 1237 if (!mrtsock) 1238 c->_c.mfc_flags |= MFC_STATIC; 1239 1240 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1241 ipmr_rht_params); 1242 if (ret) { 1243 pr_err("ipmr: rhtable insert error %d\n", ret); 1244 ipmr_cache_free(c); 1245 return ret; 1246 } 1247 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1248 /* Check to see if we resolved a queued list. If so we 1249 * need to send on the frames and tidy up. 1250 */ 1251 found = false; 1252 spin_lock_bh(&mfc_unres_lock); 1253 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1254 uc = (struct mfc_cache *)_uc; 1255 if (uc->mfc_origin == c->mfc_origin && 1256 uc->mfc_mcastgrp == c->mfc_mcastgrp) { 1257 list_del(&_uc->list); 1258 atomic_dec(&mrt->cache_resolve_queue_len); 1259 found = true; 1260 break; 1261 } 1262 } 1263 if (list_empty(&mrt->mfc_unres_queue)) 1264 del_timer(&mrt->ipmr_expire_timer); 1265 spin_unlock_bh(&mfc_unres_lock); 1266 1267 if (found) { 1268 ipmr_cache_resolve(net, mrt, uc, c); 1269 ipmr_cache_free(uc); 1270 } 1271 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id); 1272 mroute_netlink_event(mrt, c, RTM_NEWROUTE); 1273 return 0; 1274 } 1275 1276 /* Close the multicast socket, and clear the vif tables etc */ 1277 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1278 { 1279 struct net *net = read_pnet(&mrt->net); 1280 struct mr_mfc *c, *tmp; 1281 struct mfc_cache *cache; 1282 LIST_HEAD(list); 1283 int i; 1284 1285 /* Shut down all active vif entries */ 1286 if (flags & (MRT_FLUSH_VIFS | MRT_FLUSH_VIFS_STATIC)) { 1287 for (i = 0; i < mrt->maxvif; i++) { 1288 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1289 !(flags & MRT_FLUSH_VIFS_STATIC)) || 1290 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT_FLUSH_VIFS))) 1291 continue; 1292 vif_delete(mrt, i, 0, &list); 1293 } 1294 unregister_netdevice_many(&list); 1295 } 1296 1297 /* Wipe the cache */ 1298 if (flags & (MRT_FLUSH_MFC | MRT_FLUSH_MFC_STATIC)) { 1299 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1300 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC_STATIC)) || 1301 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT_FLUSH_MFC))) 1302 continue; 1303 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params); 1304 list_del_rcu(&c->list); 1305 cache = (struct mfc_cache *)c; 1306 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache, 1307 mrt->id); 1308 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1309 mr_cache_put(c); 1310 } 1311 } 1312 1313 if (flags & MRT_FLUSH_MFC) { 1314 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1315 spin_lock_bh(&mfc_unres_lock); 1316 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1317 list_del(&c->list); 1318 cache = (struct mfc_cache *)c; 1319 mroute_netlink_event(mrt, cache, RTM_DELROUTE); 1320 ipmr_destroy_unres(mrt, cache); 1321 } 1322 spin_unlock_bh(&mfc_unres_lock); 1323 } 1324 } 1325 } 1326 1327 /* called from ip_ra_control(), before an RCU grace period, 1328 * we don't need to call synchronize_rcu() here 1329 */ 1330 static void mrtsock_destruct(struct sock *sk) 1331 { 1332 struct net *net = sock_net(sk); 1333 struct mr_table *mrt; 1334 1335 rtnl_lock(); 1336 ipmr_for_each_table(mrt, net) { 1337 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1338 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--; 1339 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1340 NETCONFA_MC_FORWARDING, 1341 NETCONFA_IFINDEX_ALL, 1342 net->ipv4.devconf_all); 1343 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1344 mroute_clean_tables(mrt, MRT_FLUSH_VIFS | MRT_FLUSH_MFC); 1345 } 1346 } 1347 rtnl_unlock(); 1348 } 1349 1350 /* Socket options and virtual interface manipulation. The whole 1351 * virtual interface system is a complete heap, but unfortunately 1352 * that's how BSD mrouted happens to think. Maybe one day with a proper 1353 * MOSPF/PIM router set up we can clean this up. 1354 */ 1355 1356 int ip_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval, 1357 unsigned int optlen) 1358 { 1359 struct net *net = sock_net(sk); 1360 int val, ret = 0, parent = 0; 1361 struct mr_table *mrt; 1362 struct vifctl vif; 1363 struct mfcctl mfc; 1364 bool do_wrvifwhole; 1365 u32 uval; 1366 1367 /* There's one exception to the lock - MRT_DONE which needs to unlock */ 1368 rtnl_lock(); 1369 if (sk->sk_type != SOCK_RAW || 1370 inet_sk(sk)->inet_num != IPPROTO_IGMP) { 1371 ret = -EOPNOTSUPP; 1372 goto out_unlock; 1373 } 1374 1375 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1376 if (!mrt) { 1377 ret = -ENOENT; 1378 goto out_unlock; 1379 } 1380 if (optname != MRT_INIT) { 1381 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1382 !ns_capable(net->user_ns, CAP_NET_ADMIN)) { 1383 ret = -EACCES; 1384 goto out_unlock; 1385 } 1386 } 1387 1388 switch (optname) { 1389 case MRT_INIT: 1390 if (optlen != sizeof(int)) { 1391 ret = -EINVAL; 1392 break; 1393 } 1394 if (rtnl_dereference(mrt->mroute_sk)) { 1395 ret = -EADDRINUSE; 1396 break; 1397 } 1398 1399 ret = ip_ra_control(sk, 1, mrtsock_destruct); 1400 if (ret == 0) { 1401 rcu_assign_pointer(mrt->mroute_sk, sk); 1402 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++; 1403 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, 1404 NETCONFA_MC_FORWARDING, 1405 NETCONFA_IFINDEX_ALL, 1406 net->ipv4.devconf_all); 1407 } 1408 break; 1409 case MRT_DONE: 1410 if (sk != rcu_access_pointer(mrt->mroute_sk)) { 1411 ret = -EACCES; 1412 } else { 1413 /* We need to unlock here because mrtsock_destruct takes 1414 * care of rtnl itself and we can't change that due to 1415 * the IP_ROUTER_ALERT setsockopt which runs without it. 1416 */ 1417 rtnl_unlock(); 1418 ret = ip_ra_control(sk, 0, NULL); 1419 goto out; 1420 } 1421 break; 1422 case MRT_ADD_VIF: 1423 case MRT_DEL_VIF: 1424 if (optlen != sizeof(vif)) { 1425 ret = -EINVAL; 1426 break; 1427 } 1428 if (copy_from_sockptr(&vif, optval, sizeof(vif))) { 1429 ret = -EFAULT; 1430 break; 1431 } 1432 if (vif.vifc_vifi >= MAXVIFS) { 1433 ret = -ENFILE; 1434 break; 1435 } 1436 if (optname == MRT_ADD_VIF) { 1437 ret = vif_add(net, mrt, &vif, 1438 sk == rtnl_dereference(mrt->mroute_sk)); 1439 } else { 1440 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL); 1441 } 1442 break; 1443 /* Manipulate the forwarding caches. These live 1444 * in a sort of kernel/user symbiosis. 1445 */ 1446 case MRT_ADD_MFC: 1447 case MRT_DEL_MFC: 1448 parent = -1; 1449 fallthrough; 1450 case MRT_ADD_MFC_PROXY: 1451 case MRT_DEL_MFC_PROXY: 1452 if (optlen != sizeof(mfc)) { 1453 ret = -EINVAL; 1454 break; 1455 } 1456 if (copy_from_sockptr(&mfc, optval, sizeof(mfc))) { 1457 ret = -EFAULT; 1458 break; 1459 } 1460 if (parent == 0) 1461 parent = mfc.mfcc_parent; 1462 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY) 1463 ret = ipmr_mfc_delete(mrt, &mfc, parent); 1464 else 1465 ret = ipmr_mfc_add(net, mrt, &mfc, 1466 sk == rtnl_dereference(mrt->mroute_sk), 1467 parent); 1468 break; 1469 case MRT_FLUSH: 1470 if (optlen != sizeof(val)) { 1471 ret = -EINVAL; 1472 break; 1473 } 1474 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1475 ret = -EFAULT; 1476 break; 1477 } 1478 mroute_clean_tables(mrt, val); 1479 break; 1480 /* Control PIM assert. */ 1481 case MRT_ASSERT: 1482 if (optlen != sizeof(val)) { 1483 ret = -EINVAL; 1484 break; 1485 } 1486 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1487 ret = -EFAULT; 1488 break; 1489 } 1490 mrt->mroute_do_assert = val; 1491 break; 1492 case MRT_PIM: 1493 if (!ipmr_pimsm_enabled()) { 1494 ret = -ENOPROTOOPT; 1495 break; 1496 } 1497 if (optlen != sizeof(val)) { 1498 ret = -EINVAL; 1499 break; 1500 } 1501 if (copy_from_sockptr(&val, optval, sizeof(val))) { 1502 ret = -EFAULT; 1503 break; 1504 } 1505 1506 do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE); 1507 val = !!val; 1508 if (val != mrt->mroute_do_pim) { 1509 mrt->mroute_do_pim = val; 1510 mrt->mroute_do_assert = val; 1511 mrt->mroute_do_wrvifwhole = do_wrvifwhole; 1512 } 1513 break; 1514 case MRT_TABLE: 1515 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) { 1516 ret = -ENOPROTOOPT; 1517 break; 1518 } 1519 if (optlen != sizeof(uval)) { 1520 ret = -EINVAL; 1521 break; 1522 } 1523 if (copy_from_sockptr(&uval, optval, sizeof(uval))) { 1524 ret = -EFAULT; 1525 break; 1526 } 1527 1528 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1529 ret = -EBUSY; 1530 } else { 1531 mrt = ipmr_new_table(net, uval); 1532 if (IS_ERR(mrt)) 1533 ret = PTR_ERR(mrt); 1534 else 1535 raw_sk(sk)->ipmr_table = uval; 1536 } 1537 break; 1538 /* Spurious command, or MRT_VERSION which you cannot set. */ 1539 default: 1540 ret = -ENOPROTOOPT; 1541 } 1542 out_unlock: 1543 rtnl_unlock(); 1544 out: 1545 return ret; 1546 } 1547 1548 /* Getsock opt support for the multicast routing system. */ 1549 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen) 1550 { 1551 int olr; 1552 int val; 1553 struct net *net = sock_net(sk); 1554 struct mr_table *mrt; 1555 1556 if (sk->sk_type != SOCK_RAW || 1557 inet_sk(sk)->inet_num != IPPROTO_IGMP) 1558 return -EOPNOTSUPP; 1559 1560 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1561 if (!mrt) 1562 return -ENOENT; 1563 1564 switch (optname) { 1565 case MRT_VERSION: 1566 val = 0x0305; 1567 break; 1568 case MRT_PIM: 1569 if (!ipmr_pimsm_enabled()) 1570 return -ENOPROTOOPT; 1571 val = mrt->mroute_do_pim; 1572 break; 1573 case MRT_ASSERT: 1574 val = mrt->mroute_do_assert; 1575 break; 1576 default: 1577 return -ENOPROTOOPT; 1578 } 1579 1580 if (get_user(olr, optlen)) 1581 return -EFAULT; 1582 olr = min_t(unsigned int, olr, sizeof(int)); 1583 if (olr < 0) 1584 return -EINVAL; 1585 if (put_user(olr, optlen)) 1586 return -EFAULT; 1587 if (copy_to_user(optval, &val, olr)) 1588 return -EFAULT; 1589 return 0; 1590 } 1591 1592 /* The IP multicast ioctl support routines. */ 1593 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg) 1594 { 1595 struct sioc_sg_req sr; 1596 struct sioc_vif_req vr; 1597 struct vif_device *vif; 1598 struct mfc_cache *c; 1599 struct net *net = sock_net(sk); 1600 struct mr_table *mrt; 1601 1602 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1603 if (!mrt) 1604 return -ENOENT; 1605 1606 switch (cmd) { 1607 case SIOCGETVIFCNT: 1608 if (copy_from_user(&vr, arg, sizeof(vr))) 1609 return -EFAULT; 1610 if (vr.vifi >= mrt->maxvif) 1611 return -EINVAL; 1612 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1613 rcu_read_lock(); 1614 vif = &mrt->vif_table[vr.vifi]; 1615 if (VIF_EXISTS(mrt, vr.vifi)) { 1616 vr.icount = READ_ONCE(vif->pkt_in); 1617 vr.ocount = READ_ONCE(vif->pkt_out); 1618 vr.ibytes = READ_ONCE(vif->bytes_in); 1619 vr.obytes = READ_ONCE(vif->bytes_out); 1620 rcu_read_unlock(); 1621 1622 if (copy_to_user(arg, &vr, sizeof(vr))) 1623 return -EFAULT; 1624 return 0; 1625 } 1626 rcu_read_unlock(); 1627 return -EADDRNOTAVAIL; 1628 case SIOCGETSGCNT: 1629 if (copy_from_user(&sr, arg, sizeof(sr))) 1630 return -EFAULT; 1631 1632 rcu_read_lock(); 1633 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1634 if (c) { 1635 sr.pktcnt = c->_c.mfc_un.res.pkt; 1636 sr.bytecnt = c->_c.mfc_un.res.bytes; 1637 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1638 rcu_read_unlock(); 1639 1640 if (copy_to_user(arg, &sr, sizeof(sr))) 1641 return -EFAULT; 1642 return 0; 1643 } 1644 rcu_read_unlock(); 1645 return -EADDRNOTAVAIL; 1646 default: 1647 return -ENOIOCTLCMD; 1648 } 1649 } 1650 1651 #ifdef CONFIG_COMPAT 1652 struct compat_sioc_sg_req { 1653 struct in_addr src; 1654 struct in_addr grp; 1655 compat_ulong_t pktcnt; 1656 compat_ulong_t bytecnt; 1657 compat_ulong_t wrong_if; 1658 }; 1659 1660 struct compat_sioc_vif_req { 1661 vifi_t vifi; /* Which iface */ 1662 compat_ulong_t icount; 1663 compat_ulong_t ocount; 1664 compat_ulong_t ibytes; 1665 compat_ulong_t obytes; 1666 }; 1667 1668 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1669 { 1670 struct compat_sioc_sg_req sr; 1671 struct compat_sioc_vif_req vr; 1672 struct vif_device *vif; 1673 struct mfc_cache *c; 1674 struct net *net = sock_net(sk); 1675 struct mr_table *mrt; 1676 1677 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT); 1678 if (!mrt) 1679 return -ENOENT; 1680 1681 switch (cmd) { 1682 case SIOCGETVIFCNT: 1683 if (copy_from_user(&vr, arg, sizeof(vr))) 1684 return -EFAULT; 1685 if (vr.vifi >= mrt->maxvif) 1686 return -EINVAL; 1687 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif); 1688 rcu_read_lock(); 1689 vif = &mrt->vif_table[vr.vifi]; 1690 if (VIF_EXISTS(mrt, vr.vifi)) { 1691 vr.icount = READ_ONCE(vif->pkt_in); 1692 vr.ocount = READ_ONCE(vif->pkt_out); 1693 vr.ibytes = READ_ONCE(vif->bytes_in); 1694 vr.obytes = READ_ONCE(vif->bytes_out); 1695 rcu_read_unlock(); 1696 1697 if (copy_to_user(arg, &vr, sizeof(vr))) 1698 return -EFAULT; 1699 return 0; 1700 } 1701 rcu_read_unlock(); 1702 return -EADDRNOTAVAIL; 1703 case SIOCGETSGCNT: 1704 if (copy_from_user(&sr, arg, sizeof(sr))) 1705 return -EFAULT; 1706 1707 rcu_read_lock(); 1708 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr); 1709 if (c) { 1710 sr.pktcnt = c->_c.mfc_un.res.pkt; 1711 sr.bytecnt = c->_c.mfc_un.res.bytes; 1712 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1713 rcu_read_unlock(); 1714 1715 if (copy_to_user(arg, &sr, sizeof(sr))) 1716 return -EFAULT; 1717 return 0; 1718 } 1719 rcu_read_unlock(); 1720 return -EADDRNOTAVAIL; 1721 default: 1722 return -ENOIOCTLCMD; 1723 } 1724 } 1725 #endif 1726 1727 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 1728 { 1729 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1730 struct net *net = dev_net(dev); 1731 struct mr_table *mrt; 1732 struct vif_device *v; 1733 int ct; 1734 1735 if (event != NETDEV_UNREGISTER) 1736 return NOTIFY_DONE; 1737 1738 ipmr_for_each_table(mrt, net) { 1739 v = &mrt->vif_table[0]; 1740 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1741 if (rcu_access_pointer(v->dev) == dev) 1742 vif_delete(mrt, ct, 1, NULL); 1743 } 1744 } 1745 return NOTIFY_DONE; 1746 } 1747 1748 static struct notifier_block ip_mr_notifier = { 1749 .notifier_call = ipmr_device_event, 1750 }; 1751 1752 /* Encapsulate a packet by attaching a valid IPIP header to it. 1753 * This avoids tunnel drivers and other mess and gives us the speed so 1754 * important for multicast video. 1755 */ 1756 static void ip_encap(struct net *net, struct sk_buff *skb, 1757 __be32 saddr, __be32 daddr) 1758 { 1759 struct iphdr *iph; 1760 const struct iphdr *old_iph = ip_hdr(skb); 1761 1762 skb_push(skb, sizeof(struct iphdr)); 1763 skb->transport_header = skb->network_header; 1764 skb_reset_network_header(skb); 1765 iph = ip_hdr(skb); 1766 1767 iph->version = 4; 1768 iph->tos = old_iph->tos; 1769 iph->ttl = old_iph->ttl; 1770 iph->frag_off = 0; 1771 iph->daddr = daddr; 1772 iph->saddr = saddr; 1773 iph->protocol = IPPROTO_IPIP; 1774 iph->ihl = 5; 1775 iph->tot_len = htons(skb->len); 1776 ip_select_ident(net, skb, NULL); 1777 ip_send_check(iph); 1778 1779 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt)); 1780 nf_reset_ct(skb); 1781 } 1782 1783 static inline int ipmr_forward_finish(struct net *net, struct sock *sk, 1784 struct sk_buff *skb) 1785 { 1786 struct ip_options *opt = &(IPCB(skb)->opt); 1787 1788 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS); 1789 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len); 1790 1791 if (unlikely(opt->optlen)) 1792 ip_forward_options(skb); 1793 1794 return dst_output(net, sk, skb); 1795 } 1796 1797 #ifdef CONFIG_NET_SWITCHDEV 1798 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1799 int in_vifi, int out_vifi) 1800 { 1801 struct vif_device *out_vif = &mrt->vif_table[out_vifi]; 1802 struct vif_device *in_vif = &mrt->vif_table[in_vifi]; 1803 1804 if (!skb->offload_l3_fwd_mark) 1805 return false; 1806 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len) 1807 return false; 1808 return netdev_phys_item_id_same(&out_vif->dev_parent_id, 1809 &in_vif->dev_parent_id); 1810 } 1811 #else 1812 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt, 1813 int in_vifi, int out_vifi) 1814 { 1815 return false; 1816 } 1817 #endif 1818 1819 /* Processing handlers for ipmr_forward, under rcu_read_lock() */ 1820 1821 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt, 1822 int in_vifi, struct sk_buff *skb, int vifi) 1823 { 1824 const struct iphdr *iph = ip_hdr(skb); 1825 struct vif_device *vif = &mrt->vif_table[vifi]; 1826 struct net_device *vif_dev; 1827 struct net_device *dev; 1828 struct rtable *rt; 1829 struct flowi4 fl4; 1830 int encap = 0; 1831 1832 vif_dev = vif_dev_read(vif); 1833 if (!vif_dev) 1834 goto out_free; 1835 1836 if (vif->flags & VIFF_REGISTER) { 1837 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1838 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1839 vif_dev->stats.tx_bytes += skb->len; 1840 vif_dev->stats.tx_packets++; 1841 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT); 1842 goto out_free; 1843 } 1844 1845 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi)) 1846 goto out_free; 1847 1848 if (vif->flags & VIFF_TUNNEL) { 1849 rt = ip_route_output_ports(net, &fl4, NULL, 1850 vif->remote, vif->local, 1851 0, 0, 1852 IPPROTO_IPIP, 1853 RT_TOS(iph->tos), vif->link); 1854 if (IS_ERR(rt)) 1855 goto out_free; 1856 encap = sizeof(struct iphdr); 1857 } else { 1858 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0, 1859 0, 0, 1860 IPPROTO_IPIP, 1861 RT_TOS(iph->tos), vif->link); 1862 if (IS_ERR(rt)) 1863 goto out_free; 1864 } 1865 1866 dev = rt->dst.dev; 1867 1868 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) { 1869 /* Do not fragment multicasts. Alas, IPv4 does not 1870 * allow to send ICMP, so that packets will disappear 1871 * to blackhole. 1872 */ 1873 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 1874 ip_rt_put(rt); 1875 goto out_free; 1876 } 1877 1878 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len; 1879 1880 if (skb_cow(skb, encap)) { 1881 ip_rt_put(rt); 1882 goto out_free; 1883 } 1884 1885 WRITE_ONCE(vif->pkt_out, vif->pkt_out + 1); 1886 WRITE_ONCE(vif->bytes_out, vif->bytes_out + skb->len); 1887 1888 skb_dst_drop(skb); 1889 skb_dst_set(skb, &rt->dst); 1890 ip_decrease_ttl(ip_hdr(skb)); 1891 1892 /* FIXME: forward and output firewalls used to be called here. 1893 * What do we do with netfilter? -- RR 1894 */ 1895 if (vif->flags & VIFF_TUNNEL) { 1896 ip_encap(net, skb, vif->local, vif->remote); 1897 /* FIXME: extra output firewall step used to be here. --RR */ 1898 vif_dev->stats.tx_packets++; 1899 vif_dev->stats.tx_bytes += skb->len; 1900 } 1901 1902 IPCB(skb)->flags |= IPSKB_FORWARDED; 1903 1904 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1905 * not only before forwarding, but after forwarding on all output 1906 * interfaces. It is clear, if mrouter runs a multicasting 1907 * program, it should receive packets not depending to what interface 1908 * program is joined. 1909 * If we will not make it, the program will have to join on all 1910 * interfaces. On the other hand, multihoming host (or router, but 1911 * not mrouter) cannot join to more than one interface - it will 1912 * result in receiving multiple packets. 1913 */ 1914 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, 1915 net, NULL, skb, skb->dev, dev, 1916 ipmr_forward_finish); 1917 return; 1918 1919 out_free: 1920 kfree_skb(skb); 1921 } 1922 1923 /* Called with mrt_lock or rcu_read_lock() */ 1924 static int ipmr_find_vif(const struct mr_table *mrt, struct net_device *dev) 1925 { 1926 int ct; 1927 /* Pairs with WRITE_ONCE() in vif_delete()/vif_add() */ 1928 for (ct = READ_ONCE(mrt->maxvif) - 1; ct >= 0; ct--) { 1929 if (rcu_access_pointer(mrt->vif_table[ct].dev) == dev) 1930 break; 1931 } 1932 return ct; 1933 } 1934 1935 /* "local" means that we should preserve one skb (for local delivery) */ 1936 /* Called uner rcu_read_lock() */ 1937 static void ip_mr_forward(struct net *net, struct mr_table *mrt, 1938 struct net_device *dev, struct sk_buff *skb, 1939 struct mfc_cache *c, int local) 1940 { 1941 int true_vifi = ipmr_find_vif(mrt, dev); 1942 int psend = -1; 1943 int vif, ct; 1944 1945 vif = c->_c.mfc_parent; 1946 c->_c.mfc_un.res.pkt++; 1947 c->_c.mfc_un.res.bytes += skb->len; 1948 c->_c.mfc_un.res.lastuse = jiffies; 1949 1950 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) { 1951 struct mfc_cache *cache_proxy; 1952 1953 /* For an (*,G) entry, we only check that the incoming 1954 * interface is part of the static tree. 1955 */ 1956 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 1957 if (cache_proxy && 1958 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) 1959 goto forward; 1960 } 1961 1962 /* Wrong interface: drop packet and (maybe) send PIM assert. */ 1963 if (rcu_access_pointer(mrt->vif_table[vif].dev) != dev) { 1964 if (rt_is_output_route(skb_rtable(skb))) { 1965 /* It is our own packet, looped back. 1966 * Very complicated situation... 1967 * 1968 * The best workaround until routing daemons will be 1969 * fixed is not to redistribute packet, if it was 1970 * send through wrong interface. It means, that 1971 * multicast applications WILL NOT work for 1972 * (S,G), which have default multicast route pointing 1973 * to wrong oif. In any case, it is not a good 1974 * idea to use multicasting applications on router. 1975 */ 1976 goto dont_forward; 1977 } 1978 1979 c->_c.mfc_un.res.wrong_if++; 1980 1981 if (true_vifi >= 0 && mrt->mroute_do_assert && 1982 /* pimsm uses asserts, when switching from RPT to SPT, 1983 * so that we cannot check that packet arrived on an oif. 1984 * It is bad, but otherwise we would need to move pretty 1985 * large chunk of pimd to kernel. Ough... --ANK 1986 */ 1987 (mrt->mroute_do_pim || 1988 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 1989 time_after(jiffies, 1990 c->_c.mfc_un.res.last_assert + 1991 MFC_ASSERT_THRESH)) { 1992 c->_c.mfc_un.res.last_assert = jiffies; 1993 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF); 1994 if (mrt->mroute_do_wrvifwhole) 1995 ipmr_cache_report(mrt, skb, true_vifi, 1996 IGMPMSG_WRVIFWHOLE); 1997 } 1998 goto dont_forward; 1999 } 2000 2001 forward: 2002 WRITE_ONCE(mrt->vif_table[vif].pkt_in, 2003 mrt->vif_table[vif].pkt_in + 1); 2004 WRITE_ONCE(mrt->vif_table[vif].bytes_in, 2005 mrt->vif_table[vif].bytes_in + skb->len); 2006 2007 /* Forward the frame */ 2008 if (c->mfc_origin == htonl(INADDR_ANY) && 2009 c->mfc_mcastgrp == htonl(INADDR_ANY)) { 2010 if (true_vifi >= 0 && 2011 true_vifi != c->_c.mfc_parent && 2012 ip_hdr(skb)->ttl > 2013 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2014 /* It's an (*,*) entry and the packet is not coming from 2015 * the upstream: forward the packet to the upstream 2016 * only. 2017 */ 2018 psend = c->_c.mfc_parent; 2019 goto last_forward; 2020 } 2021 goto dont_forward; 2022 } 2023 for (ct = c->_c.mfc_un.res.maxvif - 1; 2024 ct >= c->_c.mfc_un.res.minvif; ct--) { 2025 /* For (*,G) entry, don't forward to the incoming interface */ 2026 if ((c->mfc_origin != htonl(INADDR_ANY) || 2027 ct != true_vifi) && 2028 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) { 2029 if (psend != -1) { 2030 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2031 2032 if (skb2) 2033 ipmr_queue_xmit(net, mrt, true_vifi, 2034 skb2, psend); 2035 } 2036 psend = ct; 2037 } 2038 } 2039 last_forward: 2040 if (psend != -1) { 2041 if (local) { 2042 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2043 2044 if (skb2) 2045 ipmr_queue_xmit(net, mrt, true_vifi, skb2, 2046 psend); 2047 } else { 2048 ipmr_queue_xmit(net, mrt, true_vifi, skb, psend); 2049 return; 2050 } 2051 } 2052 2053 dont_forward: 2054 if (!local) 2055 kfree_skb(skb); 2056 } 2057 2058 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb) 2059 { 2060 struct rtable *rt = skb_rtable(skb); 2061 struct iphdr *iph = ip_hdr(skb); 2062 struct flowi4 fl4 = { 2063 .daddr = iph->daddr, 2064 .saddr = iph->saddr, 2065 .flowi4_tos = RT_TOS(iph->tos), 2066 .flowi4_oif = (rt_is_output_route(rt) ? 2067 skb->dev->ifindex : 0), 2068 .flowi4_iif = (rt_is_output_route(rt) ? 2069 LOOPBACK_IFINDEX : 2070 skb->dev->ifindex), 2071 .flowi4_mark = skb->mark, 2072 }; 2073 struct mr_table *mrt; 2074 int err; 2075 2076 err = ipmr_fib_lookup(net, &fl4, &mrt); 2077 if (err) 2078 return ERR_PTR(err); 2079 return mrt; 2080 } 2081 2082 /* Multicast packets for forwarding arrive here 2083 * Called with rcu_read_lock(); 2084 */ 2085 int ip_mr_input(struct sk_buff *skb) 2086 { 2087 struct mfc_cache *cache; 2088 struct net *net = dev_net(skb->dev); 2089 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL; 2090 struct mr_table *mrt; 2091 struct net_device *dev; 2092 2093 /* skb->dev passed in is the loX master dev for vrfs. 2094 * As there are no vifs associated with loopback devices, 2095 * get the proper interface that does have a vif associated with it. 2096 */ 2097 dev = skb->dev; 2098 if (netif_is_l3_master(skb->dev)) { 2099 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2100 if (!dev) { 2101 kfree_skb(skb); 2102 return -ENODEV; 2103 } 2104 } 2105 2106 /* Packet is looped back after forward, it should not be 2107 * forwarded second time, but still can be delivered locally. 2108 */ 2109 if (IPCB(skb)->flags & IPSKB_FORWARDED) 2110 goto dont_forward; 2111 2112 mrt = ipmr_rt_fib_lookup(net, skb); 2113 if (IS_ERR(mrt)) { 2114 kfree_skb(skb); 2115 return PTR_ERR(mrt); 2116 } 2117 if (!local) { 2118 if (IPCB(skb)->opt.router_alert) { 2119 if (ip_call_ra_chain(skb)) 2120 return 0; 2121 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) { 2122 /* IGMPv1 (and broken IGMPv2 implementations sort of 2123 * Cisco IOS <= 11.2(8)) do not put router alert 2124 * option to IGMP packets destined to routable 2125 * groups. It is very bad, because it means 2126 * that we can forward NO IGMP messages. 2127 */ 2128 struct sock *mroute_sk; 2129 2130 mroute_sk = rcu_dereference(mrt->mroute_sk); 2131 if (mroute_sk) { 2132 nf_reset_ct(skb); 2133 raw_rcv(mroute_sk, skb); 2134 return 0; 2135 } 2136 } 2137 } 2138 2139 /* already under rcu_read_lock() */ 2140 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr); 2141 if (!cache) { 2142 int vif = ipmr_find_vif(mrt, dev); 2143 2144 if (vif >= 0) 2145 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr, 2146 vif); 2147 } 2148 2149 /* No usable cache entry */ 2150 if (!cache) { 2151 int vif; 2152 2153 if (local) { 2154 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2155 ip_local_deliver(skb); 2156 if (!skb2) 2157 return -ENOBUFS; 2158 skb = skb2; 2159 } 2160 2161 vif = ipmr_find_vif(mrt, dev); 2162 if (vif >= 0) 2163 return ipmr_cache_unresolved(mrt, vif, skb, dev); 2164 kfree_skb(skb); 2165 return -ENODEV; 2166 } 2167 2168 ip_mr_forward(net, mrt, dev, skb, cache, local); 2169 2170 if (local) 2171 return ip_local_deliver(skb); 2172 2173 return 0; 2174 2175 dont_forward: 2176 if (local) 2177 return ip_local_deliver(skb); 2178 kfree_skb(skb); 2179 return 0; 2180 } 2181 2182 #ifdef CONFIG_IP_PIMSM_V1 2183 /* Handle IGMP messages of PIMv1 */ 2184 int pim_rcv_v1(struct sk_buff *skb) 2185 { 2186 struct igmphdr *pim; 2187 struct net *net = dev_net(skb->dev); 2188 struct mr_table *mrt; 2189 2190 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2191 goto drop; 2192 2193 pim = igmp_hdr(skb); 2194 2195 mrt = ipmr_rt_fib_lookup(net, skb); 2196 if (IS_ERR(mrt)) 2197 goto drop; 2198 if (!mrt->mroute_do_pim || 2199 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER) 2200 goto drop; 2201 2202 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2203 drop: 2204 kfree_skb(skb); 2205 } 2206 return 0; 2207 } 2208 #endif 2209 2210 #ifdef CONFIG_IP_PIMSM_V2 2211 static int pim_rcv(struct sk_buff *skb) 2212 { 2213 struct pimreghdr *pim; 2214 struct net *net = dev_net(skb->dev); 2215 struct mr_table *mrt; 2216 2217 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr))) 2218 goto drop; 2219 2220 pim = (struct pimreghdr *)skb_transport_header(skb); 2221 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) || 2222 (pim->flags & PIM_NULL_REGISTER) || 2223 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 && 2224 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 2225 goto drop; 2226 2227 mrt = ipmr_rt_fib_lookup(net, skb); 2228 if (IS_ERR(mrt)) 2229 goto drop; 2230 if (__pim_rcv(mrt, skb, sizeof(*pim))) { 2231 drop: 2232 kfree_skb(skb); 2233 } 2234 return 0; 2235 } 2236 #endif 2237 2238 int ipmr_get_route(struct net *net, struct sk_buff *skb, 2239 __be32 saddr, __be32 daddr, 2240 struct rtmsg *rtm, u32 portid) 2241 { 2242 struct mfc_cache *cache; 2243 struct mr_table *mrt; 2244 int err; 2245 2246 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2247 if (!mrt) 2248 return -ENOENT; 2249 2250 rcu_read_lock(); 2251 cache = ipmr_cache_find(mrt, saddr, daddr); 2252 if (!cache && skb->dev) { 2253 int vif = ipmr_find_vif(mrt, skb->dev); 2254 2255 if (vif >= 0) 2256 cache = ipmr_cache_find_any(mrt, daddr, vif); 2257 } 2258 if (!cache) { 2259 struct sk_buff *skb2; 2260 struct iphdr *iph; 2261 struct net_device *dev; 2262 int vif = -1; 2263 2264 dev = skb->dev; 2265 if (dev) 2266 vif = ipmr_find_vif(mrt, dev); 2267 if (vif < 0) { 2268 rcu_read_unlock(); 2269 return -ENODEV; 2270 } 2271 2272 skb2 = skb_realloc_headroom(skb, sizeof(struct iphdr)); 2273 if (!skb2) { 2274 rcu_read_unlock(); 2275 return -ENOMEM; 2276 } 2277 2278 NETLINK_CB(skb2).portid = portid; 2279 skb_push(skb2, sizeof(struct iphdr)); 2280 skb_reset_network_header(skb2); 2281 iph = ip_hdr(skb2); 2282 iph->ihl = sizeof(struct iphdr) >> 2; 2283 iph->saddr = saddr; 2284 iph->daddr = daddr; 2285 iph->version = 0; 2286 err = ipmr_cache_unresolved(mrt, vif, skb2, dev); 2287 rcu_read_unlock(); 2288 return err; 2289 } 2290 2291 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2292 rcu_read_unlock(); 2293 return err; 2294 } 2295 2296 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2297 u32 portid, u32 seq, struct mfc_cache *c, int cmd, 2298 int flags) 2299 { 2300 struct nlmsghdr *nlh; 2301 struct rtmsg *rtm; 2302 int err; 2303 2304 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2305 if (!nlh) 2306 return -EMSGSIZE; 2307 2308 rtm = nlmsg_data(nlh); 2309 rtm->rtm_family = RTNL_FAMILY_IPMR; 2310 rtm->rtm_dst_len = 32; 2311 rtm->rtm_src_len = 32; 2312 rtm->rtm_tos = 0; 2313 rtm->rtm_table = mrt->id; 2314 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2315 goto nla_put_failure; 2316 rtm->rtm_type = RTN_MULTICAST; 2317 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2318 if (c->_c.mfc_flags & MFC_STATIC) 2319 rtm->rtm_protocol = RTPROT_STATIC; 2320 else 2321 rtm->rtm_protocol = RTPROT_MROUTED; 2322 rtm->rtm_flags = 0; 2323 2324 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) || 2325 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp)) 2326 goto nla_put_failure; 2327 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2328 /* do not break the dump if cache is unresolved */ 2329 if (err < 0 && err != -ENOENT) 2330 goto nla_put_failure; 2331 2332 nlmsg_end(skb, nlh); 2333 return 0; 2334 2335 nla_put_failure: 2336 nlmsg_cancel(skb, nlh); 2337 return -EMSGSIZE; 2338 } 2339 2340 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2341 u32 portid, u32 seq, struct mr_mfc *c, int cmd, 2342 int flags) 2343 { 2344 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c, 2345 cmd, flags); 2346 } 2347 2348 static size_t mroute_msgsize(bool unresolved, int maxvif) 2349 { 2350 size_t len = 2351 NLMSG_ALIGN(sizeof(struct rtmsg)) 2352 + nla_total_size(4) /* RTA_TABLE */ 2353 + nla_total_size(4) /* RTA_SRC */ 2354 + nla_total_size(4) /* RTA_DST */ 2355 ; 2356 2357 if (!unresolved) 2358 len = len 2359 + nla_total_size(4) /* RTA_IIF */ 2360 + nla_total_size(0) /* RTA_MULTIPATH */ 2361 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2362 /* RTA_MFC_STATS */ 2363 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2364 ; 2365 2366 return len; 2367 } 2368 2369 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc, 2370 int cmd) 2371 { 2372 struct net *net = read_pnet(&mrt->net); 2373 struct sk_buff *skb; 2374 int err = -ENOBUFS; 2375 2376 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS, 2377 mrt->maxvif), 2378 GFP_ATOMIC); 2379 if (!skb) 2380 goto errout; 2381 2382 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2383 if (err < 0) 2384 goto errout; 2385 2386 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC); 2387 return; 2388 2389 errout: 2390 kfree_skb(skb); 2391 if (err < 0) 2392 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err); 2393 } 2394 2395 static size_t igmpmsg_netlink_msgsize(size_t payloadlen) 2396 { 2397 size_t len = 2398 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2399 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */ 2400 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */ 2401 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */ 2402 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */ 2403 + nla_total_size(4) /* IPMRA_CREPORT_TABLE */ 2404 /* IPMRA_CREPORT_PKT */ 2405 + nla_total_size(payloadlen) 2406 ; 2407 2408 return len; 2409 } 2410 2411 static void igmpmsg_netlink_event(const struct mr_table *mrt, struct sk_buff *pkt) 2412 { 2413 struct net *net = read_pnet(&mrt->net); 2414 struct nlmsghdr *nlh; 2415 struct rtgenmsg *rtgenm; 2416 struct igmpmsg *msg; 2417 struct sk_buff *skb; 2418 struct nlattr *nla; 2419 int payloadlen; 2420 2421 payloadlen = pkt->len - sizeof(struct igmpmsg); 2422 msg = (struct igmpmsg *)skb_network_header(pkt); 2423 2424 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2425 if (!skb) 2426 goto errout; 2427 2428 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2429 sizeof(struct rtgenmsg), 0); 2430 if (!nlh) 2431 goto errout; 2432 rtgenm = nlmsg_data(nlh); 2433 rtgenm->rtgen_family = RTNL_FAMILY_IPMR; 2434 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) || 2435 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif | (msg->im_vif_hi << 8)) || 2436 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR, 2437 msg->im_src.s_addr) || 2438 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR, 2439 msg->im_dst.s_addr) || 2440 nla_put_u32(skb, IPMRA_CREPORT_TABLE, mrt->id)) 2441 goto nla_put_failure; 2442 2443 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen); 2444 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg), 2445 nla_data(nla), payloadlen)) 2446 goto nla_put_failure; 2447 2448 nlmsg_end(skb, nlh); 2449 2450 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC); 2451 return; 2452 2453 nla_put_failure: 2454 nlmsg_cancel(skb, nlh); 2455 errout: 2456 kfree_skb(skb); 2457 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS); 2458 } 2459 2460 static int ipmr_rtm_valid_getroute_req(struct sk_buff *skb, 2461 const struct nlmsghdr *nlh, 2462 struct nlattr **tb, 2463 struct netlink_ext_ack *extack) 2464 { 2465 struct rtmsg *rtm; 2466 int i, err; 2467 2468 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 2469 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for multicast route get request"); 2470 return -EINVAL; 2471 } 2472 2473 if (!netlink_strict_get_check(skb)) 2474 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 2475 rtm_ipv4_policy, extack); 2476 2477 rtm = nlmsg_data(nlh); 2478 if ((rtm->rtm_src_len && rtm->rtm_src_len != 32) || 2479 (rtm->rtm_dst_len && rtm->rtm_dst_len != 32) || 2480 rtm->rtm_tos || rtm->rtm_table || rtm->rtm_protocol || 2481 rtm->rtm_scope || rtm->rtm_type || rtm->rtm_flags) { 2482 NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for multicast route get request"); 2483 return -EINVAL; 2484 } 2485 2486 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 2487 rtm_ipv4_policy, extack); 2488 if (err) 2489 return err; 2490 2491 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 2492 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 2493 NL_SET_ERR_MSG(extack, "ipv4: rtm_src_len and rtm_dst_len must be 32 for IPv4"); 2494 return -EINVAL; 2495 } 2496 2497 for (i = 0; i <= RTA_MAX; i++) { 2498 if (!tb[i]) 2499 continue; 2500 2501 switch (i) { 2502 case RTA_SRC: 2503 case RTA_DST: 2504 case RTA_TABLE: 2505 break; 2506 default: 2507 NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in multicast route get request"); 2508 return -EINVAL; 2509 } 2510 } 2511 2512 return 0; 2513 } 2514 2515 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2516 struct netlink_ext_ack *extack) 2517 { 2518 struct net *net = sock_net(in_skb->sk); 2519 struct nlattr *tb[RTA_MAX + 1]; 2520 struct sk_buff *skb = NULL; 2521 struct mfc_cache *cache; 2522 struct mr_table *mrt; 2523 __be32 src, grp; 2524 u32 tableid; 2525 int err; 2526 2527 err = ipmr_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 2528 if (err < 0) 2529 goto errout; 2530 2531 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0; 2532 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0; 2533 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0; 2534 2535 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT); 2536 if (!mrt) { 2537 err = -ENOENT; 2538 goto errout_free; 2539 } 2540 2541 /* entries are added/deleted only under RTNL */ 2542 rcu_read_lock(); 2543 cache = ipmr_cache_find(mrt, src, grp); 2544 rcu_read_unlock(); 2545 if (!cache) { 2546 err = -ENOENT; 2547 goto errout_free; 2548 } 2549 2550 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL); 2551 if (!skb) { 2552 err = -ENOBUFS; 2553 goto errout_free; 2554 } 2555 2556 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid, 2557 nlh->nlmsg_seq, cache, 2558 RTM_NEWROUTE, 0); 2559 if (err < 0) 2560 goto errout_free; 2561 2562 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 2563 2564 errout: 2565 return err; 2566 2567 errout_free: 2568 kfree_skb(skb); 2569 goto errout; 2570 } 2571 2572 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2573 { 2574 struct fib_dump_filter filter = {}; 2575 int err; 2576 2577 if (cb->strict_check) { 2578 err = ip_valid_fib_dump_req(sock_net(skb->sk), cb->nlh, 2579 &filter, cb); 2580 if (err < 0) 2581 return err; 2582 } 2583 2584 if (filter.table_id) { 2585 struct mr_table *mrt; 2586 2587 mrt = ipmr_get_table(sock_net(skb->sk), filter.table_id); 2588 if (!mrt) { 2589 if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IPMR) 2590 return skb->len; 2591 2592 NL_SET_ERR_MSG(cb->extack, "ipv4: MR table does not exist"); 2593 return -ENOENT; 2594 } 2595 err = mr_table_dump(mrt, skb, cb, _ipmr_fill_mroute, 2596 &mfc_unres_lock, &filter); 2597 return skb->len ? : err; 2598 } 2599 2600 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter, 2601 _ipmr_fill_mroute, &mfc_unres_lock, &filter); 2602 } 2603 2604 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = { 2605 [RTA_SRC] = { .type = NLA_U32 }, 2606 [RTA_DST] = { .type = NLA_U32 }, 2607 [RTA_IIF] = { .type = NLA_U32 }, 2608 [RTA_TABLE] = { .type = NLA_U32 }, 2609 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 2610 }; 2611 2612 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol) 2613 { 2614 switch (rtm_protocol) { 2615 case RTPROT_STATIC: 2616 case RTPROT_MROUTED: 2617 return true; 2618 } 2619 return false; 2620 } 2621 2622 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc) 2623 { 2624 struct rtnexthop *rtnh = nla_data(nla); 2625 int remaining = nla_len(nla), vifi = 0; 2626 2627 while (rtnh_ok(rtnh, remaining)) { 2628 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops; 2629 if (++vifi == MAXVIFS) 2630 break; 2631 rtnh = rtnh_next(rtnh, &remaining); 2632 } 2633 2634 return remaining > 0 ? -EINVAL : vifi; 2635 } 2636 2637 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */ 2638 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh, 2639 struct mfcctl *mfcc, int *mrtsock, 2640 struct mr_table **mrtret, 2641 struct netlink_ext_ack *extack) 2642 { 2643 struct net_device *dev = NULL; 2644 u32 tblid = RT_TABLE_DEFAULT; 2645 struct mr_table *mrt; 2646 struct nlattr *attr; 2647 struct rtmsg *rtm; 2648 int ret, rem; 2649 2650 ret = nlmsg_validate_deprecated(nlh, sizeof(*rtm), RTA_MAX, 2651 rtm_ipmr_policy, extack); 2652 if (ret < 0) 2653 goto out; 2654 rtm = nlmsg_data(nlh); 2655 2656 ret = -EINVAL; 2657 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 || 2658 rtm->rtm_type != RTN_MULTICAST || 2659 rtm->rtm_scope != RT_SCOPE_UNIVERSE || 2660 !ipmr_rtm_validate_proto(rtm->rtm_protocol)) 2661 goto out; 2662 2663 memset(mfcc, 0, sizeof(*mfcc)); 2664 mfcc->mfcc_parent = -1; 2665 ret = 0; 2666 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) { 2667 switch (nla_type(attr)) { 2668 case RTA_SRC: 2669 mfcc->mfcc_origin.s_addr = nla_get_be32(attr); 2670 break; 2671 case RTA_DST: 2672 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr); 2673 break; 2674 case RTA_IIF: 2675 dev = __dev_get_by_index(net, nla_get_u32(attr)); 2676 if (!dev) { 2677 ret = -ENODEV; 2678 goto out; 2679 } 2680 break; 2681 case RTA_MULTIPATH: 2682 if (ipmr_nla_get_ttls(attr, mfcc) < 0) { 2683 ret = -EINVAL; 2684 goto out; 2685 } 2686 break; 2687 case RTA_PREFSRC: 2688 ret = 1; 2689 break; 2690 case RTA_TABLE: 2691 tblid = nla_get_u32(attr); 2692 break; 2693 } 2694 } 2695 mrt = ipmr_get_table(net, tblid); 2696 if (!mrt) { 2697 ret = -ENOENT; 2698 goto out; 2699 } 2700 *mrtret = mrt; 2701 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0; 2702 if (dev) 2703 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev); 2704 2705 out: 2706 return ret; 2707 } 2708 2709 /* takes care of both newroute and delroute */ 2710 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh, 2711 struct netlink_ext_ack *extack) 2712 { 2713 struct net *net = sock_net(skb->sk); 2714 int ret, mrtsock, parent; 2715 struct mr_table *tbl; 2716 struct mfcctl mfcc; 2717 2718 mrtsock = 0; 2719 tbl = NULL; 2720 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack); 2721 if (ret < 0) 2722 return ret; 2723 2724 parent = ret ? mfcc.mfcc_parent : -1; 2725 if (nlh->nlmsg_type == RTM_NEWROUTE) 2726 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent); 2727 else 2728 return ipmr_mfc_delete(tbl, &mfcc, parent); 2729 } 2730 2731 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb) 2732 { 2733 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len); 2734 2735 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) || 2736 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) || 2737 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM, 2738 mrt->mroute_reg_vif_num) || 2739 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT, 2740 mrt->mroute_do_assert) || 2741 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) || 2742 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE, 2743 mrt->mroute_do_wrvifwhole)) 2744 return false; 2745 2746 return true; 2747 } 2748 2749 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb) 2750 { 2751 struct net_device *vif_dev; 2752 struct nlattr *vif_nest; 2753 struct vif_device *vif; 2754 2755 vif = &mrt->vif_table[vifid]; 2756 vif_dev = rtnl_dereference(vif->dev); 2757 /* if the VIF doesn't exist just continue */ 2758 if (!vif_dev) 2759 return true; 2760 2761 vif_nest = nla_nest_start_noflag(skb, IPMRA_VIF); 2762 if (!vif_nest) 2763 return false; 2764 2765 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif_dev->ifindex) || 2766 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) || 2767 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) || 2768 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in, 2769 IPMRA_VIFA_PAD) || 2770 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out, 2771 IPMRA_VIFA_PAD) || 2772 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in, 2773 IPMRA_VIFA_PAD) || 2774 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out, 2775 IPMRA_VIFA_PAD) || 2776 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) || 2777 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) { 2778 nla_nest_cancel(skb, vif_nest); 2779 return false; 2780 } 2781 nla_nest_end(skb, vif_nest); 2782 2783 return true; 2784 } 2785 2786 static int ipmr_valid_dumplink(const struct nlmsghdr *nlh, 2787 struct netlink_ext_ack *extack) 2788 { 2789 struct ifinfomsg *ifm; 2790 2791 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { 2792 NL_SET_ERR_MSG(extack, "ipv4: Invalid header for ipmr link dump"); 2793 return -EINVAL; 2794 } 2795 2796 if (nlmsg_attrlen(nlh, sizeof(*ifm))) { 2797 NL_SET_ERR_MSG(extack, "Invalid data after header in ipmr link dump"); 2798 return -EINVAL; 2799 } 2800 2801 ifm = nlmsg_data(nlh); 2802 if (ifm->__ifi_pad || ifm->ifi_type || ifm->ifi_flags || 2803 ifm->ifi_change || ifm->ifi_index) { 2804 NL_SET_ERR_MSG(extack, "Invalid values in header for ipmr link dump request"); 2805 return -EINVAL; 2806 } 2807 2808 return 0; 2809 } 2810 2811 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb) 2812 { 2813 struct net *net = sock_net(skb->sk); 2814 struct nlmsghdr *nlh = NULL; 2815 unsigned int t = 0, s_t; 2816 unsigned int e = 0, s_e; 2817 struct mr_table *mrt; 2818 2819 if (cb->strict_check) { 2820 int err = ipmr_valid_dumplink(cb->nlh, cb->extack); 2821 2822 if (err < 0) 2823 return err; 2824 } 2825 2826 s_t = cb->args[0]; 2827 s_e = cb->args[1]; 2828 2829 ipmr_for_each_table(mrt, net) { 2830 struct nlattr *vifs, *af; 2831 struct ifinfomsg *hdr; 2832 u32 i; 2833 2834 if (t < s_t) 2835 goto skip_table; 2836 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, 2837 cb->nlh->nlmsg_seq, RTM_NEWLINK, 2838 sizeof(*hdr), NLM_F_MULTI); 2839 if (!nlh) 2840 break; 2841 2842 hdr = nlmsg_data(nlh); 2843 memset(hdr, 0, sizeof(*hdr)); 2844 hdr->ifi_family = RTNL_FAMILY_IPMR; 2845 2846 af = nla_nest_start_noflag(skb, IFLA_AF_SPEC); 2847 if (!af) { 2848 nlmsg_cancel(skb, nlh); 2849 goto out; 2850 } 2851 2852 if (!ipmr_fill_table(mrt, skb)) { 2853 nlmsg_cancel(skb, nlh); 2854 goto out; 2855 } 2856 2857 vifs = nla_nest_start_noflag(skb, IPMRA_TABLE_VIFS); 2858 if (!vifs) { 2859 nla_nest_end(skb, af); 2860 nlmsg_end(skb, nlh); 2861 goto out; 2862 } 2863 for (i = 0; i < mrt->maxvif; i++) { 2864 if (e < s_e) 2865 goto skip_entry; 2866 if (!ipmr_fill_vif(mrt, i, skb)) { 2867 nla_nest_end(skb, vifs); 2868 nla_nest_end(skb, af); 2869 nlmsg_end(skb, nlh); 2870 goto out; 2871 } 2872 skip_entry: 2873 e++; 2874 } 2875 s_e = 0; 2876 e = 0; 2877 nla_nest_end(skb, vifs); 2878 nla_nest_end(skb, af); 2879 nlmsg_end(skb, nlh); 2880 skip_table: 2881 t++; 2882 } 2883 2884 out: 2885 cb->args[1] = e; 2886 cb->args[0] = t; 2887 2888 return skb->len; 2889 } 2890 2891 #ifdef CONFIG_PROC_FS 2892 /* The /proc interfaces to multicast routing : 2893 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif 2894 */ 2895 2896 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos) 2897 __acquires(RCU) 2898 { 2899 struct mr_vif_iter *iter = seq->private; 2900 struct net *net = seq_file_net(seq); 2901 struct mr_table *mrt; 2902 2903 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2904 if (!mrt) 2905 return ERR_PTR(-ENOENT); 2906 2907 iter->mrt = mrt; 2908 2909 rcu_read_lock(); 2910 return mr_vif_seq_start(seq, pos); 2911 } 2912 2913 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v) 2914 __releases(RCU) 2915 { 2916 rcu_read_unlock(); 2917 } 2918 2919 static int ipmr_vif_seq_show(struct seq_file *seq, void *v) 2920 { 2921 struct mr_vif_iter *iter = seq->private; 2922 struct mr_table *mrt = iter->mrt; 2923 2924 if (v == SEQ_START_TOKEN) { 2925 seq_puts(seq, 2926 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n"); 2927 } else { 2928 const struct vif_device *vif = v; 2929 const struct net_device *vif_dev; 2930 const char *name; 2931 2932 vif_dev = vif_dev_read(vif); 2933 name = vif_dev ? vif_dev->name : "none"; 2934 seq_printf(seq, 2935 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n", 2936 vif - mrt->vif_table, 2937 name, vif->bytes_in, vif->pkt_in, 2938 vif->bytes_out, vif->pkt_out, 2939 vif->flags, vif->local, vif->remote); 2940 } 2941 return 0; 2942 } 2943 2944 static const struct seq_operations ipmr_vif_seq_ops = { 2945 .start = ipmr_vif_seq_start, 2946 .next = mr_vif_seq_next, 2947 .stop = ipmr_vif_seq_stop, 2948 .show = ipmr_vif_seq_show, 2949 }; 2950 2951 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 2952 { 2953 struct net *net = seq_file_net(seq); 2954 struct mr_table *mrt; 2955 2956 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT); 2957 if (!mrt) 2958 return ERR_PTR(-ENOENT); 2959 2960 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 2961 } 2962 2963 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 2964 { 2965 int n; 2966 2967 if (v == SEQ_START_TOKEN) { 2968 seq_puts(seq, 2969 "Group Origin Iif Pkts Bytes Wrong Oifs\n"); 2970 } else { 2971 const struct mfc_cache *mfc = v; 2972 const struct mr_mfc_iter *it = seq->private; 2973 const struct mr_table *mrt = it->mrt; 2974 2975 seq_printf(seq, "%08X %08X %-3hd", 2976 (__force u32) mfc->mfc_mcastgrp, 2977 (__force u32) mfc->mfc_origin, 2978 mfc->_c.mfc_parent); 2979 2980 if (it->cache != &mrt->mfc_unres_queue) { 2981 seq_printf(seq, " %8lu %8lu %8lu", 2982 mfc->_c.mfc_un.res.pkt, 2983 mfc->_c.mfc_un.res.bytes, 2984 mfc->_c.mfc_un.res.wrong_if); 2985 for (n = mfc->_c.mfc_un.res.minvif; 2986 n < mfc->_c.mfc_un.res.maxvif; n++) { 2987 if (VIF_EXISTS(mrt, n) && 2988 mfc->_c.mfc_un.res.ttls[n] < 255) 2989 seq_printf(seq, 2990 " %2d:%-3d", 2991 n, mfc->_c.mfc_un.res.ttls[n]); 2992 } 2993 } else { 2994 /* unresolved mfc_caches don't contain 2995 * pkt, bytes and wrong_if values 2996 */ 2997 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 2998 } 2999 seq_putc(seq, '\n'); 3000 } 3001 return 0; 3002 } 3003 3004 static const struct seq_operations ipmr_mfc_seq_ops = { 3005 .start = ipmr_mfc_seq_start, 3006 .next = mr_mfc_seq_next, 3007 .stop = mr_mfc_seq_stop, 3008 .show = ipmr_mfc_seq_show, 3009 }; 3010 #endif 3011 3012 #ifdef CONFIG_IP_PIMSM_V2 3013 static const struct net_protocol pim_protocol = { 3014 .handler = pim_rcv, 3015 }; 3016 #endif 3017 3018 static unsigned int ipmr_seq_read(struct net *net) 3019 { 3020 ASSERT_RTNL(); 3021 3022 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net); 3023 } 3024 3025 static int ipmr_dump(struct net *net, struct notifier_block *nb, 3026 struct netlink_ext_ack *extack) 3027 { 3028 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump, 3029 ipmr_mr_table_iter, extack); 3030 } 3031 3032 static const struct fib_notifier_ops ipmr_notifier_ops_template = { 3033 .family = RTNL_FAMILY_IPMR, 3034 .fib_seq_read = ipmr_seq_read, 3035 .fib_dump = ipmr_dump, 3036 .owner = THIS_MODULE, 3037 }; 3038 3039 static int __net_init ipmr_notifier_init(struct net *net) 3040 { 3041 struct fib_notifier_ops *ops; 3042 3043 net->ipv4.ipmr_seq = 0; 3044 3045 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net); 3046 if (IS_ERR(ops)) 3047 return PTR_ERR(ops); 3048 net->ipv4.ipmr_notifier_ops = ops; 3049 3050 return 0; 3051 } 3052 3053 static void __net_exit ipmr_notifier_exit(struct net *net) 3054 { 3055 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops); 3056 net->ipv4.ipmr_notifier_ops = NULL; 3057 } 3058 3059 /* Setup for IP multicast routing */ 3060 static int __net_init ipmr_net_init(struct net *net) 3061 { 3062 int err; 3063 3064 err = ipmr_notifier_init(net); 3065 if (err) 3066 goto ipmr_notifier_fail; 3067 3068 err = ipmr_rules_init(net); 3069 if (err < 0) 3070 goto ipmr_rules_fail; 3071 3072 #ifdef CONFIG_PROC_FS 3073 err = -ENOMEM; 3074 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops, 3075 sizeof(struct mr_vif_iter))) 3076 goto proc_vif_fail; 3077 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 3078 sizeof(struct mr_mfc_iter))) 3079 goto proc_cache_fail; 3080 #endif 3081 return 0; 3082 3083 #ifdef CONFIG_PROC_FS 3084 proc_cache_fail: 3085 remove_proc_entry("ip_mr_vif", net->proc_net); 3086 proc_vif_fail: 3087 rtnl_lock(); 3088 ipmr_rules_exit(net); 3089 rtnl_unlock(); 3090 #endif 3091 ipmr_rules_fail: 3092 ipmr_notifier_exit(net); 3093 ipmr_notifier_fail: 3094 return err; 3095 } 3096 3097 static void __net_exit ipmr_net_exit(struct net *net) 3098 { 3099 #ifdef CONFIG_PROC_FS 3100 remove_proc_entry("ip_mr_cache", net->proc_net); 3101 remove_proc_entry("ip_mr_vif", net->proc_net); 3102 #endif 3103 ipmr_notifier_exit(net); 3104 } 3105 3106 static void __net_exit ipmr_net_exit_batch(struct list_head *net_list) 3107 { 3108 struct net *net; 3109 3110 rtnl_lock(); 3111 list_for_each_entry(net, net_list, exit_list) 3112 ipmr_rules_exit(net); 3113 rtnl_unlock(); 3114 } 3115 3116 static struct pernet_operations ipmr_net_ops = { 3117 .init = ipmr_net_init, 3118 .exit = ipmr_net_exit, 3119 .exit_batch = ipmr_net_exit_batch, 3120 }; 3121 3122 int __init ip_mr_init(void) 3123 { 3124 int err; 3125 3126 mrt_cachep = kmem_cache_create("ip_mrt_cache", 3127 sizeof(struct mfc_cache), 3128 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, 3129 NULL); 3130 3131 err = register_pernet_subsys(&ipmr_net_ops); 3132 if (err) 3133 goto reg_pernet_fail; 3134 3135 err = register_netdevice_notifier(&ip_mr_notifier); 3136 if (err) 3137 goto reg_notif_fail; 3138 #ifdef CONFIG_IP_PIMSM_V2 3139 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) { 3140 pr_err("%s: can't add PIM protocol\n", __func__); 3141 err = -EAGAIN; 3142 goto add_proto_fail; 3143 } 3144 #endif 3145 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, 3146 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0); 3147 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE, 3148 ipmr_rtm_route, NULL, 0); 3149 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE, 3150 ipmr_rtm_route, NULL, 0); 3151 3152 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK, 3153 NULL, ipmr_rtm_dumplink, 0); 3154 return 0; 3155 3156 #ifdef CONFIG_IP_PIMSM_V2 3157 add_proto_fail: 3158 unregister_netdevice_notifier(&ip_mr_notifier); 3159 #endif 3160 reg_notif_fail: 3161 unregister_pernet_subsys(&ipmr_net_ops); 3162 reg_pernet_fail: 3163 kmem_cache_destroy(mrt_cachep); 3164 return err; 3165 } 3166